WO2011067853A1 - 電子写真感光体、プロセスカートリッジおよび電子写真装置 - Google Patents

電子写真感光体、プロセスカートリッジおよび電子写真装置 Download PDF

Info

Publication number
WO2011067853A1
WO2011067853A1 PCT/JP2009/070391 JP2009070391W WO2011067853A1 WO 2011067853 A1 WO2011067853 A1 WO 2011067853A1 JP 2009070391 W JP2009070391 W JP 2009070391W WO 2011067853 A1 WO2011067853 A1 WO 2011067853A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive member
electrophotographic photosensitive
peripheral surface
electrophotographic
width
Prior art date
Application number
PCT/JP2009/070391
Other languages
English (en)
French (fr)
Inventor
植松 弘規
大垣 晴信
大地 敦
川井 康裕
高橋 孝治
潮 村井
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN200980162708.4A priority Critical patent/CN102640059B/zh
Priority to JP2011520263A priority patent/JP5318204B2/ja
Priority to PCT/JP2009/070391 priority patent/WO2011067853A1/ja
Priority to EP09851861.6A priority patent/EP2508949B1/en
Priority to KR1020127016572A priority patent/KR101400590B1/ko
Priority to US12/959,238 priority patent/US8843024B2/en
Publication of WO2011067853A1 publication Critical patent/WO2011067853A1/ja
Priority to US14/047,364 priority patent/US20140038099A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers

Definitions

  • the present invention relates to an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus.
  • an electrophotographic photosensitive member As an electrophotographic photosensitive member, a photosensitive layer (organic photosensitive layer) using an organic material as a photoconductive substance (a charge generating substance or a charge transporting substance) is provided on a cylindrical support for the advantages of low cost and high productivity.
  • An electrophotographic photosensitive member (organic electrophotographic photosensitive member) is widely used.
  • an organic electrophotographic photosensitive member a laminated type in which a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material are laminated from the advantages of high sensitivity and diversity of material design
  • An electrophotographic photoreceptor having a photosensitive layer is the mainstream.
  • the roughening of the peripheral surface of the electrophotographic photosensitive member for the purpose of imparting releasability and slipperiness is effective.
  • the contact area at the time of contact with the toner, charging member, transfer member, cleaning member, etc. that contacts the peripheral surface of the electrophotographic photosensitive member by roughening the peripheral surface of the electrophotographic photosensitive member It is expected to improve the releasability and reduce the frictional force by reducing the friction.
  • the frictional force between the peripheral surface of the electrophotographic photosensitive member and the cleaning blade is particularly large, so the deterioration of the cleaning performance and the deterioration of the durability of the electrophotographic photosensitive member due to the magnitude of the frictional force become a problem. It tends to be easy.
  • a developer particularly an external additive
  • a developer is interposed between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member, and serves as a granular lubricant, thereby achieving stable cleaning. It is thought that you can. Therefore, when continuous image formation is performed at a normal image density, the granular lubricant is sufficiently supplied between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member, so that stable cleaning performance is achieved. Is demonstrated.
  • chatter is a phenomenon in which the cleaning blade vibrates due to an increase in frictional resistance between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member.
  • the cleaning blade is a phenomenon in which the cleaning blade that is in contact with the moving direction of the peripheral surface of the electrophotographic photosensitive member is reversed in the moving direction of the peripheral surface of the electrophotographic photosensitive member. It is.
  • specific examples of the decrease in the durability performance of the electrophotographic photosensitive member include an increase in the wear amount of the surface layer of the electrophotographic photosensitive member due to an increase in frictional resistance and the occurrence of scratches due to local pressure concentration. .
  • the roughening of the peripheral surface of the electrophotographic photosensitive member is considered to work effectively from the viewpoint of reducing the cleaning load, but at present, further improvements have been made to the roughening technology. It has been demanded.
  • Patent Document 1 in order to solve various problems including cleaning, a technique for roughening the peripheral surface of an electrophotographic photosensitive member using a polishing tape (film-like abrasive) (a groove portion in a substantially circumferential direction is provided). An electrophotographic photosensitive member formed on a peripheral surface is disclosed.
  • Patent Document 2 discloses a technique for forming a concavo-convex shape on the surface of an electrophotographic photosensitive member by compressing and molding the surface of the electrophotographic photosensitive member using a stamper having a concavo-convex surface. . Specifically, there is a technique for providing a surface on the surface of the electrophotographic photosensitive member having a shape in which peaks and valleys having apexes regularly continue in a direction having an angle with the axial direction of the electrophotographic photosensitive member, that is, a so-called groove portion. It is disclosed. According to this method, the toner releasability is improved and the nip pressure of the cleaning blade can be reduced, so that the wear of the electrophotographic photosensitive member is reduced.
  • the flat portion is dominant in the portion of the peripheral surface of the electrophotographic photosensitive member that contacts the cleaning blade.
  • the width of the flat part is not uniform with respect to the axial direction of the electrophotographic photosensitive member, or the groove part is continuous without having a flat part in part. Is thought to be unstable.
  • the transferability of the toner image from the peripheral surface of the electrophotographic photosensitive member to the transfer material the non-uniformity of the shape of the flat portion and the absence of the flat portion cause a drop in dot reproducibility and toner dropout. There is also concern about the non-uniformity of dots.
  • the present invention relates to an electrophotographic photosensitive member having a cylindrical support and a photosensitive layer provided on the cylindrical support.
  • a flat portion having a width e ( ⁇ m) of 0.1 ⁇ e ⁇ 25 and a width w ( ⁇ m) of 0.1 ⁇ w ⁇ 25 and a depth d ( ⁇ m) are formed in a plurality of alternately so as to form an angle ⁇ (°) of 80 ⁇ ⁇ ⁇ 100 with respect to the axial direction of the electrophotographic photosensitive member.
  • e Sum ( ⁇ m) of the width e of the flat portion per 100 ⁇ m in the axial direction of the peripheral surface is 5 ⁇ e Sum ⁇ 75, E ⁇ / e Av is e ⁇ / e Av ⁇ 0.46, where e Av ( ⁇ m) is the average value of the width e of the flat portion and e ⁇ is its standard deviation. It is a photographic photoreceptor.
  • the present invention also provides the electrophotographic photosensitive member, charging means for charging the peripheral surface of the electrophotographic photosensitive member, and developing the electrostatic latent image formed on the peripheral surface of the electrophotographic photosensitive member with toner.
  • Development means for forming a toner image on the peripheral surface of the electrophotographic photosensitive member, transfer means for transferring the toner image formed on the peripheral surface of the electrophotographic photosensitive member to a transfer material, and the electrophotography At least one means selected from the group consisting of cleaning means for removing toner remaining on the peripheral surface of the electrophotographic photosensitive member after the toner image formed on the peripheral surface of the photosensitive member is transferred onto a transfer material; Is a process cartridge characterized by being integrally supported and detachable from the main body of the electrophotographic apparatus.
  • the present invention also provides the electrophotographic photosensitive member described above, a charging means for charging the electrophotographic photosensitive member, and exposing the exposure surface to the charged peripheral surface of the electrophotographic photosensitive member.
  • An exposure means for forming an electrostatic latent image on the peripheral surface of the toner, and developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with toner to form a toner image on the peripheral surface of the electrophotographic photosensitive member
  • An electrophotographic apparatus comprising: a developing unit for transferring the toner image; and a transfer unit for transferring a toner image formed on the peripheral surface of the electrophotographic photosensitive member onto a transfer material.
  • an electrophotographic photoreceptor excellent in cleaning performance and a process cartridge and an electrophotographic apparatus having the electrophotographic photoreceptor.
  • an electrophotographic photosensitive member having good dot reproducibility even if the peripheral surface is roughened and a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member. it can.
  • FIG. 4 is a diagram showing an example of a flat portion-groove portion shape formed on a peripheral surface of an electrophotographic photosensitive member as viewed from the surface and a cross section. It is a figure which shows the example of the press-contact shape transcription
  • 1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having the electrophotographic photosensitive member of the present invention. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows the shape of a mold. It is a figure which shows
  • the shape of the peripheral surface of the electrophotographic photosensitive member is a shape including a flat portion and a groove portion (hereinafter also referred to as “flat portion-groove portion shape”), and uniformity of the flat portion-groove portion shape. Is that it is expensive. Specifically, a flat portion having a width e ( ⁇ m) of 0.1 ⁇ e ⁇ 25 and a width w ( ⁇ m) of 0.1 ⁇ w ⁇ 25 and deep on the peripheral surface of the electrophotographic photosensitive member.
  • a plurality of grooves having a length d ( ⁇ m) of 0.1 ⁇ d ⁇ 3.0 are alternately formed so as to form an angle ⁇ (°) of 80 ⁇ ⁇ ⁇ 100 with respect to the axial direction of the electrophotographic photosensitive member.
  • the total value e Sum ( ⁇ m) of the flat portion width e per 100 ⁇ m in the axial direction of the peripheral surface of the electrophotographic photosensitive member is 5 ⁇ e Sum ⁇ 75, and the average value of the flat portion width e.
  • Is e Av ( ⁇ m) and its standard deviation is e ⁇
  • e ⁇ / e Av is e ⁇ / e Av ⁇ 0.46.
  • the fine flat portion-groove portion shape in the axial direction of the electrophotographic photosensitive member is uniform. It is difficult to improve sex.
  • the method of forming the flat part-groove part shape by mold compression is adopted, the flat part-groove part shape can be easily controlled.
  • the width of the flat portion e in the flat portion-groove portion shape is uniformly controlled, so that the cleaning blade with respect to the peripheral surface of the electrophotographic photosensitive member is controlled.
  • the cleaning performance is greatly improved even when the contact pressure is reduced. This is considered to be due to the fact that the contact state between the microscopic cleaning blade and the peripheral surface of the electrophotographic photosensitive member is stabilized, so that minute vibrations of the cleaning blade are reduced and good cleaning performance is exhibited. .
  • the electrophotographic photosensitive member of the present invention exhibits good cleaning performance. Further, by uniformly controlling the width w and depth d of the groove portion in the flat portion-groove portion shape, even if the electrophotographic photosensitive member has a rough peripheral surface, the dot reproducibility is reduced and the toner is omitted. It has been found that the non-uniformity of dots due to is further suppressed.
  • the contact pressure of the cleaning blade with respect to the peripheral surface of the electrophotographic photosensitive member can be reduced. If the contact pressure is reduced, the frictional force between the peripheral surface of the electrophotographic photosensitive member and the cleaning blade can be reduced, the temperature rise of the electrophotographic photosensitive member, the load of the motor for rotating the photosensitive member, It is possible to suppress a decrease in durability of the electrophotographic photosensitive member due to wear or scratches.
  • FIG. 1 shows an example in which the flat part-groove part shape formed on the peripheral surface of the electrophotographic photosensitive member according to the present invention is viewed from the surface and the cross section.
  • a plurality of flat portions having a width e ( ⁇ m) and groove portions having a width w ( ⁇ m) and a depth d ( ⁇ m) are alternately formed on the peripheral surface of the electrophotographic photosensitive member.
  • the flat portion width e ( ⁇ m) is in the range of 0.1 ⁇ e ⁇ 25.
  • the width e ( ⁇ m) of the flat portion exceeds 25 ⁇ m, the contact portion between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member increases in the axial direction of the electrophotographic photosensitive member, and the effect of reducing the frictional force tends to decrease. It is in.
  • the width e ( ⁇ m) of the flat portion is smaller than 0.1 ⁇ m, the contact portion becomes small, and the behavior of the cleaning blade tends to become unstable.
  • the width e of the flat portion is smaller than 0.1 ⁇ m, the dot reproducibility tends to be lowered when the toner image formed on the peripheral surface of the electrophotographic photosensitive member is transferred to the transfer material.
  • the flat portion having a width e ( ⁇ m) smaller than 0.1 ⁇ m is preferably not formed on the peripheral surface of the electrophotographic photosensitive member. Further, it is preferable that a flat portion having a width e ( ⁇ m) larger than 25 ⁇ m is not formed on the peripheral surface of the electrophotographic photosensitive member.
  • the width w ( ⁇ m) of the groove is in the range of 0.1 ⁇ w ⁇ 25.
  • the width w ( ⁇ m) of the groove exceeds 25 ⁇ m, it becomes close to the exposure spot diameter of a laser generally used for image exposure during image formation, so it is formed on the peripheral surface of the electrophotographic photosensitive member due to scattering. The transferability of the toner image thus formed tends to be non-uniform.
  • the width w ( ⁇ m) of the groove is smaller than 0.1 ⁇ m, the contact portion between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member is increased, and the effect of reducing the frictional force is reduced. Tend to be unstable.
  • the groove portion having a width w ( ⁇ m) smaller than 0.1 ⁇ m is not formed on the peripheral surface of the electrophotographic photosensitive member. Further, it is preferable that the groove portion having a width w ( ⁇ m) larger than 25 ⁇ m is not formed on the peripheral surface of the electrophotographic photosensitive member.
  • the depth d ( ⁇ m) of the groove is in the range of 0.1 ⁇ d ⁇ 3.0.
  • the groove tends to appear as an image defect.
  • the depth d ( ⁇ m) of the groove is smaller than 0.1 ⁇ m, the frictional force reducing effect tends to be small.
  • the groove portion having a depth d ( ⁇ m) smaller than 0.1 ⁇ m is not formed on the peripheral surface of the electrophotographic photosensitive member. Further, it is preferable that the groove portion having a depth d ( ⁇ m) larger than 3.0 ⁇ m is not formed on the peripheral surface of the electrophotographic photosensitive member.
  • the groove portion is formed on the peripheral surface of the electrophotographic photosensitive member together with the flat portion at an angle of 90 ° ⁇ 10 ° which is substantially perpendicular to the axial direction of the electrophotographic photosensitive member. That is, in the present invention, the groove portion has a circumferential surface of the electrophotographic photosensitive member so as to form an angle ⁇ (°) of 80 ⁇ ⁇ ⁇ 100 (for example, ⁇ in FIG. 1) with respect to the axial direction of the electrophotographic photosensitive member. A plurality are formed. When the angle ⁇ (°) deviates from the range of 80 ⁇ ⁇ ⁇ 100, the flat portion-groove shape tends to disappear due to repeated use, and the effects of the present invention tend not to be obtained.
  • the flat portion-groove shape formed on the peripheral surface of the electrophotographic photosensitive member of the present invention is the total value e Sum ( ⁇ m) of the flat portion width e per 100 ⁇ m in the axial width of the peripheral surface of the electrophotographic photosensitive member. ) Is 5 ⁇ e Sum ⁇ 75. If the total value e Sum ( ⁇ m) exceeds 75 ⁇ m, the frictional force between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member tends to increase, and cleaning defects tend to occur. On the other hand, from the viewpoint of reducing the frictional force between the cleaning blade and the peripheral surface of the electrophotographic photosensitive member, the total value e Sum ( ⁇ m) is preferably small.
  • the total value e Sum ( ⁇ m) is less than 5 ⁇ m and the proportion of the flat portion is reduced, the effect of the present invention tends to decrease. Therefore, the total value e Sum ( ⁇ m) needs to be 5 ⁇ m or more. There is. More preferably, 10 ⁇ e Sum ⁇ 50.
  • the flat part-groove part shape formed on the peripheral surface of the electrophotographic photosensitive member of the present invention has a flat part width e ( ⁇ m), a groove part width w ( ⁇ m), and a groove part depth d ( ⁇ m). Smaller variations are preferred. That is, the standard deviations e ⁇ , w ⁇ , and d of the average values e Av ( ⁇ m), w Av ( ⁇ m), and d Av ( ⁇ m) of the width e of the flat portion, the width w of the groove, and the depth d of the groove, respectively.
  • the value of ⁇ is preferably small.
  • e ⁇ / e Av ⁇ 0.46 it is necessary that e ⁇ / e Av ⁇ 0.46.
  • e ⁇ / e Av ⁇ 0.27 and more preferably e ⁇ / e Av ⁇ 0.08.
  • w ⁇ / w Av ⁇ 0.08 regarding the uniformity of the width of the groove portion.
  • it is preferable that it is d ( sigma) / dAv ⁇ 0.08 regarding the uniformity of the depth of a groove part.
  • the uniform width of the flat portion, the width of the groove portion, and the depth of the groove portion stabilize the contact state between the microscopic peripheral surface of the electrophotographic photosensitive member and the cleaning blade, and the effect of the present invention is remarkably obtained. Tend to be. As for the dot reproducibility and transferability, it is effective to make the width of the flat part, the width of the groove part, and the depth of the groove part uniform as described above.
  • the flat portion-groove shape according to the present invention is formed in at least a region in contact with the cleaning blade on the peripheral surface of the electrophotographic photosensitive member.
  • the flat portion-groove shape of the peripheral surface of the electrophotographic photosensitive member can be measured using, for example, a commercially available laser microscope, optical microscope, electron microscope, atomic force microscope, and the like.
  • the following devices can be used.
  • Ultra-deep shape measuring microscope VK-8550, ultra-deep shape measuring microscope VK-9000, and ultra-deep shape measuring microscope VK-9500 are manufactured by Keyence Corporation
  • Surface shape measurement system Surface Explorer SX-520DR manufactured by Ryoka System Co., Ltd.
  • Scanning confocal laser microscope OLS3000 manufactured by Olympus Corporation
  • Real Color Confocal Microscope Oplitex C130 manufactured by Lasertec Corporation
  • the optical microscope for example, the following devices can be used.
  • Digital microscope VHX-500 and digital microscope VHX-200 both manufactured by Keyence Corporation
  • 3D digital microscope VC-7700 manufactured by OMRON Corporation
  • the electron microscope for example, the following devices can be used.
  • 3D Real Surface View Microscope VE-9800 and 3D Real Surface View Microscope VE-8800 are both manufactured by Keyence Corporation.
  • Scanning Electron Microscope Conventional / Variable Pressure SEM manufactured by SII Nanotechnology
  • Scanning electron microscope SUPERSCAN SS-550 manufactured by Shimadzu Corporation
  • the following devices can be used.
  • Nanoscale hybrid microscope VN-8000 (manufactured by Keyence Corporation) Scanning Probe Microscope NanoNavi Station (SII Nano Technology Co., Ltd.) Scanning probe microscope SPM-9600 (manufactured by Shimadzu Corporation)
  • the size of the flat portion and the groove portion in the measurement visual field can be measured with a predetermined magnification. Specifically, the width e of each flat part in the field of view, and the width w and depth d of the groove part can be measured.
  • the average width e Av of the flat portion per unit length in the field of view, its standard deviation e ⁇ , the average groove width w Av of the groove, its standard deviation w ⁇ , its average depth d Av , its standard deviation d ⁇ The total value e Sum of the widths of the flat portions can be obtained by calculation.
  • a mold having a predetermined uneven shape is pressed against the peripheral surface of the electrophotographic photosensitive member, and the shape of the mold is transferred (hereinafter also referred to as “shape transfer”), whereby a flat portion-groove portion is formed on the peripheral surface.
  • shape transfer a mold having a predetermined uneven shape is pressed against the peripheral surface of the electrophotographic photosensitive member, and the shape of the mold is transferred (hereinafter also referred to as “shape transfer”), whereby a flat portion-groove portion is formed on the peripheral surface.
  • FIGS. 2 and 3 are diagrams showing an example of a press-contact shape transfer processing apparatus using a mold.
  • the peripheral surface of the electrophotographic photosensitive member 1-1 to be shape-transferred is continuously brought into contact with the mold 1-2 and pressed, so that the flat portion- The groove shape can be formed on the peripheral surface of the electrophotographic photosensitive member.
  • the size and shape of the pressure member 1-3 are determined according to the processing pressure and the processing area. Further, as the material of the pressure member 1-3, for example, metal, metal oxide, plastic, or glass can be used. Among them, it is preferable to use stainless steel (SUS) from the viewpoint of mechanical strength, dimensional accuracy, and durability.
  • the pressurizing member 1-3 is provided with a mold on the upper surface thereof, and the electrophotographic photosensitive member 1-1 to be shape-transferred supported by the support member 1-4 by a support member (not shown) on the lower surface and the pressurization system. The shape transfer can be performed by contacting the peripheral surface with a predetermined pressure. Further, a method of applying pressure by pressing a supporting member holding the electrophotographic photosensitive member against the pressing member can be employed, or a method of applying pressure to both can be employed.
  • the example shown in FIG. 2 is an example in which the peripheral surface is continuously processed while the electrophotographic photosensitive member 1-1 subject to shape transfer is driven or driven and rotated by the movement of the pressing member 1-3. It is. Instead of this example, the peripheral surface of the electrophotographic photosensitive member 1-1 to be shape transferred can be continuously processed by moving the support member 1-4.
  • the material, size, and shape of the mold can be selected as appropriate.
  • the material of the mold include, for example, a finely patterned metal, a resin film, a silicon wafer or the like patterned with a resist, a resin film in which fine particles are dispersed, or a resin having a predetermined fine surface shape
  • examples include a film with a metal coating.
  • the electrophotographic photosensitive member of the present invention has a cylindrical support (hereinafter also simply referred to as “support”) and a photosensitive layer provided on the cylindrical support.
  • the electrophotographic photoreceptor preferably has a surface layer composed of a crosslinked organic polymer.
  • the photosensitive layer is preferably a photosensitive layer (organic photosensitive layer) using an organic material as a photoconductive substance (charge generating substance or charge transporting substance).
  • the photosensitive layer may be a single-layer type photosensitive layer containing a charge transport material and a charge generation material in the same layer, and a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material It may be a laminated type (functionally separated type) photosensitive layer separated. In the present invention, a laminated photosensitive layer is preferred from the viewpoint of electrophotographic characteristics.
  • the laminated type photosensitive layer is a reverse layer type in which the charge transport layer and the charge generation layer are laminated in this order from the support side, even if it is a normal layer type photosensitive layer in which the charge generation layer and the charge transport layer are laminated in order from the support side. It may be a photosensitive layer.
  • the charge generation layer may have a laminated structure, or the charge transport layer may have a laminated structure.
  • a protective layer can be provided on the photosensitive layer for the purpose of improving the durability performance of the electrophotographic photosensitive member.
  • the material for the support may be any material that exhibits conductivity (conductive support).
  • a support made of a metal (made of an alloy) such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, an aluminum alloy, and stainless steel can be given.
  • the above metal support or plastic support having a layer formed by vacuum deposition of aluminum, an aluminum alloy, or an indium oxide-tin oxide alloy can also be used.
  • a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles are impregnated into plastic or paper together with an appropriate binder resin, or a plastic support having a conductive binder resin. It can also be used.
  • the surface of the support may be subjected to a cutting treatment, a roughening treatment, or an alumite treatment for the purpose of suppressing interference fringes due to laser light scattering.
  • a conductive layer for the purpose of suppressing interference fringes due to scattering of laser light and covering the scratches on the support. It may be provided.
  • the conductive layer can be formed by using a conductive layer coating solution in which carbon black, conductive particles, resistance adjusting pigment, and the like are dispersed and / or dissolved in a solvent together with a binder resin. You may add the compound which carries out hardening polymerization by the heating or radiation irradiation to the coating liquid for conductive layers. The surface of the conductive layer in which the conductive particles and the resistance adjusting pigment are dispersed tends to be roughened.
  • the film thickness of the conductive layer is preferably from 0.2 ⁇ m to 40 ⁇ m, more preferably from 1 ⁇ m to 35 ⁇ m, and even more preferably from 5 ⁇ m to 30 ⁇ m.
  • binder resin used for the conductive layer examples include polymers / copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, and polyvinyl alcohol. , Polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like.
  • Examples of conductive particles and resistance adjusting pigments include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those deposited on the surface of plastic particles. It is done.
  • particles of metal oxide such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide can be used. These may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion.
  • An intermediate layer having a barrier function or an adhesive function may be provided between the support or the conductive layer and the photosensitive layer (charge generation layer, charge transport layer).
  • the intermediate layer is formed to improve the adhesion of the photosensitive layer, improve the coating property, improve the charge injection property from the support, and protect the photosensitive layer from electrical breakdown.
  • Examples of the material for the intermediate layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, copolymer nylon, glue, Examples include gelatin.
  • the intermediate layer can be formed by applying an intermediate layer coating solution obtained by dissolving the above materials in a solvent and drying the coating solution.
  • the film thickness of the intermediate layer is preferably 0.05 ⁇ m or more and 7 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • Examples of the charge generating material used in the present invention include pyrylium and thiapyrylium dyes, phthalocyanine pigments having various central metals and various crystal systems ( ⁇ , ⁇ , ⁇ , ⁇ , X type, etc.), anthanthrone, and the like.
  • Examples thereof include pigments, dibenzpyrenequinone pigments, pyranthrone pigments, azo pigments such as monoazo, disazo, and trisazo, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, quinocyanine pigments, and amorphous silicon.
  • These charge generation materials may be used alone or in combination of two or more.
  • Examples of the charge transport material used in the present invention include pyrene compounds, N-alkylcarbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, and triphenylmethane. Examples thereof include compounds, pyrazoline compounds, styryl compounds, and stilbene compounds.
  • the charge generation layer is applied with a charge generation layer coating solution obtained by dispersing the charge generation material together with a binder resin and a solvent. Can be formed by drying.
  • the binder resin is preferably used in an amount of 0.3 to 4 times (mass ratio) the charge generating substance.
  • the dispersion treatment can be performed, for example, by a method using a disperser such as a homogenizer, an ultrasonic disperser, a ball mill, a vibration ball mill, a sand mill, an attritor, or a roll mill.
  • the charge generation layer may be a vapor generation film of a charge generation material.
  • the charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying it.
  • a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying it.
  • those having film formability alone can be formed as a charge transport layer by itself without using a binder resin.
  • binder resin used for the charge generation layer and the charge transport layer examples include polymers or copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene.
  • the polymer examples include polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.
  • the film thickness of the charge generation layer is preferably 5 ⁇ m or less, more preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the film thickness of the charge transport layer is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 35 ⁇ m or less.
  • the single-layer type photosensitive layer can be formed by applying a coating solution containing the charge generating substance, the charge transporting substance, and the binder resin, and drying it. it can.
  • the material design of the surface layer is important.
  • a high-strength binder resin is used, or when the surface layer is a charge transport layer, the ratio of the charge transport material to the plasticizer and the binder resin is controlled. And the like.
  • the above-described charge transport layer itself can be used as a surface layer and can be composed of a crosslinked organic polymer. It is also possible to form a surface layer composed of a crosslinked organic polymer as the second charge transport layer or protective layer on the aforementioned charge transport layer (photosensitive layer).
  • the characteristics required for the surface layer composed of the crosslinked organic polymer are both the strength of the film and the charge transport capability, and it is preferable to form using a charge transport material and a polymerizable or crosslinkable monomer or oligomer. .
  • the charge transport material known hole transport compounds and electron transport compounds can be used.
  • the polymerizable or crosslinkable monomer or oligomer include a chain polymerizable material having a (meth) acryloyloxy group or a styrene group, and a sequentially polymerizable material having a hydroxyl group, an alkoxysilyl group or an isocyanate group.
  • a system in which a hole transporting compound and a chain polymerizable material are combined is preferable.
  • a system in which a compound having both a hole transporting group and a chain polymerizable functional group such as a (meth) acryloyloxy group in one molecule is particularly preferred.
  • means for curing and polymerizing means using heat, light (such as ultraviolet rays), and radiation (such as electron beams) can be used.
  • the film thickness of the surface layer composed of the crosslinked organic polymer is preferably 0.1 ⁇ m or more and 30 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • additives can be added to each layer of the electrophotographic photosensitive member.
  • the additive include deterioration inhibitors such as antioxidants and ultraviolet absorbers, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, and inorganic particles such as silica, titanium oxide, and alumina.
  • FIG. 4 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
  • a cylindrical electrophotographic photosensitive member 1 of the present invention is rotationally driven with a predetermined peripheral speed (process speed) in the direction of an arrow about an axis 2.
  • the peripheral surface of the electrophotographic photosensitive member 1 is uniformly charged at a predetermined positive or negative potential by a charging unit 3 (primary charging unit: for example, a charging roller) in a rotating process.
  • a charging unit 3 primary charging unit: for example, a charging roller
  • exposure light intensity-modulated
  • exposure means not shown
  • exposure means such as slit exposure or laser beam scanning exposure
  • the electrostatic latent image formed on the peripheral surface of the electrophotographic photosensitive member 1 is developed by regular development or reversal development with toner contained in the developer in the developing means 5 to become a toner image.
  • toner images formed and carried on the peripheral surface of the electrophotographic photosensitive member 1 are sequentially transferred onto a transfer material by a transfer bias from a transfer unit (for example, a transfer roller) 6.
  • a transfer bias from a transfer unit (for example, a transfer roller) 6.
  • the transfer material P is taken out from the transfer material supply means (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 (contact portion) in synchronization with the rotation of the electrophotographic photoreceptor 1 and fed. Is done.
  • a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).
  • the transfer material P that has received the transfer of the toner image is the final transfer material (paper, film, etc.), it is separated from the peripheral surface of the electrophotographic photosensitive member and conveyed to the fixing means 8 to undergo the toner image fixing process. . After the fixing process, it is printed out as an image formed product (print, copy) outside the electrophotographic apparatus.
  • the transfer material P is an intermediate transfer member
  • the final transfer material is printed out after a fixing process after a plurality of transfer processes (for example, a primary transfer process and a secondary transfer process).
  • the peripheral surface of the electrophotographic photosensitive member 1 after the toner image is transferred to the transfer material is cleaned by removing the deposits such as the developer (toner) remaining after transfer by a cleaning means 7 having a cleaning blade.
  • a cleaning blade of the cleaning means 7 it is preferable to use a urethane blade. It is also effective to use a blade with a coating or surface treatment or a blade to which a filler is added for the purpose of improving releasability, water repellency, hardness and the like.
  • the cleaning blade can be brought into contact (contact) with the peripheral surface of the electrophotographic photosensitive member by a known means.
  • the linear pressure (contact pressure) of the cleaning grade with respect to the peripheral surface of the electrophotographic photosensitive member is preferably 10 g / cm or more and 250 g / cm or less.
  • the contact angle of the cleaning grade with respect to the peripheral surface of the electrophotographic photosensitive member is preferably 15 ° or more and 45 ° or less.
  • the present invention is effective not only when the contact pressure of the cleaning blade to the peripheral surface of the electrophotographic photosensitive member is large but also when it is small.
  • pre-exposure light (not shown) from pre-exposure means (not shown)
  • pre-exposure means (not shown)
  • it is repeatedly used for image formation.
  • the charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary.
  • any toner such as irregular toner and spherical toner can be used as the toner.
  • a plurality of components are housed in a container and integrally combined as a process cartridge. May be configured.
  • the process cartridge may be configured to be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer.
  • the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 7 are integrally supported to form a cartridge, and the electrophotographic apparatus is used by using a guide unit 10 such as a rail of the electrophotographic apparatus main body.
  • the process cartridge 9 is detachable from the main body.
  • the exposure light 4 is a reflected light or transmitted light from a document, or a document is read by a sensor, converted into a signal, laser beam scanning performed according to this signal, LED array Or light emitted by driving a liquid crystal shutter array.
  • the electrophotographic photosensitive member of the present invention can be applied to various electrophotographic apparatuses such as an electrophotographic copying machine, a laser beam printer, an LED printer, a FAX, and a liquid crystal shutter printer. Furthermore, the present invention can be widely applied to apparatuses such as a display, recording, light printing, plate making and facsimile using electrophotographic technology.
  • part means “part by mass”.
  • barium sulfate particles having a tin oxide coating layer (trade name: Pastoran PC1, manufactured by Mitsui Mining & Smelting Co., Ltd.), titanium oxide (trade name: TITANIX JR, manufactured by Teika Co., Ltd.), 15 parts, resol Type phenolic resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70 mass%) 43 parts, silicone oil (trade name: SH28PA, manufactured by Toray Silicone Co., Ltd.) 0.015 A liquid consisting of 3.6 parts of silicone resin (trade name: Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.), 50 parts of 2-methoxy-1-propanol and 50 parts of methanol is dispersed for 20 hours using a ball mill. Thus, a coating liquid for a conductive layer was prepared.
  • the conductive layer coating solution was dip-coated on the support, and this was heated at 140 ° C. for 1 hour to cure, thereby forming a conductive layer having a thickness of 15 ⁇ m.
  • copolymer nylon resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 30 parts of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) were added to methanol 400.
  • An intermediate layer coating solution was prepared by dissolving in 200 parts of n / butanol mixed solvent.
  • the intermediate layer coating solution was dip coated on the conductive layer and dried at 100 ° C. for 30 minutes to form an intermediate layer having a thickness of 0.45 ⁇ m.
  • a charge generation layer coating solution was prepared by adding 700 parts of ethyl.
  • the charge generation layer coating solution was dip-coated on the intermediate layer and dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 ⁇ m.
  • the charge transport layer coating solution was dip-coated on the charge generation layer and dried at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 15 ⁇ m.
  • the coating liquid for the protective layer (second charge transport layer) was applied on the charge transport layer, and then dried in the atmosphere at 50 ° C. for 10 minutes. Thereafter, irradiation with an electron beam was performed for 1.6 seconds in nitrogen under the conditions of an acceleration voltage of 150 kV and a beam current of 3.0 mA while rotating the support (irradiated body) at 200 rpm. Subsequently, in nitrogen, the temperature was raised from 25 ° C. to 125 ° C. over 30 seconds to carry out a heat curing reaction. In addition, when the absorbed dose of the electron beam at this time was measured, it was 15 kGy.
  • the oxygen concentration of the atmosphere at the time of electron beam irradiation and heat-curing reaction was 15 ppm or less. This was naturally cooled to 25 ° C. in the atmosphere, and post-heat-treated in the atmosphere at 100 ° C. for 30 minutes to form a protective layer (second charge transport layer) having a thickness of 5 ⁇ m.
  • an electrophotographic photosensitive member was obtained before the flat portion-groove shape was formed on the peripheral surface.
  • the electrophotographic photosensitive member (electrophotographic photosensitive member subject to shape transfer) before the flat portion-groove portion shape was formed on the peripheral surface was placed in the surface shape processing apparatus shown in FIG.
  • the pressurizing member was made of stainless steel (SUS), and a heater for heating was installed inside.
  • the mold has a shape as shown in FIG. 5 having a width X: 1.0 ⁇ m, a width Y: 1.0 ⁇ m, a height Z: 2.0 ⁇ m, and a thickness 50 ⁇ m. A nickel mold was used.
  • the mold was fixed on the pressure member so that the concave portion of the mold was at an angle of 90 ° with respect to the axial direction of the electrophotographic photosensitive member to be transferred.
  • a cylindrical SUS holding member having a diameter substantially the same as the inner diameter of the support was inserted into the support of the electrophotographic photosensitive member to be transferred.
  • a flat portion-groove portion shape is formed on the peripheral surface of the electrophotographic photosensitive member to be shape-transferred under the conditions of a mold temperature of 140 ° C., a processing pressure of 10 MPa, and a processing speed of 20 mm / s. It was.
  • an electrophotographic photosensitive member (cylindrical electrophotographic photosensitive member) having a flat portion-groove shape formed on the peripheral surface was obtained.
  • This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member A-1.
  • the total value e Sum of the flat portion width e per 100 ⁇ m width in the axial direction of the peripheral surface of the electrophotographic photosensitive member was calculated as described above. The results are shown in Table 1.
  • Examples of production of electrophotographic photoreceptors A-2 to A-9 In the production example of the electrophotographic photoreceptor A-1, the electrophotographic photoreceptors A-2 to A are the same as the production example of the electrophotographic photoreceptor A-1, except that the mold is changed to the shape shown in Table 2. -9 were prepared and their peripheral surfaces were observed. The results are shown in Table 1.
  • Electrophotographic Photoconductors A-10 to A-11 In the production example of the electrophotographic photosensitive member A-1, the mold during shape transfer is such that the concave portions of the mold are at angles of 80 ° and 100 ° with respect to the axial direction of the electrophotographic photosensitive member to be transferred. Electrophotographic photosensitive members A-10 to A-11 were prepared in the same manner as in the production example of the electrophotographic photosensitive member A-1, except that the surface was fixed on a pressure member, and the peripheral surfaces thereof were observed. The results are shown in Table 1.
  • An electrophotographic photoreceptor A-19 was produced in the same manner as in the production example of the electrophotographic photoreceptor A-1, except that the mold was changed to the one produced as follows in the production example of the electrophotographic photoreceptor A-1. did.
  • the peripheral surface of the obtained electrophotographic photoreceptor A-19 was observed, a flat portion having a width of 0.1 to 1.0 ⁇ m, a width of 0.1 to 7.0 ⁇ m, and a depth of 0.1 to 0.6 ⁇ m were observed. Grooves were randomly formed. The results are shown in Table 1.
  • an intermediate layer having a film thickness of 0.45 ⁇ m and a film thickness of 15 ⁇ m are formed using the coating solution used in the production example of electrophotographic photoreceptor A-1.
  • a charge transport layer was formed in this order (referred to as an object 1).
  • the peripheral surface of the object to be processed 1 is polished using a polishing sheet C-3000 made by Fuji Photo Film Co., Ltd., and the peripheral surface of the charge transport layer of the object to be processed 1 is aligned in the axial direction of the electrophotographic photosensitive member.
  • a groove (circumferential groove) having an angle of 90 ° with respect to the groove was formed.
  • the present embodiment is one in which electroplating is performed on the peripheral surface of the charge transport layer of the object to be processed 1 in which the groove is formed, Ni having a thickness of 50 ⁇ m is deposited, and then peeled off from the charge transport layer. Mold.
  • the width X of the convex portion was 0.1 ⁇ m to 10.0 ⁇ m
  • the width Y of the concave portion was 0.1 ⁇ m to 1.0 ⁇ m
  • the height Z of the convex portion was 0.1 ⁇ m to 1 ⁇ m. It had a random groove shape of 5 ⁇ m.
  • the electrophotographic photosensitive member A-1 was manufactured in the same manner as in the manufacturing example of the electrophotographic photosensitive member A-1, except that the mold was changed to the shape shown in FIG. 10A and Table 2. Body A-21 was prepared and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor A-22 In the production example of the electrophotographic photosensitive member A-1, the coating solution for the protective layer (second charge transport layer) was changed to the one prepared as follows, and was the same as the production example of the electrophotographic photosensitive member A-1. Thus, an electrophotographic photosensitive member A-22 was prepared, and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor A-23 In the production example of the electrophotographic photoreceptor A-1, the coating solution for the protective layer (second charge transport layer) was changed to the one prepared as follows, and curing by electron beam irradiation was performed by heating at 140 ° C. for 1 hour.
  • An electrophotographic photosensitive member A-23 was produced in the same manner as in the production example of the electrophotographic photosensitive member A-1, except that it was changed to curing, and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor A-24 In the production example of the electrophotographic photoreceptor A-1, the electrophotographic photoreceptor A-24 was prepared in the same manner as the production example of the electrophotographic photoreceptor A-1, except that the diameter of the aluminum cylinder used was changed from 30 mm to 24 mm. It was produced and the peripheral surface was observed. The results are shown in Table 1.
  • Examples of production of electrophotographic photoreceptors B-1 and B-2 In the production example of the electrophotographic photoreceptor A-1, the thickness of the charge transport layer was changed to 20 ⁇ m, and an electrophotographic photoreceptor without a protective layer (second charge transport layer) was obtained. Further, the production example of the electrophotographic photosensitive member A-1 was changed except that the mold was changed to that shown in FIG. 5 and Table 2 and the processing conditions were changed to a mold temperature of 120 ° C., a processing pressure of 8 MPa, and a processing speed of 20 mm / s. Electrophotographic photosensitive members B-1 and B-2 were prepared in the same manner as described above, and the peripheral surfaces thereof were observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member B-3 In the production example of the electrophotographic photoreceptor B-1, the electrophotographic photoreceptor B-3 was prepared in the same manner as in the production example of the electrophotographic photoreceptor B-1, except that the mold was changed to that shown in FIG. 6 and Table 2. It was produced and the peripheral surface was observed. The results are shown in Table 1.
  • An electrophotographic photosensitive member B-4 was prepared in the same manner as in the manufacturing example of the electrophotographic photosensitive member B-1, except that in the manufacturing example of the electrophotographic photosensitive member B-1, the mold was changed to the one manufactured as follows. did. When the peripheral surface of the obtained electrophotographic photoreceptor B-4 was observed, a flat portion having a width of 0.1 to 1.0 ⁇ m and a width of 0.1 to 5.0 ⁇ m and a depth of 0.1 to 0.6 ⁇ m were observed. Grooves were randomly formed. The results are shown in Table 1.
  • an object 2 Were formed in this order (referred to as an object 2).
  • the peripheral surface of the object to be processed 1 is polished using a polishing sheet C-4000 manufactured by Fuji Photo Film Co., Ltd., and the peripheral surface of the charge transport layer of the object to be processed 2 is aligned in the axial direction of the electrophotographic photosensitive member.
  • a groove (circumferential groove) having an angle of 90 ° with respect to the groove was formed.
  • the peripheral surface of the charge transport layer of the object 2 to be processed in which the groove was formed was subjected to electroforming treatment to deposit Ni having a thickness of 50 ⁇ m, and then peeled off from the charge transport layer in this example. Mold.
  • the width X of the convex portion was 0.1 ⁇ m to 5.0 ⁇ m
  • the width Y of the concave portion was 0.1 ⁇ m to 1.0 ⁇ m
  • the height Z of the convex portion was 0.1 ⁇ m to 0 ⁇ m. It had a random groove shape of 6 ⁇ m.
  • electrophotographic photoconductors B-5 to B-8 were produced in the same manner as in the production examples of electrophotographic photoconductors B-1 to B-4, and the peripheral surfaces thereof were observed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor B-9 In the production example of the electrophotographic photoreceptor B-1, the electrophotographic photoreceptor B-9 was prepared in the same manner as in the production example of the electrophotographic photoreceptor B-1, except that the diameter of the aluminum cylinder used was changed from 30 mm to 24 mm. It was produced and the peripheral surface was observed. The results are shown in Table 1.
  • the electrophotographic photosensitive member C- is the same as the production example of the electrophotographic photosensitive member A-1, except that the mold is changed to the shape shown in FIG. 5 and Table 2. 2 was prepared and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor C-3 In the production example of the electrophotographic photoreceptor A-1, the mold was changed to the shape shown in FIG. 10B and Table 2, and the processing conditions were set to a mold temperature of 180 ° C., a processing pressure of 15 MPa, and a processing speed of 5 mm / s.
  • An electrophotographic photosensitive member C-3 was produced in the same manner as in the production example of the electrophotographic photosensitive member A-1, except that the surface was changed, and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member C-4 In the production example of the electrophotographic photoreceptor A-1, the electrophotographic photoreceptor C- is the same as the production example of the electrophotographic photoreceptor A-1, except that the mold is changed to the shape shown in FIG. 6 and Table 2. 4 was produced and the peripheral surface was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor C-5 In the production example of the electrophotographic photosensitive member A-19, the electrophotographic photosensitive member is manufactured in the same manner as in the production example of the electrophotographic photosensitive member A-19, except that the polishing sheet C-4000 used in the mold production is changed to C-2000. C-5 was produced. When the peripheral surface of the obtained electrophotographic photoreceptor C-5 was observed, a flat portion having a width of 0.1 to 2.5 ⁇ m and a width of 0.5 to 20.0 ⁇ m and a depth of 0.1 to 1.5 ⁇ m were observed. Grooves were randomly formed. The results are shown in Table 1.
  • Example of production of electrophotographic photoreceptor C-6 In the production example of the electrophotographic photosensitive member A-1, the production of the electrophotographic photosensitive member A-1 was performed except that the formation of the flat portion-groove portion shape by the mold pressure contact was changed to the formation of the flat portion-groove portion shape by the following polishing tape. In the same manner as in Example, an electrophotographic photoreceptor C-6 was produced. When the peripheral surface of the obtained electrophotographic photoreceptor C-6 was observed, a flat portion with a width of 0.1 to 2.5 ⁇ m, a width of 0.5 to 20.0 ⁇ m, and a depth of 0.1 to 1.7 ⁇ m were observed. Grooves were randomly formed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member D-2 In the production example of the electrophotographic photosensitive member B-1, except that the mold is changed to the shape shown in FIG. 5 and Table 2, the electrophotographic photosensitive member D- 2 was prepared and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member D-3 In the production example of the electrophotographic photosensitive member B-1, the electrophotographic photosensitive member was manufactured in the same manner as the production example of the electrophotographic photosensitive member B-1, except that the mold was changed to the shape shown in FIG. A body D-3 was prepared, and its peripheral surface was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member D-5 In the production example of the electrophotographic photosensitive member B-1, the production of the electrophotographic photosensitive member A-1 was performed except that the formation of the flat portion-groove portion shape by the mold pressure contact was changed to the formation of the flat portion-groove portion shape by the following polishing tape. In the same manner as in Example, an electrophotographic photosensitive member D-5 was produced. When the peripheral surface of the obtained electrophotographic photosensitive member D-5 was observed, a flat portion having a width of 0.1 to 3.0 ⁇ m, a width of 0.5 to 25.0 ⁇ m, and a depth of 0.1 to 1.9 ⁇ m were observed. Grooves were randomly formed. The results are shown in Table 1.
  • electrophotographic photosensitive member D-6 In the production example of the electrophotographic photosensitive member B-5, an electrophotographic photosensitive member D-6 that was not subjected to shape transfer by mold press contact was designated as an electrophotographic photosensitive member D-6.
  • Example of production of electrophotographic photosensitive member D-7 In the production example of the electrophotographic photosensitive member B-5, the electrophotographic photosensitive member D- was manufactured in the same manner as the production example of the electrophotographic photosensitive member B-5, except that the mold was changed to the shape shown in FIG. 5 and Table 2. 7 was prepared and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member D-8 In the production example of the electrophotographic photosensitive member B-5, the electrophotographic photosensitive member was manufactured in the same manner as in the production example of the electrophotographic photosensitive member B-5, except that the mold was changed to the shape shown in FIG. A body D-8 was prepared, and its peripheral surface was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member D-9 In the production example of the electrophotographic photosensitive member B-5, the electrophotographic photosensitive member D- was manufactured in the same manner as the production example of the electrophotographic photosensitive member B-5 except that the mold was changed to the shape shown in FIG. 6 and Table 2. 9 was prepared and the peripheral surface thereof was observed. The results are shown in Table 1.
  • Example of production of electrophotographic photosensitive member D-10 In the production example of the electrophotographic photosensitive member B-5, the production of the electrophotographic photosensitive member A-1 was performed except that the formation of the flat portion-groove portion shape by the mold pressure contact was changed to the formation of the flat portion-groove portion shape by the following polishing tape. In the same manner as in Example, an electrophotographic photoreceptor D-10 was produced. When the peripheral surface of the obtained electrophotographic photoreceptor D-10 was observed, a flat portion having a width of 0.1 to 3.5 ⁇ m, a width of 0.8 to 20.0 ⁇ m, and a depth of 0.1 to 1.4 ⁇ m were observed. Grooves were randomly formed. The results are shown in Table 1.
  • Example 1 The electrophotographic photosensitive member A-1 was mounted on a cyan station of a modified machine of an electrophotographic copying machine (trade name: iRC3580) manufactured by Canon Inc. as an evaluation machine, and tested and evaluated as follows.
  • a modified machine of an electrophotographic copying machine (trade name: iRC3580) manufactured by Canon Inc. as an evaluation machine, and tested and evaluated as follows.
  • the electrophotographic photosensitive member is set to have a potential condition such that the dark portion potential (Vd) is ⁇ 700 V and the bright portion potential (Vl) is ⁇ 200 V.
  • the initial potential of was adjusted.
  • a cleaning blade made of polyurethane was set so as to have a contact angle of 25 ° with the peripheral surface of the electrophotographic photosensitive member.
  • the linear pressure (contact pressure) of the cleaning grade with respect to the peripheral surface of the electrophotographic photosensitive member was set to 15 g / cm, which is about half of the normal setting.
  • A No image defect (slip-through image) due to toner passing through due to poor cleaning in both halftone image and solid white image.
  • a slip-through image is generated in both the halftone image and the solid white image.
  • Examples 2 to 31 Evaluation was performed in the same manner as in Example 1 except that the electrophotographic photoreceptor to be evaluated was changed to the electrophotographic photoreceptor shown in Table 3. The results are shown in Table 3.
  • Example 32 In Example 1, the evaluation machine was changed to a modified machine of the laser beam printer LBP-2510 manufactured by Canon Inc., and the electrophotographic photosensitive member A-1 was mounted on the cyan station. Thereafter, under the environment of 23 ° C.-50% RH, the potential conditions are set so that the dark part potential (Vd) of the electrophotographic photosensitive member is ⁇ 500 V and the bright part potential (Vl) is ⁇ 100 V. The initial potential of was adjusted. Furthermore, the contact angle of the cleaning blade with respect to the peripheral surface of the electrophotographic photosensitive member was set to 24 °, and the linear pressure (contact pressure) was set to 15 g / cm, which was about 1/5 of the normal setting. Except for these, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 33 to 48 Evaluation was performed in the same manner as in Example 32 except that the electrophotographic photosensitive member to be evaluated was changed to the electrophotographic photosensitive member shown in Table 3. The results are shown in Table 3.
  • Example 49 In Example 1, the evaluation machine was changed to a modified machine of an electrophotographic copying machine (trade name: GP-40) manufactured by Canon Inc., and an electrophotographic photosensitive member A-1 was attached thereto. Thereafter, under the environment of 23 ° C. and 50% RH, the potential conditions were set so that the dark part potential (Vd) of the electrophotographic photosensitive member was ⁇ 700 V and the bright part potential (Vl) was ⁇ 150 V. The initial potential of was adjusted. Furthermore, the contact angle of the cleaning blade to the peripheral surface of the electrophotographic photosensitive member was set to 25 °, and the linear pressure (contact pressure) was set to 15 g / cm, which is about half of the normal setting. Except for these, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 50 Evaluation was performed in the same manner as in Example 49 except that the electrophotographic photosensitive member to be evaluated was changed to the electrophotographic photosensitive member B-1. The results are shown in Table 3.
  • Example 51 In Example 1, the evaluation machine was changed to a modified machine of a laser beam printer (trade name: Color Laser Jet 3500) manufactured by Hewlett-Packard Co., and the electrophotographic photoreceptor A-24 was mounted on the cyan station. Thereafter, under the environment of 23 ° C. and 50% RH, the potential conditions are set so that the dark part potential (Vd) of the electrophotographic photosensitive member is ⁇ 500 V and the bright part potential (Vl) is ⁇ 150 V. The initial potential of was adjusted. Furthermore, the contact angle of the cleaning blade with respect to the peripheral surface of the electrophotographic photosensitive member was set to 24 °, and the linear pressure (contact pressure) was set to 15 g / cm, which was about 1/5 of the normal setting. Except for these, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 52 Evaluation was performed in the same manner as in Example 51 except that the electrophotographic photosensitive member to be evaluated was changed to the electrophotographic photosensitive member B-9. The results are shown in Table 3.
  • Example 101 An endurance test was performed in which 50000 sheets on the side of A4 were printed in a 5-sheet intermittent mode using a test chart with a printing ratio of 5% in a 23 ° C.-50% RH environment. Thereafter, the cleaning performance and dot reproducibility were evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • Example 102 to 110 Evaluation was performed in the same manner as in Example 101 except that the electrophotographic photosensitive member to be evaluated was changed to the electrophotographic photosensitive member shown in Table 5 and the number of printed sheets was changed as shown in Table 5. The results are shown in Table 5.
  • Example 111 In Example 32, an endurance test was performed in which 50000 sheets on the side of A4 were printed in a 5-sheet intermittent mode using a test chart with a printing ratio of 5% in a 23 ° C.-50% RH environment. Thereafter, the cleaning performance and dot reproducibility were evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • Example 112 to 115 Evaluation was performed in the same manner as in Example 111 except that the electrophotographic photosensitive member to be evaluated was changed to the electrophotographic photosensitive member shown in Table 5 and the number of printed sheets was changed as shown in Table 5. The results are shown in Table 5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

 クリーニング性能に優れた電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供する。 電子写真感光体の周面には、幅e(μm)が0.1≦e≦25である平坦部と、幅w(μm)が0.1≦w≦25であって深さd(μm)が0.1≦d≦3.0である溝部とが、電子写真感光体の軸方向に対して80≦θ≦100の角度θ(°)をなすように交互に複数形成されており、周面の軸方向の幅100μmあたりの平坦部の幅eの合計値eSum(μm)が5≦eSum≦75であり、平坦部の幅eの平均値をeAv(μm)とし、その標準偏差をeσとしたとき、eσ/eAvがeσ/eAv≦0.46である。

Description

電子写真感光体、プロセスカートリッジおよび電子写真装置
 本発明は、電子写真感光体、プロセスカートリッジおよび電子写真装置に関する。
 電子写真感光体としては、低価格および高生産性の利点から、光導電性物質(電荷発生物質や電荷輸送物質)として有機材料を用いた感光層(有機感光層)を円筒状支持体上に設けてなる電子写真感光体(有機電子写真感光体)が普及している。また、有機電子写真感光体としては、高感度および材料設計の多様性の利点から、電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層とを積層してなる積層型感光層を有する電子写真感光体が主流である。
 電子写真感光体の周面には、帯電、露光、現像、転写、クリーニングなどの電気的/機械的外力が加えられるため、これら外力によって引き起こされる多くの課題が発生する。具体的な課題の例として、電子写真感光体の周面における傷や摩耗の発生による耐久性能の低下や、転写効率の低下、トナーの融着、クリーニング不良による画像欠陥などが挙げられる。
 これらの課題に対しては、離型性や滑り性の付与を目的とした電子写真感光体の周面の粗面化が有効であることが知られている。具体的には、電子写真感光体の周面を粗面化することにより、電子写真感光体の周面に接触するトナー、帯電部材、転写部材、クリーニング部材などに対して、接触時の接触面積を減らすことによる離型性の向上や摩擦力の低減の効果が期待されている。それらの中でも、電子写真感光体の周面とクリーニングブレードとの摩擦力は特に大きいため、その摩擦力の大きさに起因するクリーニング性能の低下や電子写真感光体の耐久性能の低下は、問題となりやすい傾向にある。
 詳細なメカニズムは不明であるが、一般的に、クリーニングには、現像剤、特に外添剤の関与が大きいと考えられている。具体的には、現像剤、特に外添剤が、クリーニングブレードと電子写真感光体の周面との間に介在し、粒状潤滑剤としての働きを担うことにより、安定的なクリーニングを成立させることができると考えられている。よって、通常の画像濃度で連続的に画像形成を行う場合においては、上記粒状潤滑剤がクリーニングブレードと電子写真感光体の周面との間に十分に供給されることにより、安定的なクリーニング性能が発揮される。
 しかしながら、例えば、低印字比率で画像形成を行う場合や、タンデム方式の電子写真装置において単色の画像形成を行う場合や、転写効率が非常に高い電子写真装置を用いて画像形成を行う場合などにおいては、上記粒状潤滑剤の供給が不足する傾向にある。そして、クリーニングブレードと電子写真感光体の周面との間への上記粒状潤滑剤の供給が不足すると、クリーニング性能が低下する傾向にある。クリーニング性能の低下の具体例としては、クリーニングブレードのビビリやメクレや、クリーニングブレードのエッジ部のエグレや欠けによるクリーニング不良が挙げられる。ここで、ビビリとは、クリーニングブレードと電子写真感光体の周面との摩擦抵抗が大きくなることにより、クリーニングブレードが振動する現象である。また、クリーニングブレードのメクレとは、電子写真感光体の周面の移動方向に対してカウンター方向に当接されているクリーニングブレードが、電子写真感光体の周面の移動方向に反転してしまう現象である。
 また、電子写真感光体の耐久性能の低下の具体例としては、摩擦抵抗の増大に起因する電子写真感光体の表面層の摩耗量の増大や、局所的な圧力集中による傷の発生が挙げられる。
 これらの課題に対して、電子写真感光体の周面の粗面化は、クリーニングの負荷を低減するという観点で有効に作用すると考えられるが、現在、その粗面化技術にも、さらなる改良が求められている。
 電子写真感光体の周面を粗面化する技術としては、従来から各種機械的手段により電子写真感光体の周面を研磨する方法が知られている。
 特許文献1には、クリーニングをはじめとする種々の課題を解決するため、研磨テープ(フィルム状研磨材)を用いて電子写真感光体の周面を粗面化する技術(略周方向の溝部が周面に形成された電子写真感光体)が開示されている。
 また、特許文献2には、表面に凹凸のついたスタンパーを用いて電子写真感光体の表面を圧縮成型加工することにより、電子写真感光体の表面に凹凸形状を形成する技術が開示されている。具体的には、電子写真感光体の軸方向と角度を有する方向に、頂点を有する山と谷とが規則的に連続した形状、いわゆる溝部を有する形状を電子写真感光体の表面に設ける技術が開示されている。この方法によれば、トナーの離型性が向上し、クリーニングブレードのニップ圧を低減することができるため、電子写真感光体の摩耗が減少するとのことである。
国際公開第2005/093519号パンフレット 特開2001-066814号公報
 しかしながら、特許文献1に記載の技術により粗面化された電子写真感光体の周面の形状では、電子写真感光体の周面に対するクリーニングブレードの接触圧力を小さくすると、トナーのすり抜けによるクリーニング不良が発生しやすい傾向にあることがわかった。その理由の詳細は不明であるが、フィルム状研磨材のような機械的研磨手段により粗面化された電子写真感光体の周面は、溝部および非溝部(平坦部)が均一に制御された形状ではなく、不均一に並んだ形状であることがクリーニング不良の要因の1つであると本発明者らは推測している。クリーニングの状態を微視的に観察した場合、電子写真感光体の周面においてクリーニングブレードと接触する部分は平坦部が支配的であると考えられる。ところが、平坦部の幅が電子写真感光体の軸方向に対して不均一であったり、部分的に平坦部を有さずに溝部が連続した状態になっていたりすることが、クリーニングブレードの挙動を不安定にしていると考えられる。また、電子写真感光体の周面から転写材へのトナー像の転写性に関しても、平坦部の形状の不均一さや平坦部が部分的に存在しないことにより、ドット再現性の低下やトナー中抜けによるドットの不均一性も懸念される。
 また、特許文献2に記載されている、溝部が連続し、平坦部が存在しない形状を周面に有する電子写真感光体に関しても、電子写真感光体の周面に対するクリーニングブレードの接触圧力を小さくすると、トナーのすり抜けによるクリーニング不良が発生しやすい傾向にあることがわかった。また、このクリーニング不良は、特に低温環境下において生じやすいことがわかった。その理由の詳細は不明であるが、クリーニングの状態を微視的に観察した場合、クリーニングブレードと接触する平坦部が極端に少ないことが、クリーニングブレードの挙動を不安定にしていると考えられる。また、転写効率は高くなるものの、ドット再現性という観点では、トナーの流動によるドットの不均一性も懸念される。
 以上のように、従来技術によれば、クリーニング性能の向上、電子写真感光体の耐久性能の向上、画像欠陥の抑制に対しては、一定の効果が認められる。
 しかしながら、近年の高画質化に伴うトナーの球形化や小径化に伴い、飛躍的なクリーニング性能の向上が求められているのが現状である。特に、今後加速が予想される高速化や電子写真装置本体の小型化および省エネ化などに対しても、安定的なクリーニング性能が求められる。
 本発明の目的は、上記課題を解決し、クリーニング性能に優れた電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。また、本発明の別の目的は、周面が粗面化されていてもドットの再現性が良好な電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。
 本発明者らは、鋭意検討した結果、電子写真感光体の周面に、所定の平坦部および溝部からなる形状を形成することによって、前述の課題を解決することができることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、円筒状支持体および該円筒状支持体上に設けられた感光層を有する電子写真感光体において、
 該電子写真感光体の周面には、幅e(μm)が0.1≦e≦25である平坦部と、幅w(μm)が0.1≦w≦25であって深さd(μm)が0.1≦d≦3.0である溝部とが、該電子写真感光体の軸方向に対して80≦θ≦100の角度θ(°)をなすように交互に複数形成されており、
 該周面の軸方向の幅100μmあたりの平坦部の幅eの合計値eSum(μm)が5≦eSum≦75であり、
 該平坦部の幅eの平均値をeAv(μm)とし、その標準偏差をeσとしたとき、eσ/eAvがeσ/eAv≦0.46である
ことを特徴とする電子写真感光体である。
 また、本発明は、上記電子写真感光体と、該電子写真感光体の周面を帯電するための帯電手段、該電子写真感光体の周面に形成された静電潜像をトナーで現像して該電子写真感光体の周面にトナー像を形成するための現像手段、該電子写真感光体の周面に形成されたトナー像を転写材に転写するための転写手段、および、該電子写真感光体の周面に形成されたトナー像を転写材上に転写した後の該電子写真感光体の周面に残るトナーを除去するためのクリーニング手段からなる群より選択される少なくとも1つの手段とを一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。
 また、本発明は、上記電子写真感光体、ならびに、該電子写真感光体を帯電するための帯電手段、帯電された該電子写真感光体の周面に露光光を照射して該電子写真感光体の周面に静電潜像を形成するための露光手段、該電子写真感光体の表面に形成された静電潜像をトナーで現像して該電子写真感光体の周面にトナー像を形成するための現像手段、および、該電子写真感光体の周面に形成されたトナー像を転写材上に転写するための転写手段を有することを特徴とする電子写真装置である。
 本発明によれば、クリーニング性能に優れた電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。また、本発明によれば、周面を粗面化されていてもドットの再現性が良好な電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。
電子写真感光体の周面に形成された平坦部-溝部形状を表面および断面から見た例を示す図である。 モールドによる圧接形状転写加工装置の例を示す図である。 モールドによる圧接形状転写加工装置の例を示す図である。 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す図である。 モールドの形状を示す図である。 モールドの形状を示す図である。 モールドの形状を示す図である。 モールドの形状を示す図である。 モールドの形状を示す図である。 モールドの形状を示す図である。
 本発明の特徴は、電子写真感光体の周面の形状が平坦部および溝部からなる形状(以下「平坦部-溝部形状」ともいう。)であり、かつ、その平坦部-溝部形状の均一性が高いことにある。具体的には、電子写真感光体の周面に、幅e(μm)が0.1≦e≦25である平坦部と、幅w(μm)が0.1≦w≦25であって深さd(μm)が0.1≦d≦3.0である溝部とが、電子写真感光体の軸方向に対して80≦θ≦100の角度θ(°)をなすように交互に複数形成されている。そして、電子写真感光体の周面の軸方向の幅100μmあたりの平坦部の幅eの合計値eSum(μm)が5≦eSum≦75となっており、平坦部の幅eの平均値をeAv(μm)とし、その標準偏差をeσとしたとき、eσ/eAvがeσ/eAv≦0.46となっている。
 特許文献1に記載されているように研磨テープを用いて電子写真感光体の周面に平坦部-溝部形状を形成した場合、電子写真感光体の軸方向における微細な平坦部-溝部形状の均一性を高めることは難しい。これに対して、モールド圧縮によって平坦部-溝部形状を形成する方法を採れば、平坦部-溝部形状の制御は容易である。このモールド圧縮による方法により、種々の電子写真感光体の性能を検討した結果、平坦部-溝部形状における平坦部の幅eを均一に制御することにより、電子写真感光体の周面に対するクリーニングブレードの接触圧力を小さくしても、クリーニング性能が大幅に向上することがわかった。これは、微視的なクリーニングブレードと電子写真感光体の周面の接触状態が安定化することにより、クリーニングブレードの微小な振動が低減し、良好なクリーニング性能が発揮されることによると考えられる。特に、電子写真感光体の周面に対するクリーニングブレードの接触圧力を小さくすることが難しい低温環境下においても、本発明の電子写真感光体は良好なクリーニング性能を発揮する。また、平坦部-溝部形状における溝部の幅wや深さdを均一に制御することにより、周面が粗面化された電子写真感光体であっても、ドット再現性の低下やトナー中抜けによるドットの不均一性がさらに抑制されることがわかった。
 また、本発明によれば、電子写真感光体の周面に対するクリーニングブレードの接触圧力を小さくすることができるようになる。接触圧力を小さくすれば、電子写真感光体の周面とクリーニングブレードとの摩擦力を低減することができるようになり、電子写真感光体の昇温や、感光体回転用のモーターの負荷や、摩耗や傷による電子写真感光体の耐久性能の低下を抑制することができる。
 また、一般的に、クリーニングブレードと電子写真感光体の周面の接触面積を減らし、摩擦力を低減させることはクリーニング性能を向上させる傾向にある。ところが、特許文献2に記載されているように平坦部を無くし、大幅に接触面積が小さくなった場合においては、逆にクリーニング性能が低下することがわかった。このクリーニング性能の低下は、特に、電子写真感光体の周面に対するクリーニングブレードの接触圧力を小さくした場合に顕著であった。一方、本発明のように、平坦部-溝部形状における平坦部の均一性が高い電子写真感光体の周面にクリーニングブレードを接触(当接)させた場合においては、微視的なクリーニングブレードと電子写真感光体の周面の接触状態が安定化する。これにより、クリーニングブレードの微小な振動が低減し、良好なクリーニング性能が発揮される。また、均一性の高い平坦部を有することにより、電子写真感光体の周面に形成されたトナー像を転写材に転写する際に、トナーの流動が抑制され、良好なドット再現性が得られる。
 図1に、本発明における電子写真感光体の周面に形成された平坦部-溝部形状を表面および断面から見た例を示す。図1においては、幅e(μm)の平坦部と、幅w(μm)および深さd(μm)の溝部とが、電子写真感光体の周面に交互に複数形成されている。
 前述のとおり、平坦部の幅e(μm)は0.1≦e≦25の範囲である。平坦部の幅e(μm)が25μmを超えると、電子写真感光体の軸方向において、クリーニングブレードと電子写真感光体の周面との接触部分が大きくなり、摩擦力の低減効果が低下する傾向にある。一方、平坦部の幅e(μm)が0.1μmより小さい場合は、前記接触部分が小さくなるため、クリーニングブレードの挙動が不安定になる傾向にある。また、平坦部の幅eが0.1μmより小さい場合、電子写真感光体の周面に形成されたトナー像を転写材に転写する際に、ドットの再現性が低下する傾向にある。幅e(μm)が0.1μmより小さい平坦部は、電子写真感光体の周面に形成されていないことが好ましい。また、幅e(μm)が25μmより大きい平坦部は、電子写真感光体の周面に形成されていないことが好ましい。
 また、前述のとおり、溝部の幅w(μm)は0.1≦w≦25の範囲である。溝部の幅w(μm)が25μmを超えると、画像形成時の像露光に一般的に使用されるレーザーの露光スポット径に近くなるため、散乱の影響や、電子写真感光体の周面に形成されたトナー像の転写性が不均一になる傾向にある。一方、溝部の幅w(μm)が0.1μmより小さい場合は、クリーニングブレードと電子写真感光体の周面との接触部分が大きくなり、摩擦力の低減効果が小さくなるため、クリーニングブレードの挙動が不安定になる傾向にある。幅w(μm)が0.1μmより小さい溝部は、電子写真感光体の周面に形成されていないことが好ましい。また、幅w(μm)が25μmより大きい溝部は、電子写真感光体の周面に形成されていないことが好ましい。
 また、前述のとおり、溝部の深さd(μm)は0.1≦d≦3.0の範囲である。溝部の深さd(μm)が3.0μmを超えると、溝部が画像不良として表れる傾向にある。一方、溝部の深さd(μm)が0.1μmより小さい場合は、摩擦力の低減効果が小さくなる傾向にある。深さd(μm)が0.1μmより小さい溝部は、電子写真感光体の周面に形成されていないことが好ましい。また、深さd(μm)が3.0μmより大きい溝部は、電子写真感光体の周面に形成されていないことが好ましい。
 本発明において、溝部は、平坦部とともに、電子写真感光体の軸方向に対して略垂直である90°±10°の角度をなして電子写真感光体の周面に形成されている。すなわち、本発明において、溝部は、電子写真感光体の軸方向に対して80≦θ≦100の角度θ(°)(例えば図1中のθ)をなすように、電子写真感光体の周面に複数形成される。角度θ(°)が80≦θ≦100の範囲を逸脱すると、繰り返し使用によって平坦部-溝部形状が消失しやすく、本発明の効果が得られなくなる傾向にある。
 また、本発明の電子写真感光体の周面に形成される平坦部-溝部形状は、電子写真感光体の周面の軸方向の幅100μmあたりの平坦部の幅eの合計値eSum(μm)が5≦eSum≦75である。合計値eSum(μm)が75μmを超えると、クリーニングブレードと電子写真感光体の周面との摩擦力が大きくなり、クリーニング不良が発生しやすい傾向にある。一方、クリーニングブレードと電子写真感光体の周面との摩擦力の低減の観点から、合計値eSum(μm)は小さいことが好ましい。しかしながら、合計値eSum(μm)が5μmを下回り、平坦部の占める割合が小さくなるにしたがって、本発明の効果が低減する傾向にあるため、合計値eSum(μm)は5μm以上である必要がある。より好ましくは、10≦eSum≦50である。
 さらに、本発明の電子写真感光体の周面に形成される平坦部-溝部形状は、その平坦部の幅e(μm)、溝部の幅w(μm)、溝部の深さd(μm)のばらつきが小さい方が好ましい。すなわち、平坦部の幅e、溝部の幅w、溝部の深さdの平均値eAv(μm)、wAv(μm)、dAv(μm)のそれぞれの標準偏差eσ、wσ、dσの値は小さいことが好ましい。特に、クリーニングブレードと接触する平坦部の幅の均一性を高めることは、本発明の効果に特に直接的に関連するため重要である。具体的には、eσ/eAv≦0.46であることが必要である。好ましくはeσ/eAv≦0.27であり、より好ましくはeσ/eAv≦0.08である。さらには、溝部の幅の均一性に関しても、wσ/wAv≦0.08であることが好ましい。また、溝部の深さの均一性に関しても、dσ/dAv≦0.08であることが好ましい。平坦部の幅、溝部の幅および溝部の深さが均一であることにより、微視的な電子写真感光体の周面とクリーニングブレードとの接触状態が安定化し、本発明の効果が顕著に得られる傾向にある。また、ドット再現性や転写性についても、上述のように平坦部の幅、溝部の幅および溝部の深さを均一化することが有効である。
 本発明の効果を顕著に得るため、本発明に係る平坦部-溝部形状は、電子写真感光体の周面のうち、少なくともクリーニングブレードと接触する領域に形成されていることが好ましい。
 次に、本発明における電子写真感光体の周面の平坦部-溝部形状の観察方法およびデータの処理方法について詳細を説明する。
 本発明において、電子写真感光体の周面の平坦部-溝部形状は、例えば、市販のレーザー顕微鏡、光学顕微鏡、電子顕微鏡、原子力間顕微鏡などを用いて測定可能である。
 レーザー顕微鏡としては、例えば、以下の機器が利用可能である。
 超深度形状測定顕微鏡VK-8550、超深度形状測定顕微鏡VK-9000および超深度形状測定顕微鏡VK-9500(いずれも(株)キーエンス製)
 表面形状測定システムSurface Explorer SX-520DR型機((株)菱化システム製)
 走査型共焦点レーザー顕微鏡OLS3000(オリンパス(株)製)
 リアルカラーコンフォーカル顕微鏡オプリテクスC130(レーザーテック(株)製)
 光学顕微鏡としては、例えば、以下の機器が利用可能である。
 デジタルマイクロスコープVHX-500およびデジタルマイクロスコープVHX-200(いずれも(株)キーエンス製)
 3DデジタルマイクロスコープVC-7700(オムロン(株)製)
 電子顕微鏡としては、例えば、以下の機器が利用可能である。
 3Dリアルサーフェスビュー顕微鏡VE-9800および3Dリアルサーフェスビュー顕微鏡VE-8800(いずれも(株)キーエンス製)
 走査型電子顕微鏡コンベンショナル/Variable Pressure SEM(エスアイアイ・ナノテクノロジー(株)製)
 走査型電子顕微鏡SUPERSCAN SS-550((株)島津製作所製)
 原子力間顕微鏡としては、例えば、以下の機器が利用可能である。
 ナノスケールハイブリッド顕微鏡VN-8000((株)キーエンス製)
 走査型プローブ顕微鏡NanoNaviステーション(エスアイアイ・ナノテクノロジー(株)製)
 走査型プローブ顕微鏡SPM-9600((株)島津製作所製)
 上記顕微鏡を用いて、所定の倍率により、測定視野内の平坦部および溝部の大きさなどを計測することができる。具体的には、視野内の各々の平坦部の幅e、溝部の幅wと深さdが測定できる。また、視野内の単位長さあたりの平坦部の平均幅eAv、その標準偏差eσ、溝部の平均溝部の幅wAv、その標準偏差wσ、平均深さdAv、その標準偏差dσ、平坦部の幅の合計値eSumを計算により求めることができる。
 なお、eAv、eσ、wAv、wσ、dAv、dσ、eSumの値は、測定対象の電子写真感光体の周面を電子写真感光体の回転方向に4等分し、該電子写真感光体の回転方向と直交する方向に25等分して得られる計100箇所の領域のそれぞれの中に、一辺100μmの正方形(10000μm)の領域を設けて各々の観察を行い、最終的に100箇所の平均値として算出した。
 〔電子写真感光体の周面への平坦部-溝部形状の形成方法〕
 本発明においては、所定の凸凹形状を有するモールドを電子写真感光体の周面に圧接し、モールドの形状を転写すること(以下「形状転写」ともいう。)により、周面に平坦部-溝部形状が形成された電子写真感光体を得ることができる。
 図2および図3は、モールドによる圧接形状転写加工装置の例を示す図である。
 これらの圧接形状転写加工装置によれば、形状転写対象の電子写真感光体1-1を回転させながら、連続的にその周面をモールド1-2に接触させ、加圧することにより、平坦部-溝部形状を電子写真感光体の周面に形成することができる。
 図2および図3において、加圧部材1-3は、加工圧力や加工面積に応じて、サイズや形状が決定される。また、加圧部材1-3の材質としては、例えば、金属、金属酸化物、プラスチック、ガラスを用いることができる。それらの中でも、機械的強度、寸法精度、耐久性の観点から、ステンレス鋼(SUS)を用いることが好ましい。加圧部材1-3は、その上面にモールドが設置され、下面の支持部材(不図示)および加圧システムにより、支持部材1-4に支持された形状転写対象の電子写真感光体1-1の周面に所定の圧力で接触させることにより、形状転写を行うことができる。また、電子写真感光体を保持する支持部材を加圧部材に対して押し付けることにより加圧する方法を採ることもできるし、両者をともに加圧する方法を採ることもできる。
 図2に示す例は、加圧部材1-3が移動することにより、形状転写対象の電子写真感光体1-1が従動または駆動回転しながら、その周面の加工が連続的になされる例である。この例の代わりに、支持部材1-4が移動することにより、形状転写対象の電子写真感光体1-1の周面の加工を連続的に行うこともできる。
 なお、形状転写を効率的に行う目的で、モールドや電子写真感光体を加熱することが好ましい。
 モールドの材質、大きさ、形状は、適宜選択することができる。モールドの材質としては、例えば、微細な表面加工された金属、樹脂フィルム、シリコンウエハーなどの表面にレジストによりパターニングをしたものや、微粒子が分散された樹脂フィルムや、所定の微細表面形状を有する樹脂フィルムに金属コーティングを施したものなどが挙げられる。
 また、電子写真感光体に対する圧力を均一化する目的で、モールドと加圧装置との間に弾性体を設置することも可能である。
 〔電子写真感光体〕
 本発明の電子写真感光体は、円筒状支持体(以下単に「支持体」ともいう。)および該円筒状支持体上に設けられた感光層を有する。また、本発明において、電子写真感光体は、架橋有機高分子で構成された表面層を有するものが好ましい。
 感光層は、光導電性物質(電荷発生物質や電荷輸送物質)として有機材料を用いた感光層(有機感光層)が好ましい。また、感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であっても、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。本発明においては、電子写真特性の観点から、積層型感光層が好ましい。また、積層型感光層には、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層であっても、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層であってもよい。また、本発明においては、積層型感光層を採用する場合、電荷発生層を積層構造としてもよく、電荷輸送層を積層構成としてもよい。また、電子写真感光体の耐久性能の向上を目的として、感光層上に保護層を設けることも可能である。
 支持体の材料としては、導電性を示すもの(導電性支持体)であればよい。例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属製(合金製)の支持体が挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム-酸化スズ合金を真空蒸着によって被膜形成した層を有する上記金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を適当な結着樹脂とともにプラスチックや紙に含浸した支持体や、導電性結着樹脂を有するプラスチック製の支持体を用いることもできる。
 支持体の表面は、レーザー光の散乱による干渉縞の抑制を目的として、切削処理、粗面化処理、アルマイト処理を施してもよい。
 支持体と、後述の中間層または感光層(電荷発生層、電荷輸送層)との間には、レーザー光の散乱による干渉縞の抑制や、支持体の傷の被覆を目的とした導電層を設けてもよい。
 導電層は、カーボンブラック、導電性粒子、抵抗調節顔料などを結着樹脂とともに溶剤に分散および/または溶解させた導電層用塗布液を用いて形成することができる。導電層用塗布液には、加熱または放射線照射により硬化重合する化合物を添加してもよい。導電性粒子や抵抗調節顔料を分散させた導電層は、その表面が粗面化される傾向にある。
 導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、さらには5μm以上30μm以下であることがより一層好ましい。
 導電層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体/共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。
 また、導電性粒子および抵抗調節顔料としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズなどの金属酸化物の粒子を用いることもできる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合するだけでもよいし、固溶体や融着の形にしてもよい。
 支持体または導電層と、感光層(電荷発生層、電荷輸送層)との間には、バリア機能や接着機能を有する中間層を設けてもよい。中間層は、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護のために形成される。
 中間層の材料としては、例えば、ポリビニルアルコール、ポリ-N-ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン-アクリル酸共重合体、カゼイン、ポリアミド、N-メトキシメチル化6ナイロン、共重合ナイロン、にかわ、ゼラチンなどが挙げられる。
 中間層は、上記の材料を溶剤に溶解させることによって得られる中間層用塗布液を塗布し、これを乾燥させることによって形成することができる。
 中間層の膜厚は、0.05μm以上7μm以下であることが好ましく、さらには0.1μm以上2μm以下であることがより好ましい。
 本発明に用いられる電荷発生物質としては、例えば、ピリリウム、チアピリリウム系染料や、各種の中心金属および各種の結晶系(α、β、γ、ε、X型など)を有するフタロシアニン顔料や、アントアントロン顔料や、ジベンズピレンキノン顔料や、ピラントロン顔料や、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、インジゴ顔料や、キナクリドン顔料や、非対称キノシアニン顔料や、キノシアニン顔料や、アモルファスシリコンなどが挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。
 本発明に用いられる電荷輸送物質としては、例えば、ピレン化合物や、N-アルキルカルバゾール化合物や、ヒドラゾン化合物や、N,N-ジアルキルアニリン化合物や、ジフェニルアミン化合物や、トリフェニルアミン化合物や、トリフェニルメタン化合物や、ピラゾリン化合物や、スチリル化合物や、スチルベン化合物などが挙げられる。
 感光層を電荷発生層と電荷輸送層とに機能分離する場合、電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理することによって得られる電荷発生層用塗布液を塗布し、これを乾燥させることによって形成することができる。結着樹脂は、電荷発生物質の0.3~4倍量(質量比)を用いることが好ましい。分散処理は、例えば、ホモジナイザー、超音波分散機、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルなどの分散機を用いる方法で行うことができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。
 電荷輸送層は、電荷輸送物質と結着樹脂とを溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布し、これを乾燥させることによって形成することができる。また、上記電荷輸送物質のうち単独で成膜性を有するものは、結着樹脂を用いずにそれ単独で成膜し、電荷輸送層とすることもできる。
 電荷発生層および電荷輸送層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体または共重合体や、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。
 電荷発生層の膜厚は、5μm以下であることが好ましく、さらには0.1μm以上2μm以下であることがより好ましい。
 電荷輸送層の膜厚は、5μm以上50μm以下であることが好ましく、さらには10μm以上35μm以下であることがより好ましい。
 感光層が単層型感光層である場合、単層型感光層は、上記電荷発生物質、電荷輸送物質および結着樹脂を含有する塗布液を塗布し、これを乾燥させることによって形成することができる。
 電子写真感光体の耐久性能の高めるためには、表面層(例えば電荷輸送層)の材料設計が重要である。その例としては、高強度の結着樹脂を用いたり、表面層が電荷輸送層である場合には可塑剤となる電荷輸送物質と結着樹脂との比率をコントロールしたり、高分子電荷輸送物質を使用したりすることなどが挙げられる。
 また、電子写真感光体の耐久性能をさらに高めるためには、表面層として架橋有機高分子で構成された層を設けることが有効である。具体的には、前述の電荷輸送層自体を表面層として架橋有機高分子で構成することが可能である。また、前述の電荷輸送層(感光層)上に第二電荷輸送層あるいは保護層として架橋有機高分子で構成された表面層を形成することも可能である。架橋有機高分子で構成された表面層に要求される特性は、膜の強度と電荷輸送能力の両立であり、電荷輸送物質および重合性もしくは架橋性のモノマーやオリゴマーを用いて形成することが好ましい。また、架橋有機高分子で構成された表面層に電荷輸送能力を付与することを目的として、抵抗制御された導電性粒子を用いることも可能である。
 電荷輸送物質としては、公知の正孔輸送性化合物および電子輸送性化合物を用いることができる。重合もしくは架橋性のモノマーやオリゴマーとしては、例えば、(メタ)アクリロイルオキシ基やスチレン基を有する連鎖重合性の材料、水酸基やアルコキシシリル基やイソシアネート基を有する逐次重合性の材料が挙げられる。電子写真特性、汎用性、材料設計、製造安定性の観点から、正孔輸送性化合物と連鎖重合性材料の組み合わせた系が好ましい。さらには、正孔輸送性基および(メタ)アクリロイルオキシ基などの連鎖重合性官能基の両者を一分子内に有する化合物を硬化させる系が特に好ましい。
 硬化重合させる手段としては、熱、光(紫外線など)、放射線(電子線など)を用いた手段が利用できる。
 架橋有機高分子で構成された表面層の膜厚は、0.1μm以上30μm以下であることが好ましく、さらには1μm以上10μm以下であることが好ましい。
 また、電子写真感光体の各層には、各種添加剤を添加することができる。添加剤としては、酸化防止剤や紫外線吸収剤などの劣化防止剤や、フッ素原子含有樹脂粒子やアクリル樹脂粒子などの有機樹脂粒子、シリカ、酸化チタン、アルミナなどの無機粒子が挙げられる。
 〔プロセスカートリッジおよび電子写真装置〕
 図4に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。
 図4において、円筒状の本発明の電子写真感光体1は、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1の周面は、回転過程において、帯電手段3(一次帯電手段:例えば、帯電ローラーなど)により、正または負の所定電位の均一に帯電される。次いで、原稿からの反射光であるスリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光(画像露光光)4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
 電子写真感光体1の周面に形成された静電潜像は、現像手段5内の現像剤に含まれるトナーで正規現像または反転現像により現像されてトナー像となる。次いで、電子写真感光体1の周面に形成され、担持されているトナー像が、転写手段(例えば、転写ローラーなど)6からの転写バイアスによって、転写材上に順次転写されていく。このとき、転写材Pは転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送される。また、転写手段には、バイアス電源(不図示)からトナーの保有電荷とは逆極性のバイアス電圧が印加される。
 トナー像の転写を受けた転写材Pが最終転写材(紙やフィルムなど)である場合は、電子写真感光体の周面から分離されて定着手段8へ搬送されてトナー像の定着処理を受ける。定着処理後、画像形成物(プリント、コピー)として電子写真装置外へプリントアウトされる。転写材Pが中間転写体である場合は、複数次の転写工程(例えば一次転写工程、二次転写工程)の後に定着処理を受けて最終転写材がプリントアウトされる。
 トナー像を転写材に転写した後の電子写真感光体1の周面は、クリーニングブレードを有するクリーニング手段7によって転写残りの現像剤(トナー)などの付着物の除去を受けて清浄面化される。クリーニング手段7のクリーニングブレードとしては、ウレタン製のものを使用することが好ましい。また、離型性、撥水性、硬度などを高める目的で、コーティングや表面処理が施されたブレードや、フィラーなどが添加されたブレードの使用も有効である。クリーニングブレードの電子写真感光体の周面への接触(当接)は公知の手段により行うことができる。電子写真感光体の周面に対するクリーニンググレードの線圧(接触圧力)は10g/cm以上250g/cm以下であることが好ましい。また、電子写真感光体の周面に対するクリーニンググレードの当接角度は15°以上45°以下であることが好ましい。本発明は、電子写真感光体の周面に対するクリーニングブレードの接触圧力が大きい場合のみならず、小さい場合においても有効である。
 さらに、前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、図4に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
 また、本発明においては、トナーとして、不定形トナーおよび球形トナーなどのいずれのトナーも使用可能である。
 本発明においては、上述の電子写真感光体1、帯電手段3、現像手段5、転写手段6およびクリーニング手段7などの構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成してもよい。また、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。図4では、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段7とを一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。
 露光光4は、電子写真装置が複写機やプリンターである場合、原稿からの反射光や透過光、または、センサーで原稿を読み取り、信号化し、この信号にしたがって行われるレーザービームの走査、LEDアレイや液晶シャッターアレイの駆動などにより照射される光である。
 本発明の電子写真感光体は、電子写真複写機、レーザービームプリンター、LEDプリンター、FAX、液晶シャッター式プリンターなどの各種電子写真装置一般に適応しうる。さらに、電子写真技術を応用したディスプレー、記録、軽印刷、製版およびファクシミリなどの装置にも幅広く適用しうるものである。
 以下に、具体的な実施例を挙げて本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。
 〔電子写真感光体A-1の製造例〕
 〔周面に平坦部-溝部形状が形成される前の電子写真感光体の作製〕
 直径30mmのアルミニウムシリンダーを支持体(円筒状支持体)として用いた。
 次に、酸化スズの被覆層を有する硫酸バリウム粒子(商品名:パストランPC1、三井金属鉱業(株)製)60部、酸化チタン(商品名:TITANIX JR、テイカ(株)製)15部、レゾール型フェノール樹脂(商品名:フェノライト J-325、大日本インキ化学工業(株)製、固形分70質量%)43部、シリコーンオイル(商品名:SH28PA、東レシリコーン(株)製)0.015部、シリコーン樹脂(商品名:トスパール120、東芝シリコーン(株)製)3.6部、2-メトキシ-1-プロパノール50部およびメタノール50部からなる液を、ボールミルを用いて20時間分散処理することによって、導電層用塗布液を調製した。
 この導電層用塗布液を上記支持体上に浸漬塗布し、これを1時間140℃で加熱し、硬化させることによって、膜厚が15μmの導電層を形成した。
 次に、共重合ナイロン樹脂(商品名:アミランCM8000、東レ(株)製)10部およびメトキシメチル化6ナイロン樹脂(商品名:トレジンEF-30T、帝国化学(株)製)30部をメタノール400部/n-ブタノール200部の混合溶剤に溶解させることによって、中間層用塗布液を調製した。
 この中間層用塗布液を上記導電層上に浸漬塗布し、これを30分間100℃で乾燥させることによって、膜厚が0.45μmの中間層を形成した。
 次に、CuKαの特性X線回折においてブラッグ角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記構造式(1)で示されるカリックスアレーン化合物0.2部、
Figure JPOXMLDOC01-appb-C000001
ポリビニルブチラール(商品名:エスレックBX-1、積水化学(株)製)10部およびシクロヘキサノン600部からなる液を、直径1mmガラスビーズを用いたサンドミルを用いて4時間分散処理した後、これに酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。
 この電荷発生層用塗布液を上記中間層上に浸漬塗布し、これを15分間80℃で乾燥させることによって、膜厚が0.17μmの電荷発生層を形成した。
 次に、下記構造式(2)で示される化合物(電荷輸送物質)70部
Figure JPOXMLDOC01-appb-C000002
およびポリカーボネート樹脂(ビスフェノールZ型ポリカーボネート樹脂、商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部をモノクロロベンゼン600部/メチラール200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。
 この電荷輸送層用塗布液を上記電荷発生層上に浸漬塗布し、これを30分間100℃で乾燥させることによって、膜厚が15μmの電荷輸送層を形成した。
 次に、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)80部/1-プロパノール80部の混合溶剤に、下記構造式(3)で示される正孔輸送性化合物100部を加えた。
Figure JPOXMLDOC01-appb-C000003
 これを、ポリフロンフィルター(商品名:PF-020、アドバンテック東洋(株)製)で濾過することによって、保護層(第二電荷輸送層)用塗布液を調製した。
 この保護層(第二電荷輸送層)用塗布液を上記電荷輸送層上に塗布した後、これを大気中において10分間50℃で乾燥させた。その後、窒素中において、加速電圧150kVおよびビーム電流3.0mAの条件で、支持体(被照射体)を200rpmで回転させながら、1.6秒間電子線照射を行った。引き続いて、窒素中において、25℃から125℃まで30秒かけて昇温させ、加熱硬化反応を行った。なお、このときの電子線の吸収線量を測定したところ、15kGyであった。また、電子線照射および加熱硬化反応時の雰囲気の酸素濃度は15ppm以下であった。これを、大気中において25℃まで自然冷却し、大気中において30分間100℃の条件で後加熱処理を行って、膜厚が5μmの保護層(第二電荷輸送層)を形成した。
 このようにして、周面に平坦部-溝部形状が形成される前の電子写真感光体を得た。
 〔モールド圧接による形状転写〕
 上記の周面に平坦部-溝部形状が形成される前の電子写真感光体(形状転写対象の電子写真感光体)を、図2に示した表面形状加工装置に設置した。加圧部材は、材質をステンレス鋼(SUS)製とし、内部に加熱用のヒーターを設置した。モールドとしては、図5に示すような形状の、凸部の幅X:1.0μm、凹部の幅Y:1.0μm、凸部の高さZ:2.0μmの形状を有する厚さ50μmのニッケル材質のモールドを使用した。そして、形状転写対象の電子写真感光体の軸方向に対してモールドの凹部が90°の角度をなす方向になるようにモールドを加圧部材上に固定した。形状転写対象の電子写真感光体の支持体の内部には、支持体の内径と略同直径を有する円柱状のSUS製の保持部材を挿入した。以上の構成の装置を用いて、モールドの温度140℃、加工圧力10MPa、加工速度20mm/sの条件で、形状転写対象の電子写真感光体の周面に、平坦部-溝部形状の形成を行った。
 このようにして、周面に平坦部-溝部形状が形成された電子写真感光体(円筒状の電子写真感光体)を得た。この電子写真感光体を電子写真感光体A-1とする。
 〔電子写真感光体の周面の観察(平坦部-溝部形状の観察)〕
 得られた電子写真感光体A-1の周面をレーザー顕微鏡(商品名:VK-9500、(株)キーエンス製)により拡大観察した。その結果、図1における平坦部の幅eが1.0μm、溝部の幅wが1.0μm、溝部の深さdが1.0μmの平坦部-溝部形状が電子写真感光体A-1の周面に形成されていることがわかった。また、平坦部および溝部は、電子写真感光体A-1の軸方向に対して90°の角度をなすように形成されていることがわかった。また、平坦部の幅の平均値eAv、その標準偏差eσ、溝部の幅の平均値wAv、その標準偏差wσ、溝部の深さの平均値:dAv、その標準偏差dσおよび電子写真感光体の周面の軸方向の幅100μmあたりの平坦部の幅eの合計値eSumを、前述のようにして算出した。結果を表1に示す。
 〔電子写真感光体A-2~A-9の製造例〕
 電子写真感光体A-1の製造例において、モールドを表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-2~A-9を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-10~A-11の製造例〕
 電子写真感光体A-1の製造例において、形状転写時のモールドを、形状転写対象の電子写真感光体の軸方向に対してモールドの凹部が80°および100°の角度をなす方向になるように加圧部材上に固定した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-10~A-11を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-12~A-14の製造例〕
 電子写真感光体A-1の製造例において、モールドを図6および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-12~A-14を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-15~A-16の製造例〕
 電子写真感光体A-1の製造例において、モールドを図7および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-15~A-16を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-17~A-18の製造例〕
 電子写真感光体A-1の製造例において、モールドを図8および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-17~A-18を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-19の製造例〕
 電子写真感光体A-1の製造例において、モールドを以下のように作製したものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-19を作製した。得られた電子写真感光体A-19の周面の観察をしたところ、幅0.1~1.0μmの平坦部ならびに幅0.1~7.0μmおよび深さ0.1~0.6μmの溝部がランダムに形成されていた。結果を表1に示す。
 ・モールドの作製
 直径40mm、長さ360mmのアルミニウムシリンダー上に、電子写真感光体A-1の製造例で使用した塗布液を用いて、膜厚が0.45μmの中間層および膜厚が15μmの電荷輸送層をこの順に形成した(被処理体1とする)。その後、富士写真フィルム(株)製の研磨シートC-3000を用いて、被処理体1の周面を研磨し、被処理体1の電荷輸送層の周面に電子写真感光体の軸方向に対して90°の角度をなす溝(周方向の溝)を形成した。さらに、溝が形成された被処理体1の電荷輸送層の周面に対して電鋳処理を行い、厚さが50μmのNiを析出させた後、電荷輸送層から剥離したものを本実施例のモールドとした。このモールドを、レーザー顕微鏡により観察したところ、凸部の幅X:0.1μm~10.0μm、凹部の幅Y:0.1μm~1.0μm、凸部の高さZ:0.1μm~1.5μmのランダムな溝形状を有していた。
 〔電子写真感光体A-20の製造例〕
 電子写真感光体A-1の製造例において、モールドを図9および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-20を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-21の製造例〕
 電子写真感光体A-1の製造例において、モールドを図10(a)および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-21を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体A-22の製造例〕
 電子写真感光体A-1の製造例において、保護層(第二電荷輸送層)用塗布液を以下のように調製したものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-22を作製し、その周面の観察を行った。結果を表1に示す。
 ・保護層(第二電荷輸送層)用塗布液の調製
 分散剤としてのフッ素原子含有樹脂(商品名:GF-300、東亞合成(株)製)1.5部を、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)20部および1-プロパノール20部の混合溶剤に溶解させた。得られた溶液に、潤滑剤としてポリテトラフルオロエチレン粒子(商品名:ルブロンL-2、ダイキン工業(株)製)30部を加えた。その後、これを、高圧分散機(商品名:マイクロフルイダイザーM-110EH、米Microfluidics社製)を用いて、600kgf/cmの圧力で4回の分散処理を施した。さらに、これを、ポリフロンフィルター(商品名:PF-040、アドバンテック東洋(株)製)で濾過することによって、潤滑剤分散液を調製した。その後、この潤滑剤分散液に、上記構造式(3)で示される正孔輸送性化合物70部、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン70部および1-プロパノール70部を加えた。これを、ポリフロンフィルター(商品名:PF-020、アドバンテック東洋(株)社製)で濾過することによって、保護層(第二電荷輸送層)用塗布液を調製した。
 〔電子写真感光体A-23の製造例〕
 電子写真感光体A-1の製造例において、保護層(第二電荷輸送層)用塗布液を以下のように調製したものに変更し、電子線照射による硬化を1時間140℃での熱による硬化に変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-23を作製し、その周面の観察を行った。結果を表1に示す。
 ・保護層(第二電荷輸送層)用塗布液の調製
 下記構造式(4)で示される正孔輸送性ヒドロキシメチル基含有フェノール化合物100部
Figure JPOXMLDOC01-appb-C000004
を1-プロパノール150部に溶解させ、これを、ポリフロンフィルター(商品名:PF-020、アドバンテック東洋(株)製)で濾過することによって、保護層(第二電荷輸送層)用塗布液を調製した。
 〔電子写真感光体A-24の製造例〕
 電子写真感光体A-1の製造例において、使用したアルミシリンダーの直径を30mmから24mmに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体A-24を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体B-1~B-2の製造例〕
 電子写真感光体A-1の製造例において、電荷輸送層の膜厚を20μmに変更し、さらに保護層(第二電荷輸送層)を有さない電子写真感光体を得た。さらに、モールドを図5および表2に示すものに変更し、加工条件をモールドの温度120℃、加工圧力8MPa、加工速度20mm/sに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体B-1~B-2を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体B-3の製造例〕
 電子写真感光体B-1の製造例において、モールドを図6および表2に示すものに変更した以外は、電子写真感光体B-1の製造例と同様にして電子写真感光体B-3を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体B-4の製造例〕
 電子写真感光体B-1の製造例において、モールドを以下のように作製したものに変更した以外は、電子写真感光体B-1の製造例と同様にして電子写真感光体B-4を作製した。得られた電子写真感光体B-4の周面の観察をしたところ、幅0.1~1.0μmの平坦部ならびに幅0.1~5.0μmおよび深さ0.1~0.6μmの溝部がランダムに形成されていた。結果を表1に示す。
 ・モールドの作製
 直径40mm、長さ360mmのアルミニウムシリンダー上に、電子写真感光体A-1で使用した塗布液を用いて、膜厚が0.45μmの中間層および膜厚が15μmの電荷輸送層をこの順に形成した(被処理体2とする)。その後、富士写真フィルム(株)製の研磨シートC-4000を用いて、被処理体1の周面を研磨し、被処理体2の電荷輸送層の周面に電子写真感光体の軸方向に対して90°の角度をなす溝(周方向の溝)を形成した。さらに、溝が形成された被処理体2の電荷輸送層の周面に対して電鋳処理を行い、厚さが50μmのNiを析出させた後、電荷輸送層から剥離したものを本実施例のモールドとした。このモールドを、レーザー顕微鏡により観察したところ、凸部の幅X:0.1μm~5.0μm、凹部の幅Y:0.1μm~1.0μm、凸部の高さZ:0.1μm~0.6μmのランダムな溝形状を有していた。
 〔電子写真感光体B-5~B-8の製造例〕
 電子写真感光体B-1~B-4の製造例において、電荷輸送層に用いたポリカーボネート樹脂を下記構造式(5)で示される繰り返し構造単位を有するポリアリレート樹脂(重量平均分子量:130000、フタル酸骨格はテレ:イソ=1:1(モル比))
Figure JPOXMLDOC01-appb-C000005
に変更した以外は、それぞれ電子写真感光体B-1~B-4の製造例と同様にして電子写真感光体B-5~B-8を作製し、それらの周面の観察を行った。結果を表1に示す。
 〔電子写真感光体B-9の製造例〕
 電子写真感光体B-1の製造例において、使用したアルミシリンダーの直径を30mmから24mmに変更した以外は、電子写真感光体B-1の製造例と同様にして電子写真感光体B-9を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体C-1の製造例〕
 電子写真感光体A-1の製造例において、モールド圧接による形状転写を行わなかったものを電子写真感光体C-1とした。
 〔電子写真感光体C-2の製造例〕
 電子写真感光体A-1の製造例において、モールドを図5および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体C-2を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体C-3の製造例〕
 電子写真感光体A-1の製造例において、モールドを図10(b)および表2に示す形状のものに変更し、加工条件をモールドの温度180℃、加工圧力15MPa、加工速度5mm/sに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体C-3を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体C-4の製造例〕
 電子写真感光体A-1の製造例において、モールドを図6および表2に示す形状のものに変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体C-4を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体C-5の製造例〕
 電子写真感光体A-19の製造例において、モールド作製時に用いた研磨シートC-4000をC-2000に変更した以外は、電子写真感光体A-19の製造例と同様にして電子写真感光体C-5を作製した。得られた電子写真感光体C-5の周面の観察をしたところ、幅0.1~2.5μmの平坦部ならびに幅0.5~20.0μmおよび深さ0.1~1.5μmの溝部がランダムに形成されていた。結果を表1に示す。
 〔電子写真感光体C-6の製造例〕
 電子写真感光体A-1の製造例において、モールド圧接による平坦部-溝部形状の形成を以下の研磨テープによる平坦部-溝部形状の形成に変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体C-6を作製した。得られた電子写真感光体C-6の周面の観察をしたところ、幅0.1~2.5μmの平坦部ならびに幅0.5~20.0μmおよび深さ0.1~1.7μmの溝部がランダムに形成されていた。結果を表1に示す。
 ・研磨テープによる平坦部-溝部形状の形成
 富士写真フィルム(株)製の研磨シートC-2000を用いて、電子写真感光体の周面を研磨し、電子写真感光体の周面に周方向の溝を形成した。
 〔電子写真感光体D-1の製造例〕
 電子写真感光体B-1の製造例において、モールド圧接による形状転写を行わなかったものを電子写真感光体D-1とした。
 〔電子写真感光体D-2の製造例〕
 電子写真感光体B-1の製造例において、モールドを図5および表2に示す形状のものに変更した以外は、電子写真感光体B-1の製造例と同様にして電子写真感光体D-2を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体D-3の製造例〕
 電子写真感光体B-1の製造例において、モールドを図10(b)および表2に示す形状のものに変更した以外は、電子写真感光体B-1の製造例と同様にして電子写真感光体D-3を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体D-4の製造例〕
 電子写真感光体B-1の製造例において、モールドを図6および表2に示す形状のものに変更した以外は、電子写真感光体B-1の製造例と同様にして電子写真感光体D-4を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体D-5の製造例〕
 電子写真感光体B-1の製造例において、モールド圧接による平坦部-溝部形状の形成を以下の研磨テープによる平坦部-溝部形状の形成に変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体D-5を作製した。得られた電子写真感光体D-5の周面の観察をしたところ、幅0.1~3.0μmの平坦部ならびに幅0.5~25.0μmおよび深さ0.1~1.9μmの溝部がランダムに形成されていた。結果を表1に示す。
 ・研磨テープによる平坦部-溝部形状の形成
 住友スリーエム(株)製のラッピングフィルム(メッシュナンバー:3000)を用いて、電子写真感光体の周面を研磨し、電子写真感光体の周面に周方向の溝を形成した。
 〔電子写真感光体D-6の製造例〕
 電子写真感光体B-5の製造例において、モールド圧接による形状転写を行わなかったものを電子写真感光体D-6とした。
 〔電子写真感光体D-7の製造例〕
 電子写真感光体B-5の製造例において、モールドを図5および表2に示す形状のものに変更した以外は、電子写真感光体B-5の製造例と同様にして電子写真感光体D-7を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体D-8の製造例〕
 電子写真感光体B-5の製造例において、モールドを図10(b)および表2に示す形状のものに変更した以外は、電子写真感光体B-5の製造例と同様にして電子写真感光体D-8を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体D-9の製造例〕
 電子写真感光体B-5の製造例において、モールドを図6および表2に示す形状のものに変更した以外は、電子写真感光体B-5の製造例と同様にして電子写真感光体D-9を作製し、その周面の観察を行った。結果を表1に示す。
 〔電子写真感光体D-10の製造例〕
 電子写真感光体B-5の製造例において、モールド圧接による平坦部-溝部形状の形成を以下の研磨テープによる平坦部-溝部形状の形成に変更した以外は、電子写真感光体A-1の製造例と同様にして電子写真感光体D-10を作製した。得られた電子写真感光体D-10の周面の観察をしたところ、幅0.1~3.5μmの平坦部ならびに幅0.8~20.0μmおよび深さ0.1~1.4μmの溝部がランダムに形成されていた。結果を表1に示す。
 ・研磨テープによる平坦部-溝部形状の形成
 住友スリーエム(株)製のラッピングフィルム(メッシュナンバー:3000)を用いて、電子写真感光体の周面を研磨し、電子写真感光体の周面に周方向の溝を形成した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 〔電子写真感光体の初期評価〕
 〔実施例1〕
 電子写真感光体A-1を、評価機としてのキヤノン(株)製の電子写真複写機(商品名:iRC3580)の改造機のシアンステーションに装着し、以下のように試験および評価を行った。
 まず、23℃-50%RH環境下で、電子写真感光体の暗部電位(Vd)が-700V、明部電位(Vl)が-200Vになるように電位の条件を設定し、電子写真感光体の初期電位を調整した。
 次に、ポリウレタン製のクリーニングブレードを、電子写真感光体の周面に対して25°の当接角になるように設定した。また、電子写真感光体の周面に対するクリーニンググレードの線圧(接触圧力)は、通常の設定のおよそ半分である15g/cmとなるように設定した。
 その後、A4横のハーフトーン画像を連続で10枚出力し、さらにベタ白画像を50枚出力し、クリーニング不良による初期画像欠陥を下記のように評価した。結果を表3に示す。
 A:ハーフトーン画像およびベタ白画像ともに、クリーニング不良によってトナーのすり抜けが発生したことによる画像不良(すり抜け画像)なし。
 B:ハーフトーン画像においてすり抜け画像の発生なし、ベタ白画像の後半においてごく軽微なすり抜け画像の発生あり。
 C:ハーフトーン画像においてすり抜け発生なし、ベタ白画像の前半からごく軽微なすり抜け画像の発生あり。
 D:ハーフトーン画像およびベタ白画像ともに、すり抜け画像の発生あり。
 さらに、15℃-10%RHおよび30℃-80%RH環境下においても、上記と同様にクリーニング不良による初期画像欠陥の評価を行った。結果を表3に示す。
 さらに、出力解像度600dpiとして1ドット-1スペースの画像形成を行い、紙に転写される前に中間転写体上に形成されたトナー像を光学顕微鏡にて100倍に拡大観察し、ドット再現性を下記のように評価した。結果を表3に示す。
 A:ドットに乱れや飛び散りや中抜けがなく再現性が良好。
 B:トナーが流動したことによりドットがわずかに乱れているが、飛び散りや中抜けはなし。
 C:ドット内の転写性が不均一なことによるトナーの中抜けがわずかに発生。
 D:トナーが流動したことによりドットがわずかに乱れ、また、ドット内の転写性が不均一なことによるトナーの中抜けがわずかに発生。
 E:トナーが流動したことによりドットが拡がり、再現性が乏しい。
 〔実施例2~31〕
 評価対象の電子写真感光体を表3に示す電子写真感光体に変更した以外は、実施例1と同様にして評価を行った。結果を表3に示す。
 〔実施例32〕
 実施例1において、評価機をキヤノン(株)製のレーザービームプリンターLBP-2510の改造機に変更し、これのシアンステーションに電子写真感光体A-1を装着した。その後、23℃-50%RH環境下で、電子写真感光体の暗部電位(Vd)が-500V、明部電位(Vl)が-100Vになるように電位の条件を設定し、電子写真感光体の初期電位を調整した。さらに、電子写真感光体の周面に対するクリーニングブレードの当接角を24°、線圧(接触圧力)を通常の設定のおよそ1/5である15g/cmとなるように設定した。これら以外は、実施例1と同様にして評価を行った。結果を表3に示す。
 〔実施例33~48〕
 評価対象の電子写真感光体を表3に示す電子写真感光体に変更した以外は、実施例32と同様にして評価を行った。結果を表3に示す。
 〔実施例49〕
 実施例1において、評価機をキヤノン(株)製の電子写真複写機(商品名:GP-40)の改造機に変更し、これに電子写真感光体A-1を装着した。その後、23℃-50%RH環境下で、電子写真感光体の暗部電位(Vd)が-700V、明部電位(Vl)が-150Vになるように電位の条件を設定し、電子写真感光体の初期電位を調整した。さらに、電子写真感光体の周面に対するクリーニングブレードの当接角を25°、線圧(接触圧力)を通常の設定のおよそ半分である15g/cmとなるように設定した。これら以外は、実施例1と同様にして評価を行った。結果を表3に示す。
 〔実施例50〕
 評価対象の電子写真感光体を電子写真感光体B-1に変更した以外は、実施例49と同様にして評価を行った。結果を表3に示す。
 〔実施例51〕
 実施例1において、評価機をヒューレット・パッカード社製のレーザービームプリンター(商品名:Color Laser Jet 3500)の改造機に変更し、これのシアンステーションに電子写真感光体A-24を装着した。その後、23℃-50%RH環境下で、電子写真感光体の暗部電位(Vd)が-500V、明部電位(Vl)が-150Vになるように電位の条件を設定し、電子写真感光体の初期電位を調整した。さらに、電子写真感光体の周面に対するクリーニングブレードの当接角を24°、線圧(接触圧力)を通常の設定のおよそ1/5である15g/cmとなるように設定した。これら以外は、実施例1と同様にして評価を行った。結果を表3に示す。
 〔実施例52〕
 評価対象の電子写真感光体を電子写真感光体B-9に変更した以外は、実施例51と同様にして評価を行った。結果を表3に示す。
 〔比較例1〕
 評価対象の電子写真感光体を電子写真感光体C-1に変更した以外は、実施例1と同様にして評価を行った。結果を表4に示す。
 〔比較例2~6〕
 評価対象の電子写真感光体を表4に示す電子写真感光体に変更した以外は、比較例1と同様にして評価を行った。結果を表4に示す。
 〔比較例7~9〕
 評価対象の電子写真感光体を表4に示す電子写真感光体に変更した以外は、実施例32と同様にして評価を行った。結果を表4に示す。
 〔比較例10~14〕
 評価対象の電子写真感光体を表4に示す電子写真感光体に変更した以外は、比較例1と同様にして評価を行った。結果を表4に示す。
 〔比較例15~17〕
 評価対象の電子写真感光体を表4に示す電子写真感光体に変更した以外は、比較例7と同様にして評価を行った。結果を表4に示す。
 〔比較例18~22〕
 評価対象の電子写真感光体を表4に示す電子写真感光体に変更した以外は、比較例1と同様にして評価を行った。結果を表4に示す。
 〔比較例23~25〕
 評価対象の電子写真感光体を表4に示す電子写真感光体に変更した以外は、比較例7と同様にして評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 〔電子写真感光体の耐久性能評価〕
 〔実施例101〕
 実施例1において、23℃-50%RH環境下で、印字比率5%のテストチャートを用いて、5枚間欠モードでA4横の50000枚を印刷する耐久試験を行った。その後、実施例1と同様にして、クリーニング性能およびドット再現性を評価した。結果を表5に示す。
 〔実施例102~110〕
 評価対象の電子写真感光体を表5に示す電子写真感光体に変更し、印刷枚数を表5に示すように変更した以外は、実施例101と同様にして評価を行った。結果を表5に示す。
 〔実施例111〕
 実施例32において、23℃-50%RH環境下で、印字比率5%のテストチャートを用いて、5枚間欠モードでA4横の50000枚を印刷する耐久試験を行った。その後、実施例1と同様にして、クリーニング性能およびドット再現性を評価した。結果を表5に示す。
 〔実施例112~115〕
 評価対象の電子写真感光体を表5に示す電子写真感光体に変更し、印刷枚数を表5に示すように変更した以外は、実施例111と同様にして評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010

Claims (6)

  1.  円筒状支持体および該円筒状支持体上に設けられた感光層を有する電子写真感光体において、
     該電子写真感光体の周面には、幅e(μm)が0.1≦e≦25である平坦部と、幅w(μm)が0.1≦w≦25であって深さd(μm)が0.1≦d≦3.0である溝部とが、該電子写真感光体の軸方向に対して80≦θ≦100の角度θ(°)をなすように交互に複数形成されており、
     該周面の軸方向の幅100μmあたりの平坦部の幅eの合計値eSum(μm)が5≦eSum≦75であり、
     該平坦部の幅eの平均値をeAv(μm)とし、その標準偏差をeσとしたとき、eσ/eAvがeσ/eAv≦0.46である
    ことを特徴とする電子写真感光体。
  2.  前記eσ/eAvがeσ/eAv≦0.27である請求項1に記載の電子写真感光体。
  3.  前記eSum(μm)が10≦eSum≦50であり、前記eσ/eAvがeσ/eAv≦0.08である請求項2に記載の電子写真感光体。
  4.  前記溝部の幅wの平均値をwAv(μm)とし、その標準偏差をwσとし、前記溝部の深さdの平均値をdAv(μm)とし、その標準偏差をdσとしたとき、wσ/wAvがwσ/wAv≦0.08であり、dσ/dAvがdσ/dAv≦0.08である請求項1~3のいずれか1項に記載の電子写真感光体。
  5.  請求項1~4のいずれか1項に記載の電子写真感光体と、該電子写真感光体の周面を帯電するための帯電手段、該電子写真感光体の周面に形成された静電潜像をトナーで現像して該電子写真感光体の周面にトナー像を形成するための現像手段、該電子写真感光体の周面に形成されたトナー像を転写材に転写するための転写手段、および、該電子写真感光体の周面に形成されたトナー像を転写材上に転写した後の該電子写真感光体の周面に残るトナーを除去するためのクリーニング手段からなる群より選択される少なくとも1つの手段とを一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。
  6.  請求項1~4のいずれかに記載の電子写真感光体、ならびに、該電子写真感光体を帯電するための帯電手段、帯電された該電子写真感光体の周面に露光光を照射して該電子写真感光体の周面に静電潜像を形成するための露光手段、該電子写真感光体の周面に形成された静電潜像をトナーで現像して該電子写真感光体の周面にトナー像を形成するための現像手段、および、該電子写真感光体の周面に形成されたトナー像を転写材上に転写するための転写手段を有することを特徴とする電子写真装置。
PCT/JP2009/070391 2009-12-04 2009-12-04 電子写真感光体、プロセスカートリッジおよび電子写真装置 WO2011067853A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200980162708.4A CN102640059B (zh) 2009-12-04 2009-12-04 电子照相感光构件、处理盒和电子照相设备
JP2011520263A JP5318204B2 (ja) 2009-12-04 2009-12-04 電子写真感光体、プロセスカートリッジおよび電子写真装置
PCT/JP2009/070391 WO2011067853A1 (ja) 2009-12-04 2009-12-04 電子写真感光体、プロセスカートリッジおよび電子写真装置
EP09851861.6A EP2508949B1 (en) 2009-12-04 2009-12-04 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
KR1020127016572A KR101400590B1 (ko) 2009-12-04 2009-12-04 전자 사진 감광체, 프로세스 카트리지 및 전자 사진 장치
US12/959,238 US8843024B2 (en) 2009-12-04 2010-12-02 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US14/047,364 US20140038099A1 (en) 2009-12-04 2013-10-07 Electrophotographic photosensitive member, process cartridge,and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070391 WO2011067853A1 (ja) 2009-12-04 2009-12-04 電子写真感光体、プロセスカートリッジおよび電子写真装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/959,238 Continuation US8843024B2 (en) 2009-12-04 2010-12-02 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2011067853A1 true WO2011067853A1 (ja) 2011-06-09

Family

ID=44082151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070391 WO2011067853A1 (ja) 2009-12-04 2009-12-04 電子写真感光体、プロセスカートリッジおよび電子写真装置

Country Status (6)

Country Link
US (2) US8843024B2 (ja)
EP (1) EP2508949B1 (ja)
JP (1) JP5318204B2 (ja)
KR (1) KR101400590B1 (ja)
CN (1) CN102640059B (ja)
WO (1) WO2011067853A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117624A (ja) * 2011-12-02 2013-06-13 Canon Inc 電子写真装置
JP2016038437A (ja) * 2014-08-06 2016-03-22 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2016218318A (ja) * 2015-05-22 2016-12-22 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2017181926A (ja) * 2016-03-31 2017-10-05 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601129B2 (ja) * 2009-09-29 2014-10-08 株式会社リコー 電子写真感光体、電子写真感光体の製造方法、及び画像形成装置
JP5921471B2 (ja) * 2012-04-17 2016-05-24 キヤノン株式会社 電子写真感光体の表面加工方法、および電子写真感光体を製造する方法
JP5784202B2 (ja) * 2013-09-26 2015-09-24 キヤノン株式会社 位置決め部材及び画像形成装置
JP2016224266A (ja) * 2015-05-29 2016-12-28 キヤノン株式会社 現像装置及び画像形成装置
JP7240124B2 (ja) * 2017-10-16 2023-03-15 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066814A (ja) 1999-08-30 2001-03-16 Fuji Xerox Co Ltd 電子写真感光体、その製造方法、電子写真プロセスカートリッジ及び電子写真装置
JP2004279967A (ja) * 2003-03-18 2004-10-07 Ricoh Co Ltd 電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2005093519A (ja) 2003-09-12 2005-04-07 Shikusuon:Kk 炭化珪素基板の製造方法および炭化珪素基板
JP2006011047A (ja) * 2004-06-25 2006-01-12 Ricoh Co Ltd 電子写真感光体、画像形成装置、及びプロセスカートリッジ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470689A (en) * 1981-06-02 1984-09-11 Canon Kabushiki Kaisha Image forming apparatus and process unit
US5082756A (en) * 1989-02-16 1992-01-21 Minolta Camera Kabushiki Kaisha Photosensitive member for retaining electrostatic latent images
JP4458700B2 (ja) * 2000-03-14 2010-04-28 キヤノン株式会社 画像形成装置及びプロセスカートリッジ
JP3939696B2 (ja) * 2001-08-30 2007-07-04 ヒューレット−パッカード・インデイゴ・ビー・ブイ 耐スクラッチ性を有する有機受光体
US7266329B2 (en) * 2003-09-29 2007-09-04 Canon Kabushiki Kaisha Toner image carrying member and manufacturing method thereof, and electrophotographic apparatus
JP2005173558A (ja) 2003-11-21 2005-06-30 Seiko Epson Corp 円周面の加工方法、現像ローラ及び感光ドラムの製造方法並びに現像ローラ及び感光ドラム
WO2005093519A1 (ja) 2004-03-26 2005-10-06 Canon Kabushiki Kaisha 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
CN100559290C (zh) * 2005-03-28 2009-11-11 佳能株式会社 电子照相感光构件、处理盒和电子照相设备、及用于生产电子照相感光构件的方法
JP2007192906A (ja) * 2006-01-17 2007-08-02 Canon Inc 電子写真装置
JP4059518B2 (ja) * 2006-01-31 2008-03-12 キヤノン株式会社 電子写真感光体の製造方法
CN101379436B (zh) 2006-01-31 2012-01-18 佳能株式会社 电子照相感光构件、处理盒及电子照相设备
JP4183267B2 (ja) * 2006-01-31 2008-11-19 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP5100468B2 (ja) * 2007-05-15 2012-12-19 キヤノン株式会社 画像形成装置
JP2010026240A (ja) 2008-07-18 2010-02-04 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2010170015A (ja) * 2009-01-26 2010-08-05 Konica Minolta Business Technologies Inc 感光層の表面研磨方法
JP2011100146A (ja) * 2010-12-24 2011-05-19 Fuji Xerox Co Ltd 画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066814A (ja) 1999-08-30 2001-03-16 Fuji Xerox Co Ltd 電子写真感光体、その製造方法、電子写真プロセスカートリッジ及び電子写真装置
JP2004279967A (ja) * 2003-03-18 2004-10-07 Ricoh Co Ltd 電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2005093519A (ja) 2003-09-12 2005-04-07 Shikusuon:Kk 炭化珪素基板の製造方法および炭化珪素基板
JP2006011047A (ja) * 2004-06-25 2006-01-12 Ricoh Co Ltd 電子写真感光体、画像形成装置、及びプロセスカートリッジ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508949A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117624A (ja) * 2011-12-02 2013-06-13 Canon Inc 電子写真装置
JP2016038437A (ja) * 2014-08-06 2016-03-22 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2016218318A (ja) * 2015-05-22 2016-12-22 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2017181926A (ja) * 2016-03-31 2017-10-05 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置

Also Published As

Publication number Publication date
JP5318204B2 (ja) 2013-10-16
CN102640059B (zh) 2015-05-20
US20110135340A1 (en) 2011-06-09
CN102640059A (zh) 2012-08-15
KR101400590B1 (ko) 2014-05-27
EP2508949A1 (en) 2012-10-10
JPWO2011067853A1 (ja) 2013-04-18
KR20120096554A (ko) 2012-08-30
EP2508949B1 (en) 2017-08-23
US20140038099A1 (en) 2014-02-06
US8843024B2 (en) 2014-09-23
EP2508949A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5318204B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4183267B2 (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP4416829B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4101279B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6562804B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6704739B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP5127991B1 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4590484B2 (ja) 電子写真装置およびプロセスカートリッジ
JP2016038577A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2009145480A (ja) 電子写真感光体およびその製造方法、ならびに、電子写真感光体を有するプロセスカートリッジおよび電子写真装置
JP2010026240A (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP6624952B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2021157031A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2008292573A (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2010008898A (ja) 電子写真装置
JP5105986B2 (ja) 画像形成装置及びプロセスカートリッジ
JP6723790B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2014066789A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6132473B2 (ja) 電子写真感光体の製造方法
JP7171395B2 (ja) 円筒状電子写真感光体の表面に凹凸形状を形成する方法および円筒状電子写真感光体の製造方法
JP2018087874A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4921243B2 (ja) プロセスカートリッジ及び電子写真装置
JP2015102676A (ja) 電子写真感光体の表面加工方法、および、電子写真感光体の製造方法
JP2007025456A (ja) 電子写真装置
JP2017078804A (ja) 電子写真装置およびプロセスカートリッジ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162708.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011520263

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851861

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009851861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009851861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127016572

Country of ref document: KR

Kind code of ref document: A