WO2011030832A1 - 蓄電デバイス用非水電解液および蓄電デバイス - Google Patents

蓄電デバイス用非水電解液および蓄電デバイス Download PDF

Info

Publication number
WO2011030832A1
WO2011030832A1 PCT/JP2010/065553 JP2010065553W WO2011030832A1 WO 2011030832 A1 WO2011030832 A1 WO 2011030832A1 JP 2010065553 W JP2010065553 W JP 2010065553W WO 2011030832 A1 WO2011030832 A1 WO 2011030832A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
storage device
lithium
electrolytic solution
carbonate
Prior art date
Application number
PCT/JP2010/065553
Other languages
English (en)
French (fr)
Inventor
真男 岩谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2010800408720A priority Critical patent/CN102498606A/zh
Priority to JP2011530877A priority patent/JPWO2011030832A1/ja
Priority to EP10815427.9A priority patent/EP2477268A4/en
Publication of WO2011030832A1 publication Critical patent/WO2011030832A1/ja
Priority to US13/412,029 priority patent/US8586250B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a nonaqueous electrolytic solution for an electricity storage device and an electricity storage device.
  • the non-aqueous electrolyte for electricity storage devices contains a high dielectric constant solvent such as a carbonate-based solvent in order to dissolve the electrolyte salt satisfactorily.
  • the carbonate-based solvent expresses high lithium ion conductivity by dissolving a lithium salt well, and has a wide potential window. Therefore, it is suitably used for lithium ion secondary batteries, lithium metal secondary batteries, lithium primary batteries, electric double layer capacitors, lithium ion capacitors and the like.
  • a high dielectric constant solvent such as a carbonate-based solvent has a short life in a charge / discharge cycle.
  • Non-aqueous electrolyte containing hydrofluoroether excellent in stability against oxidative decomposition has been proposed as a non-aqueous electrolyte excellent in cycle characteristics for realizing a long charge / discharge cycle life of an electricity storage device.
  • a hydrofluoroether represented by H— (CF 2 —CF 2 ) a —CH 2 —O—CF 2 —CF 2 —H (wherein a represents 1 or 2) is used as the electrolytic solution.
  • Patent Document 1 A hydrofluoroether represented by H— (CF 2 —CF 2 ) a —CH 2 —O—CF 2 —CF 2 —H (wherein a represents 1 or 2) is used as the electrolytic solution.
  • a nonaqueous electrolytic solution containing a hydrofluoroether such as CF 3 CF 2 CH 2 OCF 2 CH 3 in a non-aqueous solvent and having a content of more than 30% by volume and 90% by volume or less (Patent Document 3) .
  • the nonaqueous electrolytic solution (i) when the present inventor examined the nonaqueous electrolytic solution (i), it was found that the electrolytic solution has a large decrease in conductivity due to the addition of hydrofluoroether, and is not practical.
  • the non-aqueous electrolyte (ii) and the non-aqueous electrolyte (iii) have a large decrease in conductivity due to the inclusion of a large amount of hydrofluoroether, and in particular, lithium such as LiPF 6 at low temperatures. Sufficient salt solubility cannot be ensured.
  • a nonaqueous electrolytic solution containing a carbonate-based solvent and a lithium salt it is difficult to improve cycle characteristics while sufficiently securing the solubility and conductivity of the lithium salt.
  • An object of the present invention is to provide a nonaqueous electrolytic solution for an electricity storage device represented by a nonaqueous electrolytic solution for a lithium ion secondary battery, which has high solubility and conductivity of a lithium salt and excellent cycle characteristics.
  • Another object of the present invention is to provide an electricity storage device represented by a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor having high conductivity and excellent cycle characteristics.
  • a power storage device comprising a solvent (B) containing a system solvent (b2), wherein the content of the hydrofluoroether (b1) is 1 to 30% by volume relative to 100% by volume of the total amount of the solvent (B)
  • Non-aqueous electrolyte for use
  • a positive electrode, a negative electrode, and the nonaqueous electrolytic solution for an electricity storage device according to any one of [1] to [3], wherein one or both of the positive electrode and the negative electrode are polarizable electrodes.
  • the non-aqueous electrolyte for a lithium ion secondary battery and the non-aqueous electrolyte for an electricity storage device of the present invention have high lithium salt solubility and conductivity, and excellent cycle characteristics.
  • power storage devices such as the lithium ion secondary battery, electric double layer capacitor, and lithium ion capacitor of the present invention have high conductivity and excellent cycle characteristics.
  • non-aqueous electrolyte for an electricity storage device of the present invention
  • the non-aqueous electrolyte for an electricity storage device of the present invention is a non-aqueous electrolyte used for an electricity storage device such as a lithium battery, an electric double layer capacitor, or a lithium ion capacitor.
  • the lithium battery include a lithium ion secondary battery, a lithium metal secondary battery, a lithium metal primary battery, and a lithium air battery.
  • the non-aqueous electrolyte of the present invention is preferably used as a non-aqueous electrolyte for a lithium ion secondary battery, a non-aqueous electrolyte for an electric double layer capacitor, a non-aqueous electrolyte for a lithium ion capacitor, and for a lithium ion secondary battery It is particularly preferable to use it as a non-aqueous electrolyte.
  • the nonaqueous electrolytic solution of the present invention includes at least one lithium salt (A) selected from the group consisting of LiPF 6 , LiBF 4 and LiClO 4 , and hydrofluoro represented by CF 3 CH 2 OCF 2 CF 2 H. It is a nonaqueous electrolytic solution containing a solvent (B) containing ether (b1) and a carbonate-based solvent (b2).
  • the nonaqueous electrolytic solution means an electrolytic solution containing a solvent and an electrolyte substantially free of water. That is, even if the solvent in the nonaqueous electrolytic solution contains water, it means an electrolytic solution whose water content is such that the performance of the electricity storage device using the nonaqueous electrolytic solution is not deteriorated. .
  • the amount of water contained in the nonaqueous electrolytic solution of the present invention is preferably 0 to 500 ppm by mass, more preferably 0 to 100 ppm by mass, with respect to the total mass of the electrolyte. Particularly preferred is ppm.
  • the lithium salt (A) is at least one lithium salt selected from the group consisting of LiPF 6 , LiBF 4 and LiClO 4 .
  • the lithium salt (A) is dissociated in the non-aqueous electrolyte, high conductivity is imparted to the non-aqueous electrolyte of the present invention.
  • the lithium salt (A) one or both of LiPF 6 and LiBF 4 are preferable.
  • the content of the lithium salt (A) in the nonaqueous electrolytic solution of the present invention is preferably 0.1 to 3.0 mol, more preferably 0.5 to 2.0 mol, relative to 1 liter of the solvent (B).
  • the conductivity of the nonaqueous electrolytic solution is improved.
  • content of lithium salt (A) is 3.0 mol or less with respect to 1 liter of solvent (B)
  • the solvent (B) is a solvent containing a specific hydrofluoroether (b1) and a carbonate-based solvent (b2).
  • the included ether solvent preferably does not contain an ether solvent other than monoether.
  • the monoether means a solvent composed of an ether compound having one etheric oxygen atom.
  • the hydrofluoroether (b1) is a monoether represented by CF 3 CH 2 OCF 2 CF 2 H. Examples of the compound include trade name “AE-3000” (manufactured by Asahi Glass Co., Ltd.).
  • the upper limit of the content of the hydrofluoroether (b1) in the nonaqueous electrolytic solution of the present invention is 30% by volume with respect to 100% by volume of the solvent (B), preferably 25% by volume or less, and 15% by volume. % Or less is more preferable.
  • the lower limit of the content is 1% by volume, preferably 5% by volume or more, and more preferably 10% by volume or more.
  • the range of the content is 1 to 30% by volume with respect to 100% by volume of the solvent (B), preferably 5 to 30% by volume, and more preferably 10 to 25% by volume. From the viewpoint of conductivity, it is preferably 1 to 15% by volume, more preferably 5 to 15% by volume, and still more preferably 10 to 15% by volume.
  • Examples of the carbonate solvent (b2) include cyclic carbonates and chain carbonates.
  • As the carbonate solvent (b2) only one of cyclic carbonate and chain carbonate may be used, or one or a mixture of two or more of them may be used.
  • the carbonate solvent (b2) improves the solubility of the lithium salt (A) in the hydrofluoroether (b1) and provides high conductivity.
  • Cyclic carbonate means 1,3-dioxolan-2-one, 1,3-dioxolan-2-one derivatives, 1,3-dioxol-2-one and 1,3-dioxol-2-one derivatives.
  • These derivatives are compounds having a halogen atom, an alkyl group, or a haloalkyl group at the 4-position, 5-position, or both the 4-position and 5-position.
  • the halogen atom is preferably a chlorine atom or a fluorine atom
  • the alkyl group is preferably an alkyl group having 4 or less carbon atoms
  • the haloalkyl group is a haloalkyl group having 1 or more chlorine atoms or fluorine atoms and having 4 or less carbon atoms. Is preferred.
  • a chain carbonate means a dialkyl carbonate and a dialkyl carbonate derivative.
  • the two alkyl groups of the dialkyl carbonate may be the same or different, and their carbon number is preferably 6 or less.
  • a dialkyl derivative refers to a compound in which one or both alkyl groups are substituted with a haloalkyl group having 6 or less carbon atoms having one or more chlorine atoms or fluorine atoms.
  • the alkyl group or haloalkyl group preferably has 4 or less carbon atoms, more preferably 1 or 2 carbon atoms.
  • Cyclic carbonates include propylene carbonate, ethylene carbonate, butylene carbonate, 4-chloro-1,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan-2-one, fluoroethylene carbonate, vinylene carbonate , At least one compound selected from the group consisting of dimethyl vinylene carbonate is preferable, and ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and vinylene carbonate are particularly preferable from the viewpoint of availability, solubility of lithium salt (A), and conductivity. preferable.
  • chain carbonates dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl isopropyl carbonate, ethyl-n-propyl carbonate, ethyl isopropyl
  • At least one compound selected from the group consisting of carbonate, di-n-propyl carbonate, diisopropyl carbonate, and 3-fluoropropylmethyl carbonate is preferred, and from the viewpoint of availability, solubility of lithium salt (A) and conductivity, Particularly preferred are dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • the carbonate solvent (b2) a carbonate solvent that acts as a property improving aid described later can also be used.
  • the carbonate solvent having such an action include fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, erythritan carbonate, spiro-bis-dimethylene carbonate, and the like. It is preferable that the carbonate solvent that acts as an aid for improving these properties is used in combination with other carbonate solvents.
  • a cyclic carbonate is preferable.
  • the cyclic carbonate decomposes on the negative electrode (for example, carbon electrode) surface to form a stable coating. Since the film formed of the cyclic carbonate can reduce the resistance at the electrode interface, the intercalation of lithium ions into the negative electrode is promoted. That is, the film formed of the cyclic carbonate in the non-aqueous electrolyte reduces the impedance at the negative electrode interface, thereby promoting the intercalation of lithium ions into the negative electrode.
  • chain carbonate and a cyclic carbonate in combination as the carbonate solvent (b2).
  • a chain carbonate and a chain carbonate in combination As carbonate-based solvents (b2), when used in combination with a chain carbonate and a cyclic carbonate, chain carbonate (volume V 1) and a volume ratio of the cyclic carbonate (volume V 2) (V 1: V 2) is 1: It is preferably 10 to 10: 1.
  • the content of the cyclic carbonate is within this range, the melting point of the mixed solvent becomes an appropriate range, and the electrolyte solution in which the lithium salt is dissolved becomes stable.
  • the solubility of the lithium salt falls within an appropriate range, and the electrolyte solution in which the lithium salt is dissolved becomes stable.
  • the content of the carbonate-based solvent (b2) in the nonaqueous electrolytic solution of the present invention is preferably 50 to 99% by volume, more preferably 70 to 90% by volume with respect to 100% by volume of the solvent (B).
  • the content of the carbonate-based solvent (b2) is 50% by volume or more with respect to 100% by volume of the solvent (B)
  • the solubility and conductivity of the lithium salt (A) are improved.
  • the content of the carbonate-based solvent (b2) is 99% by volume or less with respect to 100% by volume of the solvent (B)
  • the cycle characteristics of the nonaqueous electrolytic solution are improved.
  • the solvent (B) is preferably a solvent comprising the hydrofluoroether (b1) and the carbonate-based solvent (b2), but other solvents (3b) as long as the non-aqueous electrolyte does not undergo phase separation. It may contain. That is, the solvent (B) may be a solvent composed of the hydrofluoroether (b1), the carbonate-based solvent (b2), and the other solvent (b3). Moreover, it is preferable that ether solvents other than the said hydrofluoroether (b1) contained in a solvent (B) are only monoethers. If the ether solvent contained in the solvent (B) is only monoether, it is easy to improve the cycle characteristics of the non-aqueous electrolyte. Examples of the other solvent (b3) include the following solvent (b31) and solvent (b32). Solvent (b31): Ether solvent other than hydrofluoroether (b1). Solvent (b32): ester solvent.
  • the solvent (b31) is a hydrofluoroether, but is preferably a hydrofluoroether having one etheric oxygen atom.
  • the alkyl group in the hydrofluoroether of the solvent (b31) preferably independently has 1 to 8 carbon atoms, more preferably 1 to 6, and particularly preferably 1 to 4.
  • the carbon number of the solvent (b31) is preferably 3 to 12, and more preferably 4 to 8. If the carbon number of the solvent (b31) is within this range, the increase in the viscosity of the solvent is suppressed, and the conductivity of the electrolytic solution becomes good. Moreover, the boiling point does not become too low, and problems such as gas generation are unlikely to occur.
  • the fluorination rate of the solvent (b31) is preferably 50% or more, and particularly preferably 55% or more.
  • the hydrofluoroether of the solvent (b31) include chain hydrofluoromonoethers such as CHF 2 CF 2 CH 2 OCF 2 CF 2 H and CF 3 CH 2 OCF 2 CHFCF 3 .
  • the ester solvent of the solvent (b32) refers to a solvent that is a chain ester or cyclic ester of an acid such as carboxylic acid, sulfonic acid, phosphoric acid, and nitric acid.
  • the ester solvent has preferably 3 or more and 12 or less, more preferably 4 or more and 8 or less.
  • An ester solvent having a smaller number of carbon atoms has a boiling point that is too low, and the electricity storage device easily expands due to its vapor pressure even under normal use conditions of the electricity storage device.
  • an ester solvent having a larger number of carbon atoms has a higher viscosity, which may lower the conductivity and low-temperature characteristics of the electrolytic solution.
  • Examples of the solvent (b32) include carboxylic acid esters such as propionic acid alkyl esters, malonic acid dialkyl esters, and acetic acid alkyl esters, cyclic esters such as ⁇ -butyrolactone, and cyclic sulfonic acids such as 1,3-propane sultone and 1,4-butane sultone.
  • Examples thereof include esters, alkyl sulfonates such as methyl methanesulfonate, and alkyl phosphates.
  • the content of the other solvent (b3) is preferably 40% by volume or less, more preferably 30% by volume or less, with respect to 100% by volume of the solvent (B). A volume% or less is particularly preferred.
  • the nonaqueous electrolyte solution of this invention may contain other components (C) other than lithium salt (A) and a solvent (B) as needed.
  • the other component (C) include conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintaining characteristics after high-temperature storage, and characteristic improving aids for improving cycle characteristics.
  • overcharge inhibitor examples include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroaniol Compounds.
  • An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
  • the content of the overcharge inhibitor in the non-aqueous electrolyte (100% by mass) is preferably 0.1 to 5% by mass. If the content of the overcharge inhibitor in the non-aqueous electrolyte is 0.1% by mass or more, when the non-aqueous electrolyte of the present invention is used for a secondary battery, It is easy to suppress ignition and the secondary battery can be used more stably.
  • the dehydrating agent examples include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, and lithium aluminum hydride.
  • the solvent (B) used in the nonaqueous electrolytic solution of the present invention a solvent obtained by performing rectification after dehydrating with the dehydrating agent is preferably used. Moreover, you may use the solvent (B) which performed only the dehydration by the said dehydrating agent, without performing rectification.
  • the property improvement aid examples include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic acid Carboxylic anhydrides such as anhydrides and phenylsuccinic anhydrides; ethylene sulfite, busulfan, sulfolane, sulfolene, dimethyl sulfone, diphenyl sulfone, methylphenyl sulfone, dibutyl disulfide, dicyclohexyl disulfide, tetramethylthiuram monosulfide, N, N -Sulfur-containing compounds such as dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl
  • characteristic improvement aids may be used alone or in combination of two or more.
  • the content of the characteristic improving auxiliary in the nonaqueous electrolytic solution (100% by mass) is preferably 0.1 to 5% by mass.
  • the non-aqueous electrolyte of the present invention preferably has a conductivity at ⁇ 15 ° C. of 0.20 S ⁇ m ⁇ 1 or more because of practical problems of power storage devices such as secondary batteries.
  • the conductivity generally increases with a temperature rise, but the conductivity at 15 ° C. is preferably 0.62 S ⁇ m ⁇ 1 or more.
  • the viscosity (20 ° C.) of the non-aqueous electrolyte measured with a rotary viscometer is preferably 0.1 to 20 cP.
  • the nonaqueous electrolytic solution of the present invention is preferably an electrolytic solution in which a potential region (potential window) at which a decomposition current value reaches 0.05 mA / cm 2 is in a region wider than a range of 0.2 V to 4.2 V. .
  • the value of the potential window is a value expressed in terms of a lithium metal reference potential.
  • the potential window can be measured by the method described in the examples.
  • the reason for the non-aqueous electrolyte of the present invention is not clear, but by using a solvent (B) obtained by adding a small amount of hydrofluoroether (b1) to a carbonate-based solvent (b2), the solubility and conductivity of the lithium salt (A) Excellent cycle characteristics in charging / discharging at a charging voltage exceeding 4.2 V can be obtained while maintaining important characteristics of the power storage device at a high level. Moreover, the non-aqueous electrolyte of this invention has the outstanding oxidation resistance by containing hydrofluoroether (b1).
  • the electricity storage device of the present invention is an electricity storage device having the nonaqueous electrolytic solution of the present invention.
  • Examples of the electricity storage device include secondary batteries such as lithium ion secondary batteries, charging devices such as primary batteries, electric double layer capacitors, and lithium ion capacitors.
  • secondary batteries such as lithium ion secondary batteries
  • charging devices such as primary batteries, electric double layer capacitors, and lithium ion capacitors.
  • a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor are preferable, and a lithium ion secondary battery is particularly preferable.
  • the lithium ion secondary battery of the present invention (hereinafter referred to as “the present secondary battery”) is a secondary battery having a negative electrode and a positive electrode and the non-aqueous electrolyte for a lithium ion secondary battery of the present invention.
  • the negative electrode examples include an electrode containing a negative electrode active material that can electrochemically occlude and release lithium ions.
  • a negative electrode active material known negative electrode active materials for lithium ion secondary batteries can be used.
  • graphite graphite
  • carbonaceous materials such as amorphous carbon
  • metals such as lithium metal and lithium alloy
  • metal compounds can be used.
  • These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • a carbonaceous material is preferable as the negative electrode active material. Further, as the carbonaceous material, graphite and a carbonaceous material in which the surface of graphite is coated with amorphous carbon as compared with the graphite are particularly preferable.
  • Graphite preferably has a lattice plane (002 plane) d-value (interlayer distance, hereinafter simply referred to as “d-value”) of 0.335 to 0.338 nm obtained by X-ray diffraction using the Gakushin method. More preferably, the thickness is 335 to 0.337 nm.
  • the crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and further preferably 100 nm or more.
  • the ash content of graphite is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less.
  • graphite having a d value of 0.335 to 0.338 nm is used as a core material, and the d value is larger on the surface of the graphite than the graphite.
  • the ratio of graphite (mass W A ), which is coated with amorphous carbon, and amorphous carbon (mass W B ) covering the graphite is 80 / weight ratio (W A / W B ). It is preferably 20 to 99/1.
  • the particle size of the carbonaceous material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and more preferably 7 ⁇ m or more as a median diameter by a laser diffraction / scattering method. Particularly preferred. Further, the particle size of the carbonaceous material is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the specific surface area according to the BET method of the carbonaceous material is preferably 0.3 m 2 / g or more, more preferably 0.5 m 2 / g or more, and further preferably 0.7 m 2 / g or more. Preferably, it is particularly preferably 0.8 m 2 / g or more.
  • the specific surface area of the carbonaceous material is preferably from 25.0 m 2 / g, more preferably at most 20.0 m 2 / g, more preferably at most 15.0 m 2 / g, 10 More preferably, it is 0.0 m 2 / g or less.
  • the peak intensity I A of the peak P A in the range of 1570 to 1620 cm ⁇ 1 and the peak P in the range of 1300 to 1400 cm ⁇ 1 are analyzed.
  • the half width of the peak P A is, it is particularly preferable is preferably 26cm -1 or less, and 25 cm -1 or less.
  • metals that can be used as the negative electrode active material other than metallic lithium include Ag, Zn, Al, Ga, In, Si, Ti, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. It is done. Moreover, as a lithium alloy, the alloy of lithium and the said metal is mentioned. Moreover, as a metal compound, the said metal oxide etc. are mentioned. Among these, at least one metal selected from the group consisting of Si, Sn, Ge, Ti, and Al, a metal compound containing the metal, a metal oxide, and a lithium alloy are preferable, and selected from the group consisting of Si, Sn, and Al.
  • At least one kind of metal a metal compound containing the metal, a lithium alloy, and lithium titanate.
  • a metal capable of inserting and extracting lithium ions, a metal compound containing the metal, and a lithium alloy generally have a larger capacity per unit mass than a carbonaceous material typified by graphite, so a higher energy density is required. It is suitable for a secondary battery.
  • the positive electrode examples include an electrode including a positive electrode active material that can electrochemically occlude and release lithium ions.
  • a positive electrode active material known positive electrode active materials for lithium ion secondary batteries can be used.
  • lithium-containing transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide
  • V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like is preferable as the transition metal of the lithium-containing transition metal composite oxide
  • lithium-cobalt composite oxide such as LiCoO 2
  • lithium-nickel composite such as LiNiO 2
  • Lithium manganese composite oxides such as oxides, LiMnO 2 , LiMn 2 O 4 , LiMnO 3
  • some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn
  • Examples include those substituted with other metals such as Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, and Yb.
  • Examples of those substituted with other metals include LiMn 0.5 Ni 0.5 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiMn 1 .5 Ni 0.5 O 4, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiMn 1.8 Al 0.2 O 4 and the like.
  • Examples of transition metal oxides include TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , transition metal sulfides TiS 2 , FeS, MoS 2 , metal oxides SnO 2 , Examples thereof include SiO 2 .
  • the olivine-type metal lithium salt is represented by (formula) Li L X x Y y O z F g (where X is Fe (II), Co (II), Mn (II), Ni (II), V (II), Or Cu (II), Y represents P or Si, and 0 ⁇ L ⁇ 3, 1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 3, 4 ⁇ z ⁇ 12, 0 ⁇ g ⁇ 1, respectively. Or a complex thereof.
  • positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used.
  • Surface adhesion substances include oxides such as aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide; lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate; carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • the lower limit of the mass with respect to the positive electrode active material is preferably 0.1 ppm, more preferably 1 ppm, and still more preferably 10 ppm.
  • the upper limit is preferably 20% by mass, more preferably 10% by mass, and still more preferably 5% by mass.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte on the surface of the positive electrode active material, and can improve the battery life.
  • a lithium-containing composite oxide based on an ⁇ -NaCrO 2 structure such as LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O, because of its high discharge voltage and high electrochemical stability
  • LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O because of its high discharge voltage and high electrochemical stability
  • a lithium-containing composite oxide based on a spinel structure such as 4 is preferred.
  • binder that binds the negative electrode active material or the positive electrode active material is used.
  • the binder for binding the negative electrode active material and the positive electrode active material any binder can be used as long as it is a material that is stable with respect to the solvent and the electrolytic solution used during electrode production.
  • Binders include, for example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, acrylic acid Examples thereof include acrylic acid polymers such as copolymers and methacrylic acid copolymers. These binders may be used individually by 1 type, and may use 2 or more types together.
  • the electrode may contain a thickener, a conductive material, a filler and the like in order to increase mechanical strength and electrical conductivity.
  • a thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone. These thickeners may be used individually by 1 type, and may use 2 or more types together.
  • the conductive material examples include metal materials such as copper or nickel, and carbonaceous materials such as graphite or carbon black. These electrically conductive materials may be used individually by 1 type, and may use 2 or more types together.
  • a binder, a thickener, a conductive material, a solvent, etc. are added to a negative electrode active material or a positive electrode active material to form a slurry, which is then applied to a current collector and dried. It can.
  • the electrode is preferably consolidated by pressing after drying. If the density of the positive electrode active material layer is too low, the capacity of the secondary battery may be insufficient.
  • the current collector various current collectors can be used, but usually a metal or an alloy is used.
  • the negative electrode current collector include copper, nickel, and stainless steel, with copper being preferred.
  • the current collector for the positive electrode include metals such as aluminum, titanium, and tantalum, and alloys thereof, and aluminum or an alloy thereof is preferable, and aluminum is particularly preferable.
  • the shape of the secondary battery may be selected according to the application and may be a coin type, a cylindrical type, a square type, or a laminate type. Further, the shapes of the positive electrode and the negative electrode can be appropriately selected according to the shape of the secondary battery.
  • the charging voltage of the secondary battery is preferably 3.4 V or higher, more preferably 4.0 V or higher, and particularly preferably 4.2 V or higher.
  • the positive electrode active material of the secondary battery is a lithium-containing transition metal oxide, a lithium-containing transition metal composite oxide, a transition metal oxide, a transition metal sulfide, or a metal oxide
  • the charging voltage is preferably 4.0 V or more. 4.2V is particularly preferable.
  • the charging voltage is preferably 3.2 V or higher, and particularly preferably 3.4 V or higher.
  • the non-aqueous electrolyte for a lithium ion secondary battery of the present invention has an oxidation resistance of 4.2 V or more and a reduction resistance of 0.2 V or less, so that it can be used for any electrode having an operating potential in this range.
  • the secondary battery is particularly preferably a secondary battery that is used at a charging voltage of 4.2 V or higher (potential based on lithium metal).
  • a secondary battery having the non-aqueous electrolyte for a lithium ion secondary battery of the present invention having a potential window wider than the range of 0 V to 4.2 V can be mentioned.
  • a porous film is usually interposed as a separator between the positive electrode and the negative electrode of the secondary battery.
  • the nonaqueous electrolytic solution is used by impregnating the porous membrane.
  • the material and shape of the porous membrane are not particularly limited as long as they are stable with respect to the non-aqueous electrolyte and have excellent liquid retention.
  • the material of the porous film is preferably a fluororesin such as polyvinylidene fluoride, polytetrafluoroethylene, a copolymer of ethylene and tetrafluoroethylene, or a polyolefin such as polyethylene or polypropylene, and among these, a polyolefin such as polyethylene or polypropylene is more preferred.
  • the porous film is preferably a porous sheet or a nonwoven fabric. Moreover, you may use what impregnated these porous membranes with the nonaqueous electrolyte solution and gelatinized it as a gel electrolyte.
  • the material of the battery casing used in the secondary battery may be any material that is usually used in secondary batteries. Nickel-plated iron, stainless steel, aluminum or alloys thereof, nickel, titanium, resin material, film Materials and the like.
  • the lithium ion secondary battery of the present invention described above uses the non-aqueous electrolyte for lithium ion secondary batteries of the present invention, it has high conductivity and excellent cycle characteristics.
  • the non-aqueous electrolyte for an electricity storage device of the present invention is a secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium air secondary battery, a lithium primary battery, or the like. You may use for the primary battery.
  • the electric double layer capacitor of the present invention has a negative electrode and a positive electrode in which either one or both of the negative electrode and / or the positive electrode are polarizable electrodes, and the non-aqueous electrolyte of the present invention described above. That is, the electric double layer capacitor of the present invention has the same configuration as a known electric double layer capacitor except that the non-aqueous electrolyte of the present invention is used.
  • the polarizable electrode an electrode mainly composed of an electrochemically inert material having a large specific surface area is preferable, and an electrode made of activated carbon, carbon black, metal fine particles, and conductive oxide fine particles is more preferable.
  • the electrode in which the electrode layer with a large specific surface area in which the surface of a metal electrical power collector consists of carbon material powders, such as activated carbon, was formed is especially preferable.
  • the lithium ion capacitor of the present invention has a negative electrode and a positive electrode in which either one or both of the negative electrode and / or the positive electrode are polarizable electrodes, and the non-aqueous electrolyte of the present invention described above. That is, the lithium ion capacitor of the present invention has the same configuration as a known lithium ion capacitor except that the nonaqueous electrolytic solution of the present invention is used.
  • the polarizable electrode the same electrode as the polarizable electrode mentioned in the electric double layer capacitor can be used.
  • the power storage device of the present invention includes a mobile phone, a portable game machine, a digital camera, a digital video camera, a power tool, a notebook computer, a portable information terminal, a portable music player, an electric vehicle, a hybrid vehicle, a train, an aircraft, and an artificial satellite. It can be used for various applications such as submarines, ships, uninterruptible power supplies, robots, and power storage systems.
  • LiPF 6 was dissolved in the carbonate solvent (b2-1) produced in Production Example 1 until saturation, and the saturation solubility was evaluated.
  • the results of LiPF 6 saturation solubility in each example are shown in Table 1. It can be evaluated that there is no practical problem if the LiPF 6 saturation solubility is 1 mol / L or more.
  • “content of (b1)” in Table 1 means the content of hydrofluoroether (b1) with respect to 100% by volume of the total amount of the solvent (B).
  • Example 4 LiPF 6 was dissolved in the solvent (B-2) produced in Production Example 3 at a concentration of 1 mol / L to prepare a nonaqueous electrolytic solution 2, and the conductivity was evaluated.
  • the LiCoO 2 positive electrode, a lithium metal foil having the same area as the LiCoO 2 positive electrode, and a polyethylene separator were laminated in the order of the lithium metal foil, the separator, and the LiCoO 2 positive electrode to produce a battery element.
  • the battery element is placed in a bag made of a laminate film in which both surfaces of aluminum (thickness 40 ⁇ m) are coated with a resin layer (polyethylene resin), and terminals of the LiCoO 2 positive electrode and negative electrode (lithium metal foil) of the battery element are provided.
  • the bag was stored outside the bag.
  • the non-aqueous electrolyte 1 produced above was injected into the bag and vacuum sealed to produce a sheet-like secondary battery 1 (lithium ion secondary battery).
  • Example 6 A secondary battery 2 was produced in the same manner as in Example 5 except that the non-aqueous electrolyte 2 was used instead of the non-aqueous electrolyte 1.
  • a sheet-like lithium ion secondary battery of a single electrode cell made of LiCoO 2 positive electrode-lithium metal foil is sandwiched between glass plates in order to enhance the adhesion between the electrodes, and in this state, a constant corresponding to 0.2 C is obtained at 25 ° C.
  • the secondary battery was stabilized by performing five cycles of charging to 4.2 V with current and discharging to 3 V with a constant current corresponding to 0.2 C. After the 5th cycle, it is charged up to 4.5V with a constant current of 0.2C, and further charged with a constant voltage of 4.5V until the current value becomes 0.02C, and up to 3V with a constant current of 0.2C.
  • Example 2 is an example of a secondary battery having a nonaqueous electrolytic solution using only a carbonate-based solvent (b2) without using hydrofluoroether (b1).
  • a cycle characteristic equal to or higher than that of the secondary battery 3 of Reference Example 2 was obtained.
  • the non-aqueous electrolyte of the present invention uses a small amount of hydrofluoroether (b1), so that 4.2V can be maintained while maintaining high battery characteristics such as lithium salt solubility and conductivity. Improve charge / discharge cycle characteristics at charge voltages exceeding. Therefore, the electricity storage device of the present invention represented by a lithium ion secondary battery has practically sufficient conductivity and excellent cycle characteristics.
  • the nonaqueous electrolytic solution for an electricity storage device of the present invention is useful as an electrolyte containing no water used for an electricity storage device such as a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 リチウム塩の溶解度および伝導度が高く、かつサイクル特性に優れた蓄電デバイス用非水電解液、ならびに、該非水電解液を用いた蓄電デバイスの提供を目的とする。 特定のリチウム塩(A)、ならびに、CFCHOCFCFHで表されるヒドロフルオロエーテル(b1)およびカーボネート系溶媒(b2)を含有する溶媒(B)を含有し、前記ヒドロフルオロエーテル(b1)の含有量が、溶媒(B)の全量100体積%に対して1~30体積%である蓄電デバイス用非水電解液。また、該蓄電デバイス用非水電解液を用いた蓄電デバイス。

Description

蓄電デバイス用非水電解液および蓄電デバイス
 本発明は、蓄電デバイス用非水電解液および蓄電デバイスに関する。
 蓄電デバイス用非水電解液には、電解質塩を良好に溶解する為にカーボネート系溶媒等の高誘電率溶媒が含まれている。カーボネート系溶媒は、特にリチウム塩を良好に溶解することで高いリチウムイオン伝導度を発現し、また広い電位窓を持つ。そのため、リチウムイオン二次電池、リチウム金属二次電池、リチウム一次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等に好適に用いられる。しかし、カーボネート系溶媒等の高誘電率溶媒だけでは、充・放電サイクルにおける寿命が短い。
 そこで、蓄電デバイスの長期の充・放電サイクル寿命を実現させるサイクル特性に優れた非水電解液として、酸化分解に対する安定性に優れたヒドロフルオロエーテルを含む下記非水電解液が提案されている。
 (i)電解液としてH-(CF-CF-CH-O-CF-CF-H(式中、aは1または2を示す。)で表されるヒドロフルオロエーテルを用いた非水電解液(特許文献1)。
 (ii)HCFCFCHOCFCFH、CFCHOCFCFH等の、末端に-CFH基または-CFH基を少なくとも1つ有する、フッ素化率55%以上の非環状ヒドロフルオロエーテルと、比誘電率10以上の有機溶媒とを含有し、電解液中の前記非環状ヒドロフルオロエーテルの含有量が40~90体積%であり、前記有機溶媒の含有量が5~50体積%である非水電解液(特許文献2)。
 (iii)非水溶媒中にCFCFCHOCFCH等のヒドロフルオロエーテルが含まれ、その含有量が30体積%超90体積%以下である非水電解液(特許文献3)。
特許第3807459号公報 特開2000-294281号公報 特開平9-97627号公報
 しかし、非水電解液(i)について本発明者が検討したところ、該電解液はヒドロフルオロエーテルの添加による伝導度の低下が大きく、実用性に乏しいことが明らかとなった。
 また、非水電解液(ii)および非水電解液(iii)は、多量のヒドロフルオロエーテルが含有されていることで伝導度が大きく低下しており、また特に低温下においてLiPF等のリチウム塩の溶解度を充分に確保できない。以上のように、カーボネート系溶媒とリチウム塩を含む非水電解液において、リチウム塩の溶解度と伝導度を充分に確保しつつ、サイクル特性を向上させることは困難である。
 本発明は、リチウム塩の溶解度および伝導度が高く、かつサイクル特性に優れた、リチウムイオン二次電池用非水電解液に代表される蓄電デバイス用非水電解液の提供を目的とする。
 また、本発明は、伝導度が高く、サイクル特性に優れた、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタに代表される蓄電デバイスの提供を目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。
[1]LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種のリチウム塩(A)、ならびに、CFCHOCFCFHで表されるヒドロフルオロエーテル(b1)およびカーボネート系溶媒(b2)を含有する溶媒(B)を含有し、前記ヒドロフルオロエーテル(b1)の含有量が、溶媒(B)の全量100体積%に対して1~30体積%である、蓄電デバイス用非水電解液。
[2]溶媒(B)が、モノエーテル以外のエーテル系溶媒を含まない、前記[1]に記載の蓄電デバイス用非水電解液。
[3]前記リチウム塩(A)の含有量が、溶媒(B)1リットルに対して0.1~3.0molである、前記[1]または[2]に記載の蓄電デバイス用非水電解液。
[4]前記[1]~[3]のいずれかに記載の蓄電デバイス用非水電解液からなるリチウムイオン二次電池用非水電解液。
[5]前記[1]~[3]のいずれかに記載の蓄電デバイス用非水電解液を有する蓄電デバイス。
[6]リチウムイオンを吸蔵・放出する正極と、リチウム金属、リチウム合金またはリチウムイオンを吸蔵・放出する負極と、前記[4]に記載のリチウムイオン二次電池用非水電解液とを有するリチウムイオン二次電池。
[7]正極と、負極と、前記[1]~[3]のいずれかに記載の蓄電デバイス用非水電解液とを有し、前記正極と負極の一方または両方が分極性電極である、電気二重層キャパシタ。
[8]正極と、負極と、前記[1]~[3]のいずれかに記載の蓄電デバイス用非水電解液とを有し、前記正極と負極の一方または両方が分極性電極である、リチウムイオンキャパシタ。
 本発明のリチウムイオン二次電池用非水電解液および蓄電デバイス用非水電解液は、リチウム塩の溶解度および伝導度が高く、かつサイクル特性に優れている。
 また、本発明のリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイスは、伝導度が高く、サイクル特性に優れている。
<蓄電デバイス用非水電解液>
 本発明の蓄電デバイス用非水電解液(以下、単に「非水電解液」という。)は、リチウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイスに用いる非水電解液である。リチウム電池としては、リチウムイオン二次電池、リチウム金属二次電池、リチウム金属一次電池、リチウム空気電池等が挙げられる。
 本発明の非水電解液は、リチウムイオン二次電池用非水電解液、電気二重層キャパシタ用非水電解液、リチウムイオンキャパシタ用非水電解液として用いることが好ましく、リチウムイオン二次電池用非水電解液として用いることが特に好ましい。
 本発明の非水電解液は、LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種のリチウム塩(A)、ならびに、CFCHOCFCFHで表されるヒドロフルオロエーテル(b1)およびカーボネート系溶媒(b2)を含有する溶媒(B)を含有する非水電解液である。非水電解液とは、水を実質的に含まない溶媒と電解質を含む電解液を意味する。すなわち、非水電解液中の溶媒が仮に水を含んでいたとしても、その水分量が、該非水電解液を用いた蓄電デバイスの性能劣化が見られない程度の量である電解液を意味する。
 本発明の非水電解液中に含まれる水分量は、電解液の総質量に対して0~500質量ppmであることが好ましく、0~100質量ppmであることがより好ましく、0~50質量ppmであることが特に好ましい。
(リチウム塩(A))
 リチウム塩(A)は、LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種のリチウム塩である。リチウム塩(A)が非水電解液中で解離することで、本発明の非水電解液に高い伝導度が付与される。
 リチウム塩(A)としては、LiPFおよびLiBFのいずれか一方または両方が好ましい。
 本発明の非水電解液中のリチウム塩(A)の含有量は、溶媒(B)1リットルに対して0.1~3.0molが好ましく、0.5~2.0molがより好ましい。リチウム塩(A)の含有量が溶媒(B)1リットルに対して0.1mol以上であれば、非水電解液の伝導度が向上する。また、リチウム塩(A)の含有量が溶媒(B)1リットルに対して3.0mol以下であれば、リチウム塩(A)を溶媒(B)に溶解させやすい。
(溶媒(B))
 溶媒(B)は、特定のヒドロフルオロエーテル(b1)とカーボネート系溶媒(b2)を含む溶媒である。溶媒(B)が、ヒドロフルオロエーテル(b1)以外のエーテル系溶媒を含有する場合には、含まれるそのエーテル系溶媒はモノエーテル以外のエーテル系溶媒を含まないことが好ましい。前記モノエーテルとは、エーテル性酸素原子を1個有するエーテル化合物からなる溶媒を意味する。
 ヒドロフルオロエーテル(b1)は、CFCHOCFCFHで表されるモノエーテルである。該化合物としては、例えば、商品名「AE-3000」(旭硝子社製)が挙げられる。
 本発明の非水電解液中のヒドロフルオロエーテル(b1)の含有量の上限値は、溶媒(B)100体積%に対して、30体積%であるが、25体積%以下が好ましく、15体積%以下がより好ましい。含有量の下限値は1体積%であるが、5体積%以上が好ましく、10体積%以上がより好ましい。また、含有量の範囲は、溶媒(B)100体積%に対して、1~30体積%であり、5~30体積%が好ましく、10~25体積%がより好ましい。伝導度の観点からは、1~15体積%が好ましく、5~15体積%がより好ましく、10~15体積%がさらに好ましい。ヒドロフルオロエーテル(b1)の含有量が溶媒(B)100体積%に対して1体積%以上であれば、優れたサイクル特性を有する非水電解液が得られる。ヒドロフルオロエーテル(b1)の含有量が溶媒(B)100体積%に対して30体積%以下であれば、リチウム塩(A)の溶解度が高く、かつ高い伝導度を有する非水電解液が得られる。
 カーボネート系溶媒(b2)としては、環状カーボネート、鎖状カーボネートが挙げられる。カーボネート系溶媒(b2)は、環状カーボネートおよび鎖状カーボネートのいずれか一方の1種のみを用いてもよく、一方または両方の2種以上の混合物を用いてもよい。カーボネート系溶媒(b2)により、リチウム塩(A)のヒドロフルオロエーテル(b1)に対する溶解性が向上し、また高い伝導度が得られる。
 環状カーボネートとは、1,3-ジオキソラン-2-オン、1,3-ジオキソラン-2-オン誘導体、1,3-ジオキソール-2-オンおよび1,3-ジオキソール-2-オン誘導体を意味する。これらの誘導体としては、4位、5位、または4位と5位の両方に、ハロゲン原子、アルキル基、ハロアルキル基を有する化合物をいう。4位と5位の両方にこれらの原子や基を有する場合は、それらは同一であってもよく、異なっていてもよい。上記ハロゲン原子としては塩素原子またはフッ素原子が好ましく、上記アルキル基としては炭素数4以下のアルキル基が好ましく、上記ハロアルキル基としては1以上の塩素原子またはフッ素原子を有する炭素数4以下のハロアルキル基が好ましい。
 鎖状カーボネートとは、ジアルキルカーボネートおよびジアルキルカーボネート誘導体を意味する。ジアルキルカーボネートの2つのアルキル基は同一でも異なっていてもよく、それらの炭素数は6以下が好ましい。ジアルキル誘導体は、一方または両方のアルキル基が塩素原子またはフッ素原子を1以上有する炭素数6以下のハロアルキル基に置換されたものをいう。アルキル基やハロアルキル基の炭素数は4以下がより好ましく、1または2であるものがさらに好ましい。
 環状カーボネートとしては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、4-クロロ-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、フルオロエチレンカーボネート、ビニレンカーボネート、ジメチルビニレンカーボネートからなる群から選ばれる少なくとも1種の化合物が好ましく、入手容易性、リチウム塩(A)の溶解度および伝導度の点から、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネートが特に好ましい。
 鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ-n-プロピルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、メチルイソプロピルカーボネート、エチル-n-プロピルカーボネート、エチルイソプロピルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、3-フルオロプロピルメチルカーボネートからなる群から選ばれる少なくとも1種の化合物が好ましく、入手容易性、リチウム塩(A)の溶解度および伝導度の点から、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートが特に好ましい。
 また、カーボネート系溶媒(b2)としては、後述の特性改善助剤として作用するカーボネート系溶媒も使用できる。このような作用を有するカーボネート系溶媒としては、例えばフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート等が挙げられる。これらの特性改善助剤として作用するカーボネート系溶媒は、他のカーボネート系溶媒と併用することが好ましい。
 カーボネート系溶媒(b2)としては、環状カーボネートが好ましい。たとえば、環状カーボネートを含む非水電解液を有する二次電池で充電を行うと、該環状カーボネートが負極(たとえば炭素電極)表面上で分解して安定な被膜を形成する。環状カーボネートにより形成された被膜は、電極界面における抵抗を低減できるため、リチウムイオンの負極へのインターカレーションが促進される。すなわち、非水電解液中の環状カーボネートにより形成された被膜によって、負極界面におけるインピーダンスが小さくなることで、リチウムイオンの負極へのインターカレーションが促進される。
 また、カーボネート系溶媒(b2)としては、鎖状カーボネートと環状カーボネートとを併用することも好ましい。カーボネート系溶媒(b2)として、環状カーボネートと鎖状カーボネートを併用することにより、低温でも高いリチウム塩濃度の溶液状態を保ちやすい。
 カーボネート系溶媒(b2)として、鎖状カーボネートと環状カーボネートとを併用する場合、鎖状カーボネート(体積V)と環状カーボネート(体積V)の体積比(V:V)は、1:10~10:1であることが好ましい。環状カーボネートの含有量がこの範囲内であれば、混合溶媒の融点が適切な範囲となりリチウム塩を溶解した電解液溶液が安定になる。一方、鎖状カーボネートの含有量がこの範囲であれば、リチウム塩溶解度が適切な範囲になりリチウム塩を溶解した電解液溶液が安定になる。
 本発明の非水電解液中のカーボネート系溶媒(b2)の含有量は、溶媒(B)100体積%に対して、50~99体積%が好ましく、70~90体積%がより好ましい。カーボネート系溶媒(b2)の含有量が溶媒(B)100体積%に対して50体積%以上であれば、リチウム塩(A)の溶解度および伝導度が向上する。カーボネート系溶媒(b2)の含有量が溶媒(B)100体積%に対して99体積%以下であれば、非水電解液のサイクル特性が向上する。
 溶媒(B)は、前記ヒドロフルオロエーテル(b1)およびカーボネート系溶媒(b2)からなる溶媒であることが好ましいが、非水電解液が相分離しない範囲内であれば、その他の溶媒(3b)を含有してもよい。すなわち、溶媒(B)は、前記ヒドロフルオロエーテル(b1)、カーボネート系溶媒(b2)およびその他の溶媒(b3)からなる溶媒であってもよい。また、溶媒(B)に含まれる前記ヒドロフルオロエーテル(b1)以外のエーテル系溶媒は、モノエーテルのみであることが好ましい。溶媒(B)に含まれるエーテル系溶媒がモノエーテルのみであれば、非水電解液のサイクル特性を向上させやすい。その他の溶媒(b3)としては、下記溶媒(b31)および溶媒(b32)が挙げられる。
 溶媒(b31):ヒドロフルオロエーテル(b1)以外のエーテル系溶媒。
 溶媒(b32):エステル系溶媒。
 溶媒(b31)は、ヒドロフルオロエーテルであるが、エーテル性酸素原子を1個有するヒドロフルオロエーテルであることが好ましい。溶媒(b31)のヒドロフルオロエーテル中のアルキル基としては、それぞれ独立に炭素数が1から8であることが好ましく、1から6がより好ましく、1から4が特に好ましい。また、溶媒(b31)の炭素数としては、3~12が好ましく、4~8がより好ましい。溶媒(b31)の炭素数がこの範囲であれば、溶媒の粘度上昇が抑制され電解液の伝導度が良好となる。また、沸点が低くなりすぎず、ガス発生等の問題が生じにくい。また、不燃性の観点から、溶媒(b31)のフッ素化率(フッ素原子の原子量の合計がヒドロフルオロエーテルの分子量に占める割合)は50%以上が好ましく、55%以上が特に好ましい。このような溶媒(b31)のヒドロフルオロエーテルとしては、たとえば、CHFCFCHOCFCFH、CFCHOCFCHFCF等の鎖状のヒドロフルオロモノエーテルが挙げられる。
 溶媒(b32)のエステル系溶媒は、カルボン酸、スルホン酸、リン酸、硝酸などの酸の鎖状エステルまたは環状エステルである溶媒をいう。エステル系溶媒の炭素数は、3以上12以下が好ましく、4以上8以下がより好ましい。炭素数がこれより少ないエステル系溶媒は、沸点が低すぎ、蓄電デバイスの通常の使用条件下においてもその蒸気圧により蓄電デバイスが膨張しやすくなる。また、炭素数がこれより多いエステル系溶媒は、粘度が高くなり、電解液の伝導度や低温特性を低下させるおそれがある。
 溶媒(b32)としては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等のカルボン酸エステル、γブチロラクトン等の環状エステル、1,3-プロパンスルトン、1,4-ブタンスルトン等の環状スルホン酸エステル、メタンスルホン酸メチル等のスルホン酸アルキルエステル、リン酸アルキルエステル等が挙げられる。
 その他の溶媒(b3)が含有される場合、その他の溶媒(b3)の含有量は、溶媒(B)100体積%に対して、40体積%以下が好ましく、30体積%以下がより好ましく、20体積%以下が特に好ましい。
(他の成分(C))
 また、本発明の非水電解液は、電解液の機能を向上させるために、必要に応じて、リチウム塩(A)および溶媒(B)以外の他の成分(C)が含まれていてもよい。他の成分(C)としては、たとえば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。
 過充電防止剤としては、たとえば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニオール等の含フッ素アニソール化合物が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の非水電解液が過充電防止剤を含有する場合、非水電解液(100質量%)中の過充電防止剤の含有量は、0.1~5質量%が好ましい。非水電解液中の過充電防止剤の含有量が0.1質量%以上であれば、本発明の非水電解液を二次電池に使用した場合に、過充電による二次電池の破裂・発火を抑制しやすく、該二次電池をより安定に使用できる。
 脱水剤としては、たとえば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウムが挙げられる。本発明の非水電解液に用いる溶媒(B)は、前記脱水剤で脱水を行った後に精留を行ったものを使用することが好ましい。また、精留を行わずに前記脱水剤による脱水のみを行った溶媒(B)を使用してもよい。
 特性改善助剤としては、たとえば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物が挙げられる。これら特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の非水電解液が特性改善助剤を含有する場合、非水電解液(100質量%)中の特性改善助剤の含有量は、0.1~5質量%が好ましい。
 本発明の非水電解液は、二次電池等の蓄電デバイスの実用上の問題から、-15℃における伝導度が0.20S・m-1以上であることが好ましい。また、伝導度は一般的に温度上昇により高まるが、15℃における伝導度は、0.62S・m-1以上であることが好ましい。また、非水電解液の回転型粘度計により測定した粘度(20℃)は、0.1~20cPであることが好ましい。
 本発明の非水電解液は、分解電流値が0.05mA/cmに達する電位領域(電位窓)が0.2V~4.2Vの範囲よりも広い領域にある電解液であることが好ましい。該電位窓の値は、リチウム金属基準の電位で表した値である。電位窓の測定は、実施例に記載する方法により実施できる。
 本発明の非水電解液は、理由は明らかでないが、カーボネート系溶媒(b2)にヒドロフルオロエーテル(b1)を少量添加した溶媒(B)を用いることで、リチウム塩(A)の溶解度、伝導度等の蓄電デバイスにおいて重要な特性を高度に維持したまま、4.2Vを超える充電電圧での充放電における優れたサイクル特性が得られる。また、本発明の非水電解液は、ヒドロフルオロエーテル(b1)を含むことで、優れた耐酸化性を有している。
<蓄電デバイス>
 本発明の蓄電デバイスは、本発明の非水電解液を有する蓄電デバイスである。蓄電デバイスとしては、リチウムイオン二次電池等の二次電池、一次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の帯電デバイスが挙げられる。
 本発明の蓄電デバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタが好ましく、リチウムイオン二次電池が特に好ましい。
[リチウムイオン二次電池]
 本発明のリチウムイオン二次電池(以下、「本二次電池」という。)は、負極および正極と、本発明のリチウムイオン二次電池用非水電解液とを有する二次電池である。
 負極としては、電気化学的にリチウムイオンを吸蔵・放出できる負極活物質を含む電極が挙げられる。負極活物質としては、公知のリチウムイオン二次電池用負極活物質が使用できる。たとえば、リチウムイオンを吸蔵・放出できるグラファイト(黒鉛)、非晶質炭素等の炭素質材料、リチウム金属、リチウム合金等の金属、金属化合物が挙げられる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 なかでも、負極活物質としては、炭素質材料が好ましい。また、炭素質材料としては、黒鉛、および黒鉛の表面を該黒鉛に比べて非晶質の炭素で被覆した炭素質材料が特に好ましい。
 黒鉛は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離、以下単に「d値」という。)が0.335~0.338nmであることが好ましく、0.335~0.337nmであることがより好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、30nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましい。黒鉛の灰分は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
 また、黒鉛の表面を非晶質炭素で被覆した炭素質材料としては、d値が0.335~0.338nmである黒鉛を核材とし、該黒鉛の表面に該黒鉛よりもd値が大きい非晶質炭素が被覆されており、かつ核材の黒鉛(質量W)と該黒鉛を被覆する非晶質炭素(質量W)の割合が質量比(W/W)で80/20~99/1であることが好ましい。この炭素質材料を用いることにより、高い容量で、かつ電解液と反応しにくい負極を製造することが容易になる。
 炭素質材料の粒径は、レーザー回折・散乱法によるメジアン径で、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましく、7μm以上であることが特に好ましい。また、炭素質材料の粒径は、100μm以下であることが好ましく、50μm以下であることがより好ましく、40μm以下であることがさらに好ましく、30μm以下であることが特に好ましい。
 炭素質材料のBET法による比表面積は、0.3m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、0.7m/g以上であることがさらに好ましく、0.8m/g以上であることが特に好ましい。炭素質材料の比表面積は、25.0m/g以下であることが好ましく、20.0m/g以下であることがより好ましく、15.0m/g以下であることがさらに好ましく、10.0m/g以下であることがより好ましい。
 炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析したときに、1570~1620cm-1の範囲にあるピークPのピーク強度Iと、1300~1400cm-1の範囲にあるピークPのピーク強度Iとの比で表されるR値(=I/I)が、0.01~0.7であることが好ましい。また、ピークPの半値幅が、26cm-1以下であることが好ましく、25cm-1以下であることが特に好ましい。
 金属リチウム以外に負極活物質として使用できる金属としては、Ag、Zn、Al、Ga、In、Si、Ti、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等が挙げられる。また、リチウム合金としては、リチウムと前記金属の合金が挙げられる。また、金属化合物としては、前記金属の酸化物等が挙げられる。
 なかでも、Si、Sn、Ge、TiおよびAlからなる群から選ばれる少なくとも1種の金属、該金属を含む金属化合物、金属酸化物、リチウム合金が好ましく、Si、SnおよびAlからなる群から選ばれる少なくとも1種の金属、該金属を含む金属化合物、リチウム合金、チタン酸リチウムがより好ましい。
 リチウムイオンを吸蔵・放出できる金属、該金属を含む金属化合物、およびリチウム合金は、一般に黒鉛に代表される炭素質材料と比較して、単位質量当たりの容量が大きいので、より高エネルギー密度が求められる二次電池に好適である。
 正極としては、電気化学的にリチウムイオンを吸蔵・放出できる正極活物質を含む電極が挙げられる。
 正極活物質としては、公知のリチウムイオン二次電池用正極活物質を用いることができ、たとえば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム含有遷移金属酸化物、1種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。
 リチウム含有遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、たとえば、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr,Si、Yb等の他の金属で置換したもの等が挙げられる。他の金属で置換されたものとしては、LiMn0.5Ni0.5、LiMn1.8Al0.2、LiNi0.85Co0.10Al0.05、LiMn1.5Ni0.5、LiNi1/3Co1/3Mn1/3、LiMn1.8Al0.2が挙げられる。
 遷移金属酸化物としては、たとえば、TiO、MnO、MoO、V、V13、遷移金属硫化物としてはTiS、FeS、MoS、金属酸化物としてはSnO、SiO等が挙げられる。
 オリビン型金属リチウム塩は、(式)Li(ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0≦L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である数をそれぞれ示す。)で示される物質またはこれらの複合体である。たとえば、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
 これら正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
 表面付着物質の量としては、正極活物質に対する質量の下限は0.1ppmが好ましく、より好ましくは1ppm、さらに好ましくは10ppmである。上限は20質量%が好ましく、より好ましくは10質量%、さらに好ましくは5質量%である。表面付着物質により、正極活物質表面での非水電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。
 正極活物質としては、放電電圧が高く、かつ電気化学的安定性が高い点から、LiCoO、LiNiO、LiMnO等のα-NaCrO構造を母体とするリチウム含有複合酸化物、LiMn等のスピネル型構造を母体とするリチウム含有複合酸化物が好ましい。
 電極の作製には、負極活物質または正極活物質を結着させる結着剤を用いる。
 負極活物質および正極活物質を結着する結着剤としては、電極製造時に使用する溶媒、電解液に対して安定な材料であれば、任意の結着剤を使用することができる。結着剤は、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体等が挙げられる。これらの結着剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 電極中には、機械的強度、電気伝導度を高めるために増粘剤、導電材、充填剤等を含有させてもよい。
 増粘剤としては、たとえば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドンが挙げられる。これらの増粘剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 導電材としては、たとえば、銅またはニッケル等の金属材料、グラファイトまたはカーボンブラック等の炭素質材料が挙げられる。これら導電材は1種を単独で用いてもよく、2種以上を併用してもよい。
 電極の製造法としては、負極活物質または正極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥して製造することができる。この場合、乾燥後にプレスすることによって電極を圧密化することが好ましい。
 正極活物質層の密度が低すぎると二次電池の容量が不充分となるおそれがある。
 集電体としては、各種の集電体を用いることができるが、通常は金属または合金が用いられる。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、銅が好ましい。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属またはその合金が挙げられ、アルミニウムまたはその合金が好ましく、アルミニウムが特に好ましい。
 本二次電池の形状は、用途に応じて選択すればよく、コイン型であってもよく、円筒型であっても、角型であってもラミネート型であってもよい。また、正極および負極の形状も、本二次電池の形状に合わせて適宜選択することができる。
 本二次電池の充電電圧は、3.4V以上とすることが好ましく、4.0V以上がより好ましく、4.2V以上が特に好ましい。本二次電池の正極活物質が、リチウム含有遷移金属酸化物、リチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物の場合の充電電圧は4.0V以上が好ましく、4.2Vが特に好ましい。また、正極活物質がオリビン型金属リチウム塩の場合の充電電圧は3.2V以上が好ましく、3.4V以上が特に好ましい。本発明のリチウムイオン二次電池用非水電解液は、4.2V以上の耐酸化性と0.2V以下の耐還元性を有することから、該範囲に作動電位を有する任意の電極に使用できる。
 さらに、本二次電池は、充電電圧を4.2V以上(リチウム金属を基準とした電位)で用いる二次電池であることが特に好ましい。たとえば、電位窓が0V~4.2Vの範囲より広い本発明のリチウムイオン二次電池用非水電解液を有する二次電池が挙げられる。
 本二次電池の正極と負極の間には、短絡を防止するために通常はセパレータとして多孔膜を介在させる。この場合、非水電解液は該多孔膜に含浸させて用いる。多孔膜の材質および形状は、非水電解液に対して安定であり、かつ保液性に優れていれば特に制限はない。多孔膜の材質は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンとテトラフルオロエチレンのコポリマー等のフッ素樹脂、またはポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、これらの中でもポリエチレン、ポリプロピレン等のポリオレフィンがより好ましい。また、多孔膜の形状は、多孔性シートまたは不織布が好ましい。また、これらの多孔膜に非水電解液を含浸させてゲル化させたものをゲル電解質として用いてもよい。
 本二次電池に使用される電池外装体の材質は、二次電池に通常用いられる材質であればよく、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
 以上説明した本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用非水電解液を用いているため、高い伝導度を有し、かつサイクル特性が優れている。
 なお、本発明の蓄電デバイス用非水電解液は、前記リチウムイオン二次電池以外に、リチウム金属二次電池、リチウムイオン二次電池、リチウム空気二次電池等の二次電池、リチウム一次電池等の一次電池に用いてもよい。
[電気二重層キャパシタ]
 本発明の電気二重層キャパシタは、負極および/または正極のいずれか一方または両方が分極性電極である負極および正極と、前述の本発明の非水電解液とを有する。すなわち、本発明の電気二重層キャパシタは、本発明の非水電解液を用いる以外は、公知の電気二重層キャパシタと同様の構成が用いられる。
 分極性電極としては、電気化学的に不活性な比表面積の大きい材料を主体とする電極が好ましく、活性炭、カーボンブラック、金属微粒子、導電性酸化物微粒子からなる電極がより好ましい。なかでも、金属集電体の表面が活性炭等の炭素材料粉末からなる比表面積の大きい電極層が形成された電極が特に好ましい。
[リチウムイオンキャパシタ]
 本発明のリチウムイオンキャパシタは、負極および/または正極のいずれか一方または両方が分極性電極である負極および正極と、前述の本発明の非水電解液とを有する。すなわち、本発明のリチウムイオンキャパシタは、本発明の非水電解液を用いる以外は、公知のリチウムイオンキャパシタと同様の構成が用いられる。分極性電極は、前記電気二重層キャパシタで挙げた分極性電極と同じ電極が使用できる。
 以上説明した本発明の蓄電デバイスは、本発明の非水電解液を用いているため、高い伝導度を有し、かつサイクル特性に優れている。
 そのため、本発明の蓄電デバイスは、携帯電話、携帯ゲーム機、デジタルカメラ、デジタルビデオカメラ、電動工具、ノートパソコン、携帯情報端末、携帯音楽プレーヤー、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の様々な用途に使用できる。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[製造例1]カーボネート系溶媒(b2-1)の製造
 エチルメチルカーボネートとエチレンカーボネートを1/1(容量比)で混合したカーボネート系溶媒(b2-1)を調製した。
[製造例2]溶媒(B-1)の製造
 製造例1で得られたカーボネート系溶媒(b2-1)とヒドロフルオロエーテル(b1)(CFCHOCFCFH)を85/15(容量比)で混合し、溶媒(B-1)を調製した。
[製造例3]溶媒(B-2)の製造
 製造例1で得られたカーボネート系溶媒(b2-1)とヒドロフルオロエーテル(b1)を75/25(容量比)で混合し、溶媒(B-2)を調製した。
[製造例4]溶媒(B’-1)の製造
 製造例1で得られたカーボネート系溶媒(b2-1)とヒドロフルオロエーテル(b1)を50/50(容量比)で混合し、溶媒(B’-1)を調製した。
<溶解度の評価> 
[実施例1および2]
 製造例2および3で製造した溶媒(B-1)と溶媒(B-2)それぞれに対して、LiPFを飽和するまで溶解させ、飽和溶解度を評価した。
[比較例1]
 製造例4で製造した溶媒(B’-1)に対して、LiPFを飽和するまで溶解させ、飽和溶解度を評価した。
[参考例1]
 製造例1で製造したカーボネート系溶媒(b2-1)に対して、LiPFを飽和するまで溶解させ、飽和溶解度を評価した。
 各例におけるLiPF飽和溶解度の結果を表1に示す。LiPF飽和溶解度は、1mol/L以上であれば実用上問題がないと評価できる。また、表1における「(b1)の含有量」は、溶媒(B)の全量100体積%に対するヒドロフルオロエーテル(b1)の含有量を意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ヒドロフルオロエーテル(b1)の含有量が溶媒(B)の全量100体積%に対して1~30体積%である本発明に係わる実施例1、2においては、リチウム塩の溶解度が高いという効果が得られた。
 一方、本発明の比較例に係わる比較例1においては、リチウム塩の飽和溶解度が大きく低下した。
 なお、参考例1はヒドロフルオロエーテル(b1)を用いず、カーボネート系溶媒(b2)のみを用いた例であるが、実施例1および2においては、参考例1と同等のLiPF飽和溶解度が得られた。
<伝導度の評価> 
[実施例3]
 製造例2で製造した溶媒(B-1)に、1mol/Lの濃度でLiPFを溶解し、非水電解液1を調製し、伝導度を評価した。
[実施例4]
 製造例3で製造した溶媒(B-2)に、1mol/Lの濃度でLiPFを溶解し、非水電解液2を調製し、伝導度を評価した。
[伝導度の評価方法]
 非水電解液の伝導度測定は、伝導度計(東亜ディーケーケー(社)製、ガラス電極式水素イオン濃度計WM-22EP)を用いて-15℃および15℃で行った。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ヒドロフルオロエーテル(b1)の含有量が溶媒(B)の全量100体積%に対して1~30体積%である本発明に係わる実施例3、4においては、実用上充分な伝導度が発現されるという効果が得られた。
<サイクル特性の評価>
[実施例5]
 LiCoO(AGCセイミケミカル社製、商品名「セリオンC」、90質量部)と、カーボンブラック(電気化学工業社製、商品名「デンカブラック」、5質量部)と、ポリフッ化ビニリデン(5質量部)とを混合し、N-メチル-2-ピロリドンを加えてスラリーとした。該スラリーを厚さ20μmのアルミニウム箔の両面に均一に塗布、乾燥後、正極活物質層の密度が3.0g/cmになるようにプレスしてLiCoO正極を作製した。
 前記LiCoO正極、該LiCoO正極と同面積のリチウム金属箔、およびポリエチレン製のセパレータを、リチウム金属箔、セパレータ、LiCoO正極の順に積層して電池要素を作製した。次いで、アルミニウム(厚さ40μm)の両面を樹脂層(ポリエチレン樹脂)で被覆したラミネートフィルムからなる袋内に、前記電池要素を、該電池要素のLiCoO正極および負極(リチウム金属箔)の端子が前記袋の外部に出るようにして収容した。
 次いで、該袋内に前記で製造した非水電解液1を注入して真空封止を行い、シート状の二次電池1(リチウムイオン二次電池)を作製した。
[実施例6]
 非水電解液1の代わりに非水電解液2を用いる以外は、実施例5と同様にして二次電池2を作製した。
[参考例2]
 製造例1で製造したカーボネート系溶媒(b2-1)に、1mol/Lの濃度でLiPFを溶解し、非水電解液3を調製した。
 次いで、非水電解液1の代わりに非水電解液3を用いる以外は、実施例5と同様にして二次電池3を作製した。
[サイクル特性の評価方法]
 LiCoO正極-リチウム金属箔からなる単極セルのシート状リチウムイオン二次電池を、電極間の密着性を高めるためにガラス板で挟み、その状態で25℃において、0.2Cに相当する定電流で4.2Vまで充電し、0.2Cに相当する定電流で3Vまで放電するサイクルを5サイクル行い、二次電池を安定させた。5サイクル目以降は、0.2Cの定電流で4.5Vまで充電し、さらに4.5Vの定電圧で電流値が0.02Cになるまで充電を行い、0.2Cの定電流で3Vまで放電するサイクルを繰り返し、4.5Vの充放電の初回(6サイクル目)の放電容量に対する50サイクル目の放電容量の維持率を評価成績とした。ただし、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.2Cとはその1/5の電流値を表す。
 各例におけるサイクル特性の評価を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ヒドロフルオロエーテル(b1)の含有量が溶媒(B)の全量100体積%に対して1~30体積%である本発明に係わる実施例5、6においては、優れたサイクル特性が得られた。
 なお、参考例2は、ヒドロフルオロエーテル(b1)を用いずにカーボネート系溶媒(b2)のみを用いた非水電解液を有する二次電池の例であるが、実施例5、6においては、参考例2の二次電池3と同等以上のサイクル特性が得られた。
 以上のように、本発明の非水電解液は、少量のヒドロフルオロエーテル(b1)を用いることで、リチウム塩の溶解度および伝導度等の電池における特性を高度に維持したまま、4.2Vを超える充電電圧における充放電サイクル特性を向上させる。そのため、リチウムイオン二次電池に代表される本発明の蓄電デバイスは、実用上充分な伝導度と優れたサイクル特性を備えている。
 本発明の蓄電デバイス用非水電解液は、リチウムイオン二次電池などの蓄電デバイスに使用される水を含まない電解液として有用である。

 なお、2009年9月11日に出願された日本特許出願2009-210254号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (8)

  1.  LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種のリチウム塩(A)、ならびに、CFCHOCFCFHで表されるヒドロフルオロエーテル(b1)およびカーボネート系溶媒(b2)を含有する溶媒(B)を含有し、
     前記ヒドロフルオロエーテル(b1)の含有量が、溶媒(B)の全量100体積%に対して1~30体積%である、蓄電デバイス用非水電解液。
  2.  溶媒(B)が、モノエーテル以外のエーテル系溶媒を含まない、請求項1に記載の蓄電デバイス用非水電解液。
  3.  前記リチウム塩(A)の含有量が、溶媒(B)1リットルに対して0.1~3.0molである、請求項1または2に記載の蓄電デバイス用非水電解液。
  4.  請求項1~3のいずれか1項に記載の蓄電デバイス用非水電解液からなるリチウムイオン二次電池用非水電解液。
  5.  請求項1~3のいずれか1項に記載の蓄電デバイス用非水電解液を有する蓄電デバイス。
  6.  リチウムイオンを吸蔵・放出する正極と、リチウム金属、リチウム合金またはリチウムイオンを吸蔵・放出する負極と、請求項4に記載のリチウムイオン二次電池用非水電解液とを有するリチウムイオン二次電池。
  7.  正極と、負極と、請求項1~3のいずれか1項に記載の蓄電デバイス用非水電解液とを有し、前記正極と負極の一方または両方が分極性電極である、電気二重層キャパシタ。
  8.  正極と、負極と、請求項1~3のいずれか1項に記載の蓄電デバイス用非水電解液とを有し、前記正極と負極の一方または両方が分極性電極である、リチウムイオンキャパシタ。
PCT/JP2010/065553 2009-09-11 2010-09-09 蓄電デバイス用非水電解液および蓄電デバイス WO2011030832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800408720A CN102498606A (zh) 2009-09-11 2010-09-09 蓄电器件用非水电解液及蓄电器件
JP2011530877A JPWO2011030832A1 (ja) 2009-09-11 2010-09-09 蓄電デバイス用非水電解液および蓄電デバイス
EP10815427.9A EP2477268A4 (en) 2009-09-11 2010-09-09 NON-AQUEOUS ELECTROLYTE SOLUTION FOR A POWER STORAGE DEVICE AND POWER STORAGE DEVICE
US13/412,029 US8586250B2 (en) 2009-09-11 2012-03-05 Non-aqueous electrolyte solution for storage battery devices, and storage battery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009210254 2009-09-11
JP2009-210254 2009-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/412,029 Continuation US8586250B2 (en) 2009-09-11 2012-03-05 Non-aqueous electrolyte solution for storage battery devices, and storage battery device

Publications (1)

Publication Number Publication Date
WO2011030832A1 true WO2011030832A1 (ja) 2011-03-17

Family

ID=43732501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065553 WO2011030832A1 (ja) 2009-09-11 2010-09-09 蓄電デバイス用非水電解液および蓄電デバイス

Country Status (7)

Country Link
US (1) US8586250B2 (ja)
EP (1) EP2477268A4 (ja)
JP (1) JPWO2011030832A1 (ja)
KR (1) KR20120083274A (ja)
CN (1) CN102498606A (ja)
TW (1) TW201125186A (ja)
WO (1) WO2011030832A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055285A (ja) * 2011-09-06 2013-03-21 Jm Energy Corp 蓄電デバイス
WO2013183719A1 (ja) * 2012-06-06 2013-12-12 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
JP2014041811A (ja) * 2012-03-19 2014-03-06 Yokohama National Univ アルカリ金属−硫黄系二次電池
JP2015088261A (ja) * 2013-10-29 2015-05-07 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(Lithiumion)二次電池及びリチウムイオン二次電池の製造方法
KR20150050328A (ko) * 2013-10-29 2015-05-08 삼성에스디아이 주식회사 리튬이온 이차전지 및 리튬이온 이차전지의 제조 방법
KR20150138326A (ko) * 2013-04-04 2015-12-09 이 아이 듀폰 디 네모아 앤드 캄파니 비수성 전해질 조성물
US10587006B2 (en) 2013-10-29 2020-03-10 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery, and manufacturing method for rechargeable lithium ion battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178317B2 (ja) 2011-09-02 2017-08-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company リチウムイオン電池
CN103959544A (zh) 2011-09-02 2014-07-30 纳幕尔杜邦公司 氟化电解质组合物
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
JP6319305B2 (ja) 2012-06-01 2018-05-09 ソルベー エスアー リチウムイオンバッテリ
CN103633371A (zh) * 2013-12-13 2014-03-12 深圳新宙邦科技股份有限公司 一种用于锂离子电池的非水电解液和锂离子电池
US10541444B2 (en) 2014-12-26 2020-01-21 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US10734682B2 (en) 2015-03-10 2020-08-04 Kabushiki Kaisha Toyota Jidoshokki Electrolytic solution
DE102016209594A1 (de) 2016-06-01 2017-12-07 Robert Bosch Gmbh Hybridsuperkondensator umfassend Elektrolytzusammensetzung mit verbesserter Leitfähigkeit
CN113273001A (zh) * 2019-01-07 2021-08-17 A123系统有限责任公司 具有共生功率性能优势的耐滥用锂离子电池阴极共混物
CN113711408A (zh) * 2019-07-22 2021-11-26 株式会社Lg新能源 锂二次电池
US11881558B2 (en) * 2020-01-09 2024-01-23 Apple Inc. Electrolytes for lithium-containing battery cells
CN112421113B (zh) * 2020-11-19 2022-09-06 国联汽车动力电池研究院有限责任公司 一种电解液及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997627A (ja) 1995-07-25 1997-04-08 Sumitomo Chem Co Ltd 非水電解液とリチウム二次電池
JP2000294281A (ja) 1999-04-08 2000-10-20 Hitachi Maxell Ltd 非水電解液二次電池
JP2004319325A (ja) * 2003-04-17 2004-11-11 Samsung Sdi Co Ltd リチウム二次電池及びリチウム二次電池の製造方法
JP3807459B2 (ja) 1997-06-30 2006-08-09 ダイキン工業株式会社 非水電解液電池用電解液およびこれを用いた非水電解液電池
JP2007257875A (ja) * 2006-03-20 2007-10-04 Central Glass Co Ltd 非水電解液電池用電解質、電解液及び非水電解液電池
JP2008521161A (ja) * 2004-08-03 2008-06-19 スリーエム イノベイティブ プロパティズ カンパニー 電気化学エネルギーデバイス用非水電解液
JP2008176987A (ja) * 2007-01-17 2008-07-31 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2009210254A (ja) 2008-02-05 2009-09-17 Daikin Ind Ltd 空調室内機
WO2010090029A1 (ja) * 2009-02-06 2010-08-12 パナソニック株式会社 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229718B2 (en) * 2002-08-22 2007-06-12 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
CN102365781B (zh) * 2009-03-27 2013-05-08 旭硝子株式会社 蓄电装置用电解液和蓄电装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997627A (ja) 1995-07-25 1997-04-08 Sumitomo Chem Co Ltd 非水電解液とリチウム二次電池
JP3807459B2 (ja) 1997-06-30 2006-08-09 ダイキン工業株式会社 非水電解液電池用電解液およびこれを用いた非水電解液電池
JP2000294281A (ja) 1999-04-08 2000-10-20 Hitachi Maxell Ltd 非水電解液二次電池
JP2004319325A (ja) * 2003-04-17 2004-11-11 Samsung Sdi Co Ltd リチウム二次電池及びリチウム二次電池の製造方法
JP2008521161A (ja) * 2004-08-03 2008-06-19 スリーエム イノベイティブ プロパティズ カンパニー 電気化学エネルギーデバイス用非水電解液
JP2007257875A (ja) * 2006-03-20 2007-10-04 Central Glass Co Ltd 非水電解液電池用電解質、電解液及び非水電解液電池
JP2008176987A (ja) * 2007-01-17 2008-07-31 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2009210254A (ja) 2008-02-05 2009-09-17 Daikin Ind Ltd 空調室内機
WO2010090029A1 (ja) * 2009-02-06 2010-08-12 パナソニック株式会社 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2477268A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055285A (ja) * 2011-09-06 2013-03-21 Jm Energy Corp 蓄電デバイス
JP2014041811A (ja) * 2012-03-19 2014-03-06 Yokohama National Univ アルカリ金属−硫黄系二次電池
WO2013183719A1 (ja) * 2012-06-06 2013-12-12 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
CN104335409A (zh) * 2012-06-06 2015-02-04 旭硝子株式会社 二次电池用非水电解液和锂离子二次电池
KR20150138326A (ko) * 2013-04-04 2015-12-09 이 아이 듀폰 디 네모아 앤드 캄파니 비수성 전해질 조성물
JP2016519400A (ja) * 2013-04-04 2016-06-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 非水性電解質組成物
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
KR102220140B1 (ko) * 2013-04-04 2021-02-26 솔베이(소시에떼아노님) 비수성 전해질 조성물
JP2015088261A (ja) * 2013-10-29 2015-05-07 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(Lithiumion)二次電池及びリチウムイオン二次電池の製造方法
KR20150050328A (ko) * 2013-10-29 2015-05-08 삼성에스디아이 주식회사 리튬이온 이차전지 및 리튬이온 이차전지의 제조 방법
US10587006B2 (en) 2013-10-29 2020-03-10 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery, and manufacturing method for rechargeable lithium ion battery
KR102272267B1 (ko) * 2013-10-29 2021-07-02 삼성에스디아이 주식회사 리튬이온 이차전지 및 리튬이온 이차전지의 제조 방법

Also Published As

Publication number Publication date
KR20120083274A (ko) 2012-07-25
US8586250B2 (en) 2013-11-19
TW201125186A (en) 2011-07-16
EP2477268A1 (en) 2012-07-18
EP2477268A4 (en) 2013-08-21
US20120164542A1 (en) 2012-06-28
JPWO2011030832A1 (ja) 2013-02-07
CN102498606A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
US8586250B2 (en) Non-aqueous electrolyte solution for storage battery devices, and storage battery device
JP5605221B2 (ja) 二次電池用非水電解液および二次電池
JP5942849B2 (ja) 二次電池用非水電解液および二次電池
US20120214073A1 (en) Non-aqueous electrolyte solution for secondary batteries, and secondary battery
JP5545292B2 (ja) 蓄電デバイス用電解液および蓄電デバイス
JP5556818B2 (ja) 二次電池用非水電解液
WO2011136226A1 (ja) 二次電池用非水電解液および二次電池
JP5786856B2 (ja) 二次電池用非水電解液および二次電池
WO2011001985A1 (ja) 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池
JP5471617B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
WO2012086602A1 (ja) 二次電池用非水電解液および二次電池
JP2011040311A (ja) 二次電池用電解液およびリチウムイオン二次電池
WO2012011508A1 (ja) 二次電池用非水電解液および二次電池
JP2011187234A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2004363086A (ja) 非水系電解液及び非水系電解液二次電池
WO2012173253A1 (ja) 二次電池用非水電解液および二次電池
WO2012115112A1 (ja) 二次電池用非水電解液および二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040872.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530877

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127002761

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010815427

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE