WO2011136226A1 - 二次電池用非水電解液および二次電池 - Google Patents
二次電池用非水電解液および二次電池 Download PDFInfo
- Publication number
- WO2011136226A1 WO2011136226A1 PCT/JP2011/060172 JP2011060172W WO2011136226A1 WO 2011136226 A1 WO2011136226 A1 WO 2011136226A1 JP 2011060172 W JP2011060172 W JP 2011060172W WO 2011136226 A1 WO2011136226 A1 WO 2011136226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- carbon atoms
- group
- secondary battery
- aqueous electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte for a secondary battery and a secondary battery.
- carbonate compounds are widely used because they generally exhibit high lithium ion conductivity by dissolving lithium salts well and have a wide potential window. Has been used. However, carbonate compounds generally have a low flash point, and there is a concern in terms of safety during battery runaway.
- lithium salts such as CF 3 SO 2 N (Li) SO 2 CF 3 and FSO 2 N (Li) SO 2 F strongly interact with etheric oxygen atoms of glyme-based solvents, and are stable 1: 1 complexes. Form. From the results of thermal analysis and the like, it is reported that the complex behaves as a single ionic species and does not ignite at all even when heated by a burner (Non-patent Documents 1 and 2).
- Patent Document 1 a nonaqueous electrolytic solution composed of LiBF 4 and 1-ethoxy-2-methoxyethane (Patent Document 1), (CF 3 SO 2 ) 2 NLi And a non-aqueous electrolyte composed of tetraglyme (Patent Document 2).
- the 1: 1 complex of the lithium salt and glyme solvent described in Non-Patent Documents 1 and 2 has a high viscosity and a high conductivity when the present inventors have actually evaluated it as a non-aqueous electrolyte. Since it was low, it was not suitable for practical use. Similarly, the non-aqueous electrolytes described in Patent Documents 1 and 2 have low conductivity and are not suitable for practical use. Moreover, the secondary battery using the non-aqueous electrolyte of Patent Document 3 is charged / discharged at a high rate (a large amount of current) (for example, charging / discharging at 2.0 C. However, 1 C is the reference capacity of the battery. In this case, the battery capacity is reduced.
- An object of the present invention is to provide a non-aqueous electrolyte for a secondary battery that can suppress a decrease in battery capacity during charge / discharge at a high rate, and a secondary battery using the non-aqueous electrolyte for a secondary battery.
- the present invention employs the following configuration in order to solve the above problems.
- Compound (II) selected from the group consisting of lithium salt (I), a compound represented by the following formula (1) and a compound represented by the following formula (2), represented by the following formula (3)
- a non-secondary battery comprising a compound (III) and a compound (IV) selected from the group consisting of a compound represented by the following formula (4) and a compound represented by the following formula (5): Water electrolyte.
- R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, or 3 to 10 carbon atoms
- X is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkylene group having 1 to 5 carbon atoms having one or more etheric oxygen atoms between carbon atoms and carbon atoms, or carbon A fluorinated alkylene group having 1 to 5 carbon atoms having one or more etheric oxygen atoms between atoms and carbon atoms.
- m is an integer of 1 to 10
- Q 1 is a linear alkylene group having 1 to 4 carbon atoms, or one or more hydrogen atoms of the linear alkylene group is an alkyl group having 1 to 5 carbon atoms, or A group substituted by a C 1-5 alkyl group containing one or more etheric oxygen atoms between carbon atoms.
- Q 1 when m is 2 or more may be the same group or different groups.
- R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms or an alkylene group having 1 to 10 carbon atoms formed by linking R 3 and R 4 .
- R 5 represents an alkyl group, an alkyl group having one or more etheric oxygen atoms between carbon atoms and carbon atoms, a cycloalkyl group, an aryl group, or one or more etheric oxygen atoms between carbon atoms and carbon atoms. And at least one hydrogen atom of the group may be substituted with a substituent other than a nitrile group, and R 5 has 1 to 10 total carbon atoms.
- Q 2 is an alkylene group having 1 to 12 carbon atoms, an alkylene group having one or more etheric oxygen atoms between carbon atoms having 1 to 12 carbon atoms, a cycloalkylene group having 5 to 10 carbon atoms, and carbon.
- the number of carbon atoms Q 2 'in the case where the substituent has a carbon atom is the number of carbon atoms including the carbon number of the substituent.
- Non-aqueous electrolyte for batteries [4] Non-aqueous electrolysis for a secondary battery according to any one of [1] [1] to [3], wherein the compound (IV) essentially comprises the compound represented by the formula (4). liquid.
- the lithium salt (I) is LiPF 6 , a compound represented by the following formula (6), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4 , a compound represented by the following formula (7), a compound represented by the following formula (8), and LiBF 4
- the non-aqueous electrolyte for a secondary battery according to any one of [1] to [4], which is one or more.
- k is an integer of 1 to 5.
- R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms, or R 1 and R 4 are connected to form 1 to 1 carbon atoms. 10 alkylene groups.
- the compound (II) is represented by the formula (2), and X is selected from the group consisting of CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , and CH 2 CH 2 CH 2.
- One selected from the group consisting of a compound represented by the following formula (9-1), a compound represented by the following formula (9-2), and a compound represented by the following formula (9-3) The non-aqueous electrolyte for a secondary battery according to any one of [1] to [9], containing the compound (V).
- R 6 to R 17 are each independently a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group.
- the secondary battery by which the fall of the battery capacity in the charge / discharge at a high rate was suppressed will be obtained.
- the secondary battery of the present invention uses the non-aqueous electrolyte for a secondary battery of the present invention, a decrease in battery capacity is suppressed even when charging and discharging are performed at a high rate.
- 24 is a graph showing discharge capacity-voltage curves during discharge at each discharge rate in Example 22.
- 24 is a graph showing discharge capacity-voltage curves during discharge at each discharge rate in Example 23.
- 25 is a graph showing discharge capacity-voltage curves during discharge at each discharge rate in Example 24.
- Nonaqueous electrolyte for secondary batteries The non-aqueous electrolyte for a secondary battery of the present invention (hereinafter also simply referred to as “non-aqueous electrolyte”) includes a lithium salt (I), a compound (II), a compound (III) and a compound (IV) described later. It is the electrolyte solution to contain.
- a non-aqueous electrolyte is an electrolyte that uses a solvent that does not substantially contain water. Even if water is included, the water content of the non-aqueous electrolyte has deteriorated in the performance of a secondary battery that uses the non-aqueous electrolyte. It is an electrolyte solution in an amount that is not possible.
- the amount of water that can be contained in the non-aqueous electrolyte is preferably 500 ppm by mass or less, more preferably 100 ppm by mass or less, and 50 ppm by mass or less with respect to the total mass of the electrolyte. Is particularly preferred.
- the lower limit of the moisture content is 0 ppm.
- the compound represented by the formula (1) is referred to as a compound (1), and other compounds are similarly illustrated.
- the lithium salt (I) is an electrolyte that dissociates in a non-aqueous electrolyte and supplies lithium ions.
- Examples of the lithium salt (I) include LiPF 6 , the following compound (6), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , and CF 3 CF 2 SO 2 N (Li).
- LiPF 6 LiPF 6
- FSO 2 N (Li) SO 2 F Li
- CF 3 SO 2 N (Li) SO 2 CF 3 Li
- CF 3 CF 2 SO 2 N (Li) Li
- One or more selected from the group consisting of SO 2 CF 2 CF 3 , LiClO 4 , the following compound (7), the following compound (8), and LiBF 4 are preferred.
- the lithium salt (I), LiPF 6, LiBF 4 and one or more selected from the group consisting of compounds (6) are more preferable.
- the combined use of LiBF 4 and the compound (6) and the combined use of LiPF 6 , LiBF 4 and the compound (6) are preferable.
- the lithium salt (I) the use of LiPF 6 alone or the combined use of LiPF 6 and compound (6) (particularly the compound in which k is 2) is particularly preferred.
- Examples of using other lithium salts in combination include, for example, combined use of LiPF 6 and FSO 2 N (Li) SO 2 F, combined use of LiPF 6 and CF 3 SO 2 N (Li) SO 2 CF 3 , and LiPF 6. And CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiPF 6 and Compound (7), LiPF 6 and Compound (8), LiPF 6 and LiClO 4 , LiPF 6 And compound (6) and FSO 2 N (Li) SO 2 F, LiBF 4 and FSO 2 N (Li) SO 2 F, LiBF 4 and CF 3 SO 2 N (Li) SO 2 CF 3 , the combination of LiBF 4 and CF 3 CF 2 SO 2 N ( Li) SO 2 CF 2 CF 3, combination of LiBF 4 and the compound (7), the combination of LiBF 4 and the compound (8), LiBF 2 and LiClO Combination of Compound (6) and FSO 2 N (Li) SO 2 F combination, the compound (6)
- Examples of the compound (6) include the following compounds (6-1) to (6-4).
- the content of the lithium salt (I) in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.1 to 3.0 mol / L, particularly preferably 0.5 to 2.0 mol / L.
- the lower limit value of the lithium salt (I) content is a value at which a non-aqueous electrolyte with high conductivity can be easily obtained.
- the upper limit of the content of the lithium salt (I) is that the lithium salt (I) is dissolved in a mixture containing the compounds (II) to (IV) described later and, if necessary, the compound (V). Easy value.
- the molar ratio (Mb / Ma) between the molar amount (Ma) of LiPF 6 and the molar amount (Mb) of compound (6) is not particularly limited, 0.01 to 10 is preferable, and 0.05 to 2.0 is more preferable.
- the lower limit value of the molar ratio (Mb / Ma) is a value at which the conductivity of the nonflammable non-aqueous electrolyte can be easily kept high.
- the upper limit value of the molar ratio (Mb / Ma) is a value at which a chemically stable non-aqueous electrolyte can be easily obtained.
- the molar ratio (Mc / Ma) between the molar amount (Ma) of LiPF 6 and the molar amount (Mc) of LiBF 4 is not particularly limited, and is 0.01 to 10 is preferable, and 0.05 to 2.0 is more preferable.
- the lower limit value of the molar ratio (Mc / Ma) is a value at which the conductivity of the nonflammable non-aqueous electrolyte can be easily kept high.
- the upper limit value of the molar ratio (Mb / Ma) is a value at which a chemically stable non-aqueous electrolyte can be easily obtained.
- One or more lithium salts (IB) selected from the group consisting of 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4 , compound (7) and compound (8) are used in combination, the molar ratio (Me / Md) between the total molar amount (Md) of the lithium salt (IA) and the total molar amount (Me) of the lithium salt (IB) is, in particular, Without limitation, 0.01 to 10 is preferable, and 0.05 to 2.0 is more preferable.
- the lower limit of the molar ratio (Me / Md) is a value at which the conductivity of the non-flammable non-aqueous electrolyte can be easily kept high.
- the upper limit of the molar ratio (Me / Md) is a value at which a chemically stable non-aqueous electrolyte can be easily obtained.
- Compound (II) is a solvent that imparts nonflammability to the nonaqueous electrolytic solution.
- Compound (II) is a compound selected from the group consisting of the following compound (1) and the following compound (2). These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
- fluorination means that a part or all of hydrogen atoms bonded to a carbon atom is substituted with a fluorine atom.
- the fluorinated alkyl group is a group in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
- a hydrogen atom is present in a partially fluorinated group.
- Partial fluorination means that a part of hydrogen atoms bonded to a carbon atom is replaced with a fluorine atom.
- the structure of the alkyl group and the alkyl group having an etheric oxygen atom between carbon atoms is a group having a linear structure, a branched structure, or a partially cyclic structure (for example, a cycloalkylalkyl group).
- R 1 and R 2 in the compound (1) When one or both of R 1 and R 2 in the compound (1) is a fluorinated alkyl group, the solubility of the lithium salt (I) in the nonaqueous electrolytic solution is improved.
- R 1 and R 2 in the compound (1) may be the same or different.
- Compound (1) includes a compound (1-A) in which each of R 1 and R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms, and R 1 is one or more carbon atoms between carbon atoms
- a compound (1-B) which is a fluorinated alkyl group having 1 to 10 carbon atoms having an etheric oxygen atom and R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms is preferred.
- the compound (1) is preferably a compound having a total carbon number of 4 to 10 and particularly preferably a compound of 4 to 8 because the boiling point is too low when the carbon number is too small and the viscosity is increased when the carbon number is too large.
- the molecular weight of the compound (1) is preferably 150 to 800, more preferably 150 to 500, and particularly preferably 200 to 500. Since the number of etheric oxygen atoms in the compound (1) affects flammability, the number of etheric oxygen atoms in the case of the compound (1) having an etheric oxygen atom is preferably 1 to 4, and 1 or 2 Is particularly preferred.
- the ratio of the molecular weight of the fluorine atom to the molecular weight of the compound (1) is preferably 50% or more, particularly preferably 60% or more, Usually, it is preferably 90% or less.
- Specific examples of the compound (1-A) include the following formulas (1-A1) to (1-A100).
- the non-aqueous electrolyte of the present invention is compound (1) as compound (II) from the viewpoint that a lithium salt (I) is easily dissolved uniformly and a non-aqueous electrolyte having excellent nonflammability and high conductivity is easily obtained.
- the compound (1-A) when R 1 and R 2 are fluorinated alkyl groups having 1 to 10 carbon atoms is essential, and CF 3 CH 2 OCF 2 CF 2 H (compound (1-A1)) (trade name: AE-3000, manufactured by Asahi Glass Co., Ltd.), CHF 2 CF 2 CH 2 OCF 2 CF 2 H (compound (1-A11)), CF 3 CF 2 CH 2 OCF 2 CF 2 H (compound (1-A21)), CF 3 CH 2 OCF 2 CHFCF 3 (compound (1-A2)), CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 (1-A12) may be essential. More preferred Objects (1-A1), it is particularly preferable that the compound (1-A12) Required.
- X may have a linear structure or a branched structure.
- X is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms.
- the alkylene group preferably has a linear structure or a branched structure.
- the side chain is preferably an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms having an etheric oxygen atom.
- X is CH 2 , CH 2 CH 2 , since the lithium salt (I) is uniformly dissolved and a non-aqueous electrolyte having excellent nonflammability and high conductivity is easily obtained.
- CH (CH 3) CH 2, and CH 2 CH 2 CH 1 or a is compound selected from 2 consisting the group (2) is preferred.
- the non-aqueous electrolyte of the present invention is compound (2) as compound (II) from the viewpoint that a lithium salt (I) is easily dissolved uniformly and a non-aqueous electrolyte with excellent nonflammability and high conductivity is easily obtained.
- X it is particularly preferable to make the compound in which X is CH 2 CH 2 or a compound in which CH (CH 3 ) CH 2 is essential.
- the compound (II) may be any one of the use of only the compound (1), the use of only the compound (2), or the combined use of the compound (1) and the compound (2). It is preferable to use only 2).
- the lower limit of the content of the compound (II) in the nonaqueous electrolytic solution of the present invention is preferably 40% by volume or more, more preferably 45% by volume or more, and 50% by volume or more with respect to the total volume of the electrolytic solution. Is more preferable.
- the upper limit of the content of the compound (II-1) is preferably 90% by volume or less, more preferably 85% by volume or less, and more preferably 80% by volume or less with respect to the total volume of the electrolyte salt dissolving solvent (II). Further preferred.
- the volume ratio (Vb / Va) is 0.01-100. It is preferably 0.1 to 10, more preferably.
- Compound (III) is a solvent that plays a role in uniformly dissolving lithium salt (I) in compound (II) by efficiently solvating with lithium salt (I). A part or all of the compound (III) is considered to form a complex with the lithium salt (I) in the electrolytic solution.
- the compound (III) is a compound represented by the following formula (3).
- m is preferably an integer of 1 to 6, more preferably an integer of 1 to 5, more preferably an integer of 1 to 4, and an integer of 1 to 2. It is particularly preferred.
- R 3 and R 4 are each independently preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
- the compound (III) preferably comprises the following compound (3A).
- Examples of other compounds contained in the compound (3A) include 1,2-diethoxyethane, diethylene glycol-diethyl ether, diethylene glycol-di-n-propyl ether, diethylene glycol-di-iso-propyl ether, diethylene glycol-di- n-butyl ether, triethylene glycol-diethyl ether, triethylene glycol-di-n-propyl ether, triethylene glycol di-iso-propyl ether, triethylene glycol-di-n-butyl ether, tetraethylene glycol-diethyl ether, tetra Ethylene glycol di-n-propyl ether, tetraethylene glycol di-iso-propyl ether, tetraethylene glycol di-n-butyl ether, pentaethyl Glycol-diethyl ether, pentaethylene glycol-di-n-propyl ether, pentaethylene glycol
- R 3 and R 4 are a methyl group or an ethyl group, and Q 1 is a group other than —CH 2 CH 2 —.
- Et represents an ethyl group.
- Compound (III) includes monoglyme, diglyme, triglyme, tetraglyme, pentaglime, hexaglyme, diethylene glycol diethyl ether, triethylene glycol diethyl ether, tetraethylene glycol diethyl ether, pentaethylene glycol diethyl ether, hexaethylene glycol diethyl ether.
- Monoglyme, diglyme, triglyme, tetraglyme, pentag lime, or hexaglyme is more preferred.
- It is preferably diglyme, triglyme, tetraglyme, pentaglime, diethylene glycol diethyl ether, triethylene glycol diethyl ether, tetraethylene glycol diethyl ether, or pentaethylene glycol diethyl ether, and it has an excellent balance between viscosity and flash point properties.
- Examples of the compound (III) in which R 3 and R 4 are linked to form an alkylene group having 1 to 10 carbon atoms include 12-crown-4, 14-crown-4, 15- Crown-5, 18-crown-6 and the like.
- the compound (III) it is preferable that a compound in which m in the formula (3) is 1 to 6 is essential, and it is more preferable that the compound (III) consists only of a compound in which m in the formula (3) is 1 to 6. It is more preferable that the compound is composed of only one compound selected from the group consisting of compounds in which m in the formula (3) is 1 to 6, particularly preferably monoglyme, diglyme, triglyme or tetraglyme. More preferably, it consists of only.
- the content of the compound (III) in the nonaqueous electrolytic solution of the present invention is preferably 0.2 to 4.0 times mol with respect to the total amount of the lithium salt (I) in the nonaqueous electrolytic solution.
- the molar ratio is more preferably 0.5 to 3.0 times mol, and particularly preferably 0.5 to 2.0 times mol. If the molar ratio of the compound (III) to the lithium salt (I) is not less than the lower limit, the lithium salt (I) can be easily dissolved in the compound (II) uniformly. Moreover, if the molar ratio of the compound (III) to the lithium salt (I) is not more than the upper limit value, it is easy to obtain a nonaqueous electrolytic solution having excellent nonflammability.
- the ratio (N o / N Li ) is preferably 2 to 6, more preferably 2 to 4, and still more preferably 1.5 to 3.
- the ratio (N o / N Li ) is equal to or higher than the lower limit, it is easy to dissolve the lithium salt (I) in the compound (II).
- the ratio (N o / N Li ) is equal to or less than the upper limit value, it is easy to suppress a decrease in battery capacity during charge / discharge at a high rate.
- the content of the compound (III) in the electrolytic solution is preferably set so that the ratio (N o / N Li ) falls within the above range.
- the lower limit of the content of the compound (III) is preferably 5% by volume or more, more preferably 7% by volume or more, and still more preferably 10% by volume or more with respect to the total volume (100% by mass) of the electrolytic solution. 13% by volume or more is particularly preferable, and 15% or more is most preferable.
- the upper limit of the content of the compound (III) is preferably 30% by volume or less, more preferably 25% by volume or less, and still more preferably 22% by volume or less with respect to the total volume (100% by mass) of the electrolytic solution.
- the lower limit of the content of the compound (III) with respect to the total mass (100% by mass) of the nonaqueous electrolytic solution is preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 7% by mass or more, 10 mass% or more is especially preferable.
- the upper limit of the content of the compound (III) with respect to the total mass (100% by mass) of the nonaqueous electrolytic solution is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 17% by mass or less, and 15% by mass. % Or less is particularly preferable
- Compound (IV) is a compound having a nitrile group, and plays a role of suppressing a decrease in battery capacity during charge / discharge at a high rate. Moreover, the conductivity of this non-aqueous electrolyte is improved by improving the dissociation degree of lithium salt (I). Further, by efficiently solvating with the lithium salt (I), the lithium salt (I) is helped to be uniformly dissolved in the compound (II).
- the compound (IV) is a compound selected from the group consisting of the following compound (4) and the following compound (5).
- the alkyl group and the alkyl group having one or more etheric oxygen atoms between carbon atoms and carbon atoms are groups having a linear structure, a branched structure, or a partially cyclic structure.
- the substituent in R 5 of the compound (4) is a group other than a nitrile group, and an aryl group, an alkyl group having a halogen atom, an alkoxy group having a halogen atom, and an etheric oxygen atom between carbon atoms.
- an alkyl group having a halogen atom, an aryl group having a halogen atom, and a halogen atom is preferable.
- a phenyl group, a fluorine atom, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, or a chlorine atom is preferable.
- the total carbon number of R 5 is preferably 1 to 6, and more preferably 1 to 4.
- Examples of the compound (4) in which R 5 is an alkyl group include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, pivalonitrile, 2,2-dimethylbutyronitrile, valeronitrile, hexanenitrile, and octane. A nitrile etc. are mentioned.
- examples of the compound in which R 5 is an alkyl group having at least one etheric oxygen atom between carbon atoms include 3-methoxypropionitrile and the like.
- examples of the compound in which R 5 is a cycloalkyl group include cyclohexanecarbonitrile and the like.
- examples of the compound in which R 5 is an aryl group include benzonitrile and the like.
- examples of the compound (4) in which R 5 is an aryl group having one or more etheric oxygen atoms between carbon and carbon atoms include 3- (3-methoxyphenyl) propionitrile and the like. It is done.
- examples of the compound in which R 5 is a group having a substituent include 3-methoxypropionitrile, phenylacetonitrile and the like.
- a compound (4) may be used individually by 1 type, and may use 2 or more types together.
- the compound (4) is preferably a compound in which R 5 is an alkyl group from the viewpoint of the cycle characteristics of the secondary battery using the electrolytic solution of the present invention, and is propionitrile, butyronitrile, isobutyronitrile, pivalonitrile, or 2,2-dimethylbutyronitrile is more preferable, and isobutyronitrile, pivalonitrile, or 2,2-dimethylbutyronitrile is particularly preferable.
- the alkylene group in Q 2 of compound (5) may have a straight chain structure or a branched structure, and the carbon number thereof is preferably 2-6.
- the alkylene group having one or more etheric oxygen atoms between carbon atoms in Q 2 may have a linear structure or a branched structure, and the number of carbon atoms is preferably 2 to 6 .
- the number of etheric oxygen atoms is one or more.
- the number of carbon atoms of the cycloalkylene group in Q 2 is preferably 5-8.
- the number of carbon atoms of the arylene group in Q 2 is preferably 6 to 10.
- One or more hydrogen atoms in Q 2 may be substituted with a substituent other than a nitrile group.
- substituents examples include the same group as the substituent in R 5 , and preferred embodiments are also the same.
- the number of carbon atoms Q 2 'in the case where substituent in Q 2 has a carbon atom is the number of carbon atoms including the carbon number of the substituent.
- Examples of the compound (5) in which Q 2 is a linear alkylene group having 1 to 12 carbon atoms include, for example, succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane. 1,7-dicyanoheptane, 1,8-dicyanooctane, 1,9-dicyanononane, 1,10-dicyanodecane, 1,12-dicyanododecane and the like.
- compounds in which Q 2 is a branched alkylene group having 1 to 12 carbon atoms include tetramethyl succinonitrile, 2-methyl glutaronitrile, 2,4-dimethyl glutaronitrile, 2, 2, 4,4-tetramethylglutaronitrile, 1,4-dicyanopentane, 2,5-dimethyl-2,5-hexanedicarbonitrile, 2,6-dicyanoheptane, 2,7-dicyanooctane, 2,8- Examples include dicyanononane and 1,6-dicyanodecane.
- examples of the compound in which Q 2 is an alkylene group having one or more etheric oxygen atoms between carbon atoms of 1 to 12 carbon atoms include 3,3′-oxydipropio A nitrile etc. are mentioned.
- examples of the compound in which Q 2 is a cycloalkylene group having 5 to 10 carbon atoms include 1,2-dicyanocyclohexane and the like.
- examples of the compound (5) in which Q 2 is an arylene group having 6 to 12 carbon atoms include 1,2-didianobenzene, 1,3-dicyanobenzene, 1,4-dicyanobenzene and the like.
- examples of the compound having a substituent in the group represented by Q 2 include trifluoromethylmalononitrile.
- a compound (5) may be used individually by 1 type, and may use 2 or more types together.
- the compound (5) is preferably a compound in which Q 2 is a linear alkylene group having 1 to 12 carbon atoms or a branched alkylene group from the viewpoint that the conductivity of the electrolytic solution can be increased, and Q 2 has 1 to 12 carbon atoms.
- a compound that is a linear alkylene group is more preferable, succinonitrile, glutaronitrile, adiponitrile, and 1,5-dicyanopentane are more preferable, and glutaronitrile and adiponitrile are particularly preferable.
- the compound (IV) may be any of the use of only the compound (4), the use of only the compound (5), or the use of both the compound (4) and the compound (5). It is preferable to make the compound (4) indispensable from the point that can be increased. That is, it is preferable to use only the compound (4) as the compound (IV) or use the compound (4) and the compound (5) in combination. Of these, it is more preferable to use only the compound (4).
- the lower limit of the content of the compound (IV) is preferably 0.5% by volume or more, more preferably 3% by volume or more, and more preferably 5% by volume or more with respect to the total volume of the electrolyte salt dissolving solvent (IV). More preferred is 7% by volume or more.
- the upper limit of the content of the compound (II-3) is preferably 60% by volume or less, more preferably 40% by volume or less, and more preferably 30% by volume or less with respect to the total volume of the electrolyte salt dissolving solvent (IV). More preferred is 25% by volume or less.
- the dissociation degree of lithium salt (I) will improve, and conductivity will become more favorable.
- content of compound (IV) in a non-aqueous electrolyte is below an upper limit, the non-aqueous electrolyte excellent in nonflammability will be easy to be obtained.
- the conductivity of the nonaqueous electrolytic solution tends to suppress a decrease with time.
- Ratio (N CN / N) of the total number of moles (N CN ) of compound (IV) to the total number of moles (N Li ) of lithium atoms in lithium salt (I) contained in the non-aqueous electrolyte of the present invention Li ) is preferably from 0.01 to 5, and more preferably from 0.02 to 4. If the said ratio ( NCN / NLi ) is more than a lower limit, the fall of the battery capacity in charging / discharging at a high rate can be suppressed. If the ratio (N CN / N Li ) is not more than the upper limit value, it is easy to maintain the flame retardancy of the electrolytic solution.
- the lower limit of the sum ratio ⁇ (N O + N IV ) / N Li ⁇ of the total number of moles (N IV ) of compound (IV) is preferably 2.0 or more, and more preferably 2.5 or more. More preferably, it is more preferably 3.0 or more.
- the total number of moles of lithium salt (I) the total number of moles derived from the lithium atoms with respect to (N Li), compound (II-2) the total number of moles derived from the etheric oxygen atom (N O) and compound (IV)
- the upper limit value of the sum ratio ((N O + N IV ) / N Li ⁇ of (N IV ) is preferably 6 or less, more preferably 5.5 or less, and 5.0 or less. Is more preferable and 4.5 or less is particularly preferable.
- the nonaqueous electrolytic solution of the present invention includes the following compound (9-1), the following compound (9-2) and the following compound (9- The compound (V) selected from the group consisting of 3) may be contained.
- the compound (9-3) is contained as the compound (V).
- Compound (9-2) is propylene carbonate, ethylene carbonate, butylene carbonate, 4-chloro-1,3-dioxolan-2-one, 4-fluoro-1,3-dioxolan-2-one and 4-trifluoromethyl.
- dimethyl vinylene carbonate or vinylene carbonate is preferable, and vinylene carbonate is particularly preferable.
- vinylene carbonate is particularly preferable.
- the solubility of the lithium salt (I) in the compound (II) is improved. Further, the compound (V) decomposes on the surface of the negative electrode (for example, a carbon electrode) to form a stable film when charged with a secondary battery using a non-aqueous electrolyte containing the compound (V). . Since the film formed of the compound (V) can reduce the resistance at the electrode interface, the effect of promoting the intercalation of lithium ions into the negative electrode can be obtained. That is, the intercalation of lithium ions into the negative electrode is promoted by reducing the impedance at the negative electrode interface due to the coating formed of the compound (V) in the non-aqueous electrolyte.
- the negative electrode for example, a carbon electrode
- the content of the compound (V) in the non-aqueous electrolyte of the present invention is long-term non-flammability, phase separation in the non-aqueous electrolyte and suppression of mass generation of carbon dioxide, suppression of deterioration of low temperature characteristics, lithium From the standpoint of easily improving the solubility of the salt (I), it is preferably 10% by volume or less, more preferably 0.01 to 10% by volume with respect to the total volume of the electrolytic solution. 0.05 to 5.0% by volume is more preferable, and 0.1 to 3.0% by volume is particularly preferable. Since the electrolytic solution of the present invention contains the compound (III) and the compound (IV), the solubility of the lithium salt (I) is improved, and there is an advantage that the addition of the compound (V) is not essential.
- the compound (V) is preferably used in a small amount because the higher the relative dielectric constant, the higher the possibility of causing phase separation in the non-aqueous electrolyte. Moreover, when there is too much compound (V), there exists a possibility that carbon dioxide gas may generate
- the upper limit of the content of the following compound (9-1) is preferably 30% by mass or less, more preferably 25% by mass or less, and 20% or less. More preferably, it is particularly preferably 15% or less.
- the lower limit of the content of the following compound (9-1) is 0%.
- the compound (9) is a chain carbonate compound, and has a low flash point unlike the cyclic carbonate compounds such as the compound (II-3) and the compound (II-4). Therefore, when 30% or more of compound (9) is contained in the nonaqueous electrolytic solution of the present invention, flame retardancy is reduced.
- R 15 to R 20 are each independently a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group.
- Compound (9-1) is dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl isopropyl carbonate, ethyl-n-propyl carbonate, It is preferably one or more compounds selected from the group consisting of ethyl isopropyl carbonate, di-n-propyl carbonate, diisopropyl carbonate and 3-fluoropropyl methyl carbonate, which gives to the performance of the electrolyte such as availability and viscosity. From the viewpoint of physical properties, dimethyl carbonate, diethyl carbonate or methyl ethyl carbonate is particularly preferable.
- the non-aqueous electrolyte of the present invention is a solvent comprising a compound other than the compound (II), the compound (III), the compound (IV) and the compound (V) as long as the non-aqueous electrolyte is within the range where phase separation does not occur ( Hereinafter referred to as “other solvent”).
- Other solvents include fluorine-containing alkanes, propionic acid alkyl esters, malonic acid dialkyl esters, carboxylic acid esters such as acetic acid alkyl esters, cyclic esters such as ⁇ -butyrolactone, cyclic sulfonic acid esters such as propane sultone, and sulfonic acid alkyl esters.
- the content of the solvent other than the fluorine-containing alkane is preferably more than 0 to 10% by volume and more preferably more than 0 to 5% by volume with respect to the total volume of the electrolytic solution. preferable.
- the non-aqueous electrolyte of the present invention contains a fluorinated alkane as the other solvent, the vapor pressure of the non-aqueous electrolyte can be suppressed or the non-flammability of the non-aqueous electrolyte can be further improved.
- the fluorine-containing alkane refers to a compound in which one or more hydrogen atoms in the alkane are substituted with fluorine atoms and hydrogen atoms remain. In the present invention, a fluorine-containing alkane having 4 to 12 carbon atoms is preferred.
- the fluorine content in the fluorinated alkane (the fluorine content means the proportion of the mass of fluorine atoms in the molecular weight) is preferably 50 to 80%. If the fluorine content in the fluorine-containing alkane is 50% or more, the nonflammability is further increased. When the fluorine content in the fluorine-containing alkane is 80% or less, the solubility of the lithium salt (I) is easily maintained.
- the fluorine-containing alkane a compound having a linear structure is preferable.
- These fluorine-containing alkanes may be used alone or in combination of two or more.
- the content of the fluorine-containing alkane in the nonaqueous electrolytic solution of the present invention is preferably 5 to 60% by volume with respect to the total volume of the electrolytic solution. If content of the said fluorine-containing alkane is 5 volume% or more, it will be easy to reduce a vapor pressure and it will be easy to express nonflammability. If content of the said fluorine-containing alkane is 60 volume% or less, it will be easy to maintain the solubility of lithium salt (I).
- the non-aqueous electrolyte of the present invention may contain other components as necessary.
- the other components include conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintenance characteristics after high-temperature storage, and property improvement aids for improving cycle characteristics.
- overcharge inhibitor examples include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroaniol Compounds.
- aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl
- An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
- the content of the overcharge inhibitor in the non-aqueous electrolyte is preferably 0.01 to 5% by mass.
- the dehydrating agent examples include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like.
- the solvent used in the nonaqueous electrolytic solution of the present invention it is preferable to use a solvent obtained by performing rectification after dehydrating with the dehydrating agent. Moreover, you may use the solvent which performed only the dehydration by the said dehydrating agent, without performing rectification.
- characteristic improvement aids for improving capacity retention characteristics and cycle characteristics after storage at high temperature include carbonate compounds such as phenylethylene carbonate, erythritan carbonate, spiro-bis-dimethylene carbonate; succinic anhydride, anhydrous glutar Carboxylic acid anhydrides such as acid, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride; Ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, diphenyl sulfone, methyl phenyl sulfone, dibutyl
- the non-aqueous electrolyte contains a property improving aid
- the content of the property improving aid in the non-aqueous electrolyte is preferably 0.01 to 5% by mass.
- the non-aqueous electrolyte of the present invention is used for a secondary battery.
- the lithium salt (I) when used as an electrolyte solution for a lithium ion secondary battery, the lithium salt (I) can be dissolved well, and a decrease in battery capacity during charging and discharging at a high rate can be suppressed, and the nonflammability is also excellent.
- Examples of other secondary batteries include electric double layer capacitors and lithium ion capacitors.
- the factor that the non-aqueous electrolyte of the present invention can suppress the decrease in battery capacity during charging and discharging at a high rate is not necessarily clear, but can be considered as follows.
- lithium ions In secondary battery charging / discharging, lithium ions must be de-coordinated and react with the electrode active material of the electrode.
- compound (III) has multiple intramolecular oxygen atoms coordinated to lithium ions. High decoordination energy.
- a highly polar compound (IV) is used as an auxiliary solvent in the electrolyte, the depolarization energy is reduced by improving the polarity of the entire solvent, and the compound (III) is easily decoordinated to make lithium ions efficient. Therefore, it is considered that the decrease in battery capacity during charging / discharging at a high rate is suppressed.
- the electrolytic solution of the present invention is preferably used as an electrolytic solution for a lithium ion secondary battery.
- the secondary battery is a secondary battery having a negative electrode and a positive electrode and the non-aqueous electrolyte of the present invention.
- the negative electrode include an electrode including a negative electrode active material capable of inserting and extracting lithium ions.
- known negative electrode active materials for lithium ion secondary batteries can be used, and artificial or natural graphite (graphite) capable of occluding and releasing lithium ions, carbonaceous materials such as amorphous carbon, metallic lithium And metals such as lithium alloys and metal compounds.
- These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
- a carbonaceous material is preferable.
- graphite and a carbonaceous material in which the surface of graphite is coated with amorphous carbon as compared with the graphite are particularly preferable.
- Graphite is the d-value (interlayer distance, hereinafter simply referred to as d) of the lattice plane (002 plane) obtained by X-ray diffraction by the method established by the Japan Society for the Promotion of Science Carbon Material 117th Committee (hereinafter referred to as the Gakushin Law). Value) is preferably 0.335 to 0.338 nm, and more preferably 0.335 to 0.337 nm.
- the crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and further preferably 100 nm or more.
- the ash content of graphite is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less.
- graphite having a d value of 0.335 to 0.338 nm is used as a core material, and the d value is larger on the surface of the graphite than the graphite.
- the ratio of graphite (mass W A ), which is coated with amorphous carbon, and amorphous carbon (mass W B ) covering the graphite is 80 / weight ratio (W A / W B ). It is preferably 20 to 99/1.
- the particle size of the carbonaceous material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and more preferably 7 ⁇ m or more as a median diameter by a laser diffraction / scattering method. Particularly preferred. Further, the upper limit of the particle size of the carbonaceous material is preferably 100 ⁇ m, more preferably 50 ⁇ m, still more preferably 40 ⁇ m, and particularly preferably 30 ⁇ m.
- the specific surface area according to the BET method of the carbonaceous material is preferably 0.3 m 2 / g or more, more preferably 0.5 m 2 / g or more, and further preferably 0.7 m 2 / g or more. Preferably, it is particularly preferably 0.8 m 2 / g or more.
- the specific surface area of the upper limit of the carbonaceous material is preferably 25.0 m 2 / g, more preferably 20.0 m 2 / g, further preferably from 15.0m 2 / g, 10. Particularly preferred is 0 m 2 / g.
- the peak intensity I A of the peak P A in the range of 1570 to 1620 cm ⁇ 1 and the peak P in the range of 1300 to 1400 cm ⁇ 1 are analyzed.
- the half width of the peak P A is, it is particularly preferable is preferably 26cm -1 or less, and 25 cm -1 or less.
- metals that can be used as the negative electrode active material other than metallic lithium include Ag, Zn, Al, Ga, In, Si, Ti, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. It is done. Moreover, as a lithium alloy, the alloy of lithium and the said metal is mentioned. Moreover, as a metal compound, the said metal oxide etc. are mentioned. Among these, at least one metal selected from the group consisting of Si, Sn, Ge, Ti and Al, a metal compound containing the metal, a metal oxide and a lithium alloy are preferable, and selected from the group consisting of Si, Sn and Al.
- One or more kinds of metals, a metal compound containing the metal, a lithium alloy, and lithium titanate are more preferable.
- a metal capable of inserting and extracting lithium ions, a metal compound containing the metal, and a lithium alloy generally have a larger capacity per unit mass than a carbonaceous material typified by graphite, so a higher energy density is required. It is suitable for a secondary battery.
- the positive electrode examples include an electrode including a positive electrode active material that can occlude and release lithium ions.
- a positive electrode active material known positive electrode active materials for lithium ion secondary batteries can be used.
- lithium-containing transition metal oxide examples include lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide.
- V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like is preferable as the transition metal of the lithium-containing transition metal composite oxide, for example, lithium-cobalt composite oxide such as LiCoO 2, lithium-nickel composite such as LiNiO 2 Lithium manganese composite oxides such as oxides, LiMnO 2 , LiMn 2 O 4 , LiMnO 3 , and some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Examples include those substituted with other metals such as Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, and Yb.
- Examples of those substituted with other metals include LiMn 0.5 Ni 0.5 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiMn 1 .5 Ni 0.5 O 4, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiMn 1.8 Al 0.2 O 4 and the like.
- Examples of transition metal oxides include TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , transition metal sulfides TiS 2 , FeS, MoS 2 , metal oxides SnO 2 , Examples thereof include SiO 2 .
- the olivine-type metal lithium salt is represented by (formula) Li L X x Y y O z F g (where X is Fe (II), Co (II), Mn (II), Ni (II), V (II), Or Cu (II), Y represents P or Si, and 0 ⁇ L ⁇ 3, 1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 3, 4 ⁇ z ⁇ 12, 0 ⁇ g ⁇ 1, respectively. Or a complex thereof.
- These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
- a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used.
- Surface adhesion substances include oxides such as aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide; lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate; carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
- the lower limit of the mass with respect to the positive electrode active material is preferably 0.1 ppm, more preferably 1 ppm, and still more preferably 10 ppm.
- the upper limit is preferably 20%, more preferably 10%, still more preferably 5%.
- the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte on the surface of the positive electrode active material, and can improve the battery life.
- a lithium-containing composite oxide based on an ⁇ -NaCrO 2 structure such as LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O, because of its high discharge voltage and high electrochemical stability
- a lithium-containing composite oxide based on a spinel structure such as 4 is preferred.
- the secondary battery of the present invention has a negative electrode and a positive electrode in which either one or both of the negative electrode and / or the positive electrode are polarizable electrodes, and the non-aqueous electrolyte of the present invention.
- the polarizable electrode is preferably composed mainly of a material having a high specific surface area that is electrochemically inactive, and particularly preferably composed of activated carbon, carbon black, metal fine particles, and conductive oxide fine particles.
- an electrode layer made of a carbon material powder having a high specific surface area such as activated carbon is formed on the surface of the metal current collector.
- a binder that binds the negative electrode active material or the positive electrode active material is used.
- the binder for binding the negative electrode active material and the positive electrode active material any binder can be used as long as it is a material that is stable with respect to the solvent and the electrolytic solution used during electrode production.
- the binder is, for example, a fluororesin such as polyvinylidene fluoride or polytetrafluoroethylene, a polyolefin such as polyethylene or polypropylene, a polymer having an unsaturated bond such as styrene / butadiene rubber, isoprene rubber or butadiene rubber, and a copolymer thereof. Examples thereof include acrylic polymers such as polymers, acrylic acid copolymers, and methacrylic acid copolymers, and copolymers thereof. These binders may be used individually by 1 type, and may use 2 or more types together.
- the electrode may contain a thickener, a conductive material, a filler and the like in order to increase mechanical strength and electrical conductivity.
- a thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone. These thickeners may be used individually by 1 type, and may use 2 or more types together.
- the conductive material examples include metal materials such as copper or nickel, and carbonaceous materials such as graphite or carbon black. These electrically conductive materials may be used individually by 1 type, and may use 2 or more types together.
- a binder, a thickener, a conductive material, a solvent, etc. are added to a negative electrode active material or a positive electrode active material to form a slurry, which is then applied to a current collector and dried. It can.
- the electrode is preferably consolidated by pressing after drying. If the density of the positive electrode active material layer is too low, the capacity of the secondary battery may be insufficient.
- the current collector various current collectors can be used, but usually a metal or an alloy is used.
- the negative electrode current collector include copper, nickel, and stainless steel, with copper being preferred.
- the current collector for the positive electrode include metals such as aluminum, titanium, and tantalum, and alloys thereof, and aluminum or an alloy thereof is preferable, and aluminum is particularly preferable.
- the shape of the secondary battery may be selected according to the application, and may be a coin type, a cylindrical type, a square type or a laminate type. Further, the shapes of the positive electrode and the negative electrode can be appropriately selected according to the shape of the secondary battery.
- the charging voltage of the secondary battery of the present invention is preferably 3.4 V or higher, particularly preferably 4.0 V or higher, and particularly preferably 4.2 V or higher.
- the positive electrode active material of the secondary battery is a lithium-containing transition metal oxide, a lithium-containing transition metal composite oxide, a transition metal oxide, a transition metal sulfide, or a metal oxide
- the charging voltage is preferably 4.0 V or more, 4.2V is particularly preferred.
- the positive electrode active material is an olivine type metal lithium salt
- the charging voltage is preferably 3.2 V, particularly preferably 3.4 V or more.
- a porous film is usually interposed as a separator between the positive electrode and the negative electrode of the secondary battery.
- the nonaqueous electrolytic solution is used by impregnating the porous membrane.
- the material and shape of the porous membrane are not particularly limited as long as it is stable with respect to the non-aqueous electrolyte and has excellent liquid retention properties, such as polyvinylidene fluoride, polytetrafluoroethylene, a copolymer of ethylene and tetrafluoroethylene, etc.
- a porous sheet or non-woven fabric made of a polyolefin resin such as polyethylene or polypropylene is preferred, and a material such as polyethylene or polypropylene is preferred.
- the battery case used in the non-aqueous electrolyte of the present invention may be made of any material that is usually used for secondary batteries. Nickel-plated iron, stainless steel, aluminum or alloys thereof, nickel, titanium, and resin materials And film materials.
- the secondary battery of the present invention uses the non-aqueous electrolyte of the present invention, a decrease in battery capacity during charge / discharge at a high rate is suppressed. Moreover, it has a practically sufficient conductivity and is excellent in nonflammability. Therefore, the secondary battery of the present invention includes a mobile phone, a portable game machine, a digital camera, a digital video camera, an electric tool, a notebook computer, a portable information terminal, a portable music player, an electric vehicle, a hybrid vehicle, a train, an aircraft, an artificial It can be used for various applications such as satellites, submarines, ships, uninterruptible power supplies, robots, and power storage systems. The secondary battery of the present invention has particularly preferable characteristics for large-sized secondary batteries such as electric vehicles, hybrid vehicles, trains, airplanes, artificial satellites, submarines, ships, uninterruptible power supply devices, robots, and power storage systems. .
- Examples 1 to 15 and 19 to 23 are examples, and examples 16 to 18 and 24 are comparative examples.
- ⁇ Evaluation of solubility and conductivity> [Example 1] After diffusing lithium hexafluorophosphate (1.52 g, 10 mmol) as lithium salt (I) into AE3000 (7.39 mL) as compound (II), diglyme (13.3 mmol) as compound (III) And acetonitrile (10.0 mmol) as compound (IV) were added and mixed to obtain a non-aqueous electrolyte.
- Examples 2 to 18 A nonaqueous electrolytic solution was obtained in the same manner as in Example 1 except that the compositions of lithium salt (I), compound (II), compound (III) and compound (IV) were changed as shown in Tables 1 and 2. It was.
- TFSI-Li CF 3 SO 2 N (Li) SO 2 CF 3 AE3000: CF 3 CH 2 OCF 2 CF 2 H
- the nonaqueous electrolytes of Examples 1 to 3 and Examples 5 to 9 containing the compound (4) as the compound (IV) have the same diglyme amount and the compound ( High conductivity was obtained compared to the non-aqueous electrolyte of Example 16 which did not contain IV).
- the electrolyte was uniform and good conductivity was obtained.
- the electrolyte solution of Example 18 containing no compound (IV) caused layer separation.
- the nonaqueous electrolytes of Examples 12 to 15 containing Compound (5) as Compound (IV) had higher conductivity than Example 17 not containing Compound (IV).
- Example 19 As is clear from the results in Table 3, the electrolytes of Examples 19, 20, and 21 containing isobutyronitrile in different amounts as the compound (IV) have the effect of keeping the conductivity constant. In the nonaqueous electrolytic solution of Example 19 having an isobutyronitrile content of 30% by volume or less, the decrease in conductivity was highly suppressed. In Example 19, it is considered that a more stable solid electrolyte interface was formed by reducing the amount of isobutyronitrile decomposition in the electrolyte.
- Example 22 90 parts by mass of LiCoO 2 (manufactured by AGC Seimi Chemical Co., Ltd., trade name “Selion C”), 5 parts by mass of carbon black (trade name “Denka Black” produced by Denki Kagaku Kogyo Co., Ltd.), and 5 parts by mass of polyvinylidene fluoride After mixing, N-methyl-2-pyrrolidone was added to form a slurry. The slurry was uniformly applied on both sides of a 20 ⁇ m thick aluminum foil, dried, and then pressed so that the positive electrode active material layer had a density of 3.0 g / cm 3 to prepare a LiCoO 2 positive electrode.
- the LiCoO 2 positive electrode, the lithium metal foil having the same area as the LiCoO 2 positive electrode, and a separator made of polyethylene are laminated in the order of the lithium metal foil, the separator, and the LiCoO 2 positive electrode in a 2016 type coin cell to produce a battery element.
- a coin-type non-aqueous electrolyte secondary battery is manufactured by adding an electrolyte containing 2% by volume of vinylene carbonate of compound (V) to the non-aqueous electrolyte prepared in Step 6 and sealing it. did.
- Example 23 A coin-type secondary battery was produced in the same manner as in Example 22 except that the nonaqueous electrolytic solution prepared in Example 10 was used.
- Example 24 A coin-type secondary battery was produced in the same manner as in Example 22 except that the nonaqueous electrolytic solution prepared in Example 16 was used.
- the battery In the 6th cycle, the battery is charged to 4.3V with a constant current of 0.2C, and further charged until the current value reaches 0.02C at the charge upper limit voltage, and then discharged to 3V with a constant current of 0.5C. It was.
- the battery In the 7th cycle, the battery is charged to 4.3V with a constant current of 0.2C, and further charged until the current value reaches 0.02C at the upper limit voltage of charging, and then discharged to 3V with a constant current of 1.0C. It was.
- the battery In the 8th cycle, the battery is charged to 4.3V with a constant current of 0.2C, and further charged until the current value reaches 0.02C at the upper limit voltage of charging, and then discharged to 3V with a constant current of 2.0C. It was.
- FIGS. 1 to 3 show discharge capacity-voltage curves during discharge at each discharge rate after the fifth cycle.
- Example 22 and Example 23 containing compound (IV) were compared with Example 24 not containing compound (IV) at 0.2 C discharge.
- the capacity retention rate during 2.0 C discharge with respect to the discharge capacity of the battery was high, and the decrease in battery capacity due to discharge at a high rate was suppressed.
- Example 22 and Example 23 by reducing the ratio (N 2 O 2 / N Li ), the lithium salt (I) was sufficiently dissolved, and the effect of suppressing the decrease in battery capacity due to the discharge at a high rate was obtained. It was improving.
- the lithium ion secondary battery using the nonaqueous electrolytic solution of the present invention it is possible to suppress a decrease in battery capacity during charge / discharge at a high rate.
- the non-aqueous electrolyte of the present invention can dissolve lithium salt (I) well and has excellent nonflammability, it can also be used for other charging devices such as electric double layer capacitors and lithium ion capacitors. .
- the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-101328 filed on April 26, 2010 are cited herein as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
高レートでの充放電における電池容量の低下を抑制できる二次電池用非水電解液、および該二次電池用非水電解液を用いた二次電池を提供する。 リチウム塩と、特定のハイドロフルオロエーテルと、該ハイドロフルオロエーテル以外の特定のエーテル化合物と、特定のニトリル化合物とを含有する二次電池用非水電解液。また、該二次電池用非水電解液と、正極と、負極とを有する二次電池。
Description
本発明は、二次電池用非水電解液および二次電池に関する。
二次電池用の非水電解液の溶媒としては、一般的にリチウム塩を良好に溶解することで高いリチウムイオン伝導度を発現し、また広い電位窓を持つという点から、カーボネート系化合物が広く用いられてきた。しかしながら、カーボネート系化合物は一般的に引火点が低く、電池暴走時等の安全面で懸念がある。
一方、CF3SO2N(Li)SO2CF3、FSO2N(Li)SO2F等のリチウム塩は、グライム系溶媒のエーテル性酸素原子と強く相互作用し、安定な1:1錯体を形成する。該錯体は、熱分析等の結果からはあたかも単一のイオン種としての挙動を示し、バーナーによる加熱によっても全く着火しないことが報告されている(非特許文献1、2)。また、リチウム塩とグライム系溶媒との錯体を電解液として用いる例として、LiBF4と1-エトキシ-2-メトキシエタンからなる非水電解液(特許文献1)、(CF3SO2)2NLiとテトラグライムからなる非水電解液(特許文献2)が示されている。
また、該非水電解液の粘度を低下させ、伝導度を向上させるために、LiPF6や環状パーフルオロスルフォンイミド塩等のリチウム塩とグライム系溶媒からなるグライム錯体を、ハイドロフルオロエーテルに溶解させた電解液が報告されている(特許文献3)。
2006年第47回電池討論会講演要旨集 1F06
2008年第75回電気化学会講演要旨集 3D09
しかし、非特許文献1および2に記載されたリチウム塩とグライム系溶媒との1:1錯体は、本発明者等が実際に非水電解液として評価したところ、粘度が高く、また伝導度が低いことから実用に適していなかった。また、特許文献1および2に記載された非水電解液についても同様に、伝導度が低く実用に適していなかった。
また、特許文献3の非水電解液を用いた二次電池は、高レート(電流量が多い)での充放電(たとえば2.0Cでの充放電。ただし、1Cとは電池の基準容量を1時間で放電する電流値を表す。)を行った場合には、電池容量が低下してしまう。
また、特許文献3の非水電解液を用いた二次電池は、高レート(電流量が多い)での充放電(たとえば2.0Cでの充放電。ただし、1Cとは電池の基準容量を1時間で放電する電流値を表す。)を行った場合には、電池容量が低下してしまう。
本発明は、高レートでの充放電における電池容量の低下を抑制できる二次電池用非水電解液、および該二次電池用非水電解液を用いた二次電池の提供を目的とする。
本発明は、前記課題を解決するために以下の構成を採用した。
[1]リチウム塩(I)、下式(1)で表される化合物および下式(2)で表される化合物からなる群から選ばれる化合物(II)、下式(3)で表される化合物(III)、ならびに下式(4)で表される化合物および下式(5)で表される化合物からなる群から選ばれる化合物(IV)を含有することを特徴とする二次電池用非水電解液。
[1]リチウム塩(I)、下式(1)で表される化合物および下式(2)で表される化合物からなる群から選ばれる化合物(II)、下式(3)で表される化合物(III)、ならびに下式(4)で表される化合物および下式(5)で表される化合物からなる群から選ばれる化合物(IV)を含有することを特徴とする二次電池用非水電解液。
(ただし、式中、R1およびR2はそれぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のアルキル基、または、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、R1およびR2の一方または両方は、フッ素化アルキル基である。
Xは炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のフッ素化アルキレン基である。
mは1~10の整数であり、Q1は炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。mが2以上である場合のQ1は、同一の基であっても、異なる基であってもよい。
R3およびR4はそれぞれ独立に炭素数1~5のアルキル基、またはR3とR4が連結して形成した炭素数1~10のアルキレン基である。
R5はアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキル基、シクロアルキル基、アリール基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアリール基であり、該基の水素原子の1個以上はニトリル基以外の置換基に置換されていてもよく、R5の総炭素数は1~10である。
Q2は炭素数1~12のアルキレン基、炭素数1~12の炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキレン基、炭素数5~10のシクロアルキレン基、および炭素数6~12のアリーレン基から選ばれる基であり、該基の水素原子の1個以上はニトリル基以外の置換基に置換されていてもよい。ただし、該置換基が炭素原子を有する場合のQ2の炭素数は、置換基の炭素数を含めた炭素数である。
[2]二次電池用非水電解液中に含まれる、前記リチウム塩(I)中のリチウム原子の総モル数(NLi)に対する前記化合物(III)中のエーテル性酸素原子の総モル数(No)との比(No/NLi)が2~6である前記[1]に記載の二次電池用非水電解液。
[21]非水電解液中の前記リチウム塩(I)の含有量が、0.1~3.0mol/Lである前記[1]または[2]に記載の二次電池用非水電解液。
[22]前記化合物(II)の含有量が、電解液の総体積量に対して20~95体積%である前記[1]~[21]のいずれか一項に記載の二次電池用非水電解液。
[23]前記化合物(III)の含有量が、電解液中の前記リチウム塩(I)の総量に対して、0.2~4.0倍モルである前記[1]~[22]のいずれか一項に記載の二次電池用非水電解液。
[3]前記化合物(IV)の含有量が、電解液の総体積量に対して0.5~60体積%である前記[1]~[23]のいずれか一項に記載の二次電池用非水電解液。
[4]前記化合物(IV)が、前記式(4)で表される化合物を必須とする前記[1][1]~[3]のいずれか一項に記載の二次電池用非水電解液。
[5]前記リチウム塩(I)が、LiPF6、下式(6)で表される化合物、FSO2N(Li)SO2F、CF3SO2N(Li)SO2CF3、CF3CF2SO2N(Li)SO2CF2CF3、LiClO4、下式(7)で表される化合物、下式(8)で表される化合物、およびLiBF4からなる群からから選ばれる1種以上である前記[1]~[4]のいずれか一項に記載の二次電池用非水電解液。
Xは炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のフッ素化アルキレン基である。
mは1~10の整数であり、Q1は炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。mが2以上である場合のQ1は、同一の基であっても、異なる基であってもよい。
R3およびR4はそれぞれ独立に炭素数1~5のアルキル基、またはR3とR4が連結して形成した炭素数1~10のアルキレン基である。
R5はアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキル基、シクロアルキル基、アリール基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアリール基であり、該基の水素原子の1個以上はニトリル基以外の置換基に置換されていてもよく、R5の総炭素数は1~10である。
Q2は炭素数1~12のアルキレン基、炭素数1~12の炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキレン基、炭素数5~10のシクロアルキレン基、および炭素数6~12のアリーレン基から選ばれる基であり、該基の水素原子の1個以上はニトリル基以外の置換基に置換されていてもよい。ただし、該置換基が炭素原子を有する場合のQ2の炭素数は、置換基の炭素数を含めた炭素数である。
[2]二次電池用非水電解液中に含まれる、前記リチウム塩(I)中のリチウム原子の総モル数(NLi)に対する前記化合物(III)中のエーテル性酸素原子の総モル数(No)との比(No/NLi)が2~6である前記[1]に記載の二次電池用非水電解液。
[21]非水電解液中の前記リチウム塩(I)の含有量が、0.1~3.0mol/Lである前記[1]または[2]に記載の二次電池用非水電解液。
[22]前記化合物(II)の含有量が、電解液の総体積量に対して20~95体積%である前記[1]~[21]のいずれか一項に記載の二次電池用非水電解液。
[23]前記化合物(III)の含有量が、電解液中の前記リチウム塩(I)の総量に対して、0.2~4.0倍モルである前記[1]~[22]のいずれか一項に記載の二次電池用非水電解液。
[3]前記化合物(IV)の含有量が、電解液の総体積量に対して0.5~60体積%である前記[1]~[23]のいずれか一項に記載の二次電池用非水電解液。
[4]前記化合物(IV)が、前記式(4)で表される化合物を必須とする前記[1][1]~[3]のいずれか一項に記載の二次電池用非水電解液。
[5]前記リチウム塩(I)が、LiPF6、下式(6)で表される化合物、FSO2N(Li)SO2F、CF3SO2N(Li)SO2CF3、CF3CF2SO2N(Li)SO2CF2CF3、LiClO4、下式(7)で表される化合物、下式(8)で表される化合物、およびLiBF4からなる群からから選ばれる1種以上である前記[1]~[4]のいずれか一項に記載の二次電池用非水電解液。
[6]前記化合物(III)が、下式(3A)で表される化合物を必須とする前記[1]~[5]のいずれか一項に記載の二次電池用非水電解液。
[7]前記リチウム塩(I)が、前記式(6)で表され、かつkが2である化合物を必須とする前記[5]または[6]に記載の二次電池用非水電解液。
[8]前記化合物(II)が、CF3CH2OCF2CF2H、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHF2、CF3CH2OCF2CHFCF3、およびCHF2CF2CH2OCF2CFHCF3からなる群から選ばれる1種以上を必須とする前記[1]~[7]のいずれか一項に記載の二次電池用非水電解液。
[9]前記化合物(II)が、前記式(2)で表され、かつXがCH2、CH2CH2、CH(CH3)CH2、およびCH2CH2CH2からなる群から選ばれる1種である化合物を必須とする前記[1]~[8]のいずれか一項に記載の二次電池用非水電解液。
[10]下式(9-1)で表される化合物、下式(9-2)で表される化合物、および下式(9-3)で表される化合物からなる群から選ばれる1種以上の化合物(V)を含有する前記[1]~[9]のいずれか一項に記載の二次電池用非水電解液。
[8]前記化合物(II)が、CF3CH2OCF2CF2H、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHF2、CF3CH2OCF2CHFCF3、およびCHF2CF2CH2OCF2CFHCF3からなる群から選ばれる1種以上を必須とする前記[1]~[7]のいずれか一項に記載の二次電池用非水電解液。
[9]前記化合物(II)が、前記式(2)で表され、かつXがCH2、CH2CH2、CH(CH3)CH2、およびCH2CH2CH2からなる群から選ばれる1種である化合物を必須とする前記[1]~[8]のいずれか一項に記載の二次電池用非水電解液。
[10]下式(9-1)で表される化合物、下式(9-2)で表される化合物、および下式(9-3)で表される化合物からなる群から選ばれる1種以上の化合物(V)を含有する前記[1]~[9]のいずれか一項に記載の二次電池用非水電解液。
[11]リチウムイオン二次電池の電解液として用いる前記[1]~[10]のいずれか一項に記載の二次電池用非水電解液。
[12]リチウムイオンを吸蔵および放出できる材料、金属リチウムまたはリチウム合金からなる負極と、リチウムイオンを吸蔵および放出できる材料からなる正極と、前記[1]~[10]のいずれか一項に記載の二次電池用非水電解液とを有する二次電池。
[12]リチウムイオンを吸蔵および放出できる材料、金属リチウムまたはリチウム合金からなる負極と、リチウムイオンを吸蔵および放出できる材料からなる正極と、前記[1]~[10]のいずれか一項に記載の二次電池用非水電解液とを有する二次電池。
本発明の二次電池用非水電解液を用いれば、高レートでの充放電における電池容量の低下が抑制された二次電池が得られる。
また、本発明の二次電池は、本発明の二次電池用非水電解液を用いているため、高レートで充放電を行っても電池容量の低下が抑制される。
また、本発明の二次電池は、本発明の二次電池用非水電解液を用いているため、高レートで充放電を行っても電池容量の低下が抑制される。
[二次電池用非水電解液]
本発明の二次電池用非水電解液(以下、単に「非水電解液」ともいう。)は、後述するリチウム塩(I)、化合物(II)、化合物(III)および化合物(IV)を含有する電解液である。非水電解液とは、水を実質的に含まない溶媒を用いた電解液であり、仮に水を含んでいたとしてもその水分量が該非水電解液を用いた二次電池の性能劣化が見られない範囲の量である電解液である。かかる非水電解液中に含まれうる水分量は、電解液の総質量に対して500質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましく、50質量ppm以下であることが特に好ましい。水分量の下限値は、0ppmである。
以下、本明細書中では、特に説明しない限り式(1)で表される化合物を化合物(1)と示し、他の化合物についても同様に示す。
本発明の二次電池用非水電解液(以下、単に「非水電解液」ともいう。)は、後述するリチウム塩(I)、化合物(II)、化合物(III)および化合物(IV)を含有する電解液である。非水電解液とは、水を実質的に含まない溶媒を用いた電解液であり、仮に水を含んでいたとしてもその水分量が該非水電解液を用いた二次電池の性能劣化が見られない範囲の量である電解液である。かかる非水電解液中に含まれうる水分量は、電解液の総質量に対して500質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましく、50質量ppm以下であることが特に好ましい。水分量の下限値は、0ppmである。
以下、本明細書中では、特に説明しない限り式(1)で表される化合物を化合物(1)と示し、他の化合物についても同様に示す。
(リチウム塩(I))
リチウム塩(I)は、非水電解液中で解離してリチウムイオンを供給する電解質である。リチウム塩(I)としては、LiPF6、下記化合物(6)、FSO2N(Li)SO2F、CF3SO2N(Li)SO2CF3、CF3CF2SO2N(Li)SO2CF2CF3、LiClO4、下記化合物(7)、下記化合物(8)、およびLiBF4からなる群から選ばれる1種以上が好ましい。リチウム塩(I)としては、LiPF6、LiBF4および化合物(6)からなる群から選ばれる1種以上がより好ましい。すなわち、LiPF6の単独での使用、LiBF4の単独での使用、化合物(6)の1種または2種以上での使用、LiPF6と化合物(6)の併用、LiPF6とLiBF4の併用、LiBF4と化合物(6)の併用、LiPF6とLiBF4と化合物(6)の併用が好ましい。リチウム塩(I)としては、LiPF6の単独での使用、または、LiPF6と化合物(6)(特にkが2である化合物)の併用が特に好ましい。
リチウム塩(I)は、非水電解液中で解離してリチウムイオンを供給する電解質である。リチウム塩(I)としては、LiPF6、下記化合物(6)、FSO2N(Li)SO2F、CF3SO2N(Li)SO2CF3、CF3CF2SO2N(Li)SO2CF2CF3、LiClO4、下記化合物(7)、下記化合物(8)、およびLiBF4からなる群から選ばれる1種以上が好ましい。リチウム塩(I)としては、LiPF6、LiBF4および化合物(6)からなる群から選ばれる1種以上がより好ましい。すなわち、LiPF6の単独での使用、LiBF4の単独での使用、化合物(6)の1種または2種以上での使用、LiPF6と化合物(6)の併用、LiPF6とLiBF4の併用、LiBF4と化合物(6)の併用、LiPF6とLiBF4と化合物(6)の併用が好ましい。リチウム塩(I)としては、LiPF6の単独での使用、または、LiPF6と化合物(6)(特にkが2である化合物)の併用が特に好ましい。
また、他のリチウム塩を併用する例としては、例えば、LiPF6とFSO2N(Li)SO2Fの併用、LiPF6とCF3SO2N(Li)SO2CF3の併用、LiPF6とCF3CF2SO2N(Li)SO2CF2CF3の併用、LiPF6と化合物(7)の併用、LiPF6と化合物(8)の併用、LiPF6とLiClO4の併用、LiPF6と化合物(6)とFSO2N(Li)SO2Fの併用、LiBF4とFSO2N(Li)SO2Fの併用、LiBF4とCF3SO2N(Li)SO2CF3の併用、LiBF4とCF3CF2SO2N(Li)SO2CF2CF3の併用、LiBF4と化合物(7)の併用、LiBF4と化合物(8)の併用、LiBF2とLiClO4の併用、化合物(6)とFSO2N(Li)SO2Fの併用、化合物(6)とCF3SO2N(Li)SO2CF3の併用、化合物(6)とCF3CF2SO2N(Li)SO2CF2CF3の併用、化合物(6)と化合物(7)の併用、化合物(6)と化合物(8)の併用、化合物(6)とLiClO4の併用、LiPF6とLiBF4とFSO2N(Li)SO2Fの併用、LiPF6とLiBF4とCF3SO2N(Li)SO2CF3の併用、LiPF6とLiBF4とCF3CF2SO2N(Li)SO2CF2CF3の併用、LiPF6とLiBF4と化合物(7)の併用、LiPF6とLiBF4と化合物(8)の併用、LiPF6とLiBF4とLiClO4の併用、LiPF6と化合物(6)とFSO2N(Li)SO2Fの併用、LiPF6と化合物(6)とCF3SO2N(Li)SO2CF3の併用、LiPF6と化合物(6)とCF3CF2SO2N(Li)SO2CF2CF3の併用、LiPF6と化合物(6)と化合物(7)の併用、LiPF6と化合物(6)と化合物(7)の併用、LiPF6と化合物(6)とLiClO4の併用、等が挙げられる。
化合物(6)としては、たとえば、下記化合物(6-1)~(6-4)が挙げられる。本発明の非水電解液は、伝導度の高い非水電解液が得られやすい点から、化合物(6)を使用する場合には、kが2の化合物(6-2)を必須とすることが好ましい。
非水電解液中のリチウム塩(I)の含有量は、特に限定されず、0.1~3.0mol/Lが好ましく、0.5~2.0mol/Lが特に好ましい。リチウム塩(I)の含有量の下限値は、伝導度の高い非水電解液が得られやすい値である。また、リチウム塩(I)の含有量の上限値は、リチウム塩(I)を、後述する化合物(II)~(IV)、および必要に応じて化合物(V)を含有する混合液に溶解させやすい値である。
また、LiPF6と化合物(6)とを両方用いる場合、LiPF6のモル量(Ma)と化合物(6)のモル量(Mb)とのモル比(Mb/Ma)は、特に限定されず、0.01~10が好ましく、0.05~2.0がより好ましい。
前記モル比(Mb/Ma)の下限値は、不燃性の非水電解液の伝導度を高く保ちやすい値である。また、前記モル比(Mb/Ma)の上限値は、化学的に安定性の高い非水電解液が得られやすい値である。
前記モル比(Mb/Ma)の下限値は、不燃性の非水電解液の伝導度を高く保ちやすい値である。また、前記モル比(Mb/Ma)の上限値は、化学的に安定性の高い非水電解液が得られやすい値である。
また、LiPF6とLiBF4とを両方用いる場合、LiPF6のモル量(Ma)とLiBF4のモル量(Mc)とのモル比(Mc/Ma)は、特に限定されず、0.01~10が好ましく、0.05~2.0がより好ましい。
前記モル比(Mc/Ma)の下限値は、不燃性の非水電解液の伝導度を高く保ちやすい値である。また、前記モル比(Mb/Ma)の上限値は、化学的に安定性の高い非水電解液が得られやすい値である。
前記モル比(Mc/Ma)の下限値は、不燃性の非水電解液の伝導度を高く保ちやすい値である。また、前記モル比(Mb/Ma)の上限値は、化学的に安定性の高い非水電解液が得られやすい値である。
また、LiPF6、LiBF4および化合物(6)からなる群から選ばれる1種類以上のリチウム塩(I-A)と、FSO2N(Li)SO2F、CF3SO2N(Li)SO2CF3、CF3CF2SO2N(Li)SO2CF2CF3、LiClO4、化合物(7)および化合物(8)からなる群から選ばれる1種類以上のリチウム塩(I-B)を組合わせて用いる場合、リチウム塩(I-A)の合計のモル量(Md)とリチウム塩(I-B)の合計のモル量(Me)とのモル比(Me/Md)は、特に限定されず、0.01~10が好ましく、0.05~2.0がより好ましい。
前記モル比(Me/Md)の下限値は、不燃性の非水電解液の伝導度を高く保ちやすい値である。また、前記モル比(Me/Md)の上限値は、化学的に安定性の高い非水電解液が得られやすい値である。
前記モル比(Me/Md)の下限値は、不燃性の非水電解液の伝導度を高く保ちやすい値である。また、前記モル比(Me/Md)の上限値は、化学的に安定性の高い非水電解液が得られやすい値である。
(化合物(II))
化合物(II)は、非水電解液に不燃性を付与する溶媒である。化合物(II)は、下記化合物(1)および下記化合物(2)からなる群から選ばれる化合物である。これらは、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用してもよい。
化合物(II)は、非水電解液に不燃性を付与する溶媒である。化合物(II)は、下記化合物(1)および下記化合物(2)からなる群から選ばれる化合物である。これらは、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用してもよい。
本明細書において、フッ素化とは、炭素原子に結合した水素原子の一部または全部がフッ素原子に置換されることをいう。フッ素化アルキル基は、アルキル基の水素原子の一部または全部がフッ素原子に置換された基である。一部がフッ素化された基中には、水素原子が存在する。部分フッ素化とは、炭素原子に結合した水素原子の一部がフッ素原子に置換されることをいう。
また、前記アルキル基および炭素原子-炭素原子間にエーテル性酸素原子を有するアルキル基の構造は、それぞれ、直鎖構造、分岐構造、または部分的に環状構造を有する基(たとえば、シクロアルキルアルキル基)が挙げられる。
また、前記アルキル基および炭素原子-炭素原子間にエーテル性酸素原子を有するアルキル基の構造は、それぞれ、直鎖構造、分岐構造、または部分的に環状構造を有する基(たとえば、シクロアルキルアルキル基)が挙げられる。
化合物(1)におけるR1およびR2の一方または両方がフッ素化アルキル基であることで、リチウム塩(I)の非水電解液への溶解性が向上する。化合物(1)におけるR1とR2は同じであってもよく、異なっていてもよい。
化合物(1)としては、R1およびR2が、いずれも炭素数1~10のフッ素化アルキル基である化合物(1-A)と、R1が炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、R2が炭素数1~10のフッ素化アルキル基である化合物(1-B)が好ましい。
化合物(1)としては、R1およびR2が、いずれも炭素数1~10のフッ素化アルキル基である化合物(1-A)と、R1が炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、R2が炭素数1~10のフッ素化アルキル基である化合物(1-B)が好ましい。
化合物(1)は、炭素数が少なすぎると沸点が低すぎ、多すぎると高粘度化することから、総炭素数が4~10の化合物が好ましく、4~8の化合物が特に好ましい。化合物(1)の分子量は150~800が好ましく、150~500がさらに好ましく、200~500が特に好ましい。化合物(1)中のエーテル性酸素原子数は可燃性に影響することから、エーテル性酸素原子を有する化合物(1)である場合のエーテル性酸素原子数は、1~4が好ましく、1または2が特に好ましい。また化合物(1)中のフッ素含有量が高くなると不燃性を向上させることから、化合物(1)の分子量に対するフッ素原子の分子量の割合は50%以上が好ましく、60%以上が特に好ましく、一方、通常90%以下であるのが好ましい。
化合物(1-A)の具体例としては、たとえば、下式(1-A1)~(1-A100)等が挙げられる。
化合物(1-A)の具体例としては、たとえば、下式(1-A1)~(1-A100)等が挙げられる。
化合物(1-B)の具体例としては、たとえば、下式(1-B1)~(1-B8)等が挙げられる。
化合物(1)の他の具体例としては、たとえば、下式で表される化合物が挙げられる。
本発明の非水電解液は、リチウム塩(I)を均一に溶解させやすく、不燃性に優れた伝導度の高い非水電解液が得られやすい点から、化合物(II)として化合物(1)を使用する場合には、R1およびR2が、炭素数1~10のフッ素化アルキル基である場合の化合物(1-A)を必須とすることが好ましく、CF3CH2OCF2CF2H(化合物(1-A1))(商品名:AE-3000、旭硝子社製)、CHF2CF2CH2OCF2CF2H(化合物(1-A11))、CF3CF2CH2OCF2CF2H(化合物(1-A21))、CF3CH2OCF2CHFCF3(化合物(1-A2))、CHF2CF2CH2OCF2CFHCF3(1-A12)を必須とすることがより好ましく、化合物(1-A1)、化合物(1-A12)を必須とすることが特に好ましい。
化合物(2)において、Xは直鎖構造であっても分岐構造であってもよい。Xとしては、炭素数1~5のアルキレン基が好ましく、2~4のアルキレン基がより好ましい。該アルキレン基は、直鎖構造または分岐構造が好ましい。Xにおけるアルキレン基が分岐構造を有する場合には、側鎖は炭素数1~3のアルキル基またはエーテル性酸素原子を有する炭素数1~3のアルキル基であることが好ましい。
さらに、化合物(2)としては、リチウム塩(I)を均一に溶解させ、不燃性に優れた伝導度の高い非水電解液が得られやすい点から、XがCH2、CH2CH2、CH(CH3)CH2、およびCH2CH2CH2からなる群から選ばれる1種である化合物(2)が好ましい。
化合物(2)の具体例としては、たとえば、下式で表される化合物等が挙げられる。
本発明の非水電解液は、リチウム塩(I)を均一に溶解させやすく、不燃性に優れた伝導度の高い非水電解液が得られやすい点から、化合物(II)として化合物(2)を使用する場合には、XがCH2CH2である化合物、またはCH(CH3)CH2である化合物を必須とすることが特に好ましい。
本発明の非水電解液は、リチウム塩(I)を均一に溶解させやすく、不燃性に優れた伝導度の高い非水電解液が得られやすい点から、化合物(II)として化合物(2)を使用する場合には、XがCH2CH2である化合物、またはCH(CH3)CH2である化合物を必須とすることが特に好ましい。
化合物(II)としては、化合物(1)のみの使用、化合物(2)のみの使用、または化合物(1)および化合物(2)の併用のいずれであってもよく、化合物(1)または化合物(2)のみの使用であるのが好ましい。
本発明の非水電解液中の化合物(II)の含有量の下限値は、電解液の総体積量に対して、40体積%以上が好ましく、45体積%以上がより好ましく、50体積%以上がさらに好ましい。化合物(II-1)の含有量の上限値は、電解質塩溶解用溶媒(II)の総体積量に対して、90体積%以下が好ましく、85体積%以下がより好ましく、80体積%以下がさらに好ましい。
また、化合物(II)として、化合物(1)(容量:Va)と化合物(2)(容量:Vb)を併用する場合は、それらの容量比(Vb/Va)が0.01~100であることが好ましく、0.1~10であることがより好ましい。
また、化合物(II)として、化合物(1)(容量:Va)と化合物(2)(容量:Vb)を併用する場合は、それらの容量比(Vb/Va)が0.01~100であることが好ましく、0.1~10であることがより好ましい。
(化合物(III))
化合物(III)は、リチウム塩(I)と効率良く溶媒和することにより、該リチウム塩(I)を前記化合物(II)に均一に溶解させる役割を果たす溶媒である。化合物(III)は、その一部または全部が電解液中でリチウム塩(I)と錯体を形成すると考えられる。前記化合物(III)は、下式(3)で表される化合物である。
化合物(III)は、リチウム塩(I)と効率良く溶媒和することにより、該リチウム塩(I)を前記化合物(II)に均一に溶解させる役割を果たす溶媒である。化合物(III)は、その一部または全部が電解液中でリチウム塩(I)と錯体を形成すると考えられる。前記化合物(III)は、下式(3)で表される化合物である。
化合物(III)において、mは1~6の整数であることが好ましく、1~5の整数であることがより好ましく、1~4の整数であることがさらに好ましく、1~2の整数であることが特に好ましい。
Q1は炭素数1~4の直鎖アルキレン基が好ましく、-CH2CH2-が特に好ましい。さらに、mが2以上である場合において、Q1が1種のみである場合は、-CH2CH2-のみからなるのが好ましく、Q1が2種以上である場合には、-CH2CH2-(m=2)とm=2以外の他のQ1との組み合わせからなるのが好ましい。
R3およびR4は、それぞれ独立して、メチル基またはエチル基が好ましく、メチル基が特に好ましい。
本発明の非水電解液は、化合物(III)が、下記化合物(3A)を必須とすることが好ましい。
Q1は炭素数1~4の直鎖アルキレン基が好ましく、-CH2CH2-が特に好ましい。さらに、mが2以上である場合において、Q1が1種のみである場合は、-CH2CH2-のみからなるのが好ましく、Q1が2種以上である場合には、-CH2CH2-(m=2)とm=2以外の他のQ1との組み合わせからなるのが好ましい。
R3およびR4は、それぞれ独立して、メチル基またはエチル基が好ましく、メチル基が特に好ましい。
本発明の非水電解液は、化合物(III)が、下記化合物(3A)を必須とすることが好ましい。
化合物(3A)において、R3とR4がメチル基で、mが1~6の化合物としては、1,2-ジメトキシエタン(m=1、モノグライム)、ジグライム(m=2)、トリグライム(m=3)、テトラグライム(m=4)、ペンタグライム(m=5)、ヘキサグライム(m=6)が挙げられる。
化合物(3A)に含まれる他の化合物としては、たとえば、1,2-ジエトキシエタン、ジエチレングリコール-ジエチルエーテル、ジエチレングリコール-ジ-n-プロピルエーテル、ジエチレングリコール-ジ-iso-プロピルエーテル、ジエチレングリコール-ジ-n-ブチルエーテル、トリエチレングリコール-ジエチルエーテル、トリエチレングリコール-ジ-n-プロピルエーテル、トリエチレングリコールジ-iso-プロピルエーテル、トリエチレングリコール-ジ-n-ブチルエーテル、テトラエチレングリコール-ジエチルエーテル、テトラエチレングリコールジ-n-プロピルエーテル、テトラエチレングリコールジ-iso-プロピルエーテル、テトラエチレングリコール-ジ-n-ブチルエーテル、ペンタエチレングリコール-ジエチルエーテル、ペンタエチレングリコール-ジ-n-プロピルエーテル、ペンタエチレングリコール-ジ-iso-プロピルエーテル、ペンタエチレングリコール-ジ-n-ブチルエーテル、ヘキサエチレングリコール-ジエチルエーテル、ヘキサエチレングリコール-ジ-n-プロピルエーテル、ヘキサエチレングリコール-ジ-iso-プロピルエーテル、ヘキサエチレングリコール-ジ-n-ブチルエーテルが挙げられる。
化合物(3A)に含まれる他の化合物としては、たとえば、1,2-ジエトキシエタン、ジエチレングリコール-ジエチルエーテル、ジエチレングリコール-ジ-n-プロピルエーテル、ジエチレングリコール-ジ-iso-プロピルエーテル、ジエチレングリコール-ジ-n-ブチルエーテル、トリエチレングリコール-ジエチルエーテル、トリエチレングリコール-ジ-n-プロピルエーテル、トリエチレングリコールジ-iso-プロピルエーテル、トリエチレングリコール-ジ-n-ブチルエーテル、テトラエチレングリコール-ジエチルエーテル、テトラエチレングリコールジ-n-プロピルエーテル、テトラエチレングリコールジ-iso-プロピルエーテル、テトラエチレングリコール-ジ-n-ブチルエーテル、ペンタエチレングリコール-ジエチルエーテル、ペンタエチレングリコール-ジ-n-プロピルエーテル、ペンタエチレングリコール-ジ-iso-プロピルエーテル、ペンタエチレングリコール-ジ-n-ブチルエーテル、ヘキサエチレングリコール-ジエチルエーテル、ヘキサエチレングリコール-ジ-n-プロピルエーテル、ヘキサエチレングリコール-ジ-iso-プロピルエーテル、ヘキサエチレングリコール-ジ-n-ブチルエーテルが挙げられる。
化合物(III)において、R3とR4がメチル基またはエチル基であり、Q1が-CH2CH2-以外の基である場合を含み、mが1~6の化合物としては、下式で表される化合物等が挙げられる。ただし、Etはエチル基を示す。
化合物(III)としては、モノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、ヘキサグライム、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、ペンタエチレングリコールジエチルエーテル、ヘキサエチレングリコールジエチルエーテルが好ましく、モノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、またはヘキサグライムがより好ましい。
さらに、粘度(20℃)が5cP以下で非水電解液の実用上の溶媒粘度に優れ、かつ得られる非水電解液が良好な伝導度を示す点では、mが1~5であるモノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、またはペンタエチレングリコールジエチルエーテルであることが好ましく、粘度および引火点の両特性のバランスに優れる点からモノグライム、ジグライム(引火点50℃)、トリグライム(引火点110℃)またはテトラグライム(引火点144℃)であることが特に好ましく、モノグライム、ジグライムがさらに好ましい。
さらに、粘度(20℃)が5cP以下で非水電解液の実用上の溶媒粘度に優れ、かつ得られる非水電解液が良好な伝導度を示す点では、mが1~5であるモノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、またはペンタエチレングリコールジエチルエーテルであることが好ましく、粘度および引火点の両特性のバランスに優れる点からモノグライム、ジグライム(引火点50℃)、トリグライム(引火点110℃)またはテトラグライム(引火点144℃)であることが特に好ましく、モノグライム、ジグライムがさらに好ましい。
また、化合物(III)において、R3とR4が連結して炭素数1~10のアルキレン基を形成している化合物としては、たとえば、12-クラウン-4、14-クラウン-4、15-クラウン-5、18-クラウン-6等が挙げられる。
化合物(III)としては、前記式(3)のmが1~6である化合物を必須とすることが好ましく、前記式(3)のmが1~6である化合物のみからなることがより好ましく、前記式(3)のmが1~6である化合物からなる群から選ばれる1種のみからなることがさらに好ましく、モノグライム、ジグライム、トリグライムまたはテトラグライムのみからなることが特に好ましく、モノグライム、ジグライムのみからなることがさらに好ましい。
本発明の非水電解液中の化合物(III)の含有量は、該非水電解液中の前記リチウム塩(I)の総量に対して、0.2~4.0倍モルであることが好ましく、0.5~3.0倍モルであることがより好ましく、0.5~2.0倍モルであることが特に好ましい。
リチウム塩(I)に対する化合物(III)のモル比が下限値以上であれば、リチウム塩(I)を化合物(II)に均一に溶解させやすい。また、リチウム塩(I)に対する化合物(III)のモル比が上限値以下であれば、不燃性に優れた非水電解液が得られやすい。
リチウム塩(I)に対する化合物(III)のモル比が下限値以上であれば、リチウム塩(I)を化合物(II)に均一に溶解させやすい。また、リチウム塩(I)に対する化合物(III)のモル比が上限値以下であれば、不燃性に優れた非水電解液が得られやすい。
本発明の非水電解液中に含まれる、リチウム塩(I)中のリチウム原子の総モル数(NLi)に対する化合物(III)中のエーテル性酸素原子の総モル数(No)との比(No/NLi)は、2~6であることが好ましく、2~4がより好ましく、1.5~3がさらに好ましい。前記比(No/NLi)が下限値以上であれば、リチウム塩(I)を化合物(II)に溶解させることが容易になる。一方、前記比(No/NLi)が上限値以下であれば、高レートでの充放電における電池容量の低下を抑制しやすい。
電解液中の化合物(III)の含有量は、前記比(No/NLi)が前記範囲となる量とすることが好ましい。
化合物(III)の含有量の下限値は、電解液の総体積量(100質量%)に対して、5体積%以上が好ましく、7体積%以上がより好ましく、10体積%以上がさらに好ましく、13体積%以上が特に好ましく、15%以上が最も好ましいい。化合物(III)の含有量の上限値は、電解液の総体積量(100質量%)に対して、30体積%以下が好ましく、25体積%以下がより好ましく、22体積%以下がさらに好ましい。
また、非水電解液の総質量(100質量%)に対する化合物(III)の含有量の下限値は、3質量%以上が好ましく、5質量%以上がより好ましく、7質量%以上がさらに好ましく、10質量%以上が特に好ましい。非水電解液の総質量(100質量%)に対する化合物(III)の含有量の上限値は、25質量%以下が好ましく、20質量%以下がより好ましく、17質量%以下がさらに好ましく、15質量%以下が特に好ましい
電解液中の化合物(III)の含有量は、前記比(No/NLi)が前記範囲となる量とすることが好ましい。
化合物(III)の含有量の下限値は、電解液の総体積量(100質量%)に対して、5体積%以上が好ましく、7体積%以上がより好ましく、10体積%以上がさらに好ましく、13体積%以上が特に好ましく、15%以上が最も好ましいい。化合物(III)の含有量の上限値は、電解液の総体積量(100質量%)に対して、30体積%以下が好ましく、25体積%以下がより好ましく、22体積%以下がさらに好ましい。
また、非水電解液の総質量(100質量%)に対する化合物(III)の含有量の下限値は、3質量%以上が好ましく、5質量%以上がより好ましく、7質量%以上がさらに好ましく、10質量%以上が特に好ましい。非水電解液の総質量(100質量%)に対する化合物(III)の含有量の上限値は、25質量%以下が好ましく、20質量%以下がより好ましく、17質量%以下がさらに好ましく、15質量%以下が特に好ましい
(化合物(IV))
化合物(IV)はニトリル基を有する化合物であり、高レートでの充放電における電池容量の低下を抑制する役割を果たす。また、リチウム塩(I)の解離度を向上させることで、該非水電解液の伝導度を向上させる。また、リチウム塩(I)と効率よく溶媒和することにより、該リチウム塩(I)を化合物(II)に均一に溶解させることを補助する。
化合物(IV)は、下記化合物(4)および下記化合物(5)からなる群から選ばれる化合物である。
化合物(IV)はニトリル基を有する化合物であり、高レートでの充放電における電池容量の低下を抑制する役割を果たす。また、リチウム塩(I)の解離度を向上させることで、該非水電解液の伝導度を向上させる。また、リチウム塩(I)と効率よく溶媒和することにより、該リチウム塩(I)を化合物(II)に均一に溶解させることを補助する。
化合物(IV)は、下記化合物(4)および下記化合物(5)からなる群から選ばれる化合物である。
化合物(4)のR5における、アルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキル基としては、直鎖構造、分岐構造、または部分的に環状構造を有する基(たとえば、シクロアルキルアルキル基)が挙げられる。
化合物(4)のR5における置換基としては、ニトリル基以外の基であり、アリール基、ハロゲン原子を有するアルキル基、ハロゲン原子を有するアルコキシ基、炭素原子-炭素原子間にエーテル性酸素原子を有し、かつハロゲン原子を有するアルキル基、ハロゲン原子を有するアリール基、ハロゲン原子等が挙げられる。該置換基としては、フェニル基、フッ素原子、フロロメチル基、ジフロロメチル基、トリフロロメチル基、または塩素原子が好ましい。
化合物(4)において、R5の総炭素数は1~6が好ましく、1~4がより好ましい。
化合物(4)のR5における置換基としては、ニトリル基以外の基であり、アリール基、ハロゲン原子を有するアルキル基、ハロゲン原子を有するアルコキシ基、炭素原子-炭素原子間にエーテル性酸素原子を有し、かつハロゲン原子を有するアルキル基、ハロゲン原子を有するアリール基、ハロゲン原子等が挙げられる。該置換基としては、フェニル基、フッ素原子、フロロメチル基、ジフロロメチル基、トリフロロメチル基、または塩素原子が好ましい。
化合物(4)において、R5の総炭素数は1~6が好ましく、1~4がより好ましい。
化合物(4)において、R5がアルキル基である化合物としては、たとえば、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、ピバロニトリル、2,2-ジメチルブチロニトリル、バレロニトリル、ヘキサンニトリル、オクタンニトリル等が挙げられる。
化合物(4)において、R5が炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキル基である化合物としては、たとえば、3-メトキシプロピオニトリル等が挙げられる。
化合物(4)において、R5がシクロアルキル基である化合物としては、たとえば、シクロヘキサンカルボニトリル等が挙げられる。
化合物(4)において、R5がアリール基である化合物としては、たとえば、ベンゾニトリル等が挙げられる。
化合物(4)において、R5が炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアリール基である化合物としては、たとえば、3-(3-メトキシフェニル)プロピオニトリル等が挙げられる。
化合物(4)において、R5が置換基を有する基である化合物としては、たとえば、3-メトキシプロピオニトリル、フェニルアセトニトリル等が挙げられる。
化合物(4)は、1種を単独で使用してもよく、2種以上を併用してもよい。
化合物(4)において、R5が炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキル基である化合物としては、たとえば、3-メトキシプロピオニトリル等が挙げられる。
化合物(4)において、R5がシクロアルキル基である化合物としては、たとえば、シクロヘキサンカルボニトリル等が挙げられる。
化合物(4)において、R5がアリール基である化合物としては、たとえば、ベンゾニトリル等が挙げられる。
化合物(4)において、R5が炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアリール基である化合物としては、たとえば、3-(3-メトキシフェニル)プロピオニトリル等が挙げられる。
化合物(4)において、R5が置換基を有する基である化合物としては、たとえば、3-メトキシプロピオニトリル、フェニルアセトニトリル等が挙げられる。
化合物(4)は、1種を単独で使用してもよく、2種以上を併用してもよい。
化合物(4)としては、本発明の電解液を用いた二次電池のサイクル特性の点から、R5がアルキル基である化合物が好ましく、プロピオニトリル、ブチロニトリル、イソブチロニトリル、ピバロニトリル、または2,2-ジメチルブチロニトリルがより好ましく、イソブチロニトリル、ピバロニトリル、または2,2-ジメチルブチロニトリルが特に好ましい。
化合物(5)のQ2におけるアルキレン基は、直鎖構造であっても、分岐構造であってもよく、その炭素数は、2~6が好ましい。
Q2における炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキレン基は、直鎖構造であっても、分岐構造であってもよく、その炭素数は、2~6が好ましい。エーテル性酸素原子数は1個または2個以上である。
Q2におけるシクロアルキレン基の炭素数は、5~8が好ましい。
Q2におけるアリーレン基の炭素数は、6~10が好ましい。
Q2中の水素原子の1個以上はニトリル基以外の置換基で置換されていてもよい。置換基としては、R5における置換基と同じ基が挙げられ、好ましい態様も同じである。
また、Q2中の置換基が炭素原子を有する場合のQ2の炭素数は、置換基の炭素数を含めた炭素数である。
Q2における炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキレン基は、直鎖構造であっても、分岐構造であってもよく、その炭素数は、2~6が好ましい。エーテル性酸素原子数は1個または2個以上である。
Q2におけるシクロアルキレン基の炭素数は、5~8が好ましい。
Q2におけるアリーレン基の炭素数は、6~10が好ましい。
Q2中の水素原子の1個以上はニトリル基以外の置換基で置換されていてもよい。置換基としては、R5における置換基と同じ基が挙げられ、好ましい態様も同じである。
また、Q2中の置換基が炭素原子を有する場合のQ2の炭素数は、置換基の炭素数を含めた炭素数である。
化合物(5)において、Q2が炭素数1~12の直鎖アルキレン基である化合物としては、たとえば、スクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン、1,9-ジシアノノナン、1,10-ジシアノデカン、1,12-ジシアノドデカン等が挙げられる。
化合物(5)において、Q2が炭素数1~12の分岐アルキレン基である化合物としては、テトラメチルスクシノニトリル、2-メチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、1,4-ジシアノペンタン、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン等が挙げられる。
化合物(5)において、Q2が炭素数1~12の分岐アルキレン基である化合物としては、テトラメチルスクシノニトリル、2-メチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、1,4-ジシアノペンタン、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン等が挙げられる。
化合物(5)において、Q2が炭素数1~12の炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキレン基である化合物としては、たとえば、3,3’-オキシジプロピオニトリル等が挙げられる。
化合物(5)において、Q2が炭素数5~10のシクロアルキレン基である化合物としては、1,2-ジシアノシクロヘキサン等が挙げられる。
化合物(5)において、Q2が炭素数6~12のアリーレン基である化合物としては、たとえば、1,2-ジジアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン等が挙げられる。
化合物(5)において、Q2で表される基に置換基を有する化合物としては、たとえば、トリフルオロメチルマロノニトリル等が挙げられる。
化合物(5)は、1種を単独で使用してもよく、2種以上を併用してもよい。
化合物(5)において、Q2が炭素数5~10のシクロアルキレン基である化合物としては、1,2-ジシアノシクロヘキサン等が挙げられる。
化合物(5)において、Q2が炭素数6~12のアリーレン基である化合物としては、たとえば、1,2-ジジアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン等が挙げられる。
化合物(5)において、Q2で表される基に置換基を有する化合物としては、たとえば、トリフルオロメチルマロノニトリル等が挙げられる。
化合物(5)は、1種を単独で使用してもよく、2種以上を併用してもよい。
化合物(5)としては、電解液の伝導度を高くできる点から、Q2が炭素数1~12の直鎖アルキレン基または分岐アルキレン基である化合物が好ましく、Q2が炭素数1~12の直鎖アルキレン基である化合物がさらに好ましく、スクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタンがより好ましく、グルタロニトリル、アジポニトリルが特に好ましい。
化合物(IV)としては、化合物(4)のみの使用、化合物(5)のみの使用、または化合物(4)と化合物(5)の両方の使用のいずれであってもよく、電解液の伝導度を高くできる点から、化合物(4)を必須とすることが好ましい。すなわち、化合物(IV)として、化合物(4)のみを用いる、または化合物(4)と化合物(5)を併用することが好ましい。なかでも、化合物(4)のみを用いることがより好ましい。
化合物(IV)の含有量の下限値は、電解質塩溶解用溶媒(IV)の総体積量に対して、0.5体積%以上が好ましく、3体積%以上がより好ましく、5体積%以上がさらに好ましく、7体積%以上が特に好ましい。化合物(II-3)の含有量の上限値は、電解質塩溶解用溶媒(IV)の総体積量に対して、60体積%以下が好ましく、40体積%以下がより好ましく、30体積%以下がさらに好ましく、25体積%以下が特に好ましい。
非水電解液中の化合物(IV)の含有量が下限値以上であれば、高レートでの充放電における電池容量の低下を抑制しやすい。また、該下限値以上であれば、リチウム塩(I)の解離度が向上し、伝導度がより良好になる。また、非水電解液中の化合物(IV)の含有量が上限値以下であれば、不燃性に優れた非水電解液が得られやすい。また、前記の化合物(IV)の含有量の範囲内において、化合物(IV)量が少ないほど、非水電解液の伝導度が経時的な低下を抑制する傾向がある。
非水電解液中の化合物(IV)の含有量が下限値以上であれば、高レートでの充放電における電池容量の低下を抑制しやすい。また、該下限値以上であれば、リチウム塩(I)の解離度が向上し、伝導度がより良好になる。また、非水電解液中の化合物(IV)の含有量が上限値以下であれば、不燃性に優れた非水電解液が得られやすい。また、前記の化合物(IV)の含有量の範囲内において、化合物(IV)量が少ないほど、非水電解液の伝導度が経時的な低下を抑制する傾向がある。
本発明の非水電解液中に含まれる、リチウム塩(I)中のリチウム原子の総モル数(NLi)に対する化合物(IV)の総モル数(NCN)との比(NCN/NLi)は、0.01~5であることが好ましく、0.02~4であることがより好ましい。前記比(NCN/NLi)が下限値以上であれば、高レートでの充放電における電池容量の低下を抑制できる。前記比(NCN/NLi)が上限値以下であれば、電解液の難燃性を維持しやすい。
本発明の非水電解液中に含まれる、リチウム塩(I)由来のリチウム原子の総モル数(NLi)に対する、化合物(III)由来のエーテル性酸素原子の総モル数(NO)と化合物(IV)の総モル数(NIV)の和の比{(NO+NIV)/NLi}の下限値は、2.0以上であることが好ましく、2.5以上であることがより好ましく、3.0以上であることがさらに好ましい。また、リチウム塩(I)由来のリチウム原子の総モル数(NLi)に対する、化合物(II-2)由来のエーテル性酸素原子の総モル数(NO)と化合物(IV)の総モル数(NIV)の和の比{(NO+NIV)/NLi}の上限値は、6以下であることが好ましく、5.5以下であることがより好ましく、5.0以下であることがさらに好ましく、4.5以下であることが特に好ましい。前記{(NO+NIV)/NLi}が下限値以上であれば、リチウム塩の溶解性が高くなり、また高レートでの充放電における電池容量の低下を抑制しやすい。また前記{(NO+NIV)/NLi}が上限値以下であれば、電解液の難燃性を維持しやすく、また高電圧条件下におけるサイクル特性を向上させやすい。
(化合物(V))
本発明の非水電解液は、前述のリチウム塩(I)、および化合物(II)~(IV)以外に、下記化合物(9-1)、下記化合物(9-2)および下記化合物(9-3)からなる群から選ばれる化合物(V)を含有していてもよい。
本発明の非水電解液が化合物(V)を含有する場合、該化合物(V)として化合物(9-3)を含有することが好ましい。
本発明の非水電解液は、前述のリチウム塩(I)、および化合物(II)~(IV)以外に、下記化合物(9-1)、下記化合物(9-2)および下記化合物(9-3)からなる群から選ばれる化合物(V)を含有していてもよい。
本発明の非水電解液が化合物(V)を含有する場合、該化合物(V)として化合物(9-3)を含有することが好ましい。
化合物(9-2)は、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、4-クロロ-1,3-ジオキソラン-2-オン、4-フルオロ-1,3-ジオキソラン-2-オンおよび4-トリフルオロメチル-1,3-ジオキソラン-2-オンからなる群から選ばれる1種以上の環状カーボネートであることが好ましく、入手容易性および電解液の性質の点から、エチレンカーボネート、プロピレンカーボネートまたはフルオロエチレンカーボネートが特に好ましい。
化合物(9-3)としては、ジメチルビニレンカーボネートまたはビニレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。
化合物(V)としては、ビニレンカーボネートが特に好ましい。
化合物(9-3)としては、ジメチルビニレンカーボネートまたはビニレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。
化合物(V)としては、ビニレンカーボネートが特に好ましい。
本発明の非水電解液に化合物(V)を加えることにより、リチウム塩(I)の化合物(II)への溶解性が向上する。
また、化合物(V)は、該化合物(V)を含む非水電解液を用いた二次電池で充電を行う際に、負極(たとえば炭素電極)表面上で分解して安定な被膜を形成する。化合物(V)により形成された被膜は電極界面における抵抗を低減することができるため、リチウムイオンの負極へのインターカレーションを促進する効果が得られる。すなわち、非水電解液中の化合物(V)により形成された被膜により負極界面におけるインピーダンスが小さくなることで、リチウムイオンの負極へのインターカレーションが促進される。
また、化合物(V)は、該化合物(V)を含む非水電解液を用いた二次電池で充電を行う際に、負極(たとえば炭素電極)表面上で分解して安定な被膜を形成する。化合物(V)により形成された被膜は電極界面における抵抗を低減することができるため、リチウムイオンの負極へのインターカレーションを促進する効果が得られる。すなわち、非水電解液中の化合物(V)により形成された被膜により負極界面におけるインピーダンスが小さくなることで、リチウムイオンの負極へのインターカレーションが促進される。
本発明の非水電解液中の化合物(V)の含有量は、長期にわたる不燃性、非水電解液中での相分離および炭酸ガスの大量発生の抑制、低温特性の低下の抑制と、リチウム塩(I)の溶解性の向上とを両立しやすい点から、電解液の総体積量に対して、10体積%以下であることが好ましく、0.01~10体積%であることがより好ましく、0.05~5.0体積%であることがさらに好ましく、0.1~3.0体積%であることが特に好ましい。本発明の電解液は、化合物(III)および化合物(IV)を含有することから、リチウム塩(I)の溶解性が向上し、化合物(V)の添加を必須としない利点があり、添加する場合にも少量でよい。よって、炭酸ガスの発生を抑制できる優れた電解液である。
化合物(V)は、比誘電率が高いほど非水電解液中で相分離を起こすおそれが高いことから、その使用量は少ないことが好ましい。また、化合物(V)が多すぎると、分解による炭酸ガスの大量発生のおそれがあり、また不燃性の維持が困難になると考えられる。
化合物(V)は、比誘電率が高いほど非水電解液中で相分離を起こすおそれが高いことから、その使用量は少ないことが好ましい。また、化合物(V)が多すぎると、分解による炭酸ガスの大量発生のおそれがあり、また不燃性の維持が困難になると考えられる。
また、本発明の非水電解液は、下記化合物(9-1)の含有量の上限値が30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20%以下であることがさらに好ましく、15%以下であることが特にこのましい。下記化合物(9-1)の含有量の下限値は0%である。
化合物(9)は鎖状のカーボネート化合物であり、化合物(II-3)および化合物(II-4)のような環状カーボネート化合物とは異なり、引火点が低い。そのため、本発明の非水電解液に化合物(9)を30%以上含有させると、難燃性の低下を招く。
化合物(9)は鎖状のカーボネート化合物であり、化合物(II-3)および化合物(II-4)のような環状カーボネート化合物とは異なり、引火点が低い。そのため、本発明の非水電解液に化合物(9)を30%以上含有させると、難燃性の低下を招く。
ただし、前記式中、R15~R20は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、またはハロゲン化アルキル基である。
化合物(9-1)は、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ-n-プロピルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、メチルイソプロピルカーボネート、エチル-n-プロピルカーボネート、エチルイソプロピルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネートおよび3-フルオロプロピルメチルカーボネートからなる群から選ばれる1種以上の化合物であることが好ましく、入手容易性および粘度等の電解液の性能に与える物性の点から、ジメチルカーボネート、ジエチルカーボネートまたはメチルエチルカーボネートが特に好ましい。
化合物(9-1)は、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ-n-プロピルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、メチルイソプロピルカーボネート、エチル-n-プロピルカーボネート、エチルイソプロピルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネートおよび3-フルオロプロピルメチルカーボネートからなる群から選ばれる1種以上の化合物であることが好ましく、入手容易性および粘度等の電解液の性能に与える物性の点から、ジメチルカーボネート、ジエチルカーボネートまたはメチルエチルカーボネートが特に好ましい。
(化合物(I)~(V)の好ましい組み合わせ)
本発明の非水電解液としては、前記化合物(I)~(V)から、特に下記成分を用いた場合が、本発明の目的とする効果を奏することから好ましい。
(A)リチウム塩(I)として、LiPF6を必須成分として用いた電解液。
(B)化合物(II)として、化合物(1)または化合物(2)を用いた電解液。
(C)化合物(IV)として、R5がアルキル基である化合物(4)、または、Q2が炭素数1~12のアルキレン基である化合物(5)を用いた電解液。
(D)前記(A)~(C)の各成分の組み合わせに、化合物(9-2)を0.01~10体積%を添加してなる電解液。
本発明の非水電解液としては、前記化合物(I)~(V)から、特に下記成分を用いた場合が、本発明の目的とする効果を奏することから好ましい。
(A)リチウム塩(I)として、LiPF6を必須成分として用いた電解液。
(B)化合物(II)として、化合物(1)または化合物(2)を用いた電解液。
(C)化合物(IV)として、R5がアルキル基である化合物(4)、または、Q2が炭素数1~12のアルキレン基である化合物(5)を用いた電解液。
(D)前記(A)~(C)の各成分の組み合わせに、化合物(9-2)を0.01~10体積%を添加してなる電解液。
(その他の溶媒)
本発明の非水電解液は、該非水電解液が相分離しない範囲内であれば、前記化合物(II)、化合物(III)、化合物(IV)および化合物(V)以外の化合物からなる溶媒(以下、「その他の溶媒」という。)が含まれていてもよい。
その他の溶媒としては、含フッ素アルカン、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等のカルボン酸エステル、γブチロラクトン等の環状エステル、プロパンサルトン等の環状スルホン酸エステル、スルホン酸アルキルエステル、リン酸アルキルエステル、等が挙げられる。
含フッ素アルカン以外のその他の溶媒を含ませる場合の含有量は、電解液の総体積量に対して、0超~10体積%であることが好ましく、0超~5体積%であることがより好ましい。
本発明の非水電解液は、該非水電解液が相分離しない範囲内であれば、前記化合物(II)、化合物(III)、化合物(IV)および化合物(V)以外の化合物からなる溶媒(以下、「その他の溶媒」という。)が含まれていてもよい。
その他の溶媒としては、含フッ素アルカン、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等のカルボン酸エステル、γブチロラクトン等の環状エステル、プロパンサルトン等の環状スルホン酸エステル、スルホン酸アルキルエステル、リン酸アルキルエステル、等が挙げられる。
含フッ素アルカン以外のその他の溶媒を含ませる場合の含有量は、電解液の総体積量に対して、0超~10体積%であることが好ましく、0超~5体積%であることがより好ましい。
また、本発明の非水電解液がその他の溶媒として含フッ素アルカンを含む場合には、非水電解液の蒸気圧を抑制するか、または非水電解液のさらなる不燃性の向上させうる。含フッ素アルカンとは、アルカンの水素原子の1個以上がフッ素原子に置換され、水素原子が残っている化合物をいう。本発明においては、炭素数4~12の含フッ素アルカンが好ましい。このうち、炭素数6以上の含フッ素アルカンを用いた場合は、非水電解液の蒸気圧を低下させる効果が期待でき、また炭素数が12以下であればリチウム塩(I)の溶解度が保ちやすい。また、含フッ素アルカン中のフッ素含有量(フッ素含有量とは、分子量に占めるフッ素原子の質量の割合をいう。)は、50~80%が好ましい。含フッ素アルカン中のフッ素含有量が50%以上であれば、不燃性がさらに高くなる。含フッ素アルカン中のフッ素含有量が80%以下であれば、リチウム塩(I)の溶解性を保持しやすい。
含フッ素アルカンとしては、直鎖構造の化合物が好ましく、たとえば、n-C4F9CH2CH3、n-C6F13CH2CH3、n-C6F13H、n-C8F17H等が挙げられる。これら含フッ素アルカンは、1種を単独で使用してもよく、2種以上を併用してもよい。
本発明の非水電解液に前記含フッ素アルカンを含ませる場合の含有量は、電解液の総体積量に対して、5~60体積%が好ましい。前記含フッ素アルカンの含有量が5体積%以上であれば、蒸気圧を低下させやすく、不燃性を発現させやすい。前記含フッ素アルカンの含有量が60体積%以下であれば、リチウム塩(I)の溶解度を維持しやすい。
本発明の非水電解液に前記含フッ素アルカンを含ませる場合の含有量は、電解液の総体積量に対して、5~60体積%が好ましい。前記含フッ素アルカンの含有量が5体積%以上であれば、蒸気圧を低下させやすく、不燃性を発現させやすい。前記含フッ素アルカンの含有量が60体積%以下であれば、リチウム塩(I)の溶解度を維持しやすい。
(他の成分)
本発明の非水電解液には、非水電解液の機能を向上させるために、必要に応じて他の成分を含ませてもよい。他の成分としては、たとえば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。
本発明の非水電解液には、非水電解液の機能を向上させるために、必要に応じて他の成分を含ませてもよい。他の成分としては、たとえば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。
過充電防止剤としては、たとえば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソールおよび2,6-ジフルオロアニオール等の含フッ素アニソール化合物が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
非水電解液が過充電防止剤を含有する場合、非水電解液中の過充電防止剤の含有量は、0.01~5質量%であることが好ましい。非水電解液に過充電防止剤を0.01質量%以上含有させることにより、過充電による二次電池の破裂・発火を抑制することがさらに容易になり、二次電池をより安定に使用できる。
非水電解液が過充電防止剤を含有する場合、非水電解液中の過充電防止剤の含有量は、0.01~5質量%であることが好ましい。非水電解液に過充電防止剤を0.01質量%以上含有させることにより、過充電による二次電池の破裂・発火を抑制することがさらに容易になり、二次電池をより安定に使用できる。
脱水剤としては、たとえば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウム等が挙げられる。本発明の非水電解液に用いる溶媒は、前記脱水剤で脱水を行った後に精留を行ったものを使用することが好ましい。また、精留を行わずに前記脱水剤による脱水のみを行った溶媒を使用してもよい。
高温保存後の容量維持特性やサイクル特性を改善するための特性改善助剤としては、たとえば、フェニルエチレンカーボネート、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物が挙げられる。これら特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
非水電解液が特性改善助剤を含有する場合、非水電解液中の特性改善助剤の含有量は、0.01~5質量%であることが好ましい。
非水電解液が特性改善助剤を含有する場合、非水電解液中の特性改善助剤の含有量は、0.01~5質量%であることが好ましい。
本発明の非水電解液は、二次電池用に用いる。特にリチウムイオン二次電池の電解液として用いた場合には、リチウム塩(I)を良好に溶解させ、かつ、高レートでの充放電における電池容量の低下を抑制でき、不燃性にも優れる。他の二次電池としては、電気二重層キャパシタ、リチウムイオンキャパシタ等が挙げられる。
本発明の非水電解液が、高レートでの充放電における電池容量の低下を抑制できる要因については必ずしも明らかではないが、以下のように考えることができる。
二次電池の充放電ではリチウムイオンが脱配位して電極の電極活物質と反応する必要があるが、化合物(III)は複数の分子内酸素原子がリチウムイオンに対して配位するために脱配位エネルギーが大きい。極性の高い化合物(IV)を補助溶媒として電解液に用いると、溶媒全体の極性が向上することで脱配位エネルギーが低下し、化合物(III)が容易に脱配位してリチウムイオンを効率的に電極活物質と反応させることができるので、高レートでの充放電における電池容量の低下が抑制されると考えられる。
二次電池の充放電ではリチウムイオンが脱配位して電極の電極活物質と反応する必要があるが、化合物(III)は複数の分子内酸素原子がリチウムイオンに対して配位するために脱配位エネルギーが大きい。極性の高い化合物(IV)を補助溶媒として電解液に用いると、溶媒全体の極性が向上することで脱配位エネルギーが低下し、化合物(III)が容易に脱配位してリチウムイオンを効率的に電極活物質と反応させることができるので、高レートでの充放電における電池容量の低下が抑制されると考えられる。
[二次電池]
本発明の電解液はリチウムイオンの二次電池用の電解液として用いるのが好ましい。該二次電池としては、負極および正極と、本発明の非水電解液とを有する二次電池である。
負極としては、リチウムイオンを吸蔵および放出できる負極活物質を含む電極が挙げられる。負極活物質としては、公知のリチウムイオン二次電池用負極活物質を用いることができ、リチウムイオンを吸蔵および放出できる人造または天然グラファイト(黒鉛)、非晶質炭素等の炭素質材料、金属リチウム、リチウム合金等の金属、金属化合物が挙げられる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明の電解液はリチウムイオンの二次電池用の電解液として用いるのが好ましい。該二次電池としては、負極および正極と、本発明の非水電解液とを有する二次電池である。
負極としては、リチウムイオンを吸蔵および放出できる負極活物質を含む電極が挙げられる。負極活物質としては、公知のリチウムイオン二次電池用負極活物質を用いることができ、リチウムイオンを吸蔵および放出できる人造または天然グラファイト(黒鉛)、非晶質炭素等の炭素質材料、金属リチウム、リチウム合金等の金属、金属化合物が挙げられる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
なかでも、負極活物質としては、炭素質材料が好ましい。また、炭素質材料としては、黒鉛、および黒鉛の表面を該黒鉛に比べて非晶質の炭素で被覆した炭素質材料が特に好ましい。
黒鉛は、日本学術振興会炭素材料第117委員会で制定された方法(以下、学振法という。)によるX線回折で求めた格子面(002面)のd値(層間距離、以下単にd値という。)が0.335~0.338nmであることが好ましく、0.335~0.337nmであることがより好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、30nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましい。黒鉛の灰分は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
黒鉛は、日本学術振興会炭素材料第117委員会で制定された方法(以下、学振法という。)によるX線回折で求めた格子面(002面)のd値(層間距離、以下単にd値という。)が0.335~0.338nmであることが好ましく、0.335~0.337nmであることがより好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、30nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましい。黒鉛の灰分は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
また、黒鉛の表面を非晶質炭素で被覆した炭素質材料としては、d値が0.335~0.338nmである黒鉛を核材とし、該黒鉛の表面に該黒鉛よりもd値が大きい非晶質炭素が被覆されており、かつ核材の黒鉛(質量WA)と該黒鉛を被覆する非晶質炭素(質量WB)の割合が質量比(WA/WB)で80/20~99/1であることが好ましい。この炭素質材料を用いることにより、高い容量で、かつ非水電解液と反応しにくい負極を製造することが容易になる。
炭素質材料の粒径は、レーザー回折・散乱法によるメジアン径で、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましく、7μm以上であることが特に好ましい。また、炭素質材料の粒径の上限は、100μmであることが好ましく、50μmであることがより好ましく、40μmであることがさらに好ましく、30μmであることが特に好ましい。
炭素質材料のBET法による比表面積は、0.3m2/g以上であることが好ましく、0.5m2/g以上であることがより好ましく、0.7m2/g以上であることがさらに好ましく、0.8m2/g以上であることが特に好ましい。炭素質材料の比表面積の上限は、25.0m2/gであることが好ましく、20.0m2/gであることがより好ましく、15.0m2/gであることがさらに好ましく、10.0m2/gであることが特に好ましい。
炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析したときに、1570~1620cm-1の範囲にあるピークPAのピーク強度IAと、1300~1400cm-1の範囲にあるピークPBのピーク強度IBとの比で表されるR値(=IB/IA)が、0.01~0.7であることが好ましい。また、ピークPAの半値幅が、26cm-1以下であることが好ましく、25cm-1以下であることが特に好ましい。
金属リチウム以外に負極活物質として使用できる金属としては、Ag、Zn、Al、Ga、In、Si、Ti、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等が挙げられる。また、リチウム合金としては、リチウムと前記金属の合金が挙げられる。また、金属化合物としては、前記金属の酸化物等が挙げられる。
なかでも、Si、Sn、Ge、TiおよびAlからなる群から選ばれる1種以上の金属、該金属を含む金属化合物、金属酸化物、リチウム合金が好ましく、Si、SnおよびAlからなる群から選ばれる1種以上の金属、該金属を含む金属化合物、リチウム合金、チタン酸リチウムがより好ましい。
リチウムイオンを吸蔵・放出できる金属、該金属を含む金属化合物、およびリチウム合金は、一般に黒鉛に代表される炭素質材料と比較して、単位質量当たりの容量が大きいので、より高エネルギー密度が求められる二次電池に好適である。
なかでも、Si、Sn、Ge、TiおよびAlからなる群から選ばれる1種以上の金属、該金属を含む金属化合物、金属酸化物、リチウム合金が好ましく、Si、SnおよびAlからなる群から選ばれる1種以上の金属、該金属を含む金属化合物、リチウム合金、チタン酸リチウムがより好ましい。
リチウムイオンを吸蔵・放出できる金属、該金属を含む金属化合物、およびリチウム合金は、一般に黒鉛に代表される炭素質材料と比較して、単位質量当たりの容量が大きいので、より高エネルギー密度が求められる二次電池に好適である。
正極としては、リチウムイオンを吸蔵および放出できる正極活物質を含む電極が挙げられる。
正極活物質としては、公知のリチウムイオン二次電池用正極活物質を用いることができ、たとえば、リチウム含有遷移金属酸化物、1種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。
正極活物質としては、公知のリチウムイオン二次電池用正極活物質を用いることができ、たとえば、リチウム含有遷移金属酸化物、1種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。
リチウム含有遷移金属酸化物としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等が挙げられる。
リチウム含有遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、たとえば、LiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMnO2、LiMn2O4、LiMnO3等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr,Si、Yb等の他の金属で置換したもの等が挙げられる。他の金属で置換されたものとしては、LiMn0.5Ni0.5O2、LiMn1.8Al0.2O4、LiNi0.85Co0.10Al0.05O2、LiMn1.5Ni0.5O4、LiNi1/3Co1/3Mn1/3O2、LiMn1.8Al0.2O4が挙げられる。
遷移金属酸化物としては、たとえば、TiO2、MnO2、MoO3、V2O5、V6O13、遷移金属硫化物としてはTiS2、FeS、MoS2、金属酸化物としてはSnO2、SiO2等が挙げられる。
オリビン型金属リチウム塩は、(式)LiLXxYyOzFg(ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0≦L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である数をそれぞれ示す)で示される物質またはこれらの複合体である。たとえば、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7、LiMnPO4、LiNiPO4、LiCoPO4、Li2FePO4F、Li2MnPO4F、Li2NiPO4F、Li2CoPO4F、Li2FeSiO4、Li2MnSiO4、Li2NiSiO4、Li2CoSiO4が挙げられる。
これら正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
リチウム含有遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、たとえば、LiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMnO2、LiMn2O4、LiMnO3等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr,Si、Yb等の他の金属で置換したもの等が挙げられる。他の金属で置換されたものとしては、LiMn0.5Ni0.5O2、LiMn1.8Al0.2O4、LiNi0.85Co0.10Al0.05O2、LiMn1.5Ni0.5O4、LiNi1/3Co1/3Mn1/3O2、LiMn1.8Al0.2O4が挙げられる。
遷移金属酸化物としては、たとえば、TiO2、MnO2、MoO3、V2O5、V6O13、遷移金属硫化物としてはTiS2、FeS、MoS2、金属酸化物としてはSnO2、SiO2等が挙げられる。
オリビン型金属リチウム塩は、(式)LiLXxYyOzFg(ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0≦L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である数をそれぞれ示す)で示される物質またはこれらの複合体である。たとえば、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7、LiMnPO4、LiNiPO4、LiCoPO4、Li2FePO4F、Li2MnPO4F、Li2NiPO4F、Li2CoPO4F、Li2FeSiO4、Li2MnSiO4、Li2NiSiO4、Li2CoSiO4が挙げられる。
これら正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
表面付着物質の量としては、正極活物質に対する質量の下限は0.1ppmが好ましく、より好ましくは1ppm、更に好ましくは10ppmである。上限は20%が好ましく、より好ましくは10%、更に好ましくは5%である。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。
表面付着物質の量としては、正極活物質に対する質量の下限は0.1ppmが好ましく、より好ましくは1ppm、更に好ましくは10ppmである。上限は20%が好ましく、より好ましくは10%、更に好ましくは5%である。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。
正極活物質としては、放電電圧が高く、かつ電気化学的安定性が高い点から、LiCoO2、LiNiO2、LiMnO2等のα-NaCrO2構造を母体とするリチウム含有複合酸化物、LiMn2O4等のスピネル型構造を母体とするリチウム含有複合酸化物が好ましい。
本発明の二次電池は、負極および/または正極のいずれか一方または両方が分極性電極である負極および正極と、本発明の非水電解液とを有する。分極性電極は、電気化学的に不活性な高比表面積の材料を主体とするものが好ましく、活性炭、カーボンブラック、金属微粒子、導電性酸化物微粒子からなるものが特に好ましい。なかでも、金属集電体の表面に活性炭等の高比表面積の炭素材料粉末からなる電極層が形成されたものが好ましい。
本発明の二次電池は、負極および/または正極のいずれか一方または両方が分極性電極である負極および正極と、本発明の非水電解液とを有する。分極性電極は、電気化学的に不活性な高比表面積の材料を主体とするものが好ましく、活性炭、カーボンブラック、金属微粒子、導電性酸化物微粒子からなるものが特に好ましい。なかでも、金属集電体の表面に活性炭等の高比表面積の炭素材料粉末からなる電極層が形成されたものが好ましい。
電極の作製には、負極活物質または正極活物質を結着させる結着剤を用いる。
負極活物質および正極活物質を結着する結着剤としては、電極製造時に使用する溶媒、電解液に対して安定な材料であれば、任意の結着剤を使用することができる。結着剤は、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。これらの結着剤は1種を単独で用いてもよく、2種以上を併用してもよい。
負極活物質および正極活物質を結着する結着剤としては、電極製造時に使用する溶媒、電解液に対して安定な材料であれば、任意の結着剤を使用することができる。結着剤は、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。これらの結着剤は1種を単独で用いてもよく、2種以上を併用してもよい。
電極中には、機械的強度、電気伝導度を高めるために増粘剤、導電材、充填剤等を含有させてもよい。
増粘剤としては、たとえば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドンが挙げられる。これらの増粘剤は1種を単独で用いてもよく、2種以上を併用してもよい。
増粘剤としては、たとえば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドンが挙げられる。これらの増粘剤は1種を単独で用いてもよく、2種以上を併用してもよい。
導電材としては、たとえば、銅またはニッケル等の金属材料、グラファイトまたはカーボンブラック等の炭素質材料が挙げられる。これら導電材は1種を単独で用いてもよく、2種以上を併用してもよい。
電極の製造法としては、負極活物質または正極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥して製造することができる。この場合、乾燥後にプレスすることによって電極を圧密化することが好ましい。
正極活物質層の密度が低すぎると二次電池の容量が不充分となるおそれがある。
正極活物質層の密度が低すぎると二次電池の容量が不充分となるおそれがある。
集電体としては、各種の集電体を用いることができるが、通常は金属または合金が用いられる。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、銅が好ましい。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属またはその合金が挙げられ、アルミニウムまたはその合金が好ましく、アルミニウムが特に好ましい。
二次電池の形状は、用途に応じて選択すればよく、コイン型であってもよく、円筒型であっても、角型であってもラミネート型であってもよい。また、正極および負極の形状も、二次電池の形状に合わせて適宜選択することができる。
本発明の二次電池の充電電圧は、3.4V以上とするのが好ましく、4.0V以上が特に好ましく、4.2V以上がとりわけ好ましい。二次電池の正極活物質が、リチウム含有遷移金属酸化物、リチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物の場合の充電電圧は4.0V以上が好ましく、4.2Vが特に好ましい。また、正極活物質がオリビン型金属リチウム塩の場合の充電電圧は3.2Vが好ましく、3.4V以上が特に好ましい。
本発明の二次電池の充電電圧は、3.4V以上とするのが好ましく、4.0V以上が特に好ましく、4.2V以上がとりわけ好ましい。二次電池の正極活物質が、リチウム含有遷移金属酸化物、リチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物の場合の充電電圧は4.0V以上が好ましく、4.2Vが特に好ましい。また、正極活物質がオリビン型金属リチウム塩の場合の充電電圧は3.2Vが好ましく、3.4V以上が特に好ましい。
二次電池の正極と負極の間には、短絡を防止するために通常はセパレータとして多孔膜を介在させる。この場合、非水電解液は該多孔膜に含浸させて用いる。多孔膜の材質および形状は、非水電解液に対して安定であり、かつ保液性に優れていれば特に制限はなく、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンとテトラフルオロエチレンのコポリマー等のフッ素樹脂、またはポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布が好ましく、材質はポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。また、これらの多孔膜に電解液を含浸させてゲル化させたものをゲル電解質として用いても良い。
本発明の非水電解液に使用される電池外装体の材質も二次電池に通常用いられる材質であればよく、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
本発明の非水電解液に使用される電池外装体の材質も二次電池に通常用いられる材質であればよく、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
以上説明した本発明の二次電池は、本発明の非水電解液を用いているため、高レートでの充放電における電池容量の低下が抑制されている。また、実用上充分な伝導度を有しており、不燃性も優れている。
そのため、本発明の二次電池は、携帯電話、携帯ゲーム機、デジタルカメラ、デジタルビデオカメラ、電動工具、ノートパソコン、携帯情報端末、携帯音楽プレーヤー、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の様々な用途に用いることができる。また、本発明の二次電池は、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の大型二次電池に特に好ましい特性を有する。
そのため、本発明の二次電池は、携帯電話、携帯ゲーム機、デジタルカメラ、デジタルビデオカメラ、電動工具、ノートパソコン、携帯情報端末、携帯音楽プレーヤー、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の様々な用途に用いることができる。また、本発明の二次電池は、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の大型二次電池に特に好ましい特性を有する。
以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
例1~15および19~23は実施例であり、例16~18および24は比較例である。
<溶解性および伝導度の評価>
[例1]
リチウム塩(I)であるヘキサフルオロリン酸リチウム(1.52g、10mmol)を化合物(II)であるAE3000(7.39mL)中に拡散した後、化合物(III)であるジグライム(13.3mmol)、および化合物(IV)であるアセトニトリル(10.0mmol)を添加、混合して非水電解液とした。
例1~15および19~23は実施例であり、例16~18および24は比較例である。
<溶解性および伝導度の評価>
[例1]
リチウム塩(I)であるヘキサフルオロリン酸リチウム(1.52g、10mmol)を化合物(II)であるAE3000(7.39mL)中に拡散した後、化合物(III)であるジグライム(13.3mmol)、および化合物(IV)であるアセトニトリル(10.0mmol)を添加、混合して非水電解液とした。
[例2~18]
リチウム塩(I)、化合物(II)、化合物(III)および化合物(IV)の組成を表1および表2に示す通りに変更した以外は、例1と同様の方法で非水電解液を得た。
リチウム塩(I)、化合物(II)、化合物(III)および化合物(IV)の組成を表1および表2に示す通りに変更した以外は、例1と同様の方法で非水電解液を得た。
[評価方法]
各例で得られた非水電解液について、電解液の溶解性試験と、伝導度の測定を行った。
(溶解性試験)
各例において、非水電解液を調製してから1時間経過後の該非水電解液の溶解状態を目視により評価した。評価は、電解液が均一であるものを「○」、2相に分離したものを「×」とした。
各例で得られた非水電解液について、電解液の溶解性試験と、伝導度の測定を行った。
(溶解性試験)
各例において、非水電解液を調製してから1時間経過後の該非水電解液の溶解状態を目視により評価した。評価は、電解液が均一であるものを「○」、2相に分離したものを「×」とした。
(伝導度測定)
伝導度の測定は、各例で得られた非水電解液について、「溶融塩及び高温化学、2002、45、43」に記載の既知の方法を用いて25℃で行った。
溶解性および伝導度の評価結果を表1および表2に示す。
伝導度の測定は、各例で得られた非水電解液について、「溶融塩及び高温化学、2002、45、43」に記載の既知の方法を用いて25℃で行った。
溶解性および伝導度の評価結果を表1および表2に示す。
ただし、表1および表2中の略語は以下の意味を示す。
TFSI-Li:CF3SO2N(Li)SO2CF3
AE3000:CF3CH2OCF2CF2H
TFSI-Li:CF3SO2N(Li)SO2CF3
AE3000:CF3CH2OCF2CF2H
表1および表2の結果から明らかであるように、化合物(IV)として化合物(4)を含有する例1~例3および例5~9の非水電解液は、ジグライム量が同じで化合物(IV)を含有しない例16の非水電解液に比べて、高い伝導度が得られた。
化合物(4)を含有する例4、10、11の非水電解液は、電解液が均一であり、かつ良好な伝導度が得られた。一方、化合物(IV)を含有しない例18の電解液は層分離を起こした。
さらに、化合物(IV)として化合物(5)を含有する例12~15の非水電解液は、化合物(IV)を含有しない例17に比べて高い伝導度が得られた。
化合物(4)を含有する例4、10、11の非水電解液は、電解液が均一であり、かつ良好な伝導度が得られた。一方、化合物(IV)を含有しない例18の電解液は層分離を起こした。
さらに、化合物(IV)として化合物(5)を含有する例12~15の非水電解液は、化合物(IV)を含有しない例17に比べて高い伝導度が得られた。
<伝導度の時間依存性>
(例19~21)
例7~9で得られた非水電解液について、「溶融塩及び高温化学、2002、45、43」に記載の既知の方法を用いて、25℃において10時間後の伝導度を測定し、10時間後の伝導度の0時間時の伝導度(調製直後の伝導度)に対する維持率(単位:%)を下式により求めて下記基準で評価した。
(伝導度維持率)=[(10時間後の伝導度)/(0時間時の伝導度)]×100
◎:10時間後の伝導度維持率が80%以上であった。
○:10時間後の伝導度維持率が50%以上80%未満であった。
△:10時間後の伝導度維持率が30%以上50%未満であった。
例19~21の伝導度の時間依存性の評価結果を表3に示す。
(例19~21)
例7~9で得られた非水電解液について、「溶融塩及び高温化学、2002、45、43」に記載の既知の方法を用いて、25℃において10時間後の伝導度を測定し、10時間後の伝導度の0時間時の伝導度(調製直後の伝導度)に対する維持率(単位:%)を下式により求めて下記基準で評価した。
(伝導度維持率)=[(10時間後の伝導度)/(0時間時の伝導度)]×100
◎:10時間後の伝導度維持率が80%以上であった。
○:10時間後の伝導度維持率が50%以上80%未満であった。
△:10時間後の伝導度維持率が30%以上50%未満であった。
例19~21の伝導度の時間依存性の評価結果を表3に示す。
表3の結果から明らかであるように、化合物(IV)としてイソブチロニトリルを異なる量で含む例19、20、21の電解液は、いずれも伝導度を一定に保つ効果があるが、特にイソブチロニトリルの含有量が30体積%以下の例19の非水電解液では伝導度の低下が高度に抑制された。例19においては、電解液中のイソブチロニトリルの分解物量が少なくなることで、より安定な固体電解液界面を形成したためと考えられる。
<LiCoO2正極-リチウム金属箔からなる単極セルのコイン型二次電池の高レート充放電特性の評価>
高レートでの充放電が電池容量に与える影響を評価するため、高レートでの放電時における放電容量を評価した。高レートでの充電が充電容量に与える影響は、高レートでの放電が放電容量に与える影響とほぼ同様である。
高レートでの充放電が電池容量に与える影響を評価するため、高レートでの放電時における放電容量を評価した。高レートでの充電が充電容量に与える影響は、高レートでの放電が放電容量に与える影響とほぼ同様である。
[例22]
LiCoO2(AGCセイミケミカル社製、商品名「セリオンC」)90質量部と、カーボンブラック(電気化学工業社製、商品名「デンカブラック」)5質量部と、ポリフッ化ビニリデン5質量部とを混合し、N-メチル-2-ピロリドンを加えてスラリーとした。該スラリーを厚さ20μmのアルミニウム箔の両面に均一に塗布、乾燥後、正極活物質層の密度が3.0g/cm3になるようにプレスしてLiCoO2正極を作製した。
前記LiCoO2正極、該LiCoO2正極と同面積のリチウム金属箔、およびポリエチレン製のセパレータを、リチウム金属箔、セパレータ、LiCoO2正極の順に2016型コインセル内に積層して電池要素を作製し、例6で調製した非水電解液に化合物(V)のビニレンカーボネートを2体積%となるように含有させた電解液を添加し、これを密封することによりコイン型非水電解液二次電池を作製した。
LiCoO2(AGCセイミケミカル社製、商品名「セリオンC」)90質量部と、カーボンブラック(電気化学工業社製、商品名「デンカブラック」)5質量部と、ポリフッ化ビニリデン5質量部とを混合し、N-メチル-2-ピロリドンを加えてスラリーとした。該スラリーを厚さ20μmのアルミニウム箔の両面に均一に塗布、乾燥後、正極活物質層の密度が3.0g/cm3になるようにプレスしてLiCoO2正極を作製した。
前記LiCoO2正極、該LiCoO2正極と同面積のリチウム金属箔、およびポリエチレン製のセパレータを、リチウム金属箔、セパレータ、LiCoO2正極の順に2016型コインセル内に積層して電池要素を作製し、例6で調製した非水電解液に化合物(V)のビニレンカーボネートを2体積%となるように含有させた電解液を添加し、これを密封することによりコイン型非水電解液二次電池を作製した。
[例23]
例10で調製した非水電解液を用いた以外は、例22と同様にしてコイン型二次電池を作製した。
例10で調製した非水電解液を用いた以外は、例22と同様にしてコイン型二次電池を作製した。
[例24]
例16で調製した非水電解液を用いた以外は、例22と同様にしてコイン型二次電池を作製した。
例16で調製した非水電解液を用いた以外は、例22と同様にしてコイン型二次電池を作製した。
[評価方法]
LiCoO2正極-リチウム金属箔からなる単極セルのコイン型二次電池の高レート放電特性の評価は、以下に示す方法により行った。
25℃において、0.2Cに相当する定電流で4.3V(電圧はリチウムに対する電圧を表す)まで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.2Cに相当する定電流で3Vまで放電するサイクルを5サイクル行い、二次電池を安定させた。
6サイクル目は、0.2Cの定電流で4.3Vまで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.5Cの定電流で3Vまで放電させた。
7サイクル目は、0.2Cの定電流で4.3Vまで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に1.0Cの定電流で3Vまで放電させた。
8サイクル目は、0.2Cの定電流で4.3Vまで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に2.0Cの定電流で3Vまで放電させた。
5サイクル目の0.2Cでの放電時の放電容量に対する、各放電レートでの放電容量の容量維持率を評価した。ただし、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.2Cとはその1/5の電流値を表す。
評価結果を表4に示す。また、5サイクル目以降の各放電レートでの放電時における放電容量-電圧曲線を図1~3に示す。
LiCoO2正極-リチウム金属箔からなる単極セルのコイン型二次電池の高レート放電特性の評価は、以下に示す方法により行った。
25℃において、0.2Cに相当する定電流で4.3V(電圧はリチウムに対する電圧を表す)まで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.2Cに相当する定電流で3Vまで放電するサイクルを5サイクル行い、二次電池を安定させた。
6サイクル目は、0.2Cの定電流で4.3Vまで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.5Cの定電流で3Vまで放電させた。
7サイクル目は、0.2Cの定電流で4.3Vまで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に1.0Cの定電流で3Vまで放電させた。
8サイクル目は、0.2Cの定電流で4.3Vまで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に2.0Cの定電流で3Vまで放電させた。
5サイクル目の0.2Cでの放電時の放電容量に対する、各放電レートでの放電容量の容量維持率を評価した。ただし、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.2Cとはその1/5の電流値を表す。
評価結果を表4に示す。また、5サイクル目以降の各放電レートでの放電時における放電容量-電圧曲線を図1~3に示す。
表4および図3に示すように、化合物(IV)を含有する例22および例23の非水電解液は、化合物(IV)を含有していない例24に比して、0.2C放電時の放電容量に対する2.0C放電時の容量維持率が高く、高レートでの放電による電池容量の低下が抑制されていた。また、例22と例23の比較では、比(NO/NLi)を小さくすることにより、リチウム塩(I)を充分に溶解させつつ、高レートでの放電による電池容量の低下抑制効果が向上していた。
本発明の非水電解液を用いたリチウムイオン二次電池においては、高レートでの充放電における電池容量の低下を抑制できる。また、電極の腐食および炭酸ガスの発生のおそれがなく、長期の不燃性と優れた低温特性、および実用上充分な伝導度を備えている。そのため、携帯電話、ノートパソコン、電気自動車等の様々な用途の二次電池に好適に使用できる。また、本発明の非水電解液は、リチウム塩(I)を良好に溶解でき、かつ、不燃性にも優れることから、電気二重層キャパシタ、リチウムイオンキャパシタ等の他の帯電デバイスにも使用できる。
なお、2010年4月26日に出願された日本特許出願2010-101328号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
なお、2010年4月26日に出願された日本特許出願2010-101328号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (16)
- リチウム塩(I)、下式(1)で表される化合物および下式(2)で表される化合物からなる群から選ばれる化合物(II)、下式(3)で表される化合物(III)、ならびに下式(4)で表される化合物および下式(5)で表される化合物からなる群から選ばれる化合物(IV)を含有することを特徴とする二次電池用非水電解液。
Xは炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のフッ素化アルキレン基である。
mは1~10の整数であり、Q1は炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。mが2以上である場合のQ1は、同一の基であっても、異なる基であってもよい。
R3およびR4はそれぞれ独立に炭素数1~5のアルキル基、またはR3とR4が連結して形成した炭素数1~10のアルキレン基である。
R5はアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキル基、シクロアルキル基、アリール基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアリール基であり、該基の水素原子の1個以上はニトリル基以外の置換基に置換されていてもよく、R5の総炭素数は1~10である。
Q2は炭素数1~12のアルキレン基、炭素数1~12の炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有するアルキレン基、炭素数5~10のシクロアルキレン基、および炭素数6~12のアリーレン基からなる群から選ばれる基であり、該基の水素原子の1個以上はニトリル基以外の置換基に置換されていてもよい。ただし、該置換基が炭素原子を有する場合のQ2の炭素数は、置換基の炭素数を含めた炭素数である。 - 前記リチウム塩(I)中のリチウム原子の総モル数(NLi)に対する前記化合物(III)中のエーテル性酸素原子の総モル数(No)との比(No/NLi)が2~6である請求項1に記載の二次電池用非水電解液。
- 前記化合物(IV)が、前記式(4)で表される化合物を必須とする請求項1または2に記載の二次電池用非水電解液。
- 前記電解液の総質量に対する前記電解質のモル量が、0.1~3.0mol/Lであり、電解液の総質量に対する前記非フッ素系エーテル化合物の質量が1~20質量%である請求項1~3のいずれか一項に記載の二次電池用非水電解液。
- 前記リチウム塩(I)のリチウム原子の総モル数(NLi)に対する、化合物(IV)の総モル数(NIV)および前記非フッ素系エーテル化合物由来のエーテル性酸素原子の総モル数(NO)の比率である(NIV+NO)/NLiが2~6である、請求項1~4のいずれか一項に記載の二次電池用非水電解液。
- 前記化合物(IV)の含有量が、電解液の総体積量に対して0.5~60体積%である請求項1~5のいずれか一項に記載の二次電池用非水電解液。
- 前記リチウム塩(I)が、LiPF6を必須とする、請求項1~8のいずれか一項に記載の二次電池用非水電解液。
- 前記リチウム塩(I)が、前記式(6)で表され、かつkが2である化合物を必須とする請求項1~9のいずれか一項に記載の二次電池用非水電解液。
- 前記化合物(II)が、CF3CH2OCF2CF2H、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHF2、CF3CH2OCF2CHFCF3、およびCHF2CF2CH2OCF2CFHCF3からなる群から選ばれる1種以上を必須とする請求項1~10のいずれか一項に記載の二次電池用非水電解液。
- 前記化合物(II)が、前記式(2)で表され、かつXがCH2、CH2CH2、CH(CH3)CH2、およびCH2CH2CH2からなる群から選ばれる1種である化合物を必須とする請求項1~11のいずれか一項に記載の二次電池用非水電解液。
- リチウムイオン二次電池の電解液として用いる請求項1~14のいずれか一項に記載の二次電池用非水電解液。
- リチウムイオンを吸蔵および放出できる材料、金属リチウムまたはリチウム合金を含む負極と、リチウムイオンを吸蔵および放出できる材料を含む正極と、請求項1~15のいずれか一項に記載の二次電池用非水電解液とを有する二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012512859A JPWO2011136226A1 (ja) | 2010-04-26 | 2011-04-26 | 二次電池用非水電解液および二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010101328 | 2010-04-26 | ||
JP2010-101328 | 2010-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011136226A1 true WO2011136226A1 (ja) | 2011-11-03 |
Family
ID=44861524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/060172 WO2011136226A1 (ja) | 2010-04-26 | 2011-04-26 | 二次電池用非水電解液および二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011136226A1 (ja) |
WO (1) | WO2011136226A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012086602A1 (ja) * | 2010-12-20 | 2012-06-28 | 旭硝子株式会社 | 二次電池用非水電解液および二次電池 |
WO2013069792A1 (ja) * | 2011-11-11 | 2013-05-16 | 旭硝子株式会社 | 非水電解液二次電池 |
WO2013069793A1 (ja) * | 2011-11-11 | 2013-05-16 | 旭硝子株式会社 | 非水電解液二次電池 |
JP2013105643A (ja) * | 2011-11-15 | 2013-05-30 | Nippon Shokubai Co Ltd | リチウム二次電池 |
JP2013225496A (ja) * | 2012-03-19 | 2013-10-31 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2013225497A (ja) * | 2012-03-19 | 2013-10-31 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2014041811A (ja) * | 2012-03-19 | 2014-03-06 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
CN104409771A (zh) * | 2014-11-12 | 2015-03-11 | 东莞市凯欣电池材料有限公司 | 一种含有腈乙基氢氟醚的电解液及一种锂二次电池 |
WO2015136688A1 (ja) * | 2014-03-14 | 2015-09-17 | 株式会社東芝 | 非水電解液二次電池及び電池パック |
US9406975B2 (en) | 2012-03-19 | 2016-08-02 | National University Corporation Yokohama National University | Alkali metal-sulfur-based secondary battery |
JPWO2014108979A1 (ja) * | 2013-01-09 | 2017-01-19 | パナソニックIpマネジメント株式会社 | 二次電池用非水電解液およびリチウム二次電池 |
CN107531600A (zh) * | 2015-05-27 | 2018-01-02 | 宇部兴产株式会社 | 锂盐化合物、及使用了其的非水电解液、锂离子二次电池及锂离子电容器 |
JP2020198206A (ja) * | 2019-05-31 | 2020-12-10 | 株式会社豊田自動織機 | 電解液及びリチウムイオン二次電池 |
CN113851723A (zh) * | 2020-06-28 | 2021-12-28 | 深圳新宙邦科技股份有限公司 | 一种电解液及金属-硫电池 |
WO2022138490A1 (ja) * | 2020-12-25 | 2022-06-30 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004363031A (ja) * | 2003-06-06 | 2004-12-24 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2005267857A (ja) * | 2004-03-16 | 2005-09-29 | Hitachi Maxell Ltd | 有機電解液およびそれを用いた有機電解液電池 |
JP2005340223A (ja) * | 1998-02-20 | 2005-12-08 | Hitachi Ltd | リチウム2次電池とその電解液及び電気機器 |
JP2008108454A (ja) * | 2006-10-23 | 2008-05-08 | Sony Corp | 非水電解液およびそれを用いる非水電解液電池 |
JP2008176987A (ja) * | 2007-01-17 | 2008-07-31 | Gs Yuasa Corporation:Kk | 非水電解質二次電池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008176978A (ja) * | 2007-01-17 | 2008-07-31 | Seiko Epson Corp | 放電灯装置及びプロジェクタ、発光放電管、並びに放電灯ユニット |
-
2011
- 2011-04-26 JP JP2012512859A patent/JPWO2011136226A1/ja not_active Withdrawn
- 2011-04-26 WO PCT/JP2011/060172 patent/WO2011136226A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340223A (ja) * | 1998-02-20 | 2005-12-08 | Hitachi Ltd | リチウム2次電池とその電解液及び電気機器 |
JP2004363031A (ja) * | 2003-06-06 | 2004-12-24 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2005267857A (ja) * | 2004-03-16 | 2005-09-29 | Hitachi Maxell Ltd | 有機電解液およびそれを用いた有機電解液電池 |
JP2008108454A (ja) * | 2006-10-23 | 2008-05-08 | Sony Corp | 非水電解液およびそれを用いる非水電解液電池 |
JP2008176987A (ja) * | 2007-01-17 | 2008-07-31 | Gs Yuasa Corporation:Kk | 非水電解質二次電池 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012086602A1 (ja) * | 2010-12-20 | 2012-06-28 | 旭硝子株式会社 | 二次電池用非水電解液および二次電池 |
WO2013069792A1 (ja) * | 2011-11-11 | 2013-05-16 | 旭硝子株式会社 | 非水電解液二次電池 |
WO2013069793A1 (ja) * | 2011-11-11 | 2013-05-16 | 旭硝子株式会社 | 非水電解液二次電池 |
JP2013105643A (ja) * | 2011-11-15 | 2013-05-30 | Nippon Shokubai Co Ltd | リチウム二次電池 |
US9406975B2 (en) | 2012-03-19 | 2016-08-02 | National University Corporation Yokohama National University | Alkali metal-sulfur-based secondary battery |
JP2013225496A (ja) * | 2012-03-19 | 2013-10-31 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2013225497A (ja) * | 2012-03-19 | 2013-10-31 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2014041811A (ja) * | 2012-03-19 | 2014-03-06 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JPWO2014108979A1 (ja) * | 2013-01-09 | 2017-01-19 | パナソニックIpマネジメント株式会社 | 二次電池用非水電解液およびリチウム二次電池 |
WO2015136688A1 (ja) * | 2014-03-14 | 2015-09-17 | 株式会社東芝 | 非水電解液二次電池及び電池パック |
JPWO2015136688A1 (ja) * | 2014-03-14 | 2017-04-06 | 株式会社東芝 | 非水電解液二次電池及び電池パック |
US10020539B2 (en) | 2014-03-14 | 2018-07-10 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery and battery pack |
CN104409771A (zh) * | 2014-11-12 | 2015-03-11 | 东莞市凯欣电池材料有限公司 | 一种含有腈乙基氢氟醚的电解液及一种锂二次电池 |
CN107531600A (zh) * | 2015-05-27 | 2018-01-02 | 宇部兴产株式会社 | 锂盐化合物、及使用了其的非水电解液、锂离子二次电池及锂离子电容器 |
EP3305753A4 (en) * | 2015-05-27 | 2019-01-09 | UBE Industries, Ltd. | LITHIUM SALT COMPOUND, NONAQUEOUS ELECTROLYTE SOLUTION USING THE SAME, LITHIUM ION SECONDARY CELL AND LITHIUM ION CAPACITOR |
US10446871B2 (en) | 2015-05-27 | 2019-10-15 | Ube Industries, Ltd. | Lithium salt compound, nonaqueous electrolyte solution using same, lithium ion secondary battery and lithium ion capacitor |
JP2020198206A (ja) * | 2019-05-31 | 2020-12-10 | 株式会社豊田自動織機 | 電解液及びリチウムイオン二次電池 |
JP7243461B2 (ja) | 2019-05-31 | 2023-03-22 | 株式会社豊田自動織機 | 電解液及びリチウムイオン二次電池 |
CN113851723A (zh) * | 2020-06-28 | 2021-12-28 | 深圳新宙邦科技股份有限公司 | 一种电解液及金属-硫电池 |
WO2022138490A1 (ja) * | 2020-12-25 | 2022-06-30 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011136226A1 (ja) | 2013-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5605221B2 (ja) | 二次電池用非水電解液および二次電池 | |
WO2011136226A1 (ja) | 二次電池用非水電解液および二次電池 | |
JP5942849B2 (ja) | 二次電池用非水電解液および二次電池 | |
US8586250B2 (en) | Non-aqueous electrolyte solution for storage battery devices, and storage battery device | |
JP5786856B2 (ja) | 二次電池用非水電解液および二次電池 | |
JP5277043B2 (ja) | 非水電解液 | |
US20120214073A1 (en) | Non-aqueous electrolyte solution for secondary batteries, and secondary battery | |
US20120107701A1 (en) | Electrolyte solution for chargeable device, electrolyte solution for lithium ion secondary battery, and secondary battery | |
JP5545292B2 (ja) | 蓄電デバイス用電解液および蓄電デバイス | |
WO2012086602A1 (ja) | 二次電池用非水電解液および二次電池 | |
WO2014065246A1 (ja) | 二次電池用非水電解液およびリチウムイオン二次電池 | |
JP5556818B2 (ja) | 二次電池用非水電解液 | |
JP2011040311A (ja) | 二次電池用電解液およびリチウムイオン二次電池 | |
WO2012011508A1 (ja) | 二次電池用非水電解液および二次電池 | |
WO2012081710A1 (ja) | 二次電池用非水電解液および二次電池 | |
JP2013101766A (ja) | 二次電池用非水電解液および二次電池 | |
JP2013041793A (ja) | 非水電解液二次電池 | |
WO2012173253A1 (ja) | 二次電池用非水電解液および二次電池 | |
WO2012115112A1 (ja) | 二次電池用非水電解液および二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11775007 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012512859 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11775007 Country of ref document: EP Kind code of ref document: A1 |