WO2013069793A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2013069793A1
WO2013069793A1 PCT/JP2012/079184 JP2012079184W WO2013069793A1 WO 2013069793 A1 WO2013069793 A1 WO 2013069793A1 JP 2012079184 W JP2012079184 W JP 2012079184W WO 2013069793 A1 WO2013069793 A1 WO 2013069793A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
secondary battery
electrolyte secondary
compound represented
Prior art date
Application number
PCT/JP2012/079184
Other languages
English (en)
French (fr)
Inventor
真男 岩谷
康人 神座
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013069793A1 publication Critical patent/WO2013069793A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers. In recent years, it is also expected to be used as an in-vehicle power source for driving a motor, which is the key to the spread of electric vehicles, in order to solve environmental and energy problems. However, in order to obtain a practical on-vehicle power source for driving a motor, a discharge capacity capable of obtaining a sufficient travel distance is required, and a battery having a higher energy density is desired.
  • lithium cobalt oxide LiCoO 2
  • LiNiO 2 lithium nickel compound
  • LiCo cobalt nickel manganese composite oxide for example, LiCo 1/3 Ni 1/3 Mn 1
  • Layered rock salt type compounds such as / 3 O 2
  • spinel type manganese compounds LiMn 2 O 4
  • olivine iron lithium compounds LiFePO 4
  • any of these positive electrode materials has a capacity density of less than 200 mAh / g, and a sufficient discharge capacity cannot be obtained as an in-vehicle power source for driving a motor.
  • Patent Document 1 proposes a positive electrode material for a lithium ion battery, characterized in that an oxidation treatment is performed on a positive electrode material for a lithium ion battery using the same solid solution.
  • Patent Document 3 a nonaqueous electrolyte mainly composed of ⁇ -butyrolactone has been proposed as a nonaqueous electrolyte that can withstand a high charging voltage.
  • Patent Document 4 a non-aqueous electrolyte containing a specific cyclic sulfone has been proposed.
  • Japanese Patent No. 3539518 Japanese Unexamined Patent Publication No. 2008-270201 Japanese Unexamined Patent Publication No. 2003-272704 Japanese Patent No. 3618714
  • the solid solution positive electrode using Li 2 MnO 3 which is a high capacity positive electrode candidate material described in Patent Document 1 has a large discharge capacity, but if the charge / discharge potential is high, the cycle characteristics are poor. There was a problem that it deteriorated easily by repeated discharge. Therefore, even a lithium ion battery using such a solid solution positive electrode as a high-capacity positive electrode has a problem that cycle durability under a high-capacity use condition is poor, and deterioration occurs immediately when charging / discharging at a high voltage. It was.
  • Patent Document 2 an attempt is made to improve the above-described degradation problem by oxidation treatment, but the high-voltage charge / discharge cycle characteristics still do not have practically sufficient performance.
  • the non-aqueous electrolyte of Patent Document 3 has only been confirmed to have cycle characteristics of about 10 cycles while being able to withstand a high charge voltage, and can withstand the use of repeated charge / discharge required in practice. I can not say.
  • the non-aqueous electrolyte of patent document 4 it is not examined whether practically sufficient cycle characteristics can be obtained by charging and discharging at a high voltage.
  • the present invention has been made in view of the above problems, can be charged at a high voltage, can have a high capacity, and can withstand the use of repetitive charging / discharging that is practically required as an in-vehicle power source for driving a motor. It is an object to provide a nonaqueous electrolyte secondary battery to be obtained.
  • the non-aqueous electrolyte is One or more compounds ( ⁇ ) selected from the group consisting of cyclic carbonate compounds, chain carbonate compounds, cyclic ester compounds, and chain ester compounds, LiPF 6 , LiClO 4 , LiBF 4 , and general formula (A) Compound represented by formula (B), compound represented by formula (C), LiCF 3 SO 3 , LiC 4 F 9 CO 2 , LiC (CF 3 SO 2 ) 3 , and LiN (CF 3) SO 2 ) comprising at least one lithium salt ( ⁇ ) selected from the group consisting of 2 and a base electrolyte solution and at least one compound represented by the general formula (II) Non-aqueous electrolyte secondary battery.
  • R 1 to R 6 each independently include a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms which may contain an etheric oxygen atom, or an etheric oxygen atom. And a fluorine-containing alkyl group having 1 to 4 carbon atoms, and m is an integer of 1 to 4.
  • non-aqueous electrolyte secondary battery that can be charged at a high voltage to obtain a high capacity and that can withstand the use of repeated charge and discharge that is practically required.
  • the non-aqueous electrolyte secondary battery of the present invention has a positive electrode and a negative electrode facing each other with a separator interposed therebetween, and a non-aqueous electrolyte.
  • a compound represented by the following formula (I) or formula (I ′) is used as the positive electrode active material.
  • the notation of the compound represented by the formula (I) or the formula (I ′) is a composition formula before performing treatment such as charge / discharge and activation.
  • the activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the positive electrode active material.
  • an ordinary activation method there is an electrochemical activation method in which charging is performed at a voltage higher than 4.4 V or 4.6 V (a value expressed as a potential difference from the oxidation-reduction potential of Li + / Li).
  • the activation method performed chemically is mentioned by performing the chemical reaction using acids, such as a sulfuric acid, hydrochloric acid, or nitric acid.
  • Me ′ is at least one selected from Co, Ni, Cr, Fe, Al, Ti, Zr and Mg. Further, x, y, z, p, and q in the formula (I) satisfy the relationships of the following formulas (I-1) to (I-8). 0.09 ⁇ x ⁇ 0.3 ............
  • the proportion of Li exceeds 1.2 times mol with respect to the total of transition metal elements Mn and Me ′.
  • the composition ratio of Li element to the total molar amount of the transition metal element is preferably 1.25 ⁇ (1 + x) / (y + z) ⁇ 1.75, and 1.35 ⁇ (1 + x) / (y + z) ⁇ 1.65. More preferably, 1.40 ⁇ (1 + x) / (y + z) ⁇ 1.55 is particularly preferable.
  • the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained when a high charging voltage of 4.6 V or higher is applied.
  • the compound (I) contains Mn. Further, the ratio of Mn to the total amount of Mn and Me ′ is 0.4 to 0.8 as shown in the formula (I-6), and preferably 0.55 to 0.75. When the proportion of Mn is in the range of formula (I-6), the discharge capacity becomes high.
  • q represents the proportion of F, but includes 0 as shown in Formula (I-5). That is, the compound (I) includes a compound in which F is not present.
  • p is a value determined according to x, y, z, and q, and is in a range exceeding 1.9 and less than 2.1 as shown in Formula (I-4).
  • the compound (I ′) represented by the following formula (I ′) is more preferable.
  • the proportion of Li exceeds 1.2 times mol with respect to the total of transition metal elements Mn, Ni, and Co. Less than 8.
  • the composition ratio of the Li element to the total molar amount of the transition metal element is preferably 1.35 ⁇ (1 + x) / (y + v + w) ⁇ 1.65, and 1.45 ⁇ (1 + x) / (y + v + w) ⁇ 1.55. More preferred.
  • the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained when a high charging voltage of 4.6 V or higher is applied.
  • Compound (I) or Compound (I ′) preferably has a layered rock salt type crystal structure (space group R-3m).
  • XRD X-ray diffraction
  • the surface of the compound (I) or the compound (I ′) is at least one metal element selected from the group consisting of Al, Y, Ga, In, La, Pr, Nd, Gd, Dy, Er, and Yb.
  • a compound containing Li and a nonmetallic element P, S, B).
  • the positive electrode is formed by forming a positive electrode layer containing a positive electrode active material, a conductivity-imparting agent, and a binder on a current collector.
  • a conductivity-imparting agent in addition to a carbon material, a conductive oxide powder or the like can be used.
  • the binder a resin binder such as polyvinylidene fluoride and / or a rubber binder such as hydrocarbon rubber or fluorine rubber can be used.
  • As the current collector a metal thin film mainly composed of Al or the like can be used.
  • the content of the conductivity-imparting agent in the positive electrode is preferably 1 to 10% by mass of the entire positive electrode layer, and the content of the binder is also preferably about 1 to 10% by mass of the entire positive electrode layer.
  • the ratio between the conductivity-imparting agent and the binder is equal to or less than the preferable upper limit value, the ratio of the active material in the positive electrode layer can be sufficiently secured, and a sufficient capacity per unit mass can be obtained. If the ratio between the conductivity-imparting agent and the binder is too small, the conductivity may not be maintained, or a problem of electrode peeling may occur.
  • the proportion of the active material in the positive electrode layer is preferably 80 to 98% by mass.
  • the negative electrode is formed by forming a negative electrode layer containing a powdered negative electrode active material, a conductivity-imparting agent, and a binder on a current collector.
  • the negative electrode active material used for the negative electrode is not particularly limited as long as lithium ions can be occluded during charging and released during discharging, and known materials can be used. Specific examples include carbon materials such as graphite, coke, and hard carbon, lithium alloys such as lithium-aluminum alloy, lithium-lead alloy, and lithium-tin alloy, lithium metal, Si, SnO 2 , SnO, TiO 2 , and Nb 2.
  • a metal oxide having a base potential lower than that of the positive electrode active material such as O 2 SiO, can be used.
  • the negative electrode binder and the conductivity-imparting agent those equivalent to the positive electrode can be used.
  • the current collector a metal thin film mainly composed of Cu or the like can be used.
  • the negative electrode active material can keep its shape by itself (for example, a lithium metal thin film), the negative electrode can be formed only with the negative electrode active material.
  • a non-aqueous electrolyte is an electrolyte that does not substantially contain water, and even if it contains water, the amount of water is in a range where performance degradation of a secondary battery using the non-aqueous electrolyte is not observed.
  • the amount of water that can be contained in the non-aqueous electrolyte is preferably 500 ppm by mass or less, more preferably 100 ppm by mass or less, and 50 ppm by mass or less with respect to the total mass of the non-aqueous electrolyte. It is particularly preferred.
  • the lower limit of the moisture content is 0 mass ppm.
  • the nonaqueous electrolytic solution in the present invention comprises a base electrolytic solution and one or more compounds represented by the general formula (II) described later.
  • the base electrolyte contains one or more compounds ( ⁇ ) and one or more lithium salts ( ⁇ ) described below.
  • the compound ( ⁇ ) is a compound selected from the group consisting of a cyclic carbonate compound, a chain carbonate compound, a cyclic ester compound, and a chain ester compound.
  • the proportion of the compound ( ⁇ ) in the base electrolyte is preferably 50 to 99.8% by mass, more preferably 60 to 99.5% by mass, and 70 to 99% by mass. Particularly preferred.
  • the lithium salt ( ⁇ ) can be dissolved well. Moreover, if it is below a preferable upper limit, sufficient quantity of lithium salt ((beta)) can be contained.
  • the cyclic carbonate compound is a compound in which the ring skeleton has a ring structure composed of a carbon atom and an oxygen atom, and the ring structure has a carbonate bond represented by —O—C ( ⁇ O) —O—.
  • the ring structure in the cyclic carbonate compound is preferably a 4- to 10-membered ring, more preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring, and particularly preferably a 5-membered ring from the viewpoint of availability.
  • the ring structure of the cyclic carbonate compound is preferably a ring structure having one carbonate bond.
  • a ring structure in which a carbonate bond is formed by linking with a linear alkylene group or vinylene group is more preferable.
  • the linear alkylene group preferably has 1 to 7 carbon atoms, more preferably 1 to 4, more preferably 2 or 3 2 is particularly preferable.
  • Specific examples include propylene carbonate (PC) and ethylene carbonate (EC).
  • Examples of the carbonate compound having a ring structure in which a carbonate bond is linked to a vinylene group include vinylene carbonate and dimethyl vinylene carbonate, and vinylene carbonate is particularly preferable.
  • the cyclic carbonate compound is also preferably a compound in which one or more hydrogen atoms of the linear alkylene group are substituted with a substituent.
  • a substituent for example, a halogen atom, an alkyl group, a halogenated alkyl group, a vinyl group, or an allyl group is preferable. Specific examples include fluoroethylene carbonate.
  • the base electrolyte contains a cyclic carbonate compound
  • the cyclic carbonate compound may be only one type or two or more types. The inclusion of a cyclic carbonate compound is preferable because the dielectric constant of the non-aqueous electrolyte can be increased.
  • the chain carbonate compound is a chain compound having no carbonate structure and having a carbonate bond represented by —O—C ( ⁇ O) —O—.
  • the chain carbonate compound is preferably a chain monocarbonate having one carbonate bond. Examples of the chain monocarbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC).
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the chain carbonate compound may be only one type or two or more types. It is preferable to contain a chain carbonate compound because the viscosity of the nonaqueous electrolytic solution can be reduced.
  • the cyclic ester compound is a compound in which the ring skeleton has a ring structure composed of a carbon atom and an oxygen atom, and the ring structure has an ester bond represented by —O—C ( ⁇ O) —C—.
  • the cyclic ester compound is preferably a compound that does not contain a carbon-carbon unsaturated bond in the molecule.
  • the cyclic structure in the cyclic ester compound is preferably a 4- to 10-membered ring, more preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring, and particularly preferably a 5-membered ring from the viewpoint of availability.
  • the ring structure of the cyclic ester compound is preferably a ring structure having one ester bond, and more preferably a ring structure formed by linking an ester bond with a linear alkylene group.
  • the linear alkylene group preferably has 1 to 7 carbon atoms, more preferably 1 to 4, more preferably 2 or 3, and particularly preferably 2.
  • the cyclic ester compound may be a compound in which one or more hydrogen atoms of the linear alkylene group are substituted with a substituent. Examples of the substituent include a halogen atom, an alkyl group, and a halogenated alkyl group.
  • cyclic ester compounds such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -hexanolactone, and ⁇ -valerolactone, and one hydrogen atom bonded to the carbon atom forming the ring structure of the cyclic ester compound.
  • examples thereof include compounds in which at least one group is substituted with a halogen atom, an alkyl group, or a halogenated alkyl group.
  • ⁇ -butyrolactone or ⁇ -valerolactone is preferable, and ⁇ -butyrolactone is particularly preferable from the viewpoint of easy availability and properties of the electrolytic solution.
  • the cyclic ester compound may be only one type or two or more types. The inclusion of a cyclic ester compound is preferable because the stability of the electrolytic solution is improved.
  • the chain ester compound is a chain compound having no ester structure and having an ester bond represented by —O—C ( ⁇ O) —C—.
  • the chain ester compound is preferably a chain monoester having one ester bond. Examples of the chain monoester include ethyl acetate, ethyl butyrate, butyl acetate and the like.
  • the chain ester compound may be only one type or two or more types. It is preferable to include a chain ester compound because the viscosity of the electrolytic solution can be easily reduced.
  • the base electrolyte may contain any two or more of a cyclic carbonate compound, a chain carbonate compound, a cyclic ester compound, and a chain ester compound. You may contain all four types.
  • the base electrolyte solution preferably contains one or more compounds ( ⁇ ′) selected from the group consisting of the following compound (1), compound (2), and compound (3).
  • R 7 to R 18 are each independently a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group, and X is an oxygen atom or CH 2 .
  • R 7 to R 18 are halogen atoms, each is preferably independently a fluorine atom or a chlorine atom.
  • R 7 to R 18 are alkyl groups, the alkyl group preferably has 1 to 6 carbon atoms.
  • R 7 to R 18 are halogenated alkyl groups the alkyl group preferably has 1 to 6 carbon atoms, and the halogen atom is preferably a fluorine atom or a chlorine atom.
  • the proportion of the compound ( ⁇ ′) in the base electrolyte solution that is, the proportion of the total amount of the compound (1), the compound (2) and the compound (3) in the base electrolyte solution is 50 to 99.8% by mass. It is preferably 60 to 99.5% by mass, more preferably 70 to 99% by mass.
  • the ratio of each of the compound (1), the compound (2), and the compound (3) to the entire compound ( ⁇ ′) is 5 to 100 mass% for the compound (1) and 0 to 95 mass for the compound (2).
  • the compound (3) is preferably 0 to 10% by mass, the compound (1) is 10 to 100% by mass, the compound (2) is 0 to 90% by mass, and the compound (3) is 0 to 5% by mass. More preferably, the compound (1) is 20 to 100% by mass, the compound (2) is 0 to 80% by mass, and the compound (3) is particularly preferably 0 to 3% by mass.
  • the lithium salt ( ⁇ ) is LiPF 6 , LiClO 4 , LiBF 4 , the following compound (A) (where k is an integer of 1 to 5), the following compound (B), the following compound (C), LiCF 3.
  • Examples of the compound (A) include the following compound (A-1) to compound (A-4).
  • the compound (A) preferably includes a compound (A-2) in which k is 2, and is composed of a compound (A-2) in which k is 2, from the viewpoint of easily obtaining a non-aqueous electrolyte with high conductivity. It is more preferable.
  • the concentration of the lithium salt ( ⁇ ) in the base electrolyte is preferably 0.5 mol / l to 1.5 mol / l. In terms of mass, it is preferably 5 to 50% by mass, more preferably 8 to 30% by mass, and further preferably 10 to 20% by mass. If this concentration is too high, the viscosity increases, and if the concentration is too low, the electrical conductivity decreases.
  • the lithium salt ( ⁇ ) is preferably dissolved in the base electrolyte.
  • the base electrolyte may contain a conventional nonaqueous electrolyte solvent other than those described above.
  • chain ethers such as 1,2-dimethoxymethane (DME), 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide , Formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2 -Oxazolidinone, ethylene carbonate derivative, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, anisole, N-methylpyrrolidone and the
  • the nonaqueous electrolytic solution of the present invention contains one or more compounds represented by the formula (II).
  • R 1 to R 6 each independently include a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms which may contain an etheric oxygen atom, or an etheric oxygen atom.
  • a fluorine-containing alkyl group having 1 to 4 carbon atoms, and m is an integer of 1 to 4.
  • R 1 to R 6 are each independently preferably a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and more preferably a hydrogen atom, a fluorine atom, or a methyl group.
  • compound (II) is preferably sulfolane, which is compound (II-1), because it is easy to enter and inexpensive. Specifically, the following compounds (II-1) to (II-5) are preferable.
  • Compound (II) may be only one type or two or more types.
  • the energy density can be maintained by suppressing the decrease in the average discharge voltage even when charging / discharging at a high voltage.
  • the content of the compound (II) in the nonaqueous electrolytic solution is preferably 0.2 to 30.0 parts by mass, and 0.5 to 20.0 parts by mass with respect to 100 parts by mass of the base electrolytic solution. It is more preferable. When the content of compound (II) is at least the preferred lower limit, it becomes easy to obtain good high potential charge / discharge cycle characteristics. When the content of the compound (II) is not more than the preferable upper limit value, various characteristics of the electrolytic solution such as conductivity and low temperature characteristics can be achieved at a high level.
  • the material and shape of the porous membrane as the separator are not particularly limited as long as it is stable with respect to the non-aqueous electrolyte and has excellent liquid retention properties.
  • Polyvinylidene fluoride, polytetrafluoroethylene, ethylene and tetrafluoroethylene A porous sheet or non-woven fabric made of a fluororesin such as a copolymer, polyimide, or a polyolefin such as polyethylene or polypropylene is preferred, and the material is preferably a polyolefin such as polyethylene or polypropylene.
  • the lithium secondary battery according to the present invention is, for example, laminated in a dry air or an inert gas atmosphere by laminating a negative electrode and a positive electrode via a separator, or winding the laminated one, and then in an outer container such as a can case.
  • a battery can be manufactured by housing, injecting an electrolytic solution, and sealing with a flexible film made of a laminate of a synthetic resin and a metal foil.
  • the configuration and shape of the battery is not particularly limited, and can take the form of a positive electrode facing the separator, a wound type wound with the negative electrode, a laminated type, etc., and a coin type, laminate pack, square type, etc. It can take the form of a cell, a cylindrical cell or the like.
  • the charging voltage of the lithium secondary battery according to the present invention is preferably 4.2 V or higher, more preferably 4.4 V or higher, and particularly preferably 4.5 V or higher. Moreover, 5.0V or less is preferable, 4.9V or less is more preferable, and 4.8V or less is especially preferable.
  • LiPF 6 was dissolved in a carbonate-based solvent in which ethylene carbonate and diethyl carbonate were mixed in an equal volume so as to have a concentration of 1M (1 mol LiPF 6 / l (liter) electrolytic solution) to obtain a test electrolytic solution of a reference example.
  • a specific additive was added at a specific ratio to obtain test electrolyte solutions of Examples and Comparative Examples.
  • Table 1 shows the types and amounts of additives in the test electrolytes of the examples and comparative examples (the test electrolyte of the reference example is 100 parts by mass).
  • the compound (II-1) in Table 1 is a compound represented by the general formula (II-1).
  • a negative electrode was prepared by punching a lithium metal foil having a thickness of 300 ⁇ m into a circle having a diameter of 19 mm.
  • a separator a polyolefin microporous film having a thickness of 20 ⁇ m was present between the positive electrode and the negative electrode, and 0.5 mL of each test electrolyte was added thereto to prepare an evaluation cell.
  • Table 1 shows the number of cycles when the charge / discharge cycle test was stopped. Further, Table 1 shows the ratio of the discharge capacity at the time when the charge / discharge cycle test is stopped to the discharge capacity at the fifth cycle as the discharge capacity maintenance ratio when the 80 cycles are completed or when it is stopped halfway.
  • Table 2 shows the ratio of the average discharge voltage at the completion of 80 cycles to the average discharge voltage at the fifth cycle as the average discharge voltage maintenance ratio.
  • Table 3 shows the ratio with respect to the discharge energy of the 5th cycle of the discharge energy at the time of 80th cycle completion as a discharge energy maintenance factor.
  • the discharge energy is a numerical value represented by the product of the discharge capacity and the average discharge voltage. The larger the numerical value, the larger the work that can be performed by the nonaqueous electrolyte secondary battery.
  • Example 1 As shown in Tables 1 and 2, in Example 1, high values were obtained for both the discharge capacity retention ratio and the average discharge voltage at the 80th cycle. As a result, as shown in Table 3, a high discharge energy maintenance rate was obtained.
  • the non-aqueous electrolyte secondary battery of the present invention can be charged at a high voltage to obtain a high capacity, and can be used as a vehicle-mounted power source for driving a motor.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-247642 filed on November 11, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高電圧で充電し、高容量を得ることが可能であり、かつ、モータ駆動用の車載電源として実用上求められる繰り返しの使用に耐え得る非水電解液二次電池を提供する。 固溶体系の正極と負極と非水電解液とを有し、前記非水電解液が、特定の化合物(α)とリチウム塩(β)を含むベース電解液と、一般式(II)で表わされる1種以上の化合物(R~Rはそれぞれ独立に水素原子、フッ素原子、メチル基等であり、mは1~4の整数である。)と、を含有する非水電解液二次電池。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池、特にリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。また、近年、環境、エネルギー問題の解決へ向けて、電気自動車普及の鍵を握るモータ駆動用の車載電源としても期待されている。
 しかしながら、実用的なモータ駆動用の車載電源とするためには、充分な走行距離が得られる放電容量が必要であり、より高エネルギー密度の電池が望まれている。
 現在、リチウム二次電池用の正極活物質としては、リチウムコバルト酸化物(LiCoO)、リチウムニッケル化合物(LiNiO)、リチウムコバルトニッケルマンガン複合酸化物(例えばLiCo1/3Ni1/3Mn1/3)等の層状岩塩型化合物や、スピネル型マンガン化合物(LiMn)、オリビン鉄リチウム化合物(LiFePO)等が知られている。しかしながら、これらの正極材料はいずれも容量密度が200mAh/gに満たず、モータ駆動用の車載電源としては、充分な放電容量が得られない。
 この要請にこたえられる可能性のある正極材料としていわゆる固溶体系正極が検討されている。なかでも、電気化学的に不活性の層状のLiMnOと、電気化学的に活性な層状のLiMO(ここでMは、Co、Ni等の遷移金属)との固溶体であって、Ni、Co、Mn等の遷移金属元素に対するLi元素の比率を高くした複合酸化物は、200mAh/gを超える大きなエネルギー密度を示しうる高容量正極候補材料として期待されている(たとえば特許文献1)。
 また、特許文献2では同様の固溶体を用いたリチウムイオン電池用正極材料において、酸化処理が施されていることを特徴とするリチウムイオン電池用正極材料が提案されている。
 また、高い放電容量を得るためには高い充電電圧が必要であるが、充電電圧が高いと非水電解液の分解が生じサイクル特性が悪化しやすい。そこで、高い充電電圧に耐えうる非水電解液として、γ-ブチロラクトンを主成分とする非水電解液が提案されている(特許文献3)。
 一方、非水電解液二次電池の安全性の性能を向上させるため、特定の環状スルホンを含有する非水電解液が提案されている(特許文献4)。
日本特許第3539518号公報 日本特開2008-270201号公報 日本特開2003-272704号公報 日本特許第3618714号公報
 しかしながら、上記特許文献1に記載の高容量正極候補材料であるLiMnOを用いた固溶体系の正極では、放電容量は大きいものの、充放電電位を高くして使用すると、サイクル特性が悪く充放電の繰り返しで容易に劣化してしまうという問題があった。そのため、こうした固溶体系の正極を高容量正極として用いたリチウムイオン電池でも、高容量使用条件でのサイクル耐久性が悪く、高電圧にして充放電を行うとすぐに劣化してしまうという問題があった。
 特許文献2では、酸化処理により上記劣化の問題を改善する試みがなされているが、依然高電圧の充放電サイクル特性は、実用上充分な性能となっていない。
 また、特許文献3の非水電解液は、高い充電電圧に耐えうるとされながら、10サイクル程度のサイクル特性が確認されただけであり、実用上求められる繰り返し充放電の使用に耐え得るとは言えない。
 また、特許文献4の非水電解液では、高電圧の充放電で、実用上充分なサイクル特性が得られるか否かの検討がされていない。
 本発明は、上記問題に鑑みなされたものであり、高電圧で充電し、高容量を得ることが可能であり、かつ、モータ駆動用の車載電源として実用上求められる繰り返し充放電の使用に耐え得る非水電解液二次電池を提供することを課題とする。
 本発明は、以下の構成を要旨とするものである。
[1]一般式(I)で表わされる化合物を正極活物質とする正極と、負極と、非水電解液と、を有し、
 前記非水電解液は、
環状カーボネート化合物、鎖状カーボネート化合物、環状エステル化合物、および鎖状エステル化合物からなる群から選択される1種以上の化合物(α)と、LiPF、LiClO、LiBF、一般式(A)で表わされる化合物、一般式(B)で表わされる化合物、一般式(C)で表わされる化合物、LiCFSO、LiCCO、LiC(CFSO、およびLiN(CFSOからなる群から選択される1種以上のリチウム塩(β)と、を含むベース電解液と、一般式(II)で表わされる1種以上の化合物と、を含有することを特徴とする非水電解液二次電池。
  Li(LiMnMe´)O ………(I)
Figure JPOXMLDOC01-appb-C000003
 ただし、式(I)において、Me´は、Co、Ni、Cr、Fe、Al、Ti、ZrおよびMgからなる群から選ばれる少なくとも1種である。
 また、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1であり、かつ0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。
 また、式(A)において、kは1~5の整数である。
 また、式(II)において、R~Rは、それぞれ独立に水素原子、ハロゲン原子、エーテル性酸素原子を含んでいてもよい炭素数1~4のアルキル基、またはエーテル性酸素原子を含んでいてもよい炭素数1~4の含フッ素アルキル基であり、mは1~4の整数である。
[2]式(II)で表わされる化合物が一般式(II-1)~(II-5)で表わされる化合物からなる群から選択される1以上である上記[1]に記載の非水電解液二次電池。
Figure JPOXMLDOC01-appb-C000004
[3]式(II)で表わされる化合物が、一般式(II-1)で表わされるスルホランである上記[1]に記載の非水電解液二次電池。
[4]非水電解液における式(II)で表わされる化合物の含有量が、ベース電解液100質量部に対して、0.2~30.0質量部である上記[1]~[3]のいずれか一項に記載の非水電解液二次電池。
[5]前記ベース電解液に占める前記化合物(α)の割合が、50~99.8質量%である上記[1]~[4]のいずれか一項に記載の非水電解液二次電池。
[6]前記ベース電解液における前記リチウム塩(β)の濃度が、0.5mol/l~1.5mol/lである上記[1]~[5]のいずれか一項に記載の非水電解液二次電池。
[7]式(I)で表わされる化合物が下式(I’)で表わされる化合物である上記[1]~[6]のいずれか一項に記載の非水電解液二次電池。
    Li(LiMnNiCo)O …………(I’)
 ただし、式(I’)において、0.09<x<0.3、0.36<y<0.73、0<v<0.32、0<w<0.32、1.9<p<2.1、x+y+v+w=1、1.2<(1+x)/(y+v+w)<1.8である。
[8]充電電圧を4.4V以上として用いる上記[1]~[7]のいずれか一項に記載の非水電解液二次電池。
 本発明によれば、高電圧で充電し、高容量を得ることが可能であり、かつ、実用上求められる繰り返し充放電の使用に耐え得る非水電解液二次電池を提供することができる。
 本明細書中では、特に説明しない限り、式(I)で表わされる化合物を化合物(I)と示し、他の式についても同様に示す。本発明の非水電解液二次電池は、セパレータを挟んで対向する正極および負極と、非水電解液と、を有している。
[正極]
 本発明の正極では、正極活物質としては、下記式(I)または式(I’)で表わされる化合物を用いる。式(I)または式(I’)で表わされる化合物の表記は、充放電や活性化等の処理を行う前の組成式である。ここで、活性化とは、酸化リチウム(LiO)、またはリチウムおよび酸化リチウムを、正極活物質から取り除くことをいう。通常の活性化方法としては、4.4Vまたは4.6V(Li/Liの酸化還元電位との電位差として表わされる値である。)より大きな電圧で充電する電気化学的活性化法が挙げられる。また、硫酸、塩酸または硝酸等の酸を用いた化学反応を行うことにより、化学的に行う活性化方法が挙げられる。
 Li(LiMnMe´)O …………(I)
 ただし、式(I)において、Me´は、Co、Ni、Cr、Fe、Al、Ti、ZrおよびMgから選ばれる少なくとも1種である。
 また、式(I)のx、y、z、p、qは、以下の式(I-1)~(I-8)の関係を満たしている。
 0.09<x<0.3…………(I-1)
 y>0…………(I-2)
 z>0…………(I-3)
 1.9<p<2.1…………(I-4)
 0≦q≦0.1…………(I-5)
 0.4≦y/(y+z)≦0.8…………(I-6)
 x+y+z=1…………(I-7)
 1.2<(1+x)/(y+z)…………(I-8)
 式(I-8)に示すように、化合物(I)は、Liの割合が、遷移金属元素であるMnとMe´の合計に対して1.2倍モルを超える。
 前記遷移金属元素の総モル量に対するLi元素の組成比は、1.25≦(1+x)/(y+z)≦1.75が好ましく、1.35≦(1+x)/(y+z)≦1.65がより好ましく、1.40≦(1+x)/(y+z)≦1.55が特に好ましい。この組成比が前記の範囲であれば、4.6V以上の高い充電電圧を印加した場合に、単位質量あたりの放電容量が高い正極材料が得られる。
 また、式(I-2)に示すように、化合物(I)はMnを含む。また、MnとMe´の総量に対するMnの割合は、式(I-6)に示すように0.4~0.8であり、0.55~0.75が好ましい。Mnの割合が式(I-6)の範囲であれば、放電容量が高容量となる。
 qはFの割合を示すが、式(I-5)に示すように0を含む。すなわち、化合物(I)には、Fが存在しない化合物が含まれる。
 pは、x、y、zおよびqに応じて決まる値であり、式(I-4)に示すように、1.9を超え2.1に満たない範囲である。
 化合物(I)の中でも、下式(I’)で表わされる化合物(I’)がより好ましい。
 Li(LiMnNiCo)O …………(I’)
 ただし、式(I’)のx、y、v、w、pは、以下の式(I’-1)~(I’-7)の関係を満たしている。
 0.09<x<0.3…………(I’-1)
 0.36<y<0.73…………(I’-2)
 0<v<0.32…………(I’-3)
 0<w<0.32…………(I’-4)
 1.9<p<2.1…………(I’-5)
 x+y+v+w=1…………(I’-6)
 1.2<(1+x)/(y+v+w)<1.8…………(I’-7)
 式(I’-7)に示すように、化合物(I’)は、Liの割合が、遷移金属元素であるMn、Ni、およびCoの合計に対して1.2倍モルを超え、1.8に満たない。
 前記遷移金属元素の総モル量に対するLi元素の組成比は、1.35<(1+x)/(y+v+w)<1.65が好ましく、1.45<(1+x)/(y+v+w)<1.55がより好ましい。この組成比が前記の範囲であれば、4.6V以上の高い充電電圧を印加した場合に、単位質量あたりの放電容量が高い正極材料が得られる。
 正極活物質としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、またはLi(Li0.20Ni0.13Co0.13Mn0.54)Oが特に好ましい。
 化合物(I)または化合物(I’)は、層状岩塩型結晶構造(空間群R-3m)であることが好ましい。また、遷移金属元素に対するLi元素の比率が高いため、X線源としてCuKα線を用いるXRD(X線回折)測定では、層状LiMnOと同様に、2θ=20~25°の範囲にピークが観察される。
 また、化合物(I)または化合物(I’)は、その表面をAl、Y、Ga、In、La、Pr、Nd、Gd、Dy、ErおよびYbからなる群から選ばれる少なくとも1種の金属元素を含む金属酸化物、および/またはLiおよび非金属元素(P、S、B)を含む化合物により被覆されていてもよい。
 正極は、正極活物質と導電付与剤と結着剤を含む正極層が、集電体上に形成されてなる。導電付与剤としては、炭素材料の他、導電性酸化物の粉末等を使用することができる。結着剤としてはポリフッ化ビニリデン等の樹脂バインダーおよび/または炭化水素ゴムやフッ素ゴム等のゴム系バインダーを用いることができる。集電体としてはAl等を主体とする金属薄膜を用いることができる。
 正極中の導電付与剤の含有量は、正極層全体の1~10質量%が好ましく、結着剤の含有量も正極層全体の1~10質量%程度が好ましい。導電付与剤と結着剤の割合が好ましい上限値以下であれば、正極層中の活物質の割合を充分に確保でき、単位質量あたりの充分な容量を得ることができる。導電付与剤と結着剤の割合が小さすぎると、導電性が保てなくなったり、電極剥離の問題が生じたりすることがある。正極層中の活物質の割合は、80~98質量%が好ましい。
[負極]
 負極は、粉末状の負極活物質と導電付与剤と結着剤を含む負極層が、集電体上に形成されてなる。負極に用いる負極活物質としては、リチウムイオンを充電時に吸蔵、放電時に放出することができれば、特に限定されるものでなく、公知のものを用いることができる。具体例としては、黒鉛、コークス、ハードカーボン等の炭素材料、リチウム-アルミニウム合金、リチウム-鉛合金、リチウム-錫合金等のリチウム合金、リチウム金属、Si、SnO、SnO、TiO、NbSiO等の電位が正極活物質に比べて卑な金属酸化物が挙げられる。
 負極の結着剤および導電付与剤は、正極と同等のものが使用できる。集電体としてはCu等を主体とする金属薄膜を用いることができる。
 なお、負極活物質が、それ自体で形状を保てる場合(例えばリチウム金属薄膜)は、負極活物質のみで負極を形成することができる。
[非水電解液]
 非水電解液とは、水を実質的に含まない電解液であり、仮に水を含んでいたとしてもその水分量が該非水電解液を用いた二次電池の性能劣化が見られない範囲の量である電解液である。かかる非水電解液中に含まれうる水分量は、非水電解液の総質量に対して500質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましく、50質量ppm以下であることが特に好ましい。水分量の下限値は、0質量ppmである。
 本発明における非水電解液は、ベース電解液と、後述の一般式(II)で表わされる1種以上の化合物とからなる。また、ベース電解液は、以下に説明する1種以上の化合物(α)および1種以上のリチウム塩(β)を含有する。
 化合物(α)は、環状カーボネート化合物、鎖状カーボネート化合物、環状エステル化合物、および鎖状エステル化合物からなる群から選択される化合物である。
 化合物(α)が、ベース電解液に占める割合は、50~99.8質量%であることが好ましく、60~99.5質量%であることがより好ましく、70~99質量%であることが特に好ましい。
 化合物(α)のベース電解液に占める割合が好ましい下限値以上であれば、リチウム塩(β)を良好に溶解させることができる。また、好ましい上限値以下であれば、充分な量のリチウム塩(β)を含有させることができる。
 環状カーボネート化合物とは、環骨格が炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-O-で表わされるカーボネート結合を有する化合物である。
 環状カーボネート化合物における環構造は、4~10員環が好ましく、4~7員環がより好ましく、入手容易な点から、5~6員環がさらに好ましく、5員環が特に好ましい。
 環状カーボネート化合物の環構造は、カーボネート結合を1つ有する環構造が好ましい。また、カーボネート結合が、直鎖アルキレン基またはビニレン基と連結して形成された環構造がより好ましい。
 カーボネート結合が、直鎖アルキレン基と連結して形成された環構造を有するカーボネート化合物の場合、直鎖アルキレン基の炭素数は1~7が好ましく、1~4がより好ましく、2または3がさらに好ましく、2が特に好ましい。具体的には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)が挙げられる。
 カーボネート結合が、ビニレン基と連結して形成された環構造を有するカーボネート化合物としては、ビニレンカーボネート、ジメチルビニレンカーボネートが挙げられ、ビニレンカーボネートが特に好ましい。
 また、環状カーボネート化合物は、前記直鎖アルキレン基の水素原子の1個以上を置換基で置換した化合物も好ましい。置換基としては、たとえば、ハロゲン原子、アルキル基、ハロゲン化アルキル基、ビニル基、またはアリル基が好ましい。具体的には、フルオロエチレンカーボネートが挙げられる。
 ベース電解液が環状カーボネート化合物を含有する場合には、環状カーボネート化合物は1種のみでもよく、2種以上であってもよい。環状カーボネート化合物を含有すると、非水電解液の誘電率を大きくすることができるので好ましい。
 鎖状カーボネート化合物とは、環構造を有さず、-O-C(=O)-O-で表わされるカーボネート結合を有する鎖状の化合物である。
 鎖状のカーボネート化合物は、カーボネート結合を1つ有する鎖状モノカーボネートが好ましい。鎖状モノカーボネートとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)が挙げられる。
 ベース電解液が鎖状カーボネート化合物を含有する場合には、鎖状カーボネート化合物は1種のみでもよく、2種以上であってもよい。鎖状カーボネート化合物を含有すると、非水電解液の粘度を低減できるので好ましい。
 環状エステル化合物とは、環骨格が炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-C-で表わされるエステル結合を有する化合物である。
 環状エステル化合物は、分子内に炭素-炭素不飽和結合を含まない化合物であることが好ましい。環状エステル化合物における環構造は、4~10員環が好ましく、4~7員環がより好ましく、入手容易な点から、5~6員環がさらに好ましく、5員環が特に好ましい。
 環状エステル化合物の環構造は、エステル結合を1つ有する環構造が好ましく、エステル結合が直鎖アルキレン基と連結して形成された環構造がより好ましい。直鎖アルキレン基の炭素数は1~7が好ましく、1~4がより好ましく、2または3がさらに好ましく、2が特に好ましい。また、環状エステル化合物は、前記直鎖アルキレン基の水素原子の1個以上を置換基で置換した化合物でもよい。置換基としては、たとえば、ハロゲン原子、アルキル基、ハロゲン化アルキル基等が挙げられる。
 具体例としては、γ-ブチロラクトン、γ-バレロラクトン、γ-ヘキサノラクトン、δ-バレロラクトン等の環状エステル化合物、および該環状エステル化合物の環構造を形成する炭素原子に結合する水素原子の1個以上が、ハロゲン原子、アルキル基、またはハロゲン化アルキル基に置換された化合物が挙げられる。なかでも、入手容易な点および電解液の性質の点から、γ-ブチロラクトン、またはγ-バレロラクトンが好ましく、γ-ブチロラクトンが特に好ましい。
 非水電解液が環状エステル化合物を含有する場合には、環状エステル化合物は1種のみでもよく、2種以上であってもよい。環状エステル化合物を含有すると、電解液の安定性が向上するので好ましい。
 鎖状エステル化合物とは、環構造を有さず、-O-C(=O)-C-で表わされるエステル結合を有する鎖状の化合物である。
 鎖状のエステル化合物は、エステル結合を1つ有する鎖状モノエステルが好ましい。鎖状モノエステルとしては、酢酸エチル、酪酸エチル、酢酸ブチル等が挙げられる。
 ベース電解液が鎖状エステル化合物を含有する場合には、鎖状エステル化合物は1種のみでもよく、2種以上であってもよい。鎖状エステル化合物を含有すると、電解液の粘度を低減しやすいので好ましい。
 ベース電解液は、環状カーボネート化合物、鎖状カーボネート化合物、環状エステル化合物、鎖状エステル化合物のいずれか二種以上を含有してもよい。四種総てを含有してもよい。
 ベース電解液は、下記化合物(1)、化合物(2)、および化合物(3)からなる群から選択される1種以上の化合物(α’)を含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(1)~(3)において、R~R18は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、またはハロゲン化アルキル基であり、Xは酸素原子またはCHである。
 R~R18がハロゲン原子である場合、各々独立にフッ素原子または塩素原子であることが好ましい。R~R18がアルキル基である場合、アルキル基の炭素数は1~6であることが好ましい。R~R18がハロゲン化アルキル基である場合、アルキル基の炭素数は1~6であることが好ましく、ハロゲン原子としては、フッ素原子、または塩素原子が好ましい。
 化合物(α’)が、ベース電解液に占める割合、すなわち、化合物(1)、化合物(2)、および化合物(3)の合計量がベース電解液に占める割合は、50~99.8質量%であることが好ましく、60~99.5質量%であることがより好ましく、70~99質量%であることが特に好ましい。
 化合物(1)、化合物(2)、および化合物(3)の各々が、化合物(α’)全体に占める割合は、化合物(1)が5~100質量%、化合物(2)が0~95質量%、化合物(3)が0~10質量%であることが好ましく、化合物(1)が10~100質量%、化合物(2)が0~90質量%、化合物(3)が0~5質量%であることがさらに好ましく、化合物(1)が20~100質量%、化合物(2)が0~80質量%、化合物(3)が0~3質量%であることが特に好ましい。
 リチウム塩(β)は、LiPF、LiClO、LiBF、下記化合物(A)(ただし、kは1~5の整数である。)、下記化合物(B)、下記化合物(C)、LiCFSO、LiCCO、LiC(CFSO、およびLiN(CFSOからなる群から選択されるリチウム塩である。
Figure JPOXMLDOC01-appb-C000006
 化合物(A)としては、たとえば、下記化合物(A-1)~化合物(A-4)が挙げられる。伝導度の高い非水電解液が得られやすい点から、化合物(A)としては、kが2の化合物(A-2)を含むことが好ましく、kが2の化合物(A-2)からなることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
 ベース電解液における前記リチウム塩(β)の濃度は、0.5mol/l~1.5mol/lとすることが好ましい。質量に換算すると、5~50質量%が好ましく、8~30質量%がより好ましく、10~20質量%がさらに好ましい。この濃度が高すぎると粘度が増加し、濃度が低すぎると電気伝導率が低下する。
 リチウム塩(β)は、ベース電解液に溶解していることが好ましい。
 ベース電解液は、上記以外の従来の非水電解液用溶媒を含有してもよい。例えば、1,2-ジメトキシメタン(DME)、1、2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、エチレンカーボネート誘導体、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、アニソール、N-メチルピロリドン、等が挙げられる。
 本発明の非水電解液は、式(II)で表わされる1種以上の化合物を含有する。
 ただし、式(II)において、R~Rは、それぞれ独立に水素原子、ハロゲン原子、エーテル性酸素原子を含んでいてもよい炭素数1~4のアルキル基、またはエーテル性酸素原子を含んでいてもよい炭素数1~4の含フッ素アルキル基であり、mは1~4の整数である。
Figure JPOXMLDOC01-appb-C000008
 R~Rの含フッ素アルキル基は、アルキル基の総ての水素原子がフッ素原子に置換されたパーフルオロアルキル基であっても、アルキル基の水素原子の一部がフッ素原子に置換された部分フッ素化アルキル基であってもよい。
 式(II)において、R~Rは、それぞれ独立に水素原子、フッ素原子、または炭素数1~4のアルキル基であることが好ましく、水素原子、フッ素原子またはメチル基であることがより好ましい。なかでも、化合物(II)は、化合物(II-1)であるスルホランが、入が容易で安価であるので好ましい。 
 具体的には、下記化合物(II-1)~(II-5)が好ましい。
Figure JPOXMLDOC01-appb-C000009
 化合物(II)は1種のみでもよく、2種以上であってもよい。本発明では、非水電解液が化合物(II)を含有することにより、高電圧で充放電を行っても、平均放電電圧の低下が抑制されることによりエネルギー密度を維持することができる。
 非水電解液における化合物(II)の含有量は、ベース電解液100質量部に対して、0.2~30.0質量部であることが好ましく、0.5~20.0質量部であることがより好ましい。
 化合物(II)の含有量が好ましい下限値以上であれば、良好な高電位の充放電サイクル特性を得ることが容易となる。化合物(II)の含有量が好ましい上限値以下であれば、伝導度や低温特性等電解液の諸特性を高い水準で両立することができる。
[セパレータ]
 セパレータとしての多孔膜の材質および形状は、非水電解液に対して安定であり、かつ保液性に優れていれば特に制限はなく、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンとテトラフルオロエチレンのコポリマー等のフッ素樹脂、ポリイミド、またはポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布が好ましく、材質はポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。また、これらの多孔膜に非水電解液を含浸させてゲル化させたものをゲル電解質として用いてもよい。
 本発明に係るリチウム二次電池は、例えば、乾燥空気または不活性ガス雰囲気において、負極および正極を、セパレータを介して積層し、あるいは積層したものを捲回した後に、缶ケース等の外装容器に収容し、電解液を注入し、合成樹脂と金属箔との積層体等からなる可とう性フィルム等によって封口することによって電池を製造することができる。
 電池の構成・形状は、特に制限がなく、セパレータを挟んで対向した正極、負極を捲回した捲回型、積層型等の形態をとることができ、また、コイン型、ラミネートパック、角型セル、円筒型セル等の形態をとることができる。
 本発明に係るリチウム二次電池の充電電圧は、4.2V以上が好ましく、4.4V以上がより好ましく、4.5V以上が特に好ましい。また、5.0V以下が好ましく、4.9V以下がより好ましく、4.8V以下が特に好ましい。
[試験電解液の調製]
 エチレンカーボネートとジエチルカーボネートを等容量で混合したカーボネート系溶媒に、1Mの濃度(1molLiPF/l(リットル)電解液)になるようにLiPFを溶解し、参照例の試験電解液とした。
 この参照例の試験電解液に対して、特定の添加剤を特定の割合で添加して、各実施例、比較例の試験電解液とした。各実施例、比較例の試験電解液における添加剤の種類と添加量(参照例の試験電解液を100質量部とする。)を表1に示す。
 なお、表1における化合物(II-1)は、一般式(II-1)に示す化合物である。
Figure JPOXMLDOC01-appb-C000010
[評価用セルの作製]
 正極活物質としてLi(Li0.2Ni0.128Co0.134Mn0.538)O 4.48gと、導電付与剤であるアセチレンブラック0.56gと、結着剤であるポリフッ化ビニリデン(PVdF)を12質量%を含有するN-メチルピロリドン(NMP)溶液12.55gとを混合し、スラリー化したものを厚さ20μmのアルミニウム箔上に塗工し、乾燥、プレスしたものを直径18mmの円形に打ち抜いたものを正極とした。また、厚さ300μmのリチウム金属箔を直径19mmの円形に打ち抜いたものを負極とした。セパレータとして厚さ20μmのポリオレフィン系微多孔膜を前記正極と負極の間に存在せしめ、そこに各試験電解液を0.5mL添加し、評価用セルを作成した。
[充放電サイクル試験]
 評価用セルを充放電機に接続し、1サイクル目は20mA/gの電流量で4.6V(リチウム金属に対する電圧。以下同様。)まで定電流充電を行った後、さらに4.6Vの定電圧で23時間充電を行い、充電後10分間休止後、20mA/gの電流で2.0Vに達するまで定電流放電を行った。2サイクル目以降は、200mA/gの電流量で4.6Vまで定電流充電を行った後、さらに4.6Vの定電圧で4時間充電を行い、充電後10分休止後、100mA/gの電流量で2.0Vに達するまで定電流放電を行った。そして、10分間の休止の後に次のサイクルの充放電を開始するようにして、最大80回の充放電サイクル試験を実施した。
 80回に至る前に放電容量維持率の著しい低下が見られた場合は、その時点で充放電サイクル試験を中止した。充放電サイクル試験中止時点のサイクル数を表1に示す。また、80サイクル完了時点、または途中で中止した場合には充放電サイクル試験中止時点の放電容量の、5サイクル目の放電容量に対する比率を放電容量維持率として表1に示す。
 また、参照例と実施例1については、80サイクル完了時点の平均放電電圧の5サイクル目の平均放電電圧に対する比率を平均放電電圧維持率として表2に示す。
 また、参照例と実施例1については、80サイクル完了時点の放電エネルギーの5サイクル目の放電エネルギーに対する比率を放電エネルギー維持率として表3に示す。放電エネルギーは放電容量と平均放電電圧との積で表わされる数値であり、数値が大きいほど該非水電解液二次電池が行うことの出来る仕事量が大きいことを意味する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表1、表2に示すように、実施例1では、80サイクル目において、放電容量維持率、平均放電電圧ともに高い値が得られた。それにより表3に示すように、放電エネルギー維持率も高い値が得られた。
 本発明の非水電解液二次電池は、高電圧で充電し、高容量を得ることが可能であり、モータ駆動用の車載電源として利用できる。
 なお、2011年11月11日に出願された日本特許出願2011-247642号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (8)

  1.  一般式(I)で表わされる化合物を正極活物質とする正極と、負極と、非水電解液と、を有し、
     前記非水電解液は、
    環状カーボネート化合物、鎖状カーボネート化合物、環状エステル化合物、および鎖状エステル化合物からなる群から選択される1種以上の化合物(α)と、LiPF、LiClO、LiBF、一般式(A)で表わされる化合物、一般式(B)で表わされる化合物、一般式(C)で表わされる化合物、LiCFSO、LiCCO、LiC(CFSO、およびLiN(CFSOからなる群から選択される1種以上のリチウム塩(β)と、を含むベース電解液と、一般式(II)で表わされる1種以上の化合物と、を含有することを特徴とする非水電解液二次電池。
     Li(LiMnMe´)O ………(I)
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(I)において、Me´は、Co、Ni、Cr、Fe、Al、Ti、ZrおよびMgからなる群から選ばれる少なくとも1種である。
     また、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1であり、かつ0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。
     また、式(A)において、kは1~5の整数である。
     また、式(II)において、R~Rは、それぞれ独立に水素原子、ハロゲン原子、エーテル性酸素原子を含んでいてもよい炭素数1~4のアルキル基、またはエーテル性酸素原子を含んでいてもよい炭素数1~4の含フッ素アルキル基であり、mは1~4の整数である。
  2.  式(II)で表わされる化合物が一般式(II-1)~(II-5)で表わされる化合物からなる群から選択される1以上である請求項1に記載の非水電解液二次電池。
    Figure JPOXMLDOC01-appb-C000002
  3.  式(II)で表わされる化合物が、一般式(II-1)で表わされるスルホランである請求項1に記載の非水電解液二次電池。
  4.  非水電解液における式(II)で表わされる化合物の含有量が、ベース電解液100質量部に対して、0.2~30.0質量部である請求項1~3のいずれか一項に記載の非水電解液二次電池。
  5.  前記ベース電解液に占める前記化合物(α)の割合が、50~99.8質量%である請求項1~4のいずれか一項に記載の非水電解液二次電池。
  6.  前記ベース電解液における前記リチウム塩(β)の濃度が、0.5mol/l~1.5mol/lである請求項1~5のいずれか一項に記載の非水電解液二次電池。
  7.  式(I)で表わされる化合物が下式(I’)で表わされる化合物である請求項1~6のいずれか一項に記載の非水電解液二次電池。
        Li(LiMnNiCo)O …………(I’)
     ただし、式(I’)において、0.09<x<0.3、0.36<y<0.73、0<v<0.32、0<w<0.32、1.9<p<2.1、x+y+v+w=1、1.2<(1+x)/(y+v+w)<1.8である。
  8.  充電電圧を4.4V以上として用いる請求項1~7のいずれか一項に記載の非水電解液二次電池。
PCT/JP2012/079184 2011-11-11 2012-11-09 非水電解液二次電池 WO2013069793A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247642 2011-11-11
JP2011247642A JP2015018604A (ja) 2011-11-11 2011-11-11 非水電解液二次電池

Publications (1)

Publication Number Publication Date
WO2013069793A1 true WO2013069793A1 (ja) 2013-05-16

Family

ID=48290158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079184 WO2013069793A1 (ja) 2011-11-11 2012-11-09 非水電解液二次電池

Country Status (2)

Country Link
JP (1) JP2015018604A (ja)
WO (1) WO2013069793A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046172A1 (ja) * 2013-09-24 2015-04-02 旭硝子株式会社 非水電解液二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086690A (ja) * 2008-09-30 2010-04-15 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2011014476A (ja) * 2009-07-06 2011-01-20 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
WO2011136226A1 (ja) * 2010-04-26 2011-11-03 旭硝子株式会社 二次電池用非水電解液および二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086690A (ja) * 2008-09-30 2010-04-15 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2011014476A (ja) * 2009-07-06 2011-01-20 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
WO2011136226A1 (ja) * 2010-04-26 2011-11-03 旭硝子株式会社 二次電池用非水電解液および二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046172A1 (ja) * 2013-09-24 2015-04-02 旭硝子株式会社 非水電解液二次電池
JPWO2015046172A1 (ja) * 2013-09-24 2017-03-09 旭硝子株式会社 非水電解液二次電池

Also Published As

Publication number Publication date
JP2015018604A (ja) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5910627B2 (ja) 二次電池
EP2876723B1 (en) Lithium secondary battery
JP2003151623A (ja) 非水系二次電池
JP2003142152A (ja) 非水電解質二次電池
JP3218982B2 (ja) 非水電解液とリチウム二次電池
WO2015080102A1 (ja) 二次電池用電解液およびこれを用いた二次電池
JP2005078820A (ja) 非水電解質二次電池
JP5357517B2 (ja) リチウムイオン二次電池
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
CN112470320A (zh) 电池用非水电解液及锂二次电池
CN111052486B (zh) 非水电解质二次电池
JP2002313416A (ja) 非水電解質二次電池
WO2013069790A1 (ja) 非水電解液二次電池
WO2013069791A1 (ja) 非水電解液二次電池
KR20130117709A (ko) 성능이 우수한 리튬 이차전지
JP7395816B2 (ja) 電池用非水電解液及びリチウム二次電池
CN110383563B (zh) 非水电解质和非水电解质二次电池
WO2019150901A1 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
WO2013069793A1 (ja) 非水電解液二次電池
JPWO2020090922A1 (ja) 非水電解質二次電池および非水電解液
JP4313982B2 (ja) 非水電解質二次電池
JP4759932B2 (ja) 非水電解質二次電池
KR20180075405A (ko) 비수 전해액, 비수 전해액 이차 전지 및 비수 전해액 이차 전지의 제조 방법
JP4543831B2 (ja) リチウム二次電池
JP7070979B2 (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP