WO2011025018A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2011025018A1
WO2011025018A1 PCT/JP2010/064755 JP2010064755W WO2011025018A1 WO 2011025018 A1 WO2011025018 A1 WO 2011025018A1 JP 2010064755 W JP2010064755 W JP 2010064755W WO 2011025018 A1 WO2011025018 A1 WO 2011025018A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
general formula
hydrogen atom
represented
Prior art date
Application number
PCT/JP2010/064755
Other languages
English (en)
French (fr)
Inventor
英治 福▲崎▼
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020127004770A priority Critical patent/KR101161598B1/ko
Priority to US13/393,186 priority patent/US9287515B2/en
Publication of WO2011025018A1 publication Critical patent/WO2011025018A1/ja
Priority to US14/953,934 priority patent/US10454042B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a light-emitting element that can emit light by converting electric energy into light, and particularly relates to an organic electroluminescent element (also referred to as a light-emitting element, an EL element, or an element).
  • an organic electroluminescent element also referred to as a light-emitting element, an EL element, or an element.
  • Organic electroluminescence (EL) elements are attracting attention as promising display elements because they can emit light with high luminance at a low voltage.
  • An important characteristic value of the organic electroluminescent element is power consumption.
  • the power consumption is represented by the product of voltage and current, and the lower the voltage value necessary to obtain the desired brightness and the lower the current value, the lower the power consumption of the element.
  • the iridium complex is used as a light-emitting material that achieves high light emission efficiency, but generally has poor solubility, and the device lifetime may be reduced due to aggregation or association of the complex.
  • the ligand has a condensed ring structure such as a quinoline ring and an isoquinoline ring, it is considered that the degree of freedom of molecular motion becomes small and aggregation tends to occur.
  • Patent Documents 4 and 5 attempts have been made to increase the solubility by introducing a specific substituent (Patent Documents 4 and 5), but the effect has not been sufficient.
  • Patent Documents 6 and 7 For the purpose of improving the luminous efficiency and durability of the phosphorescent light emitting device, devices using a compound having an indolocarbazole skeleton as a host material (Patent Documents 6 and 7) have been reported. Further improvements have been desired in terms of luminous efficiency.
  • indolocarbazole also has an extended p-conjugated plane and a small degree of freedom of molecular motion, so it is considered that association and aggregation are likely to occur.
  • an organic electroluminescent device as a method for forming a thin film which is an organic layer provided between a pair of electrodes, vacuum deposition is used as a vapor deposition method, spin coating method, printing method, ink jet method is used as a wet method. It has been broken. In particular, when the wet method is used, it is possible to use high molecular organic compounds that are difficult to form in a dry process such as vapor deposition. When used in flexible displays, etc., it is suitable in terms of durability such as flex resistance and film strength. This is particularly preferable when the area is increased. However, the organic electroluminescence device obtained by the wet method has a problem that the luminous efficiency and device durability are inferior.
  • An object of the present invention is to provide an organic electroluminescence device having excellent luminous efficiency and durability (particularly durability at high temperature driving).
  • An organic electroluminescent element having a pair of electrodes and at least one organic layer including a light emitting layer containing a light emitting material between the electrodes, the light emitting layer represented by the following general formula (3):
  • an organic electroluminescent device comprising at least one compound represented by the following general formula (D-1):
  • Z 3 represents benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, bipyridine, silicon atom, or carbon atom, and further represents an alkyl group, aryl group, silyl group, cyano group, fluorine atom, and these.
  • .n 3 is at least one optionally substituted by a group .
  • Y 3 is selected from the groups obtained by combining a group represented by the following general formula (3a-1) or (3a-2) is 1 Represents an integer of ⁇ 4)
  • Ring A represents an aromatic ring or a heterocyclic ring represented by General Formula (3b) that is condensed with an adjacent ring
  • Ring B is a general ring that is condensed with an adjacent ring.
  • X 3 represents C—R ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom.
  • R 34 and R 311 each independently represents benzene Represents a ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and these rings are further selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 33 represents a hydrogen atom
  • R 31 and R 32 are each independently a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or trifluoromethyl. These represent groups If possible, this group may be further substituted by at least one of an alkyl group having 1 to 6 carbon atoms and a phenyl group. * Represents a bond linked to Z 3. )
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ represents a hydrogen atom, an alkyl group, or an aryl group.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to iridium, and may be further substituted with an alkyl group or an aryl group, and R 5 is a group in which ring Q is a pyridine ring.
  • each R is independently water Atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, further a halogen atom, -R ', - OR', - N (R ') 2, -SR', - C (O) R From ', -C (O) OR', -C (O) N (R ') 2 , -CN, -NO 2 ,
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an alkyl group, a perfluoroalkyl group, a halogen atom, or an aryl group.
  • ring A represents an aromatic ring or a heterocycle represented by the general formula (1a) condensed with an adjacent ring
  • ring B represents a heterocycle represented by the general formula (1b) fused with an adjacent ring
  • X 1 represents C—R ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom
  • R 11 and R 15 each independently represent a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or Represents a pyrimidine ring
  • these rings may be further substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 14 represents a hydrogen atom
  • R 12 and R 13 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further have 1 carbon atom.
  • ⁇ 6 alkyl groups And may be substituted with at least one of phenyl groups.
  • R 151 to X 153 represent a nitrogen atom or C—R 153
  • R 153 represents a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or fluorine atom
  • R 151 and R 152 each independently represent a hydrogen atom, a methyl group, an isobutyl group, t- butyl group, a neopentyl group, a phenyl group, a naphthyl group, .
  • Y 15 represents cyano group, or a fluorine atom is below
  • R 155 represents a hydrogen atom.
  • R 154 and R 156 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 157 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • X 161 to X 163 represent a nitrogen atom or C—H
  • R 161 and R 162 each independently represent a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, or a naphthyl group.
  • Y 16 represents a group represented by any one of the general formulas (15a) to (15c).
  • R 171 and R 172 each independently represents a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or a fluorine atom.
  • Y 17 represents the above general formula. Represents a group represented by any one of formulas (15a) to (15c).
  • [6] The organic electroluminescence device according to [4], wherein the compound represented by the general formula (16) is represented by the following general formula (18).
  • R 181 and R 182 each independently represents a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or a fluorine atom.
  • Y 18 represents the above general formula. Represents a group represented by any one of formulas (15a) to (15c).
  • R 51 to R 56 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the following general formula (10), (10-2) or a group represented by (10-3), and at least two of R 51 to R 56 are each independently represented by the following general formulas (10), (10-2), Or a group represented by any one of (10-3).
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 61 to R 610 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the following general formula (10), (10-2) or (10-3) represents a group, and at least two of R 61 to R 610 are each independently represented by the following general formulas (10), (10-2), Or a group represented by any one of (10-3).
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 71 to R 78 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom
  • the following general formula (10), (10-2) or (10-3) represents a group represented by Y 71 and Y 72 each independently represented by the following general formula (10), (10-2), or (10-3)
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 81 to R 88 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the following general formula (10), And represents a group represented by any one of (10-2) and (10-3), wherein Y 81 and Y 82 each independently represent the following general formula (10), (10-2), or (10-3) ) Is a group represented by any one of
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 91 to R 910 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom
  • the following general formula (10), (10-2) or (10-3) represents a group
  • at least two of R 91 to R 910 are each independently represented by the following general formulas (10), (10-2), Or a group represented by any one of (10-3), wherein L 1 represents a silicon atom or a carbon atom, and the silicon atom or carbon atom is further represented by at least one group selected from an alkyl group and an aryl group. May be substituted.
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 111 to R 116 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the following general formula (10), A group represented by any one of (10-2) and (10-3), wherein at least one of R 111 to R 115 is represented by the following general formula (10), (10-2), or (10 -3) and m represents an integer of 1 to 4.
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 121 to R 126 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the following general formula (10), ( 10-2) or (10-3), and at least one of R 121 to R 125 is represented by the following general formula (10), (10-2), or (10 -3) and m represents an integer of 1 to 4.
  • R 102 represents a hydrogen atom.
  • R 101 and R 103 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 104 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 132 represents a hydrogen atom.
  • R 131 and R 133 each independently represent a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group.
  • R 134 and R 135 each independently represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and may be substituted with at least one of an alkyl group of 6 and a phenyl group, rings further methyl group, an isobutyl group, t- butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and at least one good .
  • R 136 be substituted by groups hydrogen selected from a fluorine atom Atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, or fluorine atom It represents .m is an integer of 1-4.
  • the silicon linking group is substituted on a carbon atom as one of the R
  • R 142 represents a hydrogen atom.
  • R 141 and R 143 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 144 and R 145 may each independently be substituted with a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group.
  • These rings may be further substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • the linking group is substituted with a carbon atom as one of R 141.
  • R 146 is a hydrogen atom, methyl group, isobutyl group, t-butyl group, neope N represents an acetyl group, phenyl group, naphthyl group, cyano group, or fluorine atom, and m represents an integer of 1 to 4.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ represent a hydrogen atom or an alkyl group.
  • each R independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group.
  • the organic electroluminescent device according to any one of [1
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • a ring may be connected by a linking group selected from —, —NR—CR 2 —, and —N ⁇ CR—, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • M represents iridium.
  • R 3 to R 10 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 6 ′ each independently represents a hydrogen atom.
  • a ring may be connected by a linking group selected from —, —NR—CR 2 —, and —N ⁇ CR—, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • An aryl group, a heteroaryl group, and further a halogen atom, —R ′, —OR ′, —N (R ′) 2 , —SR ′, —C (O) R ′, —C (O) OR ′, —C (O) N (R ′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′, —SO 2 R ′, and —SO 3 R ′ may have a substituent selected from R ′, and each R ′ independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group (X—).
  • Y represents a ligand represented by any one of the general formulas (l-1), (1-4), or (1-15), m represents an integer of 1 to 3, and n Represents an integer of 0 to 2. However, m + n is 3.) [19] [1] to [18], wherein the light emitting layer containing at least one of the compound represented by the general formula (3) and the compound represented by the general formula (D-1) is formed by a wet process. Organic electroluminescent element of any one of these. [20] A composition containing at least one compound represented by the following general formula (3) and a compound represented by the following general formula (D-1).
  • Z 3 represents benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, bipyridine, silicon atom, or carbon atom, and further represents an alkyl group, aryl group, silyl group, cyano group, fluorine atom, and these.
  • .n 3 is at least one optionally substituted by a group .
  • Y 3 is selected from the groups obtained by combining a group represented by the following general formula (3a-1) or (3a-2) is 1 Represents an integer of ⁇ 4)
  • Ring A represents an aromatic ring or a heterocyclic ring represented by General Formula (3b) that is condensed with an adjacent ring
  • Ring B is a general ring that is condensed with an adjacent ring.
  • X 3 represents C—R ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom.
  • R 34 and R 311 each independently represents benzene Represents a ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and these rings are further selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 33 represents a hydrogen atom
  • R 31 and R 32 are each independently a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or trifluoromethyl. These represent groups If possible, this group may be further substituted by at least one of an alkyl group having 1 to 6 carbon atoms and a phenyl group. * Represents a bond linked to Z 3. )
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ represents a hydrogen atom, an alkyl group, or an aryl group.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to iridium, and may be further substituted with an alkyl group or an aryl group, and R 5 is a group in which ring Q is a pyridine ring.
  • each R is independently water Atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, further a halogen atom, -R ', - OR', - N (R ') 2, -SR', - C (O) R From ', -C (O) OR', -C (O) N (R ') 2 , -CN, -NO 2 ,
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an alkyl group, a perfluoroalkyl group, a halogen atom, or an aryl group.
  • Z 3 represents benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, bipyridine, silicon atom, or carbon atom, and further represents an alkyl group, aryl group, silyl group, cyano group, fluorine atom, and these.
  • .n 3 is at least one optionally substituted by a group .
  • Y 3 is selected from the groups obtained by combining a group represented by the following general formula (3a-1) or (3a-2) is 1 Represents an integer of ⁇ 4)
  • Ring A represents an aromatic ring or a heterocyclic ring represented by General Formula (3b) that is condensed with an adjacent ring
  • Ring B is a general ring that is condensed with an adjacent ring.
  • X 3 represents C—R ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom.
  • R 34 and R 311 each independently represents benzene Represents a ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and these rings are further selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 33 represents a hydrogen atom
  • R 31 and R 32 are each independently a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or trifluoromethyl. These represent groups If possible, this group may be further substituted by at least one of an alkyl group having 1 to 6 carbon atoms and a phenyl group. * Represents a bond linked to Z 3. )
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ represents a hydrogen atom, an alkyl group, or an aryl group.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to iridium, and may be further substituted with an alkyl group or an aryl group, and R 5 is a group in which ring Q is a pyridine ring.
  • each R is independently water Atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, further a halogen atom, -R ', - OR', - N (R ') 2, -SR', - C (O) R From ', -C (O) OR', -C (O) N (R ') 2 , -CN, -NO 2 ,
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an alkyl group, a perfluoroalkyl group, a halogen atom, or an aryl group.
  • the present invention preferably has the following configuration.
  • An organic electroluminescent element having a pair of electrodes and at least one organic layer including a light emitting layer containing a light emitting material between the electrodes, wherein the light emitting layer has the following general formula (7), ( 8) or an organic electroluminescence containing at least one compound represented by (11) and at least one compound represented by the following general formula (D-4), (D-2), or (D-3) element.
  • R 71 to R 78 each represent a hydrogen atom.
  • Y 71 and Y 72 each independently represent a group represented by the following general formula (10))
  • R 81 to R 88 each represent a hydrogen atom.
  • Y 81 and Y 82 each independently represent a group represented by the following general formula (10).
  • R 113 represents a group represented by the following general formula (10).
  • R 111 , R 112 , R 114 , and R 115 represent a hydrogen atom.
  • R 116 represents a hydrogen atom, an alkyl group, or an aromatic group. Represents a hydrocarbon ring group, and m represents 2.
  • R 101 to R 103 represent a hydrogen atom.
  • R 104 represents a benzene ring, a biphenyl ring, or a pyridine ring, which are further substituted with an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a pyridyl group. May be.
  • M represents iridium.
  • R 3 to R 10 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 6 ′ each independently represents a hydrogen atom.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group.
  • 1 to 3 and n represents 0 to 2, where m + n is 3.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ represent a hydrogen atom or an alkyl group.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group, and m is 1 to 3. And n represents 0 to 2, where m + n is 3.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ each independently represents a hydrogen atom.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group.
  • 1 to 3 and n represents 0 to 2, where m + n is 3.
  • ⁇ 6> A compound represented by the general formula (7), (8), or (11) and a compound represented by the general formula (D-4), (D-2), or (D-3)
  • ⁇ 7> A compound represented by the following general formula (7), (8), or (11), and a compound represented by the following general formula (D-4), (D-2), or (D-3) A composition containing at least one of them.
  • R 71 to R 78 each represent a hydrogen atom.
  • Y 71 and Y 72 each independently represent a group represented by the following general formula (10))
  • R 81 to R 88 each represent a hydrogen atom.
  • Y 81 and Y 82 each independently represent a group represented by the following general formula (10).
  • R 113 represents a group represented by the following general formula (10).
  • R 111 , R 112 , R 114 , and R 115 represent a hydrogen atom.
  • R 116 represents a hydrogen atom, an alkyl group, or an aromatic group. Represents a hydrocarbon ring group, and m represents 2.
  • R 101 to R 103 represent a hydrogen atom.
  • R 104 represents a benzene ring, a biphenyl ring, or a pyridine ring, which are further substituted with an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a pyridyl group. May be.
  • M represents iridium.
  • R 3 to R 10 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 6 ′ each independently represents a hydrogen atom.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group.
  • 1 to 3 and n represents 0 to 2, where m + n is 3.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ represent a hydrogen atom or an alkyl group.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group, and m is 1 to 3. And n represents 0 to 2, where m + n is 3.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ each independently represents a hydrogen atom.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group.
  • 1 to 3 and n represents 0 to 2, where m + n is 3.
  • a compound represented by the following general formula (7), (8), or (11), and a compound represented by the following general formula (D-4), (D-2), or (D-3) A light emitting layer containing at least one kind.
  • R 71 to R 78 each represent a hydrogen atom.
  • Y 71 and Y 72 each independently represent a group represented by the following general formula (10))
  • R 81 to R 88 each represent a hydrogen atom.
  • Y 81 and Y 82 each independently represent a group represented by the following general formula (10).
  • R 113 represents a group represented by the following general formula (10).
  • R 111 , R 112 , R 114 , and R 115 represent a hydrogen atom.
  • R 116 represents a hydrogen atom, an alkyl group, or an aromatic group. Represents a hydrocarbon ring group, and m represents 2.
  • R 101 to R 103 represent a hydrogen atom.
  • R 104 represents a benzene ring, a biphenyl ring, or a pyridine ring, which are further substituted with an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a pyridyl group. May be.
  • M represents iridium.
  • R 3 to R 10 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 6 ′ each independently represents a hydrogen atom.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group.
  • 1 to 3 and n represents 0 to 2, where m + n is 3.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ represent a hydrogen atom or an alkyl group.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group, and m is 1 to 3. And n represents 0 to 2, where m + n is 3.
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ to R 8 ′ each independently represents a hydrogen atom.
  • (XY) represents a ligand composed of phenylpyridine, picolinic acid, or acetylacetone, wherein the phenylpyridine may be substituted with an alkyl group.
  • 1 to 3 and n represents 0 to 2, where m + n is 3.
  • an organic electroluminescent element that is excellent in luminous efficiency and durability (particularly durability at high temperature driving).
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having a pair of electrodes and at least one organic layer including a luminescent layer containing a luminescent material between the electrodes on a substrate, the luminescent layer comprising And a compound represented by the following general formula (3) and a compound represented by the following general formula (D-1).
  • Z 3 represents benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, bipyridine, silicon atom, or carbon atom, and further represents an alkyl group, aryl group, silyl group, cyano group, fluorine atom, and these.
  • .n 3 is at least one optionally substituted by a group .
  • Y 3 is selected from the groups obtained by combining a group represented by the following general formula (3a-1) or (3a-2) is 1 Represents an integer of ⁇ 4)
  • Ring A represents an aromatic ring or a heterocyclic ring represented by General Formula (3b) that is condensed with an adjacent ring
  • Ring B is a general ring that is condensed with an adjacent ring.
  • X 3 represents C—R ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom.
  • R 34 and R 311 each independently represents benzene Represents a ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and these rings are further selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • R 33 represents a hydrogen atom
  • R 31 and R 32 are each independently a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or trifluoromethyl. These represent groups If possible, this group may be further substituted by at least one of an alkyl group having 1 to 6 carbon atoms and a phenyl group. * Represents a bond linked to Z 3. )
  • M represents iridium.
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 3 ′ represents a hydrogen atom, an alkyl group, or an aryl group.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to iridium, and may be further substituted with an alkyl group or an aryl group, and R 5 is a group in which ring Q is a pyridine ring.
  • each R is independently water Atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, further a halogen atom, -R ', - OR', - N (R ') 2, -SR', - C (O) R From ', -C (O) OR', -C (O) N (R ') 2 , -CN, -NO 2 ,
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an alkyl group, a perfluoroalkyl group, a halogen atom, or an aryl group.
  • the organic electroluminescence device of the present invention contains at least one compound represented by the general formula (3) and one compound represented by the general formula (D-1), thereby providing high luminous efficiency (for example, external It is possible to provide a highly durable organic electroluminescent device having quantum efficiency.
  • an organic electroluminescent element having a pair of electrodes and at least one organic layer including a light emitting layer containing a light emitting material between the electrodes, the light emitting layer having the following general formula (1)
  • An organic electroluminescent device containing at least one compound represented by the following general formula (D-1) will be described.
  • ring A represents an aromatic ring or a heterocycle represented by the general formula (1a) fused with an adjacent ring
  • ring B represents a heterocycle represented by the general formula (1b) fused with an adjacent ring
  • X 1 represents carbon or nitrogen
  • R 11 and R 15 each independently represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring
  • R 14 represents hydrogen
  • R 12 and R 13 each independently represents a hydrogen atom or a substituent.
  • M represents a metal having an atomic weight of 40 or more.
  • R 3 to R 6 each independently represents a hydrogen atom or a substituent.
  • R 3 ′ represents a hydrogen atom or a substituent.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to the metal M, and may be further substituted with a non-aromatic group, and R 5 is a ring when the ring Q is a pyridine ring, R 6 and .
  • R 3 'representing an aryl group or a heteroaryl group, -CR 2 -CR 2 -, - CR CR -, - CR 2 -, - O -, - NR -, - O-CR 2 - , —NR—CR 2 —, and —N ⁇ CR— may be linked to form a ring, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group,
  • n represents a value equal to or greater than 0 and equal to or less than the maximum number of ligands capable of binding to the metal.
  • M + n is the maximum number of ligands that can bind to the metal.
  • ring A represents an aromatic ring or a heterocycle represented by the general formula (1a) fused with an adjacent ring
  • ring B represents a heterocycle represented by the general formula (1b) fused with an adjacent ring
  • X 1 represents carbon or nitrogen
  • R 11 and R 15 each independently represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring
  • R 14 represents hydrogen
  • R 12 and R 13 each independently represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (1) is a heterocyclic compound containing an indolocarbazole skeleton in which an indole skeleton is condensed to a carbazole skeleton.
  • the conjugation is expanded as compared with the conventional carbazole compound, so that the electron injection property is improved while maintaining the hole injection property.
  • the charge balance in the organic electroluminescent device can be improved.
  • the use of such a compound facilitates electron injection into the light-emitting layer, improves the charge balance in the light-emitting layer, and increases the organic electroluminescent device. Efficiency and low voltage drive can be realized.
  • the compound represented by the general formula (1) has an extended p-conjugated plane as compared with the conventional carbazole compound, and has a small degree of freedom of molecular motion. Presumed to be easy to wake up.
  • the compound represented by the general formula (1) is used as a host material, it was considered desirable to use a light emitting material that has a high degree of freedom of molecular motion and is difficult to condense and associate in order to enhance the durability of the device. .
  • Combining materials with a low degree of freedom of molecular motion prevents the interaction between molecules such as p-stacking (in either host-luminescent material, or between hosts, or between luminescent materials) from being agglomerated or aggregated. It is thought that it becomes easy to form.
  • the degree of freedom of molecular motion is low.
  • the compound represented by the general formula (1) was used as a host, it was expected that the compound was not suitable as a light emitting material.
  • the compound represented by the general formula (D-1) having a small degree of freedom of molecular motion and the compound represented by the general formula (1) having a small degree of freedom of molecular motion are used in combination. Unexpectedly, aggregation and association did not occur, and the device durability at high temperature driving was improved.
  • the durability of the device when driving at high temperatures was improved by using a host and guest with a low degree of freedom of molecular motion, thereby suppressing degradation reactions both between the host and host materials and between the host and guest materials. It is thought that it was because of.
  • X 1 in the general formula (1) represents C—R ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom.
  • R ′′ represents a substituent
  • examples of the substituent include the following substituent group A.
  • X 1 is preferably C—H because the chemical stability of the general formula (1) is improved and the device has a long lifetime.
  • An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n- Decyl, n-hexadecyl, etc.), alicyclic hydrocarbon groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms such as adamantyl, Cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, 2 -Butenyl, 3-pentenyl, etc.), alkynyl groups (preferably having 2 to 30 carbon atoms,
  • An alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably carbon It has a prime number of 2 to 20, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonyl and ethoxycarbonyl. ), An aryloxycarbonyl group (preferably having a carbon number of 7 to 30, more preferably a carbon number of 7 to 20, particularly preferably a carbon number of 7 to 12, such as phenyloxycarbonyl), an acyloxy group (preferably Has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as acetoxy and benzoyloxy), an acylamino group (preferably having 2 to 30 carbon atoms, More preferably, it has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and an alkoxycarbonylamino group (preferably 2 to 30 carbon atoms
  • 2 to 20 particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino Aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino).
  • methoxycarbonylamino Aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino).
  • a sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 12 carbon atoms. Examples thereof include sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and phenylsulfamoyl.
  • a carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably A prime number of 1 to 20, particularly preferably a carbon number of 1 to 12, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc., an alkylthio group (preferably having a carbon number of 1 to 30, more preferably a carbon number). 1-20, particularly preferably having 1-12 carbon atoms, such as methylthio, ethylthio, etc.), arylthio groups (preferably having 6-30 carbon atoms, more preferably having 6-20 carbon atoms, particularly preferably carbon atoms).
  • heterocyclic thio group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • a sulfonyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), sulfinyl group (preferably carbon 1-30, more preferably 1-20 carbon atoms, particularly preferably 1-12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido groups (preferably having 1-30 carbon atoms, more Preferably it has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid amide group (preferably 1 to 30 carbon atoms, more preferably It has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms.
  • Examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide.
  • R 12 and R 13 are preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, hetero Ring thio group, cyano group, heterocyclic group, silyl group, silyloxy group, trifluoromethyl group, more preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, cyano group, A silyl group, a heterocyclic group, and a trifluoromethyl group, more preferably a hydrogen atom, an alkyl group, an aryl group, a fluorine group, a cyano group, a silyl group, and a trifluoromethyl group, and particularly preferably a hydrogen atom and an alkyl group. , Silyl group, fluorine group, cyano group, trifluoromethyl group
  • R 12 and R 13 may further have a substituent, and as the substituent, those mentioned as the substituent group A can be applied, and an alkyl group, an aryl group, a cyano group, a halogen atom, a nitrogen-containing aromatic A heterocyclic group, more preferably an alkyl having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, a pyridyl group and a fluorine atom, still more preferably an alkyl group having 1 to 6 carbon atoms and a phenyl group. is there.
  • the number of substituents is 0 to 4, preferably 0 to 2.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than the naphthalene ring represented by R 11 or R 15 includes a benzene ring, a naphthalene ring, and biphenyl.
  • R 11 and R 15 are preferably benzene, naphthalene, biphenyl, pyrazole, imidazole, triazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, and thiophene, and more preferably , Benzene ring, naphthalene ring, biphenyl ring, pyridine ring, pyrimidine ring, triazine ring, more preferably benzene ring, naphthalene ring, pyridine ring, triazine ring, pyrimidine ring, particularly preferably benzene ring, pyridine ring, A triazine ring, most preferably a benzene ring or a pyridine ring.
  • R 11 and R 15 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied, and preferably an alkyl group, an aryl group, a cyano group, a halogen atom, A nitrogen aromatic heterocyclic group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, a pyridyl, a cyano group, and a halogen atom, and more preferably a branched alkyl group having 3 to 6 carbon atoms Group, phenyl group, naphthyl group, cyano group and fluorine atom, particularly preferably methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group and fluorine atom.
  • the number of substituents is 0 to 4, preferably 0 to 2.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure represented by R 14 include benzene ring, biphenyl ring, o-terphenyl ring, m-terphenyl ring, p-ter Examples include a phenyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • the aromatic heterocyclic ring may have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 14 is preferably a hydrogen atom, benzene ring, biphenyl ring, pyrazole ring, imidazole ring, triazole ring, pyridine ring or thiophene ring, more preferably a hydrogen atom, benzene ring, biphenyl ring or pyridine ring, particularly Preferably it is a hydrogen atom.
  • R 14 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied, and preferably an alkyl group having 1 to 6 carbon atoms, a phenyl group, a pyridyl group, and the like. Can be mentioned.
  • substituents may be bonded to a ring containing X 1 to form a ring.
  • the compound represented by the general formula (3) is preferably represented by the general formula (1).
  • the ring A represents an aromatic ring or a heterocycle represented by the general formula (1a) condensed with the adjacent ring
  • the ring B represents the general formula (1b) condensed with the adjacent ring.
  • X 1 represents CR ′′ (R ′′ represents a hydrogen atom or a substituent) or a nitrogen atom.
  • R 11 and R 15 each independently represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, and these rings are further methyl, isobutyl, t-butyl, neopentyl, phenyl, naphthyl It may be substituted with at least one group selected from a group, a cyano group, and a fluorine atom.
  • R 14 represents a hydrogen atom.
  • R 12 and R 13 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further include an alkyl group having 1 to 6 carbon atoms and a phenyl group. It may be substituted by at least one of them.
  • the preferred range of each symbol in the above definition is the same as described above.
  • one of preferred forms is a compound represented by the following general formula (2).
  • ring C represents an aromatic ring or a heterocycle represented by the general formula (2a) fused with an adjacent ring
  • ring D represents a heterocycle represented by the general formula (2b) fused with an adjacent ring
  • Ring E represents a heterocyclic ring represented by the general formula (2c) that is condensed with an adjacent ring
  • X 2 represents carbon or nitrogen
  • R 21 , R 26 , and R 27 are each independently other than a naphthalene ring
  • R 25 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group that is not a condensed ring structure
  • R 22 , R 23 and R 24 each independently represents a hydrogen atom or a substituent.
  • R 21 , R 26 , and R 27 each independently represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and R 11 in the general formula (1) And R 15 , and the preferred range is also the same.
  • R 25 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure, or a ring that is condensed with a ring containing X 2 , and has the same meaning as R 14 in formula (1).
  • the preferred range is also the same.
  • R 22 , R 23 and R 24 each independently represent a hydrogen atom or a substituent, and have the same meaning as R 12 and R 13 in the general formula (1), and the preferred range is also the same.
  • R 151 to X 153 represent a nitrogen atom or C—R 153
  • R 153 represents a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or fluorine atom
  • R 151 and R 152 each independently represent a hydrogen atom, a methyl group, an isobutyl group, t- butyl group, a neopentyl group, a phenyl group, a naphthyl group, .
  • Y 15 represents cyano group, or a fluorine atom is below
  • R 155 represents a hydrogen atom.
  • R 154 and R 156 each independently represents a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups further represent carbon atoms.
  • R 157 represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring, which may be substituted with at least one of an alkyl group having a number of 1 to 6 and a phenyl group, and these rings are Further, it may be substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • X 151 to X 153 each represents a nitrogen atom or C—R 153 , and R 153 represents a hydrogen atom or a substituent.
  • the combination of X 151 to X 153 is not particularly limited, but the number of nitrogen atoms is preferably 0, 1, or 3, more preferably 0 or 3.
  • R 151 and R 152 are preferably a hydrogen atom, an alkyl group, an alicyclic hydrocarbon group, an aryl group, a fluorine group, an amino group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, an alkylthio group, an arylthio group, a hetero group.
  • R 151 and R 152 may further have a substituent, and as the substituent, those mentioned as the substituent group A can be applied, preferably alkyl having 1 to 6 carbon atoms, phenyl, pyridyl, etc. Is mentioned.
  • the number of the substituent is preferably 0 to 4, more preferably 0 to 2.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • R 153 is preferably a hydrogen atom, an alkyl group, an alicyclic hydrocarbon group, an aryl group, a fluorine group, an amino group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, an alkylthio group, an arylthio group, or a heterocyclic thio group.
  • a cyano group, a heterocyclic group, a silyl group, and a silyloxy group more preferably a hydrogen atom, an alkyl group, an alicyclic hydrocarbon group, an aryl group, a fluorine group, a cyano group, a silyl group, and a heterocyclic group.
  • a hydrogen atom an alkyl group (preferably a methyl group, an isobutyl group, a t-butyl group, a neopentyl group), an aryl group (preferably a phenyl group, a naphthyl group), a cyano group, a fluorine atom, It is an alkyl group or an aryl group, particularly preferably a hydrogen atom or an alkyl group, and most preferably a hydrogen atom.
  • R 153 may further have a substituent, and examples of the substituent include those exemplified as the substituent group A, and preferred examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like. .
  • the number of substituents is preferably 0 to 4, more preferably 0 to 2.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • Y 15 represents a group represented by any one of the general formulas (15a) to (15c), preferably (15a) and (15b), and more preferably (15a).
  • R 154 and R 156 are preferably a hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, hetero Ring thio group, cyano group, heterocyclic group, silyl group, silyloxy group, more preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, cyano group, silyl group, heterocyclic ring More preferably a hydrogen atom, an alkyl group, or an aryl group, particularly preferably a hydrogen atom or an alkyl group, and most preferably a hydrogen atom.
  • R 154 and R 156 may further have a substituent, and as the substituent, those mentioned as the substituent group A can be applied, preferably alkyl having 1 to 6 carbon atoms, phenyl, pyridyl, etc. Is mentioned.
  • the number of substituents is preferably 0 to 4, more preferably 0 to 2.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure represented by R 155 include benzene ring, biphenyl ring, o-terphenyl ring, m-terphenyl ring, p-ter Examples include a phenyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • the aromatic heterocyclic ring may have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 155 is preferably a hydrogen atom, benzene ring, biphenyl ring, pyrazole ring, imidazole ring, triazole ring, pyridine ring or thiophene ring, more preferably a hydrogen atom, benzene ring, biphenyl ring or pyridine ring, particularly Preferably it is a hydrogen atom.
  • R 155 may further have a substituent, and examples of the substituent include those listed as the substituent group A, preferably alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like. .
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group having no condensed ring structure other than the naphthalene ring represented by R 157 include a benzene ring, naphthalene ring, biphenyl ring, o-terphenyl ring, m- Examples include terphenyl ring, p-terphenyl ring, furan ring, thiophene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring and the like.
  • the aromatic heterocyclic ring may have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 157 is preferably a benzene ring, biphenyl ring, pyrazole ring, imidazole ring, triazole ring, pyridine ring, thiophene ring, naphthalene ring, or triazine ring, more preferably a benzene ring, biphenyl ring, pyridine ring, naphthalene ring, A triazine ring, particularly preferably a benzene ring, a naphthalene ring, a pyridine ring, a naphthalene ring and a triazine ring, particularly preferably a benzene ring and a triazine ring, and most preferably a benzene ring.
  • R 157 may further have a substituent, and examples of the substituent include those listed as the substituent group A, and preferred examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like. .
  • the number of substituents is preferably 0 to 4, more preferably 0 to 2.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • X 161 to X 163 each represent a nitrogen atom or C—H, and R 161 and R 162 each independently represent a hydrogen atom or a substituent.
  • Y 16 represents one of the above general formulas (15a) to (15c). It represents a group represented by any one.
  • R 161 , R 162 , and Y 16 have the same meanings as R 151 , R 152, and Y 15 in the general formula (15), and preferred ranges are also the same.
  • X 161 to X 163 each represent a nitrogen atom or C—H.
  • the combination of X 151 to X 153 is not particularly limited, but the number of nitrogen atoms is preferably 0, 1, or 3, more preferably 0 or 3.
  • X 161 to X 163 represent a nitrogen atom or C—H
  • R 161 and R 162 each independently represent a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group.
  • Y 16 preferably represents a group represented by any one of the above general formulas (15a) to (15c).
  • R 171 and R 172 each independently represent a hydrogen atom or a substituent.
  • Y 17 represents a group represented by any one of the general formulas (15a) to (15c)).
  • R 171 , R 172 , and Y 17 have the same meanings as R 161 , R 162, and Y 16 in the general formula (16), and preferred ranges are also the same.
  • R 171 and R 172 each independently represent a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or a fluorine atom
  • Y 17 represents the above general formula It is preferable to represent a group represented by any one of formulas (15a) to (15c).
  • R 181 and R 182 each independently represent a hydrogen atom or a substituent.
  • Y 18 represents a group represented by any one of the general formulas (15a) to (15c)).
  • R 181 , R 182 and Y 18 have the same meanings as R 161 , R 162 and Y 16 in the general formula (16), and preferred ranges thereof are also the same.
  • R 181 and R 182 each independently represent a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or a fluorine atom
  • Y 18 represents the above general formula It is preferable to represent a group represented by any one of formulas (15a) to (15c).
  • one of preferred embodiments is a compound represented by the following general formula (3).
  • Z 3 is an aromatic substituted or unsubstituted non-condensed ring structure hydrocarbon group or comprising an aromatic heterocyclic group n 3 monovalent group, silicon atom, or a carbon atom
  • Y 3 is below Represents a group represented by the general formula (3a-1), (3a-2) or (3e), and n 3 represents an integer of 1 or more.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure represented by Z 3 include benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, bipyridine, terphenyl, triazole and diazole. , Phenyltriazole, triphenyltriazole and the like are preferable, benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine and bipyridine are preferable, and a benzene ring, biphenyl ring and pyridine ring are more preferable.
  • examples of the substituent include a substituent selected from the substituent group A, and an alkyl group, an aryl group, a silyl group, a cyano group, a fluorine atom, and a group obtained by combining these. At least one selected group is preferable, and alkyl having 1 to 6 carbon atoms, phenyl, and pyridyl are more preferable.
  • the number of substituents is 0 to 4, preferably 0 to 2.
  • the silicon atom and the carbon atom may further have a substituent if possible, and examples of the substituent include a substituent selected from the substituent group A. And preferably at least one group selected from an alkyl group, an aryl group, a silyl group, a cyano group, a fluorine atom, and a group obtained by combining these, an alkyl group, an aryl group, and a group obtained by combining these At least one group selected from is more preferable, and a methyl group and a phenyl group are still more preferable.
  • Y 3 represents a group represented by the following general formula (3a-1), (3a-2) or (3e).
  • ring A represents an aromatic ring or a heterocycle represented by the general formula (3b) condensed with an adjacent ring
  • ring B represents a heterocycle represented by the general formula (3c) fused with an adjacent ring
  • X 3 represents carbon or nitrogen
  • R 34 and R 311 represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure other than a naphthalene ring
  • R 33 represents hydrogen
  • condensed ring A substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group having no structure, or a ring condensed with a ring containing X 3 is represented
  • R 31 and R 32 each independently represent a hydrogen atom or a substituent. represents a connecting point with the Z 3.
  • R 34 and R 311 represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and have the same meaning as R 15 in the general formula (1), and a preferred range Is the same.
  • R 33 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure, or a ring that is condensed with a ring containing X, and has the same meaning as R 14 in formula (1).
  • R 31 and R 32 each independently represent a hydrogen atom or a substituent, have the same meanings as R 12 and R 13 in the general formula (1), and preferred ranges are also the same.
  • ring C represents an aromatic ring or a heterocyclic ring represented by the general formula (3f) condensed with the adjacent ring
  • ring D represents a heterocyclic ring represented by the general formula (3g) condensed with the adjacent ring
  • Ring E represents a heterocyclic ring represented by the general formula (3h) condensed with an adjacent ring
  • X 3 represents carbon or nitrogen
  • R 39 and R 310 are each independently a condensed ring structure other than a naphthalene ring.
  • R 38 contains hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure, or X 3 And represents a ring fused with the ring, and R 35 , R 36 and R 37 each independently represent a hydrogen atom or a substituent.
  • R 39 and R 310 each independently represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and R 26 and R 27 in the general formula (2) It is synonymous and the preferable range is also the same.
  • R 38 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure, or a ring that is condensed with a ring containing X 3 , and has the same meaning as R 25 in formula (2).
  • the preferred range is also the same.
  • R 35 , R 36 and R 37 each independently represent a hydrogen atom or a substituent, and have the same meaning as R 22 , R 23 and R 24 in formula (1), and the preferred ranges are also the same.
  • n 3 is preferably 1 to 4, more preferably 2 to 4, and still more preferably 2 to 3.
  • One of the preferred forms of the compound represented by the general formula (3) is a compound represented by the following general formula (4).
  • Ar 41 represents a divalent linking group comprising a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure
  • Y 4 represents the general formula (3a-1), ( 3a-2) or a group represented by (3e).
  • Ar 41 in the general formula (4) represents a divalent linking group.
  • Specific examples include the following linking groups represented by Y-1 to Y-118.
  • linking groups may have a substituent.
  • substituents include alkyl group, aralkyl group, alkenyl group, alkynyl group, cyano group, dialkylamino group, diarylamino group, diaralkylamino group, amino group, nitro group, acyl group, alkoxycarbonyl group, carboxyl group, Examples thereof include an alkoxyl group, an alkylsulfonyl group, a halogen atom, a haloalkyl group, a hydroxyl group, an amide group, a substituted or unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Preferred examples of the substituent include the substituents represented by the following Z-1 to Z-138.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure represented by the linking group Ar 41 include benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, bipyridine, terphenyl ring, A triazole ring, a diazole ring, a phenyltriazole ring, a triphenyltriazole ring, and the like are preferable, benzene, pyridine, triazine, pyrimidine, biphenyl, phenylpyridine, and bipyridine are more preferable, and a benzene ring, a biphenyl ring, and a pyridine ring are more preferable.
  • examples of the substituent include a substituent selected from the substituent group A, and an alkyl group, an aryl group, a silyl group, a cyano group, a fluorine atom, and a group obtained by combining these. At least one selected group is preferable, and alkyl having 1 to 6 carbon atoms, phenyl, and pyridyl are more preferable.
  • the number of substituents is 0 to 4, preferably 0 to 2.
  • Y 4 represents a group represented by the general formula (3a-1), (3a-2) or (3e).
  • One of the preferred forms of the compound represented by the general formula (3) is a compound represented by the following general formula (5).
  • R 51 to R 56 each independently represents a hydrogen atom or a substituent, and at least two of R 51 to R 56 represent the above general formulas (3a-1), (3a-2) or (3e ).
  • R 51 to R 56 each independently represents a hydrogen atom or a substituent, and as the substituent, those exemplified as the substituent group A can be applied, but at least two of R 51 to R 56 are the above-mentioned general groups.
  • R 51 to R 56 are preferably a hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, hetero Ring thio group, cyano group, heterocyclic group, silyl group, silyloxy group, more preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, cyano group, silyl group, heterocyclic ring More preferably a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom, particularly preferably a hydrogen atom, a methyl group, t- A butyl group, a phenyl group,
  • R 51 to R 56 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied. In addition, a plurality of these substituents may be bonded to each other to form a ring.
  • At least two of general formulas R 51 to R 56 are preferably (3a-1). At this time, it is preferable that one (3a-1) in the general formula (5) is substituted at the para position or the meta position with respect to the other (3a-1), and is preferably substituted at the meta position. More preferred.
  • R 51 to R 56 are each independently a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, a fluorine atom, a general formula (10) described later. , (10-2) or (10-3), and at least two of R 51 to R 56 are each independently represented by the following general formulas (10), (10-2) Or a group represented by either (10-3).
  • One of the preferred forms of the compound represented by the general formula (3) is a compound represented by the following general formula (6).
  • each of R 61 to R 610 independently represents a hydrogen atom or a substituent. At least two of R 61 to R 610 represent the above general formulas (3a-1), (3a-2) or (3e). It is a group represented by
  • R 61 to R 610 each independently represents a hydrogen atom or a substituent, and as the substituent, those exemplified as the substituent group A can be applied, but at least two of R 61 to R 610 are the above-mentioned general groups.
  • general formula (6) at least one of general formulas R 61 to R 65 is preferably (3a-1), and at least one of general formulas R 66 to R 510 is preferably (3a-1).
  • R 61 to R 610 are preferably a hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, hetero Ring thio group, cyano group, heterocyclic group, silyl group, silyloxy group, more preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, cyano group, silyl group, heterocyclic ring
  • a hydrogen atom more preferably a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom, particularly preferably a hydrogen atom.
  • a methyl group, a t-butyl group, a phenyl group, a cyano group, and a fluorine atom are preferable. And most preferably a hydrogen atom.
  • R 61 to R 610 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied. In addition, a plurality of these substituents may be bonded to each other to form a ring.
  • R 61 to R 610 are each independently a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, a fluorine atom, a general formula (10) described later. , (10-2) or (10-3), and at least two of R 61 to R 610 are each independently represented by the following general formulas (10), (10-2) Or a group represented by either (10-3).
  • One preferred form of the compound represented by the general formula (6) is a compound represented by the following general formula (7).
  • R 71 to R 78 each independently represents a hydrogen atom or a substituent.
  • Y 71 and Y 72 each independently represent the above general formula (3a-1), (3a-2) or (3e) Represents the group represented.
  • R 71 to R 78 each independently represents a hydrogen atom or a substituent, and has the same meaning as R 61 to R 610 in formula (6), and the preferred range is also the same.
  • R 71 to R 78 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom
  • the following general formula (10), (10-2) or (10-3) represents a group represented by Y 71 and Y 72 each independently represented by the following general formula (10), (10-2), or (10-3) It is preferable that it is group represented by either of these.
  • One of the preferred forms of the compound represented by the general formula (6) is a compound represented by the following general formula (8).
  • R 81 to R 88 each independently represents a hydrogen atom or a substituent.
  • Y 81 and Y 82 each independently represent the above formula (3a-1), (3a-2) or (3e) Represents the group represented.
  • R 81 to R 88 each independently represents a hydrogen atom or a substituent, and has the same meaning as R 61 to R 610 in the general formula (6), and the preferred range is also the same.
  • R 81 to R 88 are each independently a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, a fluorine atom, a general formula (10) described later.
  • Y 81 and Y 82 each independently represent a general formula (10), (10-2), or (10 -3) is preferred.
  • One of the preferred forms of the compound represented by the general formula (3) is a compound represented by the following general formula (9).
  • each of R 91 to R 910 independently represents a hydrogen atom or a substituent, and at least two of R 91 to R 910 are represented by the general formulas (3a-1), (3a-2) or (3e L 1 represents a divalent linking group.
  • R 91 to R 910 each independently represents a hydrogen atom or a substituent, and as the substituent, those exemplified as the substituent group A can be applied, but at least two of R 91 to R 910 are the above-mentioned general groups.
  • R 91 to R 910 are preferably a hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, hetero Ring thio group, cyano group, heterocyclic group, silyl group, silyloxy group, more preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, cyano group, silyl group, heterocyclic ring More preferably a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom, particularly preferably a hydrogen atom, a methyl group, t- A butyl group, a phenyl
  • R 91 to R 910 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied. In addition, a plurality of these substituents may be bonded to each other to form a ring.
  • Examples of the divalent linking group represented by L 1 include alkylene groups (for example, methylene group, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group, 2,2 , 4-trimethylhexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, cyclohexylene group (for example, 1,6-cyclohexanediyl group, etc.), cyclopentylene Group (for example, 1,5-cyclopentanediyl group, etc.), alkenylene group (for example, vinylene group, propenylene group, etc.), alkynylene group (for example, ethynylene group, 3-pentynylene group, etc.), carbonization of arylene group, etc.
  • alkylene groups for example, methylene group, ethylene group
  • substituted silicon atoms In addition to hydrogen groups, substituted silicon atoms, substituted germanium atoms, heteroatoms (For example, a divalent group containing a chalcogen atom such as —O— or —S—, —N (R) — group, wherein R represents a hydrogen atom or an alkyl group, Examples are the same as the alkyl groups described as the substituent group A.
  • At least one of carbon atoms constituting the divalent linking group is a chalcogen atom (oxygen, sulfur, etc.) or the aforementioned —N (R). -It may be substituted with a group or the like.
  • the divalent linking group represented by L 1 for example, a group having a divalent heterocyclic group is used.
  • a group having a divalent heterocyclic group is used.
  • a divalent linking group derived from a compound having an aromatic heterocycle such as a diyl group or a pyrazine-2,3-diyl group may be used.
  • it may be a group linked through a hetero atom such as an alkylimino group, a dialkylsilanediyl group, or a diarylgermandiyl group.
  • the divalent linking group represented by L 1 is preferably a methylene group, an ethylene group, a cyclohexylene group, a cyclopentylene group, a substituted silicon atom, a substituted germanium atom, an oxygen atom, a sulfur atom, or a 5- to 6-membered ring.
  • An aromatic hydrocarbon ring group and an aromatic heterocyclic group more preferably a methylene group, an ethylene group, a cyclohexylene group, a substituted or unsubstituted nitrogen atom, a substituted silicon atom, a substituted germanium atom, and a 5- to 6-membered ring
  • An aromatic hydrocarbon ring group more preferably a methylene group, an ethylene group, a substituted silicon atom, a substituted nitrogen atom, a substituted germanium atom, and particularly preferably a methylene group substituted with an alkyl group or a phenyl group, a silicon atom, A germanium atom or a nitrogen atom, most preferably a methylene group substituted with an alkyl group or a phenyl group, or a silicon atom.
  • Connecting group al may have a substituent, if possible, examples of the substituent which can be introduced, it are the same as those mentioned substituent group A.
  • the ring size is a 5- to 6-membered ring.
  • R 91 to R 910 are each independently a hydrogen atom, a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, a fluorine atom, a general formula (10) described later. , (10-2) or (10-3), and at least two of R 91 to R 910 are each independently represented by the following general formulas (10), (10-2). ) Or (10-3), L 1 represents a silicon atom or a carbon atom, and the silicon atom or carbon atom is at least one selected from an alkyl group and an aryl group It is preferred that it may be substituted by a group.
  • one of the preferred embodiments is a compound in which the substituent represented by the general formula (3a-1) is represented by the following general formula (10).
  • R 102 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure
  • R 101 and R 103 each independently represents a hydrogen atom or a substituent
  • 104 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure other than a naphthalene ring.
  • R 101 and R 103 each independently represent a hydrogen atom or a substituent, and have the same meaning as R 31 and R 32 in formula (3a-1), and the preferred ranges are also the same.
  • R 104 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and has the same meaning as R 34 in the general formula (3c), and the preferred range is also the same. is there.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure represented by R 102 include a benzene ring, a biphenyl ring, an o-terphenyl ring, an m-terphenyl ring, and a p-tell.
  • Examples include a phenyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • the aromatic heterocyclic ring may have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 102 is preferably a hydrogen atom, a benzene ring, a biphenyl ring, a pyrazole ring, an imidazole ring, a triazole ring, a pyridine ring or a thiophene ring, more preferably a hydrogen atom, a benzene ring, a biphenyl ring or a pyridine ring, particularly Preferably it is a hydrogen atom.
  • R 102 may further have a substituent, and examples of the substituent include those listed as the substituent group A, and preferred examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like.
  • the ring A and the ring C are benzene rings
  • R 34 , R 39 , R 310 , and R 104 are It is preferably a substituted or unsubstituted phenyl group or pyridyl group
  • R 31 to R 32 , R 35 to R 37 , and R 101 to R 103 are preferably a hydrogen atom or a phenyl group.
  • the substituent represented by the general formula (3a-1) is preferably a compound represented by the following general formula (10-2).
  • R 102 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure
  • R 101 and R 103 each independently represents a hydrogen atom or a substituent
  • 104 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure other than a naphthalene ring.
  • R 101 and R 103 each independently represent a hydrogen atom or a substituent, and have the same meaning as R 31 and R 32 in formula (3a-1), and the preferred ranges are also the same.
  • R 104 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and has the same meaning as R 34 in the general formula (3c), and the preferred range is also the same. is there.
  • R 102 examples of the substituted or unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group not condensed ring structure represented by R 102, is the same as R 102 in formula (10).
  • R 102 may further have a substituent, and examples of the substituent include those listed as the substituent group A, and preferred examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like.
  • the substituent represented by the general formula (3a-1) is preferably a compound represented by the following general formula (10-3).
  • R 102 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure
  • R 101 and R 103 each independently represents a hydrogen atom or a substituent
  • 104 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure other than a naphthalene ring.
  • R 101 and R 103 each independently represent a hydrogen atom or a substituent, and have the same meaning as R 31 and R 32 in formula (3a-1), and the preferred ranges are also the same.
  • R 104 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and has the same meaning as R 34 in the general formula (3c), and the preferred range is also the same. is there.
  • R 102 examples of the substituted or unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group not condensed ring structure represented by R 102, is the same as R 102 in formula (10).
  • R 102 may further have a substituent, and examples of the substituent include those listed as the substituent group A, and preferred examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like.
  • R 104 is a substituted or unsubstituted phenyl group or pyridyl group
  • R 101 to R 103 are a hydrogen atom or a phenyl group. preferable.
  • R 102 represents a hydrogen atom
  • R 101 and R 103 are each independently a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, Represents a cyano group or a trifluoromethyl group, and these groups may be further substituted with at least one of an alkyl group having 1 to 6 carbon atoms and a phenyl group
  • R 104 represents a benzene ring or a naphthalene ring.
  • a pyridine ring, a triazine ring, or a pyrimidine ring, and these rings are at least one selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom. It is preferable that it may be substituted by these groups.
  • the general formula (10) is particularly preferable.
  • R 111 to R 116 each independently represents a hydrogen atom or a substituent, provided that at least one of R 111 to R 115 is a group represented by the general formula (3a-1), (3a-2) or (3e M represents an integer of 1 to 4.)
  • R 111 to R 115 each independently represent a hydrogen atom or a substituent, and as the substituent, those exemplified as the substituent group A can be applied. At least one of R 111 to R 115 is a group represented by the general formula (3a-1), (3a-2) or (3e), preferably a group represented by the general formula (10). is there.
  • R 111 to R 115 are preferably hydrogen atoms, alkyl groups, alicyclic hydrocarbon groups, aryl groups, fluorine groups, amino groups, alkoxy groups, aryloxy groups, heterocyclic oxy groups, alkylthio groups, arylthio groups, heterocycles.
  • R 113 is particularly preferably a group represented by the general formula (3a-1).
  • R 111 to R 115 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied. In addition, a plurality of these substituents may be bonded to each other to form a ring.
  • R 116 represents a hydrogen atom or a substituent.
  • the plurality of R 116 may be the same or different.
  • R 116 is preferably a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group, an amino group, an alkoxy group, an aryloxy group, an aromatic heterocyclic oxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, a cyano group,
  • An aromatic heterocyclic group, a silyl group, and a silyloxy group more preferably an alkyl group, an aromatic hydrocarbon ring group, an amino group, a cyano group, and an aromatic heterocyclic group, still more preferably an alkyl group and an aromatic group.
  • a hydrocarbon ring group, a cyano group, and an aromatic heterocyclic group are preferable, and an alkyl group and an aromatic hydrocarbon ring group are particularly preferable.
  • M represents an integer of 1 to 4, preferably 1 to 3, more preferably 2.
  • R 111 to R 116 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the above general formula (10) , (10-2), or (10-3), and at least one of R 111 to R 115 is represented by the general formula (10), (10-2), or It is a group represented by any one of (10-3), and m preferably represents an integer of 1 to 4.
  • R 121 to R 126 each independently represents a hydrogen atom or a substituent, provided that at least one of R 121 to R 125 is represented by the general formula (3a-1), (3a-2) or ( 3e) and m represents an integer of 1 to 4.
  • R 121 to R 125 each independently represents a hydrogen atom or a substituent, and the substituents listed above as the substituent group A can be applied. At least one of R 121 to R 125 is a group represented by the general formula (3a-1), (3a-2) or (3e), preferably a group represented by the general formula (10). is there.
  • R 121 to R 125 are preferably a hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, hetero Ring thio group, cyano group, heterocyclic group, silyl group, silyloxy group, more preferably hydrogen atom, alkyl group, alicyclic hydrocarbon group, aryl group, fluorine group, cyano group, silyl group, heterocyclic ring More preferably a hydrogen atom, an alkyl group, an alicyclic hydrocarbon group, an aryl group, a fluorine group, a cyano group, a silyl group, a heterocyclic group, and particularly preferably a hydrogen atom, an alkyl group, an alicyclic ring.
  • R 121 to R 125 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied. In addition, a plurality of these substituents may be bonded to each other to form a ring.
  • R 126 represents a hydrogen atom or a substituent.
  • the plurality of R 126 may be the same or different.
  • R 126 is preferably a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group, an amino group, an alkoxy group, an aryloxy group, an aromatic heterocyclic oxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, a cyano group,
  • An aromatic heterocyclic group, a silyl group, and a silyloxy group more preferably an alkyl group, an aromatic hydrocarbon ring group, an amino group, a cyano group, and an aromatic heterocyclic group, still more preferably an alkyl group and an aromatic group.
  • a hydrocarbon ring group, a cyano group, and an aromatic heterocyclic group are preferable, and an alkyl group and an aromatic hydrocarbon ring group are particularly preferable.
  • M represents an integer of 1 to 4, preferably 1 to 3, more preferably 2.
  • R 121 to R 126 are each independently a hydrogen atom, methyl group, isobutyl group, t-butyl group, neopentyl group, phenyl group, naphthyl group, cyano group, fluorine atom, the above general formula (10), (10-2) or (10-3) is represented, and at least one of R 121 to R 125 is represented by the general formula (10), (10-2), or It is a group represented by any one of (10-3), and m preferably represents an integer of 1 to 4.
  • one of preferred forms is a compound represented by the following general formula (13).
  • R 132 represents hydrogen or a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure
  • R 131 and R 133 each independently represent a hydrogen atom or a substituent
  • R 134 And R 135 represents a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring
  • R 136 represents a hydrogen atom or a substituent
  • m represents an integer of 1 to 4.
  • R 131 and R 133 each independently represent a hydrogen atom or a substituent, and are the same as R 12 and R 13 in the general formula (1), and the preferred ranges are also the same.
  • R 134 and R 135 represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and have the same meaning as R 11 and R 15 in the general formula (1), The preferred range is also the same.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group not having a condensed ring structure represented by R 132 include benzene ring, biphenyl ring, o-terphenyl ring, m-terphenyl ring, p-ter Examples include a phenyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • the aromatic heterocyclic ring may have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 132 is preferably a hydrogen atom, a benzene ring, a biphenyl ring, a pyrazole ring, an imidazole ring, a triazole ring, a pyridine ring or a thiophene ring, more preferably a hydrogen atom, a benzene ring, a biphenyl ring or a pyridine ring, Preferably it is a hydrogen atom.
  • R 132 may further have a substituent, and examples of the substituent include those listed as the substituent group A, and preferred examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like.
  • R 136 represents a hydrogen atom or a substituent.
  • the plurality of R 136 may be the same or different.
  • R 136 is preferably a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group, an amino group, an alkoxy group, an aryloxy group, an aromatic heterocyclic oxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, a cyano group,
  • An aromatic heterocyclic group, a silyl group, and a silyloxy group more preferably an alkyl group, an aromatic hydrocarbon ring group, an amino group, a cyano group, and an aromatic heterocyclic group, still more preferably an alkyl group and an aromatic group.
  • a hydrocarbon ring group, a cyano group, and an aromatic heterocyclic group are preferable, and an alkyl group and an aromatic hydrocarbon ring group are particularly preferable.
  • M represents an integer of 1 to 4, preferably 1 to 3, more preferably 2.
  • R 132 represents a hydrogen atom
  • R 131 and R 133 each independently represent a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups are further represented by carbon. May be substituted with at least one of an alkyl group of 1 to 6 and a phenyl group
  • R 134 and R 135 each independently represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring.
  • These rings may be further substituted with at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • 136 is a hydrogen atom, a methyl group, an isobutyl group, t- butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, or a full Represents atom
  • m represents an integer of 1 to 4
  • silicon linking group is preferably substituted on a carbon atom as one of the R 131.
  • one of preferred forms is a compound represented by the following general formula (14).
  • R 142 represents hydrogen, a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure
  • R 141 and R 143 each independently represent a hydrogen atom or a substituent
  • 144 and R 145 each represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring
  • the carbon linking group is substituted with a carbon atom as R 141.
  • R 146 is a hydrogen atom. Or represents a substituent, and m represents an integer of 1 to 4.
  • R 141 and R 143 each independently represent a hydrogen atom or a substituent, and are the same as R 12 and R 13 in the general formula (1), and the preferred ranges are also the same.
  • R 144 and R 145 represent a substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group that is not a condensed ring structure other than a naphthalene ring, and have the same meanings as R 11 and R 15 in the general formula (1), The preferred range is also the same.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group or aromatic heterocyclic group which is not a condensed ring structure represented by R 142 include benzene ring, biphenyl ring, o-terphenyl ring, m-terphenyl ring, p-ter Examples include a phenyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • the aromatic heterocyclic ring may have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 142 is preferably a hydrogen atom, benzene ring, biphenyl ring, pyrazole ring, imidazole ring, triazole ring, pyridine ring or thiophene ring, more preferably a hydrogen atom, benzene ring, biphenyl ring or pyridine ring, particularly Preferably it is a hydrogen atom.
  • R 142 may further have a substituent, and examples of the substituent include those listed as the above-mentioned substituent group A, and preferable examples include alkyl having 1 to 6 carbon atoms, phenyl, pyridyl and the like.
  • R 146 represents a hydrogen atom or a substituent.
  • the plurality of R 146 may be the same or different.
  • R 146 is preferably a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group, an amino group, an alkoxy group, an aryloxy group, an aromatic heterocyclic oxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, a cyano group,
  • An aromatic heterocyclic group, a silyl group, and a silyloxy group more preferably an alkyl group, an aromatic hydrocarbon ring group, an amino group, a cyano group, and an aromatic heterocyclic group, still more preferably an alkyl group and an aromatic group.
  • a hydrocarbon ring group, a cyano group, and an aromatic heterocyclic group are preferable, and an alkyl group and an aromatic hydrocarbon ring group are particularly preferable.
  • M represents an integer of 1 to 4, preferably 1 to 3, more preferably 2.
  • R 142 represents a hydrogen atom
  • R 141 and R 143 each independently represent a hydrogen atom, an alkyl group, a silyl group, a fluorine atom, a cyano group, or a trifluoromethyl group, and these groups are further carbon atoms. May be substituted by at least one of an alkyl group of 1 to 6 and a phenyl group
  • R 144 and R 145 each independently represents a benzene ring, a naphthalene ring, a pyridine ring, a triazine ring, or a pyrimidine ring.
  • These rings may be further substituted by at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom.
  • the linking group is substituted with a carbon atom as one of R 141 , and R 146 is a hydrogen atom, methyl group, isobutyl group, t-butyl group, neope It represents an nyl group, a phenyl group, a naphthyl group, a cyano group, or a fluorine atom, and m preferably represents an integer of 1 to 4.
  • the compound represented by the general formula (1) can be easily produced by a known method. For example, it can be produced with reference to synthesis examples shown in Tetrahedron, 47, 7739-7750 (1991), Synlett, 42-48 (2005).
  • the compound represented by the general formula (1) is contained in the light emitting layer from the viewpoint of improving the light emission efficiency and durability (particularly durability at high temperature driving), but its use is limited.
  • the light emitting layer in the organic layer it may be contained in any layer.
  • any of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an exciton block layer, and a charge block layer it is preferable to contain in two or more.
  • the compound represented by the general formula (1) may be contained in both the light emitting layer and the adjacent layer.
  • M represents a metal having an atomic weight of 40 or more.
  • R 3 to R 6 each independently represents a hydrogen atom or a substituent.
  • R 3 ′ represents a hydrogen atom or a substituent.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to the metal M, and may be further substituted with a non-aromatic group, and R 5 is a ring when the ring Q is a pyridine ring, R 6 and .
  • R 3 'representing an aryl group or a heteroaryl group, -CR 2 -CR 2 -, - CR CR -, - CR 2 -, - O -, - NR -, - O-CR 2 - , —NR—CR 2 —, and —N ⁇ CR— may be linked to form a ring, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group,
  • n represents a value equal to or greater than 0 and equal to or less than the maximum number of ligands capable of binding to the metal
  • m + n represents the maximum number of ligands capable of binding to the metal. Number.
  • M represents a metal having an atomic weight of 40 or more
  • Ir, Pt, Cu, Re, W, Rh, Ru, Pd, Os, Eu, Tb, Gd, Dy, and Ce are Can be mentioned.
  • Ir, Pt, or Re is preferable, and Ir, Pt, or Re capable of forming a metal-carbon bond or metal-nitrogen bond coordination mode is preferable, and Ir is particularly preferable from the viewpoint of high emission quantum yield. preferable.
  • R 3 to R 6 and R 3 ′ each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 3 to R 6 and R 3 ′ those exemplified as the substituent group A can be applied.
  • the aryl group represented by R 3 to R 6 and R 3 ′ is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group. .
  • the heteroaryl group represented by R 3 to R 6 and R 3 ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Aryl groups such as pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, quinolinyl, isoquinolinyl, quinazolinyl, cinnolinyl, phthalazinyl, quinoxalinyl, pyrrolyl, indolyl, furyl, benzofuryl Group, thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benz
  • heterocyclic group represented by R 3 ′ are a pyridyl group, a pyrimidinyl group, an imidazolyl group, and a thienyl group, and more preferably a pyridyl group and a pyrimidinyl group.
  • R 3 ′ is preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom, an alkyl group, A cyano group, a trifluoromethyl group, a fluoro group, and an aryl group, and more preferably a hydrogen atom, an alkyl group, and an aryl group.
  • R 3 , R 4 and R 6 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, a cyano group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group or a heteroaryl group, more preferably a hydrogen atom.
  • An alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group and more preferably a hydrogen atom, an alkyl group, and an aryl group.
  • R 3 to R 6 and R 3 ′ may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • the substituent is an alkyl group, an aryl group, a cyano group, a halogen atom, or a nitrogen-containing aromatic heterocyclic group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, pyridyl, A fluorine atom and a cyano group, more preferably an alkyl group having 1 to 6 carbon atoms, a phenyl group, and a cyano group.
  • R 3 to R 6 may be linked to each other to form a condensed ring.
  • the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, and a pyrrole ring.
  • Pyrazole ring imidazole ring, triazole ring, oxazole ring, oxadiazole ring, thiazole ring, thiadiazole ring, furan ring, thiophene ring, selenophene ring, silole ring, germol ring, phosphole ring, carbazole ring and the like.
  • R 5 is an aryl group or a heteroaryl group when the ring Q is a pyridine ring.
  • the aryl group or heteroaryl group may further have a substituent, and the substituent is preferably an alkyl group, a cyano group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, a hetero group.
  • An aryl group more preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group, and still more preferably a hydrogen atom, an alkyl group, a cyano group, and an aryl group.
  • R 5 is preferably a phenyl group, a p-tolyl group, or a naphthyl group, and more preferably a phenyl group.
  • R 5 is preferably an alkyl group, an alkoxy group, a fluoro group, a cyano group, an alkylamino group or a diarylamino group, more preferably an alkyl group, a fluoro group or a cyano group, An alkyl group is more preferable, and a methyl group is particularly preferable.
  • R 3 is also preferably an alkyl group, more preferably a methyl group.
  • Ring Q represents a pyridine ring, a quinoline ring, or an isoquinoline ring coordinated to the metal M, and may be further substituted with a substituent.
  • substituents include an alkyl group, an aryl group, a cyano group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, a pyridyl group, a thienyl group, and an alkoxy group, and more preferably an alkyl group, an aryl group, an alkoxy group, and a cyano group.
  • Ring Q preferably has no further substituents as described above, or is substituted with an alkyl or aryl group, and has no further substituents or is substituted with an alkyl group It is more preferable.
  • M is preferably from 1 to 6, and more preferably from 1 to 3.
  • m is preferably 1 to 3, and more preferably 2.
  • n is preferably from 0 to 3, and more preferably from 0 to 1.
  • M is Ir, n is preferably 1 to 3. More preferably, m is 2 and n is 1.
  • (XY) represents a bidentate ligand.
  • the bidentate ligand represented by (XY) is not particularly limited, specific examples thereof include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyridylpyridine, Examples include imidazolylpyridine, pyrazolylpyridine, triazolylpyridine, pyrazabol, diphenylphosphinoethylene, picolinic acid and acetylacetone.
  • phenylpyridine preferred are phenylpyridine, phenylpyrazole, phenylimidazole, pyridylpyridine, pyrazabol, picolinic acid and acetylacetone, and more preferred are phenylpyridine, picolinic acid and acetylacetone.
  • bidentate ligand represented by (XY) include ligands represented by any one of the following general formulas (l-1) to (l-15). Can do.
  • Rx, Ry and Rz each independently represents a hydrogen atom or a substituent.
  • substituent include a substituent selected from the substituent group A.
  • Rx and Rz are preferably any of an alkyl group, a perfluoroalkyl group, a halogen atom, and an aryl group, and more preferably an alkyl group.
  • Ry is preferably any one of a hydrogen atom, an alkyl group, a perfluoroalkyl group, a halogen atom, and an aryl group, and more preferably a hydrogen atom or an alkyl group.
  • the general formula (l-1), (l-4), or (l-15) is more preferable.
  • One preferred form of the compound represented by the general formula (D-1) is a compound represented by the general formula (D-2).
  • M represents a metal having an atomic weight of 40 or more.
  • R 3 to R 6 each independently represents a hydrogen atom or a substituent.
  • R 3 ′ to R 8 ′ each independently represents hydrogen.
  • Z is each independently a halogen atom, —R ′, —OR ′, —N (R ′) 2 , —SR ', -C (O) R' , - C (O) OR ', - C (O) N (R') 2, -CN, -NO 2, -SO 2, - OR ', - SO 2 R', or 'represent, R' -SO 3 R each independently represent a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl (XY) represents an auxiliary ligand, m represents 1 or more and a value equal to or less than the maximum number of ligands that can be bonded to the metal, and n represents 0 or more and bonded to the metal. Represents a value less than or equal to the maximum number of ligands, where m +
  • Formula (D-2) in the M, R 3 ', m and n are, general formula (D-1) in the M, R 3', has the same meaning as m and n, preferred ones are also similar.
  • R 3 to R 6 each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 3 to R 6 those exemplified as the substituent group A can be applied.
  • R 3 to R 6 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • the substituent is an alkyl group, an aryl group, a cyano group, a halogen atom, or a nitrogen-containing aromatic heterocyclic group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, pyridyl, A fluorine atom and a cyano group, more preferably an alkyl group having 1 to 6 carbon atoms, a phenyl group, and a cyano group.
  • R 3 to R 6 may be linked to each other to form a condensed ring.
  • the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, and a pyrrole ring.
  • Pyrazole ring imidazole ring, triazole ring, oxazole ring, oxadiazole ring, thiazole ring, thiadiazole ring, furan ring, thiophene ring, selenophene ring, silole ring, germol ring, phosphole ring and the like.
  • the aryl group represented by R 3 to R 6 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms such as a phenyl group, a tolyl group, and a naphthyl group.
  • the heteroaryl group represented by R 3 to R 6 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group,
  • R 3 to R 6 are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group.
  • Group, cyano group, trifluoromethyl group, fluoro group and aryl group more preferably a hydrogen atom, an alkyl group and an aryl group.
  • R 3 and R 5 are preferably alkyl groups, more preferably ethyl group, isobutyl group, t-butyl group, neopentyl group, and methyl group, and particularly preferably ethyl group, isobutyl group, neopentyl group, It is a methyl group, and a methyl group is more preferable.
  • R 4 ′ to R 8 ′ each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 4 ′ to R 8 ′ those exemplified as the substituent group A can be applied.
  • the aryl group represented by R 4 ′ to R 8 ′ preferably includes a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the heteroaryl group represented by R 4 ′ to R 8 ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Yes for example, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, quinazolinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, pyrrolyl group, indolyl group, furyl group, benzofuryl group, thienyl Group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl
  • R 4 ′ to R 8 ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, a heteroaryl group, an alkoxy group, and more Preferred are a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, an aryl group, an alkoxy group, and a thienyl group, more preferred are a hydrogen atom, an alkyl group, and an aryl group, and particularly preferred is a hydrogen atom. , An alkyl group.
  • R 4 ′ to R 8 ′ may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • the substituent is preferably an alkyl group, an aryl group, a cyano group, a halogen atom, a nitrogen-containing aromatic heterocyclic group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, Pyridyl, cyano group, halogen atom, more preferably a branched alkyl group having 3 to 6 carbon atoms, phenyl group, naphthyl group, cyano group, fluorine atom, particularly preferably isobutyl group, t-butyl group, neopentyl group , Phenyl group, naphthyl group, cyano group, fluorine atom.
  • the number of substituents is 0 to 4, preferably 0 to 2.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • R 4 ′ to R 8 ′ may be linked to each other to form a condensed ring.
  • Examples of the ring formed include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, Examples include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, a thiazole ring, a thiadiazole ring, a furan ring, a thiophene ring, a selenophene ring, a silole ring, a gelmol ring, and a phosphole ring.
  • R 4 ′ to R 6 ′ and R 8 ′ are particularly preferably hydrogen atoms.
  • R 7 ′ is preferably an alkyl group, and more preferably a branched alkyl group.
  • Specific examples of the branched alkyl group include the following substituents (a) to (x), preferably the substituents (a) to (h), and more preferably the substituents (b) to (e).
  • the substituent (c) or (d) is particularly preferable.
  • (XY) represents a bidentate ligand.
  • the bidentate ligand represented by (XY) is not particularly limited, specific examples thereof include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyridylpyridine, Examples include imidazolylpyridine, pyrazolylpyridine, triazolylpyridine, pyrazabol, diphenylphosphinoethylene, picolinic acid and acetylacetone.
  • phenylpyridine preferred are phenylpyridine, phenylpyrazole, phenylimidazole, pyridylpyridine, pyrazabol, picolinic acid and acetylacetone, and more preferred are phenylpyridine, picolinic acid and acetylacetone. Particularly preferred is acetylacetonate from the viewpoint of obtaining complex stability and high luminous efficiency. Further, these groups may be further substituted with the above substituents.
  • the preferred range of (XY) is the same as (XY) in the general formula (D-1).
  • M represents iridium
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group
  • R 3 ′ to R 8 ′ represent a hydrogen atom or an alkyl group.
  • R 6 and R 3 'are, -CR 2 -CR 2, CR CR -, - CR 2 -, - O -, - NR -, - O-CR 2 -, - NR—CR 2 — and —N ⁇ CR— may be connected to form a ring, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group.
  • One preferred form of the compound represented by the general formula (D-1) is a compound represented by the general formula (D-3).
  • M represents a metal having an atomic weight of 40 or more.
  • R 3 to R 6 each independently represents a hydrogen atom or a substituent.
  • R 3 ′ to R 8 ′ each independently represents hydrogen.
  • Z is each independently a halogen atom, —R ′, —OR ′, —N (R ′) 2 , —SR ', -C (O) R' , - C (O) OR ', - C (O) N (R') 2, -CN, -NO 2, -SO 2, - OR ', - SO 2 R', or 'represent, R' -SO 3 R each independently represent a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl (XY) represents an auxiliary ligand, m represents 1 or more and a value equal to or less than the maximum number of ligands that can be bonded to the metal, and n represents 0 or more and bonded to the metal. Represents a value less than or equal to the maximum number of ligands, where m +
  • R 3 to R 6 each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 3 to R 6 those exemplified as the substituent group A can be applied.
  • R 3 to R 6 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • the substituent is an alkyl group, an aryl group, a cyano group, a halogen atom, or a nitrogen-containing aromatic heterocyclic group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, pyridyl, A fluorine atom and a cyano group, more preferably an alkyl group having 1 to 6 carbon atoms, a phenyl group, and a cyano group.
  • R 3 to R 6 may be linked to each other to form a condensed ring.
  • the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, and a pyrrole ring.
  • Pyrazole ring imidazole ring, triazole ring, oxazole ring, oxadiazole ring, thiazole ring, thiadiazole ring, furan ring, thiophene ring, selenophene ring, silole ring, germol ring, phosphole ring and the like.
  • the aryl group represented by R 3 to R 6 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms such as a phenyl group, a tolyl group, and a naphthyl group.
  • the heteroaryl group represented by R 3 to R 6 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group,
  • R 3 to R 6 are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group.
  • Group, cyano group, trifluoromethyl group, fluoro group and aryl group more preferably a hydrogen atom, an alkyl group and an aryl group.
  • R 4 and R 6 are particularly preferably a hydrogen atom.
  • R 3 and R 5 are particularly preferably an alkyl group, more preferably an ethyl group, an isobutyl group, a t-butyl group, a neopentyl group, and a methyl group, and particularly preferably an ethyl group, an isobutyl group, a neopentyl group, and a methyl group. And a methyl group is more preferred.
  • R 4 ′ to R 8 ′ each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 4 ′ to R 8 ′ those exemplified as the substituent group A can be applied.
  • R 4 ′ to R 8 ′ may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 4 ′ to R 8 ′ may be linked to each other to form a condensed ring.
  • Examples of the ring formed include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, Examples include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, a thiazole ring, a thiadiazole ring, a furan ring, a thiophene ring, a selenophene ring, a silole ring, a gelmol ring, and a phosphole ring.
  • the aryl group represented by R 4 ′ to R 8 ′ preferably includes a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the heteroaryl group represented by R 4 ′ to R 8 ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Yes for example, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, quinazolinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, pyrrolyl group, indolyl group, furyl group, benzofuryl group, thienyl Group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl
  • R 4 ′ to R 8 ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom.
  • R 4 ′ is preferably an alkyl group.
  • (XY) represents a bidentate ligand.
  • the bidentate ligand represented by (XY) is not particularly limited, specific examples thereof include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyridylpyridine, Examples include imidazolylpyridine, pyrazolylpyridine, triazolylpyridine, pyrazabol, diphenylphosphinoethylene, picolinic acid and acetylacetone.
  • phenylpyridine preferred are phenylpyridine, phenylpyrazole, phenylimidazole, pyridylpyridine, pyrazabole, picolinic acid and acetylacetone, and more preferred are phenylpyridine, picolinic acid and acetylacetone. Particularly preferred is acetylacetonate from the viewpoint of obtaining complex stability and high luminous efficiency.
  • these groups may be further substituted with the above substituents.
  • the preferred range of (XY) is the same as (XY) in the general formula (D-1).
  • M represents iridium
  • R 3 to R 6 each independently represents a hydrogen atom, an alkyl group, or an aryl group
  • R 3 ′ to R 8 ′ each independently represents a hydrogen atom.
  • R 6 and R 3 'are, -CR 2 -CR 2 -, - CR CR -, - CR 2 -, - O -, - NR -, - O-CR 2
  • a ring may be connected by a linking group selected from —, —NR—CR 2 —, and —N ⁇ CR—, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • One preferred form of the compound represented by the general formula (D-1) is a compound represented by the general formula (D-4).
  • M represents a metal having an atomic weight of 40 or more.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 3 ′ to R 6 ′ each independently represents hydrogen.
  • Z is each independently a halogen atom, —R ′, —OR ′, —N (R ′) 2 , —SR ', -C (O) R' , - C (O) OR ', - C (O) N (R') 2, -CN, -NO 2, -SO 2 -SOR ', - SO 2 R', or 'represent, R' -SO 3 R each independently represent a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a hetero Represents an aryl group, (XY) represents an auxiliary ligand, m represents a value of 1 or more and the maximum number of ligands capable of binding to the metal, n represents 0 or more, and Represents a value equal to or less than the maximum number of ligands that can be bonded, and m +
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 3 to R 10 those exemplified as the substituent group A can be applied.
  • R 3 to R 10 may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • the substituent is an alkyl group, an aryl group, a cyano group, a halogen atom, or a nitrogen-containing aromatic heterocyclic group, more preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, pyridyl, A fluorine atom and a cyano group, more preferably an alkyl group having 1 to 6 carbon atoms, a phenyl group, and a cyano group.
  • R 3 to R 10 may be linked to each other to form a condensed ring.
  • Examples of the ring formed include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, and a pyrrole ring. , Pyrazole ring, imidazole ring, triazole ring, oxazole ring, oxadiazole ring, thiazole ring, thiadiazole ring, furan ring, thiophene ring, selenophene ring, silole ring, germol ring, phosphole ring and the like.
  • the aryl group represented by R 3 to R 10 preferably includes a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the heteroaryl group represented by R 3 to R 10 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group,
  • R 3 to R 10 are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group.
  • Group, cyano group, trifluoromethyl group, fluoro group and aryl group more preferably hydrogen atom, alkyl group, cyano group and aryl group, particularly preferably hydrogen atom, alkyl group and aryl group.
  • R 3 to R 6 and R 8 to R 10 are particularly preferably hydrogen atoms.
  • R 7 is particularly preferably an alkyl group, preferably a methyl group, an isobutyl group, or a neopentyl group, more preferably a methyl group.
  • R 3 ′ to R 6 ′ each independently represents a hydrogen atom or a substituent.
  • substituents represented by R 3 ′ to R 6 ′ those exemplified as the substituent group A can be applied.
  • R 3 ′ to R 6 ′ may further have a substituent, and as the substituent, those exemplified as the substituent group A can be applied.
  • R 3 ′ to R 6 ′ may be linked to each other to form a condensed ring.
  • Examples of the ring formed include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, Examples include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, a thiazole ring, a thiadiazole ring, a furan ring, a thiophene ring, a selenophene ring, a silole ring, a gelmol ring, and a phosphole ring.
  • the aryl group represented by R 3 ′ to R 6 ′ preferably includes a substituted or unsubstituted aryl group having 6 to 30 carbon atoms such as a phenyl group, a tolyl group, and a naphthyl group.
  • the heteroaryl group represented by R 3 ′ to R 6 ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Yes for example, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, quinazolinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, pyrrolyl group, indolyl group, furyl group, benzofuryl group, thienyl Group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl
  • R 3 ′ to R 6 ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom.
  • An alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group and more preferably a hydrogen atom, an alkyl group, and an aryl group.
  • (XY) represents a bidentate ligand.
  • the bidentate ligand represented by (XY) is not particularly limited, specific examples thereof include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyridylpyridine, Examples include imidazolylpyridine, pyrazolylpyridine, triazolylpyridine, pyrazabol, diphenylphosphinoethylene, picolinic acid and acetylacetone.
  • phenylpyridine preferred are phenylpyridine, phenylpyrazole, phenylimidazole, pyridylpyridine, pyrazabol, picolinic acid and acetylacetone, and more preferred are phenylpyridine, picolinic acid and acetylacetone, and particularly preferred is the stability of the complex. From the viewpoint of sex, it is phenylpyridine. Further, these groups may be further substituted with the above substituents.
  • the preferred range of (XY) is the same as (XY) in the general formula (D-1).
  • M represents iridium
  • R 3 to R 10 each independently represents a hydrogen atom, an alkyl group, or an aryl group
  • R 3 ′ to R 6 ′ each independently represents a hydrogen atom.
  • a ring may be connected by a linking group selected from —, —NR—CR 2 —, and —N ⁇ CR—, and each R independently represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • An aryl group, a heteroaryl group, and further a halogen atom, —R ′, —OR ′, —N (R ′) 2 , —SR ′, —C (O) R ′, —C (O) OR ′, —C (O) N (R ′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′, —SO 2 R ′, and —SO 3 R ′ may have a substituent selected from R ′, and each R ′ independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, -Y) represents a ligand represented by any one of the general formulas (l-1), (1-4), or (1-15), m represents an integer of 1 to 3, n represents an integer of 0 or more and 2 or less, provided that m
  • acac represents a ligand (acetylacetonate) having the following structure.
  • the compound represented by the general formula (D-1) is contained in the light emitting layer from the viewpoint of improving luminous efficiency and durability (particularly durability at high temperature driving). It is not limited and may be contained in any layer in addition to the light emitting layer in the organic layer.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an exciton block layer, and a charge block layer can be used. It is preferable to be contained in one or a plurality.
  • composition containing a compound represented by the general formula (1) and a compound represented by the general formula (D-1) The present invention also relates to a composition containing the compound represented by the general formula (1) and the compound represented by the general formula (D-1).
  • the content of the compound represented by the general formula (1) in the composition of the present invention is preferably 50 to 99% by mass, and more preferably 70 to 95% by mass.
  • the content of the compound represented by the general formula (D-1) in the composition of the present invention is preferably 1 to 30% by mass, and more preferably 5 to 15% by mass.
  • Other components that may be contained in the composition of the present invention may be organic or inorganic, and as organic materials, materials described as host materials, fluorescent materials, and phosphorescent materials described later can be applied.
  • the composition of the present invention can form an organic layer of an organic electroluminescence device by a dry film forming method such as a vapor deposition method or a sputtering method, a transfer method, a printing method, or the like.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having a pair of electrodes and at least one organic layer including a luminescent layer containing a luminescent material between the electrodes on a substrate, the luminescent layer comprising And at least one compound represented by the general formula (1) and one compound represented by the general formula (D-1).
  • the light emitting layer is an organic layer, but may further have a plurality of organic layers.
  • at least one of the anode and the cathode is preferably transparent or translucent.
  • FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
  • a light emitting layer 6 is sandwiched between an anode 3 and a cathode 9 on a support substrate 2.
  • a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are laminated in this order between the anode 3 and the cathode 9.
  • Anode / hole transport layer / light emitting layer / electron transport layer / cathode Anode / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode.
  • the element configuration, the substrate, the cathode, and the anode of the organic electroluminescence element are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736, and the matters described in the publication can be applied to the present invention.
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • an organic material it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light emitting device.
  • the electrode material can be selected as appropriate.
  • Organic layer in the present invention will be described.
  • each organic layer is suitable by any of dry film forming methods such as vapor deposition and sputtering, and wet film forming methods (wet processes) such as transfer, printing, and spin coating. Can be formed.
  • dry film forming methods such as vapor deposition and sputtering
  • wet film forming methods such as transfer, printing, and spin coating.
  • the light emitting layer of the present invention contains at least one compound represented by the general formula (1) and one compound represented by the general formula (D-1). ⁇ Light emitting material>
  • the light emitting material in the present invention is preferably a compound represented by the general formula (D-1).
  • the light emitting material in the light emitting layer is preferably contained in an amount of 0.1% by mass to 50% by mass with respect to the mass of all compounds generally forming the light emitting layer in the light emitting layer.
  • the content is more preferably 1% by mass to 50% by mass, and further preferably 2% by mass to 40% by mass.
  • the compound represented by the general formula (D-1) in the light emitting layer is preferably contained in the light emitting layer in an amount of 1% by mass to 30% by mass from the viewpoint of durability and external quantum efficiency. More preferably 20% by mass is contained.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
  • the light emitting layer in the element of the present invention may have a mixed layer of a light emitting material and a host material.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the dopant may be one kind or two or more kinds.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be a single layer or a multilayer of two or more layers. In addition, each light emitting layer may emit light with different emission colors.
  • the present invention also relates to a light emitting layer comprising a compound represented by the general formula (1) and a compound represented by the general formula (D-1).
  • the light emitting layer of this invention can be used for an organic electroluminescent
  • the host material used in the present invention may contain the following compounds.
  • pyrrole indole, carbazole (eg, CBP (4,4′-di (9-carbazoyl) biphenyl)), azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, Pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, porphyrin compound, polysilane compound, poly (N-vinyl) Carbazole), aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, organic silane
  • the triplet lowest excitation energy (T 1 energy) of the host material is higher than the T 1 energy of the phosphorescent light emitting material.
  • the host material is preferably a compound represented by the general formula (1).
  • the content of the host compound in the present invention is not particularly limited, but from the viewpoint of light emission efficiency and driving voltage, it is 15% by mass or more and 95% by mass or less with respect to the total compound mass forming the light emitting layer.
  • the compound represented by the general formula (1) in the light emitting layer is 15% by mass or more and 95% by mass or less with respect to the total mass of the compound forming the light emitting layer from the viewpoint of light emission efficiency and driving voltage in the light emitting layer. It is preferable that it is 40 mass% or more and 96 mass% or less.
  • fluorescent material examples include, for example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives.
  • Condensed aromatic compounds perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styryl Complexes of amine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds, 8-quinolinol derivatives and pyromethene derivatives
  • complexes represented, polythiophene, polyphenylene, polyphenylene vinylene polymer compounds include compounds such as organic silane derivatives.
  • phosphorescent material examples include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-235076, JP-A No. 2003-123982, JP-A No.
  • more preferable light emitting materials include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Examples include Ru complexes, Pd complexes, Os complexes, Eu complexes, Tb complexes, Gd complexes, Dy complexes, and Ce complexes.
  • Ir complex, Pt complex, or a Re complex among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred.
  • an Ir complex, a Pt complex, or a Re complex containing a tridentate or higher polydentate ligand is particularly preferable.
  • the content of the phosphorescent light emitting material is preferably in the range of 0.1% by mass to 50% by mass and more preferably in the range of 0.2% by mass to 50% by mass with respect to the total mass of the light emitting layer in the light emitting layer. More preferably, the range of 0.3% by mass or more and 40% by mass or less is further preferable, and the range of 4% by mass or more and 30% by mass or less is most preferable.
  • the content of the phosphorescent light-emitting material that can be used in the present invention is preferably in the range of 0.1% by mass to 50% by mass and preferably in the range of 1% by mass to 40% by mass with respect to the total mass of the light emitting layer. More preferably, the range is 4% by mass or more and 30% by mass or less. In particular, in the range of 4% by mass or more and 30% by mass or less, the chromaticity of light emission of the organic electroluminescent element is less dependent on the addition concentration of the phosphorescent light emitting material.
  • the organic layer preferably includes a hole injection layer or a hole transport layer containing an electron-accepting dopant.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer the matters described in paragraph numbers [0165] to [0167] of JP-A-2008-270736 can be applied to the present invention. .
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP)) and the like.
  • BAlq phenylphenolate
  • BAlq phenylphenolate
  • BCP phenanthroline
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the entire organic EL element may be protected by a protective layer.
  • the protective layer the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
  • the element of this invention may seal the whole element using a sealing container.
  • the sealing container the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
  • the light emitting element of the present invention can improve the light extraction efficiency by various known devices. For example, by processing the substrate surface shape (for example, forming a fine concavo-convex pattern), controlling the refractive index of the substrate / ITO layer / organic layer, controlling the film thickness of the substrate / ITO layer / organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.
  • the light-emitting element of the present invention may be a so-called top emission type in which light emission is extracted from the anode side.
  • the organic EL element in the present invention may have a resonator structure.
  • a multilayer film mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate.
  • the light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
  • a transparent or translucent electrode and a metal electrode each function as a reflecting plate on a transparent substrate, and light generated in the light emitting layer repeats reflection and resonates between them.
  • the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to an optimum value to obtain the desired resonant wavelength. Is done.
  • the calculation formula in the case of the first embodiment is described in JP-A-9-180883.
  • the calculation formula in the case of the second embodiment is described in Japanese Patent Application Laid-Open No. 2004-127795.
  • the external quantum efficiency of the organic electroluminescent element of the present invention is preferably 5% or more, more preferably 7% or more.
  • the value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency near 100 to 300 cd / m 2 when the device is driven at 20 ° C. Can do.
  • the internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%.
  • the organic electroluminescent element of the present invention preferably has a maximum emission wavelength (maximum intensity wavelength of emission spectrum) of 350 nm to 700 nm, more preferably 350 nm to 600 nm, still more preferably 400 nm to 520 nm, particularly preferably. It is 400 nm or more and 465 nm or less.
  • the light-emitting element of the present invention can be suitably used for light-emitting devices, pixels, display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like. .
  • it is preferably used for a device that is driven in a region where light emission luminance is high, such as a light emitting device, a lighting device, and a display device.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light emitting device 20 in FIG. 2 includes a transparent substrate (support substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
  • the organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2.
  • a protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween.
  • a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate
  • the adhesive layer 14 a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of a lighting device according to an embodiment of the present invention.
  • the illumination device 40 according to the embodiment of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • a glass substrate can be preferably cited.
  • the fine particles 32 transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 is incident on the light incident surface 30A of the scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
  • Example 1 [Production of organic electroluminescence device]
  • the cleaned ITO substrate was put into a vapor deposition apparatus, and copper phthalocyanine was vapor-deposited to 10 nm, and NPD (N, N′-di- ⁇ -naphthyl-N, N′-diphenyl) -benzidine) was vapor-deposited thereon (positive) Pore transport layer).
  • NPD N, N′-di- ⁇ -naphthyl-N, N′-diphenyl) -benzidine
  • A-1 and C-1 were vapor-deposited at a ratio of 9:91 (mass ratio) of 30 nm (light emitting layer), and H-1 was vapor-deposited thereon at a thickness of 5 nm (adjacent layer).
  • Example 1-1 to 1-198, Comparative Examples 1-2 to 1-16 A device was fabricated and evaluated in the same manner as in Comparative Example 1-1 except that the compounds used for the light emitting material and the host material were changed to those shown in Table 1. Phosphorescence emission derived from the light emitting material using any element was obtained. The results obtained are summarized in Table 1.
  • Each organic electroluminescence device was set in an emission spectrum measurement system (ELS1500) manufactured by Shimadzu Corporation, and an applied voltage at a luminance of 1000 cd / m 2 was measured.
  • ELS1500 emission spectrum measurement system
  • Each organic electroluminescent element is set in the OLED test system ST-D type manufactured by Tokyo System Development Co., Ltd., and driven at a constant current mode at an external temperature of 70 ° C. under an initial luminance of 1000 cd / m 2. Half time was measured.
  • Tables 1 to 4 the values of the elements of Comparative Example 1-1, Comparative Example 2-1, Comparative Example 3-1, and Comparative Example 4-1 were set to 100, and the values were shown as relative values. .
  • the device of the present invention has higher external quantum efficiency and lower drive voltage than the comparative device. In particular, it showed high durability when driven at a high temperature (70 ° C.).
  • Comparative Example 1-1 the composition ratio of the light-emitting layer was changed from 9:91 (mass ratio) for A-1 and C-1 to 5:95 (mass ratio) for B-1 and C-1 for vapor deposition. Except that (thickness: 30 nm), an organic EL device of Comparative Example 2-1 was produced in the same manner as Comparative Example 1-1. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, light emission derived from B-1 was obtained.
  • Examples 2-1 to 2-249 and Comparative Examples 2-2 to 2-15 were performed in the same manner as Comparative Example 2-1, except that the materials used in Comparative Example 2-1 were changed to the materials shown in Table 2.
  • the device was fabricated. Using a source measure unit type 2400 manufactured by Toyo Technica, a direct current voltage was applied to the organic EL element to emit light, and as a result, light emission of colors derived from the respective light emitting materials was obtained. The device obtained as described above was evaluated in the same manner as in Example 1.
  • the device of the present invention has higher external quantum efficiency and lower drive voltage than the comparative device. In particular, it showed high durability when driven at a high temperature (70 ° C.).
  • Example 3-1 A glass substrate having a 0.5 mm thickness and a 2.5 cm square ITO film (manufactured by Geomatek Co., Ltd., surface resistance 10 ⁇ / ⁇ ) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS) to 70% by mass with pure water was applied to this with a spin coater to provide a 50 nm hole transport layer.
  • PEDOT / PSS polystyrene sulfonate
  • BAlq bis- (2-methyl-8-quinolinolate) -4- (phenylphenolate) aluminum
  • BAlq bis- (2-methyl-8-quinolinolate) -4- (phenylphenolate) aluminum
  • 0.5 nm of lithium fluoride as a cathode buffer layer and 150 nm of aluminum as a cathode were deposited in a deposition apparatus.
  • Examples 3-1 to 3-133, Comparative Examples 3-2 to 3-7) were the same as Comparative Example 3-1, except that the materials used in Comparative Example 3-1 were changed to the materials shown in Table 3.
  • the device was fabricated. Using a source measure unit type 2400 manufactured by Toyo Technica, a direct current voltage was applied to the organic EL element to emit light, and as a result, light emission of colors derived from the respective light emitting materials was obtained. The device obtained as described above was evaluated in the same manner as in Example 1.
  • the device of the present invention has higher external quantum efficiency and lower drive voltage than the comparative device. In particular, it showed high durability when driven at a high temperature (70 ° C.).
  • the light-emitting layer was produced by coating, which is excellent in terms of manufacturing cost.
  • Example 4> (Comparative Example 4-1)
  • the composition of the light-emitting layer was changed from A-1 and C-1 to 4:96 (mass ratio) and B-1 and C-1 to 4:96 (mass ratio).
  • film thickness 30 nm
  • an organic EL device of Comparative Example 4-1 was produced in the same manner as Comparative Example 3-1.
  • Example 4-1 to 4-184, Comparative Examples 4-2 to 4-9) Examples 4-1 to 4-184 and Comparative Examples 4-2 to 4-9 were the same as Comparative Example 4-1, except that the materials used in Comparative Example 4-1 were changed to the materials shown in Table 4.
  • the device was fabricated. Using a source measure unit type 2400 manufactured by Toyo Technica, a direct current voltage was applied to the organic EL element to emit light, and as a result, light emission of colors derived from the respective light emitting materials was obtained. The device obtained as described above was evaluated in the same manner as in Example 1.
  • the device of the present invention has higher external quantum efficiency and lower drive voltage than the comparative device. In particular, it showed high durability when driven at a high temperature (70 ° C.).
  • the light emitting layer was prepared by coating, and the manufacturing cost was excellent.
  • the organic electroluminescent element excellent in luminous efficiency and durability excellent in luminous efficiency and durability (especially durability at the time of high temperature driving) can be provided.
  • Japanese patent applications filed on August 31, 2009 Japanese Patent Application No. 2009-201153
  • Japanese patent applications filed on September 28, 2009 Japanese Patent Application No. 2009-223456
  • Japanese patent application Japanese Patent Application No. 2010-076449
  • Cathode 10 Organic electroluminescent device (organic EL device) DESCRIPTION OF SYMBOLS 11 ... Organic layer 12 ... Protective layer 14 ... Adhesive layer 16 ... Sealing container 20 ... Light emitting device 30 ... Light scattering member 30A ... Light incident surface 30B ... Light Outgoing surface 31 ... Transparent substrate 32 ... Fine particles 40 ... Illumination device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Quinoline Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)

Abstract

 本発明の目的は、発光効率、及び耐久性(特に高温度駆動時の耐久性)に優れる有機電界発光素子の提供にある。基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、特定のインドロカルバゾール誘導体と特定の縮環金属錯体を少なくとも一種ずつ含有することを特徴とする有機電界発光素子を提供する。

Description

有機電界発光素子
 本発明は、電気エネルギーを光に変換して発光できる発光素子、特に、有機電界発光素子(発光素子、EL素子、又は素子ともいう)に関する。
 有機電界発光(EL)素子は、低電圧で高輝度の発光を得ることができるため、有望な表示素子として注目されている。この有機電界発光素子の重要な特性値として消費電力がある。消費電力は電圧と電流の積で表され、所望の明るさを得るために必要な電圧値が低いほど、かつ、電流値を小さくするほど、素子の消費電力を低くすることができる。
 素子に流れる電流値を低くする一つの試みとして、オルトメタル化イリジウム錯体(Ir(ppy):tris-ortho-metalated complex of Iridium(III) with 2-phenylpyridine)からの発光を利用した発光素子が報告されている(例えば特許文献1-3参照)。これらに記載のりん光発光素子は、従来の一重項発光素子に比べて外部量子効率が大幅に向上し、電流値を小さくすることに成功している。
 上記のように、イリジウム錯体は高発光効率を実現させる発光材料として使用されるが、一般に溶解性が悪く、錯体の凝集や会合によって素子寿命が低下する場合があった。特に配位子にキノリン環及びイソキノリン環のような縮環構造を有する場合は、分子運動の自由度が小さくなり、凝集しやすくなると考えられる。錯体の凝集や会合を抑制するために、例えば特定の置換基を導入して溶解性を高める試みも行なわれていたが(特許文献4、5)、その効果は十分ではなかった。
 一方、りん光発光素子の発光効率、耐久性改良を目的に、インドロカルバゾール骨格を有する化合物をホスト材料とした素子(特許文献6、特許文献7)が報告されているが、耐久性、及び発光効率の点で、さらなる改良が望まれていた。
 また、インドロカルバゾールも拡張されたp共役平面を有し、分子運動の自由度が小さいため、会合、凝集が起こりやすいと考えられる。
 また、有機電界発光素子の製造において、一対の電極間に設けられる有機層である薄膜を形成する方法としては、蒸着法として真空蒸着、湿式法としてスピンコーティング法、印刷法、インクジェット法等が行われている。
 中でも湿式法を用いると、蒸着等のドライプロセスでは成膜が困難な高分子の有機化合物も使用可能となり、フレキシブルなディスプレイ等に用いる場合は耐屈曲性や膜強度等の耐久性の点で適しており、特に大面積化した場合に好ましい。
 しかし湿式法により得られた有機電界発光素子には発光効率や素子耐久性に劣るという問題があった。
米国特許出願公開第2008/0297033号明細書 日本国特開2008-297382号公報 日本国特開2008-137994号公報 国際公開第08/109824号 国際公開第09/073245号 国際公開第07/063796号 国際公開第07/063754号
 本発明の目的は、発光効率、及び耐久性(特に高温度駆動時の耐久性)に優れる有機電界発光素子の提供にある。
 前記課題は下記手段によって解決された。
〔1〕
 基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000052
 (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000053
 (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
Figure JPOXMLDOC01-appb-C000054
 (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
Figure JPOXMLDOC01-appb-C000055
(一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
〔2〕
 前記一般式(3)で表される化合物が、下記一般式(1)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000056
 (式中、環Aは隣接環と縮合する一般式(1a)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(1b)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R11及びR15は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R14は水素原子を表す。R12及びR13は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。)
〔3〕
 前記一般式(1)で表される化合物が、下記一般式(15)で表される上記〔2〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000057
(式中、X151~X153は窒素原子又はC-R153を表し、R153は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。R151及びR152は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y15は下記一般式(15a)~(15c)のいずれかで表される基を表す。)
Figure JPOXMLDOC01-appb-C000058
(式中、R155は水素原子を表す。R154及びR156は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R157はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔4〕
 前記一般式(15)で表される化合物が、下記一般式(16)で表される上記〔3〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000059
 (式中、X161~X163は窒素原子又はC-Hを表し、R161及びR162は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y16は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
〔5〕
 前記一般式(16)で表される化合物が、下記一般式(17)で表される上記〔4〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000060
(式中、R171及びR172は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y17は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
〔6〕
 前記一般式(16)で表される化合物が、下記一般式(18)で表される上記〔4〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000061
(式中、R181及びR182は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y18は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
〔7〕
 前記一般式(3)で表される化合物が、下記一般式(5)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000062
(式中、R51~R56は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R51~R56の少なくとも2つは各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔8〕
 前記一般式(3)で表される化合物が、下記一般式(6)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000066
 (式中、R61~R610は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R61~R610の少なくとも2つは各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔9〕
 前記一般式(6)で表される化合物が、下記一般式(7)で表される上記〔8〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000070
 (式中、R71~R78は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表す。Y71及びY72は各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔10〕
 前記一般式(6)で表される化合物が、下記一般式(8)で表される上記〔8〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000074
 (式中、R81~R88は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表す。Y81及びY82は各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔11〕
 前記一般式(3)で表される化合物が、下記一般式(9)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000078
 (式中、R91~R910は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式
(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R91~R910の少なくとも2つは各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。Lはケイ素原子又は炭素原子を表し、該ケイ素原子又は炭素原子は更にアルキル基及びアリール基から選ばれる少なくとも1種の基により置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔12〕
 一般式(3)で表される化合物が、下記一般式(11)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000082
 (式中、R111~R116は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R111~R115の少なくとも1つは下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。mは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔13〕
 一般式(3)で表される化合物が、下記一般式(12)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000086
 (式中、R121~R126は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R121~R125のうち少なくとも1つは下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。mは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
 (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
〔14〕
 一般式(3)で表される化合物が、下記一般式(13)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000090
 (R132は水素原子を表す。R131及びR133は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R134及びR135は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R136は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。mは1~4の整数を表す。ケイ素連結基はR131の1つとして炭素原子に置換する。)
〔15〕
 一般式(3)で表される化合物が、下記一般式(14)で表される上記〔1〕に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000091
 (式中、R142は水素原子を表す。R141及びR143は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R144及びR145は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。炭素連結基はR141の1つとして炭素原子に置換する。R146は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。mは1~4の整数を表す。)
〔16〕
 前記一般式(D-1)で表される化合物が、下記一般式(D-2)で表される化合物である上記〔1〕~〔15〕のいずれか1項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000092
 (一般式(D-2)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は水素原子、アルキル基、又はアリール基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
〔17〕
 前記一般式(D-1)で表される化合物が、下記一般式(D-3)で表される化合物である上記〔1〕~〔15〕のいずれか1項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000093
 (一般式(D-3)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
〔18〕
 前記一般式(D-1)で表される化合物が、下記一般式(D-4)で表される化合物である上記〔1〕~〔15〕のいずれか1項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000094
 (一般式(D-4)中、Mはイリジウムを表す。R~R10は各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。R’とR10は、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
〔19〕
 前記一般式(3)で表される化合物と前記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する発光層が、ウエットプロセスで形成された上記〔1〕~〔18〕のいずれか1項に記載の有機電界発光素子。
〔20〕
 下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する組成物。
Figure JPOXMLDOC01-appb-C000095
 (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000096
 (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
Figure JPOXMLDOC01-appb-C000097
 (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
Figure JPOXMLDOC01-appb-C000098
(一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
〔21〕
 下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する発光層。
Figure JPOXMLDOC01-appb-C000099
 (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000100
 (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
Figure JPOXMLDOC01-appb-C000101
 (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
Figure JPOXMLDOC01-appb-C000102
(一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
〔22〕
 上記〔1〕~〔19〕のいずれか1項に記載の有機電界発光素子を用いた発光装置。
〔23〕
 上記〔1〕~〔19〕のいずれか1項に記載の有機電界発光素子を用いた表示装置。
〔24〕
 上記〔1〕~〔19〕のいずれか1項に記載の有機電界発光素子を用いた照明装置。
 更に、本発明は以下の構成であることも好ましい。
<1>
 基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、下記一般式(7)、(8)、又は(11)で表される化合物と、下記一般式(D-4)、(D-2)、又は(D-3)で表される化合物とを少なくとも一種ずつ含有する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000103
(式中、R71~R78は水素原子を表す。Y71及びY72は各々独立に下記一般式(10)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000104
(式中、R81~R88は水素原子を表す。Y81及びY82は各々独立に下記一般式(10)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000105
(式中、R113は下記一般式(10)で表される基を表す。R111、R112、R114、及びR115は水素原子を表す。R116は水素原子、アルキル基、又は芳香族炭化水素環基を表す。mは2を表す。)
Figure JPOXMLDOC01-appb-C000106
(式中、R101~R103は水素原子を表す。R104はベンゼン環、ビフェニル環、又はピリジン環を表し、これらは更に炭素数1~6のアルキル基、フェニル基、ピリジル基によって置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000107
(一般式(D-4)中、Mはイリジウムを表す。R~R10は各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
Figure JPOXMLDOC01-appb-C000108
(一般式(D-2)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
Figure JPOXMLDOC01-appb-C000109
(一般式(D-3)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
<2>
 前記一般式(10)におけるR104がベンゼン環、ビフェニル環、又はピリジン環を表す<1>に記載の有機電界発光素子。
<3>
 前記一般式(10)におけるR104がベンゼン環である<1>に記載の有機電界発光素子。
<4>
 前記一般式(11)におけるR116がアルキル基、又は芳香族炭化水素環基を表す<1>~<3>のいずれか1項に記載の有機電界発光素子。
<5>
 前記一般式(D-2)におけるR~R及びR’~R’、前記一般式(D-3)におけるR~R及びR’~R’又は前記一般式(D-4)におけるR~R10及びR’~R’が各々独立に水素原子又はアルキル基を表す<1>~<4>のいずれか1項に記載の有機電界発光素子。
<6>
 前記一般式(7)、(8)、又は(11)で表される化合物と、前記一般式(D-4)、(D-2)、又は(D-3)で表される化合物とを少なくとも一種ずつ含有する発光層が、ウエットプロセスで形成された<1>~<5>のいずれか1項に記載の有機電界発光素子。
<7>
 下記一般式(7)、(8)、又は(11)で表される化合物と、下記一般式(D-4)、(D-2)、又は(D-3)で表される化合物とを少なくとも一種ずつ含有する組成物。
Figure JPOXMLDOC01-appb-C000110
(式中、R71~R78は水素原子を表す。Y71及びY72は各々独立に下記一般式(10)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000111
(式中、R81~R88は水素原子を表す。Y81及びY82は各々独立に下記一般式(10)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000112
(式中、R113は下記一般式(10)で表される基を表す。R111、R112、R114、及びR115は水素原子を表す。R116は水素原子、アルキル基、又は芳香族炭化水素環基を表す。mは2を表す。)
Figure JPOXMLDOC01-appb-C000113
(式中、R101~R103は水素原子を表す。R104はベンゼン環、ビフェニル環、又はピリジン環を表し、これらは更に炭素数1~6のアルキル基、フェニル基、ピリジル基によって置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000114
(一般式(D-4)中、Mはイリジウムを表す。R~R10は各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
Figure JPOXMLDOC01-appb-C000115
(一般式(D-2)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
Figure JPOXMLDOC01-appb-C000116
(一般式(D-3)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
<8>
 下記一般式(7)、(8)、又は(11)で表される化合物と、下記一般式(D-4)、(D-2)、又は(D-3)で表される化合物とを少なくとも一種ずつ含有する発光層。
Figure JPOXMLDOC01-appb-C000117
(式中、R71~R78は水素原子を表す。Y71及びY72は各々独立に下記一般式(10)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000118
(式中、R81~R88は水素原子を表す。Y81及びY82は各々独立に下記一般式(10)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000119
(式中、R113は下記一般式(10)で表される基を表す。R111、R112、R114、及びR115は水素原子を表す。R116は水素原子、アルキル基、又は芳香族炭化水素環基を表す。mは2を表す。)
Figure JPOXMLDOC01-appb-C000120
(式中、R101~R103は水素原子を表す。R104はベンゼン環、ビフェニル環、又はピリジン環を表し、これらは更に炭素数1~6のアルキル基、フェニル基、ピリジル基によって置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000121
(一般式(D-4)中、Mはイリジウムを表す。R~R10は各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
Figure JPOXMLDOC01-appb-C000122
(一般式(D-2)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
Figure JPOXMLDOC01-appb-C000123
(一般式(D-3)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。(X-Y)は、フェニルピリジン、ピコリン酸、又はアセチルアセトンからなる配位子を表す。該フェニルピリジンは、アルキル基により置換されていてもよい。mは1~3を表し、nは0~2を表す。ただし、m+nは3である。)
<9>
 <1>~<6>のいずれか1項に記載の有機電界発光素子を用いた発光装置。
<10>
 <1>~<6>のいずれか1項に記載の有機電界発光素子を用いた表示装置。
<11>
 <1>~<6>のいずれかに1項記載の有機電界発光素子を用いた照明装置。
 本発明によれば、発光効率、及び耐久性(特に高温度駆動時の耐久性)に優れる有機電界発光素子を提供することができる。
本発明に係る有機EL素子の層構成の一例(第1実施形態)を示す概略図である。 本発明に係る発光装置の一例(第2実施形態)を示す概略図である。 本発明に係る照明装置の一例(第3実施形態)を示す概略図である。
 本発明の有機電界発光素子は、基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する。
Figure JPOXMLDOC01-appb-C000124
 (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000125
 (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
Figure JPOXMLDOC01-appb-C000126
 (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
Figure JPOXMLDOC01-appb-C000127
(一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
 本発明の有機電界発光素子は、前記一般式(3)で表される化合物と前記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有することにより、高い発光効率(例えば外部量子効率)を有し、高耐久性の有機電界発光素子が提供できる。
 まず、基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、下記一般式(1)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する有機電界発光素子について説明する。
Figure JPOXMLDOC01-appb-C000128
 (式中、環Aは隣接環と縮合する一般式(1a)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(1b)で表される複素環を表し、Xは炭素又は窒素を表し、R11及びR15は各々独立にナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R14は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、R12及びR13は各々独立に水素原子又は置換基を表す。)
Figure JPOXMLDOC01-appb-C000129
 (一般式(D-1)中、Mは40以上の原子量の金属を表す。R~Rは各々独立に水素原子又は置換基を表す。R’は水素原子又は置換基を表す。環Qは、前記金属Mに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更に非芳香族基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。(X-Y)は、補助配位子を表す。mは1以上、前記金属に結合しうる配位子の最大数以下の値を表し、nは0以上、前記金属に結合しうる配位子の最大数以下の値を表す。前記金属に結合しうる配位子の最大数以下の値を表す。m+nは、前記金属に結合しうる配位子の最大数である。)
〔一般式(1)で表される化合物〕
 一般式(1)で表される化合物について詳細に説明する。
Figure JPOXMLDOC01-appb-C000130
 (式中、環Aは隣接環と縮合する一般式(1a)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(1b)で表される複素環を表し、Xは炭素又は窒素を表し、R11及びR15は各々独立にナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R14は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、R12及びR13は各々独立に水素原子又は置換基を表す。)
 一般式(1)で表される化合物は、カルバゾール骨格にインドール骨格が縮環したインドロカルバゾール骨格を含有する複素環化合物である。このように高度に縮環した一般式(1)で表される化合物は、従来のカルバゾール化合物と比較して共役が拡張しているため正孔注入性を維持しつつ、電子注入性が向上し、有機電界発光素子中での電荷のバランスを向上させることができる。特に、発光層が正孔過多である場合には、このような化合物を用いることで発光層内への電子注入が容易になり、発光層内の電荷バランスが改善され、有機電界発光素子の高効率化、低電圧駆動化が実現できる。
 また、一般式(1)で表される化合物は、従来のカルバゾール化合物と比較して拡張されたp共役平面を有し、分子運動の自由度が小さいため、凝集、会合による素子の寿命低下を起こしやすいと推定される。一般式(1)で表される化合物をホスト材料とした場合、素子の高耐久化には、分子運動の自由度が大きく、縮合、会合しにくい発光材料を使用するのが望ましいと考えられた。
 分子運動の自由度の小さい材料を組み合わせると、p-スタッキングなどの分子間の相互作用を(ホスト-発光材料、あるいはホスト同士、発光材料同士、いずれの場合にも)打ち破れなくなり、凝集、会合体が形成しやすくなると考えられる。
 一般式(D-1)で表される化合物は芳香族環を多く有しており、キノリン環及びイソキノリン環のような縮環構造を有する場合は特に、分子運動の自由度が低くなるため、一般式(1)で表される化合物をホストとした場合、発光材料として適していないと予想された。しかしながら、本発明では、分子運動の自由度が小さい一般式(D-1)で表される化合物と分子運動の自由度が小さい一般式(1)で表される化合物と組み合わせて使うことで、予想外に、凝集、会合が生じず、高温度駆動時の素子耐久性が向上した。
 凝集、会合が生じなかった理由は明らかではないが、ホスト、ゲスト材料の誘電率、表面エネルギーが近く、膜中での材料の分離が起こらずに均質なアモルファス膜が出来たためと考えられる。
 また、高温度駆動時の素子耐久性が向上したのは、分子運動の自由度が小さいホスト、ゲストを使ったことで、ホスト-ホスト材料間、ホスト-ゲスト材料間両方の劣化反応が抑制されたためと考えられる。
 一般式(1)中のXはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R’’が置換基を表す場合、該置換基としては下記置換基群Aが挙げられる。一般式(1)の化学的安定性が向上し、素子が長寿命化するため、Xは好ましくはC-Hである。
 一般式(1)中のR12、R13で表される置換基としては下記置換基群Aとして挙げたものが適用できる。
(置換基群A)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシルなどが挙げられる。)、脂環式炭化水素基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばアダマンチル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)
 R12、R13として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基、トリフルオロメチル基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基、トリフルオロメチル基であり、更に好ましくは水素原子、アルキル基、アリール基、フッ素基、シアノ基、シリル基、トリフルオロメチル基であり、特に好ましくは水素原子、アルキル基、シリル基、フッ素基、シアノ基、トリフルオロメチル基である。
 R12、R13は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、アルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル基、フッ素原子であり、更に好ましくは炭素数1~6のアルキル基、フェニル基である。置換基の数は0~4、好ましくは0~2がよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 一般式(1)において、R11、R15で表されるナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ナフタレン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。
 R11、R15として好ましくは、ベンゼン環、ナフタレン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、チオフェン環であり、より好ましくは、ベンゼン環、ナフタレン環、ビフェニル環、ピリジン環、ピリミジン環、トリアジン環であり、更に好ましくはベンゼン環、ナフタレン環、ピリジン環、トリアジン環、ピリミジン環であり、特に好ましくはベンゼン環、ピリジン環、トリアジン環であり、最も好ましくはベンゼン環、ピリジン環である。
 R11、R15は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくはアルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル、シアノ基、ハロゲン原子であり、更に好ましくは炭素数3~6の分岐アルキル基、フェニル基、ナフチル基、シアノ基、フッ素原子であり、特に好ましくはメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子である。置換基の数は0~4、好ましくは0~2がよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 R14で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。前記芳香族複素環は置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。
 R14として好ましくは、水素原子、ベンゼン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、チオフェン環であり、より好ましくは水素原子、ベンゼン環、ビフェニル環、ピリジン環であり、特に好ましくは水素原子である。
 R14は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル基、フェニル基、ピリジル基等が挙げられる。
 また、これらの置換基はXを含む環と結合して環を形成していてもよい。
 前記一般式(3)で表される化合物は、前記一般式(1)で表されることが好ましい。この場合、前記一般式(1)中、環Aは隣接環と縮合する前記一般式(1a)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する前記一般式(1b)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R11及びR15は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R14は水素原子を表す。R12及びR13は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。
 上記定義における各記号の好ましい範囲は前述と同様である。
 一般式(1)で表される化合物として、好ましい形態の一つは、下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000131
 (式中、環Cは隣接環と縮合する一般式(2a)で表される芳香環又は複素環を表し、環Dは隣接環と縮合する一般式(2b)で表される複素環を表し、環Eは隣接環と縮合する一般式(2c)で表される複素環を表し、Xは炭素又は窒素を表し、R21、R26、及びR27は各々独立に、ナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R25は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、R22、R23及びR24は各々独立に水素原子又は置換基を表す。)
 R21、R26、及びR27は各々独立に、ナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(1)におけるR11及びR15と同義であり、また好ましい範囲も同様である。
 R25は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、前記一般式(1)におけるR14と同義であり、また好ましい範囲も同様である。
 R22、R23及びR24は各々独立に水素原子又は置換基を表し、前記一般式(1)におけるR12及びR13と同義であり、また好ましい範囲も同様である。
 前記一般式(1)で表される化合物として、好ましい形態の一つは、下記一般式(15)で表される化合物である。
Figure JPOXMLDOC01-appb-C000132
(式中、X151~X153は窒素原子又はC-R153を表し、R153は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。R151及びR152は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y15は下記一般式(15a)~(15c)のいずれかで表される基を表す。)
Figure JPOXMLDOC01-appb-C000133
(式中、R155は水素原子を表す。R154及びR156は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R157はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
 X151~X153は窒素原子又はC-R153を表し、R153は水素原子又は置換基を表す。X151~X153の組合せとしては特に限定されないが、窒素原子の数は0、1、3個が好ましく、0又は3個がより好ましい。
 R151及びR152で表される置換基としては上記置換基群Aとして挙げたものが適用できる。
 R151、R152として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、アルキル基(好ましくはメチル基、イソブチル基、t-ブチル基、ネオペンチル基)、アリール基(好ましくはフェニル基、ナフチル基)、シアノ基、フッ素原子であり、特に好ましくは水素原子、アルキル基、アリール基である。
 R151、R152は更に置換基を有していてもよく、該置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。該置換基の数は0~4が好ましく、より好ましくは0~2である。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 R153で表される置換基としては上記置換基群Aとして挙げたものが適用できる。
 R153として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、アルキル基(好ましくはメチル基、イソブチル基、t-ブチル基、ネオペンチル基)、アリール基(好ましくはフェニル基、ナフチル基)、シアノ基、フッ素原子であり、水素原子、アルキル基、アリール基であり、特に好ましくは水素原子、アルキル基であり、最も好ましくは水素原子である。
 R153は更に置換基を有していてもよく、該置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。置換基の数は0~4が好ましく、より好ましくは0~2である。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 Y15は前記一般式(15a)~(15c)のいずれかで表される基を表し、好ましくは(15a)、(15b)であり、より好ましくは(15a)である。
 前記一般式(15a)~(15c)において、R154、R156で表される置換基としては上記置換基群Aとして挙げたものが適用できる。
 R154、R156として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、アルキル基、アリール基であり、特に好ましくは水素原子、アルキル基であり、最も好ましくは水素原子である。
 R154、R156は更に置換基を有していてもよく、該置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。置換基の数は0~4が好ましく、より好ましくは0~2である。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 R155で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。前記芳香族複素環は置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。
 R155として好ましくは、水素原子、ベンゼン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、チオフェン環であり、より好ましくは水素原子、ベンゼン環、ビフェニル環、ピリジン環であり、特に好ましくは水素原子である。
 R155は更に置換基を有していてもよく、該置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。
 R157で表されるナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ナフタレン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。前記芳香族複素環は置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。
 R157として好ましくは、ベンゼン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、チオフェン環、ナフタレン環、トリアジン環であり、より好ましくはベンゼン環、ビフェニル環、ピリジン環、ナフタレン環、トリアジン環であり、特に好ましくはベンゼン環、ナフタレン環、ピリジン環、ナフタレン環、トリアジン環であり、特に好ましくはベンゼン環、トリアジン環であり、最も好ましくはベンゼン環である。
 R157は更に置換基を有していてもよく、該置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。置換基の数は0~4が好ましく、より好ましくは0~2である。また、これらの置換基は複数が互いに結合して環を形成していてもよい
 前記一般式(15)で表される化合物として、好ましい形態の一つは、下記一般式(16)で表される化合物である。
Figure JPOXMLDOC01-appb-C000134
(式中、X161~X163は窒素原子又はC-Hを表し、R161及びR162は各々独立に水素原子又は置換基を表す。Y16は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
 R161、R162、及びY16は前記一般式(15)におけるR151、R152及びY15と同義であり、また好ましい範囲も同様である。
 X161~X163は窒素原子又はC-Hを表す。X151~X153の組合せとしては特に限定されないが、窒素原子の数は0、1、3個が好ましく、0又は3個がより好ましい。
 上記式中、X161~X163は窒素原子又はC-Hを表し、R161及びR162は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表し、Y16は上記一般式(15a)~(15c)のいずれかで表される基を表すことが好ましい。
 前記一般式(16)で表される化合物として、好ましい形態の一つは、下記一般式(17)で表される化合物である。
Figure JPOXMLDOC01-appb-C000135
(式中、R171及びR172は各々独立に水素原子又は置換基を表す。Y17は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
 R171、R172、及びY17は前記一般式(16)におけるR161、R162及びY16と同義であり、また好ましい範囲も同様である。
 上記式中、R171及びR172は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表し、Y17は上記一般式(15a)~(15c)のいずれかで表される基を表すことが好ましい。
 前記一般式(16)で表される化合物として、好ましい形態の一つは、下記一般式(18)で表される化合物である。
Figure JPOXMLDOC01-appb-C000136
(式中、R181及びR182は各々独立に水素原子又は置換基を表す。Y18は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
 R181、R182、及びY18は前記一般式(16)におけるR161、R162及びY16と同義であり、また好ましい範囲も同様である。
 上記式中、R181及びR182は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表し、Y18は上記一般式(15a)~(15c)のいずれかで表される基を表すことが好ましい。
 前記一般式(1)又は一般式(2)で表される化合物として、好ましい形態の一つは、下記一般式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000137
 (式中、Zは縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を含んでなるn価の基、ケイ素原子、又は炭素原子を表し、Yは下記一般式(3a-1)、(3a-2)又は(3e)で表される基を表し、nは1以上の整数を表す。)
 Zで表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ターフェニル、トリアゾール、ジアゾール、フェニルトリアゾール、トリフェニルトリアゾール等が好ましく、ベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジンが好ましく、ベンゼン環、ビフェニル環、ピリジン環がより好ましい。これらが置換基を有する場合、置換基としては前記置換基群Aから選ばれる置換基が挙げられ、アルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基が好ましく、炭素数1~6のアルキル、フェニル、ピリジルがより好ましく挙げられる。置換基の数は0~4、好ましくは0~2がよい。
 Zがケイ素原子又は炭素原子を表す場合、該ケイ素原子及び炭素原子は可能な場合は更に置換基を有してもよく、該置換基としては前記置換基群Aから選ばれる置換基が挙げられ、アルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基が好ましく、アルキル基、アリール基、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基がより好ましく、メチル基、フェニル基が更に好ましい。
 Yは下記一般式(3a-1)、(3a-2)又は(3e)で表される基を表す。
Figure JPOXMLDOC01-appb-C000138
 (式中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表し、Xは炭素又は窒素を表し、R34及びR311はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R33は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、R31及びR32は各々独立に水素原子又は置換基を表す。*はZに連結する結合手を表す。)
 R34及びR311はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(1)におけるR15と同義であり、また好ましい範囲も同様である。
 R33は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、前記一般式(1)におけるR14と同義であり、また好ましい範囲も同様である。
 R31及びR32は各々独立に水素原子又は置換基を表し、前記一般式(1)におけるR12、及びR13と同義であり、また好ましい範囲も同様である。
Figure JPOXMLDOC01-appb-C000139
 (式中、環Cは隣接環と縮合する一般式(3f)で表される芳香環又は複素環を表し、環Dは隣接環と縮合する一般式(3g)で表される複素環を表し、環Eは隣接環と縮合する一般式(3h)で表される複素環を表し、Xは炭素又は窒素を表し、R39及びR310は各々独立に、ナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R38は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、R35、R36及びR37は各々独立に水素原子又は置換基を表す。)
 R39及びR310は各々独立に、ナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(2)におけるR26及びR27と同義であり、また好ましい範囲も同様である。
 R38は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基、又はXを含む環と縮合する環を表し、前記一般式(2)におけるR25と同義であり、また好ましい範囲も同様である。
 R35、R36及びR37は各々独立に水素原子又は置換基を表し、一般式(1)におけるR22、R23及びR24と同義であり、また好ましい範囲も同様である。
 一般式(3)におけるnは1~4であることが好ましく、2~4であることがより好ましく、2~3であることが更に好ましい。
 前記一般式(3)で表される化合物の好ましい形態の一つは、下記一般式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000140
 (式中、Ar41は縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基からなる2価の連結基を表し、Yは前記一般式(3a-1)、(3a-2)又は(3e)で表される基を表す。)
 一般式(4)中のAr41は2価の連結基を表す。具体的には、以下のY-1~Y-118で表される連結基が挙げられる。
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
 また、これらの連結基は置換基を有しても良い。置換基の例としてはアルキル基、アラルキル基、アルケニル基、アルキニル基、シアノ基、ジアルキルアミノ基、ジアリールアミノ基、ジアラルキルアミノ基、アミノ基、ニトロ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシル基、アルキルスルホニル基、ハロゲン原子、ハロアルキル基、水酸基、アミド基、置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基が挙げられる。
 置換基の好ましい例として、以下のZ-1~Z-138で表される置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
 連結基Ar41で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ターフェニル環、トリアゾール環、ジアゾール環、フェニルトリアゾール環、トリフェニルトリアゾール環等が好ましく、ベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジンがより好ましく、ベンゼン環、ビフェニル環、ピリジン環が更に好ましい。これらが置換基を有する場合、置換基としては前記置換基群Aから選ばれる置換基が挙げられ、アルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基が好ましく、炭素数1~6のアルキル、フェニル、ピリジルがより好ましく挙げられる。置換基の数は0~4、好ましくは0~2がよい。
 Yは前記一般式(3a-1)、(3a-2)又は(3e)で表される基を表す。
 前記一般式(3)で表される化合物の好ましい形態の一つは、下記一般式(5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000148
(式中、R51~R56は各々独立に、水素原子又は置換基を表すが、R51~R56の少なくとも2つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基である。)
 R51~R56は各々独立に、水素原子又は置換基を表し、該置換基としては前記置換基群Aとして挙げたものが適用できるが、R51~R56のうち少なくとも2つは前記一般式3a-1)、(3a-2)又は(3e)で表される基である。
 R51~R56として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子であり、特に好ましくは水素原子、メチル基、t-ブチル基、フェニル基、シアノ基、及びフッ素原子であり、中でも好ましくは水素原子、メチル基、フェニル基、フッ素原子であり、最も好ましくは水素原子である。
 R51~R56は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 一般式(5)中、一般式R51~R56の少なくとも2つが(3a-1)であることが好ましい。この際、一般式(5)中の1つの(3a-1)が他の(3a-1)に対しパラ位又はメタ位に置換していることが好ましく、メタ位に置換していることがより好ましい。
 上記式中、R51~R56は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R51~R56の少なくとも2つは各々独立に後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であることが好ましい。
 前記一般式(3)で表わされる化合物の好ましい形態の一つは、下記一般式(6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000149
 (式中、R61~R610は各々独立に、水素原子又は置換基を表す。R61~R610の少なくとも2つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基である。)
 R61~R610は各々独立に、水素原子又は置換基を表し、該置換基としては前記置換基群Aとして挙げたものが適用できるが、R61~R610のうち少なくとも2つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基である。一般式(6)中、一般式R61~R65の少なくとも1つが(3a-1)であり、かつ、一般式R66~R510の少なくとも1つが(3a-1)であることが好ましい。
 R61~R610として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、更に好ましくは水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子であり、特に好ましくは水素原子、メチル基、t-ブチル基、フェニル基、シアノ基、及びフッ素原子であり、中でも好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
 R61~R610は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 上記式中、R61~R610は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R61~R610の少なくとも2つは各々独立に後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であることが好ましい。
 前記一般式(6)で表わされる化合物の好ましい形態の一つは、下記一般式(7)で表される化合物である。
Figure JPOXMLDOC01-appb-C000150
 (式中、R71~R78は各々独立に、水素原子又は置換基を表す。Y71及びY72は各々独立に前記一般式(3a-1)、(3a-2)又は(3e)で表される基を表す。)
 R71~R78は各々独立に、水素原子又は置換基を表し、一般式(6)におけるR61~R610と同義であり、また好ましい範囲も同様である。
 上記式中、R71~R78は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表し、Y71及びY72は各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であることが好ましい。
 前記一般式(6)で表される化合物の好ましい形態の一つは、下記一般式(8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000151
 (式中、R81~R88は各々独立に、水素原子又は置換基を表す。Y81及びY82は各々独立に前記一般式(3a-1)、(3a-2)又は(3e)で表される基を表す。)
 R81~R88は各々独立に水素原子又は置換基を表し、前記一般式(6)におけるR61~R610と同義であり、また好ましい範囲も同様である。
 上記式中、R81~R88は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表し、Y81及びY82は各々独立に後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であることが好ましい。
 前記一般式(3)で表わされる化合物の好ましい形態の一つは、下記一般式(9)で表される化合物である。
Figure JPOXMLDOC01-appb-C000152
 (式中、R91~R910は各々独立に、水素原子又は置換基を表すが、R91~R910の少なくとも二つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基を表す。Lは2価の連結基を表す。)
 R91~R910は各々独立に、水素原子又は置換基を表し、該置換基としては前記置換基群Aとして挙げたものが適用できるが、R91~R910のうち少なくとも2つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基である。一般式(6)中、R91~R95の少なくとも1つが一般式(3a-1)であり、かつ、R96~R910の少なくとも1つが一般式(3a-1)であることが好ましい。
 R91~R910として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子であり、特に好ましくは水素原子、メチル基、t-ブチル基、フェニル基、シアノ基、及びフッ素原子であり、中でも好ましくは水素原子、メチル基、フッ素原子であり、最も好ましくは水素原子である。
 R91~R910は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 Lで表される2価の連結基としては、アルキレン基(例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、2,2,4-トリメチルヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、シクロヘキシレン基(例えば、1,6-シクロヘキサンジイル基等)、シクロペンチレン基(例えば、1,5-シクロペンタンジイル基など)等)、アルケニレン基(例えば、ビニレン基、プロペニレン基等)、アルキニレン基(例えば、エチニレン基、3-ペンチニレン基等)、アリーレン基などの炭化水素基のほか、置換ケイ素原子、置換ゲルマニウム原子、ヘテロ原子を含む基(例えば、-O-、-S-等のカルコゲン原子を含む2価の基、-N(R)-基、ここで、Rは、水素原子又はアルキル基を表し、該アルキル基は前記置換基群Aとして記載したアルキル基と同様のものが挙げられる。 
 また、上記のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基の各々においては、2価の連結基を構成する炭素原子の少なくとも一つが、カルコゲン原子(酸素、硫黄等)や前記-N(R)-基等で置換されていても良い。
 更に、Lで表される2価の連結基としては、例えば、2価の複素環基を有する基が用いられ、例えば、オキサゾールジイル基、ピリミジンジイル基、ピリダジンジイル基、ピランジイル基、ピロリンジイル基、イミダゾリンジイル基、イミダゾリジンジイル基、ピラゾリジンジイル基、ピラゾリンジイル基、ピペリジンジイル基、ピペラジンジイル基、モルホリンジイル基、キヌクリジンジイル基等が挙げられ、また、チオフェン-2,5-ジイル基や、ピラジン-2,3-ジイル基のような、芳香族複素環を有する化合物(ヘテロ芳香族化合物ともいう)に由来する2価の連結基であってもよい。
 また、アルキルイミノ基、ジアルキルシランジイル基、ジアリールゲルマンジイル基のようなヘテロ原子を介して連結する基であってもよい。
 Lで表される2価の連結基として好ましくは、メチレン基、エチレン基、シクロヘキシレン基、シクロペンチレン基、置換ケイ素原子、置換ゲルマニウム原子、酸素原子、硫黄原子、5~6員環の芳香族炭化水素環基、芳香族複素環基であり、更に好ましくはメチレン基、エチレン基、シクロヘキシレン基、置換又は無置換の窒素原子、置換ケイ素原子、置換ゲルマニウム原子、5~6員環の芳香族炭化水素環基、より更に好ましくは、メチレン基、エチレン基、置換ケイ素原子、置換窒素原子、置換ゲルマニウム原子であり、特に好ましくはアルキル基又はフェニル基で置換されたメチレン基、ケイ素原子、ゲルマニウム原子、窒素原子であり、最も好ましくはアルキル基又はフェニル基で置換されたメチレン基、ケイ素原子である
 これらの連結基は可能であれば更に置換基を有していてもよく、導入可能な置換基としては、置換基群Aとして挙げたものが適用できる。芳香族炭化水素環基又は芳香族複素環基を連結基とする場合、環の大きさは5~6員環である。
 上記式中、R91~R910は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R91~R910の少なくとも2つは各々独立に後述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であり、Lはケイ素原子又は炭素原子を表し、該ケイ素原子又は炭素原子は更にアルキル基及びアリール基から選ばれる少なくとも1種の基により置換されていてもよいことが好ましい。
 前記一般式(3)~(9)において、好ましい形態の一つは、前記一般式(3a-1)で表される置換基が下記一般式(10)で表される化合物である。
Figure JPOXMLDOC01-appb-C000153
 (式中、R102は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R101及びR103は各々独立に水素原子又は置換基を表す。R104はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表す。)
 R101及びR103は各々独立に水素原子又は置換基を表し、前記一般式(3a-1)におけるR31及びR32と同義であり、また好ましい範囲も同様である。
 R104はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(3c)におけるR34と同義であり、また好ましい範囲も同様である。
 R102で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。前記芳香族複素環は置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。
 R102として好ましくは、水素原子、ベンゼン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、チオフェン環であり、より好ましくは水素原子、ベンゼン環、ビフェニル環、ピリジン環であり、特に好ましくは水素原子である。
 R102では更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。
 前記一般式(3)~(10)、及び前記一般式(3a-1)~(3h)中、環A及び環Cがベンゼン環であり、R34、R39、R310、及びR104が置換若しくは未置換のフェニル基又はピリジル基であり、かつ、R31~R32、R35~R37、R101~R103が水素原子又はフェニル基であることが好ましい。
 また、前記一般式(3)~(9)において、前記一般式(3a-1)で表される置換基が下記一般式(10-2)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000154
 (式中、R102は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R101及びR103は各々独立に水素原子又は置換基を表す。R104はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表す。)
 R101及びR103は各々独立に水素原子又は置換基を表し、前記一般式(3a-1)、におけるR31及びR32と同義であり、また好ましい範囲も同様である。
 R104はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(3c)におけるR34と同義であり、また好ましい範囲も同様である。
 R102で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、前記一般式(10)におけるR102と同様である。
 R102では更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。
 また、前記一般式(3)~(9)において、前記一般式(3a-1)で表される置換基が下記一般式(10-3)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000155
 (式中、R102は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R101及びR103は各々独立に水素原子又は置換基を表す。R104はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表す。)
 R101及びR103は各々独立に水素原子又は置換基を表し、前記一般式(3a-1)におけるR31及びR32と同義であり、また好ましい範囲も同様である。
 R104はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(3c)におけるR34と同義であり、また好ましい範囲も同様である。
 R102で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、前記一般式(10)におけるR102と同様である。
 R102では更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。
 前記一般式(10-2)、及び(10-3)中、R104が置換若しくは未置換のフェニル基又はピリジル基であり、かつ、R101~R103が水素原子又はフェニル基であることが好ましい。
 前記一般式(10)、(10-2)、及び(10-3)中、R102は水素原子を表し、R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよく、R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよいことが好ましい。
 前記一般式(10)、(10-2)、及び(10-3)のうち、特に好ましくは一般式(10)である。
 一般式(3)で表される化合物として、好ましい形態の一つは、下記一般式(11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000156
 (式中、R111~R116は各々独立に、水素原子又は置換基を表す。ただしR111~R115の少なくとも一つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基である。mは1~4の整数を表す。)
 R111~R115は各々独立に、水素原子又は置換基を表し、該置換基としては前記置換基群Aとして挙げたものが適用できる。
 R111~R115の少なくとも一つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基であり、好ましくは前記一般式(10)で表される基である。
 R111~R115として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基、であり、特に好ましくは水素原子、アルキル基、脂環式炭化水素基、アリール基、ヘテロ環基である。
 R111~R115のうち、R113が前記一般式(3a-1)で表される基であることが特に好ましい。
 R111~R115は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 R116は水素原子又は置換基を表す。複数のR116は同一でも異なっていてもよい。
 R116で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R116として好ましくは、水素原子、アルキル基、芳香族炭化水素環基、アミノ基、アルコキシ基、アリールオキシ基、芳香族ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、芳香族ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、アルキル基、芳香族炭化水素環基、アミノ基、シアノ基、芳香族ヘテロ環基であり、更に好ましくはアルキル基、芳香族炭化水素環基、シアノ基、芳香族ヘテロ環基であり、特に好ましくはアルキル基、芳香族炭化水素環基である。
 mは1~4の整数を表し、好ましくは1~3であり、より好ましくは2である。
 前記式中、R111~R116は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、上述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R111~R115の少なくとも1つは上述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であり、mは1~4の整数を表すことが好ましい。
 一般式(3)で表される化合物として、好ましい形態の一つは、下記一般式(12)で表される化合物である。
Figure JPOXMLDOC01-appb-C000157
 (式中、R121~R126は各々独立に水素原子又は置換基を表す。ただし、R121~R125のうち少なくとも一つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基である。mは1~4の整数を表す。)
 R121~R125は各々独立に、水素原子又は置換基を表し、該置換基としては前記置換基群Aとしてあげたものが適用できる。
 R121~R125の少なくとも一つは前記一般式(3a-1)、(3a-2)又は(3e)で表される基であり、好ましくは前記一般式(10)で表される基である。
 R121~R125として好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基であり、更に好ましくは水素原子、アルキル基、脂環式炭化水素基、アリール基、フッ素基、シアノ基、シリル基、ヘテロ環基、であり、特に好ましくは水素原子、アルキル基、脂環式炭化水素基、アリール基、ヘテロ環基である。
 R121~R125は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 R126は水素原子又は置換基を表す。複数のR126は同一でも異なっていてもよい。
 R126で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R126として好ましくは、水素原子、アルキル基、芳香族炭化水素環基、アミノ基、アルコキシ基、アリールオキシ基、芳香族ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、芳香族ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、アルキル基、芳香族炭化水素環基、アミノ基、シアノ基、芳香族ヘテロ環基であり、更に好ましくはアルキル基、芳香族炭化水素環基、シアノ基、芳香族ヘテロ環基であり、特に好ましくはアルキル基、芳香族炭化水素環基である。
 mは1~4の整数を表し、好ましくは1~3であり、より好ましくは2である。
 前記式中、R121~R126は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、上述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R121~R125のうち少なくとも1つは上述の一般式(10)、(10-2)、又は(10-3)のいずれかで表される基であり、mは1~4の整数を表すことが好ましい。
 一般式(1)で表される化合物として、好ましい形態の一つは、下記一般式(13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000158
 (R132は水素、又は、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R131及びR133は各々独立に水素原子又は置換基を表す。R134及びR135はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表す。R136は水素原子又は置換基を表す。mは1~4の整数を表す。ケイ素連結基はR131として炭素原子に置換する。)
 R131及びR133は各々独立に水素原子又は置換基を表し、前記一般式(1)におけるR12及びR13と同義であり、また好ましい範囲も同様である。
 R134及びR135はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(1)におけるR11及びR15と同義であり、また好ましい範囲も同様である。
 R132で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。前記芳香族複素環は置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。
 R132として好ましくは、水素原子、ベンゼン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、チオフェン環であり、より好ましくは水素原子、ベンゼン環、ビフェニル環、ピリジン環であり、特に好ましくは水素原子である。
 R132では更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。
 R136は水素原子又は置換基を表す。複数のR136は同一でも異なっていてもよい。
 R136で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R136として好ましくは、水素原子、アルキル基、芳香族炭化水素環基、アミノ基、アルコキシ基、アリールオキシ基、芳香族ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、芳香族ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、アルキル基、芳香族炭化水素環基、アミノ基、シアノ基、芳香族ヘテロ環基であり、更に好ましくはアルキル基、芳香族炭化水素環基、シアノ基、芳香族ヘテロ環基であり、特に好ましくはアルキル基、芳香族炭化水素環基である。
 mは1~4の整数を表し、好ましくは1~3であり、より好ましくは2である。
 前記式中、R132は水素原子を表し、R131及びR133は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよく、R134及びR135は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよく、R136は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表し、mは1~4の整数を表し、ケイ素連結基はR131の1つとして炭素原子に置換することが好ましい。
 一般式(1)で表される化合物として、好ましい形態の一つは、下記一般式(14)で表される化合物である。
Figure JPOXMLDOC01-appb-C000159
 (式中、R142は水素、縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、R141及びR143は各々独立に水素原子又は置換基を表し、R144及びR145はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表す。炭素連結基はR141として炭素原子に置換する。R146は水素原子又は置換基を表す。mは1~4の整数を表す。)
 R141及びR143は各々独立に水素原子又は置換基を表し、前記一般式(1)におけるR12及びR13と同義であり、また好ましい範囲も同様である。
 R144及びR145はナフタレン環以外の縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基を表し、前記一般式(1)におけるR11、R15と同義であり、また好ましい範囲も同様である。
 R142で表される縮環構造でない置換若しくは未置換の芳香族炭化水素基又は芳香族複素環基としては、ベンゼン環、ビフェニル環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。前記芳香族複素環は置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。
 R142として好ましくは、水素原子、ベンゼン環、ビフェニル環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、チオフェン環であり、より好ましくは水素原子、ベンゼン環、ビフェニル環、ピリジン環であり、特に好ましくは水素原子である。
 R142では更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用でき、好ましくは炭素数1~6のアルキル、フェニル、ピリジル等が挙げられる。
 R146は水素原子又は置換基を表す。複数のR146は同一でも異なっていてもよい。
 R146で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R146として好ましくは、水素原子、アルキル基、芳香族炭化水素環基、アミノ基、アルコキシ基、アリールオキシ基、芳香族ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、シアノ基、芳香族ヘテロ環基、シリル基、シリルオキシ基であり、より好ましくは、アルキル基、芳香族炭化水素環基、アミノ基、シアノ基、芳香族ヘテロ環基であり、更に好ましくはアルキル基、芳香族炭化水素環基、シアノ基、芳香族ヘテロ環基であり、特に好ましくはアルキル基、芳香族炭化水素環基である。
 mは1~4の整数を表し、好ましくは1~3であり、より好ましくは2である。
 前記式中、R142は水素原子を表し、R141及びR143は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよく、R144及びR145は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよく、炭素連結基はR141の1つとして炭素原子に置換し、R146は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表し、mは1~4の整数を表すことが好ましい。
 前記一般式(1)~(18)で表される化合物の好ましい具体例を以下に示すが、これら限定されるものではない。
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
 一般式(1)で表される化合物は公知の方法で容易に製造することができる。例えば、Tetrahedron,47,7739-7750(1991),Synlett,42-48(2005)に示される合成例を参考にして製造することができる。
 本発明において、一般式(1)で表される化合物は、発光効率、及び耐久性(特に高温度駆動時の耐久性)を向上させる観点から、発光層に含まれるが、その用途が限定されることはなく、有機層内の発光層に加えていずれの層に含有されてもよい。一般式(1)で表される化合物の導入層としては、発光層以外に、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましい。
 また、一般式(1)で表される化合物を発光層及び隣接する層の両層に含有させてもよい。
〔一般式(D-1)で表される化合物〕
 一般式(D-1)で表される化合物について詳細に説明する。
Figure JPOXMLDOC01-appb-C000185
 (一般式(D-1)中、Mは40以上の原子量の金属を表す。R~Rは各々独立に水素原子又は置換基を表す。R’は水素原子又は置換基を表す。環Qは、前記金属Mに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更に非芳香族基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。(X-Y)は、補助配位子を表す。mは1以上、前記金属に結合しうる配位子の最大数以下の値を表し、nは0以上、前記金属に結合しうる配位子の最大数以下の値を表す。m+nは、前記金属に結合しうる配位子の最大数である。)
 一般式(D-1)中、Mは40以上の原子量を有する金属を表し、Ir、Pt、Cu、Re、W、Rh、Ru、Pd、Os、Eu、Tb、Gd、Dy、及びCeが挙げられる。好ましくは、Ir、Pt、又はReであり、中でも金属-炭素結合又は金属-窒素結合の配位様式を形成し得るIr、Pt、又はReが好ましく、高い発光量子収率の観点からIrが特に好ましい。
 R~R、及びR’は各々独立に水素原子又は置換基を表す。R~R、及びR’で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R~R、及びR’で表されるアリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R~R、及びR’で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R’で表されるヘテロ環基の好ましい例としては、ピリジル基、ピリミジニル基、イミダゾリル基、チエニル基であり、より好ましくは、ピリジル基、ピリミジニル基である。
 R’として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。
 R、R及びRとして好ましくは、水素原子、アルキル基、シクロアルキル基、シアノ基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。
 また、R~R、及びR’は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。該置換基としては、アルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル、フッ素原子、シアノ基であり、更に好ましくは炭素数1~6のアルキル基、フェニル基、シアノ基である。また、R~R同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環、カルバゾール環等が挙げられる。
 Rは環Qがピリジン環の場合、アリール基、又はヘテロアリール基となる。該アリール基、又はヘテロアリール基は更に置換基を有していても良く、該置換基としては、好ましくは、アルキル基、シアノ基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、シアノ基、アリール基である。
 Rとしてはフェニル基、p-トリル基、ナフチル基が好ましく、フェニル基がより好ましい。
 環Qがキノリン環、イソキノリン環の場合、Rとしては、アルキル基、アルコキシ基、フルオロ基、シアノ基、アルキルアミノ基、ジアリールアミノ基が好ましく、アルキル基、フルオロ基、シアノ基がより好ましく、アルキル基が更に好ましく、メチル基が特に好ましい。また、環Qがキノリン環、イソキノリン環でRがアルキル基の場合、Rもアルキル基であるのが好ましく、メチル基であるのがより好ましい。
 環Qは、前記金属Mに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更に置換基により置換されていてもよい。置換基としては、アルキル基、アリール基、シアノ基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、ピリジル基、チエニル基、アルコキシ基、であり、より好ましくはアルキル基、アリール基、アルコキシ基、シアノ基、ジアルキルアミノ基、フルオロ基、ピリジル基、チエニル基であり、更に好ましくは、アルキル基、アリール基であり、特に好ましくはアルキル基である。
 環Qは上記のような更なる置換基を有さないか、又はアルキル基若しくはアリール基で置換されていることが好ましく、更なる置換基を有さないか、又はアルキル基で置換されていることがより好ましい。
 mは1~6であることが好ましく、1~3であることがより好ましい。MがIrの場合、mは、1~3であることが好ましく、2であることがより好ましい。nは0~3であることが好ましく、0~1であることがより好ましい。MがIrの場合、nは、1~3であることが好ましい。mが2であってnが1であることがより好ましい。
 (X-Y)は、2座の配位子を表す。(X-Y)で表される2座の配位子は特に限定されないが具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピリジルピリジン、イミダゾリルピリジン、ピラゾリルピリジン、トリアゾリルピリジン、ピラザボール、ジフェニルホスフィノエチレン、ピコリン酸及びアセチルアセトン等が挙げられる。このうち好ましいのは、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、ピリジルピリジン、ピラザボール、ピコリン酸及びアセチルアセトン等であり、更に好ましいのはフェニルピリジン、ピコリン酸及びアセチルアセトンである。
 また、(X-Y)で表される2座の配位子の具体例としては以下の一般式(l-1)~(l-15)のいずれかで表される配位子を挙げることができる。
Figure JPOXMLDOC01-appb-C000186
上記一般式中、*は金属への配位位置を表す。
 Rx、Ry及びRzはそれぞれ独立に水素原子又は置換基を表す。該置換基としては前記置換基群Aから選択される置換基が挙げられる。
 Rx、Rzは好ましくは、アルキル基、パーフルオロアルキル基、ハロゲン原子、アリール基のいずれかであり、より好ましくはアルキル基である。
 Ryは好ましくは、水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、アリール基のいずれかであり、より好ましくは水素原子又はアルキル基である。
 一般式(l-1)~(l-14)のうち、より好ましくは一般式(l-1)、(l-4)、又は(l-15)である。
 一般式(D-1)で表される化合物の好ましい形態の一つは、一般式(D-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000187
 (一般式(D-2)中、Mは40以上の原子量の金属を表す。R~Rは各々独立に水素原子又は置換基を表す。R’~R’は各々独立に水素原子又は置換基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、ヘテロアリール基を表し、更に置換基Zを有していてもよい。Zは各々独立に、ハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、又は-SOR’を表し、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。(X-Y)は、補助配位子を表す。mは1以上、前記金属に結合しうる配位子の最大数以下の値を表し、nは0以上、前記金属に結合しうる配位子の最大数以下の値を表す。m+nは、前記金属に結合しうる配位子の最大数である。)
 一般式(D-2)におけるM、R’、m及びnは、一般式(D-1)におけるM、R’、m及びnと同義であり、好ましいものも同様である。
 R~Rは各々独立に水素原子又は置換基を表す。R~Rで表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R~Rは更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。該置換基としては、アルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル、フッ素原子、シアノ基であり、更に好ましくは炭素数1~6のアルキル基、フェニル基、シアノ基である。また、R~R同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。
 R~Rで表されるアリール基としては、好ましくは、炭素数6~30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R~Rで表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R~Rとして好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。特に、R、Rがアルキル基であることが好ましく、エチル基、イソブチル基、t-ブチル基、ネオペンチル基、メチル基、がより好ましく、特に好ましくは、エチル基、イソブチル基、ネオペンチル基、メチル基であり、メチル基が更に好ましい。
 R’~R’は各々独立に水素原子又は置換基を表す。R’~R’で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R’~R’で表されるアリール基としては、好ましくは、炭素数6~30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R’~R’で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R’~R’として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基、アルコキシ基、であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基、アルコキシ基、チエニル基であり、更に好ましくは、水素原子、アルキル基、アリール基であり、特に好ましくは水素原子、アルキル基である。
 また、R’~R’は更に置換基を有していてもよく、該置換基としては、前記置換基群Aとして挙げたものが適用できる。該置換基としては、好ましくはアルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル、シアノ基、ハロゲン原子であり、更に好ましくは炭素数3~6の分岐アルキル基、フェニル基、ナフチル基、シアノ基、フッ素原子であり、特に好ましくはイソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子である。置換基の数は0~4、好ましくは0~2がよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 また、R’~R’同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。
 R’~R’及びR’は水素原子であることが特に好ましい。
 特に、R’がアルキル基であることが好ましく、分岐アルキル基であることがより好しい。分岐アルキル基としては、具体的には、下記置換基(a)~(x)を挙げることができ、置換基(a)~(h)が好ましく、置換基(b)~(e)がより好ましく、置換基(c)又は(d)が特に好ましい。
Figure JPOXMLDOC01-appb-C000188
 (X-Y)は、2座の配位子を表す。(X-Y)で表される2座の配位子は特に限定されないが具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピリジルピリジン、イミダゾリルピリジン、ピラゾリルピリジン、トリアゾリルピリジン、ピラザボール、ジフェニルホスフィノエチレン、ピコリン酸及びアセチルアセトン等が挙げられる。このうち好ましいのは、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、ピリジルピリジン、ピラザボール、ピコリン酸及びアセチルアセトン等であり、更に好ましいのはフェニルピリジン、ピコリン酸及びアセチルアセトンである。特に好ましいのは、錯体の安定性と高い発光効率が得られる観点からアセチルアセトネートである。また、これらの基は上記の置換基によって更に置換されていてもよい。
 (X-Y)の好ましい範囲は前記一般式(D-1)における(X-Y)と同様である。
 前記一般式(D-2)中、Mはイリジウムを表し、R~Rは各々独立に水素原子、アルキル基、又はアリール基を表し、R’~R’は水素原子、アルキル基、又はアリール基を表し、R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表し、(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表し、mは1以上3以下の整数を表し、nは0以上2以下の整数を表し、ただしm+nは3であることが好ましい。
 一般式(D-1)で表される化合物の好ましい形態の一つは、一般式(D-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000189
 (一般式(D-3)中、Mは40以上の原子量の金属を表す。R~Rは各々独立に水素原子又は置換基を表す。R’~R’は各々独立に水素原子又は置換基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、ヘテロアリール基を表し、更に置換基Zを有していてもよい。Zは各々独立に、ハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、又は-SOR’を表し、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。(X-Y)は、補助配位子を表す。mは1以上、前記金属に結合しうる配位子の最大数以下の値を表し、nは0以上、前記金属に結合しうる配位子の最大数以下の値を表す。m+nは、前記金属に結合しうる配位子の最大数である。)
 一般式(D-3)におけるM、R’、(X-Y)、m及びnは、一般式(D-1)におけるM、R’、(X-Y)、m及びnと同義であり、好ましいものも同様である。
 R~Rは各々独立に水素原子又は置換基を表す。R~Rで表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R~Rは更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。該置換基としては、アルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル、フッ素原子、シアノ基であり、更に好ましくは炭素数1~6のアルキル基、フェニル基、シアノ基である。また、R~R同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。
 R~Rで表されるアリール基としては、好ましくは、炭素数6~30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R~Rで表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R~Rとして好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。
 R及びRは水素原子であることが特に好ましい。
 R、Rがアルキル基であることが特に好ましくエチル基、イソブチル基、t-ブチル基、ネオペンチル基、メチル基、がより好ましく、特に好ましくは、エチル基、イソブチル基、ネオペンチル基、メチル基であり、メチル基が更に好ましい。
 R’~R’は各々独立に水素原子又は置換基を表す。R’~R’で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 また、R’~R’は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、R’~R’同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。
 R’~R’で表されるアリール基としては、好ましくは、炭素数6~30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R’~R’で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R’~R’として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。特に、R’がアルキル基であるのが好ましい。
 (X-Y)は、2座の配位子を表す。(X-Y)で表される2座の配位子は特に限定されないが具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピリジルピリジン、イミダゾリルピリジン、ピラゾリルピリジン、トリアゾリルピリジン、ピラザボール、ジフェニルホスフィノエチレン、ピコリン酸及びアセチルアセトン等が挙げられる。このうち好ましいのは、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、ピリジルピリジン、ピラザボール、ピコリン酸及びアセチルアセトン等であり、更に好ましいのはフェニルピリジン、ピコリン酸及びアセチルアセトンである。特に好ましいのは、錯体の安定性と高い発光効率が得られる観点からアセチルアセトネートである。また、これらの基は上記の置換基によって更に置換されていてもよい。
 (X-Y)の好ましい範囲は前記一般式(D-1)における(X-Y)と同様である。
 前記一般式(D-3)中、Mはイリジウムを表し、R~Rは各々独立に水素原子、アルキル基、又はアリール基を表し、R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表し、R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表し、(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表し、mは1以上3以下の整数を表し、nは0以上2以下の整数を表し、ただしm+nは3であることが好ましい。
 一般式(D-1)で表される化合物の好ましい形態の一つは、一般式(D-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000190
 (一般式(D-4)中、Mは40以上の原子量の金属を表す。R~R10は各々独立に水素原子又は置換基を表す。R’~R’は各々独立に水素原子又は置換基を表す。R’とR10は、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、ヘテロアリール基を表し、更に置換基Zを有していてもよい。Zは各々独立に、ハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、又は-SOR’を表し、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。(X-Y)は、補助配位子を表す。mは1以上、前記金属に結合しうる配位子の最大数以下の値を表し、nは0以上、前記金属に結合しうる配位子の最大数以下の値を表す。m+nは、前記金属に結合しうる配位子の最大数である。)
 一般式(D-4)におけるM、R’、(X-Y)、m及びnは、一般式(D-1)におけるM、R’、(X-Y)、m及びnと同義であり、好ましいものも同様である。
 R~R10は各々独立に水素原子又は置換基を表す。R~R10で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 R~R10は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。該置換基としては、アルキル基、アリール基、シアノ基、ハロゲン原子、含窒素芳香族複素環基であり、より好ましくは炭素数1~6のアルキル、炭素数6~10のアリール基、ピリジル、フッ素原子、シアノ基であり、更に好ましくは炭素数1~6のアルキル基、フェニル基、シアノ基である。また、R~R10同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。
 R~R10で表されるアリール基としては、好ましくは、炭素数6~30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R~R10で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R~R10として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、シアノ基、アリール基であり、特に好ましくは水素原子、アルキル基、アリール基である。
 R~R及びR~R10は水素原子であることが特に好ましい。
 Rはアルキル基であることが特に好ましく、メチル基、イソブチル基、ネオペンチル基であることが好ましく、より好ましくはメチル基である。
 R’~R’は各々独立に水素原子又は置換基を表す。R’~R’で表される置換基としては前記置換基群Aとして挙げたものが適用できる。
 また、R’~R’は更に置換基を有していてもよく、置換基としては、前記置換基群Aとして挙げたものが適用できる。また、R’~R’同士は互いに連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環等が挙げられる。
 R’~R’で表されるアリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 R’~R’で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基などが挙げられる。
 R’~R’として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。
 (X-Y)は、2座の配位子を表す。(X-Y)で表される2座の配位子は特に限定されないが具体例としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピリジルピリジン、イミダゾリルピリジン、ピラゾリルピリジン、トリアゾリルピリジン、ピラザボール、ジフェニルホスフィノエチレン、ピコリン酸及びアセチルアセトン等が挙げられる。このうち好ましいのは、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、ピリジルピリジン、ピラザボール、ピコリン酸及びアセチルアセトン等であり、更に好ましいのはフェニルピリジン、ピコリン酸及びアセチルアセトンであり、特に好ましいのは、錯体の安定性の観点からフェニルピリジンである。また、これらの基は上記の置換基によって更に置換されていてもよい。
 (X-Y)の好ましい範囲は前記一般式(D-1)における(X-Y)と同様である。
 前記一般式(D-4)中、Mはイリジウムを表し、R~R10は各々独立に水素原子、アルキル基、又はアリール基を表し、R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表し、R’とR10は、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表し、(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表し、mは1以上3以下の整数を表し、nは0以上2以下の整数を表し、ただしm+nは3であることが好ましい。
 一般式(D-1)~(D-4)で表される化合物は、例えば、Inorg.Chem.,30,1685-1687(1991)、J.Am.Chem.Soc.,123巻,4304(2001)、Inorg.Chem.,40巻,1704‐1711(2001)、Inorg.Chem.,41,3055-3066(2002)、Eur.J.Org.Chem.,4,695-709(2004)等種々の公知の合成法、国際公開第09/073245号及び国際公開第08/109824号の記載を参照して合成することができる。
 前記一般式(D-1)~(D-4)で表される化合物の好ましい具体例を以下に示すが、これら限定するものではない。
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
 なお、上記構造式において、acacは下記構造の配位子(アセチルアセトネート)を表す。
Figure JPOXMLDOC01-appb-C000201
 本発明において、一般式(D-1)で表される化合物は、発光効率、及び耐久性(特に高温度駆動時の耐久性)を向上させる観点から、発光層に含まれるが、その用途が限定されることはなく、有機層内の発光層に加えていずれの層に含有されてもよい。一般式(D-1)で表される化合物の導入層としては、発光層以外に、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましい。
〔一般式(1)で表される化合物と一般式(D-1)で表される化合物とを含有する組成物〕
 本発明は前記一般式(1)で表される化合物と前記一般式(D-1)で表される化合物とを含有する組成物にも関する。
 本発明の組成物における一般式(1)で表される化合物の含有量は50~99質量%であることが好ましく、70~95質量%であることがより好ましい。
 本発明の組成物における一般式(D-1)で表される化合物の含有量は1~30質量%であることが好ましく、5~15質量%であることがより好ましい。
 本発明の組成物における他に含有しても良い成分としては、有機物でも無機物でもよく、有機物としては、後述するホスト材料、蛍光発光材料、燐光発光材料として挙げた材料が適用できる。
 本発明の組成物は蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等により有機電界発光素子の有機層を形成することができる。
〔有機電界発光素子〕
 本発明の有機電界発光素子は、基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、前記一般式(1)で表される化合物と前記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する。
 本発明の有機電界発光素子において、発光層は有機層であるが、更に複数の有機層を有していてもよい。
 発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
 図1は、本発明に係る有機電界発光素子の構成の一例を示している。図1に示される本発明に係る有機電界発光素子10は、支持基板2上において、陽極3と陰極9との間に発光層6が挟まれている。具体的には、陽極3と陰極9との間に正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7、及び電子輸送層8がこの順に積層されている。
<有機層の構成>
 前記有機層の層構成としては、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、前記透明電極上に又は前記背面電極上に形成されるのが好ましい。この場合、有機層は、前記透明電極又は前記背面電極上の前面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
 具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極。
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
<基板>
 本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。<陽極>
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<陰極>
 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
 基板、陽極、陰極については、特開2008-270736号公報の段落番号〔0070〕~〔0089〕に記載の事項を本発明に適用することができる。
<有機層>
 本発明における有機層について説明する。
-有機層の形成-
 本発明の有機電界発光素子において、各有機層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、スピンコート法等の湿式製膜法(ウエットプロセス)のいずれによっても好適に形成することができる。
 本発明において、一般式(1)で表される化合物と一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する発光層をウエットプロセスで形成することが製造コスト低減の観点から好ましい。
(発光層)
 本発明の発光層は、前記一般式(1)で表される化合物と前記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する。<発光材料>
 本発明における発光材料は前記一般式(D-1)で表される化合物であることが好ましい。
 発光層中の発光材料は、発光層中に一般的に発光層を形成する全化合物の質量に対して、0.1質量%~50質量%含有されることが好ましく、耐久性、外部量子効率の観点から1質量%~50質量%含有されることがより好ましく、2質量%~40質量%含有されることが更に好ましい。
 発光層中の前記一般式(D-1)で表される化合物は、発光層中に耐久性、外部量子効率の観点から1質量%~30質量%含有されることが好ましく、4質量%~20質量%含有されることがより好ましい。
 発光層の厚さは、特に限定されるものではないが、通常、2nm~500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm~200nmであるのがより好ましく、5nm~100nmであるのが更に好ましい。
 本発明の素子における発光層は、発光材料とホスト材料との混合層とした構成でも良い。
 発光材料は蛍光発光材料でも燐光発光材料であっても良く、ドーパントは一種であっても二種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
 また、発光層は一層であっても二層以上の多層であってもよい。また、それぞれの発光層が異なる発光色で発光してもよい。
 本発明は一般式(1)で表される化合物と一般式(D-1)で表される化合物とを含む発光層にも関する。本発明の発光層は有機電界発光素子に用いることができる。
<ホスト材料>
 本発明に用いられるホスト材料として、以下の化合物を含有していても良い。例えば、ピロール、インドール、カルバゾール(例えばCBP(4,4’-ジ(9-カルバゾイル)ビフェニル))、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体
(置換基や縮環を有していてもよい)等を挙げることができる。
 本発明における発光層において、前記ホスト材料の三重項最低励起エネルギー(Tエネルギー)が、前記燐光発光材料のTエネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。
 ホスト材料は前記一般式(1)で表される化合物であることが好ましい。
 また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。
 発光層中の前記一般式(1)で表される化合物は、発光層中に発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましく、40質量%以上96質量%以下であることがより好ましい。
(蛍光発光材料)
 本発明に使用できる蛍光発光材料の例としては、例えば、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリディン化合物、8-キノリノール誘導体の錯体やピロメテン誘導体の錯体に代表される各種錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体などの化合物等が挙げられる。
(燐光発光材料)
 本発明に使用できる燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001-247859号、特開2002-302671号、特開2002-117978号、特開2003-133074号、特開2002-235076号、特開2003-123982号、特開2002-170684号、EP1211257号、特開2002-226495号、特開2002-234894号、特開2001-247859号、特開2001-298470号、特開2002-173674号、特開2002-203678、特開2002-203679号、特開2004-357791号、特開2006-256999号、特開2007-19462号、特開2007-84635号、特開2007-96259号等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光材料(発光性ドーパント)としては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、又はRe錯体であり、中でも金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、又はRe錯体が特に好ましい。
 燐光発光材料の含有量は、発光層中に、発光層の総質量に対して、0.1質量%以上50質量%以下の範囲が好ましく、0.2質量%以上50質量%以下の範囲がより好ましく、0.3質量%以上40質量%以下の範囲が更に好ましく、4質量%以上30質量%以下の範囲が最も好ましい。
 本発明に用いることのできる燐光発光材料の含有量は、発光層の総質量に対して、0.1質量%以上50質量%以下の範囲が好ましく、1質量%以上40質量%以下の範囲がより好ましく、4質量%以上30質量%以下の範囲が最も好ましい。特に4質量%以上30質量%以下の範囲では、その有機電界発光素子の発光の色度は、燐光発光材料の添加濃度依存性が小さい。
-正孔注入層、正孔輸送層-
 正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 本発明に関し、有機層として、電子受容性ドーパントを含有する正孔注入層又は正孔輸送層を含むことが好ましい。
-電子注入層、電子輸送層-
 電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
 正孔注入層、正孔輸送層、電子注入層、電子輸送層については、特開2008-270736号公報の段落番号〔0165〕~〔0167〕に記載の事項を本発明に適用することができる。
-正孔ブロック層-
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノレート(Aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-電子ブロック層-
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<保護層>
 本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
 保護層については、特開2008-270736号公報の段落番号〔0169〕~〔0170〕に記載の事項を本発明に適用することができる。
<封止容器>
 本発明の素子は、封止容器を用いて素子全体を封止してもよい。
 封止容器については、特開2008-270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
(駆動)
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
 本発明の発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
 本発明の発光素子は、陽極側から発光を取り出す、いわゆるトップエミッション方式であっても良い。
 本発明における有機EL素子は、共振器構造を有しても良い。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明又は半透明電極、発光層、及び金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
 別の好ましい態様では、透明基板上に、透明又は半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
 共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。第一の態様の場合の計算式は特開平9-180883号明細書に記載されている。第2の態様の場合の計算式は特開2004-127795号明細書に記載されている。
 本発明の有機電界発光素子の外部量子効率としては、5%以上が好ましく、7%以上がより好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの100~300cd/m付近での外部量子効率の値を用いることができる。
 本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
 本発明の有機電界発光素子は、350nm以上700nm以下に極大発光波長(発光スペクトルの最大強度波長)を有するものが好ましく、より好ましくは350nm以上600nm以下、更に好ましくは400nm以上520nm以下、特に好ましくは400nm以上465nm以下である。
(本発明の発光素子の用途)
 本発明の発光素子は、発光装置、ピクセル、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、発光装置、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
 次に、図2を参照して本発明の発光装置について説明する。
 本発明の発光装置は、前記有機電界発光素子を用いてなる。
 図2は、本発明の発光装置の一例を概略的に示した断面図である。
 図2の発光装置20は、透明基板(支持基板)2、有機電界発光素子10、封止容器16等により構成されている。
 有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
 ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
 本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。
(照明装置)
 次に、図3を参照して本発明の実施形態に係る照明装置について説明する。
 図3は、本発明の実施形態に係る照明装置の一例を概略的に示した断面図である。
 本発明の実施形態に係る照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
 光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
(例示化合物156(C-6)の合成)
 一般式(1)で表される化合物の例示化合物156は、以下の反応式により製造することができる。
Figure JPOXMLDOC01-appb-C000202
 エタノール中、1,2-シクロヘキサンジオンに2当量のフェニルヒドラジン塩酸塩を加え、窒素雰囲気下で濃硫酸0.1当量を5分間かけ滴下した。その後4時間沸点還流し、中間化合物1を収率90%で得た。中間化合物1を酢酸-トリフルオロ酢酸混合溶媒中、100℃で15時間攪拌し、中間化合物2を収率39%で得た。中間化合物2と0.05当量の酢酸パラジウム、0.15当量のトリ(t-ブチル)ホスフィン、2.4当量のナトリウム-tert-ブトキシド、及び1当量のヨードベンゼンをキシレンに溶解させ、10時間沸点還流し、中間化合物3を合成した(収率:35%)。中間化合物3と0.05当量の酢酸パラジウム、0.15当量のトリ(t-ブチル)ホスフィン、2.4当量の炭酸ルビジウム、及び0.5当量の中間化合物4をキシレンに溶解させ、13時間沸点還流にて反応させた。反応混合物に酢酸エチルと水を加えて有機相を分離し、有機相を、水、飽和食塩水で洗浄した後減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー、再結晶、昇華精製などにより精製、例示化合物156を収率56%で得た。なお、実施例で使用した化合物C-6がこの例示化合物156に該当する。
(例示化合物162(C-4)の合成)
 一般式(1)で表される化合物の例示化合物162は、以下の反応式により製造することができる。
Figure JPOXMLDOC01-appb-C000203
 3,3’-ジブロモビフェニルと0.05当量の酢酸パラジウム、0.15当量のトリ(t-ブチル)ホスフィン、2.4当量の炭酸ルビジウム、及び2当量の3をキシレンに溶解させ、13時間沸点還流にて反応させた。反応混合物に酢酸エチルと水を加えて有機相を分離し、有機相を、水、飽和食塩水で洗浄した後減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー、再結晶、昇華精製などにより精製、例示化合物162を収率76%で得た。なお、実施例で使用した化合物C-4がこの例示化合物162に該当する。
(例示化合物138(C-1)の合成)
 一般式(1)で表される化合物の例示化合物138(C-1)は、以下の反応式により製造することができる。
Figure JPOXMLDOC01-appb-C000204
 エタノール中、1,2-シクロヘキサンジオンに2当量のフェニルヒドラジン塩酸塩を加え、窒素雰囲気下で濃硫酸0.1当量を5分間かけ滴下した。その後4時間沸点還流し、中間化合物4を収率90%で得た。中間化合物4を酢酸-トリフルオロ酢酸混合溶媒中、100℃で15時間攪拌し、中間化合物5を収率39%で得た。中間化合物5と0.05当量の酢酸パラジウム、0.15当量のトリ(t-ブチル)ホスフィン、2.4当量のナトリウム-tert-ブトキシド、及び2.2当量のヨードベンゼンをキシレンに溶解させ、10時間沸点還流にて反応させた。反応混合物に酢酸エチルと水を加えて有機相を分離し、有機相を、水、飽和食塩水で洗浄した後減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー、再結晶、昇華精製などにより精製、例示化合物138を収率66%で得た。なお、実施例で使用した化合物C-1がこの例示化合物138に該当する。
(例示化合物196(C-14)の合成)
 一般式(1)で表される化合物の例示化合物196(C-14)は、以下の反応式により製造することができる。
Figure JPOXMLDOC01-appb-C000205
 脱水THF中に1当量の塩化シアニルを溶解させる。窒素雰囲気下、氷浴にて32%臭化フェニルマグネシウムTHF溶液(2.5当量)を滴下し、2時間攪拌し、中間化合物6を合成した(収率:37%)。中間化合物2と0.05当量の酢酸パラジウム、0.15当量のトリ(t-ブチル)ホスフィン、2.4当量のナトリウム-tert-ブトキシド、及び1当量のヨードベンゼンをキシレンに溶解させ、10時間沸点還流し、中間化合物7を合成した(収率:35%)。1.1当量の水素化ナトリウムを脱水N,N‘-ジメチルホルムアミド(DMF)に分散させ、窒素雰囲気下で攪拌する。1当量の中間化合物7のDMF溶液を滴下し、1時間攪拌する。その後、1当量の中間化合物6のDMF溶液を滴下し、3時間攪拌する。水を加え、析出した結晶を濾別した。エタノール/クロロホルム溶液からの再結晶、昇華による精製を経て、例示化合物196を収率32%で得た。なお、実施例で使用した化合物C-14がこの例示化合物196に該当する。
<実施例1>
〔有機電解発光素子の作製〕
 [比較例1-1]
 洗浄したITO基板を蒸着装置に入れ、銅フタロシアニンを10nm蒸着し、この上に、NPD(N,N’-ジ-α-ナフチル-N,N’-ジフェニル)-ベンジジン)を40nm蒸着した(正孔輸送層)。この上に、A-1とC-1を9:91の比率(質量比)で30nm蒸着し(発光層)、この上に、H-1を5nm蒸着した(隣接層)。この上に、BAlq[ビス-(2-メチル-8-キノリノレート)-4-(フェニルフェノレート)アルミニウム]を30nm蒸着した(電子輸送層)。この上に、フッ化リチウムを3nm蒸着した後、アルミニウム60nmを蒸着した。このものを、大気に触れさせること無く、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、比較例1-1の有機電界発光素子を得た。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させた結果、A-1に由来するりん光発光が得られた。
 [実施例1-1~1-198、比較例1-2~1-16]
 発光材料及びホスト材料に用いた化合物を表1に記載のものに変更した以外は比較例1-1と同様に素子を作製し、評価した。いずれの素子も用いた発光材料に由来するりん光発光が得られた。得られた結果を表1にまとめた。
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
(駆動電圧の測定)
 各有機電界発光素子を(株)島津製作所製の発光スペクトル測定システム(ELS1500)にセットし、輝度が1000cd/m時の印加電圧を測定した。
(外部量子効率の評価)
 東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を各有機電界発光素子に印加して発光させた。1000cd/m時の正面輝度から外部量子効率(%)を算出した。
(駆動耐久性の評価)
 各有機電界発光素子を、東京システム開発(株)製のOLEDテストシステムST-D型にセットし、外気温70℃において、定電流モードにて初期輝度1000cd/mの条件で駆動し、輝度半減時間を測定した。
 なお表1~4において、比較例1-1、比較例2-1、比較例3-1、及び比較例4-1の素子の値をそれぞれ100とし、これを基準とした相対値で示した。
Figure JPOXMLDOC01-appb-T000215
Figure JPOXMLDOC01-appb-T000216
Figure JPOXMLDOC01-appb-T000217
Figure JPOXMLDOC01-appb-T000218
Figure JPOXMLDOC01-appb-T000219
Figure JPOXMLDOC01-appb-T000220
 上記結果から明らかなように、本発明の素子は比較素子に比べ、外部量子効率が高くなり、駆動電圧が低下した。特に、高温度(70℃)での駆動時に高い耐久性を示した。
<実施例2>
(比較例2-1)
Figure JPOXMLDOC01-appb-C000221
 比較例1-1において発光層の膜の組成比をA-1とC-1を9:91(質量比)から、B-1とC-1を5:95(質量比)に変えて蒸着した以外(膜厚:30nm)、比較例1-1と同様にして比較例2-1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、B-1に由来する発光が得られた。
(実施例2-1~2-249、比較例2-2~2-15)
 比較例2-1で使用した材料を、表2に記載の材料に変更した以外は比較例2-1と同様にして実施例2-1~2-249、比較例2-2~2-15の素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、それぞれの発光材料に由来する色の発光が得られた。
 以上のように得られた素子を実施例1と同様にして評価した。
Figure JPOXMLDOC01-appb-T000222
Figure JPOXMLDOC01-appb-T000223
Figure JPOXMLDOC01-appb-T000224
Figure JPOXMLDOC01-appb-T000225
Figure JPOXMLDOC01-appb-T000226
Figure JPOXMLDOC01-appb-T000227
Figure JPOXMLDOC01-appb-T000228
Figure JPOXMLDOC01-appb-T000229
Figure JPOXMLDOC01-appb-T000230
 上記結果から明らかなように、本発明の素子は比較素子に比べ、外部量子効率が高くなり、駆動電圧が低下した。特に、高温度(70℃)での駆動時に高い耐久性を示した。
<実施例3>
Figure JPOXMLDOC01-appb-C000231
(比較例3-1)
 0.5mm厚み、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。これにポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS)を純水で70質量%に希釈した溶液をスピンコーターで塗布し、50nmの正孔輸送層を設けた。A-1:C-1=4:96(質量比)を溶解したメチレンクロライド溶液をスピンコーターで塗布し、30nmの発光層を得た。この上に、BAlq[ビス-(2-メチル-8-キノリノレート)-4-(フェニルフェノレート)アルミニウム]を40nm蒸着した。この上に、蒸着装置内で陰極バッファー層としてフッ化リチウム0.5nm及び陰極としてアルミニウム150nmを蒸着した。これを大気に触れさせること無く、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、比較例3-1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、化合物A-1に由来する発光が得られた。
(実施例3-1~3-133、比較例3-2~3-7)
 比較例3-1で使用した材料を、表3に記載の材料に変更した以外は比較例3-1と同様にして実施例3-1~3-133、比較例3-2~3-7の素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、それぞれの発光材料に由来する色の発光が得られた。
 以上のように得られた素子を実施例1と同様にして評価した。
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-T000234
Figure JPOXMLDOC01-appb-T000235
Figure JPOXMLDOC01-appb-T000236
Figure JPOXMLDOC01-appb-T000237
 上記結果から明らかなように、本発明の素子は比較素子に比べ、外部量子効率が高くなり、駆動電圧が低下した。特に、高温度(70℃)での駆動時に高い耐久性を示した。実施例3は発光層を塗布で作製したものであり、製造コストの点で優れている。
<実施例4>
(比較例4-1)
 比較例3-1において発光層の膜の組成をA-1とC-1を4:96(質量比)から、B-1とC-1を4:96(質量比)に変えて塗布した以外(膜厚:30nm)、比較例3-1と同様にして比較例4-1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、B-1に由来する発光が得られた。
(実施例4-1~4-184、比較例4-2~4-9)
 比較例4-1で使用した材料を、表4に記載の材料に変更した以外は比較例4-1と同様にして実施例4-1~4-184、比較例4-2~4-9の素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、それぞれの発光材料に由来する色の発光が得られた。
 以上のように得られた素子を実施例1と同様にして評価した。
Figure JPOXMLDOC01-appb-T000238
Figure JPOXMLDOC01-appb-T000239
Figure JPOXMLDOC01-appb-T000240
Figure JPOXMLDOC01-appb-T000241
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000244
 上記結果から明らかなように、本発明の素子は比較素子に比べ、外部量子効率が高くなり、駆動電圧が低下した。特に、高温度(70℃)での駆動時に高い耐久性を示した。実施例4は発光層を塗布で作製したものであり、製造コストの点で優れている。

 本発明によれば、発光効率、及び耐久性(特に高温度駆動時の耐久性)に優れる有機電界発光素子を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年8月31日出願の日本特許出願(特願2009-201153)、2009年9月28日出願の日本特許出願(特願2009-223456)、及び2010年3月29日出願の日本特許出願(特願2010-076449)に基づくものであり、それらの内容はここに参照して組み込まれる
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子(有機EL素子)
11・・・有機層
12・・・保護層
14・・・接着層
16・・・封止容器
20・・・発光装置
30・・・光散乱部材
30A・・・光入射面
30B・・・光出射面
31・・・透明基板
32・・・微粒子
40・・・照明装置

Claims (24)

  1.  基板上に、一対の電極と、該電極間に発光材料を含有する発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該発光層が、下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
     (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
    Figure JPOXMLDOC01-appb-C000003
     (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式
    (l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
  2. 前記一般式(3)で表される化合物が、下記一般式(1)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005
     (式中、環Aは隣接環と縮合する一般式(1a)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(1b)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R11及びR15は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R14は水素原子を表す。R12及びR13は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。)
  3.  前記一般式(1)で表される化合物が、下記一般式(15)で表される請求項2に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000006
    (式中、X151~X153は窒素原子又はC-R153を表し、R153は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。R151及びR152は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y15は下記一般式(15a)~(15c)のいずれかで表される基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R155は水素原子を表す。R154及びR156は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R157はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  4.  前記一般式(15)で表される化合物が、下記一般式(16)で表される請求項3に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008
    (式中、X161~X163は窒素原子又はC-Hを表し、R161及びR162は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y16は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
  5.  前記一般式(16)で表される化合物が、下記一般式(17)で表される請求項4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000009
    (式中、R171及びR172は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y17は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
  6.  前記一般式(16)で表される化合物が、下記一般式(18)で表される請求項4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000010
    (式中、R181及びR182は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。Y18は上記一般式(15a)~(15c)のいずれかで表される基を表す。)
  7.  前記一般式(3)で表される化合物が、下記一般式(5)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000011
    (式中、R51~R56は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R51~R56の少なくとも2つは各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  8.  前記一般式(3)で表される化合物が、下記一般式(6)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000015
     (式中、R61~R610は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R61~R610の少なくとも2つは各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  9.  前記一般式(6)で表される化合物が、下記一般式(7)で表される請求項8に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000019
     (式中、R71~R78は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表す。Y71及びY72は各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。)
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  10.  前記一般式(6)で表される化合物が、下記一般式(8)で表される請求項8に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000023
     (式中、R81~R88は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表す。Y81及びY82は各々独立に下記一般式(10)、(10-2)又は(10-3)のいずれかで表される基である。)
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  11.  前記一般式(3)で表される化合物が、下記一般式(9)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000027
     (式中、R91~R910は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R91~R910の少なくとも2つは各々独立に下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。Lはケイ素原子又は炭素原子を表し、該ケイ素原子又は炭素原子は更にアルキル基及びアリール基から選ばれる少なくとも1種の基により置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000028
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  12.  一般式(3)で表される化合物が、下記一般式(11)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000031
     (式中、R111~R116は各々独立に、水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R111~R115の少なくとも1つは下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。mは1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  13.  一般式(3)で表される化合物が、下記一般式(12)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000035
     (式中、R121~R126は各々独立に水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、フッ素原子、下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基を表すが、R121~R125のうち少なくとも1つは下記一般式(10)、(10-2)、又は(10-3)のいずれかで表される基である。mは1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    Figure JPOXMLDOC01-appb-C000038
     (式中、R102は水素原子を表す。R101及びR103は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R104はベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。)
  14.  一般式(3)で表される化合物が、下記一般式(13)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000039
     (R132は水素原子を表す。R131及びR133は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R134及びR135は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R136は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。mは1~4の整数を表す。ケイ素連結基はR131の1つとして炭素原子に置換する。)
  15.  一般式(3)で表される化合物が、下記一般式(14)で表される請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000040
     (式中、R142は水素原子を表す。R141及びR143は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。R144及びR145は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。炭素連結基はR141の1つとして炭素原子に置換する。R146は水素原子、メチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、又はフッ素原子を表す。mは1~4の整数を表す。)
  16.  前記一般式(D-1)で表される化合物が、下記一般式(D-2)で表される化合物である請求項1~15のいずれか1項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000041
     (一般式(D-2)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は水素原子、アルキル基、又はアリール基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
  17.  前記一般式(D-1)で表される化合物が、下記一般式(D-3)で表される化合物である請求項1~15のいずれか1項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000042
     (一般式(D-3)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
  18.  前記一般式(D-1)で表される化合物が、下記一般式(D-4)で表される化合物である請求項1~15のいずれか1項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000043
     (一般式(D-4)中、Mはイリジウムを表す。R~R10は各々独立に水素原子、アルキル基、又はアリール基を表す。R’~R’は各々独立に水素原子、アルキル基、又はアリール基を表す。R’とR10は、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、前記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
  19.  前記一般式(3)で表される化合物と前記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する発光層が、ウエットプロセスで形成された請求項1~18のいずれか1項に記載の有機電界発光素子。
  20.  下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する組成物。
    Figure JPOXMLDOC01-appb-C000044
     (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000045
     (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
    Figure JPOXMLDOC01-appb-C000046
     (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式(l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
    (一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パーフルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
  21.  下記一般式(3)で表される化合物と下記一般式(D-1)で表される化合物とを少なくとも一種ずつ含有する発光層。
    Figure JPOXMLDOC01-appb-C000048
     (式中、Zはベンゼン、ピリジン、トリアジン、ピリミジン、ビフェニル、フェニルピリジン、ビピリジン、ケイ素原子、又は炭素原子を表し、更にアルキル基、アリール基、シリル基、シアノ基、フッ素原子、及びこれらを組み合わせて得られる基から選ばれる少なくとも1種の基により置換されていてもよい。Yは下記一般式(3a-1)又は(3a-2)で表される基を表す。nは1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000049
     (一般式(3a-1)及び(3a-2)中、環Aは隣接環と縮合する一般式(3b)で表される芳香環又は複素環を表し、環Bは隣接環と縮合する一般式(3c)で表される複素環を表す。XはC-R’’(R’’は水素原子又は置換基を表す)又は窒素原子を表す。R34及びR311は各々独立にベンゼン環、ナフタレン環、ピリジン環、トリアジン環、又はピリミジン環を表し、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基により置換されていてもよい。R33は水素原子を表す。R31及びR32は各々独立に水素原子、アルキル基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基を表し、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。*はZに連結する結合手を表す。)
    Figure JPOXMLDOC01-appb-C000050
     (一般式(D-1)中、Mはイリジウムを表す。R~Rは各々独立に水素原子、アルキル基、又はアリール基を表す。R’は水素原子、アルキル基、又はアリール基を表す。環Qは、イリジウムに対して配位されるピリジン環、キノリン環、又はイソキノリン環を表し、更にアルキル基又はアリール基により置換されていてもよい。Rは環Qがピリジン環の場合、アリール基又はヘテロアリール基を表し、該アリール基又はヘテロアリール基は更にアルキル基により置換されていてもよい。R’とRは、-CR-CR-、-CR=CR-、-CR-、-O-、-NR-、-O-CR-、-NR-CR-、及び-N=CR-から選択される連結基によって連結されて環を形成してもよく、Rは各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基を表し、更にハロゲン原子、-R’、-OR’、-N(R’)、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)、-CN、-NO、-SO、-SOR’、-SOR’、及び-SOR’から選ばれる置換基を有していてもよく、R’は各々独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、アリール基又はヘテロアリール基を表す。(X-Y)は、下記一般式
    (l-1)、(l-4)、又は(l-15)のいずれかで表される配位子を表す。mは1以上3以下の整数を表し、nは0以上2以下の整数を表す。ただしm+nは3である。)
    Figure JPOXMLDOC01-appb-C000051
    (一般式(l-1)、(l-4)、(l-15))中、Rx、Ry及びRzはそれぞれ独立に水素原子、アルキル基、パー
    フルオロアルキル基、ハロゲン原子、又はアリール基を表す。)
  22.  請求項1~19のいずれか1項に記載の有機電界発光素子を用いた発光装置。
  23.  請求項1~19のいずれか1項に記載の有機電界発光素子を用いた表示装置。
  24.  請求項1~19のいずれか1項に記載の有機電界発光素子を用いた照明装置。
PCT/JP2010/064755 2009-08-31 2010-08-30 有機電界発光素子 WO2011025018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127004770A KR101161598B1 (ko) 2009-08-31 2010-08-30 유기 전계 발광 소자
US13/393,186 US9287515B2 (en) 2009-08-31 2010-08-30 Compositions comprising organic and organometallic compounds, and their applications in organic electroluminescence, light emission, display, and illumination devices
US14/953,934 US10454042B2 (en) 2009-08-31 2015-11-30 Organic electroluminescence device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-201153 2009-08-31
JP2009201153 2009-08-31
JP2009-223456 2009-09-28
JP2009223456 2009-09-28
JP2010076449A JP5457907B2 (ja) 2009-08-31 2010-03-29 有機電界発光素子
JP2010-076449 2010-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/393,186 A-371-Of-International US9287515B2 (en) 2009-08-31 2010-08-30 Compositions comprising organic and organometallic compounds, and their applications in organic electroluminescence, light emission, display, and illumination devices
US14/953,934 Division US10454042B2 (en) 2009-08-31 2015-11-30 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2011025018A1 true WO2011025018A1 (ja) 2011-03-03

Family

ID=43628107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064755 WO2011025018A1 (ja) 2009-08-31 2010-08-30 有機電界発光素子

Country Status (5)

Country Link
US (2) US9287515B2 (ja)
JP (1) JP5457907B2 (ja)
KR (1) KR101161598B1 (ja)
TW (2) TWI496786B (ja)
WO (1) WO2011025018A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207097A1 (en) * 2010-11-25 2013-08-15 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
WO2014050588A1 (ja) * 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2014525910A (ja) * 2011-07-21 2014-10-02 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機エレクトロルミネセンス化合物およびこれを使用した有機エレクトロルミネセンス素子
WO2016002646A1 (ja) * 2014-07-03 2016-01-07 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2017075140A (ja) * 2015-09-09 2017-04-20 三星電子株式会社Samsung Electronics Co., Ltd. 縮合環化合物及びそれを含む有機発光素子
US20180002287A1 (en) * 2016-06-30 2018-01-04 Samsung Electronics Co., Ltd. Bipyridine derivatives and their uses for organic light emitting diodes
USRE46974E1 (en) * 2012-05-28 2018-07-31 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2023514626A (ja) * 2020-03-03 2023-04-06 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
JP2023515163A (ja) * 2020-03-03 2023-04-12 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484690B2 (ja) 2007-05-18 2014-05-07 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP5457907B2 (ja) * 2009-08-31 2014-04-02 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
EP2556075B1 (en) * 2010-04-06 2019-02-27 UDC Ireland Limited Substituted carbazole derivatives and use thereof in organic electronics
WO2012114928A1 (ja) 2011-02-22 2012-08-30 保土谷化学工業株式会社 インドロカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI481091B (zh) * 2011-08-22 2015-04-11 Au Optronics Corp 有機發光二極體結構與光學膜的製作及使用方法
KR20140094520A (ko) 2011-10-26 2014-07-30 이데미쓰 고산 가부시키가이샤 유기 일렉트로 루미네선스 소자 및 유기 일렉트로 루미네선스 소자용 재료
TWI606051B (zh) * 2011-11-22 2017-11-21 Udc愛爾蘭有限公司 有機電場發光元件、有機電場發光元件用材料以及使用該元件之發光裝置、顯示裝置、照明裝置及用於該元件之化合物
US9512355B2 (en) 2011-12-09 2016-12-06 Universal Display Corporation Organic light emitting materials
KR102038815B1 (ko) * 2012-07-31 2019-10-31 엘지디스플레이 주식회사 인광 도펀트용 호스트 화합물 및 이를 이용한 유기발광다이오드소자
KR20140060220A (ko) * 2012-11-09 2014-05-19 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 이를 포함하는 유기전계발광소자
KR102040874B1 (ko) * 2013-01-04 2019-11-06 삼성디스플레이 주식회사 실리콘계 화합물 및 이를 포함한 유기 발광 소자
KR102135228B1 (ko) * 2013-02-28 2020-07-17 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계발광 소자용 붕소 화합물 및 유기 전계발광 소자
KR102288479B1 (ko) 2013-06-26 2021-08-12 이데미쓰 고산 가부시키가이샤 화합물, 유기 일렉트로 루미네선스 소자용 재료, 유기 일렉트로 루미네선스 소자, 및 전자 기기
KR101802861B1 (ko) 2014-02-14 2017-11-30 삼성디스플레이 주식회사 유기 발광 소자
JP6307332B2 (ja) * 2014-04-21 2018-04-04 新日鉄住金化学株式会社 有機電界発光素子
KR102491209B1 (ko) * 2014-04-29 2023-01-26 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
WO2015167259A1 (en) * 2014-04-29 2015-11-05 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
KR101783650B1 (ko) * 2014-06-24 2017-10-23 제일모직주식회사 화합물, 이를 포함하는 유기광전자소자 및 표시장치
US9837637B2 (en) * 2014-10-16 2017-12-05 National Taiwan University Electroluminescent devices with improved optical out-coupling efficiencies
EP3247771B1 (de) * 2015-01-20 2020-06-10 Cynora Gmbh Pyridine und deren derivate als bausteine zur verwendung in optoelektronischen bauelementen
CN104628787A (zh) * 2015-01-22 2015-05-20 昆明贵金属研究所 一种绿光发射铱磷光配合物及其制备方法
KR102338908B1 (ko) * 2015-03-03 2021-12-14 삼성디스플레이 주식회사 유기 발광 소자
EP3141550B1 (en) * 2015-09-09 2020-03-18 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
KR102591635B1 (ko) * 2015-10-27 2023-10-20 삼성디스플레이 주식회사 유기 발광 소자
KR102399570B1 (ko) 2015-11-26 2022-05-19 삼성디스플레이 주식회사 유기 발광 소자
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
KR102601600B1 (ko) * 2015-12-24 2023-11-14 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102419178B1 (ko) 2015-12-29 2022-07-11 삼성디스플레이 주식회사 유기 발광 소자
KR20170127101A (ko) 2016-05-10 2017-11-21 삼성디스플레이 주식회사 유기 발광 소자
KR20180017682A (ko) 2016-08-10 2018-02-21 삼성전자주식회사 실릴계 화합물 및 이를 포함하는 유기 발광 소자
CN106496198A (zh) * 2016-08-31 2017-03-15 江苏三月光电科技有限公司 一种以氮杂苯为核心的有机化合物及其应用
CN106565719B (zh) * 2016-09-26 2019-04-23 北京大学深圳研究生院 一种疏水性oled主体材料、制备方法和应用
CN106892901A (zh) * 2017-04-21 2017-06-27 瑞声光电科技(常州)有限公司 三嗪化合物及发光器件
US11597719B2 (en) 2017-06-13 2023-03-07 Samsung Display Co., Ltd. Organic molecules for use in organic optoelectronic devices
KR20190118073A (ko) * 2018-04-09 2019-10-17 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN112218861B (zh) 2018-10-22 2023-08-04 株式会社Lg化学 多环化合物及包含其的有机发光元件
KR101987256B1 (ko) 2018-12-14 2019-06-10 주식회사 엘지화학 축합환 화합물 및 이를 포함하는 유기 발광 소자
CN114075203B (zh) * 2021-06-17 2023-06-13 陕西莱特迈思光电材料有限公司 一种有机化合物以及使用其的有机电致发光器件和电子装置

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162650A (ja) * 1997-10-02 1999-06-18 Xerox Corp エレクトロルミネセントデバイス
JPH11176578A (ja) * 1997-10-02 1999-07-02 Xerox Corp インドロカルバゾールを用いたエレクトロルミネセントデバイス
WO2003077609A1 (fr) * 2002-03-08 2003-09-18 Canon Kabushiki Kaisha Dispositif electroluminescent organique
JP2004204234A (ja) * 2002-12-24 2004-07-22 Samsung Sdi Co Ltd 青色発光高分子及びこれを採用した有機el素子
JP2005100957A (ja) * 2003-08-29 2005-04-14 Canon Inc 発光素子及び表示装置
JP2005536565A (ja) * 2002-08-24 2005-12-02 コビオン オーガニック セミコンダクターズ ゲーエムベーハー ロジウムとイリジウムとの錯体。
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
JP2007522126A (ja) * 2004-01-26 2007-08-09 ユニバーサル ディスプレイ コーポレーション 改善された電界発光安定性
JP2007308376A (ja) * 2006-05-16 2007-11-29 Canon Inc フルオレン化合物及び有機el素子
JP2008513441A (ja) * 2004-09-20 2008-05-01 エルジー・ケム・リミテッド カルバゾール誘導体及びこれを用いた有機発光素子
WO2008056746A1 (fr) * 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008109824A2 (en) * 2007-03-08 2008-09-12 Universal Display Corporation Phosphorescent materials
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2009073245A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Light-emitting organometallic complexes
WO2009073246A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands
JP2009173630A (ja) * 2007-11-20 2009-08-06 Gracel Display Inc 新規な有機発光化合物及びこれを使用する有機発光素子
JP2009185017A (ja) * 2007-11-27 2009-08-20 Gracel Display Inc 新規な有機電気発光化合物及びこれを使用する有機電気発光素子
WO2009116377A1 (ja) * 2008-03-17 2009-09-24 新日鐵化学株式会社 有機電界発光素子
JP2009224593A (ja) * 2008-03-17 2009-10-01 Nippon Steel Chem Co Ltd インドロカルバゾール誘導体を含有する電子デバイス用有機導電性材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154139B2 (ja) * 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
US6835469B2 (en) * 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US20040096570A1 (en) * 2002-11-15 2004-05-20 Michael Weaver Structure and method of fabricating organic devices
US7029765B2 (en) 2003-04-22 2006-04-18 Universal Display Corporation Organic light emitting devices having reduced pixel shrinkage
KR101073232B1 (ko) 2006-11-07 2011-10-12 쇼와 덴코 가부시키가이샤 이리듐 착체 화합물, 그것을 이용하여 얻어진 유기 전계발광 소자 및 상기 소자의 용도
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
JP5053713B2 (ja) 2007-05-30 2012-10-17 キヤノン株式会社 リン光発光材料、それを用いた有機電界発光素子及び画像表示装置
WO2008156879A1 (en) 2007-06-20 2008-12-24 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
JP5457907B2 (ja) * 2009-08-31 2014-04-02 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176578A (ja) * 1997-10-02 1999-07-02 Xerox Corp インドロカルバゾールを用いたエレクトロルミネセントデバイス
JPH11162650A (ja) * 1997-10-02 1999-06-18 Xerox Corp エレクトロルミネセントデバイス
WO2003077609A1 (fr) * 2002-03-08 2003-09-18 Canon Kabushiki Kaisha Dispositif electroluminescent organique
JP2005536565A (ja) * 2002-08-24 2005-12-02 コビオン オーガニック セミコンダクターズ ゲーエムベーハー ロジウムとイリジウムとの錯体。
JP2004204234A (ja) * 2002-12-24 2004-07-22 Samsung Sdi Co Ltd 青色発光高分子及びこれを採用した有機el素子
JP2005100957A (ja) * 2003-08-29 2005-04-14 Canon Inc 発光素子及び表示装置
JP2007522126A (ja) * 2004-01-26 2007-08-09 ユニバーサル ディスプレイ コーポレーション 改善された電界発光安定性
JP2008513441A (ja) * 2004-09-20 2008-05-01 エルジー・ケム・リミテッド カルバゾール誘導体及びこれを用いた有機発光素子
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
JP2007308376A (ja) * 2006-05-16 2007-11-29 Canon Inc フルオレン化合物及び有機el素子
WO2008056746A1 (fr) * 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008109824A2 (en) * 2007-03-08 2008-09-12 Universal Display Corporation Phosphorescent materials
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
JP2009173630A (ja) * 2007-11-20 2009-08-06 Gracel Display Inc 新規な有機発光化合物及びこれを使用する有機発光素子
JP2009185017A (ja) * 2007-11-27 2009-08-20 Gracel Display Inc 新規な有機電気発光化合物及びこれを使用する有機電気発光素子
WO2009073245A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Light-emitting organometallic complexes
WO2009073246A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands
WO2009116377A1 (ja) * 2008-03-17 2009-09-24 新日鐵化学株式会社 有機電界発光素子
JP2009224593A (ja) * 2008-03-17 2009-10-01 Nippon Steel Chem Co Ltd インドロカルバゾール誘導体を含有する電子デバイス用有機導電性材料

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207097A1 (en) * 2010-11-25 2013-08-15 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
US9343685B2 (en) * 2010-11-25 2016-05-17 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
JP2014525910A (ja) * 2011-07-21 2014-10-02 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機エレクトロルミネセンス化合物およびこれを使用した有機エレクトロルミネセンス素子
USRE46974E1 (en) * 2012-05-28 2018-07-31 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2014050588A1 (ja) * 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JPWO2014050588A1 (ja) * 2012-09-28 2016-08-22 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10370484B2 (en) 2014-07-03 2019-08-06 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
WO2016002646A1 (ja) * 2014-07-03 2016-01-07 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2017075140A (ja) * 2015-09-09 2017-04-20 三星電子株式会社Samsung Electronics Co., Ltd. 縮合環化合物及びそれを含む有機発光素子
US20180002287A1 (en) * 2016-06-30 2018-01-04 Samsung Electronics Co., Ltd. Bipyridine derivatives and their uses for organic light emitting diodes
US10988447B2 (en) * 2016-06-30 2021-04-27 Samsung Electronics Co., Ltd. Bipyridine derivatives and their uses for organic light emitting diodes
JP2023514626A (ja) * 2020-03-03 2023-04-06 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
JP2023515163A (ja) * 2020-03-03 2023-04-12 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
JP7427318B2 (ja) 2020-03-03 2024-02-05 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子

Also Published As

Publication number Publication date
KR20120032572A (ko) 2012-04-05
US9287515B2 (en) 2016-03-15
US20160079545A1 (en) 2016-03-17
US10454042B2 (en) 2019-10-22
TWI577682B (zh) 2017-04-11
TW201542558A (zh) 2015-11-16
KR101161598B1 (ko) 2012-07-03
US20120153272A1 (en) 2012-06-21
JP5457907B2 (ja) 2014-04-02
TW201114773A (en) 2011-05-01
JP2011091355A (ja) 2011-05-06
TWI496786B (zh) 2015-08-21

Similar Documents

Publication Publication Date Title
JP5457907B2 (ja) 有機電界発光素子
JP4564590B1 (ja) 有機電界発光素子材料、及び有機電界発光素子
JP4500364B1 (ja) 有機電界発光素子
JP4531836B2 (ja) 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
JP4599469B1 (ja) 有機電界発光素子用材料及び有機電界発光素子
JP4564584B1 (ja) 有機電界発光素子
JP5666111B2 (ja) 有機電界発光素子
JP5779318B2 (ja) 有機電界発光素子
JP4564588B1 (ja) 有機電界発光素子用材料、及び有機電界発光素子
JP5608404B2 (ja) 白金錯体、発光材料、有機電界発光素子、表示装置及び照明装置
KR101218008B1 (ko) 유기 전계발광 소자용 재료 및 유기 전계발광 소자
JP5671248B2 (ja) 有機薄膜及び有機電界発光素子
JP4613249B2 (ja) 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
JP4564585B1 (ja) 有機電界発光素子
JP6550498B2 (ja) 白金錯体、発光材料、有機電界発光素子、表示装置及び照明装置
JP6347804B2 (ja) 白金錯体、発光材料、有機電界発光素子、表示装置及び照明装置
JP5964902B2 (ja) 白金錯体、発光材料、有機電界発光素子、表示装置及び照明装置
JP5859102B2 (ja) 有機電界発光素子
JP5627917B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127004770

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13393186

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812064

Country of ref document: EP

Kind code of ref document: A1