WO2010146821A1 - 絶縁被膜を有する電磁鋼板及びその製造方法 - Google Patents

絶縁被膜を有する電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2010146821A1
WO2010146821A1 PCT/JP2010/003924 JP2010003924W WO2010146821A1 WO 2010146821 A1 WO2010146821 A1 WO 2010146821A1 JP 2010003924 W JP2010003924 W JP 2010003924W WO 2010146821 A1 WO2010146821 A1 WO 2010146821A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
silica
parts
insulating coating
Prior art date
Application number
PCT/JP2010/003924
Other languages
English (en)
French (fr)
Inventor
竹田和年
小菅健司
高瀬達弥
藤井浩康
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI1010688-0A priority Critical patent/BRPI1010688B1/pt
Priority to US13/261,075 priority patent/US20120088096A1/en
Priority to JP2010532371A priority patent/JP4644317B2/ja
Priority to EP10789203.6A priority patent/EP2444523B1/en
Priority to KR1020117029879A priority patent/KR101296033B1/ko
Priority to CN2010800263596A priority patent/CN102459696B/zh
Publication of WO2010146821A1 publication Critical patent/WO2010146821A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/344Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition solely as one or more phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material

Definitions

  • the present invention relates to a magnetic steel sheet used as an iron core material for electrical equipment, for example, and a method for manufacturing the same.
  • the present invention relates to an electrical steel sheet having an insulating film that has a high interlayer resistance, a good blocking resistance (adhesion resistance) in the vicinity of room temperature of the insulating film, and that does not contain chromic acid, and a method for producing the same.
  • the generator motor is a particularly important device when electrifying areas where the power transmission network is not developed, and reliability is especially important even if it is downsized.
  • a hoop-shaped electrical steel sheet is punched into a predetermined shape, and then laminated and fixed to obtain an iron core.
  • a copper wire is wound around teeth etc., impregnation to a varnish, spraying of a powder coating material, etc. are performed. After that, it is baked and dried, and a terminal, flange, bearing, etc. for connecting a copper wire are attached and fixed to the case.
  • An electromagnetic steel sheet is usually provided with an insulating coating of 0.5 to 2.0 ⁇ m on the surface so as not to cause a short circuit in the iron core.
  • an excessive current flows in the winding and trips, or the motor breaks down due to heat generation and the reliability decreases, so it is necessary that the laminated iron core has high insulation. .
  • laminated iron cores used in motors for generators improve insulation by using varnish treatment on general magnetic steel sheets one by one or by applying organic resin to 3 ⁇ m or more in advance. I was letting.
  • insulating coatings applied to the surface of electrical steel sheets require a variety of coating properties such as punchability and caulking, as well as durability such as heat resistance and corrosion resistance, in addition to insulation. It is said that.
  • Patent Document 1 discloses an insulating coating using a treatment liquid mainly composed of an organic resin emulsion such as dichromate and vinyl acetate, a butadiene-styrene copolymer, and an acrylic resin. A method of forming is described.
  • Patent Document 2 mixing the chromic acid aqueous solution and emulsion-type resin and an organic reducing agent, readily soluble aluminum compounds, such as oxides of bivalent metals and H 3 BO 3, further Me chromic acid solution
  • the molar ratio of 2 + / Al 3+ is 0 to 7.0
  • the molar ratio of (Al 3+ + Me 2+ ) / CrO 3 is 0.2 to 0.5
  • the molar ratio of H 3 BO 3 / CrO 3 is 0.
  • a technique for forming an insulating film using a treatment liquid in the range of 1 to 1.5 is disclosed.
  • Patent Document 3 particles of about 2 ⁇ m or more such as bakelite and melamine resin are further added to an organic organic film or an inorganic organic mixed film obtained by mixing an organic resin with a phosphoric acid or chromic acid inorganic component.
  • a technique for imparting surface roughness is disclosed.
  • Patent Document 4 contains a chromium compound by blending a specific ratio of a phosphate with a specific composition, boric acid and / or colloidal silica, and an organic resin emulsion with a specific particle size, and baking it onto a steel sheet.
  • a processing method is described which has a coating property equivalent to that of an insulating coating containing a conventional chromium compound in a non-treatment liquid and which retains excellent slipperiness after strain relief annealing.
  • Patent Document 5 discloses a technique relating to an insulating coating composed of a specific ratio of an ethylene-unsaturated carboxylic acid copolymer, an epoxy resin, a silane coupling agent, and silica.
  • Patent Document 6 shows that in a heat-resistant pre-coated steel sheet, scaly powder dispersed in a coating film is made of aluminum flakes, alumina flakes, stainless steel flakes, glass flakes, mica powder, talc powder.
  • a technique relating to a surface treatment composition containing plate-like kaolin, barium sulfate flakes and the like is disclosed.
  • the coating developed for the surface-treated steel sheet has a problem that it cannot be used as an insulating film because the film properties such as adhesion and corrosion resistance required for the insulating film of the electromagnetic steel sheet cannot be obtained.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an insulating coating that can achieve both the excellent insulating properties and various properties required for electrical steel sheets such as adhesion and blocking resistance. It is providing the electromagnetic steel plate provided with and its manufacturing method.
  • the present invention adopts the following configuration in order to solve the above problems.
  • a first aspect of the present invention is a magnetic steel sheet having an insulating coating on the surface, wherein the insulating coating contains a binder liquid solid containing a phosphate metal salt; and 100 parts by mass of the binder liquid solid 1 to 40 parts by weight of silica or a silicate filler having an average particle diameter of 2.0 to 15.0 ⁇ m and an average specific surface area of 1.0 to 40.0 m 2 / g; It is an electromagnetic steel plate provided with.
  • the binder liquid solid content is 1 to 50 parts by mass with respect to 100 parts by mass of the metal phosphate, and the average particle size is 0.05 to 0.50 ⁇ m.
  • the organic resin may be an acrylic resin, an epoxy resin, and a polyester resin, a mixture, or a copolymer.
  • the silica may be crushed silica.
  • the electrical steel sheet according to (1) or (2) the electrical steel sheet may be a non-oriented electrical steel sheet.
  • the insulating coating may have a thickness of 2.5 to 12.0 ⁇ m and may be larger than the average particle diameter of the silica or silicate filler.
  • a second aspect of the present invention is an electrical steel sheet having an insulating coating on the surface, wherein the insulating coating is composed of colloidal silica and an average of 40 to 400 parts by mass with respect to 100 parts by mass of the colloidal silica.
  • the silica may be crushed silica.
  • the electrical steel sheet may be a non-oriented electrical steel sheet.
  • the thickness of the insulating coating is 2.5 to 12.0 ⁇ m, and the average particle diameter of the silica or silicate filler May be larger.
  • the binder liquid containing a metal phosphate has an average particle size of 2.0 to 15.0 ⁇ m in an amount of 1 to 40 parts by weight with respect to 100 parts by weight of binder solid content. And applying a mixed solution obtained by mixing silica or silicate filler having an average specific surface area of 1.0 to 40.0 m 2 / g to the surface of the electrical steel sheet; And a step of baking and drying at an ultimate temperature of 250 to 450 ° C.
  • the binder liquid is 1 to 50 parts by mass with respect to 100 parts by mass of the metal phosphate, and the average particle size is 0.00.
  • the organic resin may further contain an organic resin having a thickness of 05 to 0.50 ⁇ m, and the organic resin may be one kind, a mixture, or a copolymer of an acrylic resin, an epoxy resin, and a polyester resin.
  • crushed silica may be used as the silica.
  • a fourth aspect of the present invention contains colloidal silica and an organic resin having an average particle diameter of 0.05 to 0.50 ⁇ m, 40 to 400 parts by mass with respect to 100 parts by mass of the colloidal silica.
  • the average particle diameter is 2.0 to 15.0 ⁇ m
  • the average specific surface area is 1.0 to 40.0 m 2 / a step of applying a mixed solution obtained by mixing silica or a silicate filler as g to a magnetic steel sheet; and baking and drying the magnetic steel sheet at an ultimate temperature of 200 to 400 ° C. for 5 to 25 seconds
  • the organic resin is an acrylic resin, an epoxy resin, and a polyester resin, a mixture, or a copolymer.
  • a non-oriented electrical steel sheet may be used as the electromagnetic steel sheet.
  • the thickness of the insulating coating after baking and drying is 2.5 to 12.0 ⁇ m, and the silica or You may make it larger than the average particle diameter of a silicate filler.
  • the present invention by improving the reliability of the insulating coating of the electrical steel sheet, it is possible to obtain an electrical steel sheet that retains the insulating coating characteristics necessary for the electrical steel sheet and has good characteristics for a generator.
  • FIG. 1 is a schematic view of an electrical steel sheet having an insulating coating according to an embodiment of the present invention.
  • FIG. 1 is a schematic view of an electrical steel sheet 101 having an insulating coating 102 according to an embodiment of the present invention.
  • the electrical steel sheet 101 used in the present embodiment contains 0.1 mass% or more of Si and 0.05 mass% or more of Al.
  • Si increases in electric resistance and magnetic properties as the content increases, but at the same time, brittleness increases. For this reason, Si may be contained in the range of 0.1 to 4.0 mass%.
  • Al the magnetic properties improve as the content increases, but the rollability decreases. For this reason, Al may be contained in the range of 0.05 to 3.0 mass%.
  • the electromagnetic steel plate 101 may be a non-oriented electrical steel plate.
  • the electromagnetic steel sheet 101 may contain Mn in a range of 0.01 to 1.0 mass% in addition to Si and Al. Further, typical elements such as S, N, and C may be contained by being limited to less than 100 ppm or less than 20 ppm, respectively.
  • the electromagnetic steel sheet 101 is, for example, a slab having the above steel components heated to 1150 to 1250 ° C. and hot rolled, wound into a coil shape, and in the range of 800 ° C. to 1050 ° C. in the state of a hot rolled plate as necessary. After annealing, it is cold-rolled to a thickness of about 0.15 mm to 0.5 mm, and further annealed at 750 to 1100 ° C.
  • the surface of the electrical steel sheet 101 on which the insulating coating 102 is formed may be subjected to any pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid or the like before applying a treatment liquid described later. May be applied. Further, the surface as it is after finish annealing may be used without performing such pretreatment.
  • the center line average roughness (Ra) in the rolling direction and in the direction perpendicular to the rolling direction is 0.3 to 1.0 ⁇ m, or 0.35 to 0.65 ⁇ m. It may be. If Ra is less than 0.3 ⁇ m, the cost tends to be high in the cold rolling process, and if it exceeds 1.0 ⁇ m, the magnetism tends to deteriorate.
  • the insulating coating 102 applied to the electrical steel sheet 101 is obtained by mixing silica or a silicate filler 104 with a binder 103 having a metal phosphate 103a. It is formed using a mixed solution.
  • the phosphoric acid metal salt 103a is a solid content when the aqueous solution which has phosphoric acid and a metal ion as a main component is dried. Examples of the type of phosphoric acid include orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and the like.
  • examples of the metal ion include light metals such as Li, Al, Mg, Ca, Sr, and Ti.
  • Al or Ca it is easy to form a uniform film at a relatively low temperature.
  • the metal phosphate solution is prepared, for example, by mixing orthophosphoric acid with metal ion oxide, carbonate and hydroxide.
  • the metal phosphate 103a may be used alone or in combination of two or more.
  • an additive such as phosphonic acid or boric acid may be added to the binder 103.
  • the binder 103 may be a binder 103 ′ containing colloidal silica 103 b instead of the metal phosphate salt 103 a.
  • the colloidal silica 103b may have a particle size of 5 to 40 nm and an Na content of 0.01 to 0.5 mass% or less, or 0.01 to 0.3 mass%.
  • the binder 103, 103 'containing the metal phosphate 103a or colloidal silica 103b may be mixed with an organic resin 103c which is an acrylic resin, an epoxy resin, a polyester resin, a mixture, or a copolymer.
  • an organic resin 103c which is an acrylic resin, an epoxy resin, a polyester resin, a mixture, or a copolymer.
  • the homogeneous insulating coating 102 can be easily formed by mixing an acrylic resin or an epoxy resin with the binder 103 ′.
  • the above-mentioned metal phosphate 103a or colloidal silica 103b, and an organic resin 103c that is an acrylic resin, epoxy resin, polyester resin having a particle size of 0.05 to 0.50 ⁇ m, a mixture, or a copolymer. are used as a base structure of the insulating film 102 when a filler to be described later is added.
  • each commercially available resin emulsion may be used.
  • Acrylic resins include methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, n-decyl acrylate, n-dodecyl
  • Ordinary monomers such as acrylates may be used.
  • monomers having a functional group such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, and itaconic acid may be used.
  • monomers having a hydroxyl group such as 2-hydroxylethyl (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 2-hydroxylethyl (meth) allyl ether were copolymerized. Things may be used.
  • an epoxy resin for example, an amine-modified epoxy resin reacted with carboxylic anhydride.
  • an epoxy resin for example, an amine-modified epoxy resin reacted with carboxylic anhydride.
  • bisphenol A-diglycidyl ether, caprolactone ring-opening adduct of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, dimer acid glycidyl ether, etc. are used. May be.
  • modifying amine examples include isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, hexylamine, nonylamine, triethylenetetramine. Tetramethylenepentamine, diaminodiphenyl sulfone, etc. may be used.
  • carboxylic anhydride you may use what reacted succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, trimellitic anhydride, etc.
  • polyester resins include dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, Citraconic acid and the like, and glycols such as ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol, 1,6-hexanediol, You may use what reacted triethylene glycol, dipropylene glycol, polyethyleneglycol, etc. Furthermore, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and methacrylic anhydride may be graft polymerized with these polyester resins
  • the average particle size of the organic resin 103c may be in the range of 0.05 to 0.5 ⁇ m, preferably 0.1 to 0.3 ⁇ m. Moreover, you may use the 1 type, 2 or more types of mixture of the said organic resin 103c, or a copolymer. If the average particle size is less than 0.05 ⁇ m, the particles tend to aggregate in the treatment liquid, and the uniformity of the insulating coating 102 tends to decrease. If the average particle diameter exceeds 0.5 ⁇ m, the stability of the liquid tends to decrease.
  • the mixing ratio of the metal phosphate 103a and the organic resin 103c described above may be 1 to 50 parts by mass of the organic resin with respect to 100 parts by mass of the metal phosphate (in terms of solid content). If it is less than 1 part by mass, the resin concentration is too thin and aggregation tends to occur, and the liquid stability tends to be inferior. If it exceeds 50 parts by mass, the heat resistance tends to be inferior.
  • the mixing ratio of the colloidal silica 103b and the organic resin 103c described above may be 40 to 400 parts by mass of the resin with respect to 100 parts by mass of the colloidal silica (in terms of solid content). If the amount is less than 40 parts by mass, the film forming property is poor, and the insulating coating film 102 tends to powder. If the amount exceeds 400 parts by mass, the heat resistance tends to be inferior.
  • the silica or silicate filler 104 used in this embodiment has an average particle size in the range of 2.0 ⁇ m to 15.0 ⁇ m and an average specific surface area in the range of 1.0 to 40.0 m 2 / g. is there.
  • the measurement principle of the average particle diameter is based on the Mie scattering theory and is the number median diameter of the particle size distribution of the sample.
  • the average specific surface area is based on the gas adsorption method and conforms to JIS-K6217. If the particle size of the silica or silicate filler 104 is less than 2.0, sufficient adhesion cannot be obtained, and if it exceeds 15.0 ⁇ m, the space factor tends to decrease.
  • silica or silicate filler 104 having an average particle diameter in the range of 5.0 to 12.0 ⁇ m is used.
  • the specific surface area of the silica or silicate filler 104 is less than 1.0, it takes time to mix the filler because it easily settles or floats in the processing liquid, and when the specific surface area exceeds 40.0, the processing is required. There is a tendency that the filler in the liquid aggregates and becomes a film defect during dry baking. Therefore, in the present embodiment, silica or silicate filler 104 having an average specific surface area in the range of 1.0 to 40.0 m 2 / g is used. These fine particles may be used as a powder, or may be used as a dispersion solution previously dispersed in water.
  • the silica used in the present embodiment is not particularly limited, and various commercially available silicas such as spherical silica and porous silica can be used. For example, cristobalite or tridymite may be used. Further, dry pulverized silica may be used.
  • silicate fillers examples include olivine, garnet, kyanite, goethite, orthopyroxene, iron pyroxene, clinopyroxene, amphibole, kaolin, halloyite, serpentine, montmorillonite, hectorite, leaves
  • Examples include wax, talc, chlorite, feldspar, zeolite, dumbstone, and herbite.
  • a plate-like single crystal or polycrystal such as hectorite, phyllite, talc, kaolin or the like having a layered structure may be used.
  • These silicas and silicates may be used alone, or a mixture of two or more kinds may be used.
  • the silica or silicate filler 104 may be used by mixing with other mineral fillers, but many mineral fillers tend to have poor adhesion to the metal phosphate 103a, and the blending ratio is It is not preferable to increase. For this reason, when mixing other mineral fillers, the content is less than 30 mass% of the added filler.
  • the particle size may be 6.0 to 12.0 ⁇ m and the specific surface area may be in the range of 1.0 to 8.0 m 2 / g. Further, when the filler is a plate-like filler, the particle diameter may be 5.0 to 8.0 ⁇ m and the specific surface area may be in the range of 8.0 to 15.0 m 2 / g.
  • the silica or silicate filler 104 used in the present embodiment may be a commercially available one.
  • the compounding ratio of the binder 103 containing the metal phosphate 103a or the metal phosphate 103a and the organic resin 103c and the silica or silicate filler 104 is 1 with respect to 100 parts by mass of the solid content of the binder 103. Any silica or silicate filler 104 of up to 40 parts by weight may be used. If it is less than 1 part by mass, the blocking resistance tends to be inferior, and if it exceeds 40 parts by mass, filler fine particles tend to be taken and powdered when slitting.
  • the blending ratio of the binder 103 ′ containing the colloidal silica 103b and the organic resin 103c and the silica or silicate filler 104 is 1 to 40 parts by mass of silica or 100 parts by mass of the solid content of the binder 103 ′.
  • the silicate filler 104 may be used. If it is less than 1 part by mass, the blocking resistance tends to be inferior, and if it exceeds 40 parts by mass, the heat resistance of the coating is low and the wrinkle resistance tends to deteriorate.
  • the application method is not particularly limited, and a roll coater method may be adopted. Further, a coating method such as a spray method or a dip method may be employed. When using a roll coater or a dip method, clogging can be avoided.
  • an ordinary radiation furnace or hot air furnace can be used, and heating using electricity such as an induction heating method may be used.
  • the final temperature may be in the range of 250 to 450 ° C., and the baking time may be 5 to 35 seconds. More preferably, in the case of the metal phosphate 103a, the ultimate temperature may be in the range of 300 to 370 ° C.
  • the baking temperature may be 5 seconds to 25 seconds in the range of 200 ° C. to 350 ° C. Baking less than 5 seconds tends to cause bumping, and if it exceeds 35 seconds, the cost becomes industrially high. In addition, when colloidal silica 103b is used, if it exceeds 25 seconds, the adhesion tends to deteriorate and powdering tends to occur.
  • the ultimate temperature means the temperature of the surface of the electromagnetic steel sheet 101.
  • an insulating coating 102 in which silica or silicate filler 104 is dispersed is formed on the electromagnetic steel sheet 101. Is done.
  • the film thickness of the insulating coating 102 according to the present embodiment is, for example, 2.5 to 12 ⁇ m, preferably 5 to 8 ⁇ m. If the thickness is less than 2.5 ⁇ m, the withstand voltage may be low even if the interlayer resistance is satisfied, and if it exceeds 12 ⁇ m, the adhesion of the coating tends to deteriorate and powdering tends to occur.
  • the film thickness (after drying) of the insulating coating 102 according to the present embodiment is a value including not only the film thickness of the binders 103 and 103 ′ but also the height of the filler contained therein.
  • an additive such as a surfactant may be added to the insulating film 102 described above.
  • a surfactant a nonionic surfactant is suitable, and other brighteners may be added.
  • the silica is easily adapted to the phosphate, and that the silicate filler is reacted with the surplus phosphoric acid component released from the phosphate in the heating step and is adapted to each other to improve the adhesion.
  • Mineral fillers other than silicates cannot be expected to react with phosphates in the first place, and therefore the coating properties such as sufficient adhesion and blocking resistance are inferior.
  • the plate-like crystal body has a layered structure is not clear in detail, but the plate-like shape is easy to react in the reaction with phosphate, and the filler has a layered structure. For example, it is estimated that the adhesiveness is remarkably improved by taking a complicated structure with the base component.
  • the treatment liquid shown in Table 1 was applied to the surface of the electrical steel sheet at the drying temperature shown in the table and baked.
  • each metal hydroxide such as Mg (OH) 2 , Al (OH) 3 , oxide and carbonate
  • each metal hydroxide such as Mg (OH) 2 , Al (OH) 3 , oxide and carbonate
  • each metal hydroxide treatment solution 40 mass. % Aqueous solution.
  • Colloidal silica having a particle diameter of 15 nm and a concentration of 20 mass% was used.
  • (A) to (G) were prepared as 30 mass% emulsion solutions.
  • (C) Acrylic resin 3 obtained by copolymerizing 40 mass% of methyl acrylate, 30 mass% of styrene monomer, and 30 mass% of isobutyl acrylate
  • (D) A carboxyl group-modified epoxy resin 1 in which bisphenol A is modified with triethanolamine and then reacted with maleic anhydride
  • (E) Self-emulsifying epoxy resin 2 by adding ethylene propylene block copolymer to phenol novolac type epoxy resin and adding nonylphenyl ether ethylene oxide
  • (F) Carboxyl group-containing polyester resin obtained by copolymerizing 50 mass% of dicarboxyterephthalate and 30 mass% of neopentyl glycol and then graft-polymerizing 20 mass% of fumaric acid (G) synthesized from hexamethylene diisocyanate and polyethylene glycol by a known method Water-based polyurethane and resol-type phenol resin aqueous emulsion
  • a viscosity modifier and a surfactant were added to prepare a treatment liquid having the composition shown in Table 1.
  • the number average particle diameter (JIS-Z8826) based on the Mie scattering theory of each resin used in the treatment liquid is as follows.
  • the mass part in Table 1 is the value of solid content conversion with respect to 100 mass parts of phosphoric acid metal salt or colloidal silica.
  • Average particle diameter of acrylic resin 1 0.16 ⁇ m Average particle diameter of acrylic resin 2: 0.21 ⁇ m Average particle diameter of acrylic resin 3: 0.56 ⁇ m Average particle size of epoxy resin 1: 0.22 ⁇ m Average particle size of epoxy resin 2: 0.54 ⁇ m Average particle size of polyester resin: 0.3 ⁇ m Average particle size of phenol resin emulsion: 0.65 ⁇ m
  • silicate filler carbonate filler, various inorganic mineral fillers, and organic resin filler shown in Table 2 were added to these binder treatment liquids.
  • the mass parts in Table 2 are in terms of solid content.
  • Synthetic hectorite (particle size 2.6 ⁇ m, specific surface area 21.9 m 2 / g) Kaolin 1 (particle size 5.6 ⁇ m, specific surface area 10.1 m 2 / g) Kaolin 2 (particle size 2.1 ⁇ m, specific surface area 37.5 m 2 / g) Talc 1 (particle size 4.5 ⁇ m, specific surface area 9.5 m 2 / g) Talc 2 (particle size 13.0 ⁇ m, specific surface area 4.5 m 2 / g) Talc 3 (particle size 20.0 ⁇ m, specific surface area 0.8 m 2 / g) Mica 1 (particle size 10 ⁇ m, specific surface area 3.5 m 2 / g) Mica 2 (particle size 15 ⁇ m, specific surface area 42.5 m 2 / g) Barium sulfate (particle size 7.0 ⁇ m, specific surface area 34.6 m 2 / g) Alumina 1 (particle size 3.9 ⁇ m, specific
  • organic resin filler polyethylene wax having an average particle diameter of 6 ⁇ m and a specific surface area of 5.1 m 2 / g was used.
  • each powder sample was dispersed in distilled water with an ultrasonic cleaner for about 1 minute, and the particle size was measured by a commercially available laser diffraction method according to the JIS method (JIS-Z8826).
  • the number average particle size was measured with a diameter measuring device (LA-950, manufactured by Horiba, Ltd.).
  • the specific surface area was measured by a nitrogen adsorption method according to the JIS method (JIS-K6217).
  • Each fine particle was used in the experiment as a dispersion liquid having a concentration of 40 mass%.
  • a roll coater method was used to apply the treatment liquid, and the roll reduction amount and the like were adjusted so that the binder film thickness was 4.0 ⁇ m. Drying was performed using a radiation furnace, and the furnace temperature setting was adjusted so that the predetermined heating conditions described in Table 2 were obtained. The ultimate plate temperature and baking time differed depending on the sample, but the baking time was adjusted to be between 5 and 35 seconds in the range of 150 to 410 ° C. Table 3 shows the evaluation measurement results of the obtained samples. The surface roughness of the obtained sample was in the range of 0.22 to 0.78 ⁇ m in the examples and 0.24 to 0.88 ⁇ m in the comparative examples.
  • the insulation was determined based on the following criteria based on the interlayer resistance measured according to the JIS method (JIS-C2550). Here, what was evaluated as Good and Very Good was regarded as acceptable.
  • Adhesion is achieved by winding a steel plate sample after strain relief annealing (annealing temperature 750 ° C. ⁇ 2 hours in a nitrogen atmosphere) with an adhesive tape affixed to a metal rod having a diameter of 10 mm, 20 mm, and 30 mm, and then pulling the adhesive tape.
  • the adhesion was evaluated from the peeled and peeled traces. What was not peeled off by bending of 10 mm ⁇ was set to 10 mm ⁇ OK, what was not peeled off by bending of 20 mm ⁇ was 20 mm ⁇ OK, what was not peeled off by bending of 30 mm ⁇ was set to 30 mm ⁇ OK, and those peeled off were evaluated as NG.
  • Corrosion resistance was measured according to a JIS salt spray test (JIS-Z2371) and evaluated by a 10-point evaluation using samples after 7 hours. Here, the thing of evaluation 7 or more was set as the pass.
  • Appearance is glossy and smooth and uniform is 5; hereinafter, gloss is 4 but slightly inferior in uniformity, 3 is slightly glossy and smooth but inferior in uniformity, and gloss is 3
  • the number 2 was slightly inferior in smoothness and inferior in uniformity, and 1 was inferior in gloss, uniformity and smoothness.
  • the thing of evaluation 4 or more was set as the pass.
  • the heat resistance is the condition where the insulation coating is peeled off after strain relief annealing (annealing temperature 750 ° C. ⁇ 2 hours in a nitrogen atmosphere) and rubbing 2 mm ⁇ 30 mm of gauze with a load of 100 gf (about 0.98 N) on the steel plate surface. evaluated. What was not peeled was 5, 4 was peeled slightly, 3 was clearly peeled, 2 was severely peeled, and 1 was peeled without rubbing with gauze. Here, the thing of evaluation 4 or more was set as the pass.
  • the blocking resistance was obtained by cutting the sample into a size of 3 cm ⁇ 4 cm, laminating so that the long side and the short side were alternately overlapped, and pressurizing with 40 kgf / cm 2 (about 392 N / cm 2 ) at a temperature of 50 After aging for 7 days in a temperature-controlled room at 90 ° C. and humidity of 90%, the force at the time of pulling in the vertical direction was measured. Here, the force required for peeling off was less than 150 gf / cm 2 (about 1.47 N / cm 2 ) as acceptable.
  • Table 3 revealed the effects of the present invention. According to Table 3, it turned out that the sample applicable to the Example of this invention has favorable insulation, adhesiveness, corrosion resistance, heat resistance, blocking resistance, and a favorable external appearance. Moreover, in the sample applicable to a comparative example, the thing excellent in all of insulation, adhesiveness, corrosion resistance, an external appearance, heat resistance, and blocking resistance did not exist.
  • the electrical steel sheet according to the embodiment of the present invention is an electrical steel sheet mainly used for a motor for power generation, and has excellent insulation, adhesion, blocking resistance, etc. It is possible to achieve various characteristics required for the system.
  • the electrical steel plate provided with the insulating film which can make the various characteristics requested

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

 本発明は、表面に絶縁被膜を備える電磁鋼板であって、前記絶縁被膜が、リン酸金属塩を含有するバインダー液固形分と;前記バインダー液固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーと;を有する電磁鋼板を提供する。

Description

絶縁被膜を有する電磁鋼板及びその製造方法
 本発明は、例えば電気機器の鉄芯材料として使用される電磁鋼板とその製造方法に関する。本発明は特に、層間抵抗が高く、且つ、絶縁被膜の室温付近における耐ブロッキング性(耐癒着性)が良好で、且つ、クロム酸を含有しない絶縁被膜を有する電磁鋼板とその製造方法に関する。
 本願は、2009年6月17日に、日本に出願された特願2009-144759号に基づき優先権を主張し、その内容をここに援用する。
 電気機器の高効率化・小型化は、地球環境保全の観点から、また、世界的な電力・エネルギー節約の観点から近年強く要望されている。電気機器を高効率化・小型化するには様々な方策が必要である。発電機用モータなどでは、磁気特性の向上や加工性の向上などとともに高い信頼性が求められている。
 発電機用モータは、特に送電網の発達していない地域が電化する際に極めて重要な装置であり、小型化しても信頼性がとりわけ重要視される。
 一般にモータを製造する際には、フープ状の電磁鋼板を所定形状に打抜き加工した後、積層及び固着して鉄芯を得る。そして、銅線をティース等に巻きつけ、ワニスへの含浸や、粉体塗料の吹き付け等を行う。その後、焼き付け乾燥させ、銅線接続用のターミナルやフランジや軸受け等を取り付け、ケースに固定する。
 電磁鋼板には通常、鉄芯中で短絡が発生しないように表面に0.5~2.0μmの絶縁被膜が施されている。しかしながら、短絡が発生すると巻き線に過大な電流が流れてトリップしたり、発熱によりモータが故障したりして信頼性が低下することから、積層鉄芯が高い絶縁性を持つことが必要である。
 従来、発電機用モータに使用される積層鉄芯では、一般の電磁鋼板に1枚ずつワニス処理をしたり、あらかじめ有機樹脂を3μm以上に塗布したりしたものを使用して、絶縁性を向上させていた。
 しかしながら、電磁鋼板1枚ずつにワニス処理をすることは非効率で工業的にコスト高となることから、電磁鋼板の絶縁被膜に高い絶縁性を付与することでワニス処理の省略が可能である。
 一方、電磁鋼板の表面に施される絶縁被膜には、絶縁性の他に、打抜き性、かしめ性などの加工性、さらには耐熱性や耐蝕性などの耐久性といった多岐に亘る被膜特性が必要とされている。
 電磁鋼板の絶縁被膜に関する技術として、特許文献1には、重クロム酸塩と酢酸ビニル、ブタジエン-スチレン共重合物、アクリル樹脂等の有機樹脂エマルジョンを主成分とする処理液を用いて絶縁被膜を形成する方法が記載されている。また、特許文献2には、クロム酸水溶液とエマルジョンタイプの樹脂と有機還元剤とを混合し、易溶性アルミニウム化合物、2価金属の酸化物等及びHBO、さらにクロム酸溶液中のMe2+/Al3+のモル比が0~7.0、且つ、(Al3++Me2+)/CrOのモル比が0.2~0.5、HBO/CrOのモル比が0.1~1.5の範囲にある処理液を用いて絶縁被膜を形成する技術が開示されている。
 さらに、特許文献3には、有機被膜系、又はリン酸系、クロム酸系の無機成分に有機樹脂を混合した無機有機混合被膜に、さらにベークライト、メラミン樹脂などの約2μm以上の粒子を添加して表面粗さを付与する技術が開示されている。
 近年では、環境問題に対する意識の高まりから、6価クロムを含有するクロム酸水溶液を用いない絶縁被膜の開発が進められている。そのような技術としては、特許文献4に特定組成のリン酸塩とホウ酸及び/又はコロイダルシリカと特定粒径の有機樹脂エマルジョンとを特定割合配合し、鋼板に焼き付けることにより、クロム化合物を含まない処理液で従来のクロム化合物を含有する絶縁被膜と同等の被膜特性を有し、且つ、優れた歪み取り焼鈍後のすべり性を保持する処理方法が記載されている。
 また、特許文献5では、エチレン-不飽和カルボン酸共重合体、エポキシ樹脂、シランカップリング剤、シリカの特定比率で構成される絶縁被膜に関する技術が開示されている。
 また、表面処理鋼板の分野では、以下に示した特許文献6に、耐熱プレコート鋼板において、塗膜に分散させる鱗片状粉末にアルミフレーク、アルミナフレーク、ステンレス鋼フレーク、ガラスフレーク、マイカ粉、タルク粉、板状カオリン、硫酸バリウムフレーク等を配合する表面処理組成物に関する技術が開示されている。
日本国特公昭50-15013号公報 日本国特開平03-36284号公報 日本国特公昭49-19078号公報 日本国特開平06-330338号公報 日本国特開平09-323066号公報 日本国特開2004-52000号公報
 このようなモータの高効率化・小型化に伴い、高い信頼性と優れた被膜諸特性が課題となってきたことにより、特に発電機用モータにおいて、絶縁性と耐ブロッキング性の両立が求められている。すなわち、これまでの絶縁被膜を持つ電磁鋼板では、加工性や耐久性が優れている代わりに絶縁性が比較的低く、絶縁性を確保するために厚塗りすると電磁鋼板間が癒着(ブロッキング)して引き剥がす時に被膜が剥離したり、密着性が低下したりするという問題点があった。
 また、表面処理鋼板用に開発されたコーティングでは、電磁鋼板の絶縁被膜に求められる密着性や耐蝕性といった被膜特性が得られず、絶縁被膜として採用できないという問題点があった。
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的は、優れた絶縁性と密着性や耐ブロッキング性といった電磁鋼板に要求される諸特性を両立させることが可能な絶縁被膜を備えた電磁鋼板及びその製造方法を提供することである。
 本発明は、上記課題を解決するために以下の構成を採用する。
(1)本発明の第1の態様は、表面に絶縁被膜を備える電磁鋼板であって、前記絶縁被膜が、リン酸金属塩を含有するバインダー液固形分と;前記バインダー液固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーと;を備える電磁鋼板である。
(2)上記(1)に記載の電磁鋼板では、前記バインダー液固形分が、前記リン酸金属塩100質量部に対して1~50質量部の、平均粒径が0.05~0.50μmである有機樹脂を更に含有し、前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物であってもよい。
(3)上記(1)又は(2)に記載の電磁鋼板では、前記シリカが破砕シリカであってもよい。
(4)上記(1)又は(2)に記載の電磁鋼板では、前記電磁鋼板が、無方向性電磁鋼板であってもよい。
(5)前記絶縁被膜の膜厚が、2.5~12.0μmであり、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きくてもよい。
(6)本発明の第2の態様は、表面に絶縁被膜を備える電磁鋼板であって、前記絶縁被膜は、コロイダルシリカと、前記コロイダルシリカ100質量部に対して40~400質量部の、平均粒径が0.05~0.50μmである有機樹脂とを含有するバインダー液固形分と;前記バインダー液固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーと;を備え、前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物である電磁鋼板である。
(7)上記(6)に記載の電磁鋼板では、前記シリカが破砕シリカであってもよい。
(8)上記(6)又は(7)に記載の電磁鋼板では、前記電磁鋼板が、無方向性電磁鋼板であってもよい。
(9)上記(6)又は(7)に記載の電磁鋼板では、前記絶縁被膜の膜厚が、2.5~12.0μmであり、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きくてもよい。
(10)本発明の第3の態様は、リン酸金属塩を含有するバインダー液に、バインダー固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーを混合して得られる混合溶液を電磁鋼板の表面に塗布する工程と;前記電磁鋼板を、250~450℃の到達温度で5~35秒間焼付け乾燥する工程と;を備える、絶縁被膜を有する電磁鋼板の製造方法である。
(11)上記(10)に記載の絶縁被膜を有する電磁鋼板の製造方法では、前記バインダー液が、前記リン酸金属塩100質量部に対して1~50質量部の、平均粒径が0.05~0.50μmである有機樹脂を更に含有し、前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物であってもよい。
(12)上記(10)又は(11)に記載の絶縁被膜を有する電磁鋼板の製造方法では、前記シリカとして破砕シリカを用いてもよい。
(13)上記(10)又は(11)に記載の絶縁被膜を有する電磁鋼板の製造方法では、前記電磁鋼板として、無方向性電磁鋼板を用いてもよい。
(14)上記(10)又は(11)に記載の絶縁被膜を有する電磁鋼板の製造方法では、焼付け乾燥後の前記絶縁被膜の膜厚を、2.5~12.0μm、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きくしてもよい。
(15)本発明の第4の態様は、コロイダルシリカと、前記コロイダルシリカ100質量部に対して40~400質量部の、平均粒径が0.05~0.50μmである有機樹脂とを含有するバインダー液に、バインダー固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーを混合して得られる混合溶液を電磁鋼板に塗布する工程と;前記電磁鋼板を、200~400℃の到達温度で5~25秒間焼付け乾燥する工程と;を備え、前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物である、絶縁被膜を有する電磁鋼板の製造方法である。
(16)上記(15)に記載の絶縁被膜を有する電磁鋼板の製造方法では、前記シリカとして破砕シリカを用いてもよい。
(17)上記(15)又は(16)に記載の絶縁被膜を有する電磁鋼板の製造方法では、前記電磁鋼板として、無方向性電磁鋼板を用いてもよい。
(18)上記(15)又は(16)に記載の絶縁被膜を有する電磁鋼板の製造方法では、焼付け乾燥後の前記絶縁被膜の膜厚を、2.5~12.0μm、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きくしてもよい。
 本発明によれば、電磁鋼板の絶縁被膜の信頼性を向上することにより、電磁鋼板として必要な絶縁被膜特性を保持し、発電機用として良好な特性を持つ電磁鋼板を得ることができる。
本発明の一実施形態に係る絶縁被膜を有する電磁鋼板の概略図である。
 以下、図面を参照して本発明の好適な実施の形態について詳細に説明する。
 図1は、本発明の一実施形態に係る絶縁被膜102を有する電磁鋼板101の概略図を示す。本実施形態において用いられる電磁鋼板101は、0.1mass%以上のSiと、0.05mass%以上のAlとを含有する。Siは、含有量が増加するに従って電気抵抗が大きくなり磁気特性が向上するが、同時に脆性が増大する。このため、Siは0.1~4.0mass%の範囲で含有させてもよい。また、Alについても、含有量が増加するに従って磁気特性が向上するが圧延性が低下する。このため、Alは0.05~3.0mass%の範囲で含有させてもよい。また、電磁鋼板101は、無方向性電磁鋼板であってもよい。
 電磁鋼板101には、Si、Al以外に、Mnを0.01~1.0mass%の範囲で含有させてもよい。また、S、N、Cのような典型元素は、それぞれ100ppm未満、又は20ppm未満に制限して含有させてもよい。
 電磁鋼板101は、例えば、上記鋼成分を持つスラブを1150~1250℃に加熱して熱延し、コイル状に巻き取り、必要に応じて熱延板の状態で800℃から1050℃の範囲に焼鈍した後、0.15mmから0.5mm程度の厚さに冷延し、さらに750~1100℃で焼鈍して得られる。
 また、絶縁被膜102が形成される電磁鋼板101の表面は、後述する処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよい。また、このような前処理を施さず、仕上げ焼鈍後のままの表面を用いてもよい。
 電磁鋼板101の表面粗度に関しては、圧延方向の、及び、圧延方向に対して直角方向の中心線平均粗さ(Ra)が0.3~1.0μm、又は、0.35~0.65μmであってもよい。Raが0.3μm未満では、冷延工程でコスト高になる傾向があり、1.0μm超では、磁性が劣化する傾向がある。
 図1に示されるように、本発明の一実施形態に係る電磁鋼板101に付与される絶縁被膜102は、リン酸金属塩103aを有するバインダー103に対し、シリカ又はケイ酸塩フィラー104を混合した混合溶液を用いて形成される。この場合、リン酸金属塩103aは、リン酸と金属イオンとを主成分とする水溶液を乾燥させたときの固形分である。
 リン酸の種類としては、例えば、オルトリン酸、メタリン酸、ポリリン酸などが挙げられる。
 また、金属イオンの種類としては、例えば、Li、Al、Mg、Ca、Sr、Tiなどの軽金属が挙げられる。Al、Caを用いる場合、比較的低温で均一な被膜を形成し易い。リン酸金属塩溶液は、例えば、オルトリン酸に金属イオンの酸化物、炭酸塩、水酸化物を混合して調製される。
 ここで、リン酸金属塩103aは、単独で使用してもよいし、2種以上を混合して用いてもよい。また、バインダー103には、ホスホン酸やホウ酸などの添加剤を加えてもよい。
 バインダー103は、リン酸金属塩103aの代わりにコロイダルシリカ103bを含有するバインダー103’であってもよい。コロイダルシリカ103bは、粒径が5~40nmでNa含有量が0.01~0.5mass%以下、又は0.01~0.3mass%であってもよい。
 リン酸金属塩103a又はコロイダルシリカ103bを含有するバインダー103、103’には、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂の1種、混合物、又は共重合物である有機樹脂103cを混合してもよい。特にコロイダルシリカ103bを用いるバインダー103’の場合には、アクリル樹脂又はエポキシ樹脂をバインダー103’に混合することで、均質な絶縁被膜102が形成し易くなる。
 上述の、リン酸金属塩103a又はコロイダルシリカ103bと、粒径が0.05~0.50μmのアクリル系樹脂、エポキシ系樹脂、ポリエステル樹脂の1種、混合物、又は共重合物である有機樹脂103cとを含有するバインダー103、103’は、後述するフィラーを添加する際の絶縁被膜102の下地構造として用いられる。
 本実施形態で使用するアクリル樹脂、エポキシ樹脂、ポリエステル樹脂等の有機樹脂103cは、一般に市販されている各樹脂エマルジョンを用いてもよい。
 アクリル系樹脂としては、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、n-オクチルアクリレート、i-オクチルアクリレート、2-エチルヘキシルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、n-ドデシルアクリレートなどの通常のモノマーを使用してもよい。
 また、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸などの、官能基を持つモノマーを使用してもよい。
 また、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート、3-ヒロドキシルブチル(メタ)アクリレート、2-ヒドロキシルエチル(メタ)アリルエーテルなどの水酸基を持つモノマーを共重合させたものを使用してもよい。
 エポキシ系樹脂の場合、例えば、アミン変性エポキシ樹脂に無水カルボン酸を反応させたものが挙げられる。
 具体的には、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、ダイマー酸グリシジルエーテル等を使用してもよい。
 また、変性するアミンとしては、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブタルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ヘキシルアミン、ノニルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ジアミノジフェニルスルホン等を使用してもよい。
 また、無水カルボン酸としては、無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水トリメリット酸等を反応させたものを使用してもよい。
 ポリエステル樹脂の例としては、ジカルボン酸として、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、コハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸等と、グリコールとして、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルジオール、1,6-ヘキサンジオール、トリエチレングリコール、ジプロピレングリコール及び、ポリエチレングリコール等を反応させたものを使用してもよい。
 さらに、これらのポリエステル樹脂に、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メタクリル酸無水物をグラフト重合させてもよい。
 上記有機樹脂103cの平均粒径は、0.05~0.5μm、好ましくは0.1~0.3μmの範囲であってもよい。また、上記有機樹脂103cの1種又は2種以上の混合物、又は共重合物を用いてもよい。平均粒径が0.05μm未満では処理液中で凝集し易く、絶縁被膜102の均一性が低下する傾向があり、0.5μm超では液の安定性が低下する傾向がある。
 リン酸金属塩103aと、上述の有機樹脂103cとの混合比率は、リン酸金属塩100質量部に対し、有機樹脂1~50質量部であればよい(固形分換算)。1質量部未満では、樹脂濃度が薄過ぎて凝集が発生し易く液安定性に劣る傾向があり、50質量部超では、耐熱性に劣る傾向がある。
 また、コロイダルシリカ103bと、上述の有機樹脂103cとの混合比率は、コロイダルシリカ100質量部に対し、樹脂40~400質量部であればよい(固形分換算)。40質量部未満では、造膜性が悪く、絶縁被膜102が発粉する傾向があり、400質量部超では耐熱性に劣る傾向がある。
 次に、本実施形態で使用するシリカ又はケイ酸塩フィラー104について説明する。
 本実施形態で使用するシリカ又はケイ酸塩フィラー104は、平均粒径が2.0μm~15.0μmの範囲であり、且つ、平均比表面積が1.0~40.0m/gの範囲である。
 平均粒径の測定原理はMie散乱理論によるもので、サンプルの粒度分布の個数中位径である。また、平均比表面積とは、ガス吸着法によるもので、JIS-K6217に準拠する。
 シリカ又はケイ酸塩フィラー104の粒径が2.0未満では十分な密着性が得られず、15.0μm超では占積率が低下する傾向がある。このため、本実施形態では、平均粒径が5.0~12.0μmの範囲であるシリカ又はケイ酸塩フィラー104を用いる。
 また、シリカ又はケイ酸塩フィラー104の比表面積が1.0未満の場合、処理液中でフィラーが沈降や浮遊し易くなって混合するのに手間がかかり、比表面積が40.0超では処理液中のフィラーが乾燥焼付け時に凝集して被膜欠陥となる傾向がある。このため、本実施形態では、平均比表面積が1.0~40.0m/gの範囲であるシリカ又はケイ酸塩フィラー104を用いる。
 尚、これらの微粒子を粉末として利用してもよく、或いはあらかじめ水に分散させたディスパージョン溶液として利用してもよい。
 本実施形態で使用するシリカは、真球状のシリカや多孔質のシリカなど、市販されている様々なシリカが利用でき、特に限定されるものではない。例えば、クリストバライトやトリディマイトを用いてもよい。また、乾式粉砕したシリカを用いてもよい。
 ケイ酸塩フィラーとして、例えば、カンラン石、ザクロ石、藍晶石、ゲーレン石、斜方輝石、鉄珪輝石、単斜輝石、角閃石、カオリン、ハロイ石、蛇紋石、モンモリロナイト、ヘクトライト、葉ろう石、滑石、緑泥石、長石、沸石、ダンブリ石、ヘルバイトなどが挙げられる。
 特に、ヘクトライト、葉ろう石、滑石、カオリンなどの板状の単結晶又は多結晶体が層状構造を呈するものを使用してもよい。これらのシリカやケイ酸塩は単独で用いられてもよく、2種以上が混合されたものが用いられてもよい。
 また、シリカ又はケイ酸塩フィラー104を他の鉱物質フィラーと混合して使用してもよいが、多くの鉱物質フィラーはリン酸金属塩103aとの密着性に劣る傾向があり、配合比率が増加するのは好ましくない。このため、他の鉱物質フィラーを混合する場合は、その含有量を添加フィラーの30mass%未満とする。
 フィラーとして粒状フィラーを用いる場合、粒径が6.0~12.0μmであり、且つ、比表面積が1.0~8.0m/gの範囲であればよい。また、フィラーが板状フィラーの場合、粒径が5.0~8.0μmであり、且つ、比表面積が8.0~15.0m/gの範囲であればよい。
 本実施形態で使用するシリカ又はケイ酸塩フィラー104は、一般に市販されているものを用いてもよい。
 リン酸金属塩103a、又はリン酸金属塩103aと有機樹脂103cとを含有するバインダー103と、シリカ又はケイ酸塩フィラー104との配合比率は、バインダー103の固形分100質量部に対して、1~40質量部のシリカ又はケイ酸塩フィラー104であればよい。1質量部未満では耐ブロッキング性が劣る傾向があり、40質量部超では、スリット時にフィラー微粒子が取れて発粉する傾向がある。
 コロイダルシリカ103bと有機樹脂103cとを含有するバインダー103’と、シリカ又はケイ酸塩フィラー104との配合比率も、バインダー103’の固形分100質量部に対して、1~40質量部のシリカ又はケイ酸塩フィラー104であればよい。1質量部未満ではやはり耐ブロッキング性が劣る傾向があり、40質量部超では、被膜の耐熱性が低く、耐疵付き性が劣化する傾向がある。
 本実施形態では、処理液を電磁鋼板101の表面に塗布する場合、塗布方式を特に限定するものではなく、ロールコーター方式を採用してもよい。また、スプレー方式、ディップ方式などの塗布方式を採用してもよい。ロールコーターもしくはディップ方式を用いる場合、目詰まりを回避することができる。
 また、処理液を乾燥焼き付けるための加熱方式も、通常の輻射炉や熱風炉が使用可能であり、誘導加熱方式などの電気を用いた加熱でもよい。
 乾燥条件としては、到達温度が250~450℃の範囲で、焼付け時間が5秒から35秒間とすればよい。さらに好適には、リン酸金属塩103aの場合には、到達温度は300~370℃の範囲としてもよい。また、コロイダルシリカ103bを用いる場合には、到達温度が200℃~350℃の範囲で、焼付け時間が5秒から25秒間としてもよい。5秒未満の焼付けでは突沸が起こる傾向があり、35秒超では工業的にコスト高となる。また、コロイダルシリカ103bを用いる場合には、25秒超では、密着性が劣化して発粉する傾向がある。尚、到達温度とは、電磁鋼板101の表面の温度を意味する。
 上述の処理液を電磁鋼板101の表面に塗布し、上述のような加熱方法で処理を行うことにより、電磁鋼板101の上に、シリカ又はケイ酸塩フィラー104が分散された絶縁被膜102が形成される。
 ここで、本実施形態に係る絶縁被膜102の膜厚は、例えば、2.5~12μm、好ましくは5~8μmの範囲が適当である。2.5μm未満では、層間抵抗は満足しても耐電圧が低い場合があり、12μm超では被膜の密着性が劣化して発粉する傾向がある。ここで、本実施形態に係る絶縁被膜102の膜厚(乾燥後)は、バインダー103、103’の膜厚だけでなく、これらに含まれるフィラーの高さを含む値である。
 さらに本実施形態では、上述の絶縁被膜102に対して、界面活性剤などの添加剤を加えてもよい。界面活性剤としては、非イオン系界面活性剤が適当で、その他光沢剤などを添加してもよい。
 上記シリカはリン酸塩中に馴染み易く、また、ケイ酸塩フィラーは加熱工程でリン酸塩から放出される余剰リン酸成分と反応して相互に馴染むことで密着性が向上すると推定される。ケイ酸塩以外の鉱物質フィラーでは、そもそもリン酸塩との反応性が期待できず、したがって十分な密着性や耐ブロッキング性といった被膜特性が劣位である。板状結晶体が層状構造を呈するものが特に好適である理由は、詳細には明らかではないが、リン酸塩との反応において、板状形状が反応し易く、且つ、フィラーが層状構造であれば下地成分と入り組んだ構造を取ることにより著しく密着性が向上するためと推定される。
 Si:2.5%、Al:0.5%、Mn:0.05%を含有する板厚0.35mmで、表面粗度がRa(中心線平均粗さ)で0.36μmの無方向性電磁鋼板の表面に、表1に示す処理液を表中に示す乾燥温度で塗布し、焼付けた。
 リン酸金属塩として、オルトリン酸とMg(OH)、Al(OH)などの各金属水酸化物、酸化物、炭酸塩を混合撹拌して各リン金属酸塩処理液を調製し、40mass%水溶液とした。コロイダルシリカは、市販されている粒径15nmで濃度20mass%のものを使用した。
 さらに、各有機樹脂エマルジョンについては、以下(A)~(G)を30mass%エマルジョン溶液として調製した。
(A)メチルメタクリレート60mass%と、2-ヒドロキシエチルメタクリレート15mass%と、ラウリルメタクリレート25mass%とを共重合させたアクリル系樹脂1
(B)フマル酸20mass%と、メチルアクリレート30mass%と、ブチルアクリレート35mass%と、スチレンモノマー15mass%とを混合させたアクリル系樹脂2
(C)メチルアクリレート40mass%と、スチレンモノマー30mass%と、イソブチルアクリレート30mass%とを共重合させたアクリル系樹脂3
(D)ビスフェノールAをトリエタノールアミンで変性した後無水マレイン酸を反応させたカルボキシル基変性エポキシ樹脂1
(E)フェノールノボラック型エポキシ樹脂にエチレンプロピレンブロックコポリマーを配合してノニルフェニルエーテルエチレンオキサイドを付加し自己乳化型としたエポキシ樹脂2
(F)ジカルボキシテレフタレート50mass%とネオペンチルグリコール30mass%を共重合させた後フマル酸20mass%をグラフト重合させたカルボキシル基含有ポリエステル樹脂
(G)既知の方法で、ヘキサメチレンジイソシアネートとポリエチレングリコールから合成された水性ポリウレタン、及びレゾール型フェノール樹脂水系エマルジョン
 さらに粘度調整剤、界面活性剤を適量加えて、表1の組成の処理液を調製した。なお、処理液に用いた各樹脂の、Mie散乱理論に基づく個数平均粒径(JIS-Z8826)は、以下の通りである。なお、表1中の質量部は、リン酸金属塩又はコロイダルシリカ100質量部に対する固形分換算の値である。
 アクリル系樹脂1の平均粒径:0.16μm
 アクリル系樹脂2の平均粒径:0.21μm
 アクリル系樹脂3の平均粒径:0.56μm
 エポキシ系樹脂1の平均粒径:0.22μm
 エポキシ系樹脂2の平均粒径:0.54μm
 ポリエステル樹脂の平均粒径:0.3μm
 フェノール樹脂エマルジョンの平均粒径:0.65μm
 これらのバインダー処理液に、下記に示すケイ酸塩フィラー、炭酸塩フィラー、各種無機鉱物系フィラー及び有機樹脂フィラーを、表2に示す所定量添加した。表2中の質量部は、固形分換算である。
 合成ヘクトライト(粒径2.6μm、比表面積21.9m/g)
 カオリン1(粒径5.6μm、比表面積10.1m/g)
 カオリン2(粒径2.1μm、比表面積37.5m/g)
 滑石1(粒径4.5μm、比表面積9.5m/g)
 滑石2(粒径13.0μm、比表面積4.5m/g)
 滑石3(粒径20.0μm、比表面積0.8m/g)
 雲母1(粒径10μm、比表面積3.5m/g)
 雲母2(粒径15μm、比表面積42.5m/g)
 硫酸バリウム(粒径7.0μm、比表面積34.6m/g)
 アルミナ1(粒径3.9μm、比表面積5.6m/g)
 アルミナ2(粒径8.0μm、比表面積2.0m/g)
 ギブサイト(粒径2.2μm、比表面積20.5m/g)
 炭酸カルシウム1(粒径5.2μm、比表面積7.0m/g)
 炭酸カルシウム2(粒径3.2μm、比表面積8.0m/g)
 ベントナイト1(粒径2.1μm、比表面積36.6m/g)
 ベントナイト2(粒径1.3μm、比表面積80m/g)
 シリカ1(粒径2.5μm、比表面積13.6m/g)
 シリカ2(粒径6.5μm、比表面積0.1m/g)
 シリカ3(粒径2.2μm、比表面積54.0m/g)
 カオリン・滑石混合物1(粒径10.6μm、比表面積38.0m/g)
 カオリン・滑石混合物2(粒径8.5μm、比表面積46.0m/g)
 シリカ・カオリン混合物(粒径14μm、比表面積28.0m/g)
 シリカ・滑石混合物(粒径16μm、比表面積1.3m/g)
 また、有機樹脂フィラーとしては、平均粒径6μmで比表面積5.1m/gのポリエチレンワックスを使用した。
 なお、粒径を測定する際には、各粉末サンプルを蒸留水中に約1分間超音波洗浄機で分散させたものを用い、JIS法(JIS-Z8826)に準じた市販のレーザー回折法による粒径測定装置(堀場製作所社製 LA-950)にて数平均粒径を測定した。比表面積は、JIS法(JIS-K6217)に準じて窒素吸着法で測定した。
 各微粒子は、濃度を40mass%に調製したディスパージョン液として実験に用いた。
 処理液の塗布にはロールコーター方式を用い、バインダー膜厚が4.0μmになるようロール圧下量等を調整した。乾燥は、輻射炉を用いて行い、表2中に記した所定の加熱条件が得られるよう炉温設定を調整した。到達板温と焼付け時間はサンプルによって異なるが、150~410℃の範囲で焼付け時間は5~35秒の間になるよう調整した。得られたサンプルの評価測定結果を表3に示す。なお、得られたサンプルの表面粗さは、実施例で0.22~0.78μm、比較例で0.24~0.88μmの範囲であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 絶縁性は、JIS法(JIS-C2550)に準じて測定した層間抵抗を基に、以下の基準に基づいて判定を行った。ここで、Good、Very Goodと評価されたものを合格とした。
  5Ω・cm/枚未満  :Bad
  5~10Ω・cm/枚 :Fair
  10~50Ω・cm/枚:Good
  50Ω・cm/枚以上 :Very Good
 密着性は、10mm、20mm、30mmの直径の金属棒に粘着テープを貼った歪取り焼鈍(焼鈍温度750℃×2時間、窒素雰囲気中)後の鋼板サンプルを巻きつけた後、粘着テープを引き剥がし、剥れた痕跡から密着性を評価した。10mmφの曲げで剥れなかったものを10mmφOKとし、20mmφの曲げで剥れなかったものを20mmφOK、30mmφの曲げで剥れなかったものを30mmφOKとし、剥がれたものをNGと評価した。
 耐蝕性は、JIS法の塩水噴霧試験(JIS-Z2371)に準じて行い、7時間経時後のサンプルを用いて10点評価で行った。ここで、評価7以上のものを合格とした。
  10:錆発生が無かった
   9:錆発生が極少量(面積率0.1%以下)
   8:錆の発生した面積率=0.1%超過0.25%以下
   7:錆の発生した面積率=0.25%超過0.50%以下
   6:錆の発生した面積率=0.50%超過1%以下
   5:錆の発生した面積率=1%超過2.5%以下
   4:錆の発生した面積率=2.5%超過5%以下
   3:錆の発生した面積率=5%超過10%以下
   2:錆の発生した面積率=10%超過25%以下
   1:錆の発生した面積率=25%超過50%以下
 外観は、光沢があり、平滑で均一であるものを5とし、以下、光沢はあるが均一性に若干劣るものを4、やや光沢があり平滑ではあるが均一性に劣るものを3、光沢が少なく、平滑性にやや劣り均一性に劣るものを2、光沢、均一性、平滑性の劣るものを1とした。ここで、評価4以上のものを合格とした。
 耐熱性は、歪取り焼鈍(焼鈍温度750℃×2時間、窒素雰囲気中)後、鋼板表面に100gf(約0.98N)の荷重で2mm×30mmのガーゼを擦り付けて、絶縁被膜の剥離状況で評価した。剥離しなかったものを5、少し剥離したものを4、はっきり剥離したものを3、剥離状況が酷いものを2、ガーゼで擦らなくても剥離したものを1とした。
ここで、評価4以上のものを合格とした。
 耐ブロッキング性は、3cm×4cmの大きさにサンプルを切断した後、長辺と短辺が交互に重なるように積層し、40kgf/cm(約392N/cm)で加圧して、温度50℃、湿度90%の恒温室中で7日間経時した後、垂直方向に引張り引き剥がす際の力を測定した。ここで、引き剥がす際に要する力が150gf/cm(約1.47N/cm)未満のものを合格とした。
Figure JPOXMLDOC01-appb-T000003
 表3より本発明の効果が明らかとなった。
 表3によれば、本発明の実施例に該当するサンプルは、良好な絶縁性、密着性、耐蝕性、耐熱性、耐ブロッキング性を有し、良好な外観を備えることがわかった。また、比較例に該当するサンプルでは、絶縁性、密着性、耐蝕性、外観、耐熱性及び耐ブロッキング性の全てに優れたものは存在しなかった。
 上述の実施例からも明らかなように、本発明の実施形態に係る電磁鋼板では、主に発電用モータに使用される電磁鋼板において、優れた絶縁性、密着性、耐ブロッキング性などの電磁鋼板に要求される諸特性を両立させることが可能である。
 以上のように、バインダーに対するフィラーの分散性を高めることで、フィラーの分散状態の影響を大きく受ける絶縁性、密着性、耐ブロッキング性などの電磁鋼板の諸特性を向上させることができる。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、優れた絶縁性と密着性や耐ブロッキング性といった電磁鋼板に要求される諸特性を両立させることが可能な絶縁被膜を備えた電磁鋼板及びその製造方法を提供することができる。従って、本発明は産業上の利用可能性を十分に有する。
101  電磁鋼板
102  絶縁被膜
103、103’  バインダー
103a リン酸金属塩
103b コロイダルシリカ
103c 有機樹脂
104  シリカ又はケイ酸塩フィラー

Claims (18)

  1.  表面に絶縁被膜を備える電磁鋼板であって、
     前記絶縁被膜は、
     リン酸金属塩を含有するバインダー液固形分と;
     前記バインダー液固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーと;
    を備えることを特徴とする電磁鋼板。
  2.  前記バインダー液固形分が、前記リン酸金属塩100質量部に対して1~50質量部の、平均粒径が0.05~0.50μmである有機樹脂を更に含有し、
     前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物である
    ことを特徴とする、請求項1に記載の電磁鋼板。
  3.  前記シリカが破砕シリカである
    ことを特徴とする請求項1又は2に記載の電磁鋼板。
  4.  前記電磁鋼板が、無方向性電磁鋼板である
    ことを特徴とする請求項1又は2に記載の電磁鋼板。
  5.  前記絶縁被膜の膜厚が、2.5~12μmであり、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きい
    ことを特徴とする請求項1又は2に記載の電磁鋼板。
  6.  表面に絶縁被膜を備える電磁鋼板であって、
     前記絶縁被膜は、
     コロイダルシリカと、前記コロイダルシリカ100質量部に対して40~400質量部の、平均粒径が0.05~0.50μmである有機樹脂とを含有するバインダー液固形分と;
     前記バインダー液固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーと;
    を備え、
     前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物である
    ことを特徴とする電磁鋼板。
  7.  前記シリカが破砕シリカである
    ことを特徴とする請求項6に記載の電磁鋼板。
  8.  前記電磁鋼板が、無方向性電磁鋼板である
    ことを特徴とする請求項6又は7に記載の電磁鋼板。
  9.  前記絶縁被膜の膜厚が、2.5~12μmであり、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きい
    ことを特徴とする請求項6又は7に記載の電磁鋼板。
  10.  リン酸金属塩を含有するバインダー液に、バインダー固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーを混合して得られる混合溶液を電磁鋼板の表面に塗布する工程と;
     前記電磁鋼板を、250~450℃の到達温度で5~35秒間焼付け乾燥する工程と;
    を備えることを特徴とする、絶縁被膜を有する電磁鋼板の製造方法。
  11.  前記バインダー液が、前記リン酸金属塩100質量部に対して1~50質量部の、平均粒径が0.05~0.50μmである有機樹脂を更に含有し、
     前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物である
    ことを特徴とする、請求項10に記載の絶縁被膜を有する電磁鋼板の製造方法。
  12.  前記シリカとして破砕シリカを用いる
    ことを特徴とする請求項10又は11に記載の電磁鋼板の製造方法。
  13.  前記電磁鋼板として、無方向性電磁鋼板を用いる
    ことを特徴とする請求項10又は11に記載の電磁鋼板の製造方法。
  14.  焼付け乾燥後の前記絶縁被膜の膜厚を、2.5~12μm、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きくする
    ことを特徴とする請求項10又は11に記載の電磁鋼板の製造方法。
  15.  コロイダルシリカと、前記コロイダルシリカ100質量部に対して40~400質量部の、平均粒径が0.05~0.50μmである有機樹脂とを含有するバインダー液に、バインダー固形分100質量部に対して1~40質量部の、平均粒径が2.0~15.0μmであり、且つ、平均比表面積が1.0~40.0m/gであるシリカ又はケイ酸塩フィラーを混合して得られる混合溶液を電磁鋼板に塗布する工程と;
     前記電磁鋼板を、200~400℃の到達温度で5~25秒間焼付け乾燥する工程と;
    を備え、
     前記有機樹脂が、アクリル系樹脂、エポキシ系樹脂、及びポリエステル樹脂の、1種、混合物、又は共重合物である
    ことを特徴とする、絶縁被膜を有する電磁鋼板の製造方法。
  16.  前記シリカとして破砕シリカを用いる
    ことを特徴とする請求項15に記載の電磁鋼板の製造方法。
  17.  前記電磁鋼板として、無方向性電磁鋼板を用いる
    ことを特徴とする請求項15又は16に記載の電磁鋼板の製造方法。
  18.  焼付け乾燥後の前記絶縁被膜の膜厚を、2.5~12μm、且つ、前記シリカ又はケイ酸塩フィラーの平均粒径よりも大きくする
    ことを特徴とする請求項15又は16に記載の電磁鋼板の製造方法。
PCT/JP2010/003924 2009-06-17 2010-06-14 絶縁被膜を有する電磁鋼板及びその製造方法 WO2010146821A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI1010688-0A BRPI1010688B1 (pt) 2009-06-17 2010-06-14 chapa de aço eletromagnético tendo revestimento isolante e método de produção da mesma
US13/261,075 US20120088096A1 (en) 2009-06-17 2010-06-14 Electromagnetic steel sheet having insulating coating and method of manufacturing the same
JP2010532371A JP4644317B2 (ja) 2009-06-17 2010-06-14 絶縁被膜を有する電磁鋼板及びその製造方法
EP10789203.6A EP2444523B1 (en) 2009-06-17 2010-06-14 Electromagnetic steel sheet having insulating coating film and process for production thereof
KR1020117029879A KR101296033B1 (ko) 2009-06-17 2010-06-14 절연 피막을 갖는 전자기 강판 및 그 제조 방법
CN2010800263596A CN102459696B (zh) 2009-06-17 2010-06-14 具有绝缘覆盖膜的电磁钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-144759 2009-06-17
JP2009144759 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010146821A1 true WO2010146821A1 (ja) 2010-12-23

Family

ID=43356154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003924 WO2010146821A1 (ja) 2009-06-17 2010-06-14 絶縁被膜を有する電磁鋼板及びその製造方法

Country Status (8)

Country Link
US (1) US20120088096A1 (ja)
EP (1) EP2444523B1 (ja)
JP (1) JP4644317B2 (ja)
KR (1) KR101296033B1 (ja)
CN (1) CN102459696B (ja)
BR (1) BRPI1010688B1 (ja)
TW (1) TWI422658B (ja)
WO (1) WO2010146821A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090836A (ja) * 2016-11-30 2018-06-14 新日鐵住金株式会社 無方向性電磁鋼板
JP2018518591A (ja) * 2015-03-24 2018-07-12 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh コイルおよび電磁鋼帯または電磁鋼板
WO2018174275A1 (ja) 2017-03-23 2018-09-27 新日鐵住金株式会社 電磁鋼板
WO2019093521A1 (ja) 2017-11-13 2019-05-16 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法
WO2019188585A1 (ja) * 2018-03-28 2019-10-03 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板の製造方法、および方向性電磁鋼板
WO2020085024A1 (ja) 2018-10-25 2020-04-30 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
JP2020148630A (ja) * 2019-03-13 2020-09-17 Tdk株式会社 絶縁膜付き金属材料および圧力センサ
JP6863534B1 (ja) * 2019-10-31 2021-04-21 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
WO2021084793A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
JPWO2021256535A1 (ja) * 2020-06-17 2021-12-23
CN116144240A (zh) * 2021-11-22 2023-05-23 宝山钢铁股份有限公司 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
WO2024070489A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324260B1 (ko) 2011-12-28 2013-11-01 주식회사 포스코 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판
CN102816909B (zh) * 2012-09-18 2014-09-24 山西太钢不锈钢股份有限公司 一种钢板热处理保护剂及热处理的方法
CN103050269A (zh) * 2013-01-04 2013-04-17 安泰科技股份有限公司 化学气氛降低铁芯损耗的方法
KR101432175B1 (ko) * 2013-06-27 2014-08-20 포스코강판 주식회사 피씨엠 컬러강판 제조용 피씨엠 도료 조성물 및 이에 의해 제조된 스톤매트형 컬러강판
JP6222363B2 (ja) 2015-04-07 2017-11-01 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
WO2019013348A1 (ja) * 2017-07-13 2019-01-17 新日鐵住金株式会社 方向性電磁鋼板
CN107578879B (zh) * 2017-08-14 2020-03-31 天津三环乐喜新材料有限公司 一种磁体组件及其制备方法
BR112021006549A2 (pt) 2018-12-17 2021-07-06 Nippon Steel Corp núcleo laminado e motor elétrico
BR112021008895A2 (pt) 2018-12-17 2021-08-10 Nippon Steel Corporation núcleo laminado e motor elétrico
CN113169592A (zh) 2018-12-17 2021-07-23 日本制铁株式会社 层叠铁芯及旋转电机
JP7180690B2 (ja) 2018-12-17 2022-11-30 日本製鉄株式会社 積層コア、その製造方法及び回転電機
KR102485638B1 (ko) * 2018-12-17 2023-01-06 닛폰세이테츠 가부시키가이샤 적층 코어 및 회전 전기 기계
EP3902106A4 (en) * 2018-12-17 2022-11-30 Nippon Steel Corporation LAMINATED-BONDED CORE AND METHOD FOR MANUFACTURING IT AND ROTARY ELECTRIC MACHINE
CN113196618A (zh) 2018-12-17 2021-07-30 日本制铁株式会社 层叠铁芯及旋转电机
TWI740311B (zh) 2018-12-17 2021-09-21 日商日本製鐵股份有限公司 定子用接著積層鐵芯、其製造方法、及旋轉電機
SG11202108976UA (en) 2018-12-17 2021-09-29 Nippon Steel Corp Laminated core and electric motor
SG11202108982PA (en) 2018-12-17 2021-09-29 Nippon Steel Corp Laminated core and electric motor
DE102019126429A1 (de) * 2019-07-26 2021-01-28 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung von Nasslaufreibpapier und Nasslaufreibpapier
KR20220028054A (ko) * 2019-07-31 2022-03-08 제이에프이 스틸 가부시키가이샤 무방향성 전기강판 및 그 제조 방법
KR102648705B1 (ko) * 2019-09-20 2024-03-19 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
KR102371374B1 (ko) * 2019-12-19 2022-03-04 주식회사 포스코 전기강판 절연 피막 조성물, 전기강판, 및 이의 제조 방법
MX2022016041A (es) * 2020-06-17 2023-02-02 Nippon Steel Corp Composicion de revestimiento para lamina de acero electrico, lamina de acero electrico, nucleo laminado y maquina electrica rotativa.
CN114276737B (zh) * 2022-02-11 2023-04-14 太原科技大学 一种无取向硅钢高结合力疏水绝缘涂层的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919078A (ja) 1973-04-14 1974-02-20
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH0515013B2 (ja) 1985-04-20 1993-02-26 Ngk Insulators Ltd
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH08333640A (ja) * 1995-06-07 1996-12-17 Nippon Steel Corp 耐熱性と密着性の極めて優れる方向性電磁鋼板とその絶縁被膜形成方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JPH10130859A (ja) * 1996-10-31 1998-05-19 Kawasaki Steel Corp 打抜き性と焼鈍後の耐焼付き性に優れた無方向性電磁鋼板およびその絶縁被膜形成方法
JP2004052000A (ja) 2002-07-16 2004-02-19 Nisshin Steel Co Ltd 加工性,耐食性に優れた耐熱プレコート鋼板
JP2009144759A (ja) 2007-12-12 2009-07-02 Anan Denki Kk フランジ継手用漏液防止ボルト及びナット、ならびにそのフランジ継手用漏液防止ボルト及びナットを用いた漏液部補修方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141778A (ja) * 1984-08-02 1986-02-28 Nippon Steel Corp 張力付加性およびスベリ性の優れた方向性電磁鋼板の絶縁皮膜形成方法
JPS6426438A (en) * 1987-07-23 1989-01-27 Kobe Steel Ltd Rust proof steel sheet with organic coating
US5059640A (en) * 1988-06-16 1991-10-22 The United States Of America As Represented By The Secretary Of The Navy Epoxy corrosion-resistant coating
CN1039915C (zh) * 1989-07-05 1998-09-23 新日本制铁株式会社 方向性电磁钢板上的绝缘皮膜成型方法
US6164739A (en) * 1993-10-18 2000-12-26 The Dow Chemical Company Multilayer protective film
JPH09157861A (ja) * 1995-12-07 1997-06-17 Nkk Corp 無方向性けい素鋼板の曲げ加工性および耐熱性に優れた絶縁被膜用コーティング剤および絶縁被膜の形成方法
JP3324632B2 (ja) * 1996-01-30 2002-09-17 新日本製鐵株式会社 密着性の優れた方向性電磁鋼板及びその絶縁皮膜形成方法
JPH1026438A (ja) * 1996-07-12 1998-01-27 Osaka Gas Co Ltd 吸収式冷凍機における蒸発器
US6017991A (en) * 1997-09-22 2000-01-25 Minerals Technologies Inc. Polyolefin film composition and resins useable therefore and related making method
CN1237126C (zh) * 1997-12-12 2006-01-18 杰富意钢铁株式会社 能消除应力退火、耐溶剂性优良的电工钢板
US5955201A (en) * 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
US6159534A (en) * 1998-11-23 2000-12-12 Nippon Steel Corporation Method for producing non-oriented electromagnetic steel sheet having insulating film excellent in film properties
KR20010100204A (ko) * 2000-03-16 2001-11-14 이구택 절연피막 형성용 피복조성물 및 이를 이용한 무방향성전기강판의 절연피막 형성방법
CA2527690C (en) * 2003-11-21 2011-01-25 Jfe Steel Corporation Surface-treated steel sheet excellent in corrosion resistance, conductivity, and coating appearance
WO2005095492A1 (ja) * 2004-03-30 2005-10-13 Kaneka Corporation 硬化性組成物
CN102066610B (zh) * 2008-06-20 2014-06-11 新日铁住金株式会社 无方向性电磁钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919078A (ja) 1973-04-14 1974-02-20
JPH0515013B2 (ja) 1985-04-20 1993-02-26 Ngk Insulators Ltd
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH08333640A (ja) * 1995-06-07 1996-12-17 Nippon Steel Corp 耐熱性と密着性の極めて優れる方向性電磁鋼板とその絶縁被膜形成方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JPH10130859A (ja) * 1996-10-31 1998-05-19 Kawasaki Steel Corp 打抜き性と焼鈍後の耐焼付き性に優れた無方向性電磁鋼板およびその絶縁被膜形成方法
JP2004052000A (ja) 2002-07-16 2004-02-19 Nisshin Steel Co Ltd 加工性,耐食性に優れた耐熱プレコート鋼板
JP2009144759A (ja) 2007-12-12 2009-07-02 Anan Denki Kk フランジ継手用漏液防止ボルト及びナット、ならびにそのフランジ継手用漏液防止ボルト及びナットを用いた漏液部補修方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444523A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518591A (ja) * 2015-03-24 2018-07-12 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh コイルおよび電磁鋼帯または電磁鋼板
JP2018090836A (ja) * 2016-11-30 2018-06-14 新日鐵住金株式会社 無方向性電磁鋼板
WO2018174275A1 (ja) 2017-03-23 2018-09-27 新日鐵住金株式会社 電磁鋼板
KR20210151994A (ko) 2017-03-23 2021-12-14 닛폰세이테츠 가부시키가이샤 전자 강판
KR20190097246A (ko) 2017-03-23 2019-08-20 닛폰세이테츠 가부시키가이샤 전자 강판
US11499059B2 (en) 2017-03-23 2022-11-15 Nippon Steel Corporation Electrical steel sheet
JPWO2018174275A1 (ja) * 2017-03-23 2019-12-12 日本製鉄株式会社 電磁鋼板
WO2019093521A1 (ja) 2017-11-13 2019-05-16 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法
US11499055B2 (en) 2017-11-13 2022-11-15 Nippon Steel Corporation Coating solution for forming insulating film for grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
WO2019188585A1 (ja) * 2018-03-28 2019-10-03 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板の製造方法、および方向性電磁鋼板
JP7018169B2 (ja) 2018-03-28 2022-02-10 日本製鉄株式会社 方向性電磁鋼板の製造方法、および方向性電磁鋼板
JPWO2019188585A1 (ja) * 2018-03-28 2021-03-11 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板の製造方法、および方向性電磁鋼板
RU2753929C1 (ru) * 2018-03-28 2021-08-24 Ниппон Стил Корпорейшн Пленкообразующая жидкость для формирования изоляционного покрытия на листе анизотропной электротехнической стали, способ изготовления листа анизотропной электротехнической стали и лист анизотропной электротехнической стали
WO2020085024A1 (ja) 2018-10-25 2020-04-30 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
RU2764099C1 (ru) * 2018-10-25 2022-01-13 Ниппон Стил Корпорейшн Покрывающая жидкость для формирования изоляционного покрытия на листах анизотропной электротехнической стали, лист анизотропной электротехнической стали и способ производства листа анизотропной электротехнической стали
JPWO2020085024A1 (ja) * 2018-10-25 2021-10-14 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
JP7047932B2 (ja) 2018-10-25 2022-04-06 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
KR20210022060A (ko) 2018-10-25 2021-03-02 닛폰세이테츠 가부시키가이샤 방향성 전자 강판용 절연피막을 형성하기 위한 도포액, 방향성 전자 강판, 및 방향성 전자 강판의 제조 방법
JP2020148630A (ja) * 2019-03-13 2020-09-17 Tdk株式会社 絶縁膜付き金属材料および圧力センサ
JP7115372B2 (ja) 2019-03-13 2022-08-09 Tdk株式会社 絶縁膜付き金属材料および圧力センサ
WO2020184435A1 (ja) * 2019-03-13 2020-09-17 Tdk株式会社 絶縁膜付き金属材料および圧力センサ
JP6863534B1 (ja) * 2019-10-31 2021-04-21 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
WO2021084793A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
JPWO2021256535A1 (ja) * 2020-06-17 2021-12-23
JP7207610B2 (ja) 2020-06-17 2023-01-18 日本製鉄株式会社 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
CN116144240A (zh) * 2021-11-22 2023-05-23 宝山钢铁股份有限公司 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
CN116144240B (zh) * 2021-11-22 2024-04-05 宝山钢铁股份有限公司 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
WO2024070489A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
CN102459696B (zh) 2013-10-16
BRPI1010688B1 (pt) 2019-11-19
BRPI1010688A2 (pt) 2016-03-15
TW201114861A (en) 2011-05-01
TWI422658B (zh) 2014-01-11
EP2444523A1 (en) 2012-04-25
KR20120012486A (ko) 2012-02-10
KR101296033B1 (ko) 2013-08-12
EP2444523A4 (en) 2013-01-23
JP4644317B2 (ja) 2011-03-02
EP2444523B1 (en) 2014-04-16
CN102459696A (zh) 2012-05-16
US20120088096A1 (en) 2012-04-12
JPWO2010146821A1 (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
JP4644317B2 (ja) 絶縁被膜を有する電磁鋼板及びその製造方法
JP4831639B2 (ja) 電磁鋼板及びその製造方法
JP5093411B2 (ja) 樹脂モールドされる積層鉄芯に使用される電磁鋼板及びその製造方法
JP5005844B2 (ja) 電磁鋼板及びその製造方法
JP4729136B2 (ja) 電磁鋼板及びその製造方法
JP6524448B2 (ja) 電磁鋼板、および、電磁鋼板の製造方法
KR20160114577A (ko) 절연 피막을 포함하는 방향성 전기 강 판상 제품
JP6682892B2 (ja) 電磁鋼板及び電磁鋼板の製造方法
EP3255177B1 (en) Electrical steel sheet
JP5471849B2 (ja) 電磁鋼板およびその製造方法
JP5423465B2 (ja) 電磁鋼板および電磁鋼板の製造方法
JP5232246B2 (ja) 無方向性電気鋼板用のコーティング溶液,これを用いた無方向性電気鋼板のコーティング方法及び無方向性電気鋼板のコーティング層
JP7014231B2 (ja) 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026359.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010532371

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13261075

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010789203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9779/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117029879

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010688

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010688

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111214