WO2019093521A1 - 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法 - Google Patents
方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法 Download PDFInfo
- Publication number
- WO2019093521A1 WO2019093521A1 PCT/JP2018/041965 JP2018041965W WO2019093521A1 WO 2019093521 A1 WO2019093521 A1 WO 2019093521A1 JP 2018041965 W JP2018041965 W JP 2018041965W WO 2019093521 A1 WO2019093521 A1 WO 2019093521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphate
- steel sheet
- insulating film
- hydrous silicate
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
- C09D1/02—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/69—Particle size larger than 1000 nm
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/20—Orthophosphates containing aluminium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/22—Orthophosphates containing alkaline earth metal cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/32—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
Definitions
- the present invention relates to a coating solution for forming an insulating film for a directional electromagnetic steel sheet, and a method of manufacturing the directional electromagnetic steel sheet.
- a grain-oriented electrical steel sheet is a steel sheet having a crystal structure whose main orientation is the (110) [001] orientation, and usually contains 2% by mass or more of Si.
- the main application is iron core materials such as transformers, and in particular, materials having less energy loss at the time of voltage transformation, that is, materials having low core loss are required.
- a typical manufacturing process of the grain-oriented electrical steel sheet is as follows. First, a slab containing 2% by mass to 4% by mass of Si is hot-rolled and the hot-rolled sheet is annealed. Next, cold rolling is performed twice or more once or once through intermediate annealing to obtain a final plate thickness, and decarburization annealing is performed. After that, an annealing separator is applied and final finish annealing is performed. Thereby, while developing the crystal structure which makes a (110) [001] direction the main direction, a finish annealing film is formed in the steel plate surface.
- a finish annealing film mainly composed of Mg 2 SiO 4 is formed on the surface of a steel sheet. Finally, the coating solution for forming the insulating film is applied and baked, and then shipped.
- the grain-oriented electrical steel sheet has the property that iron loss is improved by applying tension to the steel sheet. Therefore, by forming an insulating film of a material having a thermal expansion coefficient smaller than that of a steel plate at a high temperature, tension is applied to the steel plate, and iron loss can be improved.
- Patent Documents 1 to 11 Conventionally, various coating solutions for forming an insulating film on a magnetic steel sheet are known (see, for example, Patent Documents 1 to 11).
- the insulating film obtained by baking a coating solution composed of colloidal silica, primary phosphate and chromic acid disclosed in Patent Document 1 is excellent in various film characteristics such as tension.
- hexavalent chromium is contained in the coating liquid for forming the said insulation film, and in order to improve the labor environment in the insulation film formation process of a directionality electromagnetic steel plate, it has the consideration on facilities. Therefore, development of a coating solution for forming an insulation film of a grain-oriented electrical steel sheet, which does not contain hexavalent chromium and can provide an insulation film excellent in various film characteristics such as tension, is desired.
- Patent Document 2 to Patent Document 5 describe a coating liquid for forming an insulating film of a grain-oriented electrical steel sheet which is mainly composed of colloidal silica and primary phosphate and is converted to chromic acid and uses other additives. It is done.
- the film tension of the insulating film obtained by the coating solution for forming the insulating film which does not contain chromic acid and uses an additive other than chromic acid is the film of the insulating film obtained by the coating solution for forming the insulating film containing chromic acid. Less than tension.
- the additives used in these techniques are all more expensive than chromic acid.
- the coating solution for insulating film formation described in Patent Document 6 and Patent Document 7 is formed of a mixture of alumina sol and boric acid.
- the film tension of the insulating film formed by baking this coating solution is significantly higher than that of the insulating film obtained by baking the above-mentioned coating solution composed of colloidal silica, primary phosphate and chromic acid. Is obtained.
- this insulating film has poor corrosion resistance.
- the price of alumina sol as a raw material is expensive.
- Patent Document 8 discloses a coating solution comprising hydrous silicate powder and primary phosphate.
- Patent Document 9 discloses a coating solution composed of hydrous silicate powder, primary phosphate and colloidal silica.
- Patent Document 10 discloses a coating solution comprising kaolin, which is a kind of hydrous silicate, and lithium silicate.
- the insulating film obtained by baking the coating solution described in these documents is a film equal to or more than the insulating film obtained by baking the coating solution composed of colloidal silica, primary phosphate and chromic acid in any film. Tension is obtained. Also, the obtained grain-oriented electrical steel sheet has excellent iron loss.
- Patent Document 11 relating to the insulation film of non-oriented electrical steel sheet discloses a mixed liquid containing a metal salt of phosphoric acid and a silicate filler having an average particle diameter of 2 ⁇ m or more. Then, as a method of forming an insulation film of a magnetic steel sheet, a method of mixing a phosphate and a silicate filler having an average particle diameter of 2 ⁇ m or more and baking the mixture at 250 ° C. to 450 ° C. is described. In this technique, silicate is added as a filler in the insulating film, and it is necessary to leave the original form in the insulating film after baking. Therefore, a silicate having a large average particle size is used.
- the coating liquid for forming the insulating film for directional electromagnetic steel plates based on one aspect of ⁇ 1> this invention 1 type or 2 or more types of hydrous silicate powder having an average particle diameter of 2 ⁇ m or less, And one or more phosphoric acid and phosphate to satisfy the relation ⁇ n i M i / ⁇ P i ⁇ 0.5, Contains The following (Expression 1) is satisfied. 1.5 ⁇ ( ⁇ n i M i + ⁇ n ′ j M ′ j ) / ⁇ P i ⁇ 15. . .
- the phosphate is an aluminum phosphate or an Mg phosphate.
- the hydrous silicate powder is a kaolin powder.
- Talc powder, and pyrophyllite powder may be used alone or in combination.
- the manufacturing method of the directionality electromagnetic steel sheet based on one aspect of ⁇ 4> this invention A step of applying a coating solution for forming an insulating film for a directional electromagnetic steel sheet to a grain-oriented electrical steel sheet after final finish annealing and performing a baking treatment, wherein the coating liquid has an average particle diameter of 2 ⁇ m or less contains the one or more hydrous silicate powder and ⁇ n i M i / ⁇ P i ⁇ 0.5 1 or more kinds of phosphoric acid and phosphate to satisfy the relationship of the following equation (1) And a process in which the temperature of the baking treatment is 600.degree. C. to 1000.degree.
- the phosphate in the method of producing a grain-oriented electrical steel sheet according to ⁇ 4>, is a phosphate of Al, a phosphate of Mg, a phosphate of Ca, or Zn. It may be any one of phosphate and Ni phosphate.
- the hydrous silicate powder in the method of producing a grain-oriented electrical steel sheet according to ⁇ 4> or ⁇ 5>, is kaolin powder, talc powder, and pyrophyll It may be one or more of light powder.
- a grain-oriented electrical steel sheet having high film tension, excellent film characteristics excellent in space factor, corrosion resistance and water resistance and excellent iron loss even without using chromium compound.
- a coating liquid for forming an insulating film, and a method of manufacturing a grain-oriented electrical steel sheet are provided.
- a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
- the term "process” is not limited to an independent process, and may be used in this term if the intended purpose of the process is achieved even if it can not be clearly distinguished from other processes. included.
- Coating fluid for forming insulating film for directional electromagnetic steel sheet Coating solution for forming the oriented electrical steel sheet insulating coating according to the present embodiment (an insulating film-forming coating solution), and one or more of the following hydrated silicate powder having an average particle diameter of 2 [mu] m, .SIGMA.n i It contains one or more of phosphoric acid and phosphate which satisfy the relationship of M i / ⁇ P i ⁇ 0.5.
- hydrous silicate powder is mainly used, and primary phosphate (for example, primary aluminum phosphate (Al 2 O 3 .3P 2 O 5 .6H 2 O)) is added and heated at 600 ° C. or higher
- primary phosphate for example, primary aluminum phosphate (Al 2 O 3 .3P 2 O 5 .6H 2 O)
- Al 2 O 3 .3P 2 O 5 .6H 2 O primary aluminum phosphate
- the obtained insulating film can obtain a film tension equal to or higher than that obtained by baking a coating solution containing colloidal silica, primary phosphate and chromic acid.
- the grain ratio of the grain-oriented electrical steel sheet manufactured in this manner may be inferior, and the corrosion resistance and water resistance may also be inferior.
- the present inventors made the following directional electromagnetic steel sheets and examined about the influence which the insulating film of said directional electromagnetic steel sheets gives to a space factor, corrosion resistance, and water resistance.
- the amount of coating after baking will be 5 g / m 2 after coating with a composition containing primary phosphate aqueous solution of aluminum phosphate and colloidal silica. It was applied and dried as described above, and baked at 850 ° C. for 30 seconds.
- FIG. 1 is a cross-sectional SEM (scanning electron microscope) photograph of the film structure of the grain-oriented electrical steel sheet obtained in this manner.
- reference numeral 11 denotes an insulating film
- 13 denotes a finish annealing film (hereinafter, reference numerals are omitted and described). From this SEM photograph, it can be seen that a large number of voids exist in the insulating film. The presence of the air gaps lowers the density of the insulating coating and increases the coating thickness for the same coating amount (g / m 2 ). As a result, space factor is considered to be inferior.
- the voids may be connected to become through holes of the insulating film. The through holes are considered to be permeable to moisture and moisture, to deteriorate the corrosion resistance of the magnetic steel sheet, and to deteriorate the water resistance.
- the phosphate is produced by reacting a metal oxide, a metal hydroxide or the like with phosphoric acid.
- Phosphoric acid has n and M values of 0.
- each of the primary phosphate, secondary phosphate and tertiary phosphate is Al (H 2 PO 4 ) 3 , Al 2 (HPO 4 ) 3 , and AlPO 4 .
- nM / P> 1 the phosphate is difficult to dissolve in water, and it becomes difficult to form a water-soluble insulating film coating solution.
- a phosphate of nM / P ⁇ 1 is used for the insulating film of the magnetic steel sheet, it is considered that water-soluble P (phosphorus) remains in the insulating film after baking.
- the present inventors believe that if phosphate and phosphoric acid satisfying nM / P ⁇ 1 are not usually used for the insulation film of magnetic steel sheet, the reactivity with hydrous silicate may be improved.
- the present inventors considered that the film properties would be improved by mixing phosphate and phosphoric acid satisfying nM / P ⁇ 1 and hydrous silicate in an appropriate ratio.
- the coating liquid for insulating film formation which concerns on this embodiment is 1 type, or 2 or more types of hydrous silicate powder is mix
- Hydrous silicates also referred to as clay minerals, often have a layered structure.
- the layered structure is represented by the composition formula X 2-3 (Si, Al) 4 O 10 (OH) 2 and the 1: 1 silicate layer represented by the composition formula X 2-3 Si 2 O 5 (OH) 4
- the 2: 1 silicate layer is laminated alone or in combination.
- X is Al, Mg, Fe or the like.
- the layers of the layered structure may contain at least one of water molecules and ions.
- the hydrous silicates are typically kaolin (or kaolinite) (Al 2 Si 2 O 5 (OH) 4 ), talc (Mg 3 Si 4 O 10 (OH) 2 ), pyrophyllite (Al 2) Si 4 O 10 (OH) 2 ) can be mentioned. Most of the hydrous silicate powders mainly containing these hydrous silicates are purified and micronized hydrous silicates produced in nature. As the hydrous silicate powder, it is preferable to use one or more of kaolin powder, talc powder and pyrophyllite powder in terms of industrial availability. The hydrous silicates may be used in combination. The main uses of hydrous silicate powders are in paint fillers and in glossy paper coatings. In the former case, coarse particles having an average particle diameter of 2 ⁇ m or more are used, and in the latter case, fine particles having an average particle diameter of 2 ⁇ m or less are used.
- the average particle size of the hydrous silicate powder is preferably selected to be small in average particle size, in order to easily cause mutual fusion due to the reaction of phosphoric acid and phosphate with hydrous silicate.
- the average particle size of the hydrous silicate powder is 2 ⁇ m or less. That is, hydrous silicate powders for filler applications are unsuitable.
- the average particle size is 2 ⁇ m or less, the reactivity between phosphoric acid and phosphate and the hydrous silicate is improved, and voids in the insulating film after baking can be easily reduced. As a result, space factor, corrosion resistance and water resistance become excellent.
- the average particle diameter of the hydrous silicate powder may be less than 2.0 ⁇ m, may be 1.5 ⁇ m or less, may be 1.0 ⁇ m or less, and may be 0.5 ⁇ m or less.
- the lower limit value of the average particle diameter of the hydrous silicate powder is not particularly limited, but may be, for example, 0.05 ⁇ m or more.
- the average particle diameter of the hydrous silicate powder is a particle diameter corresponding to a cumulative frequency of 50% on a volume basis in a distribution curve of equivalent spherical diameters obtained by a laser diffraction / scattering method according to ISO 13320 and JIS Z 8825 (2013) It is the numerical value defined in.
- the average particle diameter of the hydrous silicate in this embodiment is determined by measuring the particle size distribution by the laser diffraction / scattering method defined in ISO 13320 and JIS Z 8825 (2013), and described in JIS Z 8819-2 (2001). It can be obtained by the method of calculating the average particle diameter.
- the coating liquid for forming an insulating film according to the present embodiment contains one or more of phosphoric acid and phosphate. That is, the coating liquid for forming an insulating film contains one or more selected from the group consisting of phosphoric acid and phosphate.
- phosphoric acid and phosphate satisfy the condition of ⁇ n i M i / PP i ⁇ 0.5.
- the phosphoric acid and the phosphate salt satisfy the condition of nn i M i / PP i ⁇ 0.5, so that the phosphoric acid and the phosphate and the hydrous silicate powder may be mixed during the baking treatment of the coating of the coating solution.
- a phosphate mixed with phosphoric acid satisfies the condition of 0 ⁇ n i M i / ⁇ P i ⁇ 0.5.
- ⁇ n i M i / ⁇ P i to prepare an insulating film-forming coating solution using a phosphate of greater than 0.5, because the space factor porosity in the insulating film is increased, the corrosion resistance becomes inferior, It is preferable to satisfy the condition of nn i M i / PP i ⁇ 0.5.
- the phosphate satisfying the condition of 0 ⁇ n i M i / ⁇ P i ⁇ 0.5 can be obtained by reacting a metal oxide, a metal hydroxide or the like with phosphoric acid.
- a metal oxide a metal hydroxide or the like
- phosphoric acid a metal oxide, a metal hydroxide or the like
- the phosphate is magnesium (Mg) phosphate
- MgO magnesium oxide
- Mg (OH) 2 magnesium hydroxide
- H 3 PO 4 five moles of phosphoric acid the
- the phosphate is phosphoric acid salt of aluminum (Al)
- Al aluminum
- Phosphoric acid is easily available as an aqueous phosphoric acid solution.
- the phosphate may be any one of Al phosphate, Mg phosphate, Ca phosphate, Zn phosphate, and Ni phosphate.
- the phosphate may be any two or more of Al phosphate, Mg phosphate, Ca phosphate, Zn phosphate, and Ni phosphate. These phosphates are industrially easily available as their aqueous phosphate solutions.
- the coating liquid for forming an insulating film according to the present embodiment contains one or more types of hydrous silicate powder having an average particle diameter of 2 ⁇ m or less, and one or more types of the above-mentioned phosphoric acid and phosphate. 1.5 ⁇ ( ⁇ n i M i + ⁇ n ′ j M ′ j ) / ⁇ P i ⁇ 15. . . (Formula 1) Satisfy.
- i represents the number of types of phosphate and j represents the number of types of hydrous silicates.
- n n i M i becomes the value of nM of the phosphate used alone.
- nn i M i is the sum of n 1 M 1 of the first phosphate and n 2 M 2 of the second phosphate (n 1 M 1 + n 2 M 2 )
- ⁇ n ' j M' j becomes the value of n'M 'of hydrous silicate used alone.
- ⁇ n ' j M' j is the first hydrous silicate n ' 1 M' 1 and the second hydrous silicate n ' 2 M' 2 (N ' 1 M' 1 + n ' 2 M' 2 ).
- the blending ratio of the hydrous silicate to the phosphoric acid and the phosphate may be in the range of 2.0 ⁇ ( ⁇ n i M i + ⁇ n ′ j M ′ j ) / ⁇ P i ⁇ 15, and 5.0 ⁇ ( ⁇ ⁇ n i M i + ⁇ n 'j M' j) / ⁇ P i ⁇ 15 may be in the range of.
- the solid content concentration of the coating liquid for forming an insulating film is not particularly limited as long as it can be applied to the grain-oriented electrical steel sheet.
- the solid content concentration of the coating liquid for forming an insulating film is, for example, in the range of 5% by mass to 50% by mass, more preferably 10% by mass to 30% by mass.
- the viscosity of the coating liquid for forming an insulating film is preferably 1 mPa ⁇ s to 100 mPa ⁇ s.
- the measurement of the viscosity is carried out by means of a B-type viscometer (Brookfield viscometer). In addition, the measurement temperature is 25 ° C.
- the viscosity is measured with a single cylindrical rotational viscometer described in JIS Z 8803 (2011).
- the coating liquid for insulating film formation which concerns on this embodiment forms a precise
- the total solid content of these components may be 99% by mass or more, or 100% by mass.
- the insulating film may contain a small amount of other additives as necessary, but may not contain it (0 mass%).
- it is preferable that hexavalent chromium is not contained in the coating liquid for insulating film formation from the point of a work environment.
- the insulating film obtained by the coating liquid for insulating film formation which concerns on this embodiment is baked at high temperature (for example, 600 degreeC or more), in order to set it as high tension. Therefore, when the coating liquid for forming an insulating film contains a resin, the resin is decomposed and carburized by baking. As a result, the magnetic properties of the grain-oriented electrical steel sheet are degraded. From this point of view, it is preferable that the coating liquid for forming an insulating film does not contain an organic component such as a resin.
- the content is preferably 3% by mass or less and 1% by mass or less with respect to the total solid content of the coating liquid for forming an insulating film according to the present embodiment.
- another additive surfactant which prevents the repellence of the coating liquid on a steel plate is mentioned, for example.
- colloidal silica in the coating liquid for insulating film formation which concerns on this embodiment, in order to obtain a higher tension
- the coating liquid for forming an insulating film according to the present embodiment contains colloidal silica, the content is preferably 45% by mass or less, and more preferably 20% by mass or less.
- the coating liquid for forming an insulation film according to the present embodiment can apply tension to a steel plate by baking, and is suitable as a coating liquid for forming the insulation film of a grain-oriented electrical steel sheet.
- the insulation film does not contain an organic component, and there is no effect of improving the punchability of steel sheet. Therefore, the benefits of application to non-oriented electrical steel sheets are small.
- Preparation of the coating liquid for forming an insulating film according to the present embodiment includes, for example, one or two or more types of hydrous silicate powder having an average particle diameter of 2 ⁇ m or less, and 0 ⁇ n i M i / ⁇ P i ⁇ 0.5.
- the aqueous solution of phosphoric acid satisfying the conditions and one or more of the aqueous solution of phosphate may be mixed and stirred. In addition, other additives may be added and mixed and stirred as necessary. Then, the coating solution for forming an insulating film may be adjusted to a target solid concentration.
- the phosphoric acid and the phosphate in the coating liquid, and the hydrous silicate can be measured as follows.
- the coating solution in which the hydrous silicate powder and the aqueous solution of phosphate (or aqueous solution of phosphoric acid) are mixed the reaction between them hardly occurs at 100 ° C. or less. Therefore, the coating solution at 100 ° C. or less is in a slurry state in which hydrous silicate powder is dispersed in a phosphate aqueous solution (or phosphoric acid aqueous solution). Specifically, first, the coating solution after mixing is filtered.
- the coating solution contains a filtrate containing an aqueous phosphate solution (or aqueous phosphoric acid solution) derived from aqueous phosphate solution (or aqueous phosphoric acid solution) before mixing, and a residue containing hydrous silicate derived from hydrous silicate powder. And separated. Then, the filtrate ICP-AES analysis - by (inductively coupled plasma atomic emission spectroscopy), the value of .SIGMA.n i M i and .SIGMA.P i becomes apparent. If the filtrate is derived only from the phosphoric acid aqueous solution, nn i M i will be zero.
- the average particle size of the hydrous silicate powder can be determined as follows. The hydrous silicate powder separated as described above is dispersed in a solvent in which the hydrous silicate powder does not dissolve. Thereafter, the average particle diameter is determined by applying the above-mentioned laser diffraction / scattering method.
- a coating liquid for forming an insulating film for grain-oriented electrical steel sheet is applied to the grain-oriented magnetic steel sheet after final finish annealing, and a baking process is performed.
- the coating liquid has an average particle and one or more diameter 2 ⁇ m or less hydrated silicate powder, ⁇ n i M i / ⁇ P i 1 one phosphate and phosphate satisfy the relation: ⁇ 0.5 or 2
- the temperature of the baking process is 600.degree. C. to 1000.degree.
- ⁇ n i M i + ⁇ n ′ j M ′ j ⁇ P i ⁇ 15. . . (Formula 1)
- P represents the number of moles of phosphorus.
- M represents the number of moles of metal ions derived from phosphate.
- n represents the valence of the metal ion derived from the phosphate.
- i represents the number of phosphate types.
- M represents the number of moles of the metal element in the hydrous silicate.
- j represents the number of types of hydrous silicates. Note that ⁇ n i M i represents 0 when only phosphoric acid is selected.
- the grain-oriented electrical steel sheet after final finish annealing is a grain-oriented electrical steel sheet which becomes a base material before applying the coating liquid (that is, the coating liquid for forming an insulation film according to the present embodiment).
- the grain-oriented electrical steel sheet after final finish annealing is not particularly limited.
- the grain-oriented electrical steel sheet as a base material is obtained as follows as a suitable example. Specifically, for example, after hot rolling, hot rolled sheet annealing, and cold rolling are performed on a steel sheet containing 2% by mass to 4% by mass of Si, decarburization annealing is performed.
- the grain-oriented electrical steel sheet after final finish annealing may not have a finish annealing film.
- baking processing After applying the coating liquid for insulating film formation which concerns on this embodiment to the grain-oriented electrical steel sheet after final finish annealing, baking processing is performed.
- the amount of application is not particularly limited, it is excellent in film strength, space factor, corrosion resistance and water resistance, and further, in terms of obtaining an iron loss reducing effect, 1 g / m as the amount of film after formation of insulating film. It is preferable to apply in the range of 2 to 10 g / m 2 . More preferably, the amount of the film after the formation of the insulating film is 2 g / m 2 to 8 g / m 2 .
- the application quantity after baking processing can be calculated
- the method of applying the coating liquid for insulating film formation to the grain-oriented electrical steel sheet after final finish annealing is not particularly limited.
- a coating method by a coating method such as a roll method, a spray method, or a dip method may be mentioned.
- baking is performed.
- the reaction between the hydrous silicate powder and the phosphate (or hydrous silicate powder and phosphoric acid) is promoted.
- Many hydrous silicates release structured water at heating temperatures around 550 ° C., and in the process react with phosphates. Therefore, the baking temperature is set to 600 ° C. or more.
- the baking temperature is set to 1000 ° C. or less.
- each of the hydrous silicate powder and the phosphate becomes a mixed insulating film.
- the preferable lower limit of the baking temperature is 700 ° C. or more, and the preferable upper limit is 950 ° C. or less.
- the baking time may be 5 seconds to 300 seconds, more preferably 10 seconds to 120 seconds.
- the heating method which performs a baking process is not specifically limited, For example, a radiation furnace, a hot blast stove, induction heating etc. are mentioned.
- the insulating film after the baking treatment becomes a dense film.
- the thickness of the insulating film is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 4 ⁇ m.
- the thickness of the insulating film after the baking treatment can be determined by cross-sectional SEM observation.
- the coating liquid for forming an insulating film according to the present embodiment can provide film characteristics having high film tension, excellent space factor, corrosion resistance and water resistance, and excellent iron loss, directional electromagnetic A steel plate is obtained.
- the average particle diameter of the hydrous silicate shown in Table 1 is a numerical value calculated by the method described above. Further, to a value ⁇ n i M i / ⁇ P i shown in Table 1, it was adjusted amount of phosphoric acid and phosphates. For example, in Example 1, the aqueous solution of phosphoric acid and the aqueous solution of aluminum phosphate were mixed to adjust ⁇ n i M i / ⁇ P i to 0.5. The compounding amount in Example 1 is the total value of the compounding amounts of phosphoric acid and aluminum phosphate in terms of solid anhydride.
- the test piece (50 mm ⁇ 50 mm) is immersed in boiling water for 1 hour, and the amount of P (phosphorus) eluted per unit area is obtained.
- the amount of P is a quantitative value analyzed by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy: high frequency inductively coupled plasma-atomic emission spectroscopy).
- the film tension is calculated from the warpage of the steel plate produced when one side of the insulating film is peeled off.
- the specific conditions are as follows.
- the insulating film on only one side of the magnetic steel sheet is removed with an aqueous alkaline solution. Thereafter, the film tension is obtained from the warpage of the magnetic steel sheet according to the following (Formula 2).
- Coating film tension 190 ⁇ plate thickness (mm) ⁇ warping of plate (mm) / ⁇ plate length (mm) ⁇ 2 [MPa]. . . (Formula 2)
- Iron loss Measure according to the method described in JIS C 2550-1 (2011) (Correspondence: IEC 60404-2). Specifically, it is measured as an iron loss per unit mass (W 17/50 ) under conditions of an amplitude of 1.7 T of a measured magnetic flux density and a frequency of 50 Hz.
- composition of the reference coating solution in Table 1 is as follows. Colloidal silica 20 mass% aqueous dispersion: 100 mass parts Aluminum phosphate 50 mass% aqueous solution: 60 mass parts chromic anhydride: 6 mass parts
- the clay minerals in Table 1 the addition amount of phosphoric acid and phosphates dsb, such as kaolin is Al 2 O 3 ⁇ 2SiO 2, aluminum primary phosphate are those calculated as Al 2 O 3 ⁇ 3P 2 O 5 is there.
- the insulating film of each example uses phosphoric acid and phosphate satisfying ⁇ n i M i / / P i ⁇ 0.5, and 1.5 ⁇ ( ⁇ n i M i + ⁇ n ' j M' j) / ⁇ P i ⁇ 15 are formed an insulating film using the insulating film-forming coating liquid that satisfies.
- the insulation film of each example is not only simply large in film tension, large in iron loss reduction effect, but excellent in space factor, corrosion resistance and water resistance.
- the insulation film of each example can obtain performance equal to or better than that of the film using the coating solution containing the chromium compound shown in the reference example.
- Comparative Examples 1, 2, 8, 13 and 14 in which nn i M i / PP i exceeds 0.5, the porosity in the film increases and the space factor and corrosion resistance are inferior. Further, in Comparative Examples 3, 4, 11, and 14 in which ( ⁇ n i M i + ⁇ n ' j M' j ) / ⁇ P i exceeds 15, the porosity in the film increases and the space factor and corrosion resistance are inferior. It is. And, in Comparative Examples 5, 6, 10 and 13 in which ( ⁇ n i M i + + n ' j M' j ) / ⁇ P i is less than 1.5, the water solubility P in the film after baking is increased and the water resistance is increased.
- the film tension is inferior. Iron loss is also inferior because film tension is inferior. Furthermore, in Comparative Examples 7, 9 and 12 in which the average particle size of the hydrous silicate powder exceeds 2 ⁇ m, the reaction with phosphoric acid or phosphate is considered to be incomplete. Therefore, the voids in the film after baking increase, the irregularities on the surface of the film become large, and the space factor and the corrosion resistance become inferior.
- FIG. 2 the result of having observed the cross section of the grain-oriented electrical steel sheet in which the insulating film of Example 1 was provided by SEM in FIG. 2 is shown.
- reference numeral 21 denotes an insulating film
- 23 denotes a finish annealing film (hereinafter, the reference numerals will be omitted and described).
- the insulating film of Example 1 turns into a precise
- the insulation film of Example 1 is dense, it is considered that the core loss is improved while the film tension, space factor, corrosion resistance and water resistance are excellent.
- the grain-oriented electrical steel sheet obtained using the coating liquid for forming an insulation film of the present embodiment has a densified insulation film, and the film tension and space factor even without using a chromium compound. It is understood that the core loss is improved while being excellent in corrosion resistance and water resistance film properties.
- the coating amount after film formation is the same 5 g / m 2, it is thicker than the insulating film of Example 1 shown in FIG. It can be seen that the thickness of the insulating film of Example 1 shown in FIG. 2 is about half of the thickness of the conventional insulating film shown in FIG. 1 due to the densification of the film.
- Example B Next, the baking temperature is changed to evaluate film properties and magnetic properties.
- a coating solution having the same composition as in Example 1 is applied and dried in the same manner as in Example 1 so that the amount of the insulating film after the baking treatment is 5 g / m 2 .
- the baking temperature is changed to the conditions shown in Table 3 and the baking process is performed (the baking time is 30 seconds). Table 3 shows the results.
- the film tension is large even if the chromium compound is not used. It is industrially useful because it can provide a film property excellent in area fraction, corrosion resistance and water resistance, and can provide a grain-oriented electrical steel sheet having excellent core loss.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Treatment Of Metals (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
本願は、2017年11月13日に日本に出願された特願2017-218506号に基づき優先権を主張し、その内容をここに援用する。
例えば、特許文献8では、含水珪酸塩粉末と第一燐酸塩からなる塗布液が開示されている。また、特許文献9では、含水珪酸塩粉末と第一燐酸塩とコロイダルシリカからなる塗布液が開示されている。さらに、特許文献10では、含水珪酸塩の一種であるカオリンと珪酸リチウムからなる塗布液が開示されている。これら文献に記載の塗布液を焼き付けて得られる絶縁皮膜は、いずれの皮膜も、コロイダルシリカと第一燐酸塩およびクロム酸から構成される塗布液を焼き付けて得られる絶縁皮膜と、同等以上の皮膜張力が得られる。また、得られた方向性電磁鋼板は、優れた鉄損を有する。
平均粒径2μm以下の含水珪酸塩粉末の1種または2種以上と、
ΣniMi/ΣPi≦0.5の関係を満足する燐酸および燐酸塩の1種または2種以上と、
を含有し、
下記(式1)を満足する。
1.5≦(ΣniMi+Σn’jM’j)/ΣPi≦15 ...(式1)
(ただし、Pは燐のモル数を、Mは燐酸塩に由来する金属イオンのモル数を、nは燐酸塩に由来する金属イオンの価数を、iは燐酸塩の種類数を、M’は含水珪酸塩中の金属元素のモル数を、n’は含水珪酸塩中の金属元素の価数を、jは含水珪酸塩の種類数を、それぞれ表す。)
<2>本発明の他の態様によれば、上記<1>に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液において、前記燐酸塩が、Alの燐酸塩、Mgの燐酸塩、Caの燐酸塩、Znの燐酸塩、およびNiの燐酸塩のいずれか1種であってもよい。
<3>本発明の他の態様によれば、上記<1>又は<2>に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液において、前記含水珪酸塩粉末が、カオリンの粉末、タルクの粉末、およびパイロフィライトの粉末の1種または2種以上であってもよい。
<4>本発明の一態様に係る、方向性電磁鋼板の製造方法は、
最終仕上げ焼鈍後の方向性電磁鋼板に対し、方向性電磁鋼板用絶縁皮膜を形成するための塗布液を塗布し、焼き付け処理を施す工程であって、前記塗布液が、平均粒径2μm以下の含水珪酸塩粉末の1種または2種以上と、ΣniMi/ΣPi≦0.5の関係を満足する燐酸および燐酸塩の1種または2種以上とを含有し、下記(式1)を満足する塗布液であり、前記焼き付け処理の温度が600℃~1000℃である工程を有する。
1.5≦(ΣniMi+Σn’jM’j)/ΣPi≦15 ...(式1)
(ただし、Pは燐のモル数を、Mは燐酸塩に由来する金属イオンのモル数を、nは燐酸塩に由来する金属イオンの価数を、iは燐酸塩の種類数を、M’は含水珪酸塩中の金属元素のモル数を、n’は含水珪酸塩中の金属元素の価数を、jは含水珪酸塩の種類数を、それぞれ表す。)
<5>本発明の他の態様によれば、上記<4>に記載の方向性電磁鋼板の製造方法において、前記燐酸塩がAlの燐酸塩、Mgの燐酸塩、Caの燐酸塩、Znの燐酸塩、およびNiの燐酸塩のいずれか1種であってもよい。
<6>本発明の他の態様によれば、上記<4>又は<5>に記載の方向性電磁鋼板の製造方法において、前記含水珪酸塩粉末がカオリンの粉末、タルクの粉末、およびパイロフィライトの粉末の1種または2種以上であってもよい。
なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書中において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本実施形態に係る方向性電磁鋼板用絶縁皮膜を形成するための塗布液(絶縁皮膜形成用塗布液)は、平均粒径2μm以下の含水珪酸塩粉末の1種又は2種以上と、ΣniMi/ΣPi≦0.5の関係を満足する燐酸および燐酸塩の1種又は2種以上とを含有する。
そして、Pを燐のモル数、Mを燐酸塩に由来する金属イオンのモル数、nを燐酸塩に由来する金属イオンの価数、iを燐酸塩の種類数、M’を含水珪酸塩中の金属元素のモル数、n’を含水珪酸塩中の金属元素の価数、jを含水珪酸塩の種類数としたとき、塗布液は下記(式1)を満足する。
1.5≦(ΣniMi+Σn’jM’j)/ΣPi≦15 ...(式1)
なお、燐酸のみが選択された場合、ΣniMiは0を表す。
仕上げ焼鈍を完了した板厚0.23mmの方向性電磁鋼板に対し、燐酸アルミニウムの第一燐酸塩水溶液とコロイダルシリカとを含む組成の塗布液を、焼き付け後の皮膜量が5g/m2となるように塗布乾燥し、850℃、30秒間の焼き付け処理を行った。
そこで、本発明者らは、珪酸塩と燐酸塩の反応を促進し両者の融合をより増大させることを検討した。
本発明者らは、電磁鋼板の絶縁皮膜に通常用いられることのない、nM/P<1を満足する燐酸塩および燐酸ならば、含水珪酸塩との反応性が向上する可能性があると考えた。また、本発明者らは、nM/P<1を満足する燐酸塩および燐酸と、含水珪酸塩とを適切な比率で混合すれば、皮膜特性が向上すると考えた。
本実施形態に係る絶縁皮膜形成用塗布液には、含水珪酸塩粉末の1種または2種以上が配合されている。
含水珪酸塩は、粘土鉱物とも称され、多くの場合、層状の構造をもっている。層状構造は組成式X2-3Si2O5(OH)4で表現される1:1珪酸塩層と、組成式X2-3(Si,Al)4O10(OH)2で表現される2:1珪酸塩層とが、単独または混合して積層構造となっている。XはAl、Mg、Fe等である。層状構造の層間には、水分子およびイオンの少なくとも一方を含む場合もある。
なお、平均粒径が大きすぎる場合(2μm超)は、絶縁皮膜表面の凹凸が大きくなり、占積率、耐食性および耐水性が劣位となる傾向がある。含水珪酸塩粉末の平均粒径は2.0μm未満であってもよく、1.5μm以下であってもよく、1.0μm以下であってもよく、0.5μm以下であってもよい。一方、含水珪酸塩粉末の平均粒径の下限値は特に限定されるものではないが、例えば、0.05μm以上であってもよい。なお、含水珪酸塩の粒子径が著しく小さくなった場合の影響は定かでないが、少なくとも工業的に入手可能な0.1μmまでにおいて、例えば、後述の実施例3、および実施例9に示すように、特段の悪影響は確認されていない。
本実施形態における含水珪酸塩の平均粒径は、ISO13320およびJIS Z 8825(2013)で定められたレーザ回折・散乱法によって粒子径分布を計測し、かつJIS Z 8819-2(2001)に記載された平均粒子径の算出方法によって得ることができる。
本実施形態に係る絶縁皮膜形成用塗布液には、燐酸および燐酸塩の1種または2種以上が配合されている。すなわち、絶縁皮膜形成用塗布液には、燐酸および燐酸塩からなるグループから選択された1種または2種以上が配合されている。
本実施形態に係る絶縁皮膜形成用塗布液中において、燐酸および燐酸塩は、ΣniMi/ΣPi≦0.5の条件を満たす。燐酸および燐酸塩がΣniMi/ΣPi≦0.5の条件を満たすことで、塗布液の塗膜に対して焼き付け処理を行う間に、燐酸および燐酸塩と、含水珪酸塩粉末との反応性が優れたものとなる。なお、燐酸の場合には、前述のように、nM=0となり、nM/P=0となる。また、例えば、燐酸と混合された燐酸塩は、0<ΣniMi/ΣPi≦0.5の条件を満たすことになる。ΣniMi/ΣPiの値が0.5を超える燐酸塩を用いて絶縁皮膜形成用塗布液を調製すると、絶縁皮膜中の空隙率が増大し占積率、耐食性が劣位となるため、ΣniMi/ΣPi≦0.5の条件を満たすことが好ましい。
なお、燐酸および燐酸塩の2種以上を用いる場合、ΣniMi/ΣPiは、燐酸および燐酸塩のnMの合計値(ΣniMi=n1M1+n2M2+...+niMi)を、Pの合計値(ΣPi=P1+P2+...+Pi)で除した値として表される。
例えば、燐酸塩がマグネシウム(Mg)の燐酸塩の場合、マグネシウムの価数が2であるため、1モルの酸化マグネシウム(MgO)もしくは水酸化マグネシウム(Mg(OH)2)と、5モルの燐酸(H3PO4)とを混合することにより、ΣniMi/ΣPi=0.4の燐酸マグネシウムを得ることができる。
また、燐酸(nM/P=0)と第一燐酸塩(nM/P=1)とを適宜混合して作製してもよい。例えば、燐酸塩がアルミニウム(Al)の燐酸塩の場合、燐酸1モルと第一燐酸アルミニウム1モルとを混合することにより、ΣniMi/ΣPi=0.5の燐酸アルミニウムとすることができる。
本実施形態に係る絶縁皮膜形成用塗布液は、平均粒径2μm以下の含水珪酸塩粉末の1種または2種以上と、上記の燐酸および燐酸塩の1種または2種以上との配合が、
1.5≦(ΣniMi+Σn’jM’j)/ΣPi≦15 ...(式1)
を満足する。燐酸および燐酸塩がΣniMi/ΣPi≦0.5の条件を満たしていても、含水珪酸塩に対する燐酸および燐酸塩の配合量が少なく、15<(ΣniMi+Σn’jM’j)/ΣPiとなる場合には、絶縁皮膜中の空隙率が増大し、占積率と耐食性が劣化する。また、一方、含水珪酸塩に対する燐酸および燐酸塩の配合量が過剰となり、(ΣniMi+Σn’jM’j)/ΣPi<1.5となる場合には、焼き付け後の絶縁皮膜中の水溶性P(水溶性の燐)の量が増大して、耐水性を満足しなくなる。また、皮膜張力も劣位となる傾向がある。
粘度の測定はJIS Z 8803(2011)に記載された単一円筒形回転粘度計によって行う。
本実施形態に係る絶縁皮膜形成用塗布液の調製は、例えば、平均粒径2μm以下の含水珪酸塩粉末の1種または2種以上と、0<ΣniMi/ΣPi≦0.5の条件を満たす燐酸の水溶液および燐酸塩の水溶液の1種または2種以上とを混合攪拌すればよい。また、必要に応じて、その他の添加剤を添加して混合攪拌すればよい。そして、絶縁皮膜形成用塗布液を目的とする固形分濃度に調整すればよい。
本実施形態に係る絶縁皮膜形成用塗布液において、塗布液中の燐酸および燐酸塩、並びに、含水珪酸塩は以下のようにして測定することが可能である。
含水珪酸塩粉末と燐酸塩水溶液(又は燐酸水溶液)とを混合した塗布液は、100℃以下では両者が反応することはほとんどない。そのため、100℃以下の塗布液は、燐酸塩水溶液(又は燐酸水溶液)に含水珪酸塩粉末が分散したスラリー状態にある。
具体的には、まず、混合後の塗布液をろ過する。ろ過することにより、塗布液は、混合前の燐酸塩水溶液(又は燐酸水溶液)に由来する燐酸塩水溶液(又は燐酸水溶液)を含むろ液と、含水珪酸塩粉末に由来する含水珪酸塩を含む残渣とに分離される。次に、ろ液をICP-AES分析(高周波誘導結合プラズマ-原子発光分光分析)することにより、ΣniMiおよびΣPiの値が明らかとなる。なお、ろ液が燐酸水溶液のみに由来する場合は、ΣniMiは0になる。また、残渣を蛍光X線分析することにより、Σn’jM’jの値が明らかとなる。ICP-AES分析はJIS K 0116(2014)に記載の方法によって行い、蛍光X線分析はJIS K 0119(2008)に記載の方法によって行う。
さらに、含水珪酸塩粉末の平均粒径は、次のようにして求められる。上記で分離した含水珪酸塩粉末を、含水珪酸塩粉末が溶解しない溶媒に分散する。その後、前述のレーザー回折・散乱法を適用することにより平均粒径が求められる。
次に、本実施形態に係る方向性電磁鋼板の製造方法について説明する。
ただし、Pは燐のモル数を表す。Mは燐酸塩に由来する金属イオンのモル数を表す。nは燐酸塩に由来する金属イオンの価数を表す。iは燐酸塩の種類数を表す。M’は含水珪酸塩中の金属元素のモル数を表す。n’は含水珪酸塩中の金属元素の価数を表す。jは含水珪酸塩の種類数を表す。
なお、燐酸のみが選択された場合、ΣniMiは0を表す。
最終仕上げ焼鈍後の方向性電磁鋼板は、上記塗布液(つまり、本実施形態に係る絶縁皮膜形成用塗布液)を塗布する前の母材となる方向性電磁鋼板である。最終仕上げ焼鈍後の方向性電磁鋼板は特に限定されるものではない。母材となる方向性電磁鋼板は、好適な一例として、次のようにして得られる。具体的には、例えば、Siを2質量%~4質量%含有する鋼片を熱間圧延、熱延板焼鈍、および冷間圧延を施した後、脱炭焼鈍を行う。この後、MgOの含有量が50質量%以上である焼鈍分離剤を塗布し、最終仕上げ焼鈍を行うことにより得られる。最終仕上げ焼鈍後の方向性電磁鋼板は、仕上げ焼鈍皮膜を有していなくてもよい。
最終仕上げ焼鈍後の方向性電磁鋼板に、本実施形態に係る絶縁皮膜形成用塗布液を塗布した後、焼き付け処理を行う。塗布量は特に限定されるものではないが、皮膜強度、占積率、耐食性および耐水性に優れ、さらに、鉄損低減効果を得る点で、絶縁皮膜形成後の皮膜の量として、1g/m2~10g/m2の範囲となるように塗布することが好適である。より好適には、絶縁皮膜形成後の皮膜の量は、2g/m2~8g/m2である。なお、焼き付け処理後の塗布量は、80℃の20%水酸化ナトリウム水溶液中浸漬による絶縁皮膜剥離前後の鋼板の重量差から求めることができる。
なお、焼き付け処理後の絶縁皮膜の厚さは、断面SEM観察によって求めることができる。
まず、表1に示す組成の塗布液を調整する。次に、最終仕上げ焼鈍を完了した仕上げ焼鈍皮膜を有する板厚0.23mmの方向性電磁鋼板(B8=1.93T)を準備する。次に、準備した方向性電磁鋼板に対し、表1に示す組成の塗布液を、焼き付け処理後の絶縁皮膜量が5g/m2となるように塗布乾燥し、850℃、30秒間の条件で焼き付け処理を行う。
得られた絶縁皮膜付の方向性電磁鋼板に対し、皮膜特性及び磁気特性を評価する。表2に結果を示す。
表1に示す(ΣniMi+Σn’jM’j)/ΣPiは、表1に示す値となるように、含水珪酸塩粉末と、燐酸または燐酸塩とを混合調整した計算値である。
さらに、表2に示す各評価の評価方法は、以下のとおりである。
JIS C 2550-5(2011)(対応:IEC 60404-13)に記載の方法に準じて測定する。
35℃に保った状態の試験片に対して、5質量%NaCl水溶液を連続的に噴霧し、48時間経過後の錆の発生状況を観察し、面積率を算出する。
沸騰水中に試験片(50mm×50mm)を1時間浸漬させて、溶出した単位面積当たりのP(燐)量である。このP量は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectroscopy:高周波誘導結合プラズマ-原子発光分光法)によって分析した定量値である。
皮膜張力は、絶縁皮膜の片面を剥離したときに生じる鋼板の反りから計算する。具体的な条件は、以下のとおりである。
電磁鋼板の片面のみの絶縁皮膜をアルカリ水溶液により除去する。その後、電磁鋼板の反りから、下記(式2)により、皮膜張力を求める。
皮膜張力=190×板厚(mm)×板の反り(mm)/{板長さ(mm)}2[MPa] ...(式2)
JIS C 2550-1(2011)(対応:IEC 60404-2)に記載の方法に準じて測定する。具体的には、測定磁束密度の振幅1.7T、周波数50Hzにおける条件下で単位質量当たりの鉄損(W17/50)として測定する。
・コロイダルシリカ20質量%水分散液:100質量部
・燐酸アルミニウム50質量%水溶液:60質量部
・無水クロム酸:6質量部
また、(ΣniMi+Σn’jM’j)/ΣPiが15を超えている比較例3、4、11、および14は、皮膜中の空隙率が増大し占積率と耐食性が劣位である。
そして、(ΣniMi+Σn’jM’j)/ΣPiが1.5未満である比較例5、6、10、および13は、焼き付け後の皮膜中の水溶性Pが増大して耐水性を満足しなくなるとともに、皮膜張力も劣位である。皮膜張力も劣位であることにより、鉄損も劣位である。
さらに、含水珪酸塩粉末の平均粒径が2μmを超えている比較例7、9、12は、燐酸または燐酸塩との反応が不完全と考えられる。そのため、焼き付け後の皮膜中の空隙が増え、皮膜表面の凹凸が大きくなり、占積率と耐食性が劣位となっている。
したがって、本実施形態の絶縁皮膜形成用塗布液を用いて得られる方向性電磁鋼板は、緻密化された絶縁皮膜を有し、クロム化合物を使用することが無くても、皮膜張力、占積率、耐食性および耐水性の各皮膜特性に優れるとともに、鉄損が改善されることがわかる。
次に、焼き付け温度を変更して、皮膜特性及び磁気特性を評価する。実施例1と同様の組成の塗布液を、実施例1と同様の手順で、焼き付け処理後の絶縁皮膜量が5g/m2となるように塗布乾燥する。そして、焼き付け温度を表3に示す条件に変更して焼き付け処理を行う(焼き付け時間は30秒間である)。表3に結果を示す。
一方、焼き付け温度が600℃以上である各実施例は、皮膜特性及び磁気特性に優れている。
Claims (6)
- 平均粒径2μm以下の含水珪酸塩粉末の1種または2種以上と、
ΣniMi/ΣPi≦0.5の関係を満足する燐酸および燐酸塩の1種または2種以上と、
を含有し、
下記(式1)を満足することを特徴とする方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
1.5≦(ΣniMi+Σn’jM’j)/ΣPi≦15 ...(式1)
(ただし、Pは燐のモル数を、Mは燐酸塩に由来する金属イオンのモル数を、nは燐酸塩に由来する金属イオンの価数を、iは燐酸塩の種類数を、M’は含水珪酸塩中の金属元素のモル数を、n’は含水珪酸塩中の金属元素の価数を、jは含水珪酸塩の種類数を、それぞれ表す。) - 前記燐酸塩が、Alの燐酸塩、Mgの燐酸塩、Caの燐酸塩、Znの燐酸塩、およびNiの燐酸塩のいずれか1種であることを特徴とする請求項1に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
- 前記含水珪酸塩粉末が、カオリンの粉末、タルクの粉末、およびパイロフィライトの粉末の1種または2種以上であることを特徴とする請求項1又は請求項2に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
- 最終仕上げ焼鈍後の方向性電磁鋼板に対し、方向性電磁鋼板用絶縁皮膜を形成するための塗布液を塗布し、焼き付け処理を施す工程であって、前記塗布液が、平均粒径2μm以下の含水珪酸塩粉末の1種または2種以上と、ΣniMi/ΣPi≦0.5の関係を満足する燐酸および燐酸塩の1種または2種以上とを含有し、下記(式1)を満足する塗布液であり、前記焼き付け処理の温度が600℃~1000℃である工程を有することを特徴とする方向性電磁鋼板の製造方法。
1.5≦(ΣniMi+Σn’jM’j)/ΣPi≦15 ...(式1)
(ただし、Pは燐のモル数を、Mは燐酸塩に由来する金属イオンのモル数を、nは燐酸塩に由来する金属イオンの価数を、iは燐酸塩の種類数を、M’は含水珪酸塩中の金属元素のモル数を、n’は含水珪酸塩中の金属元素の価数を、jは含水珪酸塩の種類数を、それぞれ表す。) - 前記燐酸塩がAlの燐酸塩、Mgの燐酸塩、Caの燐酸塩、Znの燐酸塩、およびNiの燐酸塩のいずれか1種であることを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
- 前記含水珪酸塩粉末がカオリンの粉末、タルクの粉末、およびパイロフィライトの粉末の1種または2種以上であることを特徴とする請求項4又は請求項5に記載の方向性電磁鋼板の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020117395A RU2746914C1 (ru) | 2017-11-13 | 2018-11-13 | Покрывающий раствор для формирования изолирующей пленки для электротехнического стального листа с ориентированной зеренной структурой и способ производства электротехнического стального листа с ориентированной зеренной структурой |
BR112020008126-4A BR112020008126B1 (pt) | 2017-11-13 | 2018-11-13 | Solução de revestimento para formação de película isolante para chapa de aço elétrico com grão orientado, e método de produção de chapa de aço elétrico com grão orientado |
CN201880072297.9A CN111344436B (zh) | 2017-11-13 | 2018-11-13 | 用于形成方向性电磁钢板用绝缘皮膜的涂布液及方向性电磁钢板的制造方法 |
EP18876198.5A EP3712299A4 (en) | 2017-11-13 | 2018-11-13 | COATING SOLUTION FOR THE PRODUCTION OF AN INSULATING LAYER FOR GRAIN ORIENTED ELECTRIC STEEL SHEET AND A METHOD FOR PRODUCING A GRAIN ORIENTED ELECTRIC STEEL SHEET |
JP2019552424A JP7014231B2 (ja) | 2017-11-13 | 2018-11-13 | 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法 |
KR1020207014844A KR102543352B1 (ko) | 2017-11-13 | 2018-11-13 | 방향성 전자 강판용 절연 피막을 형성하기 위한 도포액, 및 방향성 전자 강판의 제조 방법 |
US16/760,254 US11499055B2 (en) | 2017-11-13 | 2018-11-13 | Coating solution for forming insulating film for grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-218506 | 2017-11-13 | ||
JP2017218506 | 2017-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019093521A1 true WO2019093521A1 (ja) | 2019-05-16 |
Family
ID=66438526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041965 WO2019093521A1 (ja) | 2017-11-13 | 2018-11-13 | 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11499055B2 (ja) |
EP (1) | EP3712299A4 (ja) |
JP (1) | JP7014231B2 (ja) |
KR (1) | KR102543352B1 (ja) |
CN (1) | CN111344436B (ja) |
RU (1) | RU2746914C1 (ja) |
WO (1) | WO2019093521A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143382A (ja) * | 2020-03-12 | 2021-09-24 | Jfeスチール株式会社 | 絶縁被膜付き電磁鋼板およびその製造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839338A (ja) | 1971-09-27 | 1973-06-09 | ||
JPS54143737A (en) | 1978-04-28 | 1979-11-09 | Kawasaki Steel Co | Formation of chromiummfree insulating top coating for directional silicon steel plate |
JPS60255980A (ja) * | 1984-05-21 | 1985-12-17 | アームコ、インコーポレーテッド | 電気鋼の絶縁性被覆組成物 |
JPH0665755A (ja) | 1992-08-21 | 1994-03-08 | Nippon Steel Corp | 低鉄損方向性電磁鋼板 |
JPH0665754A (ja) | 1992-08-21 | 1994-03-08 | Nippon Steel Corp | 低鉄損方向性電磁鋼板の製造方法 |
JP2000169972A (ja) | 1998-12-04 | 2000-06-20 | Nippon Steel Corp | クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法 |
JP2000178760A (ja) | 1998-12-08 | 2000-06-27 | Nippon Steel Corp | クロムを含まない表面処理剤及びそれを用いた方向性電磁鋼板の製造方法 |
JP2010037602A (ja) | 2008-08-05 | 2010-02-18 | Nippon Steel Corp | 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法 |
JP2010043293A (ja) | 2008-08-08 | 2010-02-25 | Nippon Steel Corp | 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法 |
WO2010146821A1 (ja) | 2009-06-17 | 2010-12-23 | 新日本製鐵株式会社 | 絶縁被膜を有する電磁鋼板及びその製造方法 |
WO2015115036A1 (ja) | 2014-01-31 | 2015-08-06 | Jfeスチール株式会社 | クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板 |
JP2017075358A (ja) | 2015-10-14 | 2017-04-20 | 新日鐵住金株式会社 | 方向性電磁鋼板の絶縁皮膜及びその形成方法 |
JP2017218506A (ja) | 2016-06-07 | 2017-12-14 | 共同印刷株式会社 | 易カット性吸収フィルム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4037019A (en) * | 1975-10-24 | 1977-07-19 | Morton-Norwich Products, Inc. | Acidic hydrosols and process for coating therewith |
JPS57140814A (en) * | 1981-02-23 | 1982-08-31 | Japan Steel Works Ltd:The | Heat insulation method for heated metallic material |
JP2654861B2 (ja) * | 1990-10-27 | 1997-09-17 | 新日本製鐵株式会社 | 鉄心の加工性および耐熱性の優れた方向性電磁鋼板の絶縁皮膜形成方法 |
KR940002276B1 (ko) * | 1991-07-31 | 1994-03-19 | 삼성전자 주식회사 | 마이크로 컨트롤러의 맬펑션 검출방법 |
BRPI0520381B1 (pt) * | 2005-07-14 | 2016-03-08 | Nippon Steel & Sumitomo Metal Corp | agente de película isolante para chapa de aço elétrico com grãos orientados que não contém cromo. |
JP4878788B2 (ja) * | 2005-07-14 | 2012-02-15 | 新日本製鐵株式会社 | クロムを含有しない電磁鋼板用絶縁被膜剤 |
RU2371518C2 (ru) * | 2007-07-02 | 2009-10-27 | Закрытое акционерное общество "ФК" | Способ и состав для получения электроизоляционного покрытия |
EP2264220B8 (en) * | 2008-03-31 | 2017-04-26 | Nippon Steel & Sumitomo Metal Corporation | Grain-oriented electrical steel sheet and producing method therefor |
WO2011111571A1 (ja) * | 2010-03-11 | 2011-09-15 | 関西ペイント株式会社 | 耐白さび性に優れた塗膜形成亜鉛めっき鋼板 |
DE102013208618A1 (de) * | 2013-05-10 | 2014-11-13 | Henkel Ag & Co. Kgaa | Chromfreie Beschichtung zur elektrischen Isolierung von kornorientiertem Elektroband |
KR20150115036A (ko) | 2014-04-02 | 2015-10-14 | 한국산업기술시험원 | 비분산자외선을 이용한 no/no2 멀티측정기 및 no/no2 멀티 측정방법 |
RU2556184C1 (ru) * | 2014-04-22 | 2015-07-10 | Общество с ограниченной ответственностью "Научно-технический центр "Компас" (ООО "НТЦ "Компас") | Состав для получения электроизоляционного покрытия |
-
2018
- 2018-11-13 WO PCT/JP2018/041965 patent/WO2019093521A1/ja unknown
- 2018-11-13 RU RU2020117395A patent/RU2746914C1/ru active
- 2018-11-13 EP EP18876198.5A patent/EP3712299A4/en active Pending
- 2018-11-13 KR KR1020207014844A patent/KR102543352B1/ko active IP Right Grant
- 2018-11-13 CN CN201880072297.9A patent/CN111344436B/zh active Active
- 2018-11-13 JP JP2019552424A patent/JP7014231B2/ja active Active
- 2018-11-13 US US16/760,254 patent/US11499055B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839338A (ja) | 1971-09-27 | 1973-06-09 | ||
JPS54143737A (en) | 1978-04-28 | 1979-11-09 | Kawasaki Steel Co | Formation of chromiummfree insulating top coating for directional silicon steel plate |
JPS60255980A (ja) * | 1984-05-21 | 1985-12-17 | アームコ、インコーポレーテッド | 電気鋼の絶縁性被覆組成物 |
JPH0665755A (ja) | 1992-08-21 | 1994-03-08 | Nippon Steel Corp | 低鉄損方向性電磁鋼板 |
JPH0665754A (ja) | 1992-08-21 | 1994-03-08 | Nippon Steel Corp | 低鉄損方向性電磁鋼板の製造方法 |
JP2000169972A (ja) | 1998-12-04 | 2000-06-20 | Nippon Steel Corp | クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法 |
JP2000178760A (ja) | 1998-12-08 | 2000-06-27 | Nippon Steel Corp | クロムを含まない表面処理剤及びそれを用いた方向性電磁鋼板の製造方法 |
JP2010037602A (ja) | 2008-08-05 | 2010-02-18 | Nippon Steel Corp | 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法 |
JP2010043293A (ja) | 2008-08-08 | 2010-02-25 | Nippon Steel Corp | 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法 |
WO2010146821A1 (ja) | 2009-06-17 | 2010-12-23 | 新日本製鐵株式会社 | 絶縁被膜を有する電磁鋼板及びその製造方法 |
WO2015115036A1 (ja) | 2014-01-31 | 2015-08-06 | Jfeスチール株式会社 | クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板 |
JP2017075358A (ja) | 2015-10-14 | 2017-04-20 | 新日鐵住金株式会社 | 方向性電磁鋼板の絶縁皮膜及びその形成方法 |
JP2017218506A (ja) | 2016-06-07 | 2017-12-14 | 共同印刷株式会社 | 易カット性吸収フィルム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3712299A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143382A (ja) * | 2020-03-12 | 2021-09-24 | Jfeスチール株式会社 | 絶縁被膜付き電磁鋼板およびその製造方法 |
JP7283423B2 (ja) | 2020-03-12 | 2023-05-30 | Jfeスチール株式会社 | 絶縁被膜付き電磁鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US11499055B2 (en) | 2022-11-15 |
CN111344436B (zh) | 2022-06-03 |
KR102543352B1 (ko) | 2023-06-16 |
BR112020008126A2 (pt) | 2020-11-03 |
JP7014231B2 (ja) | 2022-02-01 |
KR20200076715A (ko) | 2020-06-29 |
EP3712299A4 (en) | 2021-11-24 |
EP3712299A1 (en) | 2020-09-23 |
JPWO2019093521A1 (ja) | 2020-12-17 |
RU2746914C1 (ru) | 2021-04-22 |
US20200354582A1 (en) | 2020-11-12 |
CN111344436A (zh) | 2020-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6835208B2 (ja) | 電磁鋼板 | |
KR102071515B1 (ko) | 방향성 전자 강판 및 방향성 전자 강판의 제조 방법 | |
JP2010059513A (ja) | 電磁鋼板用絶縁被膜剤 | |
JP7047932B2 (ja) | 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法 | |
WO2019093521A1 (ja) | 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法 | |
JP5320898B2 (ja) | 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法 | |
JP5422937B2 (ja) | 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法 | |
CN111868303B (zh) | 方向性电磁钢板的制造方法及方向性电磁钢板 | |
JP2020125537A (ja) | クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法 | |
WO2024048721A1 (ja) | 混合粉末、MgO粒子、方向性電磁鋼板の製造方法、MgO粒子の製造方法、及び混合粉末の製造方法 | |
JPH07278825A (ja) | 酸化アルミニウム−酸化けい素系複合被膜を有する低鉄損一方向性珪素鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18876198 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019552424 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207014844 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018876198 Country of ref document: EP Effective date: 20200615 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020008126 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020008126 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200424 |