WO2015115036A1 - クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板 - Google Patents

クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板 Download PDF

Info

Publication number
WO2015115036A1
WO2015115036A1 PCT/JP2015/000139 JP2015000139W WO2015115036A1 WO 2015115036 A1 WO2015115036 A1 WO 2015115036A1 JP 2015000139 W JP2015000139 W JP 2015000139W WO 2015115036 A1 WO2015115036 A1 WO 2015115036A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
coating film
tensile stress
free
treatment liquid
Prior art date
Application number
PCT/JP2015/000139
Other languages
English (en)
French (fr)
Other versions
WO2015115036A8 (ja
Inventor
敬 寺島
渡邉 誠
正憲 上坂
龍一 末廣
俊人 ▲高▼宮
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP15744074.4A priority Critical patent/EP3101157B1/en
Priority to KR1020167018227A priority patent/KR101774187B1/ko
Priority to JP2015526081A priority patent/JP5900705B2/ja
Priority to CN201580005508.3A priority patent/CN106414802B/zh
Priority to US15/038,501 priority patent/US10087529B2/en
Priority to RU2016135201A priority patent/RU2649608C2/ru
Publication of WO2015115036A1 publication Critical patent/WO2015115036A1/ja
Publication of WO2015115036A8 publication Critical patent/WO2015115036A8/ja
Priority to US16/117,427 priority patent/US10435791B2/en
Priority to US16/117,369 priority patent/US10458021B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/188Orthophosphates containing manganese cations containing also magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to a treatment liquid for chromium-free tension coating.
  • the present invention relates to a treatment liquid for a chromium-free tension coating capable of forming a tension coating having excellent moisture absorption resistance equivalent to a tension coating containing chromium.
  • the present invention provides a method for forming a chromium-free tension coating using the above-described treatment liquid for chromium-free tension coating, and a chromium-free tension coating including a chromium-free tension coating formed using the treatment liquid for chromium-free tension coating.
  • the present invention relates to a grain-oriented electrical steel sheet.
  • a film is provided on the surface of a grain-oriented electrical steel sheet in order to provide insulation, workability, rust prevention, and the like.
  • a film is composed of a base film mainly composed of forsterite formed at the time of final finish annealing and a phosphate-based topcoat film formed thereon. These coatings are formed at a high temperature and have a low coefficient of thermal expansion. Therefore, when the steel plate temperature is lowered to room temperature, tension resulting from the difference in thermal expansion coefficient between the steel plate and the coating is applied to the steel plate. Since this tension has the effect of reducing iron loss, it is desired to apply as high a tension as possible to the steel sheet.
  • Patent Document 1 discloses a film mainly composed of magnesium phosphate, colloidal silica, and chromic anhydride.
  • Patent Document 2 discloses a coating mainly composed of aluminum phosphate, colloidal silica, and chromic anhydride.
  • Patent Document 3 and Patent Document 4 proposed a film forming method using a treatment liquid containing colloidal silica, aluminum phosphate, boric acid, and sulfate.
  • the properties of the coating that is, the iron loss reduction effect due to moisture absorption resistance and tension can be improved to some extent, but the properties are sufficient compared to the conventional chromium-containing coating. I could not say.
  • Patent Document 5 discloses a method of adding a boric acid compound instead of a chromium compound
  • Patent Document 6 discloses a method of adding an oxide colloid
  • No. 7 proposes a method of adding a metal organic acid salt.
  • Patent Document 8 discloses a technique for containing a metal element such as Fe, Al, Ga, Ti, or Zr in a treatment liquid for forming a film in order to prevent moisture absorption.
  • Patent Document 9 discloses a technique for improving the moisture absorption resistance of a coating by adding a Ti chelate to a treatment liquid for forming the coating.
  • the film obtained by the method described in Patent Document 8 was inferior in long-term moisture absorption resistance. Further, the method described in Patent Document 9 has a problem that the cost is high because an expensive Ti chelate is used.
  • the present invention was developed in view of the above circumstances, and without using an expensive Ti chelate, using an inexpensive Ti source, has excellent moisture absorption resistance and high iron loss reduction effect due to sufficient tension. It aims at providing the processing liquid for chromium free tension
  • the present invention also provides a method for forming a chromium-free tension coating using the above-described treatment liquid for chromium-free tension coating, and a chromium-free tension coating having a chromium-free tension coating formed using the treatment liquid for chromium-free tension coating.
  • An object is to provide a grain-oriented electrical steel sheet with a tension coating.
  • the inventors have conducted intensive research and research in order to solve the above-described problems and obtain a desired moisture absorption resistance and an effect of reducing iron loss by applying tension with a chromium-free coating.
  • the reason why the film obtained by the method described in Patent Document 8 is inferior in long-term moisture absorption is that the content of metal elements such as Fe, Al, Ga, Ti, Zr is not sufficient.
  • the Ti content in the coating is the same, considering that Ti has the highest moisture absorption improvement effect next to Cr, in the technique disclosed in Patent Document 8, the Ti content should be further increased. Tried.
  • the addition of a large amount of Ti causes crystallization of the film, resulting in a decrease in tension and clouding of the coating color.
  • the inventors focused attention on Ti and repeated intensive studies on a method for further increasing the Ti content while avoiding crystallization.
  • a treatment liquid containing metal phosphate and phosphoric acid is used, and the number of moles of metal in the metal phosphate is specified with respect to the number of moles of phosphorus (P) in the treatment liquid.
  • P phosphorus
  • the gist configuration of the present invention is as follows. 1.
  • a treatment liquid for chromium-free tension coating One or more selected from among phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, Phosphate: 50 to 120 parts by mass of colloidal silica in terms of SiO 2 solid content with respect to 100 parts by mass, The phosphate: containing 30 to 50 parts by mass of Ti source in terms of TiO 2 with respect to 100 parts by mass, and H 3 PO 4 ,
  • a treatment liquid for chromium-free tension coating wherein the number of moles of metal element in the phosphate and the number of moles of phosphorus in the treatment liquid for chromium-free tension coating satisfy the relationship of the following formula (1).
  • a method for forming a chromium-free tension coating comprising the steps of:
  • the treatment liquid described in any one of 1 to 3 above is applied to the surface of the grain-oriented electrical steel sheet after final finish annealing, and a baking treatment is performed at a temperature of 800 ° C. to 1000 ° C. for 10 seconds to 300 seconds.
  • a grain-oriented electrical steel sheet with a chromium-free tension coating is applied to the surface of the grain-oriented electrical steel sheet after final finish annealing, and a baking treatment is performed at a temperature of 800 ° C. to 1000 ° C. for 10 seconds to 300 seconds.
  • a chromium-free tension film having excellent moisture absorption resistance for a long period of time and having a sufficient tension imparting effect without using an expensive Ti chelate. Therefore, according to the present invention, a grain-oriented electrical steel sheet having both excellent moisture absorption resistance and low iron loss can be obtained at low cost.
  • a sample was manufactured as follows. Thickness: 0.23 mm finished annealed grain-oriented electrical steel sheet produced by a known method was sheared to a size of 300 mm ⁇ 100 mm to obtain a sample piece. After removing the unreacted annealing separator remaining on the surface of the sample piece, strain annealing was performed at 800 ° C. for 2 hours. Next, the test piece was lightly pickled with 5% phosphoric acid, and then a tension coating solution was applied to the surface of the test piece. The tension coating solution was prepared by the following procedure.
  • an aqueous solution of primary magnesium phosphate (Mg (H 2 PO 4 ) 2 ), colloidal silica, and TiO 2 sol were mixed to obtain a mixed solution.
  • the mass ratio of each component in the mixed solution was, in terms of solid content, primary magnesium phosphate: 30 g, colloidal silica: 20 g, and TiO 2 sol: 12 g.
  • an aqueous solution (specific gravity 1.69) of orthophosphoric acid (H 3 PO 4 ) having a concentration of 85% was added to the mixed solution in the amount shown in Table 1 to obtain a treatment solution for tension coating.
  • the ratio of the number of moles of Mg 2+ to the number of moles of phosphorus (total number of moles of phosphorus derived from both phosphate and phosphoric acid) (P) (Mg 2+ / P) was the value shown in Table 1.
  • the tension coating treatment solution was applied to the surface of the test piece so that the basis weight after drying was 10 g / m 2 (both sides total).
  • the test piece is placed in a drying furnace and dried (300 ° C., 1 minute), and then heat treatment (800 ° C., 2 minutes, N 2 : 100) that combines planarization annealing and tension film baking. %). Further, a second strain relief annealing (800 ° C., 2 hours) was then performed.
  • the samples thus obtained were investigated for iron loss reduction effect and moisture absorption resistance by applying tension.
  • the iron loss reduction effect was evaluated based on the magnetic characteristics measured with an SST (Single Seat Test) tester (single plate magnetic tester).
  • the magnetic properties were measured for each sample immediately before application of the tension coating solution, after baking of the tension coating, and immediately after the second strain relief annealing.
  • Hygroscopic resistance was evaluated by a phosphorus dissolution test.
  • Three test pieces used in the dissolution test were prepared by cutting a steel plate immediately after baking of the tension coating and measuring 50 mm ⁇ 50 mm. This test piece for dissolution test was boiled in distilled water at 100 ° C. for 5 minutes, and the amount of phosphorus eluted at that time was measured. Based on the phosphorus elution amount, it is possible to determine the ease of dissolution of the tension coating in water.
  • the steel plate used in the present invention is not particularly limited as long as it is a grain-oriented electrical steel plate.
  • a grain-oriented electrical steel sheet is obtained by hot rolling a silicon-containing steel slab by a known method and finishing it to a final thickness by one or multiple cold rolling sandwiching intermediate annealing. It is manufactured by applying a crystal annealing, then applying an annealing separator and then performing a final finish annealing.
  • phosphates of Mg, Ca, Ba, Sr, Zn, Al and Mn are used as phosphates.
  • any one of the above-described phosphates is used, but the physical property value of the insulating coating (coating) can be precisely controlled by using a mixture of two or more.
  • the phosphate primary phosphate (heavy phosphate) is preferable because it is easily available.
  • phosphates of alkali metals Li, Na, etc.
  • the colloidal silica is contained in the treatment liquid in an amount of 50 to 120 parts by mass in terms of SiO 2 solid content with respect to 100 parts by mass of the above-mentioned phosphate.
  • Colloidal silica has the effect of reducing the thermal expansion coefficient of the coating.
  • the colloidal silica content is less than 50 parts by mass, the effect of lowering the thermal expansion coefficient is small, and sufficient tension cannot be imparted to the steel sheet. And as a result, the iron loss improvement effect by tension
  • the content is more than 120 parts by mass, not only the coating is easily crystallized during baking, but also the moisture absorption resistance of the film is lowered.
  • the treatment liquid of the present invention contains 30 to 50 parts by mass of Ti source in terms of TiO 2 with respect to 100 parts by mass of phosphate.
  • Ti source content is less than 30 parts by mass, the moisture absorption resistance of the coating deteriorates.
  • content is more than 50 parts by mass, it becomes difficult to prevent crystallization even if phosphoric acid is added to control M / P.
  • the treatment liquid of the present invention contains phosphoric acid (H 3 PO 4 ).
  • [A] in the formula (1) represents the number of moles of component A contained in the chromium-free tension coating liquid. The number of moles of metal element not added to the treatment liquid as phosphate is considered to be zero.
  • the coefficient 1.5 concerning [Al] is due to the fact that Al is trivalent while metal elements other than Al are divalent.
  • the middle side in the above formula, that is, ([Mg] + [Ca] + [Ba] + [Sr] + [Zn] + [Mn] +1.5 [Al]) / [P] is referred to as “M / P”. . If this M / P is less than 0.20, P in the coating is excessive, so that the amount of phosphorus eluted from the coating increases and the moisture absorption resistance decreases. On the other hand, if M / P is larger than 0.45, the amount of Ti necessary for obtaining sufficient moisture absorption resistance cannot be contained in the coating without crystallization.
  • the Ti source contained in the chromium-free tension coating solution of the present invention is preferably a TiO 2 sol from the standpoint of availability and cost.
  • the TiO 2 sol may be acidic, neutral, or alkaline, but preferably has a pH of 5.5 to 12.5.
  • the TiO 2 sol preferably contains titanium phosphate in a solid mass ratio of 0.1% to 50% with respect to TiO 2 .
  • titanium phosphate By adding titanium phosphate, the dispersibility of the TiO 2 particles can be enhanced. Titanium phosphate has the effect of increasing the compatibility between TiO 2 and phosphate and increasing the stability of the coating solution. When the content of titanium phosphate is less than 0.1%, the effect of improving the compatibility is poor.
  • the amount of phosphoric acid in the treatment liquid in Formula (1) is the total amount of phosphoric acid in the treatment liquid, and includes the amount of phosphoric acid added as titanium phosphate.
  • fine powdery inorganic mineral particles such as silica and alumina can be added to the treatment liquid of the present invention.
  • These inorganic mineral particles are effective in improving the sticking resistance of the coating.
  • the content of the inorganic mineral particles is preferably 1 part by mass at most with respect to 20 parts by mass of colloidal silica so as not to lower the space factor.
  • the above-mentioned treatment liquid is applied to the surface of the electrical steel sheet and baked to form a tension coating.
  • the weight per unit area after drying of the coating is preferably 4 to 15 g / m 2 in total on both sides. This is because when the basis weight is less than 4 g / m 2 , the interlayer resistance decreases, and when the basis weight is more than 15 g / m 2 , the space factor decreases.
  • the coating was formed so that the front and back surfaces had substantially the same weight per unit area. There is no need, and there may be a difference in the weight per unit area.
  • Such a baking treatment of the tension coating may be performed also as flattening annealing.
  • the baking treatment is performed under conditions of a temperature range of 800 to 1000 ° C. and a soaking time of 10 to 300 seconds. If the temperature is too low or the time is too short, the planarization is not sufficiently performed. As a result, a shape defect occurs and the yield decreases. On the other hand, if the temperature is too high, the effect of flattening annealing becomes excessively strong, so that the steel sheet creeps and the magnetic properties deteriorate.
  • the magnetic flux density B 8 of a grain-oriented electromagnetic steel sheet at this time was 1.912T.
  • the grain-oriented electrical steel sheet was washed with phosphoric acid, and then a chromium-free tension film was formed on the surface thereof.
  • treatment solutions for chromium-free tension film having various compositions shown in Table 2 were used.
  • the treatment liquid was applied to both sides of the grain-oriented electrical steel sheet such that the total weight per unit area after drying at 300 ° C. for 1 minute was 10 g / m 2 .
  • baking was performed in an atmosphere of N 2 : 100% under the conditions of 850 ° C. and 30 seconds.
  • strain relief annealing was performed at 800 ° C. for 2 hours in an atmosphere of N 2 : 100%.
  • a primary phosphate aqueous solution was used.
  • the amount of the phosphate converted to solid content is shown in Table 2.
  • Ti source TiO 2 sol TKS-203 manufactured by Teika Co., Ltd. was used.
  • phosphoric acid 85% phosphoric acid aqueous solution was used. Table 3 shows the results of investigations on the properties of the grain-oriented electrical steel sheet thus obtained.
  • Example 2 Thickness: 0.23 mm finished annealed grain-oriented electrical steel sheet.
  • the magnetic flux density B 8 of a grain-oriented electromagnetic steel sheet at this time was 1.912T.
  • the grain-oriented electrical steel sheet was washed with phosphoric acid, and then a chromium-free tension film was formed on the surface thereof.
  • 100 g of primary magnesium phosphate as a phosphate was used in terms of solid content, and the other components used were treatment liquids having various compositions shown in Table 4. The treatment liquid was applied to the surface of the grain-oriented electrical steel sheet so that the total weight per unit area after drying at 300 ° C. for 1 minute was 15 g / m 2 .
  • Example 5 shows the results of investigations on the properties of the grain-oriented electrical steel sheet thus obtained. Each characteristic was evaluated in the same manner as in Example 1.
  • the present invention it is possible to prevent the crystallization of the coating when Ti is added to improve the moisture absorption resistance of the chromium-free tension coating. As a result, it is possible to avoid the adverse effect of lowering the tension applied to the steel sheet due to crystallization, and to add a sufficient amount of Ti. Therefore, by using the treatment liquid of the present invention, a chromium-free tension coating excellent in moisture absorption resistance and iron loss improvement effect can be obtained. Moreover, the grain-oriented electrical steel sheet having both excellent moisture absorption resistance and low iron loss can be obtained by coating the chromium-free tension coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

 高価なTiキレートを使用することなく、安価なTi源を利用して優れた耐吸湿性と十分な張力付与による高い鉄損低減効果を同時に達成することができるクロムフリー張力被膜用処理液を提供する。 クロムフリー張力被膜用処理液であって、Mg、Ca、Ba、Sr、Zn、Al、およびMnのリン酸塩のうちから選ばれる1種または2種以上、前記リン酸塩:100質量部に対しSiO2固形分換算で50~120質量部のコロイド状シリカ、前記リン酸塩:100質量部に対しTiO2換算で30~50質量部のTi源、ならびにH3PO4を含有し、前記リン酸塩中の金属元素のモル数と、前記処理液中のリンのモル数とが、下記(1)式の関係を満たすクロムフリー張力被膜用処理液。 記 0.20≦([Mg]+[Ca]+[Ba]+[Sr]+[Zn]+[Mn]+1.5[Al]) / [P]≦0.45 ……(1)

Description

クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板
 本発明は、クロムフリー張力被膜用処理液に関するものである。特に、クロムを含む張力被膜と同等の優れた耐吸湿性を備える張力被膜を形成することができるクロムフリー張力被膜用処理液に関するものである。
 また、本発明は、上記のクロムフリー張力被膜用処理液を用いたクロムフリー張力被膜の形成方法および上記のクロムフリー張力被膜用処理液を用いて形成したクロムフリー張力被膜を備えるクロムフリー張力被膜付き方向性電磁鋼板に関するものである。
 一般に、方向性電磁鋼板の表面には、絶縁性、加工性および防錆性等を付与するために被膜が設けられる。かかる被膜は、最終仕上げ焼鈍時に形成されるフォルステライトを主体とする下地被膜と、その上に形成されるリン酸塩系の上塗り被膜からなる。
 これらの被膜は高温で形成され、しかも低い熱膨張率を持つ。したがって、鋼板温度が室温まで低下したとき、鋼板と被膜との熱膨張率の差に起因する張力が鋼板に付与される。この張力は鉄損を低減させる効果を有しているため、できるだけ高い張力を鋼板に付与することが望まれている。
 このような要望を満たすために、従来から種々の被膜が提案されている。
 例えば、特許文献1には、リン酸マグネシウム、コロイド状シリカ、および無水クロム酸を主体とする被膜が開示されている。また、特許文献2には、リン酸アルミニウム、コロイド状シリカ、および無水クロム酸を主体とする被膜が開示されている。
 一方、近年の環境保全への関心の高まりにより、クロムや鉛等の有害物質を含まない製品に対する要望が強まっている。方向性電磁鋼板の分野においても、クロムを含有しない被膜、すなわち、クロムフリー被膜の開発が望まれている。しかしながら、クロムフリー被膜は耐吸湿性が低く、張力付与性能にも劣るという問題があった。
 上述の問題を解決する方法として、特許文献3や特許文献4において、コロイド状シリカ、リン酸アルミニウム、ホウ酸、および硫酸塩を含む処理液を用いた被膜形成方法が提案された。前記方法によれば、被膜の特性、すなわち、耐吸湿性と張力付与による鉄損低減効果を、ある程度は改善することができるが、その特性は、従来のクロムを含有する被膜に比べて十分とはいえなかった。
 そこで、さらなる被膜特性の向上のために、様々な方法が提案された。例えば、被膜を形成するための処理液に含有されるコロイド状シリカの量を増加する方法が試みられた。前記方法においては、得られる被膜の張力付与性能は向上したものの、耐吸湿性はむしろ低下した。
 また、硫酸塩の添加量を増す方法も試みられた。しかし、この方法においては、被膜の耐吸湿性は改善されるものの、張力付与性能が低下し、十分な鉄損低減効果を得ることができなかった。
 このように、いずれの方法も、耐吸湿性と張力付与性能の両者を、必要とされる水準まで改善することはできなかった。
 これら以外にも、クロムフリーの被膜形成方法として、例えば、特許文献5にはクロム化合物の代わりにホウ酸化合物を添加する方法が、特許文献6には酸化物コロイドを添加する方法が、特許文献7には金属有機酸塩を添加する方法が、それぞれ提案されている。
 しかしながら、いずれの技術を用いても、耐吸湿性と張力付与による鉄損低減効果の両者を、従来のクロムを含有する被膜と同レベルまで到達させることはできず、完全な解決策とはなり得なかった。
 その他、本発明に近い技術として、特許文献8、9に記載の技術が挙げられる。特許文献8には、吸湿防止のため、皮膜を形成するための処理液に、Fe,Al,Ga,Ti,Zrなどの金属元素を含有させる技術が開示されている。また、特許文献9には、皮膜を形成するための処理液に、Tiキレートを添加することで被膜の耐吸湿性を改善する技術が開示されている。
特公昭56-52117号公報 特公昭53-28375号公報 特公昭54-143737号公報 特公昭57-9631号公報 特開2000-169973号公報 特開2000-169972号公報 特開2000-178760号公報 特開2007-23329号公報 特開2009-57591号公報
 しかしながら、特許文献8に記載された方法で得られる皮膜は、長期の耐吸湿性に劣っていた。また、特許文献9に記載された方法には、高価なTiキレートを用いるためにコストが高くなるという問題があった。
 本発明は、上記の実情に鑑み開発されたもので、高価なTiキレートを使用することなく、安価なTi源を利用して優れた耐吸湿性と十分な張力付与による高い鉄損低減効果を同時に達成することができるクロムフリー張力被膜用処理液を提供することを目的とする。
 また、本発明は、上記のクロムフリー張力被膜用処理液を用いたクロムフリー張力被膜の形成方法、さらには上記のクロムフリー張力被膜用処理液を用いて形成したクロムフリー張力被膜をそなえるクロムフリー張力被膜付き方向性電磁鋼板を提供することを目的とする。
 さて、発明者らは、上記の課題を解決して、クロムフリー被膜で所望の耐吸湿性と張力付与による鉄損低減効果を得るために、鋭意調査研究を行った。
 その結果、特許文献8に記載された方法で得られる被膜が長期の耐吸湿性に劣る原因が、Fe,Al,Ga,Ti,Zrなどの金属元素の含有量が十分ではないところにあることが判明した。また、コーティング中の含有量が同じであれば、TiがCrに次いで高い耐吸湿性改善効果を有することを考慮して、特許文献8に開示の技術において、さらにTiの含有量を増加させることを試みた。その結果、多量のTiの添加が、被膜の結晶化と、それに起因する張力の低下およびコーティング色調の白濁化を引き起こすことが判明した。
 そこで、発明者らは、Tiに注目して、結晶化を回避しつつ、さらにTi含有量を高める方法について鋭意検討を重ねた。
 その結果、金属リン酸塩とリン酸とを含有する処理液を使用し、かつ、前記処理液中のリンのモル数(P)に対する、前記金属リン酸塩中の金属のモル数を特定の式に応じて合計した値(M)の比(M/P)を制御することによって、上記のような弊害なしにTi含有量を無理なく増加できることを新たに見出し、本発明を完成させるに到った。
 すなわち、本発明の要旨構成は、次のとおりである。
1.クロムフリー張力被膜用処理液であって、
 Mg、Ca、Ba、Sr、Zn、Al、およびMnのリン酸塩のうちから選ばれる1種または2種以上、
 前記リン酸塩:100質量部に対しSiO2固形分換算で50~120質量部のコロイド状シリカ、
 前記リン酸塩:100質量部に対しTiO2換算で30~50質量部のTi源、ならびに
 H3PO4を含有し、
 前記リン酸塩中の金属元素のモル数と、前記クロムフリー張力被膜用処理液中のリンのモル数とが、下記(1)式の関係を満たすクロムフリー張力被膜用処理液。
                 記
0.20≦([Mg]+[Ca]+[Ba]+[Sr]+[Zn]+[Mn]+1.5[Al]) / [P]≦0.45 ……(1)
(ここで、[A]は前記クロムフリー張力被膜用処理液に含まれるAのモル数を表す)
2.前記チタン源が、TiO2ゾルを含有する前記1に記載のクロムフリー張力被膜用処理液。
3.前記チタン源が、前記TiO2ゾル中のTiO2に対して固形質量比率で0.1~50%のリン酸チタンをさらに含有する前記2に記載のクロムフリー張力被膜用処理液。
4.最終仕上げ焼鈍後の方向性電磁鋼板の表面に、前記1~3のいずれか一つに記載の処理液を塗布する工程および
 800℃以上1000℃以下の温度で10秒から300秒の焼付け処理を行う工程を備えるクロムフリー張力被膜の形成方法。
5.最終仕上げ焼鈍後の方向性電磁鋼板の表面に、前記1~3のいずれか一つに記載の処理液を塗布し、800℃以上1000℃以下の温度で10秒から300秒の焼付け処理を行って得たクロムフリー張力被膜付き方向性電磁鋼板。
 本発明によれば、高価なTiキレートを使用することなく、長期間にわたって優れた耐吸湿性を有し、かつ十分な張力付与効果を有するクロムフリー張力被膜を得ることができる。
 従って、本発明によれば、優れた耐吸湿性と低鉄損とを兼ね備える方向性電磁鋼板を安価に得ることができる。
 以下、本発明の基礎となった実験結果について説明する。
 まず、試料を次のようにして製作した。
 公知の方法で製造された板厚:0.23mmの仕上げ焼鈍済みの方向性電磁鋼板を300mm×100mmの大きさにせん断し、試料片を得た。前記試料片表面に残存している未反応の焼鈍分離剤を除去したのち、800℃、2時間の歪取焼鈍を施した。
 ついで、前記試験片を5%リン酸で軽酸洗したのち、張力被膜用処理液を前記試験片の表面に塗布した。前記張力被膜用処理液は、次の手順で調製した。まず、第一リン酸マグネシウム(Mg(H2PO4)2)の水溶液、コロイド状シリカ、およびTiO2ゾルを混合し、混合液を得た。前記混合液中における各成分の質量比は、固形分換算で、第一リン酸マグネシウム:30g、コロイド状シリカ:20g、およびTiO2ゾル:12gとした。次に、前記混合液に、濃度85%のオルトリン酸(H3PO4)の水溶液(比重1.69)を表1に示す量加え、張力被膜用処理液を得た。得られた張力被膜用処理液中におけるリンのモル数(リン酸塩とリン酸の両者に由来するリンの合計のモル数)(P)に対するMg2+のモル数の比(Mg2+/P)は、表1に示す値とした。
 前記張力被膜用処理液を、乾燥後目付量で10g/m2(両面合計)となるように前記試験片の表面に塗布した。次に、前記試験片を乾燥炉に装入して乾燥(300℃、1分間)を行い、その後、平坦化焼鈍と張力被膜の焼付けを兼ねた熱処理(800℃、2分間、N2:100%)を施した。さらにその後、2回目の歪取焼鈍(800℃、2時間)を行った。
 かくして得られた試料の、張力付与による鉄損低減効果および耐吸湿性について調査した。
 鉄損低減効果は、SST(Single Seat Test)試験機(単板磁気試験機)で測定した磁気特性に基づいて評価した。磁気特性の測定は、各試料について張力被膜用処理液の塗布直前、張力被膜の焼付け後、および2回目の歪取焼鈍直後に、それぞれ行った。
 耐吸湿性は、リンの溶出試験により評価した。前記溶出試験に用いる試験片は、張力被膜の焼付け直後の鋼板を切断して、50mm×50mmの寸法で、3枚作製した。この溶出試験用試験片を、100℃の蒸留水中で5分間煮沸し、その際に溶出したリンの量を測定した。前記リンの溶出量に基づいて、張力被膜の水に対する溶解しやすさを判断することができる。
 表1に、磁気特性およびリン溶出量の測定結果を示す。
 なお、表中の各項目は、次のとおりである。
・塗布前B8(R):張力被膜用処理液塗布直前の磁束密度
・塗布後ΔB=B8(C)-B8(R)  但し、B8(C):張力被膜の焼付け直後の磁束密度
・歪取焼鈍後ΔB=B8(A)-B8(R)  但し、B8(A):2回目の歪取焼鈍直後の磁束密度
・塗布前W17/50(R):張力被膜用処理液塗布直前の鉄損
・塗布後ΔW=W17/50(C)-W17/50(R)  但し、W17/50(C):張力被膜の焼付け直後の鉄損
・歪取焼鈍後ΔW=W17/50(A)-W17/50(R)  但し、W17/50(A):2回目の歪取焼鈍直後の鉄損
・リンの溶出量:張力被膜の焼付け直後に測定
・被膜外観:目視にて歪取り焼鈍後のコーティングの透明度を判定
Figure JPOXMLDOC01-appb-T000001
 表1の実験結果から、リン酸を添加して、Mg2+/Pを低下させることによって、Tiを多量に添加した際の結晶化を抑制することができ、鉄損と耐吸湿性の改善を併せて達成できることが分かる。
 次に、本発明における各構成要件の限定理由について述べる。
 本発明で対象とする鋼板は、方向性電磁鋼板であれば特に鋼種を問わない。通常、かような方向性電磁鋼板は、含珪素鋼スラブを、公知の方法で熱間圧延し、1回または中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行うことによって製造される。
 絶縁被膜処理液成分のうち、まずリン酸塩としては、Mg,Ca,Ba,Sr,Zn,AlおよびMnのリン酸塩のうちから選ばれる1種または2種以上を用いる。一般的には上記したリン酸塩のうちいずれか1種を用いるが、2種以上混合して用いることで絶縁被膜(コーティング)の物性値を緻密に制御することができる。前記リン酸塩としては、第一リン酸塩(重リン酸塩)が入手容易であるため、好適である。なお、アルカリ金属(Li,Naなど)のリン酸塩は、被膜の耐吸湿性を著しく低下させるため、不適である。
 コロイド状シリカは、上記したリン酸塩:100質量部に対してSiO2固形分換算で50~120質量部、処理液中に含有される。コロイド状シリカは、被膜の熱膨張係数を低下させる効果を有している。しかし、コロイド状シリカの含有量が50質量部未満であると、熱膨張係数を低下させる効果が小さく、鋼板に対し十分な張力を付与することができない。そして、その結果、張力被膜形成による鉄損改善効果が十分に得られない。一方、含有量が120質量部よりも多いと、焼付け時にコーティングが結晶化しやすくなるだけでなく、被膜の耐吸湿性も低下する。
 また、本発明の処理液は、Ti源を、リン酸塩:100質量部に対してTiO2換算で30~50質量部含有する。Ti源の含有量が30質量部未満では、被膜の耐吸湿性が劣化する。一方、含有量が50質量部よりも多いと、リン酸を添加してM/Pを制御しても、結晶化を防ぐことが難しくなる。
 さらに、本発明の処理液は、リン酸(H3PO4)を含有する。本発明においては、処理液中に含まれる前記リン酸塩中の金属元素のモル数と、前記処理液中のリンのモル数とが、(1)式の関係を満たすことが重要である。
 0.20≦([Mg]+[Ca]+[Ba]+[Sr]+[Zn]+[Mn]+1.5[Al]) / [P]≦0.45 ……(1)
 ここで、(1)式における[A]は、クロムフリー張力被膜用処理液に含まれる成分Aのモル数を表す。リン酸塩として処理液に添加されていない金属元素のモル数はゼロとみなされる。また、[Al]にかかる係数1.5は、Al以外の金属元素が2価であるのに対して、Alが3価であることによるものである。以下、前記式における中辺、すなわち([Mg]+[Ca]+[Ba]+[Sr]+[Zn]+[Mn]+1.5[Al]) / [P]を、「M/P」と記す。
 このM/Pが0.20未満であると、コーティング中のPが過剰であるため、被膜からのリンの溶出量が多くなり、耐吸湿性が低下する。一方、M/Pが0.45よりも大きいと、十分な耐吸湿性を得るために必要な量のTiを被膜中に結晶化させずに含有させることができない。
 本発明のクロムフリー張力被膜用処理液に含有されるTi源としては、入手容易性およびコストなどの点から、TiO2ゾルが好適である。前記TiO2ゾルは、酸性、中性、およびアルカリ性のいずれであってもよいが、pH:5.5~12.5であることが好ましい。
 また、前記TiO2ゾルには、リン酸チタンを、TiO2に対して固形質量比率で0.1%から50%含有させることが好ましい。リン酸チタンを添加することによって、TiO2粒子の分散性を高めることができる。また、リン酸チタンは、TiO2とリン酸塩との相溶性を高め、コーティング液安定性を高める作用を有している。リン酸チタンの含有量が0.1%未満では相溶性を高める効果に乏しい。一方、リン酸チタンの含有量が50%よりも多くなると、コストが高くなってしまう。なお、式(1)での処理液中のリン酸量は、処理液中の全リン酸量であり、リン酸チタンとして添加したリン酸量も含む。
 さらに、シリカやアルミナなどの微粉末状の無機鉱物粒子を、本発明の処理液に添加することもできる。これらの無機鉱物粒子は、被膜の耐スティッキング性の改善に有効である。前記無機鉱物粒子の含有量は、占積率を低下させないために最大でもコロイド状シリカ:20質量部に対して、1質量部とすることが好ましい。
 上記した処理液を、電磁鋼板の表面に塗布、焼付けて張力被膜を形成する。被膜の乾燥後の目付量は両面の合計で4~15g/m2とすることが好ましい。目付量が4g/m2より少ないと層間抵抗が低下し、15g/m2より多いと占積率が低下するためである。なお、本願の実施例では、表裏がほぼ同じ目付量となるように皮膜を形成したが、鉄芯として積層するときは、通常表裏の順で積層されて使用するため、表裏均等な目付量である必要はなく、表裏の目付量に差があってもよい。
 かかる張力被膜の焼付け処理は、平坦化焼鈍を兼ねて行ってもよい。前記焼付け処理は、800~1000℃の温度範囲、10~300秒の均熱時間の条件で実施する。温度が低すぎたり、時間が短すぎたりすると、平坦化が十分に行われない。その結果、形状不良が発生して、歩留りが低下する。一方、温度が高すぎると、平坦化焼鈍の効果が過剰に強くなるため、鋼板がクリープ変形して磁気特性が劣化する。
(実施例1)
 板厚:0.23mmの仕上げ焼鈍済みの方向性電磁鋼板を準備した。このときの方向性電磁鋼板の磁束密度B8は1.912Tであった。この方向性電磁鋼板を、リン酸酸洗した後、その表面にクロムフリー張力被膜を形成した。前記張力被膜の形成には、表2に示す種々の組成のクロムフリー張力被膜用処理液を使用した。前記処理液は、前記方向性電磁鋼板の両面に、300℃で1分乾燥後の両面合計の目付量が10g/m2となるように塗布された。次いで、N2:100%の雰囲気中にて、850℃、30秒の条件で焼付け処理を行った。その後、N2:100%の雰囲気中で800℃、2時間の歪取焼鈍を実施した。
 リン酸塩としては、各々第一リン酸塩水溶液を使用した。前記リン酸塩の、固形分換算した量を表2に示した。Ti源としては、テイカ(株)製TiO2ゾルTKS-203を使用した。リン酸としては、85%リン酸水溶液を使用した。
 このようにして得られた方向性電磁鋼板の諸特性について調査した結果を表3に示す。
 なお、各特性の評価は次のようにして行った。
・塗布前W17/50(R):張力被膜用処理液塗布直前の鉄損
・塗布後ΔW=W17/50(C)-W17/50(R)  但し、W17/50(C):張力被膜の焼付け直後の鉄損
・歪取焼鈍後ΔW=W17/50(A)-W17/50(R)  但し、W17/50(A):歪取焼鈍直後の鉄損
・リンの溶出量:50mm×50mmの試験片3枚(皮膜表面積150cm2)を100℃の蒸留水中で5分間煮沸した後、分析
・被膜外観:目視にて歪取り焼鈍後のコーティングの透明度を判定
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2、3に示したように、本発明の条件を満たす処理液を用いることにより、リン溶出量が少なく耐吸湿性に優れ、しかも外観が良好なクロムフリー張力絶縁被膜を得ることができた。
(実施例2)
 板厚:0.23mmの仕上げ焼鈍済みの方向性電磁鋼板を準備した。このときの方向性電磁鋼板の磁束密度B8は1.912Tであった。この方向性電磁鋼板を、リン酸酸洗した後、その表面にクロムフリー張力被膜を形成した。前記張力被膜の形成には、リン酸塩として第一リン酸マグネシウムを固形分換算で100g用い、その他の成分は表4に示す種々の組成の処理液を使用した。前記処理液は、前記方向性電磁鋼板の表面に、300℃で1分乾燥後の両面合計の目付量が15g/m2となるように塗布された。次いで、N2:100%の雰囲気中にて950℃、10秒の条件で焼付け処理を行った。その後、N2:100%の雰囲気中で800℃、2時間の歪取焼鈍を実施した。
 かくして得られた方向性電磁鋼板の諸特性について調査した結果を表5に示す。
 なお、各特性の評価は実施例1と同様の方法で行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4、5から明らかなように、本発明の条件を満たす処理液を用いることにより、リン溶出量が少なく耐吸湿性に優れ、しかも外観が良好なクロムフリー張力絶縁被膜を得ることができた。
 本発明によれば、クロムフリー張力被膜の耐吸湿性を改善するためにTiを添加した際の、被膜の結晶化を防止することができる。その結果、結晶化による鋼板への付与張力の低下という悪影響を回避して、Tiを十分な量添加することが可能となる。したがって、本発明の処理液を用いることにより、耐吸湿性および鉄損改善効果に優れたクロムフリー張力被膜を得ることができる。
 また、上記のクロムフリー張力被膜を被覆することにより、優れた耐吸湿性と低鉄損とを兼ね備える方向性電磁鋼板を得ることができる。

Claims (5)

  1.  クロムフリー張力被膜用処理液であって、
     Mg、Ca、Ba、Sr、Zn、Al、およびMnのリン酸塩のうちから選ばれる1種または2種以上、
     前記リン酸塩:100質量部に対しSiO2固形分換算で50~120質量部のコロイド状シリカ、
     前記リン酸塩:100質量部に対しTiO2換算で30~50質量部のTi源、ならびに
     H3PO4を含有し、
     前記リン酸塩中の金属元素のモル数と、前記クロムフリー張力被膜用処理液中のリンのモル数とが、下記(1)式の関係を満たすクロムフリー張力被膜用処理液。
                    記
     0.20≦([Mg]+[Ca]+[Ba]+[Sr]+[Zn]+[Mn]+1.5[Al]) / [P]≦0.45 ……(1)
    (ここで、[A]は前記クロムフリー張力被膜用処理液に含まれるAのモル数を表す)
  2.  前記チタン源が、TiO2ゾルを含有する請求項1に記載のクロムフリー張力被膜用処理液。
  3.  前記チタン源が、前記TiO2ゾル中のTiO2に対して固形質量比率で0.1~50%のリン酸チタンをさらに含有する請求項2に記載のクロムフリー張力被膜用処理液。
  4.  最終仕上げ焼鈍後の方向性電磁鋼板の表面に、請求項1~3のいずれか一項に記載の処理液を塗布する工程および
     800℃以上1000℃以下の温度で10秒から300秒の焼付け処理を行う工程を備えるクロムフリー張力被膜の形成方法。
  5.  最終仕上げ焼鈍後の方向性電磁鋼板の表面に、請求項1~3のいずれか一項に記載の処理液を塗布し、800℃以上1000℃以下の温度で10秒から300秒の焼付け処理を行って得たクロムフリー張力被膜付き方向性電磁鋼板。
PCT/JP2015/000139 2014-01-31 2015-01-14 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板 WO2015115036A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15744074.4A EP3101157B1 (en) 2014-01-31 2015-01-14 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
KR1020167018227A KR101774187B1 (ko) 2014-01-31 2015-01-14 크롬 프리 장력 피막용 처리액, 크롬 프리 장력 피막의 형성 방법, 및 크롬 프리 장력 피막 형성 방향성 전기 강판
JP2015526081A JP5900705B2 (ja) 2014-01-31 2015-01-14 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法およびクロムフリー張力被膜付き方向性電磁鋼板の製造方法
CN201580005508.3A CN106414802B (zh) 2014-01-31 2015-01-14 无铬张力被膜用处理液、无铬张力被膜的形成方法、以及具有无铬张力被膜的取向性电磁钢板
US15/038,501 US10087529B2 (en) 2014-01-31 2015-01-14 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
RU2016135201A RU2649608C2 (ru) 2014-01-31 2015-01-14 Рабочий раствор для создающего напряжение бесхромового покрытия, способ формирования создающего напряжение бесхромового покрытия и лист текстурованной электротехнической стали с создающим напряжение бесхромовым покрытием
US16/117,427 US10435791B2 (en) 2014-01-31 2018-08-30 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
US16/117,369 US10458021B2 (en) 2014-01-31 2018-08-30 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014017816 2014-01-31
JP2014-017816 2014-01-31

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/038,501 A-371-Of-International US10087529B2 (en) 2014-01-31 2015-01-14 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
US16/117,369 Division US10458021B2 (en) 2014-01-31 2018-08-30 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
US16/117,427 Division US10435791B2 (en) 2014-01-31 2018-08-30 Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating

Publications (2)

Publication Number Publication Date
WO2015115036A1 true WO2015115036A1 (ja) 2015-08-06
WO2015115036A8 WO2015115036A8 (ja) 2016-06-02

Family

ID=53756623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000139 WO2015115036A1 (ja) 2014-01-31 2015-01-14 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板

Country Status (7)

Country Link
US (3) US10087529B2 (ja)
EP (1) EP3101157B1 (ja)
JP (1) JP5900705B2 (ja)
KR (1) KR101774187B1 (ja)
CN (1) CN106414802B (ja)
RU (1) RU2649608C2 (ja)
WO (1) WO2015115036A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331958A (zh) * 2015-10-20 2016-02-17 湖南金化科技集团有限公司 一种锰系磷化液及其制备方法
EP3354768A4 (en) * 2015-09-25 2018-08-01 JFE Steel Corporation Oriented electromagnetic steel sheet and manufacturing method therefor
JPWO2018097100A1 (ja) * 2016-11-28 2018-11-22 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
EP3358041A4 (en) * 2015-09-29 2019-04-03 Nippon Steel & Sumitomo Metal Corporation CORNORATED ELECTROMAGNETIC STEEL PLATE AND METHOD FOR THE PRODUCTION OF CORNORIENTED ELECTROMAGNETIC STEEL PLATE
WO2019093521A1 (ja) 2017-11-13 2019-05-16 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法
EP3476976A4 (en) * 2016-09-13 2019-06-05 JFE Steel Corporation ORIENTED GRAIN STEEL SHEET WITH CHROME-FREE INSULATION / TENSION COATING, AND PRODUCTION METHOD THEREOF
WO2019188585A1 (ja) 2018-03-28 2019-10-03 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板の製造方法、および方向性電磁鋼板
WO2020085024A1 (ja) 2018-10-25 2020-04-30 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
US11518960B2 (en) 2016-08-24 2022-12-06 Ppg Industries Ohio, Inc. Alkaline molybdenum cation and phosphonate-containing cleaning composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101157B1 (en) * 2014-01-31 2017-11-08 JFE Steel Corporation Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
BR112020000269A2 (pt) * 2017-07-13 2020-07-14 Nippon Steel Corporation chapa de aço elétrico de grão orientado e método para produzir a mesma
JP6642782B1 (ja) * 2018-08-17 2020-02-12 Jfeスチール株式会社 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
EP3839093A4 (en) * 2018-08-17 2021-12-15 JFE Steel Corporation PROCESS FOR PRODUCING A TREATMENT SOLUTION FOR USE IN THE FORMATION OF AN INSULATING COATING FILM, PROCESS FOR PRODUCING A STEEL SHEET TO WHICH AN INSULATING COATING FILM IS FIXED, AND APPARATUS FOR THE PRODUCTION OF A TREATMENT SOLUTION FOR USE IN FORMING AN INSULATION COATING FILM
RU2706082C1 (ru) * 2019-01-17 2019-11-13 Общество с ограниченной ответственностью "ВИЗ-Сталь" Электроизоляционное покрытие для электротехнической анизотропной стали, не содержащее в составе соединений хрома
RU2765555C1 (ru) 2021-05-31 2022-02-01 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Электроизоляционное покрытие для электротехнической анизотропной стали, не содержащее в составе соединений хрома и обладающее высокими потребительскими характеристиками
WO2024096761A1 (en) 2022-10-31 2024-05-10 Public Joint-stock Company "Novolipetsk Steel" An electrical insulating coating сomposition providing high commercial properties to grain oriented electrical steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169972A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2000169973A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2000178760A (ja) 1998-12-08 2000-06-27 Nippon Steel Corp クロムを含まない表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2002249881A (ja) * 2001-02-23 2002-09-06 Sumitomo Metal Ind Ltd 絶縁皮膜付き電磁鋼板およびその製造方法。
JP2007023329A (ja) 2005-07-14 2007-02-01 Nippon Steel Corp クロムを含有しない電磁鋼板用絶縁被膜剤
JP2008266743A (ja) * 2007-04-23 2008-11-06 Nippon Steel Corp 方向性電磁鋼板およびその製造方法
JP2008303411A (ja) * 2007-06-05 2008-12-18 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液
JP2009057591A (ja) 2007-08-30 2009-03-19 Jfe Steel Kk 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5652117B2 (ja) 1973-11-17 1981-12-10
ZA765233B (en) 1975-09-11 1977-08-31 J Rogers Steel metal web handling method apparatus and coil construct
JPS5328375A (en) 1976-08-11 1978-03-16 Fujitsu Ltd Inspecting method
JPS54143737A (en) 1978-04-28 1979-11-09 Kawasaki Steel Co Formation of chromiummfree insulating top coating for directional silicon steel plate
JPS5934604B2 (ja) 1980-06-19 1984-08-23 富士通株式会社 粉体回収装置
JP2002220642A (ja) * 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
BRPI0520381B1 (pt) * 2005-07-14 2016-03-08 Nippon Steel & Sumitomo Metal Corp agente de película isolante para chapa de aço elétrico com grãos orientados que não contém cromo.
US8673091B2 (en) * 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
DE102008014465B4 (de) * 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Mittel zur optimierten Passivierung auf Ti-/Zr-Basis für Metalloberflächen und Verfahren zur Konversionsbehandlung
DE102013208618A1 (de) * 2013-05-10 2014-11-13 Henkel Ag & Co. Kgaa Chromfreie Beschichtung zur elektrischen Isolierung von kornorientiertem Elektroband
EP3101157B1 (en) * 2014-01-31 2017-11-08 JFE Steel Corporation Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
US20170137633A1 (en) * 2014-04-24 2017-05-18 Jfe Steel Corporation Treatment solution for chromium-free insulating coating for grain-oriented electrical steel sheet and grain-oriented electrical steel sheet coated with chromium-free insulating coating
BR112017015665B1 (pt) * 2015-02-26 2022-05-03 Nippon Steel Corporation Revestimento isolante e método para revestir uma chapa de aço elétrico com o mesmo
US10920323B2 (en) * 2015-03-27 2021-02-16 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
WO2016158322A1 (ja) * 2015-03-27 2016-10-06 Jfeスチール株式会社 絶縁被膜付き方向性電磁鋼板およびその製造方法
RU2689353C1 (ru) * 2015-09-02 2019-05-27 ДжФЕ СТИЛ КОРПОРЕЙШН Обрабатывающий раствор для получения изоляционного покрытия и способ изготовления металла, имеющего изоляционное покрытие
JP6323423B2 (ja) * 2015-09-25 2018-05-16 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
PL3358041T3 (pl) * 2015-09-29 2021-09-06 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych i sposób wytwarzania blachy cienkiej ze stali elektrotechnicznej o ziarnach zorientowanych

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169972A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2000169973A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2000178760A (ja) 1998-12-08 2000-06-27 Nippon Steel Corp クロムを含まない表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2002249881A (ja) * 2001-02-23 2002-09-06 Sumitomo Metal Ind Ltd 絶縁皮膜付き電磁鋼板およびその製造方法。
JP2007023329A (ja) 2005-07-14 2007-02-01 Nippon Steel Corp クロムを含有しない電磁鋼板用絶縁被膜剤
JP2008266743A (ja) * 2007-04-23 2008-11-06 Nippon Steel Corp 方向性電磁鋼板およびその製造方法
JP2008303411A (ja) * 2007-06-05 2008-12-18 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液
JP2009057591A (ja) 2007-08-30 2009-03-19 Jfe Steel Kk 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354768A4 (en) * 2015-09-25 2018-08-01 JFE Steel Corporation Oriented electromagnetic steel sheet and manufacturing method therefor
RU2689170C1 (ru) * 2015-09-25 2019-05-24 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из текстурированной электротехнической стали и способ его изготовления
EP3358041A4 (en) * 2015-09-29 2019-04-03 Nippon Steel & Sumitomo Metal Corporation CORNORATED ELECTROMAGNETIC STEEL PLATE AND METHOD FOR THE PRODUCTION OF CORNORIENTED ELECTROMAGNETIC STEEL PLATE
US11072861B2 (en) 2015-09-29 2021-07-27 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN105331958A (zh) * 2015-10-20 2016-02-17 湖南金化科技集团有限公司 一种锰系磷化液及其制备方法
US11518960B2 (en) 2016-08-24 2022-12-06 Ppg Industries Ohio, Inc. Alkaline molybdenum cation and phosphonate-containing cleaning composition
EP3476976A4 (en) * 2016-09-13 2019-06-05 JFE Steel Corporation ORIENTED GRAIN STEEL SHEET WITH CHROME-FREE INSULATION / TENSION COATING, AND PRODUCTION METHOD THEREOF
US11756713B2 (en) 2016-09-13 2023-09-12 Jfe Steel Corporation Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets
JPWO2018097100A1 (ja) * 2016-11-28 2018-11-22 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
WO2019093521A1 (ja) 2017-11-13 2019-05-16 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法
US11499055B2 (en) 2017-11-13 2022-11-15 Nippon Steel Corporation Coating solution for forming insulating film for grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
WO2019188585A1 (ja) 2018-03-28 2019-10-03 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板の製造方法、および方向性電磁鋼板
KR20200118872A (ko) 2018-03-28 2020-10-16 닛폰세이테츠 가부시키가이샤 방향성 전자 강판용 절연 피막을 형성하기 위한 도포액, 방향성 전자 강판의 제조 방법 및 방향성 전자 강판
WO2020085024A1 (ja) 2018-10-25 2020-04-30 日本製鉄株式会社 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
KR20210022060A (ko) 2018-10-25 2021-03-02 닛폰세이테츠 가부시키가이샤 방향성 전자 강판용 절연피막을 형성하기 위한 도포액, 방향성 전자 강판, 및 방향성 전자 강판의 제조 방법

Also Published As

Publication number Publication date
RU2649608C2 (ru) 2018-04-04
US10087529B2 (en) 2018-10-02
US10435791B2 (en) 2019-10-08
US20180371621A1 (en) 2018-12-27
JP5900705B2 (ja) 2016-04-06
US10458021B2 (en) 2019-10-29
RU2016135201A (ru) 2018-03-05
WO2015115036A8 (ja) 2016-06-02
EP3101157B1 (en) 2017-11-08
CN106414802B (zh) 2018-11-06
KR101774187B1 (ko) 2017-09-01
US20180371620A1 (en) 2018-12-27
KR20160098313A (ko) 2016-08-18
EP3101157A4 (en) 2017-01-18
RU2016135201A3 (ja) 2018-03-05
JPWO2015115036A1 (ja) 2017-03-23
EP3101157A1 (en) 2016-12-07
CN106414802A (zh) 2017-02-15
US20160305026A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP5900705B2 (ja) クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法およびクロムフリー張力被膜付き方向性電磁鋼板の製造方法
KR101867257B1 (ko) 방향성 전기 강판용의 크롬 프리 절연 피막 처리액 및 크롬 프리 절연 피막 형성 방향성 전기 강판
JP5181571B2 (ja) 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP5194641B2 (ja) 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
KR101175059B1 (ko) 방향성 전기 강판용 절연 피막 처리액, 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
KR102071515B1 (ko) 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
WO2007007417A1 (ja) クロムを含まない絶縁皮膜を有する方向性電磁鋼板及びその絶縁皮膜剤
JP6593442B2 (ja) 絶縁被膜処理液および絶縁被膜付き金属の製造方法
WO2018174275A1 (ja) 電磁鋼板
JP6558325B2 (ja) クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
US11981821B2 (en) Insulating coating treatment liquid, and grain-oriented electrical steel sheet having insulating coating and method for producing the same
JP2008240080A (ja) 方向性電磁鋼板用絶縁被膜処理液および方向性電磁鋼板の製造方法
JP5633401B2 (ja) クロムレス張力被膜用処理液およびクロムレス張力被膜の形成方法
KR20210046756A (ko) 크롬프리 절연 피막 형성용 처리제, 절연 피막이 형성된 방향성 전기 강판 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015526081

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15744074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15038501

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015744074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015744074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167018227

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016135201

Country of ref document: RU

Kind code of ref document: A