WO2010074127A1 - 圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法 - Google Patents

圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法 Download PDF

Info

Publication number
WO2010074127A1
WO2010074127A1 PCT/JP2009/071401 JP2009071401W WO2010074127A1 WO 2010074127 A1 WO2010074127 A1 WO 2010074127A1 JP 2009071401 W JP2009071401 W JP 2009071401W WO 2010074127 A1 WO2010074127 A1 WO 2010074127A1
Authority
WO
WIPO (PCT)
Prior art keywords
lid member
bonding
region
lower lid
upper lid
Prior art date
Application number
PCT/JP2009/071401
Other languages
English (en)
French (fr)
Other versions
WO2010074127A9 (ja
Inventor
幸田 直樹
宏樹 吉岡
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to EP09834925.1A priority Critical patent/EP2381575A4/en
Priority to CN200980152643.5A priority patent/CN102265514B/zh
Priority to JP2010544113A priority patent/JP5370371B2/ja
Priority to US13/129,182 priority patent/US20110215678A1/en
Publication of WO2010074127A1 publication Critical patent/WO2010074127A1/ja
Publication of WO2010074127A9 publication Critical patent/WO2010074127A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0552Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the device and the other elements being mounted on opposite sides of a common substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/03Assembling devices that include piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/045Modification of the area of an element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/045Modification of the area of an element
    • H03H2003/0457Modification of the area of an element of an electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a piezoelectric vibration device used in an electronic device or the like, a method for manufacturing the piezoelectric vibration device, and a method for etching a constituent member constituting the piezoelectric vibration device.
  • a package having a structure in which a crystal vibrating piece is bonded to the inside of a box-shaped container body having an opening at the top, and then the opening is hermetically sealed with a lid is used. Yes.
  • a ceramic fired body is generally used for the container body.
  • Patent Documents 1 and 2 disclose a crystal resonator having a configuration in which a pair of crystal plates are sandwiched through the bonding material.
  • the surfaces of the upper and lower lid bodies (a pair of the quartz plates) and the surfaces of the quartz diaphragm are mirror-finished, and the lid and the quartz diaphragm Are bonded by direct bonding (interatomic bonding).
  • the equipment for performing interatomic bonding here is expensive, and the crystal resonators in Patent Document 1 and Patent Document 2 deteriorate the manufacturing cost.
  • the surface of the upper and lower lids and the surface of the quartz crystal vibrating plate are bonded to the bonding material. It becomes difficult to obtain sufficient bonding strength.
  • the present invention has been made in view of the above points, and improves the bonding strength between the bonding material and the constituent members constituting the piezoelectric vibration device, and suppresses the manufacturing cost.
  • the piezoelectric vibration device manufacturing method It is another object of the present invention to provide an etching method for constituent members constituting a piezoelectric vibration device.
  • a piezoelectric vibrating device includes a piezoelectric vibrating plate on which an excitation electrode is formed, and an upper lid member and a lower lid member that hermetically seal the excitation electrode.
  • Each of the upper and lower main surfaces of the diaphragm has bonding regions with the upper lid member and the lower lid member, and one main surface of the upper lid member has a bonding region with the piezoelectric diaphragm, and the lower lid member Having a bonding region with the piezoelectric vibration plate on one main surface, and having a bonding region with an external member on the other main surface of the lower lid member, and the bonding region of the piezoelectric vibration plate and the upper lid member
  • a bonding layer constituting a bonding material is formed in each of the bonding region and the bonding region of the lower lid member, and the bonding region of the piezoelectric diaphragm and the bonding region of the upper lid member are interposed via the bonding material.
  • the piezoelectric diaphragm is bonded to the bonding region of the lower lid member. Bonded via the bonding material, at least one of the substrate of the bonding region of the piezoelectric diaphragm, the substrate of the bonding region of the upper lid member, and the substrate of the bonding region of the lower lid member is roughened It is characterized by being.
  • another piezoelectric vibration device includes a piezoelectric diaphragm on which an excitation electrode is formed, and an upper lid member and a lower lid member that hermetically seal the excitation electrode.
  • the main surface of the upper lid member has a bonding region with the lower lid member
  • the main surface of the lower lid member has a bonding region with the upper lid member
  • the other surface of the lower lid member is the other surface of the lower lid member.
  • the main surface has a bonding region with an external member, and a bonding layer constituting a bonding material is formed in each of the bonding region of the upper lid member and the bonding region of the lower lid member, and bonding of the upper lid member
  • the region and the bonding region of the lower lid member are bonded via the bonding material, and at least one of the substrate of the bonding region of the upper lid member and the substrate of the bonding region of the lower lid member is roughened It is characterized by being.
  • the main surface of the lower lid member may have a bonding region with the piezoelectric diaphragm, and a surface of the bonding region with the piezoelectric vibration plate may be roughened.
  • the main surface of the lower lid member has a joining region with the piezoelectric diaphragm, and the surface of the joining region with the piezoelectric diaphragm is roughened.
  • the minute unevenness formed on the surface of the substrate functions like a “wedge” against the stress in the horizontal direction. That is, by having a so-called anchor (throwing) effect, it is possible to improve the bonding strength between the roughened surface of the bonding region and the piezoelectric diaphragm.
  • the surface of the bonding layer formed on the roughened surface of the bonding region may be roughened.
  • an electrolytic plating is further applied to the upper layer of the roughened bonding layer on the surface of the bonding region.
  • the base material of the joining region of the piezoelectric diaphragm is roughened, and at least one of the base material of the joining region of the upper lid member and the base material of the joining region of the lower lid member is roughened.
  • the surface of the base material of the joining region of at least one of the upper lid member and the lower lid member may be formed to be rougher than the surface of the base material of the joining region of the piezoelectric diaphragm.
  • a rough surface is formed on at least one of the upper cover member and the lower cover member, rather than performing a roughening process on the piezoelectric diaphragm on which the excitation electrode or the like is formed.
  • the roughening treatment process can be simplified by performing the roughening treatment.
  • a metal film (electrode film) such as the excitation electrode is formed on the piezoelectric diaphragm, and it is necessary to protect the electrode film at the time of the roughening treatment, and further various thermal histories are added, The film state of the electrode film may be affected.
  • the excitation electrode is not formed on the upper lid member and the lower lid member, the influence on various characteristics of the piezoelectric vibration device can be reduced, and the bonding region of the upper lid member can be reduced.
  • the piezoelectric vibration device having good characteristics can be obtained in combination with the anchor effect on the bonding material.
  • At least one of the joining regions of the upper lid member and the lower lid member is roughened, and the roughened joining region is more planar than the joining region of the piezoelectric diaphragm. And may be formed widely in the inner direction of the one main surface.
  • the fillet of the bonding material is easily formed toward the bonding region (rough surface region) that is widely formed in at least one inner direction of the upper lid member and the lower lid member.
  • At least one whole main surface of the upper lid member and the lower lid member may be roughened.
  • the electrode electrically connected with the external connection terminal connected with an external apparatus
  • the pattern is formed on at least one main surface side of the upper cover member and the lower cover member, if the entire main surface is roughened, the adhesion between the electrode pattern and the main surface is improved. Can be improved. Further, the surface roughening process is simplified and productivity is improved as compared with the case where only the surface where the electrode pattern is formed is selectively roughened.
  • the bonding region of the piezoelectric diaphragm is roughened, and a plurality of bonding materials having different surface directions are disposed in the vicinity of at least one of the bonding regions of the upper lid member and the lower lid member.
  • a multi-surface bonding portion that is bonded by a surface may be provided, and an expansion preventing portion that prevents an expansion of a bonding region with the bonding material may be provided outside the multi-surface bonding portion.
  • the bonding material includes the multi-surface bonding portion and the expansion preventing portion. It is possible to prevent the upper cover member and the lower cover member provided from spreading on at least one joint surface (the one main surface) in the main surface direction (plane direction).
  • the joint material is joined by a plurality of surfaces having different surface directions.
  • the anchor effect can be generated and the bonding strength with the bonding material can be increased.
  • the bonding material spreads (wet) in the bonding portion is a phenomenon that naturally occurs.
  • the multi-surface joint portion is provided in the vicinity of at least one joint region of the upper lid member and the lower lid member, and the expansion preventing portion is provided outside the multi-surface joint portion. Therefore, even when the bonding material spreads at the bonding site after bonding by the bonding material, the bonding material flows (wet) to the end face of the piezoelectric vibration device. It is possible to prevent the bonding material from entering the internal space of the piezoelectric vibration device.
  • a method of manufacturing a piezoelectric vibrating device includes a piezoelectric vibrating plate on which an excitation electrode is formed, and an upper lid member and a lower lid member that hermetically seal the excitation electrode. Provided on the front and back main surfaces of the piezoelectric diaphragm, each having a bonding region with the upper lid member and the lower lid member, and on one main surface of the upper lid member with a bonding region with the piezoelectric diaphragm.
  • a main surface of the lower lid member has a bonding area with the piezoelectric diaphragm, and the bonding area of the piezoelectric diaphragm and the bonding area of the upper lid member are bonded via a bonding material.
  • a method for manufacturing a piezoelectric vibration device in which a bonding region of a plate and a bonding region of the lower lid member are bonded via a bonding material, the substrate of the bonding region of the piezoelectric vibration plate, and the substrate of the bonding region of the upper lid member And at least the base material of the joining region of the lower lid member
  • a metal film forming step of laminating a metal film made of at least two kinds of metals a diffusion step for promoting metal diffusion inside the metal film by heat treatment after the metal film forming step, and after the diffusion step And an etching step of roughening the substrate by forming a large number of micropores in the substrate surface by performing wet etching by infiltrating an etching solution into the metal film.
  • the manufacturing method it is possible to partially form a rough surface on one main surface of a structural member having a surface state with very few irregularities as in mirror surface processing. Specifically, the region not desired to be roughened is protected by coating with a resist or the like, and the region desired to be roughened is not formed with a protective film such as a resist, but the metal film in which metal diffusion has occurred is provided. Then, a large number of the micropores are formed on the surface of the substrate by infiltrating the etching solution to the substrate of the member. Thereby, a selective roughening process becomes possible.
  • the bonding strength between the bonding material and the constituent member of the piezoelectric vibration device can be improved, and the airtightness can be increased.
  • it since it is not essential to perform interatomic bonding, it is possible to reduce the manufacturing cost of the piezoelectric vibration device.
  • the thickness of the metal film may be varied in the above configuration.
  • the amount of metal diffused by heat treatment can be controlled, and the perforation state of the micropores in the surface of the substrate can be controlled by the penetration of the etching solution into the metal film after the diffusion step. That is, the surface state of the rough surface can be controlled.
  • the upper lid member and the lower lid member are made of crystal or glass, and the piezoelectric diaphragm is made of crystal.
  • the metal film forming step the upper lid member, the lower lid member, and the piezoelectric member are formed.
  • a Cr layer is formed on at least one of the substrates with a diaphragm, an Au layer is stacked on the Cr layer, the metal film is formed, and a two-layer configuration including the Cr layer and the Au layer is formed.
  • the substrate may be roughened by forming a large number of micropores on the surface.
  • the upper lid member and the lower lid member are made of quartz or glass and the piezoelectric diaphragm is made of quartz, it is easy to form an outer shape by wet etching.
  • the metal film has a two-layer structure in which the Au layer is stacked on the Cr layer. With such a film configuration, for example, when quartz is used for the upper lid member and the lower lid member, the adhesion with the piezoelectric diaphragm can be improved. Further, since Au having resistance to the etching solution is used, the etching solution is not etched by the metal film without corroding the metal film even when wet etching is performed through the metal film in which the Cr is diffused. It can be penetrated to the base of the formed member. As a result, a large number of the micropores can be formed on the surface of the substrate under the metal film where the metal diffusion has occurred to be roughened.
  • a method for etching a constituent member constituting the piezoelectric vibrating device is an etching method for a constituent member having each joining region with an external member on at least one main surface.
  • the etching method it is possible to partially form a rough surface on at least one main surface of the constituent member having a surface state with very little unevenness as in mirror finishing. Specifically, the region not desired to be roughened is protected by coating with a resist or the like, and the region desired to be roughened is not formed with a protective film such as a resist, but the metal film in which metal diffusion has occurred is provided. Then, a large number of the micropores are formed on the surface of the substrate by allowing the etching solution to penetrate into the substrate of the constituent member. Thereby, a selective roughening process becomes possible.
  • the piezoelectric diaphragm, the upper lid member, and the lower lid member are used as the constituent members, and the piezoelectric diaphragm is sandwiched between the upper lid member and the lower lid member via the bonding material.
  • the bonding strength between the piezoelectric vibration plate and the bonding material, the bonding strength between the upper lid member and the bonding material, and the bonding strength between the lower lid member and the bonding material are improved.
  • the manufacturing cost of the piezoelectric vibration device can be reduced.
  • the bonding member and the constituent members constituting the piezoelectric vibration device (for example, The bonding strength of the piezoelectric vibrating piece, the upper lid member, and the lower lid member) can be improved, and the manufacturing cost of the piezoelectric vibrating device can be reduced.
  • the cross-sectional schematic diagram along the long side direction of the crystal oscillator which shows the 1st Embodiment of this invention The schematic block diagram which showed each structural member of the crystal oscillator which shows the 1st Embodiment of this invention.
  • the flowchart which shows the roughening process in the 1st Embodiment of this invention The schematic diagram which shows the roughening process in the 1st Embodiment of this invention.
  • the schematic diagram which shows the roughening process in the 1st Embodiment of this invention. The schematic diagram which shows the roughening process in the 1st Embodiment of this invention.
  • the schematic diagram which shows the roughening process in the 1st Embodiment of this invention The schematic diagram which shows the roughening process in the 1st Embodiment of this invention.
  • the schematic diagram which shows the roughening process in the 1st Embodiment of this invention The schematic diagram which shows the roughening process in the 1st Embodiment of this invention.
  • the schematic diagram which shows the roughening process in the 1st Embodiment of this invention The schematic diagram which shows the roughening process in the 1st Embodiment of this invention.
  • the cross-sectional schematic diagram along the long side direction of the crystal resonator which shows the modification of the 1st Embodiment of this invention.
  • the schematic block diagram which showed each structural member of the crystal oscillator which shows the modification of the 1st Embodiment of this invention.
  • the schematic diagram which shows the roughening process in the modification of the 1st Embodiment of this invention The schematic diagram which shows the roughening process in the modification of the 1st Embodiment of this invention.
  • the schematic diagram which shows the roughening process in the modification of the 1st Embodiment of this invention The schematic diagram which shows the roughening process in the modification of the 1st Embodiment of this invention.
  • the cross-sectional schematic diagram along the long side direction of the crystal oscillator which shows the 2nd Embodiment of this invention The cross-sectional schematic diagram along the long side direction of the crystal oscillator which shows the 3rd Embodiment of this invention.
  • the cross-sectional schematic diagram along the long side direction of the crystal oscillator which shows the 4th Embodiment of this invention The cross-sectional schematic diagram along the long side direction of the crystal oscillator which shows the 5th Embodiment of this invention.
  • the cross-sectional schematic diagram along the long side direction of the crystal resonator which shows the modification of each embodiment of this invention The schematic plan view of the lower cover member of the crystal oscillator which shows the modification of each embodiment of this invention.
  • FIG. 1 is a cross-sectional view of the crystal resonator 1 along the long side direction of the crystal diaphragm 2 showing the first embodiment
  • FIG. 2 is a schematic diagram showing each component of the crystal resonator 1 shown in FIG. It is a block diagram.
  • the crystal diaphragm 2 pieoelectric diaphragm in the present invention
  • the excitation formed on one main surface 21 of the crystal diaphragm 2 constitute a main component member.
  • the crystal unit 1 includes a crystal diaphragm 2 and a lower lid member 3 that are bonded together by a bonding material 5, and a crystal vibration plate 2 and an upper lid member 4 that are bonded together by a bonding material 5 to form a package 11. .
  • a bonding material 5 a crystal vibration plate 2 and an upper lid member 4 that are bonded together by a bonding material 5 to form a package 11.
  • the lower lid member 3 and the upper lid member 4 have substantially the same shape and substantially the same outer dimensions.
  • the lower lid member 3 has an external connection terminal 34 formed on the bottom surface (other main surface) 37, and a conduction path (via) 35 electrically connected to the external connection terminal 34 is formed in the thickness direction.
  • the main surfaces 31 and 37 are penetrated.
  • the crystal diaphragm 2 is an AT-cut quartz plate cut out at a predetermined angle.
  • the quartz crystal diaphragm 2 includes a vibrating portion 20 in a thin area where the excitation electrode 23 is formed, a bank portion 26 around the vibrating portion 20, a frame portion 28, and a thin portion 27, which are integrally formed.
  • the frame portion 28 surrounds the vibrating portion 20 and the bank portion 26 in an annular shape, and is formed thicker than the vibrating portion 20 and the bank portion 26.
  • the thin portion 27 is formed between the bank portion 26 and the frame portion 28 and is formed thinner than the bank portion 26.
  • the crystal diaphragm 2 (vibrating part 20, bank part 26, thin part 27, frame part 28) is formed by wet etching, and excitation electrodes 23 are provided on the front and back surfaces (one main surface 21 and the other main surface 22) of the vibrating unit 20. Are formed by vapor deposition.
  • the excitation electrode 23 is formed on the front and back main surfaces (one main surface 21 and the other main surface 22) of the vibration unit 20 in a Cr and Au film configuration in order from the bottom.
  • membrane structure of the excitation electrode 23 is not limited to this, Other film
  • an extraction electrode 24 is led out from the excitation electrode 23, and the extraction electrode 24 extracted from the other main surface 22 is configured so that the vibration portion 20 is separated from the boundary portion between the vibration portion 20 and the bank portion 26 in the thickness direction. It is led out from the main surface 22 to one main surface 21.
  • a first bonding electrode 25 is formed at the terminal portion of the extraction electrode 24.
  • An Au plating layer 50 is formed on the first bonding electrode 25.
  • Both main surfaces 21 and 22 of the crystal diaphragm 2 have a mirror finish and are formed as flat smooth surfaces.
  • both main surfaces 201 and 202 of the frame portion 28 are configured as a bonding surface (bonding region) between the lower lid member 3 and the upper lid member 4, and the vibrating portion 20 is configured as a vibration region.
  • a first bonding material 51 which is a bonding layer for bonding to the lower lid member 3, is formed on one main surface 201 of the frame portion 28.
  • a second bonding material 52 which is a bonding layer for bonding to the upper lid member 4, is formed on the other main surface 202 of the frame portion 28.
  • the formation widths of the first bonding material 51 and the second bonding material 52 are substantially the same, and the first bonding material 51 and the second bonding material 52 have the same film configuration, and the first bonding material 51 and the second bonding material 52 are formed. Is configured by laminating a plurality of metal films on both main surfaces 201 and 202 of the frame portion 28.
  • a Cr layer (not shown) and an Au layer (not shown) are formed by vapor deposition from the lowermost layer side, and Au plating is formed thereon.
  • a layer (not shown) is laminated by an electrolytic plating method.
  • the lower lid member 3 is a flat plate having a rectangular shape in plan view, and a Z-plate crystal is used.
  • the outer dimension of the lower lid member 3 is substantially the same as the outer dimension of the crystal diaphragm 2 in plan view.
  • the lower lid member 3 has a bonding region (specifically, a bonding surface 32) with the crystal diaphragm 2 on one main surface 31.
  • the joint surface 32 is an outer periphery along the outer periphery of the one main surface 31 of the lower lid member 3 and a region in the vicinity thereof.
  • a second bonding electrode 33 is formed on one main surface 31 of the lower lid member 3. The second bonding electrode 33 is bonded to the first bonding electrode 25 of the crystal diaphragm 2 via the Au plating layer 50.
  • a third bonding material 53 which is a bonding layer for bonding to the crystal diaphragm 2, is formed.
  • the third bonding material 53 is formed by laminating a plurality of metal films on the bonding surface 32, and a Cr layer (not shown) and an Au layer 531 are formed by vapor deposition from the lowermost layer side.
  • An Au—Sn alloy layer 532 is laminated and an Au flash plating layer 533 is further laminated thereon.
  • the third bonding material 53 may be formed by depositing a Cr layer and an Au layer from the lower surface side, and sequentially laminating an Sn plating layer and an Au plating layer thereon.
  • the third bonding material 53 and the second bonding electrode 33 are formed at the same time, and the second bonding electrode 33 and the third bonding material 53 have the same configuration.
  • the third bonding material 53 is formed so that the formation width thereof is substantially the same as the formation width of the first bonding material 51.
  • the lower lid member 3 is formed with a via 35 for electrically connecting the excitation electrode 23 of the crystal diaphragm 2 to the outside. Through this via 35, an electrode pattern 36 is patterned from the second bonding electrode 33 on the one main surface 31 of the lower lid member 3 to the external connection terminal 34 on the other main surface 37.
  • the bonding region (specifically, the bonding surface 32) and the region where the electrode pattern 36 is formed are rough.
  • a region other than the rough surface of the one principal surface 31 is a flat smooth surface (mirror finish).
  • One main surface 31 of the lower lid member 3 is a flat smooth surface (mirror finish) in the initial state, and a joining region (base) is a rough surface by a roughening process described later.
  • FIGS. 1 and 2 in order to clarify the rough surface state of the one main surface 31 of the lower lid member 3, the unevenness of the rough surface region (joining region) is emphasized. Show.
  • the upper lid member 4 is a flat plate having a rectangular shape in plan view, and a Z-plate crystal is used similarly to the lower lid member 3.
  • the outer dimension of the upper lid member 4 is substantially the same as the outer dimension of the crystal diaphragm 2 in plan view.
  • the upper lid member 4 has a bonding region (specifically, a bonding surface 42) with the crystal diaphragm 2 on one main surface 41.
  • the joint surface 42 is an outer periphery along the outer periphery of the one main surface 41 of the upper lid member 4 and a region in the vicinity thereof.
  • the joint surface 42 of the one main surface 41 is a rough surface
  • the region other than the rough surface of the one main surface 41 is a flat smooth surface (mirror finish).
  • One main surface 41 of the upper lid member 4 is a flat smooth surface (mirror finish) in the initial state.
  • the bonding region (base) is roughened by a roughening process described later.
  • FIGS. 1 and 2 in order to clarify the rough surface state of the one main surface 41 of the upper lid member 4, the unevenness of the rough surface region (joining region) is emphasized and illustrated. ing.
  • a fourth bonding material 54 which is a bonding layer for bonding to the crystal diaphragm 2, is formed on the bonding surface 42 of the upper lid member 4.
  • the fourth bonding material 54 is formed by laminating a plurality of metal films on the bonding surface 42, and a Cr layer (not shown) and an Au layer 541 are formed by vapor deposition from the lowermost layer side.
  • An Au—Sn alloy layer 542 is laminated and an Au flash plating layer 543 is laminated thereon.
  • the fourth bonding material 54 may be formed by vapor-depositing a Cr layer and an Au layer from the lower surface side, and sequentially laminating an Sn plating layer and an Au plating layer thereon.
  • the fourth bonding material 54 is formed so that the formation width thereof is substantially the same as the formation width of the second bonding material 52.
  • the joining region (seal path) of the three joining materials 53 has the same width.
  • the seal path) has the same width.
  • FIG. 3 is a flowchart showing the roughening process.
  • the lower lid member 3 and the upper lid member 4 are made of two kinds of metals (Cr, Au) on the joint surface side (one main surface 31, 41) with the crystal diaphragm 2.
  • a metal film (Cr layer and Au layer) is formed by vapor deposition (metal film forming step shown in FIG. 3).
  • the metal film formed by the vapor deposition method is made of two kinds of metals, but is not limited to two kinds, and may be made of two or more kinds of metals. .
  • a resist is applied on the metal film by spin coating (resist application step 1 shown in FIG. 3), and the resist is exposed to form a predetermined external resist pattern. Then, the metal film is partially exposed by development (outer shape exposure / development step shown in FIG. 3). The exposed metal film is melted by metal etching, and the quartz base of the lower lid member 3 and the upper lid member 4 is exposed (outer metal etching step shown in FIG. 3). Thereafter, the remaining resist is stripped using a stripping solution (step of resist stripping shown in FIG. 3).
  • the layer thickness of the metal film (Cr layer and Au layer) which consists of two types of metals (Cr, Au) shown in FIG. 4 is not limited to the thickness of FIG. 4 respectively, As arbitrary layer thickness Also good.
  • the amount of Cr diffused by heat treatment is controlled by increasing or decreasing the thickness of Cr as the base metal relative to the thickness of Au, and the minute amount due to penetration of the etching solution into the Cr layer after the diffusion process It is possible to control the drilling state of the holes. That is, the surface state of the rough surface can be controlled.
  • a resist is applied again to the diffusion layer (resist application two steps shown in FIG. 3). Then, as shown in FIG. 7, the resist in the region to be roughened is removed by exposure / development (rough surface pattern exposure / development step shown in FIG. 3).
  • an etching solution (ammonium fluoride in the first embodiment) is formed on the metal film (diffusion layer) in a state where a region where the resist remains and a region where the resist is removed are mixed. And wet etching is performed (etching step shown in FIG. 3). At this time, in the metal film in the region not covered with the resist, the etching solution penetrates and reaches the crystal substrate under the metal film (diffusion layer), and corrodes the surface of the crystal substrate. As shown in FIG. 6, this is considered to be caused by the fact that a plurality of “conducting paths” of Cr are formed in the metal film by the diffusion process, and Cr is corrosive to the etching solution.
  • the etching solution penetrates the metal film through the “conducting path” and a large number of microholes (pinholes) are formed on the surface of the quartz substrate ( (See FIG. 9). In this way, the surface of the quartz substrate under the metal film can be roughened via the metal film (diffusion layer). On the other hand, the portion of the quartz substrate under the metal film covered with the resist remains without being corroded by the etching solution because the resist having a high corrosion resistance against the etching solution is used.
  • the resist is stripped using a stripping solution as shown in FIG. 10 (resist stripping two steps shown in FIG. 3). Then, metal etching is performed to remove the metal film remaining on the quartz substrate (entire metal etching step shown in FIG. 3). By this metal etching, the quartz substrate in the rough surface region and the quartz substrate in the mirror region are exposed (see FIG. 11).
  • a single crystal vibrating plate 2 is arranged on each of the wafer-like lower lid members 3 on which a large number of lower lid members 3 are formed in a lump, and the crystal vibrating plate 2 is placed on the crystal vibrating plate 2.
  • the upper lid member 4 is provided in an individual state, and then the wafer is diced to be separated into a large number of crystal resonators 1.
  • a method for manufacturing the crystal unit 1 will be described.
  • this invention is not limited to the form of each member demonstrated in 1st Embodiment, All the whole structural members of the package 11 of the lower cover member 3, the crystal diaphragm 2, and the upper cover member 4 are each many.
  • the crystal diaphragm 2 is arranged on the lower lid member 3 using the wafer formed in a batch, the upper lid member 4 is arranged on the quartz diaphragm 2, and then the individual pieces of the crystal unit 1 are diced by dicing. In this case, the method is suitable for mass production of the crystal unit 1.
  • a wafer on which a large number of lower lid members 3 are formed is placed so that one main surface 31 of the lower lid member 3 faces upward. .., 3 on one main surface 31, 31,..., 31 in the wafer at the position set by the image recognition means, and in an individual state, the crystal diaphragm 2, 2 are arranged such that one principal surface 21 of the crystal diaphragm 2 faces one principal surface 31 of the lower lid member 3.
  • the third bonding material 53 formed on the bonding surface 32 of the lower lid member 3 and the first bonding material 51 formed on the one main surface 201 of the frame portion 28 of the crystal diaphragm are substantially coincident in plan view. Arrange to do.
  • the second bonding electrode 33 formed on the one main surface 31 of the lower lid member 3 and the Au plating layer 50 formed on the first bonding electrode 25 of the quartz crystal vibration plate 2 are substantially omitted in plan view. Arrange to match.
  • the upper lid member 4 in an individual state is placed on the other main surface 202 of the frame portion 28 of the crystal diaphragm 2 at the position set by the image recognition means.
  • the second bonding material 52 formed on the other main surface 202 of the frame portion 28 of the crystal diaphragm 2 and the fourth bonding material 54 formed on the bonding surface 42 of the upper lid member 4 are substantially coincident in plan view. Arrange to do.
  • the lower lid member 3, the crystal diaphragm 2 and the upper lid member 4 are laminated, the lower lid member 3, the crystal diaphragm 2 and the upper lid member 4 are temporarily joined by joining using ultrasonic waves.
  • other manufacturing processes eg, degassing the internal space 12 and adjusting the oscillation frequency
  • heating and melting described below The lower lid member 3, the crystal diaphragm 2, and the upper lid member 4 are joined together.
  • the lower lid member 3, the crystal diaphragm 2 and the upper lid member 4 which are temporarily bonded are placed in an environment heated to a predetermined temperature, and each member (lower lid member 3, quartz diaphragm 2, upper lid member 4) is placed.
  • the main bonding is performed by melting each of the formed bonding materials (first bonding material 51, second bonding material 52, third bonding material 53, and fourth bonding material 54).
  • the bonding material 5 is configured by bonding the first bonding material 51 and the third bonding material 53, and the crystal vibrating plate 2 and the lower lid member 3 are bonded by the bonding material 5. As shown in FIG.
  • the excitation electrode 23 formed on one main surface 21 of the quartz crystal plate 2 is hermetically sealed by joining the crystal plate 2 and the lower lid member 3 with the bonding material 5.
  • the bonding material 5 is formed by heating and melting the second bonding material 52 and the fourth bonding material 54 simultaneously with the bonding of the first bonding material 51 and the third bonding material 53.
  • the crystal diaphragm 2 and the upper lid member 4 are joined.
  • the excitation electrode 23 formed on the other main surface 22 of the crystal vibrating plate 2 is hermetically sealed by bonding the crystal vibrating plate 2 and the upper lid member 4 with the bonding material 5.
  • the lower lid member 3, the crystal diaphragm 2, and the upper lid member 4 are temporarily bonded and permanently bonded in a vacuum atmosphere, but the present invention is not limited to this, and is not limited to nitrogen or the like. Bonding may be performed in an active gas atmosphere.
  • the crystal resonator 1 shown in the first embodiment since the base material of the joining region of the constituent members (the lower lid member 3 and the upper lid member 4) constituting the crystal resonator 1 is roughened, the rough surface As a result, the minute unevenness formed on the surface of the base material in the joining region of the lower lid member 3 and the upper lid member 4 functions like a “wedge” against the stress in the horizontal direction. That is, by having a so-called anchor (throwing) effect, the bonding strength between the base material in the bonding region of the roughened lower lid member 3 and upper lid member 4 and the bonding material 5 can be improved.
  • anchor throwing
  • the etching method of the constituent members constituting the crystal unit 1 shown in the first embodiment includes a metal film forming step, a diffusion step, and an etching step, the surface has very little unevenness like a mirror finish.
  • a rough surface can be partially formed on at least one main surface of the constituent member in the state. Specifically, a region not desired to be roughened is protected by coating with a resist or the like, and a protective film such as a resist is not formed on the region desired to be roughened, and a metal film in which metal diffusion occurs (diffusion layer) ), A large number of micropores are formed on the surface of the substrate by infiltrating the etching solution to the substrate of the constituent member. Thereby, a selective roughening process can be performed.
  • the surface condition is extremely low as in the case of mirror finishing.
  • a rough surface can be partially formed on one main surface 31, 41 of the lid member 3 and the upper lid member 4.
  • a region not desired to be roughened is protected by coating with a resist or the like, and a protective film such as a resist is not formed on a region desired to be roughened, and a metal film in which metal diffusion occurs (diffusion)
  • a protective film such as a resist
  • a metal film in which metal diffusion occurs A large number of micropores are formed on the surfaces of the lower lid member 3 and the upper lid member 4 by allowing the etching solution to penetrate into the base of the lower lid member 3 and the upper lid member 4 via the layer). Thereby, a selective roughening process can be performed.
  • the manufacturing cost of the crystal unit 1 since it is not essential to perform interatomic bonding for bonding as in the prior art, the manufacturing cost of the crystal unit 1 can be suppressed.
  • the upper lid member 4 and the lower lid member 3 are made of crystal, and the crystal diaphragm 2 is made of crystal, and a Cr layer is formed on the surface of the upper lid member 4 and the lower lid member 3 in the metal film forming step. Then, a metal film is formed by laminating an Au layer on the Cr layer to form a two-layer structure composed of a Cr layer and an Au layer, and in the diffusion process, Cr in the Cr layer is diffused into Au in the Au layer.
  • the etching solution can be applied to the upper cover member 4 and the cover member 3 without corroding the metal film. It can be penetrated to the substrate. Thereby, many micropores can be formed on the surface of the base material of the upper lid member 4 and the lid member 3 below the metal film where metal diffusion has occurred, and can be roughened.
  • the vibration part 20 has a reverse mesa shape in which a bank part 26 is formed on the outer periphery of the vibration part 20, and has a structure in which a thin part 27 is formed outside the vibration part 20.
  • the present invention is not limited to the inverted mesa structure.
  • the shape which did not form a thin part but made the inner side of the frame part a flat plate, and provided the through-hole partially may be sufficient.
  • the bonding material 5 may be made of, for example, Cr, Au, and Ge. Good.
  • a plated laminated film such as Au and Sn or a plated alloy layer such as AuSn is formed on the quartz diaphragm 1 side, and an Au plated layer (single metal element plated layer) is formed on the lower lid member 3 or the upper lid member 4 side. It may be formed.
  • quartz is used as the material for the two package substrates, but glass or sapphire may be used in addition to quartz.
  • FIG. 12 A modification of the first embodiment of the present invention is shown in FIG.
  • the modification shown in FIG. 12 is an example in which the surface of the roughening process is not the bonding region of the lower lid member 3 or the bonding region of the upper lid member 4 but the bonding region of the crystal diaphragm 2. Even with such a structure, the bonding strength between the crystal diaphragm 2 and the bonding material 5 can be improved. In addition, you may give the joining area
  • region of the upper cover member 4 is performed, it is not limited to this, As shown in FIG.
  • the surface of the third bonding material 53 and the surface of the fourth bonding material 54 formed on the surface of the roughened bonding region between the lower lid member 3 and the upper lid member 4 may be roughened.
  • the surface of the 3rd bonding material 53, and the surface of the 4th bonding material 54 are rough surfaces, for example, the roughened bottom
  • a plating layer is formed by electrolytic plating on an upper layer of the third bonding material 53 and the fourth bonding material 54 on the substrate between the bonding region of the lid member 3 and the bonding region of the upper lid member 4,
  • An anchor effect works between the surfaced third bonding material 53 and the fourth bonding material 54, and a machine at the time of temporary bonding using ultrasonic waves of the upper lid member 4, the lower lid member 3, and the crystal diaphragm 2.
  • the mechanical strength is improved.
  • the surface of the joint area between the lower lid member 3 and the upper lid member 4 is roughened by the manufacturing process shown in FIGS. 3 to 11, but the present invention is not limited to this.
  • the manufacturing method shown in 14 to 17 can also roughen the joint area between the lower lid member 3 and the upper lid member 4.
  • a Cr layer is formed by vapor deposition on one main surface 31, 41 of the quartz base plate of the lower lid member 3 and the upper lid member 4, and is put into an etching solution (ammonium fluoride solution). Then, wet etching is performed (see FIG. 14). At this time, surface roughness of the Cr layer is caused by etching, and the degree of surface roughness increases in proportion to the time for performing wet etching (see FIG. 15). Then, by performing wet etching continuously, as shown in FIG. 16, asperities are formed on one main surface 31, 41 of the quartz base plate of the lower lid member 3 and the upper lid member 4, and the lower lid member 3 and the upper lid member The four main surfaces 31 and 41 of the quartz base plate 4 are roughened.
  • etching solution ammonium fluoride solution
  • Cr layers are formed on the main surfaces 31 and 41 of the quartz base plates of the lower lid member 3 and the upper lid member 4 in a state where they are scattered by a vapor deposition method.
  • the lower lid member 3 and the upper lid member 4 shown in FIG. 17 are wet etched by being poured into an etching solution (ammonium fluoride solution). Then, by performing wet etching continuously, irregularities are formed on one main surface 31, 41 of the quartz base plate of the lower lid member 3 and the upper lid member 4 as shown in FIG. 16, and the lower lid member 3 and the upper lid member 4.
  • the main surfaces 31, 41 of the quartz base plate are roughened.
  • a process for forming a large number of small holes in the Cr layer at random using a vapor deposition method and a photolithography method is added to the manufacture of the lower lid member 3, the upper lid member 4, and the crystal diaphragm 2. May be.
  • a large number of small holes can be formed in the lower lid member 3, the upper lid member 4, and the crystal diaphragm 2 by performing etching using a Cr layer in which a large number of small holes are randomly formed as a mask.
  • FIG. 18 is a cross-sectional view of the crystal unit 1 along the long side direction of the crystal plate 2 showing the second embodiment.
  • the same constituent members as those in the first embodiment are denoted by the same reference numerals and a part of the description is omitted.
  • the same configuration as the first embodiment has the same effect. Therefore, hereinafter, the second embodiment will be described focusing on the differences from the first embodiment.
  • the joint regions of both the upper lid member 4 and the lower lid member 3 are roughened. And the joining area
  • the metal film (the first bonding material 51, the second bonding material 52, the third bonding material 53, and the fourth bonding material 54) constituting the bonding material 5 is heated and melted to lower the lid member. 3, the upper lid member 4, and the quartz crystal vibrating plate 5 are joined together, the fluidized joining material 5 can suppress the movement of the quartz crystal resonator 1 in the internal direction.
  • the fillet of the bonding material 5 is likely to be formed toward the bonding region (rough surface region) that is widely formed in the inner direction between the lower lid member 3 and the upper lid member 4.
  • the lower lid member 3, the upper lid member 4, and the crystal diaphragm 2 are more firmly joined. That is, the fillet formation region of the bonding material 5 can be controlled by controlling the rough surface region of the lower lid member 3 and the upper lid member 4.
  • FIG. 19 is a cross-sectional view of the crystal unit 1 along the long side direction of the crystal plate 2 showing the third embodiment.
  • the same constituent members as those in the first embodiment are denoted by the same reference numerals and a part of the description is omitted.
  • the same configuration as the first embodiment has the same effect. Therefore, hereinafter, the third embodiment will be described with a focus on differences from the first embodiment.
  • the entire main surfaces 31, 41 of the lower lid member 3 and the upper lid member 4 on the side to be joined to the crystal diaphragm 2 are rough. It is faced.
  • the entire main surface 31 of the lower lid member 3 is roughened, for example, an electrode pattern electrically connected to an external connection terminal connected to an external device is used as the lower lid member. 3, if the entire main surface 31 is roughened, the adhesion between the electrode pattern and the main surface 31 can be improved. Further, the surface roughening process is simplified and productivity is improved as compared with the case where only the surface where the electrode pattern is formed is selectively roughened.
  • the base material of the one main surfaces 31 and 41 whole of the lower cover member 3 and the upper cover member 4 is roughened, it is not limited to this, A lower cover member 3 may be roughened, and as shown in FIG. 20, the substrate in the region where the external connection terminals and electrode patterns are formed may be roughened. That is, the above-described effect is obtained as long as at least the surface of the main surface region where the terminals such as the external connection terminals and the electrode pattern are formed is roughened.
  • the roughening of the base material of the joint region in which the external connection terminal of the lower lid member 3 is formed is the same as that in the first embodiment, the second embodiment, the following fourth embodiment, or the fifth embodiment. Applicable.
  • FIG. 21 is a cross-sectional view of the crystal unit 1 along the long side direction of the crystal plate 2 showing the fourth embodiment.
  • the same constituent members as those in the first embodiment are denoted by the same reference numerals and a part of the description is omitted.
  • the fourth embodiment will be described with a focus on differences from the first embodiment.
  • the joint regions of both main surfaces 201 and 202 of the frame portion 28 of the crystal plate 2 are roughened.
  • the rough surface of the bonding region of the quartz crystal diaphragm 2 is formed by the roughening process described in the first embodiment, and the roughening process is performed between the bonding material 5 and the frame portion 28.
  • An anchor effect is produced, and the bonding strength between the crystal diaphragm 2 and the lower lid member 3 and the upper lid member 4 can be improved.
  • a multi-surface joint portion for joining the bonding material 5 with a plurality of surfaces having different surface directions is provided in the joint region of the lower lid member 3 in the joint region 13 between the lower lid member 3 and the crystal diaphragm 2 and in the vicinity thereof. It has been. Moreover, the expansion prevention part which prevents that a joining area
  • a multi-surface joint portion that joins the bonding material 5 with a plurality of surfaces having different surface directions is provided in and near the bonding region of the upper lid member 4 in the bonding portion 14 between the upper lid member 4 and the crystal diaphragm 2.
  • the expansion prevention part which prevents that a joining area
  • the multi-surface joint portion and the expansion preventing portion are formed by arranging two groove portions 8 along the outer periphery of one main surface 31, 41 of the lower lid member 3 and the upper lid member 4. Specifically, by forming the two groove portions 8, a protrusion 6 formed between the two grooves is provided as a multi-surface joint portion, and the protrusion 6 continues to the protrusion 6 on the outer side. A depression 7 is formed as an expansion preventing part.
  • the protrusion 6 has an end surface 61 and a side surface 62, and the bonding material 5 is bonded to the protrusion 6.
  • the recess 7 is formed in the surface direction of the one main surface 31, 41 in a plan view and outside the protrusion 6.
  • the lower lid member 3 and the upper lid member 4 are provided with the multi-surface joint portion and the enlargement preventing portion.
  • the bonding material 5 is on the bonding surface (one main surface 31, 41) between the lower lid member 3 and the upper lid member 4 in the main surface direction ( Spreading in the plane direction) can be suppressed.
  • the lower lid member 3 and the upper lid member 4 are provided with the multi-surface joint portions, and thus have a plurality of surfaces with different surface directions (specifically Specifically, the bonding material 5 can be bonded at the end surface 61 and the both side surfaces 62) of the protrusion 6, and an anchor effect can be generated to increase the bonding strength with the bonding material 5.
  • the multi-surface joint portion is a protrusion 6 having a plurality of surfaces, and the bonding material 5 is bonded to a plurality of surfaces including the end surface 61 of the protrusion 6. Can be joined, and an anchor effect is likely to occur.
  • the bonding material 5 spreads (wet) in the bonding portions 13 and 14 (bonding regions) is a phenomenon that naturally occurs.
  • the multi-surface joint portion is provided in the vicinity of the joint region between the lower lid member 3 and the upper lid member 4 and the vicinity thereof, and is expanded outward of the multi-surface joint portion. Since the prevention portion is provided, the bonding material 5 flows to the end face of the crystal unit 1 even when the bonding material 5 spreads in the bonding portions 13 and 14 after bonding by the bonding material 5 by the expansion prevention portion. (Wetting) can be prevented, and the bonding material 5 can be prevented from entering the internal space 12 of the crystal unit 1.
  • the bonding material 5 is heated and melted as shown in FIG.
  • the amount of the bonding material 5 is changed to be larger than the amount used in the fourth embodiment, the capacity of the recess 7 is filled.
  • the anchor effect since the anchor effect also occurs in the recessed portion 7, it is possible to further increase the bonding strength.
  • the multi-surface joint portion and the expansion prevention are provided at both the joint portion 13 between the crystal diaphragm 2 and the lower lid member 3 and the joint portion 14 between the crystal diaphragm 2 and the upper lid member 4.
  • the present invention is not limited to this, and is not limited to this.
  • the joint portion 13 between the crystal diaphragm 2 and the lower lid member 3, the crystal diaphragm 2 and the upper lid member 4 is provided. If the multi-surface joint portion and the expansion preventing portion are provided in at least one joint portion with the joint portion 14, the above effect is obtained.
  • a recess 61 formed continuously from the protrusion 6 is provided as an expansion preventing part outside the protrusion 6 which is a multi-surface joint, but this is one implementation.
  • the present invention is not limited to this, and the above-described effect can be obtained if an expansion preventing portion is provided outside the multi-surface joint portion.
  • the lower lid member 3 and the upper lid member 4 are provided with one multi-surface joint portion and two expansion prevention portions, but the number of the multi-surface joint portion and the expansion prevention portion is the same.
  • the present invention is not limited, and an arbitrary number of multi-surface joint portions and expansion preventing portions may be provided.
  • the depression 7 is used for the enlargement prevention portion, but the present invention is not limited to this, and the bonding material 5 is one main surface 31 of the lower lid member 3 or one of the upper lid member 4.
  • the enlargement prevention part is perpendicular to the main surface direction (or a direction close to the direct downward direction). It is preferable that the projections and depressions are formed.
  • FIG. 22 is a cross-sectional view of the crystal unit 1 along the long side direction of the crystal plate 2 according to the fifth embodiment.
  • the same constituent members as those in the first embodiment are denoted by the same reference numerals and a part of the description is omitted.
  • the fifth embodiment will be described focusing on the differences from the first embodiment.
  • the bases of both main surfaces 201 and 202 of the frame portion 28, which is a joining region of the crystal diaphragm 2 are roughened.
  • region (one main surface 31) of the lower cover member 3 are roughened.
  • the base material of the joint region of the upper cover member 4 and the base material of the joint region of the lower cover member 3 which are roughened are formed to be rougher than the surface of the base material of the joint region of the crystal diaphragm 2.
  • the upper cover member 4 and the lower cover member 3 are roughened as compared with the case where the roughening process is performed on the crystal diaphragm 2 on which the excitation electrode 23 and the extraction electrode 24 are formed.
  • the roughening treatment process can be simplified by performing the roughening treatment.
  • the quartz diaphragm 2 is formed with a metal film (electrode film) such as the excitation electrode 23 and the extraction electrode 24, and it is necessary to protect the excitation electrode 23 and the extraction electrode 24 during the roughening treatment. Furthermore, since various thermal histories are added, there is a possibility that the film states of the excitation electrode 23 and the extraction electrode 24 will be affected.
  • the upper lid member 4 and the lower lid member 3 are not formed with electrode films such as the excitation electrode 23 and the extraction electrode 24, and the influence on various characteristics of the crystal resonator 1 can be reduced.
  • the crystal resonator 1 having good characteristics can be obtained in combination with the anchor effect on the joining material 5. .
  • the present invention is not limited to this, and the excitation electrode formed on the crystal diaphragm by the two lid members.
  • the shape of the lid member may be arbitrarily set.
  • a form in which the concave portions of the two lid members formed in a concave shape are hermetically joined so as to face the crystal diaphragm are shown in FIGS. 23 and 24, as shown in FIGS. 23 and 24, a package 11 is composed of an upper cover member 4 of a single plate and a lower cover member 3 of a box-like body, and the crystal diaphragm 2 is placed on the lower cover member 3 in the package 11.
  • FIG. 24 is a schematic plan view of the lower lid member 3.
  • FIG. 23 shows the lower lid member 3 taken along the line AA in FIG.
  • a joining area where the upper lid member 4 is joined to the lower lid member 3 a joining area where the upper lid member 3 is joined to the upper lid member 4, and the crystal diaphragm 2 of the lower lid member 3.
  • the joint region that is electromechanically joined to each other and the joint region that forms the external connection terminal that is electrically connected to the external member of the lower lid member 3 are roughened.
  • a surface-mount type crystal resonator is taken as an example, but other surface-mount type used in electronic devices such as a crystal oscillator in which a crystal resonator is incorporated in an electronic component such as a crystal filter or an integrated circuit.
  • This method can also be applied to a method for manufacturing a piezoelectric vibration device.

Abstract

 圧電振動デバイスでは、励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材とが設けられ、前記圧電振動板の表裏主面に前記上蓋部材および前記下蓋部材との各接合領域を有し、前記上蓋部材の一主面に前記圧電振動板との接合領域を有し、前記下蓋部材の一主面に前記圧電振動板との接合領域を有する。前記圧電振動板の接合領域と前記上蓋部材の接合領域と前記下蓋部材の接合領域とには、接合材がそれぞれ形成されている。前記圧電振動板の接合領域と前記上蓋部材の接合領域とが前記接合材を介して接合され、前記圧電振動板の接合領域と前記下蓋部材の接合領域とが前記接合材を介して接合されている。また、前記圧電振動板の接合領域の素地と前記上蓋部材の接合領域の素地と前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化されている。

Description

圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法
 本発明は、電子機器等に用いられる圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法に関するものである。
 表面実装型の水晶振動子において、上部に開口部を有する箱状の容器体の内部に水晶振動片を接合し、その後に前記開口部を蓋体で気密封止した構造のパッケージが用いられている。前記容器体にはセラミックの焼成体が一般的に用いられている。
 近年、各種電子デバイスの超小型化が進行しているが、超小型の前記セラミックの焼成体では焼成精度に限界がある。前記セラミックの焼成体の超小型化を図った場合、セラミックの焼成ずれが顕在化し、この焼成ずれが前記セラミックの焼成体に気密不良などの影響を及ぼす。そのため、焼成ずれを無視することができない。
 そこで、現在、前記容器体および前記蓋体が、例えば一対の水晶板で成形され、励振電極が形成された振動部と前記振動部の外周の枠部とが一体形成された水晶振動板が、前記接合材を介して一対の前記水晶板によって挟み込まれた構成の水晶振動子が、特許文献1および特許文献2に開示されている。
 特許文献1および特許文献2における水晶振動子では、上下の前記蓋体(一対の前記水晶板)の表面と前記水晶振動板の表面とが鏡面加工されており、前記蓋体と前記水晶振動板とは直接接合(原子間接合)によって接合されている。ここでいう原子間接合を行うための設備は高価であり、特許文献1および特許文献2における水晶振動子では、製造コストを悪化させる。
 また、特許文献1および特許文献2における水晶振動子とは異なり、一対の前記水晶板からなる上下の前記蓋体と、前記水晶振動板とを直接接合にて接合した形態の水晶振動子が特許文献3に開示されている。特許文献3における水晶振動子では、上下の前記蓋体(一対の水晶板)の表面と前記水晶振動板の表面とは、特許文献1および特許文献2における水晶振動子と同様に鏡面加工され、上下の前記蓋体の表面と前記水晶振動板の表面との凹凸が極めて小さい平滑面となっている。このような上下の前記蓋体の表面と前記水晶振動板の表面との表面状態によれば、上下の前記蓋体の表面および前記水晶振動板の表面は、前記接合材との接合の際に充分な接合強度を得ることが困難となる。
特開平6-303080号公報 特開平6-310971号公報 特許3319221号公報
 本発明は、かかる点に鑑みてなされたものであり、接合材と圧電振動デバイスを構成する構成部材との接合強度を向上させ、製造コストを抑えた圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法を提供することを目的とする。
 上記目的を達成するために、本発明にかかる圧電振動デバイスは、励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材と、が設けられ、前記圧電振動板の表裏主面に、前記上蓋部材および前記下蓋部材との各接合領域を有し、前記上蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記下蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記下蓋部材の他主面に、外部部材との接合領域を有し、前記圧電振動板の接合領域と、前記上蓋部材の接合領域と、前記下蓋部材の接合領域とには、接合材を構成する接合層がそれぞれ形成され、前記圧電振動板の接合領域と前記上蓋部材の接合領域とが前記接合材を介して接合され、前記圧電振動板の接合領域と前記下蓋部材の接合領域とが前記接合材を介して接合され、前記圧電振動板の接合領域の素地と、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化されていることを特徴とする。
 このような圧電振動デバイスであれば、当該圧電振動デバイスを構成する構成部材の前記接合領域の素地が粗面化されているので、粗面化によって前記接合領域の素地の表面に形成された微小な凹凸が水平方向の応力に対して「楔」のように機能する。つまり、所謂、アンカー(投錨)効果を有することによって、粗面化された前記接合領域の素地と前記接合材との接合強度を向上させることができる。その結果、本発明にかかる圧電振動デバイスによれば、前記接合材と当該圧電振動デバイスの構成部材との接合強度を向上させて気密性を高くすることができ、また、従来技術のように接合に関して原子間接合を行うことを必須としていないので、圧電振動デバイスの製造コストを抑えることができる。
 また、上記目的を達成するために、本発明にかかる別の圧電振動デバイスは、励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材と、が設けられ、前記上蓋部材の一主面に、前記下蓋部材との接合領域を有し、前記下蓋部材の一主面に、前記上蓋部材との接合領域を有し、前記下蓋部材の他主面に、外部部材との接合領域を有し、前記上蓋部材の接合領域と、前記下蓋部材の接合領域とには、接合材を構成する接合層がそれぞれ形成され、前記上蓋部材の接合領域と前記下蓋部材の接合領域とが前記接合材を介して接合され、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化されていることを特徴とする。
 このような圧電振動デバイスであれば、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが粗面化されているので、粗面化によって前記接合領域の素地の表面に形成された微小な凹凸が水平方向の応力に対して「楔」のように機能する。つまり、所謂、アンカー(投錨)効果を有することによって、粗面化された前記接合領域の素地と前記接合材との接合強度を向上させることができる。その結果、本発明にかかる圧電振動デバイスによれば、前記接合材と当該圧電振動デバイスの構成部材との接合強度を向上させて気密性を高くすることができ、また、従来技術のように接合に関して原子間接合を行うことを必須としていないので、圧電振動デバイスの製造コストを抑えることができる。
 また、前記構成において、前記下蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記圧電振動板との接合領域の素地が、粗面化されてもよい。
 この場合、前記下蓋部材の一主面に前記圧電振動板との接合領域を有し、前記圧電振動板との接合領域の素地が粗面化されるので、粗面化によって前記接合領域の素地の表面に形成された微小な凹凸が水平方向の応力に対して「楔」のように機能する。つまり、所謂、アンカー(投錨)効果を有することによって、粗面化された前記接合領域の素地と前記圧電振動板との接合強度を向上させることができる。
 また、前記構成において、粗面化された前記接合領域の素地上に形成された前記接合層の表面が、粗面化されてもよい。この場合、粗面となった前記接合領域の素地上の前記接合層も粗面となっているので、例えば前記接合領域の素地上の粗面化された前記接合層のさらに上層に、電解メッキ法によってメッキ層を形成したとき、前記メッキ層と粗面化された前記接合層との間にアンカー効果が働き、前記上蓋部材と前記下蓋部材と前記圧電振動板との超音波を用いた仮止接合時の機械的強度が向上する。
 また、前記構成において、前記圧電振動板の接合領域の素地が、粗面化され、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化され、前記上蓋部材と前記下蓋部材との少なくとも1つの前記接合領域の素地の表面が、前記圧電振動板の接合領域の素地の表面よりも、粗く成形されてもよい。
 このような構成によれば、前記励振電極等が形成された前記圧電振動板に対して粗面化処理を行うよりも、前記上蓋部材と前記下蓋部材との少なくとも1つに対して粗面化処理を行う方が粗面化処理工程を簡便にすることができる。前記圧電振動板には前記励振電極等の金属膜(電極膜)が形成されており、粗面化処理の際には前記電極膜を保護する必要があり、さらに様々な熱履歴が加わるため、前記電極膜の膜状態に影響が及ぶ可能性がある。これに対して、前記上蓋部材と前記下蓋部材とには前記励振電極は形成されていないので、当該圧電振動デバイスの諸特性への影響を少なくすることができ、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つを粗く成形することによって、前記接合材に対するアンカー効果と相まって、特性の良好な当該圧電振動デバイスを得ることができる。
 また、前記構成において、前記上蓋部材と前記下蓋部材との少なくとも1つの前記接合領域が、粗面化され、粗面化された前記接合領域は、前記圧電振動板の接合領域よりも平面視で前記一主面の内側方向に広く形成されてもよい。
 このような構成によれば、例えば前記接合材を構成する前記接合層を加熱溶融させて前記上蓋部材と前記下蓋部材と圧電振動板とを接合するときに、流動化した前記接合材(前記接合層)が当該圧電振動デバイスの内部方向へ移動するのを抑制することができる。具体的には、前記上蓋部材と前記下蓋部材との少なくとも1つの内側方向に広く形成されている前記接合領域(粗面領域)に向かって、前記接合材のフィレットが形成されやすくなる。このフィレットによって、前記上蓋部材と前記下蓋部材との少なくとも1つと圧電振動板とがより強固に接合されることになる。つまり、前記上蓋部材と前記下蓋部材との少なくとも1つの前記粗面領域をコントロールすることで前記接合材のフィレットの形成領域を制御することができる。
 また、前記構成において、前記上蓋部材と前記下蓋部材との少なくとも1つの前記主面全体が、粗面化されてもよい。
 前記構成であれば、前記上蓋部材と前記下蓋部材との少なくとも1つの前記主面全体が粗面化されているため、例えば、外部機器と接続する外部接続端子と電気的に接続される電極パターンを、前記上蓋部材と前記下蓋部材との少なくとも1つの前記主面側に形成する際に、前記主面全体が粗面されていれば、前記電極パターンと前記主面との密着性を向上させることができる。また前記電極パターンの形成されている領域だけを選択的に粗面化処理する場合に比べて粗面化処理工程が簡便となり、生産性が向上する。
 また、前記構成において、前記圧電振動板の接合領域が、粗面化され、前記上蓋部材と前記下蓋部材の少なくとも1つの前記接合領域の近傍には、前記接合材を面方向が異なる複数の面で接合する複数面接合部が設けられ、前記複数面接合部の外方に、前記接合材との接合領域が拡大するのを防ぐ拡大防止部が設けられてもよい。
 前記構成によれば、前記圧電振動板の接合領域が粗面化されているため、前記圧電振動板と前記接合材との間にアンカー効果を生じせしめ、前記圧電振動板と前記接合材との接合強度を向上させることができる。さらに、前記上蓋部材と前記下蓋部材の少なくとも1つの前記接合領域の近傍には、前記複数面接合部と前記拡大防止部とが設けられているため、前記複数面接合部と前記拡大防止部とが設けられた前記上蓋部材と前記下蓋部材の少なくとも1つを前記接合材を介して前記圧電振動板に接合する際、前記接合材が、前記複数面接合部と前記拡大防止部とが設けられた前記上蓋部材と前記下蓋部材の少なくとも1つの接合面(前記一主面)上を主面方向(平面方向)に広がるのを抑制することができる。
 具体的には、前記構成によれば、前記上蓋部材と前記下蓋部材の少なくとも1つには前記複数面接合部が設けられているため、面方向が異なる複数の面で前記接合材を接合することができ、アンカー効果が生じて前記接合材との接合強度を高めることができる。
 また、前記接合材の加熱溶融接合では、接合部位(前記接合領域)における前記接合材の広がり(濡れ)は当然に起こる現象である。しかしながら、前記構成によれば、前記上蓋部材と前記下蓋部材の少なくとも1つの前記接合領域の近傍に前記複数面接合部が設けられ、前記複数面接合部の外方に前記拡大防止部が設けられているので、前記拡大防止部によって、前記接合材による接合後に前記接合部位において前記接合材が広がった場合であっても、前記接合材が当該圧電振動デバイスの端面まで流れる(濡れる)のを防止することができ、前記接合材が当該圧電振動デバイスの内部空間に侵入するのを防止することができる。
 また、上記目的を達成するために、本発明にかかる圧電振動デバイスの製造方法は、励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材と、が設けられ、前記圧電振動板の表裏主面に、前記上蓋部材および前記下蓋部材との各接合領域を有し、前記上蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記下蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記圧電振動板の接合領域と前記上蓋部材の接合領域とが接合材を介して接合され、前記圧電振動板の接合領域と前記下蓋部材の接合領域とが接合材を介して接合された圧電振動デバイスの製造方法であり、前記圧電振動板の接合領域の素地と、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つに、少なくとも2種類の金属からなる金属膜を積層する金属膜形成工程と、前記金属膜形成工程の後、加熱処理によって前記金属膜の内部の金属拡散を促す拡散工程と、前記拡散工程後の前記金属膜にエッチング液を浸透させてウエットエッチングを行うことにより、前記素地表面に多数の微小孔を形成して前記素地を粗面化させるエッチング工程と、を有することを特徴とする。
 前記製造方法によれば、鏡面加工のように表面に凹凸が極めて少ない表面状態の構成部材の一主面に、部分的に粗面を形成することが可能となる。具体的に、粗面化したくない領域にはレジスト等で被覆することによって保護するとともに、粗面化したい領域にはレジスト等の保護膜を形成せず、金属拡散が生じた前記金属膜を介して、エッチング液を前記部材の素地まで浸透させることによって前記素地の表面に多数の前記微小孔を形成する。これにより、選択的な粗面化処理が可能となる。その結果、本発明にかかる圧電振動デバイスの製造方法によれば、前記接合材と当該圧電振動デバイスの構成部材との接合強度を向上させて気密性を高くすることができ、また、従来技術のように接合に関して原子間接合を行うことを必須としていないので、圧電振動デバイスの製造コストを抑えることができる。
 また、前記構成において金属膜を構成する層厚を可変させてもよい。この場合、加熱処理によって拡散する金属量をコントロールし、前記拡散工程後の前記金属膜へのエッチング液の浸透による前記素地の表面への前記微小孔の穿孔状態を制御することができる。つまり、粗面の表面状態をコントロールすることができる。
 前記製造方法において、前記上蓋部材と前記下蓋部材とは、水晶またはガラスからなり、前記圧電振動板は、水晶からなり、前記金属膜形成工程において、前記上蓋部材と前記下蓋部材と前記圧電振動板との少なくとも1つの前記素地上にCr層を形成し、前記Cr層上にAu層を積層して前記金属膜を形成して、前記Cr層と前記Au層とからなる2層構成を形成し、前記拡散工程において、前記Cr層のCrを前記Au層のAuへ拡散させ、前記Crおよび前記水晶に対して腐食性を有するエッチング液を用いてウエットエッチングを行うことにより、前記素地の表面に多数の微小孔を形成して前記素地を粗面化させてもよい。
 この場合、前記上蓋部材と前記下蓋部材が水晶またはガラスからなり、前記圧電振動板が水晶からなるため、ウエットエッチングによる外形成形を行いやすい。また、前記金属膜の膜構成は前記Cr層に前記Au層が積層された2層構成となっている。このような膜構成であれば、例えば前記上蓋部材と前記下蓋部材とに水晶を用いた場合、前記圧電振動板との密着性を良好にすることができる。さらに、エッチング液に対して耐性を有するAuを用いるため、内部に前記Crが拡散した前記金属膜を介してウエットエッチングを行っても、前記金属膜を腐食させることなくエッチング液を前記金属膜を形成した部材の素地にまで浸透させることができる。これにより、金属拡散が生じた前記金属膜下の前記素地の表面に多数の前記微小孔を形成して粗面化させることができる。
 また、上記目的を達成するために、本発明にかかる圧電振動デバイスを構成する構成部材のエッチング方法は、少なくとも1つの主面に外部部材との各接合領域を有した構成部材のエッチング方法であり、前記構成部材の接合領域の素地に、少なくとも2種類の金属からなる金属膜を積層する金属膜形成工程と、前記金属膜形成工程の後、加熱処理によって前記金属膜の内部の金属拡散を促す拡散工程と、前記拡散工程後の前記金属膜にエッチング液を浸透させてウエットエッチングを行うことにより、前記素地表面に多数の微小孔を形成して前記素地を粗面化させるエッチング工程と、を有することを特徴とする。
 前記エッチング方法によれば、鏡面加工のように表面に凹凸が極めて少ない表面状態の前記構成部材の少なくとも1つの主面に、部分的に粗面を形成することが可能となる。具体的に、粗面化したくない領域にはレジスト等で被覆することによって保護するとともに、粗面化したい領域にはレジスト等の保護膜を形成せず、金属拡散が生じた前記金属膜を介して、エッチング液を前記構成部材の素地まで浸透させることによって前記素地の表面に多数の前記微小孔を形成する。これにより、選択的な粗面化処理が可能となる。その結果、本発明にかかるエッチング方法によれば、例えば、構成部材に圧電振動板と上蓋部材と下蓋部材とを用いて、圧電振動板を接合材を介して上蓋部材と下蓋部材によって挟持した圧電振動デバイスの場合、前記圧電振動板と前記接合材との接合強度や、前記上蓋部材と前記接合材との接合強度や、前記下蓋部材と前記接合材との接合強度を向上させることができ、また、従来技術のように接合に関して原子間接合を行うことを必須としていないので、圧電振動デバイスの製造コストを抑えることができる。
 以上のように、本発明にかかる圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法によれば、接合材と圧電振動デバイスを構成する構成部材(例えば、前記圧電振動片と前記上蓋部材と前記下蓋部材)との接合強度を向上させ、圧電振動デバイスの製造コストを抑えることができる。
本発明の第1の実施形態を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の第1の実施形態を示す水晶振動子の各構成部材を示した概略構成図。 本発明の第1の実施形態における粗面化処理を示すフロチャート。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態における粗面化処理を示す模式図。 本発明の第1の実施形態の変形例を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の第1の実施形態の変形例を示す水晶振動子の各構成部材を示した概略構成図。 本発明の第1の実施形態の変形例における粗面化処理を示す模式図。 本発明の第1の実施形態の変形例における粗面化処理を示す模式図。 本発明の第1の実施形態の変形例における粗面化処理を示す模式図。 本発明の第1の実施形態の変形例における粗面化処理を示す模式図。 本発明の第2の実施形態を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の第3の実施形態を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の第3の実施形態の変形例を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の第4の実施形態を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の第5の実施形態を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の各実施形態の変形例を示す水晶振動子の長辺方向に沿った断面模式図。 本発明の各実施形態の変形例を示す水晶振動子の下蓋部材の概略平面図。
 1  水晶振動子
 2  水晶振動板
 20  振動部
 23  励振電極
 3  下蓋部材
 4  上蓋部材
 5  接合材
 50  Auメッキ層
 51  第1接合材
 52  第2接合材
 53  第3接合材
 54  第4接合材
 6  突部
 7  窪み部
 8  溝部
 -第1の実施形態-
 以下、本発明にかかる第1の実施形態について図面を参照しながら説明する。なお、以下に示す第1の実施形態では、圧電振動デバイスとして水晶振動子を本発明に適用した場合を示す。図1は第1の実施形態を示す水晶振動板2の長辺方向に沿った水晶振動子1の断面図であり、図2は図1に示す水晶振動子1の各構成部材を示した概略構成図である。
 第1の実施形態にかかる水晶振動子1では、図1に示すように、水晶振動板2(本発明でいう圧電振動板)と、この水晶振動板2の一主面21に形成された励振電極23を気密封止する下蓋部材3と、この水晶振動板2の他主面22に形成された励振電極23を気密封止する上蓋部材4とによって主要構成部材が構成される。
 水晶振動子1は、水晶振動板2と下蓋部材3とが接合材5によって接合され、かつ、水晶振動板2と上蓋部材4とが接合材5によって接合されてパッケージ11が構成されてなる。水晶振動板2を介して下蓋部材3と上蓋部材4とが接合されることで、パッケージ11の内部空間12が2箇所形成され、このパッケージ11の内部空間12に水晶振動板2の両主面21,22に形成された励振電極23が、それぞれの内部空間12で気密封止されている。
 下蓋部材3と上蓋部材4とは、略同一形状および略同一外形寸法となっている。また、下蓋部材3には、その底面(他主面)37に外部接続端子34が形成され、外部接続端子34と電気的に繋がった導通路(ビア)35が、その厚さ方向に形成され両主面31,37間を貫通している。
 以下、まず水晶振動子1の主要構成部材について説明し、その後に水晶振動子1の製造方法について説明する。
 図2に示すように、水晶振動板2は、所定の角度で切り出されたATカット水晶板である。水晶振動板2は、励振電極23が形成された薄肉領域の振動部20と、その周囲の土手部26と、枠部28と薄肉部27とを備え、これらは一体的に成形されている。ここでいう枠部28は、振動部20と土手部26を環状に包囲し、振動部20および土手部26よりも厚肉に形成されている。また、薄肉部27は、土手部26と枠部28との間に形成され、土手部26よりも薄肉に形成されている。
 水晶振動板2(振動部20、土手部26、薄肉部27、枠部28)は、ウエットエッチングによって成形され、振動部20の表裏面(一主面21と他主面22)に励振電極23が蒸着法によって対向して形成されている。第1の実施形態では、励振電極23は、振動部20の表裏主面(一主面21と他主面22)に、下から順に、Cr,Auの膜構成で成膜されている。なお、励振電極23の膜構成はこれに限定されるものではなく、その他の膜構成であってもよい。また、励振電極23から引出電極24が導出形成されており、他主面22から引き出された引出電極24は、振動部20と土手部26との境界部分から振動部20を厚さ方向に他主面22から一主面21へ貫いて導出されている。そして、引出電極24の終端部分には第1接合電極25が形成されている。第1接合電極25の上部にはAuメッキ層50が形成されている。
 水晶振動板2の両主面21,22は、鏡面加工仕上げとなっており、平坦平滑面として成形されている。水晶振動板2では、枠部28の両主面201,202が下蓋部材3と上蓋部材4との接合面(接合領域)として構成され、振動部20が振動領域として構成される。枠部28の一主面201には下蓋部材3と接合するための接合層である第1接合材51が形成されている。また、枠部28の他主面202には上蓋部材4と接合するための接合層である第2接合材52が形成されている。第1接合材51と第2接合材52の形成幅は略同一となり、第1接合材51と第2接合材52とは同一膜構成からなり、これら第1接合材51および第2接合材52は、複数の金属膜を枠部28の両主面201,202に積層して構成されている。第1の実施形態では、第1接合材51および第2接合材52は、最下層側からCr層(図示省略)とAu層(図示省略)とが蒸着法によって形成され、その上にAuメッキ層(図示省略)が電解メッキ法によって積層された構成となっている。
 図2に示すように、下蓋部材3は平面視矩形状の平板であり、Z板水晶が使用されている。下蓋部材3の外形寸法は、平面視で水晶振動板2の外形寸法と略同一となっている。下蓋部材3は、一主面31に水晶振動板2との接合領域(具体的には接合面32)を有している。接合面32は、下蓋部材3の一主面31の外周に沿った外周およびその付近の領域となっている。また、下蓋部材3の一主面31には、第2接合電極33が形成されている。第2接合電極33は、水晶振動板2の第1接合電極25にAuメッキ層50を介して接合される。
 下蓋部材3の接合面32には、水晶振動板2と接合するための接合層である第3接合材53が形成されている。具体的には、第3接合材53は複数の金属膜が接合面32に積層形成されてなり、その最下層側からCr層(図示省略)とAu層531とが蒸着形成され、その上にAu-Sn合金層532が積層形成され、さらにその上にAuフラッシュメッキ層533が積層形成されている。もしくは、第3接合材53は、その下面側からCr層とAu層とが蒸着形成され、その上にSnメッキ層とAuメッキ層が順に積層して形成されてもよい。なお、第3接合材53と、上記の第2接合電極33とは同時に形成され、第2接合電極33と第3接合材53とは同一の構成となる。第3接合材53は、その形成幅が第1接合材51の形成幅と略同一となるように形成されている。また、下蓋部材3には、図2に示すように、水晶振動板2の励振電極23を外部と導通させるためのビア35が形成されている。このビア35を介して、電極パターン36が、下蓋部材3の一主面31の第2接合電極33から他主面37の外部接続端子34にかけてパターン形成されている。
 下蓋部材3の一主面31(素地)のうち、接合領域(具体的には接合面32)および電極パターン36が形成される領域が粗面となっている。一主面31の粗面以外の領域は平坦平滑面(鏡面加工)となっている。この下蓋部材3の一主面31は、初期状態では全面が平坦平滑面(鏡面加工)となっており、後述する粗面化処理によって接合領域(素地)が粗面となっている。なお、第1の実施形態の説明において、図1,2では、下蓋部材3の一主面31の粗面状態を明確にするため、粗面領域(接合領域)の凹凸を強調して図示している。
 図2に示すように、上蓋部材4は平面視矩形状の平板であり、下蓋部材3と同様にZ板水晶が使用されている。上蓋部材4の外形寸法は、水晶振動板2の平面視の外形寸法と略同一となっている。上蓋部材4は、一主面41に水晶振動板2との接合領域(具体的には接合面42)を有している。接合面42は、上蓋部材4の一主面41の外周に沿った外周およびその付近の領域となっている。上蓋部材4では、その一主面41(素地)のうち接合面42だけが粗面となっており、一主面41の粗面以外の領域は平坦平滑面(鏡面加工)となっている。この上蓋部材4の一主面41は、初期状態では全面が平坦平滑面(鏡面加工)となっている。しかしながら、後述する粗面化処理によって接合領域(素地)が粗面となっている。なお、第1の実施形態の説明において、図1,2では、上蓋部材4の一主面41の粗面状態を明確にするため、粗面領域(接合領域)の凹凸を強調して図示している。
 上蓋部材4の接合面42には、水晶振動板2と接合するための接合層である第4接合材54が形成されている。具体的には、第4接合材54は、複数の金属膜が接合面42に積層形成されてなり、その最下層側からCr層(図示省略)とAu層541とが蒸着形成され、その上にAu-Sn合金層542が積層形成され、その上にAuフラッシュメッキ層543が積層形成されている。もしくは、第4接合材54は、その下面側からCr層とAu層とが蒸着形成され、その上にSnメッキ層とAuメッキ層が順に積層して形成されていてもよい。第4接合材54は、その形成幅が第2接合材52の形成幅と略同一となるように形成されている。
 上記構成の水晶振動子1では、水晶振動板2の接合面(枠部28の一主面201)における第1接合材51の接合領域(シールパス)と、下蓋部材3の接合面32における第3接合材53の接合領域(シールパス)は同じ幅を有している。また、水晶振動板2の接合面(枠部28の他主面202)における第2接合材52の接合領域(シールパス)と、上蓋部材3の接合面42における第4接合材54の接合領域(シールパス)は同じ幅を有している。
 以上が水晶振動子1を構成する主要構成部材の説明である。
 次に、上記の下蓋部材3と上蓋部材4との接合領域の粗面化処理について図3乃至11を参照しながら説明する。図3は、粗面化工程を表したフロチャートである。
 はじめに、下蓋部材3と上蓋部材4との、水晶振動板2との接合面側(一主面31,41)に、図4に示すように、2種類の金属(Cr、Au)からなる金属膜(Cr層とAu層)を蒸着法によって積層形成する(図3に示す金属膜形成工程)。なお、第1の実施形態では、蒸着法で成膜する金属膜は2種類の金属からなっているが、2種類に限定されるものではなく、2種類以上の金属で構成されていてもよい。
 次に、金属膜上にスピンコートにてレジストを塗布し(図3に示すレジスト塗布1工程)、レジストを露光することによって所定の外形レジストパターンを形成する。そして、現像によって金属膜を部分的に露出させる(図3に示す外形露光・現像工程)。露出した金属膜はメタルエッチングによって溶解され、下蓋部材3と上蓋部材4との水晶素地が露出した状態となる(図3に示す外形メタルエッチング工程)。その後、残存したレジストを、剥離液を用いて剥離する(図3に示すレジスト剥離1工程)。
 次に、所定のパターンに成形された金属膜(CrおよびAu)に対し、加熱処理を施す。このように加熱処理を行うことによって、金属膜内部の金属拡散を促進させる(図3に示す拡散工程)。ここで、下蓋部材3と上蓋部材4との下地(素地)上のCr層の厚さは、Au層の厚さに比べて極めて薄く形成されており、加熱温度および加熱時間をコントロールすることによって、Au層の内部および表面にCrを拡散させて拡散層を形成する(図5参照)。なお、発明者は、拡散工程でAu層内にCrを拡散させることによって、拡散層の内部ではCr同士が拡散層の厚さ方向に略連続的に繋がった“導路”が複数存在していると仮想している(図6に示す連なったCr参照)。なお、図4に示す2種類の金属(Cr、Au)からなる金属膜(Cr層とAu層)の層厚は、それぞれ図4の厚さに限定されるものではなく、任意の層厚としてもよい。例えば、Auの厚さに対して下地の金属となるCrの厚さを増減させることにより、加熱処理によって拡散するCrの量をコントロールし、拡散工程後のCr層へのエッチング液の浸透による微小孔の穿孔状態を制御することができる。すなわち、粗面の表面状態をコントロールすることができる。
 次に、拡散層に対して、再度レジストを塗布する(図3に示すレジスト塗布2工程)。そして、図7に示すように、粗面化する領域のレジストを露光・現像によって除去する(図3に示す粗面パターン露光・現像工程)。
 そして、図8に示すように金属膜(拡散層)上に、レジストが残存している領域と、レジストが除去された領域が混在した状態で、エッチング液(第1の実施形態ではフッ化アンモニウム液)に投入してウエットエッチングを行う(図3に示すエッチング工程)。このとき、レジストで覆われていない領域の金属膜では、エッチング液が浸透していき、金属膜(拡散層)の下の水晶素地にまで到達し、水晶素地の表面を腐食させる。これは、図6で示したように、拡散工程によって金属膜にCrの“導路”が複数形成されていることに起因すると考えられ、Crはエッチング液に対して腐食性を有するが、Auはエッチング液に対して腐食性を有しないため、“導路”を通ってエッチング液が金属膜に浸透し、水晶素地の表面に多数の微小孔(ピンホール)が形成されると考えられる(図9参照)。このようにして、金属膜(拡散層)を介して金属膜下の水晶素地表面を粗面化することができる。一方、レジストで覆われた金属膜下の水晶素地の部分は、レジストにエッチング液に対する耐腐食性が高いものを用いているため、エッチング液に腐食されずに残存する。
 上述のように粗面化処理を行った後、図10に示すように、レジストを、剥離液を用いて剥離する(図3に示すレジスト剥離2工程)。そして、メタルエッチングを行って、水晶素地上に残存している金属膜を除去する(図3に示す全面メタルエッチング工程)。このメタルエッチングによって、粗面領域の水晶素地と、鏡面領域の水晶素地とが露出する(図11参照)。
 以上が下蓋部材3と上蓋部材4と水晶振動板2とにおける接合領域の粗面化処理に関する説明である。次に、以上のように粗面化処理された下蓋部材3と上蓋部材4とを用いた水晶振動子1の製造方法について説明する。
 第1の実施形態では、多数個の下蓋部材3が一括形成されたウエハ状態の各下蓋部材3に対して、個片状態の水晶振動板2を配し、水晶振動板2の上に個片状態の上蓋部材4を配して、その後、ウエハをダイシングすることによって多数個の水晶振動子1に個片化する。この水晶振動子1の製造方法について説明する。なお、本発明は、第1の実施形態で説明する各部材の形態に限定されるものではなく、下蓋部材3と水晶振動板2と上蓋部材4とのパッケージ11の全構成部材がそれぞれ多数個一括形成されたウエハを用いて、下蓋部材3に対して水晶振動板2を配し、水晶振動板2の上に上蓋部材4を配し、その後にダイシングによって水晶振動子1の個片化を行う方法であってもよく、この場合、水晶振動子1の量産に好適である。
 まず、多数個の下蓋部材3が一括形成されたウエハを、下蓋部材3の一主面31が上向きになるように配置する。そして、ウエハ内における下蓋部材3,3,・・・,3の一主面31,31,・・・,31の上に、画像認識手段によって設定した位置に、個片状態の水晶振動板2,2,・・・,2を、水晶振動板2の一主面21が下蓋部材3の一主面31と対向するようにして配する。このとき、下蓋部材3の接合面32に形成された第3接合材53と、水晶振動板の枠部28の一主面201に形成された第1接合材51とを平面視で略一致するように配する。また、下蓋部材3の一主面31に形成された第2接合電極33と、水晶振動板2の第1接合電極25に形成されたAuメッキ層50とを平面視で略平面視で略一致するように配する。
 水晶振動板2を下蓋部材3に配した後、水晶振動板2の枠部28の他主面202上に、画像認識手段により設定した位置に、個片状態の上蓋部材4を、上蓋部材の一主面41が水晶振動板の他主面22と対向するように配する。このとき、水晶振動板2の枠部28の他主面202に形成された第2接合材52と、上蓋部材4の接合面42に形成された第4接合材54とを平面視で略一致するように配する。
 下蓋部材3と水晶振動板2と上蓋部材4とを積層した後に、超音波を用いた接合により、これら下蓋部材3と水晶振動板2と上蓋部材4との仮止接合を行う。下蓋部材3と水晶振動板2と上蓋部材4との仮止接合を行なった後に、他の製造工程(内部空間12内のガス抜きや発振周波数調整など)を行ない、その後に下記する加熱溶融による下蓋部材3と水晶振動板2と上蓋部材4との本接合を行う。
 仮止接合された下蓋部材3と水晶振動板2と上蓋部材4を、所定温度に昇温された環境下に置き、各部材(下蓋部材3,水晶振動板2,上蓋部材4)に形成された各接合材(第1接合材51、第2接合材52、第3接合材53、第4接合材54)を溶融させることで本接合を行う。具体的には、第1接合材51と第3接合材53とを接合することで接合材5を構成し、この接合材5によって水晶振動板2と下蓋部材3とを接合する。この接合材5による水晶振動板2と下蓋部材3との接合によって、図1に示すように、水晶振動板2の一主面21に形成された励振電極23を気密封止する。また、第1接合材51と第3接合材53との接合と同時に、第2接合材52と第4接合材54とを加熱溶融接合することで接合材5を構成し、この接合材5によって水晶振動板2と上蓋部材4とを接合する。この接合材5による水晶振動板2と上蓋部材4との接合によって、図1に示すように、水晶振動板2の他主面22に形成した励振電極23を気密封止する。なお、第1の実施形態では真空雰囲気下において下蓋部材3と水晶振動板2と上蓋部材4との仮止接合および本接合を行うが、これに限定されるものではなく、窒素などの不活性ガス雰囲気下で接合を行ってもよい。
 第1の実施形態に示す水晶振動子1によれば、水晶振動子1を構成する構成部材(下蓋部材3と上蓋部材4)の接合領域の素地が粗面化されているので、粗面化によって下蓋部材3と上蓋部材4の接合領域の素地の表面に形成された微小な凹凸が水平方向の応力に対して「楔」のように機能する。つまり、所謂、アンカー(投錨)効果を有することによって、粗面化された下蓋部材3と上蓋部材4の接合領域の素地と接合材5との接合強度を向上させることができる。
 また、第1の実施形態に示す水晶振動子1を構成する構成部材のエッチング方法は、金属膜形成工程と拡散工程とエッチング工程とを有するので、鏡面加工のように表面に凹凸が極めて少ない表面状態の構成部材の少なくとも1つの主面に、部分的に粗面を形成することができる。具体的に、粗面化したくない領域にはレジスト等で被覆することによって保護するとともに、粗面化したい領域にはレジスト等の保護膜を形成せず、金属拡散が生じた金属膜(拡散層)を介して、エッチング液を構成部材の素地まで浸透させることによって素地の表面に多数の微小孔を形成する。これにより、選択的な粗面化処理ができる。
 すなわち、第1の実施形態に示す水晶振動子1の製造方法によれば、金属膜形成工程と拡散工程とエッチング工程とを有するので、鏡面加工のように表面に凹凸が極めて少ない表面状態の下蓋部材3と上蓋部材4との一主面31,41に、部分的に粗面を形成することができる。具体的には、粗面化したくない領域にはレジスト等で被覆することによって保護するとともに、粗面化したい領域にはレジスト等の保護膜を形成せず、金属拡散が生じた金属膜(拡散層)を介して、エッチング液を下蓋部材3と上蓋部材4との素地まで浸透させることによって下蓋部材3と上蓋部材4との表面に多数の微小孔を形成する。これにより、選択的な粗面化処理ができる。
 また、第1の実施形態によれば、従来技術のように接合に関して原子間接合を行うことを必須としていないので、水晶振動子1の製造コストを抑えることができる。
 また、上蓋部材4と下蓋部材3とは、水晶からなり、水晶振動板2は、水晶からなり、金属膜形成工程において、上蓋部材4と下蓋部材3との素地上にCr層を形成し、Cr層上にAu層を積層して金属膜を形成して、Cr層とAu層とからなる2層構成を形成し、拡散工程において、Cr層のCrをAu層のAuへ拡散させ、Crおよび水晶に対して腐食性を有するエッチング液を用いてウエットエッチングを行うことにより、上蓋部材4と下蓋部材3との素地の表面に多数の微小孔を形成して上蓋部材4と下蓋部材3との素地を粗面化させるので、ウエットエッチングによる外形成形を行い易い。また、上蓋部材4と蓋部材3とに水晶を用いているので、水晶である水晶振動板2との密着性を良好にすることができる。さらに、エッチング液に対して耐性を有するAuを用いるため、内部にCrが拡散した金属膜を介してウエットエッチングを行っても、金属膜を腐食させることなくエッチング液を上蓋部材4と蓋部材3との素地にまで浸透させることができる。これにより、金属拡散が生じた金属膜下の上蓋部材4と蓋部材3との素地の表面に多数の微小孔を形成して粗面化させることができる。
 第1の実施形態では、振動部20は、振動部20の外周に土手部26が形成された逆メサ形状であり、振動部20の外側に薄肉部27が形成された構造となっている。しかしながら、本発明は逆メサ形状の構造に限定されるものではない。例えば、薄肉部を形成せず、枠部の内側を平板とし、部分的に貫通孔を設けた形状であってもよい。
 なお、第1の実施形態では、接合材5として、CrとAuとSnを用いているが、これに限定されるものではなく、接合材5を例えばCrとAuとGeとから構成してもよい。また、水晶振動板1側にAuとSnなどのメッキ積層膜やAuSnなどのメッキ合金層を形成し、下蓋部材3や上蓋部材4側にAuメッキ層(単一金属元素のメッキ層)を形成してもよい。さらに、第1の実施形態では、2つのパッケージ基材の材料として水晶が使用されているが、水晶以外にガラスやサファイアを使用してもよい。
 -第1の実施形態の変形例-
 本発明の第1の実施形態の変形例を図12に示す。図12に示す変形例では、粗面化処理の対象を下蓋部材3の接合領域や上蓋部材4の接合領域ではなく、水晶振動板2の接合領域とした例となっている。このような構造であっても水晶振動板2と接合材5との接合強度を向上させることができる。なお、本構成において粗面化させる接合領域を枠部28の両主面201、202全体に施してもよい。つまり、枠部28の金属膜(接合材5)が形成される領域だけでなく、その外側の領域も粗面化することにより、加熱溶融によって流動化した金属が振動部20に向かう方向に流出するのを防止することができる。このように、枠部28の両主面201、202全体が粗面化されているので、溶融した金属膜(接合材5)の移動に対して粗面が抵抗となって、振動部20に対して溶融する金属の流入を防止することができる。
 また、第1の実施形態では、下蓋部材3の接合領域と上蓋部材4の接合領域との粗面化を行なっているが、これに限定されるものではなく、図13に示すように、下蓋部材3と上蓋部材4との粗面化された接合領域の素地上に形成された第3接合材53の表面と第4接合材54の表面とが、粗面化されてもよい。この場合、下蓋部材3と上蓋部材4との接合領域と、第3接合材53の表面と第4接合材54の表面とが、粗面となっているので、例えば粗面化された下蓋部材3の接合領域と上蓋部材4の接合領域との素地上の第3接合材53と第4接合材54とのさらに上層に、電解メッキ法によってメッキ層を形成したとき、メッキ層と粗面化された第3接合材53と第4接合材54との間にアンカー効果が働き、上蓋部材4と下蓋部材3と水晶振動板2との超音波を用いた仮止接合時の機械的強度が向上する。
 また、第1の実施形態では、図3~11に示す製造工程により下蓋部材3と上蓋部材4との接合領域の粗面化を行なっているが、これに限定されるものではなく、図14~17に示す製造方法によっても下蓋部材3と上蓋部材4との接合領域の粗面化を行うことができる。
 また、下蓋部材3と上蓋部材4と水晶振動板2とに対して粗面化を行う他の方法についいて以下に説明する。
 図14~16に示す製造工程では、下蓋部材3と上蓋部材4の水晶素板の一主面31,41にCr層を蒸着法によって形成し、エッチング液(フッ化アンモニウム液)に投入してウエットエッチングを行う(図14参照)。このとき、エッチングによるCr層の面荒れが生じ、ウェットエッチングを行う時間に比例して面荒れの度合いが大きくなる(図15参照)。そして、ウェットエッチングを続けて行うことで、図16に示すように、下蓋部材3と上蓋部材4の水晶素板の一主面31,41に凹凸が成形され、下蓋部材3と上蓋部材4の水晶素板の一主面31,41が粗面化される。
 また、図17に示す製造方法では、下蓋部材3と上蓋部材4の水晶素板の一主面31,41にCr層を蒸着法によって点在する状態で形成する。この図17に示す下蓋部材3と上蓋部材4に対して、エッチング液(フッ化アンモニウム液)に投入してウエットエッチングを行う。そして、ウェットエッチングを続けて行うことで、図16に示すような下蓋部材3と上蓋部材4の水晶素板の一主面31,41に凹凸が成形され、下蓋部材3と上蓋部材4の水晶素板の一主面31,41が粗面化される。
 また、上記の下蓋部材3と上蓋部材4と水晶振動板2との製造に、蒸着法とフォトリソグラフィー法を用いて、さらにCr層に対して小孔を多数ランダムに形成する工程を追加してもよい。この場合、小孔を多数ランダムに形成したCr層をマスクとしてエッチングを行うことにより、下蓋部材3と上蓋部材4と水晶振動板2とに多数の小孔を形成することができる。
 -第2の実施形態-
 本発明にかかる第2の実施形態を、上記の第1の実施形態と同様に圧電振動板として水晶振動板を用いた水晶振動子を例に挙げて図18を用いて説明する。図18は、第2の実施形態を示す水晶振動板2の長辺方向に沿った水晶振動子1の断面図である。なお、第2の実施形態では、第1の実施形態と同様の構成部材については同番号を付して説明の一部を割愛する。また、第2の実施形態の構成のうち、第1の実施形態と同様の構成については同様の効果を有する。そのため、以下、第1の実施形態との相違点を中心に、第2の実施形態を説明する。
 図18に示すように、第2の実施形態では、上蓋部材4および下蓋部材3の両方の接合領域が粗面化されている。そして、上蓋部材4および下蓋部材3の両方の接合領域は、水晶振動板2の接合領域よりも、平面視でそれぞれの一主面31,41の面方向の内方(内側方向)に広く形成されている。
 このような構成によれば、例えば接合材5を構成する金属膜(第1接合材51、第2接合材52、第3接合材53、第4接合材54)を加熱溶融させて下蓋部材3と上蓋部材4と水晶振動板5とを接合するときに、流動化した接合材5が水晶振動子1の内部方向への移動を抑制することができる。具体的に、下蓋部材3と上蓋部材4との内側方向に広く形成されている接合領域(粗面領域)に向かって、接合材5のフィレットが形成されやすくなる。このフィレットによって、下蓋部材3と上蓋部材4と水晶振動板2とがより強固に接合されることになる。つまり、下蓋部材3と上蓋部材4との粗面領域をコントロールすることで接合材5のフィレットの形成領域を制御することができる。
 -第3の実施形態-
 本発明にかかる第3の実施形態を、上記の第1の実施形態と同様に圧電振動板として水晶振動板を用いた水晶振動子を例に挙げて図19を用いて説明する。図19は、第3の実施形態を示す水晶振動板2の長辺方向に沿った水晶振動子1の断面図である。なお、第3の実施形態では、第1の実施形態と同様の構成部材については同番号を付して説明の一部を割愛する。また、第3の実施形態の構成のうち、第1の実施形態と同様の構成については同様の効果を有する。そのため、以下、第1の実施形態との相違点を中心に、第3の実施形態を説明する。
 第3の実施形態にかかる水晶振動子1では、図19に示すように、下蓋部材3と上蓋部材4との、水晶振動板2と接合される側の一主面31,41全体が粗面化されている。
 このような構成であれば、下蓋部材3の一主面31全体が粗面化されているため、例えば、外部機器と接続する外部接続端子と電気的に接続される電極パターンを下蓋部材3の一主面31に形成する際に、一主面31全体が粗面化されていれば、電極パターンと一主面31との密着性を向上させることができる。また電極パターンの形成されている領域だけを選択的に粗面化処理する場合に比べて粗面化処理工程が簡便となり、生産性が向上する。
 なお、第3の実施形態においては、下蓋部材3と上蓋部材4との一主面31,41全体の素地が粗面加工されているが、これに限定されるものではなく、下蓋部材3の他主面37全体が粗面加工されてもよく、また、図20に示すように、外部接続端子や電極パターンが形成された領域の素地が粗面化されてもよい。すなわち、少なくとも外部接続端子などの端子や電極パターンが形成されている主面の領域の素地が粗面化されていれば、上記効果を有する。この下蓋部材3の外部接続端子を形成した接合領域の素地の粗面化は、上記の第1の実施形態や第2の実施形態、下記の第4の実施形態や第5の実施形態でも適用可能である。
 -第4の実施形態-
 本発明にかかる第4の実施形態を、上記の第1の実施形態と同様に圧電振動板として水晶振動板を用いた水晶振動子を例に挙げて図21を用いて説明する。図21は、第4の実施形態を示す水晶振動板2の長辺方向に沿った水晶振動子1の断面図である。なお、第4の実施形態では、第1の実施形態と同様の構成部材については同番号を付して説明の一部を割愛する。また、第4の実施形態の構成のうち、第1の実施形態と同様の構成については同様の効果を有する。そのため、以下、第1の実施形態との相違点を中心に、第4の実施形態を説明する。
 図21に示す水晶振動子1では、水晶振動板2の枠部28の両主面201、202の接合領域が粗面化されている。この水晶振動板2の接合領域の粗面は、上記の第1の実施形態で述べた粗面化処理工程によって形成されており、粗面化処理によって接合材5と枠部28との間にアンカー効果を生じせしめ、水晶振動板2と下蓋部材3および上蓋部材4との接合強度を向上させることができる。
 また、下蓋部材3と水晶振動板2との接合部位13における下蓋部材3の接合領域およびその近傍には、接合材5を面方向が異なる複数の面で接合する複数面接合部が設けられている。また、複数面接合部の外方に、接合材5との接合領域が拡大するのを防ぐ拡大防止部が設けられている。
 また、上蓋部材4と水晶振動板2との接合部位14における上蓋部材4の接合領域およびその近傍には、接合材5を面方向が異なる複数の面で接合する複数面接合部が設けられている。また、複数面接合部の外方に、接合材5との接合領域が拡大するのを防ぐ拡大防止部が設けられている。
 複数面接合部と拡大防止部は、下蓋部材3と上蓋部材4との一主面31,41の外周に沿って2つの溝部8が並んで形成されてなる。具体的には、2つの溝部8が形成されることによって2つの溝の間に成形される突部6が複数面接合部として設けられ、この突部6の外方に突部6に連続して成形される窪み部7が拡大防止部として設けられている。突部6は、端面61と側面62を有し、突部6に接合材5が接合される。また、窪み部7は、平面視で一主面31,41の面方向であって、突部6の外方に形成される。
 上記したように、第4の実施形態にかかる水晶振動子1によれば、下蓋部材3と上蓋部材4とに複数面接合部と拡大防止部が設けられているため、下蓋部材3と上蓋部材4とを水晶振動板2を介して接合材5によって接合する際、接合材5が下蓋部材3と上蓋部材4との接合面(一主面31,41)上を主面方向(平面方向)に広がるのを抑制することができる。
 具体的に、第4の実施形態にかかる水晶振動子1によれば、下蓋部材3と上蓋部材4とには複数面接合部が設けられているため、面方向が異なる複数の面(具体的には突部6の端面61と両側面62)で接合材5を接合することができ、アンカー効果が生じて接合材5との接合強度を高めることができる。また、複数面接合部は複数面を有する突部6であり、突部6の端面61を含む複数の面に接合材5が接合されるので、連続した面方向の異なる複数面において接合材5を接合することができ、アンカー効果が生じ易い。
 また、接合材5の加熱溶融接合では、接合部位13,14(接合領域)における接合材5の広がり(濡れ)は当然に起こる現象である。しかしながら、第4の実施形態にかかる水晶振動子1によれば、下蓋部材3と上蓋部材4との接合領域およびその近傍に複数面接合部が設けられ、複数面接合部の外方に拡大防止部が設けられているので、拡大防止部によって、接合材5による接合後に接合部位13,14において接合材5が広がった場合であっても、接合材5が水晶振動子1の端面まで流れる(濡れる)のを防止することができ、接合材5が水晶振動子1の内部空間12に侵入するのを防止することができる。
 また、上記した第4の実施形態では、水晶振動板2と上蓋部材3と下蓋部材4とを接合することで、図21に示すように接合材5が加熱溶融されて突部6のみに接合されるが、接合材5の量を変えて第4の実施形態で用いた量よりも多くした場合、窪み部7の容量を埋めることとなる。この場合、窪み部7においてもアンカー効果が生じるため、より接合強度を高めることが可能となる。なお、第4の実施形態では、水晶振動板2と下蓋部材3との接合部位13と、水晶振動板2と上蓋部材4との接合部位14との両方に、複数面接合部と拡大防止部とが設けられているが、これは好適な例であり、これに限定されるものではなく、水晶振動板2と下蓋部材3との接合部位13と、水晶振動板2と上蓋部材4との接合部位14との少なくとも1つの接合部位に、複数面接合部と拡大防止部とが設けられていれば上記効果は生じる。
 また、第4の実施形態では、複数面接合部である突部6の外方に突部6に連続して成形される窪み部61が拡大防止部として設けられているが、これは一実施形態であって、これに限定されるものではなく、複数面接合部の外方に拡大防止部が設けられていれば上記効果は生じる。
 また、第4の実施形態では、下蓋部材3と上蓋部材4に1つの複数面接合部と2つの拡大防止部とを設けているが、複数面接合部と拡大防止部の数はこれに限定されるものではなく、任意の個数の複数面接合部と拡大防止部を設けてもよい。また、第4の実施形態では、拡大防止部に窪み部7を用いているが、これに限定されるものではなく、接合材5が下蓋部材3の一主面31や上蓋部材4の一主面41や水晶振動板2の両主面21,22上を主面方向(平面方向)に広がるのを抑制することができるものであれば、複数面接合部の外方に形成された突起壁部であってもよい。すなわち、上記した窪み部7や突起壁部を拡大防止部の具体的な形態としていることから分かるように、拡大防止部は、主面方向に対して直角方向(もしくは直下方向に近い方向)に凹凸形成したものであることが好適である。
 このように、水晶振動板2の下蓋部材3および上蓋部材4との接合領域の粗面化と、下蓋部材3および上蓋部材4に設けた複数面接合部と拡大防止部との相乗効果によって、水晶振動板2と下蓋部材3および上蓋部材4との接合材5を介した接合強度を向上させることができる。
 -第5の実施形態-
 本発明にかかる第5の実施形態を、上記の第1の実施形態と同様に圧電振動板として水晶振動板を用いた水晶振動子を例に挙げて図22を用いて説明する。図22は、第5の実施形態を示す水晶振動板2の長辺方向に沿った水晶振動子1の断面図である。なお、第5の実施形態では、第1の実施形態と同様の構成部材については同番号を付して説明の一部を割愛する。また、第5の実施形態の構成のうち、第1の実施形態と同様の構成については同様の効果を有する。そのため、以下、第1の実施形態との相違点を中心に、第5の実施形態を説明する。
 図22に示すように、第5の実施形態では、水晶振動板2の接合領域である枠部28の両主面201、202の素地が、粗面化されている。また、上蓋部材4の接合領域(一主面41)の素地と、下蓋部材3の接合領域(一主面31)の素地とが、粗面化されている。粗面化された上蓋部材4の接合領域の素地と、下蓋部材3の接合領域の素地とは、水晶振動板2の接合領域の素地の表面よりも粗く成形されている。
 このような構成によれば、励振電極23や引出電極24等が形成された水晶振動板2に対して粗面化処理を行うよりも、上蓋部材4と下蓋部材3とに対して粗面化処理を行う方が粗面化処理工程を簡便にすることができる。水晶振動板2には励振電極23や引出電極24等の金属膜(電極膜)が形成されており、粗面化処理の際には励振電極23や引出電極24等を保護する必要があり、さらに様々な熱履歴が加わるため、励振電極23や引出電極24等の膜状態に影響が及ぶ可能性がある。これに対して、上蓋部材4と下蓋部材3とには励振電極23や引出電極24等の電極膜が形成されておらず、水晶振動子1の諸特性への影響を少なくすることができ、上蓋部材4の接合領域の素地と、下蓋部材3の接合領域の素地とを粗く成形することによって、接合材5に対するアンカー効果と相まって、特性の良好な水晶振動子1を得ることができる。
 上述した各実施形態においては、平面視矩形状で平板状の2つの蓋部材が用いられているが、これに限定されるものではなく、2つの蓋部材によって水晶振動板に形成された励振電極を気密封止できれば、蓋部材の形状は任意に設定してもよい。例えば、凹状に形成された2つの蓋部材の凹部分が、水晶振動板に対向するようにして気密接合された形態であってもよい。また、図23,24に示すように、一枚板の上蓋部材4と、箱状体の下蓋部材3とからパッケージ11が構成され、パッケージ11内の下蓋部材3上に水晶振動板2が気密封止された状態で配されてもよい。図24は、下蓋部材3の概略平面図であり、図24に示すA-A線断面の下蓋部材3を図23に示す。この図23,24に示す実施形態では、上蓋部材4の下蓋部材3と接合する接合領域と、下蓋部材3の上蓋部材4と接合する接合領域と、下蓋部材3の水晶振動板2と電気機械的に接合する接合領域と、下蓋部材3の外部部材と電気的に接続する外部接続端子を形成した接合領域とが、粗面化されている。
 本発明の実施形態では表面実装型水晶振動子を例にしているが、水晶フィルタ、集積回路等の電子部品に水晶振動子を組み込んだ水晶発振器など、電子機器等に用いられる他の表面実装型の圧電振動デバイスの製造方法にも適用可能である。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 また、この出願は、2008年12月24日に日本で出願された特願2008-326851号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 圧電振動デバイスの量産に好適である。

                                                                                

Claims (11)

  1.  圧電振動デバイスにおいて、
     励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材と、が設けられ、
     前記圧電振動板の表裏主面に、前記上蓋部材および前記下蓋部材との各接合領域を有し、
     前記上蓋部材の一主面に、前記圧電振動板との接合領域を有し、
     前記下蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記下蓋部材の他主面に、外部部材との接合領域を有し、
     前記圧電振動板の接合領域と、前記上蓋部材の接合領域と、前記下蓋部材の接合領域とには、接合材を構成する接合層がそれぞれ形成され、
     前記圧電振動板の接合領域と前記上蓋部材の接合領域とが前記接合材を介して接合され、
     前記圧電振動板の接合領域と前記下蓋部材の接合領域とが前記接合材を介して接合され、
     前記圧電振動板の接合領域の素地と、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化されていることを特徴とする圧電振動デバイス。
  2.  圧電振動デバイスにおいて、
     励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材と、が設けられ、
     前記上蓋部材の一主面に、前記下蓋部材との接合領域を有し、
     前記下蓋部材の一主面に、前記上蓋部材との接合領域を有し、前記下蓋部材の他主面に、外部部材との接合領域を有し、
     前記上蓋部材の接合領域と、前記下蓋部材の接合領域とには、接合材を構成する接合層がそれぞれ形成され、
     前記上蓋部材の接合領域と前記下蓋部材の接合領域とが前記接合材を介して接合され、
     前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化されていることを特徴とする圧電振動デバイス。
  3.  請求項2に記載の圧電振動デバイスにおいて、
     前記下蓋部材の一主面に、前記圧電振動板との接合領域を有し、
     前記圧電振動板との接合領域の素地が、粗面化されていることを特徴とする圧電振動デバイス。
  4.  請求項1乃至3のうちいずれか1つに記載の圧電振動デバイスにおいて、
     粗面化された前記接合領域の素地上に形成された前記接合層の表面が、粗面化されていることを特徴とする圧電振動デバイス。
  5.  請求項1乃至4のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記圧電振動板の接合領域の素地が、粗面化され、
     前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つが、粗面化され、
     前記上蓋部材と前記下蓋部材との少なくとも1つの前記接合領域の素地の表面が、前記圧電振動板の接合領域の素地の表面よりも、粗く成形されていることを特徴とする圧電振動デバイス。
  6.  請求項1乃至5のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記上蓋部材と前記下蓋部材との少なくとも1つの前記接合領域が、粗面化され、
     粗面化された前記接合領域は、前記圧電振動板の接合領域よりも平面視で前記一主面の内側方向に広く形成されていることを特徴とする圧電振動デバイス。
  7.  請求項1乃至5のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記上蓋部材と前記下蓋部材との少なくとも1つの前記主面全体が、粗面化されていることを特徴とする圧電振動デバイス。
  8.  請求項1乃至7のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記圧電振動板の接合領域が、粗面化され、
     前記上蓋部材と前記下蓋部材の少なくとも1つの前記接合領域の近傍には、前記接合材を面方向が異なる複数の面で接合する複数面接合部が設けられ、
     前記複数面接合部の外方に、前記接合材との接合領域を拡大するのを防ぐ拡大防止部が設けられていることを特徴とする圧電振動デバイス。
  9.  圧電振動デバイスの製造方法において、
     励振電極が形成された圧電振動板と、前記励振電極を気密封止する上蓋部材および下蓋部材と、が設けられ、前記圧電振動板の表裏主面に、前記上蓋部材および前記下蓋部材との各接合領域を有し、前記上蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記下蓋部材の一主面に、前記圧電振動板との接合領域を有し、前記圧電振動板の接合領域と前記上蓋部材の接合領域とが接合材を介して接合され、前記圧電振動板の接合領域と前記下蓋部材の接合領域とが接合材を介して接合された前記圧電振動デバイスの製造方法であり、
     前記圧電振動板の接合領域の素地と、前記上蓋部材の接合領域の素地と、前記下蓋部材の接合領域の素地との少なくとも1つに、少なくとも2種類の金属からなる金属膜を積層する金属膜形成工程と、
     前記金属膜形成工程の後、加熱処理によって前記金属膜の内部の金属拡散を促す拡散工程と、
     前記拡散工程後の前記金属膜にエッチング液を浸透させてウエットエッチングを行うことにより、前記素地表面に多数の微小孔を形成して前記素地を粗面化させるエッチング工程とを有することを特徴とする圧電振動デバイスの製造方法。
  10.  請求項9に記載の圧電振動デバイスの製造方法において、
     前記上蓋部材と前記下蓋部材とは、水晶またはガラスからなり、
     前記圧電振動板は、水晶からなり、
     前記金属膜形成工程において、前記上蓋部材と前記下蓋部材と前記圧電振動板との少なくとも1つの前記素地上にCr層を形成し、前記Cr層上にAu層を積層して前記金属膜を形成して、前記Cr層と前記Au層とからなる2層構成を形成し、
     前記拡散工程において、前記Cr層のCrを前記Au層のAuへ拡散させ、前記Crおよび前記水晶に対して腐食性を有するエッチング液を用いてウエットエッチングを行うことにより、前記素地の表面に多数の微小孔を形成して前記素地を粗面化させることを特徴とする圧電振動デバイスの製造方法。
  11.  圧電振動デバイスを構成する構成部材のエッチング方法において、
     少なくとも1つの主面に外部部材との各接合領域を有した前記構成部材のエッチング方法であり、
     前記構成部材の接合領域の素地に、少なくとも2種類の金属からなる金属膜を積層する金属膜形成工程と、
     前記金属膜形成工程の後、加熱処理によって前記金属膜の内部の金属拡散を促す拡散工程と、
     前記拡散工程後の前記金属膜にエッチング液を浸透させてウエットエッチングを行うことにより、前記素地表面に多数の微小孔を形成して前記素地を粗面化させるエッチング工程と、を有することを特徴とするエッチング方法。
                                                                                    
PCT/JP2009/071401 2008-12-24 2009-12-24 圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法 WO2010074127A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09834925.1A EP2381575A4 (en) 2008-12-24 2009-12-24 Piezoelectric oscillation device, method for manufacturing a piezoelectric oscillation device, and etching method of structural components forming a piezoelectric oscillation device
CN200980152643.5A CN102265514B (zh) 2008-12-24 2009-12-24 压电振动设备、压电振动设备的制造方法以及构成压电振动设备的结构构件的蚀刻方法
JP2010544113A JP5370371B2 (ja) 2008-12-24 2009-12-24 圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法
US13/129,182 US20110215678A1 (en) 2008-12-24 2009-12-24 Piezoelectric resonator device, manufacturing method for piezoelectric...

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-326851 2008-12-24
JP2008326851 2008-12-24

Publications (2)

Publication Number Publication Date
WO2010074127A1 true WO2010074127A1 (ja) 2010-07-01
WO2010074127A9 WO2010074127A9 (ja) 2010-09-16

Family

ID=42287734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071401 WO2010074127A1 (ja) 2008-12-24 2009-12-24 圧電振動デバイス、圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法

Country Status (5)

Country Link
US (2) US20110215678A1 (ja)
EP (1) EP2381575A4 (ja)
JP (1) JP5370371B2 (ja)
CN (1) CN102265514B (ja)
WO (1) WO2010074127A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234052A1 (en) * 2010-03-25 2011-09-29 Nihon Dempa Kogyo Co., Ltd. Quartz-crystal devices and methods for manufacturing same
US20120074816A1 (en) * 2010-09-28 2012-03-29 Nihon Dempa Kogyo Co., Ltd. Piezoelectric Device
JP2013051512A (ja) * 2011-08-30 2013-03-14 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP2015002414A (ja) * 2013-06-14 2015-01-05 セイコーインスツル株式会社 電子デバイス
JP2015018872A (ja) * 2013-07-09 2015-01-29 日機装株式会社 窓部材、半導体モジュールおよび窓部材の製造方法
JP2015035453A (ja) * 2013-08-07 2015-02-19 アズビル株式会社 ウエハ
WO2016111044A1 (ja) * 2015-01-08 2016-07-14 株式会社村田製作所 圧電振動部品及びその製造方法
WO2016136009A1 (ja) * 2015-02-23 2016-09-01 株式会社村田製作所 水晶振動デバイス

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010079803A1 (ja) * 2009-01-07 2012-06-28 株式会社大真空 圧電振動デバイスの製造方法
WO2011093456A1 (ja) * 2010-01-29 2011-08-04 株式会社大真空 圧電振動デバイス、およびその製造方法
JP5148659B2 (ja) * 2010-05-28 2013-02-20 日本電波工業株式会社 圧電デバイス
USD760230S1 (en) 2014-09-16 2016-06-28 Daishinku Corporation Piezoelectric vibration device
CN107078714B (zh) * 2014-10-17 2021-04-20 株式会社村田制作所 压电器件、压电器件的制造方法
JP6164538B2 (ja) * 2014-10-30 2017-07-19 日立金属株式会社 気密封止用リッドおよびその製造方法、それを用いた電子部品収納パッケージ
US9374059B1 (en) * 2015-01-06 2016-06-21 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Film bulk acoustic resonator filter
KR101730335B1 (ko) * 2015-01-27 2017-04-27 주하이 어드밴스드 칩 캐리어스 앤드 일렉트로닉 서브스트레이트 솔루션즈 테크놀러지즈 컴퍼니 리미티드 필름 벌크 음향 공진기 필터 제조 방법
US9862592B2 (en) * 2015-03-13 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS transducer and method for manufacturing the same
US10062636B2 (en) * 2016-06-27 2018-08-28 Newport Fab, Llc Integration of thermally conductive but electrically isolating layers with semiconductor devices
US10707832B2 (en) * 2016-09-01 2020-07-07 Tdk Corporation Vibrating device
CN109075761B (zh) * 2016-09-16 2022-06-24 株式会社大真空 压电振动器件
TW201947114A (zh) * 2018-05-03 2019-12-16 復盛精密工業股份有限公司 具有下沉式之蓄氣板結構
CN113812088A (zh) * 2019-05-31 2021-12-17 株式会社大真空 压电振动板及压电振动器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303080A (ja) 1993-04-19 1994-10-28 Matsushita Electric Ind Co Ltd 発振子
JPH06310971A (ja) 1993-04-20 1994-11-04 Matsushita Electric Ind Co Ltd 発振子
JPH1051265A (ja) * 1996-08-02 1998-02-20 Daishinku Co 表面実装型水晶振動子
JP2002171150A (ja) * 2000-11-30 2002-06-14 Seiko Epson Corp 圧電デバイスのパッケージ構造
JP3319221B2 (ja) 1995-06-02 2002-08-26 松下電器産業株式会社 振動子の製造方法
JP2004153100A (ja) * 2002-10-31 2004-05-27 Kinseki Ltd 薄板リッド
JP2005197530A (ja) * 2004-01-08 2005-07-21 Murata Mfg Co Ltd 積層セラミック電子部品
JP2005295299A (ja) * 2004-04-01 2005-10-20 Kyocera Corp 圧電部品の製造方法
JP2008282912A (ja) * 2007-05-09 2008-11-20 Mitsubishi Electric Corp 太陽電池素子の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153039B1 (ko) * 1993-03-15 1998-12-15 사토 후미오 회로기판 및 그 제조방법
JP2974622B2 (ja) * 1996-09-20 1999-11-10 松下電器産業株式会社 発振器
JPH10308643A (ja) * 1997-05-07 1998-11-17 Murata Mfg Co Ltd 電子部品
CN1278485C (zh) * 2000-01-31 2006-10-04 京瓷金石株式会社 使用压电振动器的振荡电路容器和振荡器
US6590315B2 (en) * 2000-05-26 2003-07-08 William D. Beaver Surface mount quartz crystal resonators and methods for making same
JP2002124845A (ja) * 2000-08-07 2002-04-26 Nippon Sheet Glass Co Ltd 水晶振動子パッケージ及びその製造方法
JP2003168949A (ja) * 2001-12-04 2003-06-13 Nippon Dempa Kogyo Co Ltd 表面実装型の小型水晶振動子
JP2005184325A (ja) * 2003-12-18 2005-07-07 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP4384546B2 (ja) * 2004-05-28 2009-12-16 京セラ株式会社 電子部品の製造の方法
JP2006180169A (ja) * 2004-12-22 2006-07-06 Kyocera Kinseki Corp 振動子パッケージの製造方法
JP4815800B2 (ja) * 2004-12-28 2011-11-16 株式会社大真空 圧電振動デバイス
US20060255691A1 (en) * 2005-03-30 2006-11-16 Takahiro Kuroda Piezoelectric resonator and manufacturing method thereof
JP2007013384A (ja) * 2005-06-29 2007-01-18 Seiko Epson Corp 圧電振動片の製造方法、圧電振動片
CN101238639B (zh) * 2005-08-10 2011-11-23 株式会社大真空 压电振动设备及其制造方法
JP4707021B2 (ja) * 2005-08-22 2011-06-22 セイコーエプソン株式会社 圧電デバイス
JP2007274104A (ja) * 2006-03-30 2007-10-18 Daishinku Corp 圧電振動デバイスおよび圧電振動デバイスの製造方法
JP2007306434A (ja) * 2006-05-12 2007-11-22 Epson Toyocom Corp 圧電振動子及びその製造方法
JP5051446B2 (ja) * 2006-12-18 2012-10-17 セイコーエプソン株式会社 圧電振動子の製造方法
US8179023B2 (en) * 2007-02-20 2012-05-15 Nihon Dempa Kogyo, Co., Ltd. Package-type piezoelectric resonator and method of manufacturing package-type piezoelectric resonator
JP2008227655A (ja) * 2007-03-09 2008-09-25 Epson Toyocom Corp 圧電振動素子の搭載方法、吸着ノズル、圧電振動子、及び圧電発振器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303080A (ja) 1993-04-19 1994-10-28 Matsushita Electric Ind Co Ltd 発振子
JPH06310971A (ja) 1993-04-20 1994-11-04 Matsushita Electric Ind Co Ltd 発振子
JP3319221B2 (ja) 1995-06-02 2002-08-26 松下電器産業株式会社 振動子の製造方法
JPH1051265A (ja) * 1996-08-02 1998-02-20 Daishinku Co 表面実装型水晶振動子
JP2002171150A (ja) * 2000-11-30 2002-06-14 Seiko Epson Corp 圧電デバイスのパッケージ構造
JP2004153100A (ja) * 2002-10-31 2004-05-27 Kinseki Ltd 薄板リッド
JP2005197530A (ja) * 2004-01-08 2005-07-21 Murata Mfg Co Ltd 積層セラミック電子部品
JP2005295299A (ja) * 2004-04-01 2005-10-20 Kyocera Corp 圧電部品の製造方法
JP2008282912A (ja) * 2007-05-09 2008-11-20 Mitsubishi Electric Corp 太陽電池素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2381575A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234052A1 (en) * 2010-03-25 2011-09-29 Nihon Dempa Kogyo Co., Ltd. Quartz-crystal devices and methods for manufacturing same
US8581476B2 (en) * 2010-03-25 2013-11-12 Nihon Dempa Kogyo Co., Ltd. Quartz-crystal devices and methods for manufacturing same
US20120074816A1 (en) * 2010-09-28 2012-03-29 Nihon Dempa Kogyo Co., Ltd. Piezoelectric Device
JP2012074837A (ja) * 2010-09-28 2012-04-12 Nippon Dempa Kogyo Co Ltd 圧電デバイス
CN102420580A (zh) * 2010-09-28 2012-04-18 日本电波工业株式会社 压电装置
JP2013051512A (ja) * 2011-08-30 2013-03-14 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP2015002414A (ja) * 2013-06-14 2015-01-05 セイコーインスツル株式会社 電子デバイス
JP2015018872A (ja) * 2013-07-09 2015-01-29 日機装株式会社 窓部材、半導体モジュールおよび窓部材の製造方法
JP2015035453A (ja) * 2013-08-07 2015-02-19 アズビル株式会社 ウエハ
WO2016111044A1 (ja) * 2015-01-08 2016-07-14 株式会社村田製作所 圧電振動部品及びその製造方法
JPWO2016111044A1 (ja) * 2015-01-08 2017-09-07 株式会社村田製作所 圧電振動部品及びその製造方法
US10715104B2 (en) 2015-01-08 2020-07-14 Murata Manufacturing Co., Ltd. Piezoelectric vibration component and method for manufacturing the same
WO2016136009A1 (ja) * 2015-02-23 2016-09-01 株式会社村田製作所 水晶振動デバイス

Also Published As

Publication number Publication date
US20110215678A1 (en) 2011-09-08
US9406868B2 (en) 2016-08-02
JP5370371B2 (ja) 2013-12-18
EP2381575A1 (en) 2011-10-26
CN102265514A (zh) 2011-11-30
JPWO2010074127A1 (ja) 2012-06-21
WO2010074127A9 (ja) 2010-09-16
EP2381575A4 (en) 2018-03-28
US20140047687A1 (en) 2014-02-20
CN102265514B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5370371B2 (ja) 圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法
JP5482788B2 (ja) パッケージ部材集合体、パッケージ部材集合体の製造方法、パッケージ部材、およびパッケージ部材を用いた圧電振動デバイスの製造方法
JP5447379B2 (ja) 圧電振動デバイスの封止部材、及びその製造方法
JP5310725B2 (ja) 圧電振動デバイス、圧電振動デバイスの製造方法
WO2010079803A1 (ja) 圧電振動デバイスの製造方法
JP5538974B2 (ja) 電子デバイスパッケージの製造方法及び電子デバイスパッケージ
JP2007214942A (ja) 圧電振動片の製造方法、及び圧電振動片並びに圧電デバイス
JP2010186956A (ja) ガラス封止型パッケージの製造方法、ガラス封止型パッケージの製造装置および発振器
JP5251224B2 (ja) 圧電振動デバイスの製造方法および圧電振動デバイス
JP5239784B2 (ja) 圧電振動デバイス
JP2010206322A (ja) パッケージ部材および該パッケージ部材の製造方法および該パッケージ部材を用いた圧電振動デバイス
JP5196121B2 (ja) デバイス
JP2009033613A (ja) 蓋体集合体および当該蓋体集合体を用いた圧電振動デバイスおよび圧電振動デバイスの製造方法
JP5188836B2 (ja) 水晶振動子の製造方法
JP5369570B2 (ja) 圧電振動デバイスの封止部材の製造方法
JPWO2013128496A1 (ja) 水晶振動子及びその製造方法
JP2016181880A (ja) 圧電振動デバイス
JP5278950B2 (ja) 圧電振動子のパッケージの製造方法
JP5188835B2 (ja) 水晶振動子の製造方法
JP5188834B2 (ja) 水晶振動子の製造方法
JP2010200262A (ja) 圧電振動デバイス
JP2011114836A (ja) 圧電振動デバイス、および圧電振動デバイスの封止部材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152643.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13129182

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010544113

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009834925

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE