WO2011093456A1 - 圧電振動デバイス、およびその製造方法 - Google Patents

圧電振動デバイス、およびその製造方法 Download PDF

Info

Publication number
WO2011093456A1
WO2011093456A1 PCT/JP2011/051769 JP2011051769W WO2011093456A1 WO 2011093456 A1 WO2011093456 A1 WO 2011093456A1 JP 2011051769 W JP2011051769 W JP 2011051769W WO 2011093456 A1 WO2011093456 A1 WO 2011093456A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bonding
base
lid
vibrating piece
Prior art date
Application number
PCT/JP2011/051769
Other languages
English (en)
French (fr)
Inventor
岸本 光市
忠孝 古賀
村上 達也
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to JP2011551935A priority Critical patent/JP5853702B2/ja
Priority to US13/379,709 priority patent/US8723400B2/en
Publication of WO2011093456A1 publication Critical patent/WO2011093456A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • H01L2924/16315Shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a piezoelectric vibration device and a manufacturing method thereof.
  • a piezoelectric vibration device such as a crystal resonator, a crystal filter, or a crystal oscillator is an electronic device in which an excitation electrode of a piezoelectric vibrating piece is hermetically sealed.
  • This type of piezoelectric vibration device includes a base made of a ceramic material and a lid made of a metal material, and the casing is formed of a rectangular parallelepiped package. In the internal space of the package, the piezoelectric vibrating piece is joined to the base by a conductive adhesive made of a fluid material.
  • solder is used as a bonding material when the base and the lid are joined, and the base and the lid are joined by the solder, and the piezoelectric vibrating piece in the internal space of the package is hermetically sealed.
  • solder is used as a bonding material when the base and the lid are joined, and the base and the lid are joined by the solder, and the piezoelectric vibrating piece in the internal space of the package is hermetically sealed.
  • the base and the lid are joined using solder as described above. For this reason, during reflow soldering when a piezoelectric vibration device is placed on a printed circuit board or the like, the solder may melt and the solder may flow out of the internal space of the package or out of the package. In this case, piezoelectric vibration in the internal space of the package The piece cannot be hermetically sealed.
  • an object of the present invention is to provide a piezoelectric vibration device using a bonding material that can withstand the melting temperature during reflow soldering, and a method for manufacturing the same.
  • a piezoelectric vibration device is a piezoelectric vibration device that hermetically seals an excitation electrode of a piezoelectric vibration piece, and a plurality of sealing members that hermetically seal the excitation electrode of the piezoelectric vibration piece.
  • a bonding layer is formed on each of the plurality of sealing members, a bank portion is provided on at least one of the plurality of sealing members, and the bonding layer is formed on the top surface of the bank portion,
  • the plurality of sealing members are bonded through the bonding layers to form a bonding material including an intermetallic compound.
  • the plurality of sealing members that hermetically seal the excitation electrode of the piezoelectric vibrating piece are provided, and the bonding layers are formed on the plurality of sealing members, respectively, and the plurality of sealing members
  • the at least one bank is provided with the bank portion, the bonding layer is formed on a top surface of the bank portion, and the plurality of sealing members are bonded to each other through the bonding layer, so that the intermetallic compound is formed. Since the joining material is formed, the plurality of sealing members are joined by the joining material containing the intermetallic compound having a melting temperature higher than that of solder.
  • the intermetallic compound does not melt even during reflow soldering, and withstands the melting temperature during reflow soldering, and the piezoelectric vibrating piece is excited by the plurality of sealing members by the intermetallic compound. It is possible to keep the electrode hermetically sealed.
  • another piezoelectric vibration device includes a plurality of piezoelectric vibration devices that hermetically seal the excitation electrode of the piezoelectric vibration piece.
  • a sealing layer is formed on each of the piezoelectric vibrating piece and the plurality of sealing members, and a bank portion is provided on at least one of the piezoelectric vibrating piece and the sealing member,
  • the bonding layer is formed on the top surface of the bank portion, and the piezoelectric vibrating piece and the plurality of sealing members are bonded through the bonding layers to form a bonding material containing an intermetallic compound. It is characterized by that.
  • the plurality of sealing members that hermetically seal the excitation electrode of the piezoelectric vibrating piece are provided, and the bonding layer is formed on the piezoelectric vibrating piece and the plurality of sealing members,
  • the bank portion is provided in at least one of the piezoelectric vibrating piece and the sealing member, the bonding layer is formed on a top surface of the bank portion, and the piezoelectric vibrating piece and the plurality of sealing members include: Since the bonding material including the intermetallic compound is formed by bonding through the bonding layers, the piezoelectric vibrating piece is formed by the bonding material including the intermetallic compound having a melting temperature higher than that of solder. Are joined to the plurality of sealing members.
  • the intermetallic compound does not melt even during reflow soldering, and withstands the melting temperature during reflow soldering, and the piezoelectric vibrating piece is excited by the plurality of sealing members by the intermetallic compound. It is possible to keep the electrode hermetically sealed.
  • the bonding layer, the bonding portion of the sealing member on which the bonding layer is formed, or the bonding portion of the piezoelectric vibrating piece on which the bonding layer is formed may be formed in a convex shape.
  • the bonding layer, the bonding portion of the sealing member, or the bonding portion of the piezoelectric vibrating piece is formed in a convex shape, so that the convex vertex and the bonding counterpart side facing the convex vertex are formed.
  • the distance from the sealing member or the piezoelectric vibrating piece is the shortest.
  • the joining portion of the stop member or the joining portion of the piezoelectric vibrating piece may be made of the same material as the sealing member or the piezoelectric vibrating piece.
  • the joining portion of the sealing member or the joining portion of the piezoelectric vibrating piece formed in the convex shape is made of the same material as the sealing member or the piezoelectric vibrating piece, there is no difference in thermal expansion coefficient. Unnecessary stress is unlikely to be generated in the bonded portion during heat bonding. As a result, it becomes possible to improve the reliability of hermetic sealing.
  • At least one of the piezoelectric vibrating piece and the sealing member, a bonding surface on which the bonding layer is formed is a flat surface, and the bonding layer on which the bonding surface is a flat surface is It is formed along the outer periphery of the joint surface, and the respective joint layers may be joined at the top surface of the bank portion and the outer periphery of the joint surface.
  • At least one of the piezoelectric vibrating reed and the sealing member, the bonding surface on which the bonding layer is formed is a flat surface, and the bonding layer on which the bonding surface is a flat surface is the bonding surface.
  • Formed along the outer periphery of the surface, and the respective bonding layers are bonded to each other at the top surface of the bank portion and the outer periphery of the bonding surface, so that when the plurality of sealing members are bonded, thus, it is possible to suppress scattering of the excitation electrode of the piezoelectric vibrating piece hermetically sealed.
  • the intermetallic compound may be formed unevenly distributed in the bonding material.
  • the bonding material is a heating temperature when bonding the piezoelectric vibration device to the mounting substrate using a technique such as reflow soldering. Heat resistance.
  • the plurality of sealing members can be stably bonded.
  • the intermetallic compound may be formed across both ends of the bonding material bonded to each of the plurality of sealing members.
  • the bonding material is reflow soldered by the intermetallic compound. It is possible to join the plurality of sealing members withstanding the melting of the material.
  • the intermetallic compound may be unevenly distributed in the narrowest gap between both ends of the bonding material.
  • the intermetallic compound is formed unevenly in the narrowest gap between both ends of the bonding material, the uneven intermetallic compound can withstand the environmental temperature during reflow soldering, and each member made of the bonding material It is suitable for joining.
  • the narrowest gap may be 3 to 20 ⁇ m.
  • each member can be strongly bonded via the bonding material containing the intermetallic compound, which is suitable for downsizing the piezoelectric vibration device.
  • the narrowest gap is less than 3 ⁇ m, the gap portion becomes brittle and the strength of the bonding material is lowered.
  • the narrowest gap exceeds 20 ⁇ m, the fillet of the bonding material becomes small, and the bonding strength of each member is lowered.
  • the production amount of the intermetallic compound in the bonding material may be relatively reduced, and heat resistance is reduced.
  • the bonding layer may include Cu and Sn.
  • the bonding layer contains Cu and Sn
  • Cu and Sn dispersed in the bonding layer are bonded (for example, Cu 6 Sn 5 or Cu 3) when the members are bonded.
  • Sn) and the intermetallic compound consisting of Cu and Sn is unevenly distributed.
  • the intermetallic compound composed of Cu and Sn is unevenly distributed.
  • a method for manufacturing a piezoelectric vibration device is a method for manufacturing a piezoelectric vibration device according to the present invention, and the sealing member includes: The bonding layer having the Sn—Cu layer as the uppermost layer is formed, and the Cu layer having a smaller area than the Sn—Cu layer is used as the uppermost layer for the other sealing member to be bonded to the one sealing member. The bonding layer is formed, and the Sn—Cu layer and the Cu layer are heat bonded.
  • the above-described piezoelectric vibration device has an operational effect, and the bonding layer having the Sn—Cu layer as the uppermost layer is formed on the one sealing member.
  • the bonding layer having the uppermost layer of the Cu layer having an area smaller than that of the Sn—Cu layer is formed on the other sealing member bonded to the sealing member, and the Sn—Cu layer and the Cu layer are formed. Since the heat bonding is performed, it is possible to promote uneven distribution of the intermetallic compound in the central portion of the bonding material.
  • the piezoelectric vibration device and the manufacturing method thereof according to the present invention it is possible to withstand the melting temperature during reflow soldering.
  • FIG. 1 is a schematic cross-sectional view showing the internal space of the crystal resonator according to the present embodiment.
  • FIG. 2 is a schematic plan view and a schematic cross-sectional view of the base according to the present embodiment.
  • FIG. 3 is a schematic side view and a schematic bottom view of the lid according to the present embodiment.
  • FIG. 4 is a schematic bottom view of the quartz crystal resonator element according to the present embodiment.
  • FIG. 5 is an enlarged side view showing a connection state between the base and the lid according to the present embodiment.
  • FIG. 6 is an enlarged side view corresponding to FIG. 5 and showing a connection state between a base and a lid according to another embodiment.
  • FIG. 7 is an enlarged side view corresponding to FIG.
  • FIG. 8 is a schematic enlarged side view showing the base unit and the lid unit before joining the base and the lid according to another embodiment.
  • FIG. 9 is a schematic enlarged side view showing the base unit and the lid unit before joining the base and the lid according to another embodiment.
  • FIG. 10 is a schematic enlarged side view showing the base unit and the lid unit before joining the base and the lid according to another embodiment.
  • FIG. 11 is a schematic enlarged side view showing the base unit and the lid unit before joining the base and the lid according to another embodiment.
  • FIG. 12 is a schematic enlarged side view showing the base unit and the lid unit before joining the base and the lid according to another embodiment.
  • FIG. 13 is a schematic enlarged side view showing the base unit and the lid unit before joining the base and the lid according to another embodiment.
  • FIG. 14 is a schematic enlarged side view showing a first sealing member, a second sealing member, and a quartz crystal vibrating piece before joining a base and a lid according to another embodiment.
  • FIG. 15 is an enlarged side view corresponding to FIG. 5 and showing a connection state between a base and a lid according to another embodiment.
  • the crystal resonator 1 holds a crystal vibrating piece 2 (piezoelectric vibrating piece referred to in the present invention) made of an AT-cut crystal and the crystal vibrating piece 2.
  • a base 4 (sealing member referred to in the present invention) for hermetically sealing the resonator element 2 and a lid 6 (sealing member referred to in the present invention) for hermetically sealing the quartz crystal resonator element 2 held on the base 4 are provided. ing.
  • a package is constituted by the base 4 and the lid 6, and the base 4 and the lid 6 are joined by the base joining layer 46 and the lid joining layer 62, and the inside is hermetically sealed by this joining.
  • a space 11 is formed.
  • the quartz crystal vibrating piece 2 is ultrasonically bonded to the base 4 electromechanically by the FCB method (Flip Chip Bonding) using the conductive bumps 7.
  • the base 4 is made of ceramic, and as shown in FIG. 2, is composed of a bottom portion 41 and a bank portion 44 extending upward from the bottom portion 41 along the main surface outer periphery of one main surface 42 of the base 4. It is molded into a box-shaped body.
  • the base 4 is integrally fired in a concave shape by laminating a ceramic ring-shaped body on a single ceramic plate.
  • the size of the base 4 in plan view is set to 3.2 mm ⁇ 2.5 mm or less. In the present embodiment, the base 4 whose plan view dimension is set to 2.5 mm ⁇ 2.0 mm is used.
  • the top surface 45 of the bank portion 44 of the base 4 is a joint surface with the lid 6, and a lead-free base joint layer 46 (joint layer in the present invention) that joins the lid 6 is formed on the top surface 45. Yes.
  • the top surface 45 of the bank portion 44 of the base 4 serves as a joining portion of the base 4 on which the base joining layer 46 is formed.
  • the base bonding layer 46 is formed in a convex shape, and a W layer made of W is integrally fired on the top surface 45 of the bank portion 44 to form a Ni layer made of Ni on the W layer. And a thin film in which an Au layer made of Au is formed on the Ni layer.
  • the W layer is softened when integrally fired on the top surface 45 of the bank portion 44 of the base 4, and the outer side (surface) of the W layer is curved. As a result, the W layer is formed in a convex shape as a whole.
  • the base bonding layer 46 is convex on the top surface 45 of the bank portion 44 of the base 4. Molded.
  • the W layer is used as the lowermost layer of the base bonding layer 46, but the present invention is not limited to this, and a Mo layer made of Mo may be used.
  • the base 4 is formed with a cavity 47 surrounded by the bottom portion 41 and the bank portion 44, and the cavity 47 is formed in a rectangular shape in plan view as shown in FIG.
  • the cavity 47 is formed in a rectangular shape in plan view.
  • castellations 48 are formed at the four corners of the rear surface of the base 4 (the other main surface 43). These castellations 48 are formed on the side surface of the housing and are formed along the four corners of the other main surface 43 of the base 4.
  • the base 4 includes a pair of electrode pads 51 and 52 that are electromechanically joined to the excitation electrodes 31 and 32 of the crystal vibrating piece 2, and external components and external devices. External terminal electrodes 53 and 54 to be connected, an electrode pad 51 and an external terminal electrode 53, and a wiring pattern 55 for electrically connecting the electrode pad 52 and the external terminal electrode 54 are formed. These electrode pads 51, 52, external terminal electrodes 53, 54, and wiring pattern 55 constitute the base 4 electrode.
  • the electrode pads 51 and 52 are formed side by side in the short side direction along the longitudinal direction of the cavity 47 of the base 4, and the external terminal electrodes 53 and 54 are formed on the castellation 48.
  • the electrode pads 51, 52, the external terminal electrodes 53, 54, and the wiring pattern 55 are made of the same material as the base bonding layer 46 and are formed simultaneously with the base bonding layer 46.
  • the base 4 is formed with a via 49 for conducting the excitation electrodes 31 and 32 of the crystal vibrating piece 2 from the inside of the cavity 47 to the outside of the cavity 47.
  • a wiring pattern 55 is formed through the vias 49 from the electrode pads 51 and 52 on the one main surface 42 of the base 4 to the external terminal electrodes 53 and 54 on the other main surface 43.
  • the inner side surface of the via 49 is inclined with respect to the one main surface 42 and the other main surface 43 of the base 4 and is formed in a tapered shape.
  • the via 49 the diameter of the other end of the via 49 corresponding to the other main surface 43 of the base 4 is maximized, and the diameter of one end of the via 49 corresponding to the one principal surface 42 of the base 4 is minimized.
  • a conductive member 56 made of W is integrally fired with the base 4 inside the via 49.
  • the lid 6 is made of ceramic and is formed into a single rectangular parallelepiped plate in a plan view.
  • the lower surface 61 of the lid 6 is a bonding surface for bonding to the base 4 and is formed into a flat surface as shown in FIG.
  • the size in plan view of the lid 6 is set to 3.2 mm ⁇ 2.5 mm or less. In the present embodiment, a substrate whose plan view dimension is set to 2.5 mm ⁇ 2.0 mm is used.
  • the bottom surface 61 of the lid 6 is a joint surface with the base 4, and a lid joint layer 62 (joint layer in the present invention) that joins the base 4 is formed on the bottom surface 61.
  • the lower surface 61 of the lid 6 (specifically, a portion along the outer periphery of the lower surface 61) is a bonding portion of the lid 6 on which the lid bonding layer 62 is formed.
  • the lid bonding layer 62 is formed in a convex shape along the outer periphery of the lower surface 61 of the lid 6 and corresponds to the top surface 45 of the bank portion 44 of the base 4.
  • a W layer made of W is integrally fired on the lower surface 61 of the lid 6 on the lower surface 61 of the lid 6, a Ni layer made of Ni is formed on the W layer, and a Cu layer made of Cu is formed on the Ni layer.
  • a layer is formed, and a Sn—Cu brazing material is formed on the Cu layer.
  • the W layer is softened when integrally fired on the lower surface 61 of the lid 6, and the outer side (surface) of the W layer is curved.
  • the W layer is formed in a convex shape as a whole.
  • the lid bonding layer 62 is formed in a convex shape along the outer periphery of the lower surface 61 of the lid 6.
  • the W layer is used as the lowermost layer of the lid bonding layer 62, but the present invention is not limited to this, and a Mo layer made of Mo may be used.
  • the lid 6 is temporarily joined to the base 4 by the FCB method, and then the Sn—Cu brazing material is melted by atmospheric heating and finally joined, and the package of the crystal unit 1 is formed by the lid 6 and the base 4. Configure.
  • the quartz crystal resonator element 2 is composed of an AT-cut quartz crystal substrate 21, and the outer shape thereof is substantially rectangular as viewed in plan (both main surfaces 22 and 23 are formed in a substantially rectangular shape). It is a rectangular parallelepiped of sheets. In the present embodiment, the opposing plan view long sides of the crystal vibrating piece 2 are referred to as one side and the other side.
  • the quartz crystal resonator element 2 is provided with a vibrating portion 24 that constitutes a vibrating region, and a bonding portion 25 that is bonded to the electrode pads 51 and 52 of the base 4 that are external electrodes, and the vibrating portion 24 and the bonding portion 25 are provided.
  • the substrate 21 is formed by integral molding. Further, in the joint portion 25, the position of the central portion of the short side in plan view of the substrate 21 is notched.
  • the quartz crystal resonator element 2 includes a pair of excitation electrodes 31 and 32 that perform excitation, a pair of terminal electrodes 33 and 34 that are electromechanically joined to the electrode pads 51 and 52 of the base 4, and a pair of excitation electrodes 31 and 32.
  • Lead electrodes 35 and 36 are formed to lead 32 to a pair of terminal electrodes 33 and 34.
  • the pair of excitation electrodes 31 and 32 are routed by extraction electrodes 35 and 36 and electrically connected to the pair of terminal electrodes 33 and 34, respectively.
  • the pair of excitation electrodes 31 and 32 are formed on both main surfaces 22 and 23 of the substrate 21 so as to face the center of the vibration part 24 in plan view.
  • the pair of excitation electrodes 31 and 32 is composed of, for example, a Cr—Au film formed by laminating Cr and Au in this order from the substrate 21 side.
  • the pair of terminal electrodes 33 and 34 are formed on the other main surface 23 of the joint portion 25.
  • the terminal electrode 33 is formed in the vicinity including one side of the substrate 21, and the other terminal electrode 34 is formed in the vicinity including the other side.
  • the pair of terminal electrodes 33 and 34 is formed of, for example, a Cr—Au film formed by laminating Cr and Au in this order from the substrate 21 side, similarly to the excitation electrodes 31 and 32.
  • the pair of terminal electrodes 33 and 34 has a two-layer structure including an upper layer and a lower layer, the upper layer is made of Au, and the lower layer is made of Cr.
  • the area of the lower principal surface (plan view surface) is larger than the area of the upper principal surface (plan view surface).
  • the extraction electrodes 35 and 36 are formed on the vibration part 24 and the joint part 25, and are formed on both main surfaces 22 and 23 of the substrate 21 from the vibration part 24 to the joint part 25 without facing each other.
  • These extraction electrodes 35 and 36 are made of, for example, a Cr—Au film formed by laminating Cr and Au in this order from the substrate 21 side, similarly to the excitation electrodes 31 and 32.
  • the base 4 and the crystal vibrating piece 2 are ultrasonically electromechanically bonded by the FCB method through the conductive bumps 7.
  • the excitation electrodes 31 and 32 of the crystal vibrating piece 2 are electromechanically bonded to the electrode pads 51 and 52 of the base 4 via the extraction electrodes 35 and 36, the terminal electrodes 33 and 34, and the conductive bumps 7.
  • the crystal vibrating piece 2 is mounted on the base 4.
  • the conductive bump 7 is a plated bump made of a non-fluid member.
  • the plating bump referred to here is a metal film formed by plating, and has a structure in which a metal film is generated on the base metal layer (seed layer) by electrolytic plating or the like.
  • the film thickness can be adjusted depending on the plating conditions, and the film can be formed into a thick film.
  • the shape of the upper surface of the metal film can be determined by the shape of the base metal layer, and the shape of the upper surface of the metal film can be made flat or convex.
  • the lid 6 is bonded to the base 4 on which the crystal vibrating piece 2 is mounted by heat melting (specifically, FCB method) via the base bonding layer 46 of the base 4 and the lid bonding layer 62 of the lid 6 (specifically, FCB method).
  • the quartz crystal resonator 1 is manufactured by ultrasonic bonding), and the quartz crystal vibrating piece 2 is hermetically sealed.
  • the joining material 8 containing the Sn—Cu alloy 81 which is an intermetallic compound, is formed from the base joining layer 46 and the lid joining layer 62. It is formed.
  • W metal diffusion is not performed and the W layer remains.
  • the narrowest gap between the base 4 and the lid 6 through the bonding material 8 is set to 3 to 20 ⁇ m. In the present embodiment, this gap is 5 ⁇ m.
  • the bonding material 8 has a melting point higher than the melting temperature (for example, 260 ° C. or higher) during reflow soldering. As shown in FIG. 5, the bonding material 8 covers both ends of the bonding material 8 for bonding the base 4 and the lid 6 (specifically, between the W layer of the base 4 and the W layer of the lid 6). Thus, an Sn—Cu alloy 81 is formed.
  • This Sn—Cu alloy 81 includes a top surface 45 of the bank portion 44 of the base 4 (specifically, a W layer integrally fired on the top surface 45) and a bottom surface 61 of the lid 6 (specifically, on the bottom surface 61). And the W layer integrally fired at the narrowest gap and the vicinity thereof.
  • Sn other than the intermetallic compound formed with Cu is unevenly distributed in other portions of the bonding material 8 (other than the portion where the Sn—Cu alloy 81 is generated).
  • Sn-Cu alloy 81 is unevenly distributed in the gap between the convex apexes of the lower surface 61 (specifically, the W layer integrally fired on the lower surface 61) and in the vicinity thereof.
  • the base 4 and the lid 6 that hermetically seal the crystal vibrating piece 2 are provided, the bank 4 is provided in the base 4, and the top surface 45 of the bank 44.
  • the base bonding layer 46 is formed on the lid 6, the lid bonding layer 62 is formed on the lid 6, and the base 4 and the lid 6 are bonded via the base bonding layer 46 and the lid bonding layer 62. Since the bonding material 8 including the Sn—Cu alloy 81) is formed, the base 4 and the lid 6 are bonded by the bonding material 8 including the Sn—Cu alloy 81 having a melting temperature higher than that of the solder. .
  • the heat resistance of the bonding material 8 is improved, and even during reflow soldering, the Sn—Cu alloy 81 does not melt and withstands the melting temperature during reflow soldering. And the hermetic sealing of the crystal vibrating piece 2 by the lid 6 can be maintained.
  • the top surface 45 of the base 4 is curved in a convex shape, the distance between the convex vertex of the top surface 45 and the lower surface 61 of the lid 6 facing this convex vertex is the shortest.
  • the intermetallic compound Sn—Cu alloy 81
  • a lid bonding layer 62 is formed along the outer periphery of the flat lower surface 61 of the lid 6 corresponding to the base bonding layer 46, and the top surface 45 of the bank portion 44 of the base 4 and the lower surface 61 of the lid 6. Since the base bonding layer 46 and the lid bonding layer 62 are bonded to each other on the outer periphery of the base, the base bonding layer 46 and the lid bonding layer 62 are hermetically sealed in the internal space 11 when the base 4 and the lid 6 are bonded. It is possible to prevent the quartz crystal vibrating piece 2 from being scattered.
  • the bonding material 8 is Sn— during reflow soldering.
  • the Cu alloy 81 can withstand melting during reflow soldering, and the base 4 and the lid 6 can be joined.
  • the base bonding layer 46 and the lid bonding layer 62 are formed in a convex shape, the distance between the convex vertex and the base 4 (lid 6) on the bonding partner side facing the convex vertex is the shortest. Become. As a result, the intermetallic compound (Sn—Cu alloy 81) can be unevenly distributed at and near the convex apex during bonding.
  • the intermetallic compound (Sn—Cu alloy 81) is formed unevenly in the narrowest gap between both ends of the bonding material 8, the unevenly distributed Sn—Cu alloy 81 can withstand the environmental temperature during reflow soldering, It is suitable for joining each member (the base 4 and the lid 6 in the present embodiment) by the joining material 8.
  • the narrowest gap is 3 to 20 ⁇ m
  • the intermetallic compound (Sn—Cu alloy 81) is unevenly distributed in the narrowest gap portion in a good state, and the shape of the bonding material 8 is a fillet that is good for bonding. Can be maintained. Therefore, according to this configuration, each member (the base 4 and the lid 6 in the present embodiment) can be strongly bonded via the bonding material 8 including the Sn—Cu alloy 81, and the crystal resonator 1 can be reduced in size. It is suitable for conversion.
  • the narrowest gap is less than 3 ⁇ m
  • the gap portion becomes brittle and the strength of the bonding material is lowered.
  • the narrowest gap exceeds 20 micrometers, the fillet of a joining material becomes small and the joining strength of each member falls.
  • the production amount of intermetallic compounds in the bonding material may be relatively reduced, and heat resistance is reduced.
  • the bonding layer 8 contains Cu and Sn
  • the bonding layers (the base bonding layer 46 and the lid bonding layer 62) are joined when the members (the base 4 and the lid 6 in this embodiment) are bonded.
  • Cu and Sn dispersed in each other are bonded (for example, Cu 6 Sn 5 or Cu 3 Sn), and an intermetallic compound (Sn—Cu alloy 81) composed of Cu and Sn is unevenly distributed.
  • the Sn—Cu alloy composed of Cu and Sn. 81 is unevenly distributed.
  • a crystal resonator is applied as the piezoelectric vibration device.
  • the present invention is not limited to this, and a piezoelectric vibration device that hermetically seals the excitation electrode of a piezoelectric vibration piece that performs piezoelectric vibration. Any other device may be used, for example, a crystal oscillator.
  • the bonding material 8 is in the bonded state shown in FIG. 5, but is not limited to this, and may be in the bonded state shown in FIGS. Comparing the joined state shown in FIGS. 6 and 7 with the joined state shown in FIG. 5, the joining material 8 in the joined state shown in FIGS. 6 and 7 has the narrowest gap between the base 4 and the lid 6. It can be seen that the Sn—Cu alloy 81 is unevenly distributed in the vicinity thereof. Therefore, the bonding material 8 in the bonded state shown in FIGS. 6 and 7 is more preferable because it has better heat resistance than the bonded material in the bonded state shown in FIG.
  • the pair of terminal electrodes 33 and 34 formed on the flat substrate 21 has a two-layer structure, but the present invention is not limited to this, and the pair of terminal electrodes 33 and 34 is not limited to this.
  • the crystal of the substrate portion to be formed may be formed into a convex shape, and a pair of terminal electrodes having a single layer structure or a multi-layer structure using Cr and Au may be formed on the substrate portion formed in this convex shape.
  • the pair of terminal electrodes 33 and 34 has a two-layer structure, but the present invention is not limited to this, and even a single-layer structure has a multi-layer structure of three or more layers. There may be.
  • the conductive member 56 is made of Cu, but is not limited to this, and an Au—Sn alloy in which Au and Sn are uniformly mixed by melt diffusion of Au and Sn. May be configured.
  • the end surfaces of the conductive member 56 on both the main surfaces 42 and 43 of the base 4 are pulled in the surface direction of the main surfaces 42 and 43 by melting and diffusion of Au and Sn, respectively. It becomes a concave shape with respect to the surfaces 42 and 43.
  • This melting and diffusion of Au and Sn improves the bonding between the base 4 and the conductive member 56, suppresses the formation of a gap between the base 4 and the conductive member 56, and prevents the conductive member 56 from being poorly filled into the base 4. Can be suppressed.
  • the vibration part 24 and the joint part 25 have the same thickness.
  • the present invention is not limited to this, and the vibration part 24 may be thinned to cope with higher frequencies. .
  • ceramic is used for the base 4, but the present invention is not limited to this, and the base 4 is made of the same crystal as the crystal vibrating piece 2, a glass material such as borosilicate glass, or silicon. Or sapphire may be used. In this case, fine processing using a photolithography technique can be performed, which is suitable for an ultra-small piezoelectric vibration device, and the material cost can be suppressed.
  • the base bonding layer 46 formed on the top surface 45 of the bank portion 44 of the base 4 is formed on the top surface 45 of the base 4 with a Cr layer made of Cr, Mo Either a Mo layer made of Ni or a Ni layer made of Ni is formed, on which an Au layer made of Au is formed, and a Sn—Cu brazing material is formed on the Au layer. May be.
  • an insulating plate made of ceramic or the like may be used as a base material of the base 4, and the base 4 may have a laminated structure in which a metal frame such as Kovar is laminated on the outer peripheral edge of the upper surface of the insulating plate. In this case, insulation between terminals in the electric wiring pattern can be taken.
  • the base bonding layer 46 formed on the top surface 45 of the base 4 is formed with Cu strike plating composed of Cu on the top surface 45 of the base 4.
  • a multilayer structure in which a Cu layer made of Cu is formed thereon and an Sn—Cu brazing material is formed on the Cu layer may be employed.
  • the base bonding layer 46 has a multilayer structure in which an Sn layer made of Sn and a Cu layer made of Cu are alternately stacked on the top surface 45 of the base 4 and an Sn—Cu brazing material is formed on the Cu layer. It may be.
  • ceramic is used for the lid 6, but is not limited to this, and the lid 6 is made of the same crystal as the quartz crystal vibrating piece 2, a glass material such as borosilicate glass, or silicon. Or sapphire may be used. Further, a metal material such as Kovar may be used.
  • the lid bonding layer 62 formed on the lower surface 61 of the lid 6 is formed with Cu strike plating composed of Cu on the lower surface 61 of the lid 6.
  • a multilayer structure in which a Cu layer made of Cu is formed on 61 and an Sn—Cu brazing material is formed on the Cu layer may be employed.
  • the lid bonding layer 62 is formed by alternately stacking Sn layers made of Sn and Cu layers made of Cu on the lower surface 61 of the lid 6, and Sn—Cu brazing on the Cu layer.
  • a multilayer structure in which materials are formed may be used.
  • the lid bonding layer 62 formed on the lower surface 61 of the lid 6 is formed of a Cr layer made of Cr, a Mo layer made of Mo, or Ni on the lower surface 61 of the lid 6.
  • a multilayer structure in which an Ni layer is formed, an Au layer made of Au is formed thereon, and an Sn—Cu brazing material is formed on the Au layer may be employed.
  • the Au layer is formed.
  • the present invention is not limited to this, and the Au layer may not be formed.
  • Cu is used for the base bonding layer 46 and the lid bonding layer 62.
  • the present invention is not limited to this, and an AuSn structure made of AuSn may be used instead of Cu. .
  • the bonding material 8 according to the present embodiment further contains Ni or Co.
  • the Sn of the bonding material 8 is converted into the base bonding layer 46 (Au, Ni, etc.) due to the presence of Ni or Co
  • the base bonding layer 46 and the lid bonding layer 62 are eroded by reacting with the lid bonding layer 62 (Au, Ni, etc.), and as a result, the bonding material 8 is prevented from peeling off from the base 4 and the lid 6. Can be suppressed.
  • a metal layer of Ni or Co is formed on the uppermost layer of the base bonding layer 46 and the lid bonding layer 62 before the bonding material 8 is generated.
  • the Sn of the bonding material 8 is based on the presence of Ni or Co. It is possible to prevent the base bonding layer 46 and the lid bonding layer 62 from being eroded by reacting with the bonding layer 46 (Au, Ni, etc.) and the lid bonding layer 62 (Au, Ni, etc.).
  • the Ni and Co may not be the uppermost layer, but may have a configuration (for example, an intermediate layer between the base bonding layer 46 and the lid bonding layer 62) that is inherent in the base bonding layer 46 and the lid bonding layer 62.
  • the bonding material 8 according to the present embodiment further contains Au or Ag.
  • Au or Ag reacts first with Sn of the bonding material 8, and Sn reacts with the base bonding layer 46 or The reaction with the metal material constituting the lid bonding layer 62 can be suppressed, and as a result, the bonding material 8 can be prevented from being peeled off from the base 4 and the lid 6. Can be maintained and airtightness can be secured.
  • Au or Ag is formed on the uppermost layer of the base bonding layer 46 or the lid bonding layer 62 before the bonding material 8 is generated.
  • the Au and Ag can be formed by plating and vacuum deposition, or by applying Au paste or Ag paste.
  • the bonding material 8 it is desirable to form a metal layer of Au, Ag, or Cu on the surface of the bonding material 8 according to the present embodiment.
  • Au, Ag, Cu and Sn of the bonding material 8 react first, and Sn is the base bonding layer. 46 and the lid bonding layer 62 can be prevented from reacting with each other. As a result, it is possible to prevent the bonding material 8 from being peeled off from the base 4 and the lid 6, maintain stable bonding between the base 4 and the lid 6, and ensure airtightness.
  • a metal layer of Au, Ag, or Cu is formed on the bonding material 8 after the bonding material 8 is generated.
  • the Au, Ag, and Cu can be formed by plating or vacuum deposition, or by applying a paste containing these metals.
  • the base bonding layer 46 of the bank portion 44 of the base 4 is curved and molded in a convex shape
  • the lid bonding layer 62 on the lower surface 61 of the lid 6 is curved and molded in a convex shape.
  • FIGS. 8 to 13 are schematic configuration diagrams showing the base 4 alone and the lid 6 alone before joining the base 4 and the lid 6 to each other.
  • glass is used for the base 4 and glass is used for the lid 6.
  • the top surface 45 of the bank portion 44 of the base 4 is formed into a flat surface
  • the lower surface 61 for joining the base 4 of the lid 6 is formed into a convex shape.
  • the lower surface 61 of the lid 6 is formed so as to protrude in a direction orthogonal to the lower surface 61, and its protruding end surface is a flat surface.
  • the lid bonding layer 62 is formed on the lower surface 61 of the lid 6 with a lowermost layer such as a Cr layer, an Ni layer, or a Mo layer, a Cu layer is laminated on the lowermost layer, and an Sn layer is formed on the Cu layer.
  • a Cu layer is formed by being laminated.
  • the base bonding layer 46 is formed by forming a bottom layer such as a Cr layer, a Ni layer, or a Mo layer on the top surface 45 of the base 4 and laminating an Au layer on the bottom layer.
  • the narrowest gap between both ends of the bonding material 8 is between the layer 46 and the intermetallic compound (Sn—Cu alloy 81) is unevenly formed in the gap.
  • glass is used for the base 4 and glass is used for the lid 6.
  • the top surface 45 of the bank portion 44 of the base 4 is formed into a flat surface, and the lower surface 61 for joining to the base 4 of the lid 6 is formed in a convex shape.
  • the lower surface 61 of the lid 6 is formed by projecting at two locations in a direction orthogonal to the lower surface 61, and the projecting end surfaces of these two locations are flat surfaces.
  • the lid bonding layer 62 is formed on the lower surface 61 of the lid 6 with a lowermost layer such as a Cr layer, an Ni layer, or a Mo layer, a Cu layer is laminated on the lowermost layer, and an Sn layer is formed on the Cu layer.
  • a Cu layer is formed by being laminated.
  • the base bonding layer 46 is formed by forming a bottom layer such as a Cr layer, a Ni layer, or a Mo layer on the top surface 45 of the base 4 and laminating an Au layer on the bottom layer.
  • the lid joining layer 62 formed on the lid 6 is formed on the base 4 and the lid joining layer 62 formed at the positions of the two projecting projecting end faces of the lid joining layer 62 formed on the lid 6.
  • the narrowest gap between both ends of the bonding material 8 is between the base bonding layer 46 and the intermetallic compound (Sn—Cu alloy 81) is formed unevenly in the gap. In this case, in contrast to the configuration in which the Sn—Cu alloy 81 is unevenly distributed at one place shown in FIG. 8, the gap closest to the two places is further provided, so that the heat resistance is improved.
  • ceramic is used for the base 4 and ceramic is used for the lid 6.
  • the top surface 45 of the bank portion 44 of the base 4 is formed into a flat surface
  • the lower surface 61 for joining to the base 4 of the lid 6 is formed into a flat surface.
  • the lid bonding layer 62 is formed by forming the lowermost layer of the Mo layer on the lower surface 61, laminating the Cu layer on the lowermost layer, and laminating the Sn—Cu layer on the Cu layer.
  • the lowermost layer of the W layer is formed on the top surface 45, and a W layer is further formed on a part of the lowermost W layer, thereby forming two W layers.
  • the base bonding layer 46 of the base 4 is formed in a convex shape. Therefore, for example, unlike the other embodiments shown in FIG. 8, even if the top surface 45 of the bank portion 44 of the base 4 and the lower surface 61 of the lid 6 are formed into a flat surface, the bonding layer (here Then, by forming the shape of the base bonding layer 46) into a convex shape, the same effects as those of the other embodiments shown in FIG. 8 can be obtained. Further, in the other embodiment shown in FIG. 10, the shape of the base bonding layer 46 is formed in a convex shape, so that the intermetallic compound (Sn—Cu alloy 81) is different from the other embodiment shown in FIG. The generation of can be promoted.
  • the intermetallic compound Sn—Cu alloy 81
  • glass is used for the base 4 and glass is used for the lid 6.
  • the top surface 45 of the bank portion 44 of the base 4 is formed into a flat surface
  • the lower surface 61 for joining to the base 4 of the lid 6 is formed into a flat surface.
  • the lid bonding layer 62 has a lowermost layer such as a Cr layer, a Ni layer, or a Mo layer formed on the lower surface 61, a Cu layer is laminated on the lowermost layer, and an Sn—Cu layer is formed on the Cu layer. It is formed by stacking.
  • the base bonding layer 46 is formed such that the lowermost layer of the Cr layer is formed on the top surface 45 of the base 4, the Au layer is formed on the lowermost layer, and a part (central portion) on the Au layer is formed.
  • a Cu layer is formed by being laminated. Note that the area of the Cu layer of the base bonding layer 46 of the base 4 is smaller than the Sn—Cu layer of the lid bonding layer 62 of the lid 6.
  • the base bonding layer 46 of the base 4 is formed in a convex shape. Therefore, for example, unlike the other embodiments shown in FIG.
  • the bonding layer (here Then, by forming the shape of the base bonding layer 46) into a convex shape, the same effects as those of the other embodiments shown in FIG. 8 can be obtained.
  • the shape of the base bonding layer 46 is formed into a convex shape and the convex portion is made of a Cu layer, the intermetallic compound (Sn—Cu alloy 81) in the bonding material 8 is used. ) In the central portion can be promoted.
  • glass is used for the base 4 and glass is used for the lid 6.
  • the top surface 45 of the bank portion 44 of the base 4 is formed in a convex shape
  • the lower surface 61 for joining to the base 4 of the lid 6 is formed in a convex shape.
  • the top surface 45 of the base 4 and the lower surface 61 of the lid 6 are formed so as to protrude in a direction orthogonal to the top surface 45 and the lower surface 61, respectively, and the protruding end surfaces are flat surfaces.
  • the lid bonding layer 62 is formed on the lower surface 61 of the lid 6 with a lowermost layer such as a Cr layer, a W layer, or an Mo layer, a Cu layer is laminated on the lowermost layer, and an Sn layer is formed on the Cu layer.
  • a Cu layer is formed by being laminated.
  • the base bonding layer 46 has a lowermost layer such as a Cr layer, a W layer, or a Mo layer formed on the top surface 45 of the base 4, and an Au layer is laminated on the lowermost layer.
  • a Cu layer is laminated on a part (central part).
  • the area of the Cu layer of the base bonding layer 46 of the base 4 is smaller than the Sn—Cu layer of the lid bonding layer 62 of the lid 6. Further, the Cu layer of the base bonding layer 46 of the base 4 has a thickness twice or more that of other layers (such as an Au layer) of the base bonding layer 46 of the base 4. As described above, in the other embodiment shown in FIG. 12, the uppermost Cu layer of the base bonding layer 46 is laminated on a part of the Au layer, so that the central portion of the top surface 45 of the base 4 is the other. The upper surface of the base bonding layer 46 and the top surface 45 of the base 4 are formed in a convex shape, so that the boundary surface between the base 4 and the top surface 45 of the bank portion 44 is further increased.
  • the intermetallic compound (Sn—Cu alloy 81) is unevenly distributed in the central portion of the top surface 45.
  • glass is used for the base 4 and glass is used for the lid 6.
  • the top surface 45 of the bank portion 44 of the base 4 is formed in a convex shape
  • the lower surface 61 for joining to the base 4 of the lid 6 is formed in a convex shape.
  • the top surface 45 of the base 4 and the lower surface 61 of the lid 6 are formed so as to protrude in a direction orthogonal to the top surface 45 and the lower surface 61, respectively, and the protruding end surfaces are flat surfaces.
  • the lid bonding layer 62 is formed on the lower surface 61 of the lid 6 with a lowermost layer such as a Cr layer, a W layer, or an Mo layer, a Cu layer is laminated on the lowermost layer, and an Sn layer is formed on the Cu layer.
  • a Cu layer is formed by being laminated.
  • the lid bonding layer 62 is formed so that the region extends not only to the region corresponding to the top surface 45 of the base 4 but also to the inside of the lower surface 61 of the lid 6.
  • the base bonding layer 46 has a lowermost layer such as a Cr layer, a W layer, or a Mo layer formed on the top surface 45 of the base 4, and an Au layer is laminated on the lowermost layer.
  • a Cu layer is laminated on a part (central part). Note that the area of the Cu layer of the base bonding layer 46 of the base 4 is smaller than the Sn—Cu layer of the lid bonding layer 62 of the lid 6. Further, the Cu layer of the base bonding layer 46 of the base 4 has the same thickness as other layers (such as an Au layer) of the base bonding layer 46 of the base 4. As described above, in the other embodiment shown in FIG. 13, the uppermost Cu layer of the base bonding layer 46 is laminated on a part of the Au layer. The upper portion of the base bonding layer 46 and the top surface 45 of the base 4 are formed in a convex shape, so that an intermetallic compound (Sn—Cu alloy 81) is formed at the center of the top surface 45 of the base 4.
  • an intermetallic compound Sn—Cu alloy 81
  • the lid bonding layer 62 is formed not only in the area corresponding to the top surface 45 of the base 4 but also in the lower surface 61 of the lid 6 so that the area of the lid bonding layer 62 is increased. As a result, when the base 4 and the lid 6 are joined, the Sn fillet of the joining material 8 spreads inward in the surface direction of the lid 6. The bonding strength between the base 4 and the lid 6 can be improved.
  • the package of the crystal unit 1 is constituted by the base 4 and the lid 6, but the present invention is not limited to this, and as shown in FIG.
  • one sealing member 94 and other sealing for hermetically sealing the excitation electrodes (not shown in FIG. 14) formed on both main surfaces 922 and 923 of the crystal vibrating piece 92.
  • the member 96 is provided, and the crystal vibrating piece 92, the one sealing member 94, and the other sealing member 96 are respectively connected to the bonding layer (the first bonding layer 946 corresponding to the base bonding layer 46 and the lid bonding).
  • a second bonding layer 962) corresponding to the layer 62 is formed.
  • a bank portion 926 is provided in the crystal vibrating piece 92, a third bonding layer 928 is formed on the top surface 927 of the bank portion 926, and the crystal vibrating piece 92, the one sealing member 94, and the other sealing member 96 are A bonding material bonded via each bonding layer (first bonding layer 946, second bonding layer 962, third bonding layer 928) and containing an intermetallic compound (for example, Sn—Cu alloy 81 shown in FIG. 1). (For example, the bonding material 8 shown in FIG. 1 or the like) is formed.
  • the bank portions 926 are provided on both main surfaces 922 and 923 of the crystal vibrating piece 92, but the present invention is not limited to this. It is preferable that at least one of the one sealing member 94 and the other sealing member 96 is provided with a bank portion.
  • the excitation electrode formed on one main surface 922 of the quartz crystal vibrating piece 92 is hermetically sealed by the one sealing member 94 and the quartz crystal vibrating piece 92.
  • the excitation electrode formed on the other main surface 923 is hermetically sealed by the other sealing member 96 and the crystal vibrating piece 92.
  • the bonding between the piezoelectric vibrating piece and the plurality of sealing members is performed by the bonding material containing the intermetallic compound whose melting temperature is higher than that of the solder. Will do.
  • the intermetallic compound does not melt even during reflow soldering, withstands the melting temperature during reflow soldering, and the hermetic sealing of the excitation electrode of the piezoelectric vibrating piece by a plurality of sealing members by the intermetallic compound Can keep.
  • the convex joint portion may be formed on either the base 4 or the lid 6.
  • the base 4 and the lid 6 according to the present embodiment have substantially the same planar dimension (main surface dimension), but the present invention is not limited to this, and the planar dimension is smaller than that of the base 4.
  • a lid 6 may be used.
  • the base 4 on which the crystal vibrating piece 2 is mounted is connected via the base bonding layer 46 formed on the top surface 45 of the base 4 and the lid bonding layer 62 formed on the lower surface of the lid 6.
  • the lid 6 is bonded by heating and melting, and the crystal resonator 1 in which the crystal resonator element 2 is hermetically sealed is manufactured.
  • the base bonding layer 46 and the lid bonding layer 62 are pulled so as to be coupled to each other. Therefore, as shown in FIG. 15, fillets are formed on both side surfaces of the bonding material 8.
  • the Sn 82 of the bonding material 8 disposed in the cavity 47 can be eliminated by the amount of Sn 82 in the bonding material 8 and the arrangement of Sn in the base bonding layer 46 and the lid bonding layer 62.
  • the present invention can be applied to a piezoelectric vibration device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 圧電振動片の励振電極を気密封止する圧電振動デバイスには、圧電振動片の励振電極を気密封止する複数の封止部材が設けられている。複数の封止部材には、それぞれ接合層が形成されている。複数の封止部材の少なくとも1つに堤部が設けられ、堤部の天面に接合層が形成されている。複数の封止部材がそれぞれの接合層を介して接合されて、金属間化合物を含む接合材が形成される。

Description

圧電振動デバイス、およびその製造方法
 本発明は、圧電振動デバイス、およびその製造方法に関するものである。
 例えば水晶振動子、水晶フィルタ、水晶発振器等の圧電振動デバイスは、圧電振動片の励振電極を気密封止した電子デバイスである。この種の圧電振動デバイスは、セラミック材料からなるベースと、金属材料からなる蓋とから構成され、その筐体が直方体のパッケージで構成されている。パッケージの内部空間では、圧電振動片が流動性材料の導電性接着剤によりベースに接合されている。また、この圧電振動デバイスでは、ベースと蓋との接合の際、接合材として半田が用いられ、ベースと蓋とが半田により接合され、パッケージの内部空間の圧電振動片が気密封止されている(例えば、特許文献1参照)。
特開2002-359312号公報
 特許文献1に示すような圧電振動デバイスでは、上記のようにベースと蓋とが半田を用いて接合されている。そのため、圧電振動デバイスをプリント基板などの上に載せる際のリフローソルダリング時に、半田が溶融し、半田がパッケージの内部空間やパッケージ外に流れ出すことがあり、この場合、パッケージの内部空間の圧電振動片を気密封止することができない。
 そこで、上記課題を解決するために、本発明は、リフローソルダリング時の溶融温度に耐えることができる接合材を用いた圧電振動デバイス、およびその製造方法を提供することを目的とする。
 上記の目的を達成するため、本発明にかかる圧電振動デバイスは、圧電振動片の励振電極を気密封止する圧電振動デバイスにおいて、前記圧電振動片の励振電極を気密封止する複数の封止部材が設けられ、前記複数の封止部材に、それぞれ接合層が形成され、前記複数の封止部材の少なくとも1つに堤部が設けられ、前記堤部の天面に前記接合層が形成され、前記複数の封止部材がそれぞれの前記接合層を介して接合されて、金属間化合物を含む接合材が形成されたことを特徴とする。
 本発明によれば、前記圧電振動片の励振電極を気密封止する前記複数の封止部材が設けられ、前記複数の封止部材に、それぞれ前記接合層が形成され、前記複数の封止部材の少なくとも1つに前記堤部が設けられ、前記堤部の天面に前記接合層が形成され、前記複数の封止部材がそれぞれの前記接合層を介して接合されて、前記金属間化合物を含む接合材が形成されるので、半田と比べて溶融温度が高い前記金属間化合物を含む前記接合材によって、前記複数の封止部材の接合を行うことになる。その結果、リフローソルダリング時であっても前記金属間化合物が溶融することなく、リフローソルダリング時の溶融温度に耐えて、前記金属間化合物によって前記複数の封止部材による前記圧電振動片の励振電極の気密封止を保つことが可能となる。
 または、上記の目的を達成するため、本発明にかかる他の圧電振動デバイスは、圧電振動片の励振電極を気密封止する圧電振動デバイスにおいて、前記圧電振動片の励振電極を気密封止する複数の封止部材が設けられ、前記圧電振動片と前記複数の封止部材とに、それぞれ接合層が形成され、前記圧電振動片と前記封止部材との少なくとも1つに堤部が設けられ、前記堤部の天面に前記接合層が形成され、前記圧電振動片と前記複数の封止部材とが、それぞれの前記接合層を介して接合されて、金属間化合物を含む接合材が形成されたことを特徴とする。
 本発明によれば、前記圧電振動片の励振電極を気密封止する前記複数の封止部材が設けられ、前記圧電振動片と前記複数の封止部材とに、それぞれ前記接合層が形成され、前記圧電振動片と前記封止部材との少なくとも1つに前記堤部が設けられ、前記堤部の天面に前記接合層が形成され、前記圧電振動片と前記複数の封止部材とが、それぞれの前記接合層を介して接合されて、前記金属間化合物を含む前記接合材が形成されるので、半田と比べて溶融温度が高い前記金属間化合物を含む前記接合材によって、前記圧電振動片と前記複数の封止部材との接合を行うことになる。その結果、リフローソルダリング時であっても前記金属間化合物が溶融することなく、リフローソルダリング時の溶融温度に耐えて、前記金属間化合物によって前記複数の封止部材による前記圧電振動片の励振電極の気密封止を保つことが可能となる。
 前記構成において、前記接合層、前記接合層が形成された前記封止部材の接合部位、または前記接合層が形成された前記圧電振動片の接合部位が凸状に形成されてもよい。
 この場合、前記接合層、前記封止部材の接合部位、または前記圧電振動片の接合部位が凸状に形成されるので、凸状の頂点と、前記凸状の頂点と対面する接合相手側の前記封止部材または前記圧電振動片との距離が最も短くなる。その結果、接合時、前記金属間化合物を前記凸状の頂点およびその付近に偏在させることが可能となる。
 前記構成において、前記接合層が形成された前記封止部材の接合部位、または前記接合層が形成された前記圧電振動片の接合部位が凸状に形成され、前記凸状に形成された前記封止部材の接合部位または前記圧電振動片の接合部位は、当該封止部材または当該圧電振動片と同じ材料からなってもよい。
 この場合、前記凸状に形成された前記封止部材の接合部位または前記圧電振動片の接合部位は、当該封止部材または当該圧電振動片と同じ材料からなるので、熱膨張係数に差異がなく、加熱接合時に接合部分に無用な応力が生じ難い。その結果、気密封止の信頼性を向上させることが可能となる。
 前記構成において、前記圧電振動片と前記封止部材との少なくとも1つの、前記接合層が形成された接合面は、平坦面とされ、前記接合面が平坦面とされた前記接合層は、前記接合面の外周に沿って形成され、前記堤部の天面と前記接合面の外周とにおいてそれぞれの前記接合層が接合されてもよい。
 この場合、前記圧電振動片と前記封止部材との少なくとも1つの、前記接合層が形成された接合面は、平坦面とされ、前記接合面が平坦面とされた前記接合層は、前記接合面の外周に沿って形成され、前記堤部の天面と前記接合面の外周とにおいてそれぞれの前記接合層が接合されるので、前記複数の封止部材の接合の際に、前記接合層が、気密封止している圧電振動片の励振電極に飛散するのを抑えることが可能となる。
 前記構成において、前記金属間化合物は、前記接合材内に偏在して形成されてもよい。
 この場合、前記金属間化合物は、前記接合材内に偏在して形成されるので、前記接合材は、当該圧電振動デバイスをリフローソルダリング等の技術を用いて実装基板へ接合する際の加熱温度に対する耐熱性を有する。その結果、前記複数の封止部材を安定して接合することが可能となる。
 前記構成において、前記金属間化合物は、複数の前記封止部材それぞれと接合する前記接合材の両端に亘って形成されてもよい。
 この場合、前記金属間化合物は、複数の前記封止部材それぞれと接合する前記接合材の両端に亘って形成されるので、リフローソルダリング時、前記金属間化合物により前記接合材がリフローソルダリング時の溶融に耐えて、前記複数の封止部材を接合することが可能となる。
 前記構成において、前記接合材の両端間の最も狭いギャップに、前記金属間化合物が偏在して形成されてもよい。
 この場合、前記接合材の両端間の最も狭いギャップに前記金属間化合物が偏在して形成されるので、偏在する前記金属間化合物によりリフローソルダリング時の環境温度に耐え、前記接合材による各部材の接合に好適である。
 前記構成において、前記最も狭いギャップは、3~20μmであってもよい。
 この場合、前記最も狭いギャップが3~20μmであるので、前記金属間化合物が、前記最も狭いギャップの部分に良好な状態で偏在し、さらに前記接合材の形状は接合に良好なフィレットを維持することが可能となる。よって、本構成によれば、各部材を前記金属間化合物を含む接合材を介して強く接合させることが可能となり、当該圧電振動デバイスの小型化に好適である。これに対して、前記最も狭いギャップが3μm未満の場合、このギャップの部分が脆くなり、前記接合材の強度が低下する。また、前記最も狭いギャップが20μmを越える場合、前記接合材のフィレットが小さくなり、各部材の接合強度が低下する。また、前記接合材における前記金属間化合物の生成量が相対的に少なくなることがあり、耐熱性が低下する。
 前記構成において、前記接合層はCuとSnとを含んでもよい。
 この場合、前記接合層はCuとSnとを含んでいるので、各部材の接合の際に、前記接合層中に分散しているCuとSnとが結合し(例えばCu6Sn5やCu3Sn)、かつ、CuとSnとからなる前記金属間化合物が偏在する。また、前記接合層のCuとSnとが既に結合している場合(前記金属化合物が既に存在している場合)、このCuとSnとからなる前記金属間化合物が偏在する。
 上記の目的を達成するため、本発明にかかる圧電振動デバイスの製造方法は、上記の本発明にかかる圧電振動デバイスの製造方法であり、前記複数の封止部材のうち一封止部材に、前記Sn-Cu層を最上層とする前記接合層を形成し、前記一封止部材と接合する他の前記封止部材に、前記Sn-Cu層よりも面積が小さい前記Cu層を最上層とする前記接合層を形成し、前記Sn-Cu層と前記Cu層とを加熱接合することを特徴する。
 本発明によれば、上記した本発明にかかる圧電振動デバイスによる作用効果を有し、さらに、前記一封止部材に、前記Sn-Cu層を最上層とする前記接合層を形成し、前記一封止部材と接合する他の前記封止部材に、前記Sn-Cu層よりも面積が小さい前記Cu層を最上層とする前記接合層を形成し、前記Sn-Cu層と前記Cu層とを加熱接合するので、前記接合材における前記金属間化合物の中央部分への偏在を促進させることが可能となる。
 本発明にかかる圧電振動デバイス、およびその製造方法によれば、リフローソルダリング時の溶融温度に耐えることが可能となる。
図1は、本実施の形態にかかる水晶振動子の内部空間を公開した概略断面図である。 図2は、本実施の形態にかかるベースの概略平面図と概略断面図とである。 図3は、本実施の形態にかかる蓋の概略側面図と概略底面図とである。 図4は、本実施の形態にかかる水晶振動片の概略底面図である。 図5は、本実施の形態にかかるベースと蓋との接続状態を示した拡大側面図である。 図6は、他の実施の形態にかかるベースと蓋との接続状態を示した、図5に対応する拡大側面図である。 図7は、他の実施の形態にかかるベースと蓋との接続状態を示した、図5に対応する拡大側面図である。 図8は、他の実施の形態にかかるベースと蓋とを接合する前のベース単体と蓋単体とを示す概略拡大側面図である。 図9は、他の実施の形態にかかるベースと蓋とを接合する前のベース単体と蓋単体とを示す概略拡大側面図である。 図10は、他の実施の形態にかかるベースと蓋とを接合する前のベース単体と蓋単体とを示す概略拡大側面図である。 図11は、他の実施の形態にかかるベースと蓋とを接合する前のベース単体と蓋単体とを示す概略拡大側面図である。 図12は、他の実施の形態にかかるベースと蓋とを接合する前のベース単体と蓋単体とを示す概略拡大側面図である。 図13は、他の実施の形態にかかるベースと蓋とを接合する前のベース単体と蓋単体とを示す概略拡大側面図である。 図14は、他の実施の形態にかかるベースと蓋とを接合する前の第1封止部材と第2封止部材と水晶振動片とを示す概略拡大側面図である。 図15は、他の実施の形態にかかるベースと蓋との接続状態を示した、図5に対応する拡大側面図である。
  以下、本発明の実施の形態について図面を参照して説明する。なお、以下に示す実施の形態では、圧電振動デバイスとして水晶振動子に本発明を適用した場合を示す。
 本実施の形態にかかる水晶振動子1には、図1に示すように、ATカット水晶からなる水晶振動片2(本発明でいう圧電振動片)と、この水晶振動片2を保持し、水晶振動片2を気密封止するベース4(本発明でいう封止部材)と、ベース4に保持した水晶振動片2を気密封止する蓋6(本発明でいう封止部材)とが設けられている。
 水晶振動子1では、ベース4と蓋6とからパッケージが構成され、ベース4と蓋6とが、ベース接合層46と蓋接合層62とにより接合されて、この接合により気密封止された内部空間11が形成される。この内部空間11では、水晶振動片2が、ベース4に導電性バンプ7を用いてFCB法(Flip Chip Bonding)により電気機械的に超音波接合されている。
 次に、この水晶振動子1の各構成について図1~4を用いて説明する。
 -ベース4-
 ベース4は、セラミックからなり、図2に示すように、底部41と、ベース4の一主面42の主面外周に沿って底部41から上方に延出した堤部44と、から構成された箱状体に成形されている。このベース4は、セラミックの一枚板上にセラミックの輪状体を積層して凹状に一体焼成されている。ベース4の平面視の寸法は、3.2mm×2.5mm以下に設定される。なお、本実施の形態では、平面視の寸法が2.5mm×2.0mmに設定されたベース4を用いる。
 ベース4の堤部44の天面45は、蓋6との接合面であり、この天面45に蓋6と接合する鉛フリーのベース接合層46(本発明でいう接合層)が形成されている。本実施の形態では、ベース4の堤部44の天面45が、ベース接合層46が形成されたベース4の接合部位とされる。
 ベース接合層46は、凸状に成形され、堤部44の天面45上にWからなるW層が堤部44の天面45に一体焼成され、W層上にNiからなるNi層が形成され、Ni層上にAuからなるAu層が形成された薄膜で構成される。W層は、ベース4の堤部44の天面45に一体焼成する際に軟化して、W層の外方(表面)が湾曲する。その結果、W層は、全体として凸状に形成される。このように、ベース4の堤部44の天面45に、W層の外方が湾曲して形成されるため、ベース接合層46は、ベース4の堤部44の天面45に凸状に成形される。なお、本実施の形態では、ベース接合層46の最下層にW層を用いているが、これに限定されるものではなく、MoからなるMo層であってもよい。
 また、ベース4には、底部41と堤部44とによって囲まれたキャビティ47が形成され、このキャビティ47は、図2に示すように、平面視矩形状に形成されている。本実施の形態では、キャビティ47は、平面視長方形に形成されている。
 また、ベース4の筐体裏面(他主面43)の四隅にキャスタレーション48が形成されている。これらキャスタレーション48は、筐体側面に形成され、ベース4の他主面43の四隅に沿って形成されている。
 また、ベース4には、図2に示すように、水晶振動片2の励振電極31,32それぞれと電気機械的に接合する一対の電極パッド51,52と、外部部品や外部機器と電気的に接続する外部端子電極53,54と、電極パッド51と外部端子電極53、および電極パッド52と外部端子電極54を電気的に接続させる配線パターン55とが、形成されている。これら電極パッド51,52と外部端子電極53,54と配線パターン55とによりベース4の電極が構成される。電極パッド51,52は、ベース4のキャビティ47の長手方向に沿って短辺方向に並んで形成され、外部端子電極53,54は、キャスタレーション48に形成されている。これら電極パッド51,52と外部端子電極53,54と配線パターン55とは、ベース接合層46と同一材料による構成からなり、ベース接合層46と同時に形成される。
 また、ベース4には、図2に示すように、水晶振動片2の励振電極31,32をキャビティ47内からキャビティ47外へ導通させるためのビア49が形成されている。このビア49を介して、配線パターン55が、ベース4の一主面42の電極パッド51,52から他主面43の外部端子電極53,54にかけてパターン形成されている。ビア49の内側面は、ベース4の一主面42および他主面43に対して傾斜を有しテーパー状に形成されている。ビア49は、ベース4の他主面43にあたるビア49の他端の径が最大となり、ベース4の一主面42にあたるビア49の一端の径が最小となる。また、ビア49の内部には、Wから構成される導通部材56がベース4と一体焼成されている。
 -蓋6-
 蓋6は、セラミックからなり、平面視矩形状の直方体の一枚板に成形されている。この蓋6の下面61は、ベース4と接合するための接合面であり、図3に示すように、平坦面に成形されている。蓋6の平面視の寸法は、3.2mm×2.5mm以下に設定される。なお、本実施の形態では、平面視の寸法が2.5mm×2.0mmに設定された基板を用いる。
 蓋6の下面61は、ベース4との接合面であり、この下面61にベース4と接合する蓋接合層62(本発明でいう接合層)が形成されている。本実施の形態では、蓋6の下面61(具体的には下面61の外周に沿った部位)が、蓋接合層62が形成された蓋6の接合部位とされる。
 蓋接合層62は、蓋6の下面61の外周に沿って凸状に成形され、ベース4の堤部44の天面45に対応している。蓋接合層62は、蓋6の下面61上にWからなるW層が蓋6の下面61に一体焼成され、W層上にNiからなるNi層が形成され、Ni層上にCuからなるCu層が形成され、Cu層上にSn-Cuろう材が形成された多層構成となる。W層は、蓋6の下面61上に一体焼成する際に軟化して、W層の外方(表面)が湾曲する。その結果、W層は、全体として凸状に形成される。このように、蓋6の下面61に、W層の外方が湾曲して形成されるため、蓋6の下面61の外周に沿って蓋接合層62が凸状に成形される。なお、本実施の形態では、蓋接合層62の最下層にW層を用いているが、これに限定されるものではなく、MoからなるMo層であってもよい。
 水晶振動子1では、蓋6をベース4にFCB法により仮接合して、その後雰囲気加熱によりSn-Cuろう材を溶融させて本接合し、蓋6とベース4とによる水晶振動子1のパッケージを構成する。
 -水晶振動片2-
 水晶振動片2は、ATカット水晶片の基板21からなり、その外形は、図4に示すように、平面視略矩形状の(両主面22,23が略矩形状に形成された)一枚板の直方体となっている。なお、本実施の形態では、水晶振動片2の対向する平面視長辺のことを、一側辺と他側辺という。
 この水晶振動片2には、振動領域を構成する振動部24と、外部電極であるベース4の電極パッド51,52と接合する接合部25とが設けられ、振動部24と接合部25とが一体成形されて基板21が構成される。また、接合部25では、基板21の平面視短辺の中央部分の位置を切り欠いている。
 この水晶振動片2には、励振を行う一対の励振電極31,32と、ベース4の電極パッド51,52と電気機械的に接合する一対の端子電極33,34と、一対の励振電極31,32を一対の端子電極33,34に引き出す引出電極35,36とが形成されている。一対の励振電極31,32は、引出電極35,36により引回されて一対の端子電極33,34にそれぞれ電気的に接続されている。
 一対の励振電極31,32は、基板21の両主面22,23であって振動部24の平面視中央に対向して形成されている。これら一対の励振電極31,32は、例えば、基板21側からCr、Auの順に積層して形成されたCr-Au膜により構成される。
 一対の端子電極33,34は、接合部25の他主面23に形成されている。一対の端子電極33,34のうち端子電極33は、基板21の一側辺を含むその近傍に形成され、他の端子電極34は、他側辺を含むその近傍に形成されている。これら一対の端子電極33,34は、例えば、励振電極31,32と同様に、基板21側からCr、Auの順に積層して形成されたCr-Au膜により構成される。また、一対の端子電極33,34は、図1,4に示すように、上層と下層からなる二層構造となっており、上層はAuから構成され、下層はCrから構成されている。下層の主面(平面視の面)の面積は、上層の主面(平面視の面)の面積に対して大きい。
 引出電極35,36は、振動部24および接合部25に形成され、振動部24から接合部25に亘り、対向せずに基板21の両主面22,23に形成されている。これら引出電極35,36は、例えば、励振電極31,32と同様に、基板21側からCr、Auの順に積層して形成されたCr-Au膜により構成される。
 -水晶振動子1-
 上記した構成からなる水晶振動子1では、図1に示すように、ベース4と水晶振動片2とは、導電性バンプ7を介してFCB法により電気機械的に超音波接合される。この接合により、水晶振動片2の励振電極31,32が、引出電極35,36、端子電極33,34、導電性バンプ7を介してベース4の電極パッド51,52に電気機械的に接合され、ベース4に水晶振動片2が搭載される。なお、導電性バンプ7には、非流動性部材のメッキバンプが用いられている。ここでいうメッキバンプはメッキにより形成された金属膜であり、下地金属層(シード層)上に電解メッキ等により金属膜を生成した構成である。メッキ条件により、その膜厚を調整することができ、厚膜に形成することができる。また下地金属層の形状により金属膜の上面の形状を決定することができ、金属膜上面の形状を平坦にしたり、凸形状にしたりすることができる。
 そして、ベース4のベース接合層46と蓋6の蓋接合層62とを介して、水晶振動片2が搭載されたベース4に蓋6が加熱溶融(具体的にはFCB法)により接合(具体的には超音波接合)され、水晶振動片2を気密封止した水晶振動子1が製造される。なお、ベース接合層46と蓋接合層62との接合によって、図5に示すように、ベース接合層46と蓋接合層62とから金属間化合物であるSn-Cu合金81を含む接合材8が形成される。なお、接合材8では、Wの金属拡散が行われず、W層は残存している。この接合材8を介したベース4と蓋6との間の最も狭いギャップは、3~20μmに設定される。本実施の形態では、このギャップは5μmとする。
 接合材8は、リフローソルダリング時の溶融温度(例えば、260℃以上)よりも高い融点を有する。この接合材8には、図5に示すように、ベース4と蓋6とを接合する接合材8の両端(具体的にはベース4のW層と蓋6のW層との間)に亘ってSn-Cu合金81が形成されている。このSn-Cu合金81は、ベース4の堤部44の天面45(具体的には天面45上に一体焼成されたW層)と、蓋6の下面61(具体的には下面61上に一体焼成されたW層)との間が最も狭いギャップおよびその付近に偏在している。接合材8のそれ以外(Sn-Cu合金81が生成された部位以外)の部位に、Cuと金属間化合物化しなかったSn82が偏在する。本実施の形態では、ベース4の堤部44の天面45(具体的には天面45上に一体焼成されたW層)の凸状頂点付近と、この凸状頂点付近と対面する蓋6の下面61(具体的には下面61上に一体焼成されたW層)の凸状頂点付近の間のギャップおよびその付近にSn-Cu合金81が偏在している。
 本実施の形態にかかる水晶振動子1によれば、水晶振動片2を気密封止するベース4と蓋6とが設けられ、ベース4に堤部44が設けられ、堤部44の天面45にベース接合層46が形成され、蓋6に蓋接合層62が形成され、ベース4と蓋6とがそれぞれのベース接合層46と蓋接合層62とを介して接合されて、金属間化合物(Sn-Cu合金81)を含む接合材8が形成されるので、半田と比べて溶融温度が高いSn-Cu合金81を含む接合材8によって、ベース4と蓋6との接合を行うことになる。その結果、接合材8の耐熱性が向上し、リフローソルダリング時であってもSn-Cu合金81が溶融することなく、リフローソルダリング時の溶融温度に耐え、Sn-Cu合金81によってベース4と蓋6とによる水晶振動片2の気密封止を保つことができる。
 また、ベース4の天面45が凸状に湾曲されるので、天面45の凸状頂点とこの凸状頂点と対面する蓋6の下面61との距離が最も短くなる。その結果、ベース4と蓋6との接合時、金属間化合物(Sn-Cu合金81)を天面45の凸状頂点およびその付近に偏在させることができる。
 また、ベース接合層46に対応させて、蓋6の平坦面とされた下面61の外周に沿って蓋接合層62が形成され、ベース4の堤部44の天面45と蓋6の下面61の外周とにおいてベース接合層46と蓋接合層62とが接合されるので、ベース4と蓋6との接合の際にベース接合層46と蓋接合層62とが、内部空間11に気密封止している水晶振動片2に飛散するのを抑えることができる。
 また、金属間化合物(Sn-Cu合金81)は、ベース4と蓋6との間に亘って形成され、かつ、接合材8内において偏在するので、リフローソルダリング時、接合材8はSn-Cu合金81によりリフローソルダリング時の溶融に耐え、ベース4と蓋6とを接合することができる。
 また、ベース接合層46と蓋接合層62とが凸状に形成されるので、凸状の頂点と、凸状の頂点と対面する接合相手側のベース4(蓋6)との距離が最も短くなる。その結果、接合時、金属間化合物(Sn-Cu合金81)を凸状の頂点およびその付近に偏在させることができる。
 また、接合材8の両端間の最も狭いギャップに金属間化合物(Sn-Cu合金81)が偏在して形成されるので、偏在するSn-Cu合金81によりリフローソルダリング時の環境温度に耐え、接合材8による各部材(本実施の形態ではベース4と蓋6)の接合に好適である。
 また、最も狭いギャップが3~20μmであるので、金属間化合物(Sn-Cu合金81)が、最も狭いギャップの部分に良好な状態で偏在し、さらに接合材8の形状は接合に良好なフィレットを維持することができる。よって、本構成によれば、各部材(本実施の形態ではベース4と蓋6)をSn-Cu合金81を含む接合材8を介して強く接合させることができ、当該水晶振動子1の小型化に好適である。これに対して、最も狭いギャップが3μm未満の場合、このギャップの部分が脆くなり、接合材の強度が低下する。また、最も狭いギャップが20μmを越える場合、接合材のフィレットが小さくなり、各部材の接合強度が低下する。また、接合材における金属間化合物の生成量が相対的に少なくなることがあり、耐熱性が低下する。
 また、接合層8はCuとSnとを含んでいるので、各部材(本実施の形態ではベース4と蓋6)の接合の際に、接合層(ベース接合層46と蓋接合層62)中に分散しているCuとSnとが結合し(例えばCu6Sn5やCu3Sn)、かつ、CuとSnとからなる金属間化合物(Sn-Cu合金81)が偏在する。また、ベース接合層46と蓋接合層62とのCuとSnとが既に結合している場合(Sn-Cu合金81が既に存在している場合)、このCuとSnとからなるSn-Cu合金81が偏在する。
 なお、本実施の形態では、圧電振動デバイスとして水晶振動子を適用しているが、これに限定されるものではなく、圧電振動を行う圧電振動片の励振電極を気密封止する圧電振動デバイスであれば、他のデバイスであってもよく、例えば水晶発振器であってもよい。
 また、本実施の形態では、接合材8は、図5に示す接合状態となっているが、これに限定されるものではなく、図6,7に示す接合状態であってもよい。図6,7に示す接合状態と、図5に示す接合状態とを比較すると、図6,7に示す接合状態の接合材8の方が、ベース4と蓋6との間が最も狭いギャップおよびその付近に、Sn-Cu合金81が偏在することが分かる。そのため、図6,7に示す接合状態の接合材8の方が、図5に示す接合状態の接合材に比べて耐熱性に勝り、より好ましい。
 また、本実施の形態では、平坦な基板21に形成された一対の端子電極33,34が二層構造となっているが、これに限定されるものではなく、一対の端子電極33,34を形成する基板部分の水晶が凸状に成形され、この凸状に形成された基板部分に、CrとAuとを用いた一層構造もしくは複数層構造の一対の端子電極が形成されてもよい。
 また、本実施の形態では、一対の端子電極33,34が二層構造となっているが、これに限定されるものではなく、一層構造であっても、三層構造以上の複数層構造であってもよい。
 また、本実施の形態では、導通部材56はCuから構成されているが、これに限定されるものではなく、AuとSnとの溶融拡散によりAuとSnとが均一に混在したAu-Sn合金から構成されてもよい。この場合、ビア49内では、ベース4の両主面42,43における導通部材56の端面が、AuとSnが溶融拡散によりそれぞれ主面42,43の面方向に引っ張られてベース4の両主面42,43に対して凹形状となる。このAuとSnの溶融拡散によりベース4と導通部材56との接合を良好にし、ベース4と導通部材56との間に隙間が生じるのを抑制して、ベース4に対する導通部材56の充填不良を抑えることができる。
 また、本実施の形態では、振動部24と接合部25の厚みを同じ厚みとしているが、これに限定されるものではなく、振動部24の厚みを薄くし、高周波化に対応させてもよい。
 また、本実施の形態では、ベース4にセラミックが用いられているが、これに限定されるものではなく、ベース4に水晶振動片2と同じ水晶や、ホウケイ酸ガラス等のガラス材、あるいはシリコンやサファイアを用いてもよい。この場合、フォトリソグラフィ技術を用いた微細な加工ができ、超小型の圧電振動デバイスに好適であり、また材料コストを抑えることができる。
 例えば、ベース4にガラスや水晶などを用いた場合、ベース4の堤部44の天面45に形成されたベース接合層46は、ベース4の天面45上に、CrからなるCr層、MoからなるMo層、もしくはNiからなるNi層のいずれかの層が形成され、その上に、AuからなるAu層が形成され、Au層上にSn-Cuろう材が形成された多層構成となってもよい。
 また、ベース4の基材としてセラミック等の絶縁板を用い、ベース4は、絶縁板の上面外周縁部にコバール等の金属枠体を積層した積層構造からなってもよい。この場合、電気配線パターンにおける端子間の絶縁をとることができる。
 なお、上記各構成において、ベース4の天面45に形成されたベース接合層46は、ベース4の天面45上にCuから構成されるCuストライクメッキが形成され、そのストライクメッキおよび天面45上に、CuからなるCu層が形成され、Cu層上にSn-Cuろう材が形成された多層構成となってもよい。もしくは、ベース接合層46は、ベース4の天面45上にSnからなるSn層とCuからなるCu層とが交互に積層され、Cu層上にSn-Cuろう材が形成された多層構成となってもよい。
 また、本実施の形態では、蓋6にセラミックが用いられているが、これに限定されるものではなく、蓋6に水晶振動片2と同じ水晶や、ホウケイ酸ガラス等のガラス材、あるいはシリコンやサファイアを用いてもよい。また、コバールなどの金属材料を用いてもよい。
 例えば、蓋6にコバールを用いた場合、蓋6の下面61に形成された蓋接合層62は、蓋6の下面61上にCuから構成されるCuストライクメッキが形成され、そのストライクメッキおよび下面61上に、CuからなるCu層が形成され、Cu層上にSn-Cuろう材が形成された多層構成となってもよい。もしくは、蓋6にコバールを用いた場合、蓋接合層62は、蓋6の下面61上にSnからなるSn層とCuからなるCu層とが交互に積層され、Cu層上にSn-Cuろう材が形成された多層構成となってもよい。
 また、蓋6にガラスや水晶などを用いた場合、蓋6の下面61に形成された蓋接合層62は、蓋6の下面61上にCrからなるCr層、MoからなるMo層もしくはNiからなるNi層が形成され、その上に、AuからなるAu層が形成され、Au層上にSn-Cuろう材が形成された多層構成となってもよい。なお、本実施の形態では、Au層が形成されているが、これに限定されるものではなく、Au層が形成されなくてもよい。
 また、本実施の形態では、ベース接合層46や蓋接合層62にCuを用いているが、これに限定されるものではなく、Cuに代えてAuを用いてAuSnからなるAuSn構成としてもよい。
 また、本実施の形態にかかる接合材8に、さらにNiやCoが含有されることが望ましい。この場合、接合材8を生成後に熱履歴がかかっても(リフロー試験や、経年熱履歴等)、NiやCoの存在により、接合材8のSnがベース接合層46(AuやNiなど)や蓋接合層62(AuやNiなど)と反応してこれらベース接合層46や蓋接合層62を浸食するのを防ぐことができ、その結果、接合材8がベース4や蓋6から剥がれるのを抑制することができる。具体的な形態として、例えば、接合材8を生成する前のベース接合層46や蓋接合層62の最上層にNiやCoの金属層を形成することが挙げられる。また、ベース4にガラスや水晶を用いた場合、ベース接合層46の最下層にCrやMo、Niなどを用いた場合であっても、NiやCoの存在により、接合材8のSnがベース接合層46(AuやNiなど)や蓋接合層62(AuやNiなど)と反応してこれらベース接合層46や蓋接合層62を浸食するのを防ぐことができる。なお、このNiやCoは最上層でなくてもベース接合層46や蓋接合層62に内在する構成(例えば、ベース接合層46や蓋接合層62の中間層として構成)であってもよい。
 また、本実施の形態にかかる接合材8に、さらにAuやAgが含有されることが望ましい。この場合、接合材8を生成後に熱履歴がかかっても(リフロー試験や、経年熱履歴等)、AuやAgと、接合材8のSnとが先に反応し、Snがベース接合層46や蓋接合層62を構成する金属材料と反応するのを抑制することができ、その結果、接合材8がベース4や蓋6から剥がれるのを抑制することができ、ベース4と蓋6との安定した接合を維持することができ、気密性を確保することができる。具体的な形態として、例えば、接合材8を生成する前のベース接合層46や蓋接合層62の最上層にAuやAgを形成することが挙げられる。なお、当該AuやAgは、メッキ、真空蒸着により形成したり、AuペーストやAgペーストを塗布することにより形成することができる。
 また、本実施の形態にかかる接合材8の表面に、AuやAgやCuの金属層を形成することが望ましい。この場合、接合材8を生成後に熱履歴がかかっても(リフロー試験や、経年熱履歴等)、AuやAgやCuと、接合材8のSnとが先に反応し、Snがベース接合層46や蓋接合層62と反応するのを抑制することができる。その結果、接合材8がベース4や蓋6から剥がれるのを抑制することができ、ベース4と蓋6との安定した接合を維持することができ、気密性を確保することができる。具体的な形態として、例えば、接合材8を生成後に、接合材8上にAuやAgやCuの金属層を形成することが挙げられる。当該AuやAgやCuは、メッキ、真空蒸着により形成したり、これら金属を含有するペーストを塗布することにより形成することができる。
 また、本実施の形態では、ベース4の堤部44のベース接合層46は凸状に湾曲して成形され、蓋6の下面61の蓋接合層62は凸状に湾曲して成形されているが、これに限定されるものではなく、図8~13に示すような他の実施の形態であってもよい。なお、これら図8~13に示す他の実施の形態では、ベース4と蓋6とを接合する前のベース4単体と蓋6単体とを示す概略構成図である。
 図8に示す他の実施の形態では、ベース4にガラスを用い、蓋6にガラスを用いている。ベース4の堤部44の天面45が平坦面に成形され、蓋6のベース4と接合するための下面61が凸状に成形されている。この蓋6の下面61は、下面61から直交する方向に突出して成形され、その突出端面は平坦面となっている。また、蓋6では、蓋接合層62が、蓋6の下面61にCr層,Ni層またはMo層などの最下層が形成され、この最下層上にCu層が積層され、Cu層上にSn-Cu層が積層されて形成される。また、ベース4では、ベース接合層46が、ベース4の天面45にCr層,Ni層またはMo層などの最下層が形成され、この最下層上にAu層が積層されて形成される。この図8に示す他の実施の形態では、蓋6に形成された蓋接合層62のうち、凸状の突出端面の位置に形成された蓋接合層62と、ベース4に形成されたベース接合層46との間が、接合材8の両端間の最も狭いギャップとなり、このギャップに金属間化合物(Sn-Cu合金81)が偏在して形成される。
 また、図9に示す他の実施の形態では、ベース4にガラスを用い、蓋6にガラスを用いている。ベース4の堤部44の天面45が平坦面に成形され、蓋6のベース4と接合するための下面61が凸状に形成されている。この蓋6の下面61は、下面61から直交する方向に2箇所突出して成形され、これら2箇所の突出端面はそれぞれ平坦面となっている。また、蓋6では、蓋接合層62が、蓋6の下面61にCr層,Ni層またはMo層などの最下層が形成され、この最下層上にCu層が積層され、Cu層上にSn-Cu層が積層されて形成される。また、ベース4では、ベース接合層46が、ベース4の天面45にCr層,Ni層またはMo層などの最下層が形成され、この最下層上にAu層が積層されて形成される。この図9に示す他の実施の形態では、蓋6に形成された蓋接合層62のうち、2箇所の凸状の突出端面の位置に形成された蓋接合層62と、ベース4に形成されたベース接合層46との間が、接合材8の両端間の最も狭いギャップとなり、このギャップに金属間化合物(Sn-Cu合金81)が偏在して形成される。この場合、図8に示す1箇所にSn-Cu合金81が偏在する構成に対して、さらに2箇所に最も近いギャップを有するので、耐熱性が向上する。
 また、図10に示す他の実施の形態では、ベース4にセラミックを用い、蓋6にセラミックを用いている。ベース4の堤部44の天面45が平坦面に成形され、蓋6のベース4と接合するための下面61が平坦面に成形されている。蓋6では、蓋接合層62が、その下面61にMo層の最下層が形成され、この最下層上にCu層が積層され、Cu層上にSn-Cu層が積層されて形成される。また、ベース4では、その天面45にW層の最下層が形成され、この最下層のW層上の一部にさらにW層が形成され、2段のW層が形成される。そして、この2段に形成されたW層上に、Ni層が積層され、Ni層上にAu層が積層され、これらの金属の積層によりベース接合層46が形成される。このように、図10に示す他の実施の形態では、ベース4のベース接合層46が凸状に成形される。そのため、例えば図8に示す他の実施の形態と異なり、ベース4の堤部44の天面45と、蓋6の下面61とが平坦面に成形された構成であっても、接合層(ここではベース接合層46)の形状を凸状に成形することにより、図8に示す他の実施の形態と同様の効果を有することができる。また、図10に示す他の実施の形態では、ベース接合層46の形状を凸状に成形するので、図8に示す他の実施の形態に対して、金属間化合物(Sn-Cu合金81)の生成を促進させることができる。
 また、図11に示す他の実施の形態では、ベース4にガラスを用い、蓋6にガラスを用いている。ベース4の堤部44の天面45が平坦面に成形され、蓋6のベース4と接合するための下面61が平坦面に成形されている。蓋6では、蓋接合層62が、その下面61にCr層,Ni層またはMo層などの最下層が形成され、この最下層上にCu層が積層され、Cu層上にSn-Cu層が積層されて形成される。また、ベース4では、ベース接合層46が、ベース4の天面45にCr層の最下層が形成され、この最下層上にAu層が形成され、Au層上の一部(中央部)にCu層が積層されて形成される。なお、蓋6の蓋接合層62のSn-Cu層より、ベース4のベース接合層46のCu層の面積が小さい。このように、図11に示す他の実施の形態では、ベース4のベース接合層46が凸状に成形される。そのため、例えば図8に示す他の実施の形態と異なり、ベース4の堤部44の天面45と、蓋6の下面61とが平坦面に成形された構成であっても、接合層(ここではベース接合層46)の形状を凸状に成形することにより、図8に示す他の実施の形態と同様の効果を有することができる。また、図11に示す他の実施の形態では、ベース接合層46の形状を凸状に成形し、凸状の部分がCu層からなるので、接合材8における金属間化合物(Sn-Cu合金81)の中央部分への偏在を促進させることができる。
 また、図12に示す他の実施の形態では、ベース4にガラスを用い、蓋6にガラスを用いている。ベース4の堤部44の天面45が凸状に形成され、蓋6のベース4と接合するための下面61が凸状に形成されている。これらベース4の天面45や蓋6の下面61は、それぞれ天面45や下面61に対して直交する方向に突出して成形され、その突出端面は平坦面となっている。また、蓋6では、蓋接合層62が、蓋6の下面61にCr層,W層またはMo層などの最下層が形成され、この最下層上にCu層が積層され、Cu層上にSn-Cu層が積層されて形成される。また、ベース4では、ベース接合層46が、ベース4の天面45にCr層,W層またはMo層などの最下層が形成され、この最下層上にAu層が積層され、Au層上の一部(中央部)にCu層が積層されて形成される。なお、蓋6の蓋接合層62のSn-Cu層より、ベース4のベース接合層46のCu層の面積が小さい。また、ベース4のベース接合層46のCu層は、ベース4のベース接合層46の他の層(Au層など)に比べて2倍以上の厚みを有する。このように、図12に示す他の実施の形態では、ベース接合層46の最上層のCu層がAu層上の一部に積層されているので、ベース4の天面45の中央部が他の部分より突設され、ベース接合層46の上部とベース4の天面45とが凸状に成形されることによって、ベース4と堤部44の天面45との境界面さらに、ベース4の天面45の中央部において金属間化合物(Sn-Cu合金81)が偏在して形成されることになる。
 図13に示す他の実施の形態では、ベース4にガラスを用い、蓋6にガラスを用いている。ベース4の堤部44の天面45が凸状に形成され、蓋6のベース4と接合するための下面61が凸状に形成されている。これらベース4の天面45や蓋6の下面61は、それぞれ天面45や下面61に対して直交する方向に突出して成形され、その突出端面は平坦面となっている。また、蓋6では、蓋接合層62が、蓋6の下面61にCr層,W層またはMo層などの最下層が形成され、この最下層上にCu層が積層され、Cu層上にSn-Cu層が積層されて形成される。この蓋接合層62は、ベース4の天面45に対応した領域だけでなく、蓋6の下面61の内方にまで領域が拡がるように成形されている。また、ベース4では、ベース接合層46が、ベース4の天面45にCr層,W層またはMo層などの最下層が形成され、この最下層上にAu層が積層され、Au層上の一部(中央部)にCu層が積層されて形成される。なお、蓋6の蓋接合層62のSn-Cu層より、ベース4のベース接合層46のCu層の面積が小さい。また、ベース4のベース接合層46のCu層は、ベース4のベース接合層46の他の層(Au層など)と同等の厚みを有する。このように、図13に示す他の実施の形態では、ベース接合層46の最上層のCu層がAu層上の一部に積層されているので、ベース4の天面45の中央部が他の部分より突設され、ベース接合層46の上部とベース4の天面45とが凸状に成形されることによって、ベース4の天面45の中央部において金属間化合物(Sn-Cu合金81)が偏在して形成されることになる。また、蓋接合層62は、ベース4の天面45に対応した領域だけでなく、蓋6の下面61の内方にまで領域が拡がるように形成されているので、蓋接合層62の面積を面方向(特に、内方)に拡大させることができ、その結果、ベース4と蓋6との接合の際に、接合材8のうちSnのフィレットが蓋6の面方向の内方に拡がり、ベース4と蓋6との接合強度を向上させることができる。
 また、本実施の形態では、ベース4と蓋6とから水晶振動子1のパッケージを構成しているが、これに限定されるものではなく、図14に示すように、複数の封止部材(上記のベース4に対応する一封止部材94と、上記の蓋6に対応する他封止部材96)と水晶振動片92とを積層し、サンドイッチ構造とした水晶振動子91のパッケージであってもよい。
 図14に示すサンドイッチ構造の水晶振動子91では、水晶振動片92の両主面922,923に形成された励振電極(図14では省略)を気密封止する一封止部材94と他封止部材96とが設けられ、水晶振動片92と一封止部材94と他封止部材96とに、それぞれ接合層(上記のベース接合層46に対応する第1接合層946と、上記の蓋接合層62に対応する第2接合層962)が形成されている。また、水晶振動片92に堤部926が設けられ、堤部926の天面927に第3接合層928が形成され、水晶振動片92と一封止部材94と他封止部材96とが、それぞれの接合層(第1接合層946,第2接合層962,第3接合層928)を介して接合されて、金属間化合物(例えば図1に示すSn-Cu合金81など)を含む接合材(例えば図1に示す接合材8など)が形成される。なお、この図14に示す他の実施の形態では、水晶振動片92の両主面922,923に堤部926が設けられているが、これに限定されるものではなく、水晶振動片92と一封止部材94と他封止部材96との少なくとも1つに堤部が設けられていることが好ましい。
 このようなサンドイッチ構造の水晶振動子91では、水晶振動片92の一主面922に形成された励振電極が一封止部材94と水晶振動片92とによって気密封止され、水晶振動片92の他主面923に形成された励振電極が他封止部材96と水晶振動片92とによって気密封止される。
 図14に示すサンドイッチ構造の水晶振動子91のような圧電振動デバイスによれば、半田と比べて溶融温度が高い金属間化合物を含む接合材によって、圧電振動片と複数の封止部材との接合を行うことになる。その結果、リフローソルダリング時であっても金属間化合物が溶融することなく、リフローソルダリング時の溶融温度に耐え、金属間化合物によって複数の封止部材による圧電振動片の励振電極の気密封止を保つことができる。
 上記の図8,9,12,13,14に示す実施の形態のように、凸状に形成されたベース4の接合部位や、蓋6の接合部位、水晶振動片2の接合部位は、ベース4や蓋6、水晶振動片2と同じ材料からなるので、熱膨張係数に差異がなく、加熱接合時に接合部分に無用な応力が生じ難い。その結果、気密封止の信頼性を向上させることができる。なお、凸状の接合部位は、ベース4と蓋6とのいずれか一方に形成されてもよい。
 また、本実施の形態にかかるベース4および蓋6は、平面寸法(主面寸法)が略同じものを用いているが、これに限定されるものではなく、ベース4に比べて平面寸法が小さい蓋6を用いてもよい。この形態によれば、ベース4の天面45に形成されたベース接合層46と、蓋6の下面に形成された蓋接合層62とを介して、水晶振動片2が搭載されたベース4に蓋6が加熱溶融により接合され、水晶振動片2を気密封止した水晶振動子1が製造される。この形態では、ベース4に比べて蓋6の平面寸法が小さいので、ベース接合層46と蓋接合層62とが相互に結合するように引っ張られる。そのため、図15に示すように、接合材8の両側面はフィレットが形成される。なお、接合材8におけるSn82の分量や、ベース接合層46および蓋接合層62におけるSnの配置により、キャビティ47に配された接合材8のSn82を無くすことが可能となる。
 なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 また、この出願は、2010年1月29日に日本で出願された特願2010-018751号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、圧電振動デバイスに適用できる。
1 水晶振動子
11 内部空間
2 水晶振動片
21 基板
22,23 主面
24 振動部
25 接合部
31,32 励振電極
33,34 端子電極
35,36 引出電極
4 ベース
41 底部
42,43 主面
44 堤部
45 天面
46 ベース接合層
47 キャビティ
48 キャスタレーション
49 ビア
51,52 電極パッド
53,54 外部端子電極
55 配線パターン
56 導通部材
6 蓋
61 下面
62 蓋接合層
7 導電性バンプ
8 接合材
81 Sn-Cu合金
82 Sn
92 水晶振動片
922,923 主面
926 堤部
927 天面
928 第3接合層
94 一封止部材
946 第1接合層
96 他封止部材
962 第2接合層

Claims (13)

  1.  圧電振動片の励振電極を気密封止する圧電振動デバイスにおいて、
     前記圧電振動片の励振電極を気密封止する複数の封止部材が設けられ、
     前記複数の封止部材に、それぞれ接合層が形成され、
     前記複数の封止部材の少なくとも1つに堤部が設けられ、前記堤部の天面に前記接合層が形成され、
     前記複数の封止部材がそれぞれの前記接合層を介して接合されて、金属間化合物を含む接合材が形成された圧電振動デバイス。
  2.  圧電振動片の励振電極を気密封止する圧電振動デバイスにおいて、
     前記圧電振動片の励振電極を気密封止する複数の封止部材が設けられ、
     前記圧電振動片と前記複数の封止部材とに、それぞれ接合層が形成され、
     前記圧電振動片と前記封止部材との少なくとも1つに堤部が設けられ、前記堤部の天面に前記接合層が形成され、
     前記圧電振動片と前記複数の封止部材とが、それぞれの前記接合層を介して接合されて、金属間化合物を含む接合材が形成された圧電振動デバイス。
  3.  請求項1または2に記載の圧電振動デバイスにおいて、
     前記接合層、前記接合層が形成された前記封止部材の接合部位、または前記接合層が形成された前記圧電振動片の接合部位が凸状に形成された圧電振動デバイス。
  4.  請求項1または2に記載の圧電振動デバイスにおいて、
     前記接合層が形成された前記封止部材の接合部位、または前記接合層が形成された前記圧電振動片の接合部位が凸状に形成され、
     前記凸状に形成された前記封止部材の接合部位または前記圧電振動片の接合部位は、当該封止部材または当該圧電振動片と同じ材料からなる圧電振動デバイス。
  5.  請求項1乃至4のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記圧電振動片と前記封止部材との少なくとも1つの、前記接合層が形成された接合面は、平坦面とされ、
     前記接合面が平坦面とされた前記接合層は、前記接合面の外周に沿って形成され、
     前記堤部の天面と前記接合面の外周とにおいてそれぞれの前記接合層が接合された圧電振動デバイス。
  6.  請求項1乃至5のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記金属間化合物は、前記接合材内に偏在して形成された圧電振動デバイス。
  7.  請求項6に記載の圧電振動デバイスにおいて、
     前記金属間化合物は、前記封止部材同士、または前記封止部材と前記圧電振動片とを接合する前記接合材の両端に亘って形成された圧電振動デバイス。
  8.  請求項1乃至7のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記接合材の両端間の最も狭いギャップに、前記金属間化合物が偏在して形成された圧電振動デバイス。
  9.  請求項8に記載の圧電振動デバイスにおいて、
     前記最も狭いギャップは、3~20μmである圧電振動デバイス。
  10.  請求項1乃至9のうちいずれか1つに記載の圧電振動デバイスにおいて、
     前記接合層は、CuとSnとを含む圧電振動デバイス。
  11.  圧電振動片の励振電極を気密封止する圧電振動デバイスにおいて、
     前記圧電振動片の励振電極を気密封止する複数の封止部材が設けられ、
     前記複数の封止部材が、金属間化合物を含む接合材により接合された圧電振動デバイス。
  12.  圧電振動片の励振電極を気密封止する圧電振動デバイスにおいて、
     前記圧電振動片の励振電極を気密封止する複数の封止部材が設けられ、
     前記圧電振動片と前記複数の封止部材とが、金属間化合物を含む接合材により接合された圧電振動デバイス。
  13.  請求項1に記載の圧電振動デバイスの製造方法において、
     前記複数の封止部材のうち一封止部材に、前記Sn-Cu層を最上層とする前記接合層を形成し、
     前記一封止部材と接合する他の前記封止部材に、前記Sn-Cu層よりも面積が小さい前記Cu層を最上層とする前記接合層を形成し、
     前記Sn-Cu層と前記Cu層とを加熱接合する圧電振動デバイスの製造方法。
PCT/JP2011/051769 2010-01-29 2011-01-28 圧電振動デバイス、およびその製造方法 WO2011093456A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011551935A JP5853702B2 (ja) 2010-01-29 2011-01-28 圧電振動デバイス
US13/379,709 US8723400B2 (en) 2010-01-29 2011-01-28 Piezoelectric resonator device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-018751 2010-01-29
JP2010018751 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093456A1 true WO2011093456A1 (ja) 2011-08-04

Family

ID=44319436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051769 WO2011093456A1 (ja) 2010-01-29 2011-01-28 圧電振動デバイス、およびその製造方法

Country Status (3)

Country Link
US (1) US8723400B2 (ja)
JP (1) JP5853702B2 (ja)
WO (1) WO2011093456A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060239A (ja) * 2012-09-18 2014-04-03 Nippon Steel & Sumikin Electronics Devices Inc 電子部品素子収納用パッケージ
JP2017092934A (ja) * 2015-11-09 2017-05-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. 水晶素子パッケージ及びその製造方法
US11403834B2 (en) 2017-09-28 2022-08-02 Nec Corporation Sound recording device, recording medium, and image recording device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130155629A1 (en) * 2011-12-19 2013-06-20 Tong Hsing Electronic Industries, Ltd. Hermetic Semiconductor Package Structure and Method for Manufacturing the same
JP6167494B2 (ja) * 2012-09-26 2017-07-26 セイコーエプソン株式会社 電子デバイス用容器の製造方法、電子デバイスの製造方法、電子デバイス、電子機器及び移動体機器
CN105322909A (zh) * 2014-06-06 2016-02-10 精工爱普生株式会社 电子器件封装用基板、电子器件封装、电子器件及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078085A1 (fr) * 2001-03-27 2002-10-03 Sumitomo Special Metals C0., Ltd. Boitier pour piece electronique et son procede de production
JP2006108162A (ja) * 2004-09-30 2006-04-20 Sumitomo Osaka Cement Co Ltd 気密封止方法及び該方法を用いた気密封止体、並びに該方法に用いる加熱装置
JP2009202261A (ja) * 2008-02-27 2009-09-10 Kyocera Corp 微小構造体装置および微小構造体装置の製造方法
JP2009260845A (ja) * 2008-04-18 2009-11-05 Daishinku Corp 圧電振動デバイスの製造方法および圧電振動デバイス

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH625372A5 (ja) * 1979-07-06 1981-09-15 Ebauchesfabrik Eta Ag
US5585687A (en) * 1994-02-23 1996-12-17 Citizen Watch Co., Ltd. Piezolelectric oscillator
JP3398295B2 (ja) * 1997-01-31 2003-04-21 京セラ株式会社 圧電部品及びその製造方法
JP2000150688A (ja) * 1998-11-10 2000-05-30 Toyo Commun Equip Co Ltd 電子部品用パッケージ
JP3699847B2 (ja) * 1998-12-24 2005-09-28 ナラサキ産業株式会社 電子部品封止体の製造方法
JP2000263533A (ja) * 1999-03-16 2000-09-26 Sumitomo Metal Electronics Devices Inc セラミック基板及びその製造方法
JP4685274B2 (ja) 2001-05-31 2011-05-18 京セラキンセキ株式会社 電子部品容器
JP2004179408A (ja) * 2002-11-27 2004-06-24 Toyo Commun Equip Co Ltd セラミックパッケージの密封構造
US7582969B2 (en) * 2005-08-26 2009-09-01 Innovative Micro Technology Hermetic interconnect structure and method of manufacture
JP4635917B2 (ja) * 2006-03-09 2011-02-23 株式会社大真空 表面実装型圧電振動デバイス
JP2008085108A (ja) * 2006-09-28 2008-04-10 Kyocera Corp 接合構造体および電子装置
JP5090836B2 (ja) * 2007-09-14 2012-12-05 日本電波工業株式会社 圧電デバイス及び圧電デバイスの製造方法
JP4992686B2 (ja) * 2007-11-30 2012-08-08 株式会社大真空 圧電振動デバイスおよび圧電振動デバイスの製造方法
JP5447379B2 (ja) * 2008-08-05 2014-03-19 株式会社大真空 圧電振動デバイスの封止部材、及びその製造方法
JP5370371B2 (ja) * 2008-12-24 2013-12-18 株式会社大真空 圧電振動デバイスの製造方法、および圧電振動デバイスを構成する構成部材のエッチング方法
JP2011142374A (ja) * 2010-01-05 2011-07-21 Seiko Epson Corp 圧電デバイス、圧電デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078085A1 (fr) * 2001-03-27 2002-10-03 Sumitomo Special Metals C0., Ltd. Boitier pour piece electronique et son procede de production
JP2006108162A (ja) * 2004-09-30 2006-04-20 Sumitomo Osaka Cement Co Ltd 気密封止方法及び該方法を用いた気密封止体、並びに該方法に用いる加熱装置
JP2009202261A (ja) * 2008-02-27 2009-09-10 Kyocera Corp 微小構造体装置および微小構造体装置の製造方法
JP2009260845A (ja) * 2008-04-18 2009-11-05 Daishinku Corp 圧電振動デバイスの製造方法および圧電振動デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060239A (ja) * 2012-09-18 2014-04-03 Nippon Steel & Sumikin Electronics Devices Inc 電子部品素子収納用パッケージ
JP2017092934A (ja) * 2015-11-09 2017-05-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. 水晶素子パッケージ及びその製造方法
US11403834B2 (en) 2017-09-28 2022-08-02 Nec Corporation Sound recording device, recording medium, and image recording device

Also Published As

Publication number Publication date
US8723400B2 (en) 2014-05-13
JPWO2011093456A1 (ja) 2013-06-06
US20120280597A1 (en) 2012-11-08
JP5853702B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5853429B2 (ja) 電子部品用パッケージおよび圧電振動デバイス
JP6164326B2 (ja) 圧電振動デバイス
JP5853702B2 (ja) 圧電振動デバイス
WO2011149043A1 (ja) 圧電振動デバイスの封止部材、および圧電振動デバイス
US7746184B2 (en) Bonding-type surface-mount crystal oscillator
JP2007013444A (ja) 圧電振動デバイス及びその製造方法
JP2018073905A (ja) 電子部品搭載用基板、電子装置および電子モジュール
JP5152012B2 (ja) 圧電振動デバイスおよび圧電振動デバイスの製造方法
JP5101201B2 (ja) 圧電発振器
JP5388601B2 (ja) 電子部品収納用パッケージ
WO2011034104A1 (ja) 圧電振動片、および圧電振動片の製造方法
JP2008252442A (ja) 圧電振動デバイスの製造方法
JP5171148B2 (ja) 圧電発振器
WO2021066024A1 (ja) 蓋体、電子部品収容用パッケージ及び電子装置
JP2013110214A (ja) 電子部品収納用パッケージ
JP6334192B2 (ja) 圧電デバイスおよびその実装構造
JP2014003239A (ja) 電子部品用パッケージ、電子部品、および電子部品用パッケージの製造方法
WO2023074616A1 (ja) サーミスタ搭載型圧電振動デバイス
JP2019114756A (ja) 電子部品収納用パッケージ、電子装置および電子モジュール
JP2005244146A (ja) 電子部品収納用パッケージおよび電子装置ならびに電子装置の実装構造
JP2011055033A (ja) 圧電発振器
JP4784685B2 (ja) 圧電振動片
WO2020004566A1 (ja) 基体および半導体装置
JP5145964B2 (ja) 電子部品の本体筐体部材、電子部品、および電子部品の製造方法
JP2021175081A (ja) 電子部品収納用パッケージ、電子装置および電子モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13379709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011551935

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737166

Country of ref document: EP

Kind code of ref document: A1