WO2010071093A1 - 偏光フィルムの製造法 - Google Patents

偏光フィルムの製造法 Download PDF

Info

Publication number
WO2010071093A1
WO2010071093A1 PCT/JP2009/070799 JP2009070799W WO2010071093A1 WO 2010071093 A1 WO2010071093 A1 WO 2010071093A1 JP 2009070799 W JP2009070799 W JP 2009070799W WO 2010071093 A1 WO2010071093 A1 WO 2010071093A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
degree
polarizing film
pva
stretching
Prior art date
Application number
PCT/JP2009/070799
Other languages
English (en)
French (fr)
Inventor
寿夫 中居
孝徳 磯▲ざき▼
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020117016319A priority Critical patent/KR101726006B1/ko
Priority to JP2010509606A priority patent/JP5350368B2/ja
Priority to CN200980151002.8A priority patent/CN102257413B/zh
Publication of WO2010071093A1 publication Critical patent/WO2010071093A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a method for producing a polarizing film that can be used as a member constituting a polarizing plate of a liquid crystal display device.
  • Liquid crystal display devices were used in small devices such as calculators and watches in the early stages of their development, but in recent years notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, It is used in a wide range of measuring instruments used indoors and outdoors.
  • improvement in display quality for example, improvement in contrast, is increasingly required, and polarization performance is strongly improved even for polarizing plates, which are one of LCD members. It has been demanded.
  • polarizing plates are film originals made of polyvinyl alcohol (hereinafter sometimes referred to as PVA), uniaxial stretching, dyeing treatment with iodine or dichroic dye, fixing treatment with boron compounds, etc. And a protective film such as a cellulose triacetate film or an acetic acid / butyric acid cellulose film is bonded to one side or both sides of the obtained polarizing film.
  • PVA polyvinyl alcohol
  • a protective film such as a cellulose triacetate film or an acetic acid / butyric acid cellulose film is bonded to one side or both sides of the obtained polarizing film.
  • various methods such as a method for improving the structure of PVA as a raw material, a method for controlling the physical properties of a PVA film, and a method for devising the manufacturing conditions of a polarizing plate are proposed. It has contributed to improving the contrast of LCDs.
  • Patent Document 1 describes that a polarizing film made of PVA having a polymerization degree of 2500 or more, preferably 6000 to 10,000 is excellent in optical properties.
  • PVA having a high degree of polymerization is an advantageous technique for improving the polarization performance, but industrial implementation has been difficult.
  • the relationship between the complete dissolution temperature (X) in hot water and the equilibrium swelling degree (Y) is shown by the following equation as a raw film.
  • the manufacturing method of the polarizing film using the PVA-type film which is the range is described.
  • the polymerization degree of the PVA used in the above invention is preferably in the range of 3500 to 5000, and even if the production method is applied to the high polymerization degree PVA as it is, as shown in Comparative Examples described later, It has been found that the polarizing performance of the obtained polarizing film is not sufficient.
  • an object of the present invention is to provide a method for producing a polarizing film, which can process a film made of PVA having a high degree of polymerization into a polarizing film having high polarization performance.
  • the original film is wet-stretched in an iodine-potassium iodide aqueous solution.
  • the film raw material is preferably obtained by heat treatment at 115 to 130 ° C. after film formation.
  • the wet stretching step it is preferable to further include a step of stretching the obtained stretched film further three times or less in an aqueous boric acid solution.
  • the present invention also includes a polarizing film obtained by the above production method and having a transmittance of 43.0% or more and a polarization degree of 99.97% or more.
  • a film made of PVA having a high degree of polymerization can be processed into a polarizing film having high polarization performance, and industrial production of a polarizing film having high polarization performance becomes possible.
  • the degree of polymerization of PVA used in the present invention is required to be 5000 or more, preferably 5500 or more, and more preferably 6000 or more in order to correspond to the good polarization performance intended by the present invention.
  • the degree of polymerization of PVA is less than 5000, it becomes difficult to develop high polarization performance.
  • the polymerization degree of PVA as used in the field of this invention means the polymerization degree (viscosity average polymerization degree) measured according to the method as described in the Example mentioned later.
  • the degree of saponification of PVA is preferably 99 mol% or more, more preferably 99.8 mol% or more.
  • the degree of saponification of PVA is less than 99 mol%, PVA tends to be eluted in the polarizing film manufacturing process described later, and the eluted PVA may adhere to the film and reduce the performance of the polarizing film.
  • the PVA used in the present invention can be produced by saponifying a polyvinyl ester polymer obtained by polymerizing a vinyl ester.
  • vinyl esters include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and the like. 1 type or 2 types or more are selected. Among these, vinyl acetate is preferably used from the viewpoints of availability, ease of production of PVA, cost, and the like.
  • the polymerization temperature is not particularly limited, but when methanol is used as a polymerization solvent, the polymerization temperature is preferably around 60 ° C. near the boiling point of methanol.
  • PVA is not limited to a saponified vinyl ester homopolymer unless the effects of the present invention are impaired.
  • Film raw material is obtained by forming the above PVA into a film.
  • a film forming method in addition to a method of melt-extruding hydrous PVA, a casting film forming method, a wet film forming method (discharge into a poor solvent), a gel film forming method (after once cooling and gelling a PVA aqueous solution, Solvent extraction and removal), cast film forming method (flowing PVA aqueous solution on substrate and drying), and a combination of these methods can be employed.
  • the melt extrusion film forming method and the cast film forming method are preferable because a good PVA film (film raw material) can be obtained.
  • Examples of the solvent used in the above film formation include dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylol.
  • Propane, ethylenediamine, diethylenetriamine, water and the like can be mentioned, and one or more of these can be used.
  • water, dimethyl sulfoxide, and a mixed solvent thereof are preferably used.
  • the volatile fraction of a film-forming stock solution mainly composed of PVA and a solvent varies depending on the film-forming method and the molecular weight of PVA, but is preferably 50 to 95% by mass, more preferably 60 to 95% by mass, and 70 to 95%. More preferred is mass%. If the volatile content is less than 50% by mass, the viscosity of the film-forming stock solution becomes too high, and filtration or defoaming during preparation becomes difficult, and it may be difficult to obtain a film original without foreign matter or defects. There is. On the other hand, if the volatile content exceeds 95% by mass, the viscosity of the film-forming stock solution becomes too low, and it may be difficult to produce a film stock having the desired thickness and thickness accuracy.
  • a plasticizer may be used in the production of the original film.
  • the plasticizer include glycerin, diglycerin, ethylene glycol and the like, but are not limited thereto.
  • the amount of the plasticizer used is not particularly limited, but is usually within a range of 10 to 15 parts by mass with respect to 100 parts by mass of PVA.
  • Examples of the method for drying the original film after film formation include drying with hot air, contact drying using a hot roll, and drying using an infrared heater. One of these methods may be employed alone, or two or more may be employed in combination.
  • the drying temperature is not particularly limited but is preferably in the range of 50 to 70 ° C. Further, the drying time at this time is approximately 45 to 75 minutes, although it depends on the concentration of the film forming stock solution and the film forming conditions.
  • the heat treatment method for the original film after film formation include a method using hot air and a method of bringing the original film into contact with a hot roll. One of these methods may be employed alone, or two or more may be employed in combination.
  • the heat treatment temperature is not particularly limited but is preferably in the range of 115 to 130 ° C. Further, the heat treatment temperature at this time is preferably within 5 minutes.
  • the thickness of the original film thus obtained is preferably 20 to 120 ⁇ m, more preferably 20 to 80 ⁇ m, and further preferably 20 to 40 ⁇ m. If the thickness is less than 20 ⁇ m, the film may be easily broken in the stretching step described later. Moreover, when thickness exceeds 120 micrometers, there exists a possibility that the stress concerning a film at the time of extending
  • the swelling degree A of the original film needs to be 200 to 240%, preferably 205 to 235%, and more preferably 210 to 230%.
  • the degree of swelling A is less than 200%, the tension at the time of stretching becomes too large, and it becomes difficult to perform sufficient stretching.
  • the degree of swelling A exceeds 240%, water absorption is high, so that wrinkles and end curls are likely to occur in the polarizing film manufacturing process described later, which causes breakage during stretching.
  • the temperature and time for heat-treating the film raw film after film formation may be adjusted.
  • the degree of swelling A of the original film can be measured by the method described later in the item of Examples.
  • the manufacturing process of a polarizing film can include processes such as moisture adjustment, dyeing, stretching, and color adjustment.
  • the color can be adjusted, for example, in an aqueous solution containing boric acid and potassium iodide, and dried to produce a polarizing film.
  • the temperature at this time is preferably 20 to 40 ° C., more preferably 25 to 35 ° C., and further preferably 27 to 33 ° C.
  • the temperature is lower than 20 ° C., the moisture content of the film raw material becomes low, the tension applied to the film at the time of subsequent stretching increases, and it may be difficult to adjust the degree of swelling B of the stretched film.
  • the temperature exceeds 40 ° C., the water absorption of the original film becomes high and wrinkles and end curls tend to occur in the subsequent process, which may cause breakage during stretching.
  • the time for immersing the original film is generally in the range of 30 to 120 seconds.
  • the film original is dyed in, for example, an iodine-potassium iodide aqueous solution.
  • the iodine concentration is preferably 0.01 to 0.1% by mass
  • the potassium iodide concentration is preferably 1 to 10% by mass
  • the iodine concentration is 0.02 to 0.08% by mass
  • the potassium iodide concentration 2 to 8% by mass is more preferable, iodine concentration of 0.03 to 0.06% by mass, and potassium iodide concentration of 3 to 6% by mass is further preferable.
  • the temperature of the aqueous solution is not particularly limited, but is preferably 25 to 40 ° C.
  • Wet stretching of the original film may be performed as a step separate from the above-described moisture adjustment and dyeing, but it is efficient and preferably performed in the above-described water for water adjustment or in an aqueous solution for dyeing, It is more preferable to carry out in an aqueous solution for dyeing, that is, an iodine-potassium iodide aqueous solution.
  • an aqueous solution for dyeing that is, an iodine-potassium iodide aqueous solution.
  • the stretch ratio represented by the ratio of the length of the film before and after stretching is 2.0-2. It is necessary to make it 9 times, preferably 2.2 to 2.8 times, more preferably 2.4 to 2.8 times.
  • the temperature at which the original film is wet-stretched is preferably 20 to 40 ° C., more preferably 25 to 40 ° C., because the degree of swelling B of the stretched film can be easily adjusted to the range described later. It is more preferably from -35 ° C, particularly preferably from 27 to 33 ° C.
  • the degree of swelling B of the stretched film needs to satisfy the following formula (2), preferably satisfies the following formula (2 ′), and more preferably satisfies the following formula (2 ′′).
  • the reason why the polarization performance is improved by controlling the draw ratio is not clear, but is expected as follows. That is, when the draw ratio is too low, the fine crystals remain in the stretched film without breaking. At this time, B becomes smaller than A + 20, the stretching ratio cannot be increased in the subsequent stretching, and the polarizing performance of the obtained polarizing film is lowered. In addition, when the draw ratio is too high, orientation crystallization of PVA proceeds, so B is also smaller than A + 20, and the draw ratio cannot be increased in the subsequent drawing, and the polarizing performance of the obtained polarizing film is low. Become. On the other hand, for example, if the temperature of the bath when stretching is too high, B becomes larger than A + 35. In this case, breakage of crystals in the film progresses during stretching, and it becomes difficult to stretch with sufficient tension in subsequent stretching, and the polarizing performance of the obtained polarizing film is lowered.
  • the degree of swelling B of the stretched film is preferably 230 to 265%.
  • the stretching ratio and the temperature of water or aqueous solution during wet stretching may be adjusted as described above.
  • the degree of swelling B of the stretched film can be measured by the method described later in the item of the examples.
  • the obtained stretched film may be further stretched in a boric acid aqueous solution following the step of wet stretching the film original.
  • the draw ratio at this time is preferably 3 times or less, more preferably 1.2 to 3 times, still more preferably 1.3 to 2.9 times, and most preferably 1.4 to 2.8 times.
  • the draw ratio exceeds 3 times, the film frequently breaks during drawing, and it may be difficult to stably produce a polarizing film.
  • the boric acid concentration in the aqueous solution is preferably 2 to 6% by mass, more preferably 2 to 5% by mass, and further preferably 2 to 4% by mass.
  • concentration of boric acid is less than 2% by mass, the resulting polarizing film may have more color spots.
  • concentration of boric acid exceeds 6% by mass, the cross-linking of PVA with boric acid becomes excessive, and it may be difficult to stretch the film at a high magnification.
  • the concentration of potassium iodide is preferably 3 to 10% by mass, more preferably 4 to 8% by mass. When the concentration of potassium iodide is less than 3% by mass, the resulting polarizing film may be more bluish. On the other hand, when the concentration of potassium iodide exceeds 10% by mass, the resulting polarizing film may become reddish.
  • the boric acid aqueous solution may contain a metal compound such as iron or zirconium as another component.
  • the temperature of the aqueous solution is not particularly limited, but is preferably 50 to 60 ° C, more preferably 55 to 60 ° C, and further preferably 57 to 60 ° C. If the stretching temperature is less than 50 ° C., it may be difficult to stretch the film to a high magnification. Moreover, when extending
  • the color adjustment after stretching is preferably performed in an aqueous solution containing boric acid and potassium iodide.
  • a metal compound such as zinc chloride or zinc iodide may be added to the aqueous solution.
  • the temperature of the aqueous solution is preferably lower than the stretching temperature in order to prevent a decrease in polarization performance, specifically 20 to 50 ° C. is preferable, and 30 to 40 ° C. is more preferable. There is no particular limitation on the color adjustment time.
  • the obtained polarizing film can be dried by various types of dryers using a batch method, a continuous float method, a continuous roll contact method, or the like.
  • the drying temperature is preferably from 40 to 80 ° C., more preferably from 45 to 70 ° C., in order to prevent sublimation of iodine from the polarizing film and to suppress the elimination reaction of boric acid crosslinked with PVA. More preferably, it is ⁇ 60 ° C.
  • the polarizing film thus obtained preferably has excellent polarizing performance for use in polarizing plates and the like. That is, the transmittance of the polarizing film is preferably 43.0% or more, and the degree of polarization is preferably 99.97% or more (more preferably 99.98% or more).
  • the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to the following examples.
  • the viscosity average polymerization degree P of PVA the swelling degree A of the original film, the swelling degree B of the stretched film, the transmittance Y and the polarization degree V of the polarizing film were evaluated by the following methods.
  • the evaporating dish heated for 1 hour with a dryer at 105 ° C. was cooled with a desiccator for 30 minutes, and the mass a (g) of the evaporating dish was measured.
  • a 10 mL sample for measuring the degree of polymerization was transferred to this evaporating dish with a whole pipette, dried for 16 hours with a dryer at 105 ° C., cooled with a desiccator for 30 minutes, and the mass b (g) was measured.
  • Example 1 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5800 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 40 ⁇ m. This film was fixed to a metal frame and heat treated at 120 ° C. for 3 minutes. When the degree of swelling A of the original film after heat treatment was measured by the method described in (2) above, it was 230%.
  • the original film is cut into a flow direction 11 cm ⁇ width direction 10 cm, attached to a stretching jig 4 cm between chucks with the flow direction as the stretching direction, immersed in pure water at 30 ° C. for 1 minute, It is immersed in a dyeing solution (temperature 30 ° C.) containing 0.03% by mass of iodine and 3% by mass of potassium iodide, and stretched 2.6 times at a rate of 0.13 m / min. Adsorbed. When the degree of swelling B of this stretched film was measured by the method described in (3) above, it was 260%.
  • this stretched film was immersed in a stretching solution (temperature 57.5 ° C.) containing 4% by mass of boric acid and 6% by mass of potassium iodide, and 2.3 at a rate of 0.13 m / min. After stretching twice, the stretching direction was fixed and dried at 50 ° C. for 4 minutes to obtain a polarizing film.
  • a stretching solution temperature 57.5 ° C.
  • boric acid 4% by mass of boric acid and 6% by mass of potassium iodide
  • 2.3 a rate of 0.13 m / min.
  • the stretching direction was fixed and dried at 50 ° C. for 4 minutes to obtain a polarizing film.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.99%, respectively, and a polarizing film with good polarization performance was obtained. It was.
  • Example 2 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5800 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 40 ⁇ m. This film was fixed to a metal frame and heat treated at 115 ° C. for 3 minutes. When the degree A of swelling of the original film after heat treatment was measured by the method described in (2) above, it was 240%.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.99%, respectively, and a polarizing film with good polarization performance was obtained. It was.
  • Example 3 A 5.5% by mass PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 9100 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 20 ⁇ m. This film was fixed to a metal frame and heat treated at 110 ° C. for 3 minutes. When the degree of swelling A of the original film after heat treatment was measured by the method described in (2) above, it was 230%.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.99%, respectively, and a polarizing film with good polarization performance was obtained. It was.
  • Example 4 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5200 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 40 ⁇ m. This film was fixed to a metal frame and heat treated at 110 ° C. for 3 minutes. When the degree A of swelling of the original film after heat treatment was measured by the method described in (2) above, it was 205%.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.98%, respectively, and a polarizing film with good polarization performance was obtained. It was.
  • Example 5 A 5.5 mass% PVA aqueous solution containing 100 parts by mass of PVA having a polymerization degree of 5500 and a saponification degree of 99.8 mol% and 12 parts by mass of glycerin as a plasticizer was cast on a metal roll at 60 ° C. Partial drying was performed to obtain a PVA film having a thickness of 30 ⁇ m. This film was fixed to a metal frame and heat-treated at 130 ° C. for 3 minutes. When the degree A of swelling of the original film after heat treatment was measured by the method described in (2) above, it was 215%.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.99%, respectively, and a polarizing film with good polarization performance was obtained. It was.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and degree of polarization of this polarizing film were measured by the methods described in (4) and (5) above, which were 44.0% and 99.92%, respectively, and the degree of polarization of the polarizing film was slightly insufficient. It was.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and degree of polarization of this polarizing film were measured by the methods described in (4) and (5) above, which were 44.0% and 99.92%, respectively, and the degree of polarization of the polarizing film was slightly insufficient. It was.
  • Example 2 a polarizing film was obtained in the same manner as in Example 1.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.87%, respectively, and the polarization degree of the polarizing film was slightly insufficient. It was.
  • a polarizing film was obtained in the same manner as in Example 1 except that the draw ratio was 3.5 times.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in the above (4) and (5), they were 44.0% and 99.90%, respectively, and the polarization degree of the polarizing film was slightly insufficient. It was.
  • a polarizing film was obtained in the same manner as in Example 1 except that the draw ratio was 1.4.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in (4) and (5) above, they were 44.0% and 99.80%, respectively, and the polarization degree of the polarizing film was slightly insufficient. It was.
  • a polarizing film was obtained in the same manner as in Example 1 except that the draw ratio was 4.6 times.
  • the transmittance and polarization degree of this polarizing film were measured by the methods described in the above (4) and (5), they were 44.0% and 99.40%, respectively, and the polarization degree of the polarizing film was slightly insufficient. It was.
  • the target value of the draw ratio was changed from 4.6 times to 5.0 times in order to improve the degree of polarization, the draw breakage occurred and a polarizing film could not be obtained.
  • the polarizing film obtained by the production method of the present invention taking advantage of the excellent properties of high polarization performance, calculator, wristwatch, notebook computer, liquid crystal monitor, liquid crystal color projector, liquid crystal television, in-vehicle navigation system, mobile phone, It can be effectively used for producing a polarizing plate which is a component part of a liquid crystal display device such as a measuring instrument used indoors and outdoors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 【課題】高重合度のポリビニルアルコールからなるフィルムを、高い偏光性能を有する偏光フィルムに加工することのできる、偏光フィルムの製造法を提供すること。 【解決手段】重合度が5000以上のポリビニルアルコールを製膜して得られる、膨潤度がA(%)であるフィルム原反を、2.0~2.9倍に湿式延伸して、膨潤度がB(%)である延伸フィルムを得る工程を含む偏光フィルムの製造法。ここで、上記AとBとは特定の関係式を満足する。当該偏光フィルムの製造法において、前記湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で3倍以下に延伸する工程を含むことが好ましい。

Description

偏光フィルムの製造法
 本発明は、液晶表示装置の偏光板を構成する部材として使用することのできる偏光フィルムの製造法に関する。
 液晶表示装置(LCD)はその開発初期の頃、電卓および腕時計等の小型機器で使用されていたが、近年ではノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器等の広い範囲で使用されるようになっている。一方で、特に液晶テレビ等の用途においては、表示品質の向上、例えばコントラストの向上がますます求められており、LCDの部材の1つである偏光板に対しても、偏光性能の向上が強く求められている。
 従来一般的に使用されている偏光板は、ポリビニルアルコール(以下、PVAと称することがある)からなるフィルム原反に、一軸延伸、ヨウ素や二色性染料による染色処理、ホウ素化合物による固定処理等を施し、得られた偏光フィルムの片面または両面に三酢酸セルロースフィルムや酢酸・酪酸セルロースフィルム等の保護膜を貼り合わせた構成を有している。このような偏光板の偏光性能を向上させる手法として、原料であるPVAの構造を改良する手法、PVAフィルムの物性を制御する方法、偏光板の製造条件を工夫する方法等、様々な手法が提案されており、LCDのコントラスト向上に寄与してきた。
 例えば特許文献1では、2500以上、好ましくは6000~10000の重合度を有するPVAからなる偏光フィルムが光学特性に優れていることが記載されている。重合度の高いPVAを用いることは偏光性能の向上には有利な手法であるが、工業的な実施は困難であった。
 また、偏光性能を向上させる別の方法として、例えば特許文献2では、原反フィルムとして、熱水中での完溶温度(X)と平衡膨潤度(Y)との関係が下式で示される範囲であるPVA系フィルムを用いる偏光フィルムの製造方法が記載されている。
 
 Y > -0.0667X+6.73 ・・・・(I)
 X ≧ 65            ・・・・(II)
 
 しかしながら、上記の発明に使用されるPVAの重合度は好ましくは3500~5000の範囲であり、該製造方法をそのまま高重合度PVAに適用しても、後述する比較例に示されるように、得られる偏光フィルムの偏光性能が充分でないことが判明した。すなわち、高重合度のPVAからなる偏光フィルムを工業的に製造するには、PVAの構造、PVAフィルムの物性、偏光フィルムの製造条件等に関する知見を総動員して、新たな製造法を見出すことが必要であった。
特開平1-105204号公報 特開平7-120616号公報
 そこで、本発明の目的は、高重合度のPVAからなるフィルムを、高い偏光性能を有する偏光フィルムに加工することのできる、偏光フィルムの製造法を提供することにある。
 発明者らは、PVAの構造およびPVAフィルムの物性、さらには偏光フィルムの製造条件に関する知見を最大限に生かして検討を行った。その結果、重合度が5000以上のPVAを製膜して得られる、膨潤度がA(%)であるフィルム原反を、2.0~2.9倍に湿式延伸して、膨潤度がB(%)である延伸フィルムを得る工程を含む偏光フィルムの製造法であって、上記AとBとが下記式(1)および(2)を満足することにより、初めて本発明の効果が発現することを見出した。
 
  200 ≦ A ≦ 240      (1)
  A+20 ≦ B ≦ A+35    (2)
 
 この場合において、前記フィルム原反をヨウ素-ヨウ化カリウム水溶液中で湿式延伸することが好ましい。
 また、前記フィルム原反は、製膜後に115~130℃で熱処理されて得られたものであることが好ましい。
 また、前記湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で3倍以下に延伸する工程を含むことが好ましい。
 本発明は、上記の製造法によって得られる、透過率が43.0%以上、かつ偏光度が99.97%以上である偏光フィルムをも包含する。
 本発明の製造法により、高重合度のPVAからなるフィルムを、高い偏光性能を有する偏光フィルムに加工することができ、高い偏光性能を有する偏光フィルムの工業的な生産が可能となる。
 以下に、本発明を詳細に説明する。
 本発明において用いられるPVAの重合度は、本発明の目的とする良好な偏光性能に対応するため、5000以上であることが必要であり、5500以上が好ましく、6000以上がより好ましい。PVAの重合度が5000未満であると、高い偏光性能を発現することが困難となる。PVAの重合度の上限としては特に制限はないが、高重合度になるほどPVAの生産性が低下するので、工業的な観点から10000以下であることが好ましい。なお、本発明でいうPVAの重合度は、後述する実施例に記載の方法にしたがって測定した重合度(粘度平均重合度)を意味する。
 また、PVAのケン化度は、99モル%以上であることが好ましく、99.8モル%以上がより好ましい。PVAのケン化度が99モル%未満であると、後述する偏光フィルムの製造工程でPVAが溶出し易くなり、溶出したPVAがフィルムに付着して偏光フィルムの性能を低下させるおそれがある。
 本発明において使用されるPVAは、ビニルエステルを重合して得られるポリビニルエステル系重合体をケン化することにより製造することができる。ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル等を例示することができ、これらの中から1種または2種以上を選択する。これらの中でも酢酸ビニルが、入手の容易性、PVAの製造の容易性、コスト等の点から好ましく用いられる。重合温度に特に制限はないが、メタノールを重合溶媒として使用する場合は、重合温度はメタノールの沸点付近の60℃前後であることが好ましい。
 PVAは、本発明の効果が損なわれることがない限り、ビニルエステルの単独重合体のケン化物に限定されない。例えば、PVAに不飽和カルボン酸またはその誘導体、不飽和スルホン酸またはその誘導体、炭素数2~30のα-オレフィン等を5モル%未満の割合でグラフト共重合した変性PVA;ビニルエステルと、不飽和カルボン酸またはその誘導体、不飽和スルホン酸またはその誘導体、炭素数2~30のα-オレフィン等とを15モル%未満の割合で共重合した変性ポリビニルエステルのケン化物;ホルマリン、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド類でPVAの水酸基の一部を架橋したポリビニルアセタール系重合体などであってもよい。
 上記のPVAを製膜することによりフィルム原反が得られる。製膜方法としては、含水PVAを溶融押出する方法の他、流延製膜法、湿式製膜法(貧溶媒中への吐出)、ゲル製膜法(PVA水溶液を一旦冷却ゲル化した後、溶媒を抽出除去)、キャスト製膜法(PVA水溶液を基盤上に流し、乾燥)、およびこれらの組み合わせによる方法等を採用することができる。これらの中でも、溶融押出製膜法および流延製膜法が、良好なPVAフィルム(フィルム原反)が得られることから好ましい。
 上記の製膜の際に使用される溶剤としては、例えば、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミン、水等が挙げられ、これらのうち1種または2種以上を使用することができる。これらの中でも、水、ジメチルスルホキシド、およびこれらの混合溶媒が好適に使用される。
 主にPVAと溶剤とからなる製膜原液の揮発分率は、製膜方法やPVAの分子量によっても変化するが、50~95質量%が好ましく、60~95質量%がより好ましく、70~95質量%がさらに好ましい。揮発分率が50質量%未満であると、製膜原液の粘度が高くなり過ぎて、調製時の濾過や脱泡が困難となり、異物や欠点のないフィルム原反を得ることが困難となるおそれがある。また、揮発分率が95質量%を超えると、製膜原液の粘度が低くなり過ぎて、目的とする厚みや厚み精度を有するフィルム原反を製造することが困難になるおそれがある。
 フィルム原反を製造するにあたり、可塑剤を使用してもよい。可塑剤としては、グリセリン、ジグリセリン、エチレングリコール等が挙げられるが、これらに限定されるものではない。可塑剤の使用量も特に制限されないが、通常はPVA100質量部に対して、10~15質量部の範囲内である。
 製膜後のフィルム原反の乾燥方法としては、例えば熱風による乾燥や、熱ロールを用いた接触乾燥や、赤外線ヒーターによる乾燥等が挙げられる。これらの方法のうちの1種類を単独で採用してもよいし、2種類以上を組み合わせて採用してもよい。乾燥温度については特に制限はないが、50~70℃の範囲内が好ましい。また、このときの乾燥時間は、製膜原液の濃度や製膜条件にもよるが、おおむね45~75分である。
 乾燥後のフィルム原反は、その膨潤度を後述する所定の範囲に制御するために、熱処理を行うことが好ましい。製膜後のフィルム原反の熱処理方法としては、例えば熱風による方法や、熱ロールにフィルム原反を接触させる方法等が挙げられる。これらの方法のうちの1種類を単独で採用してもよいし、2種類以上を組み合わせて採用してもよい。熱処理温度については特に制限はないが、115~130℃の範囲内が好ましい。また、このときの熱処理温度は、5分以内が好ましい。
 こうして得られるフィルム原反の厚みは、20~120μmであることが好ましく、20~80μmがより好ましく、20~40μmがさらに好ましい。厚みが20μm未満になると、後述する延伸工程においてフィルムの破断が発生し易くなるおそれがある。また、厚みが120μmを超えると、延伸時にフィルムにかかる応力が大きくなり、充分な延伸が困難となるおそれがある。
 フィルム原反の膨潤度Aは、200~240%であることが必要であり、205~235%が好ましく、210~230%がより好ましい。膨潤度Aが200%未満であると、延伸時の張力が大きくなりすぎて、充分な延伸を行うことが困難となる。また、膨潤度Aが240%を超えると、吸水性が高いために、後述の偏光フィルムの製造工程においてフィルムにしわや端部カールが発生し易くなり、延伸時の破断の原因となる。膨潤度Aを所定の範囲に制御するためには、例えば、製膜後のフィルム原反を熱処理する際の温度や時間を調整すればよい。フィルム原反の膨潤度Aは、実施例の項目において後述する方法により測定することができる。
 続いて、上記フィルム原反を用いた本発明の偏光フィルムの製造法について述べる。偏光フィルムの製造工程は、水分調整、染色、延伸、色調整等の工程を含むことができる。このとき、フィルム原反の湿式延伸を行い、延伸フィルムの膨潤度Bの調整を行うことが必要である。また、必要に応じて、上記の湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で延伸してもよい。さらに、必要に応じて、例えばホウ酸およびヨウ化カリウムを含む水溶液中で色調整し、乾燥して、偏光フィルムを製造することができる。
 フィルム原反の水分調整は、純水または蒸留水中に浸漬して行うことが好ましい。このときの温度としては、20~40℃が好ましく、25~35℃がより好ましく、27~33℃がさらに好ましい。温度が20℃未満であると、フィルム原反の含水率が低くなり、後の延伸の際にフィルムにかかる張力が高くなって、延伸フィルムの膨潤度Bの調整が困難となるおそれがある。また、温度が40℃を超えると、フィルム原反の吸水性が高くなり、後の工程においてフィルムにしわや端部カールが発生し易くなり、延伸時の破断の原因となるおそれがある。一方、フィルム原反を浸漬する時間としては、おおむね30~120秒の範囲内である。
 フィルム原反の染色は、例えばヨウ素-ヨウ化カリウム水溶液中で行う。このときのヨウ素の濃度は0.01~0.1質量%、ヨウ化カリウムの濃度は1~10質量%にすることが好ましく、ヨウ素濃度0.02~0.08質量%、ヨウ化カリウム濃度2~8質量%がより好ましく、ヨウ素濃度0.03~0.06質量%、ヨウ化カリウム濃度3~6質量%がさらに好ましい。水溶液の温度については特に制限はないが、25~40℃が好ましい。
 フィルム原反の湿式延伸は、上記の水分調整や染色とは別の工程として行ってもよいが、上記の水分調整用の水中で、または染色用の水溶液中で行うことが効率的で好ましく、染色用の水溶液、すなわちヨウ素-ヨウ化カリウム水溶液中で行うことがより好ましい。フィルム原反の湿式延伸の際、延伸後のフィルムの膨潤度Bを後述する所定の範囲に調整するため、延伸前後のフィルムの長さの比で表される延伸倍率は2.0~2.9倍とすることが必要であり、2.2~2.8倍が好ましく、2.4~2.8倍がより好ましい。延伸倍率が2.9倍を超えると、PVA分子鎖が配向して結晶化が促進され、膨潤度Bを所定の範囲に調整することが困難となる。また、延伸倍率が2.0倍未満であると、膨潤度Bを高くする効果が不足する。
 フィルム原反を湿式延伸する際の温度としては、延伸フィルムの膨潤度Bを後述する範囲に調整することが容易となることから、20~40℃が好ましく、25~40℃がより好ましく、25~35℃がさらに好ましく、27~33℃が特に好ましい。
 上記の延伸フィルムの膨潤度Bは、下記式(2)を満足する必要があり、下記式(2’)を満足することが好ましく、下記式(2”)を満足することがより好ましい。
 
  A+20 ≦ B ≦ A+35    (2)
  A+20 ≦ B ≦ A+33    (2’)
  A+20 ≦ B ≦ A+30    (2”)
 
 延伸倍率を制御することにより偏光性能が向上する理由は明確ではないが、以下のように予想される。すなわち、延伸倍率が低すぎる場合、延伸フィルム中に微結晶が壊れずに残存する。このとき、BはA+20よりも小さくなり、後の延伸において延伸倍率を上げることができず、得られる偏光フィルムの偏光性能が低くなる。また、延伸倍率が高すぎる場合も、PVAの配向結晶化が進むため、やはりBはA+20よりも小さくなり、後の延伸において延伸倍率を上げることができず、得られる偏光フィルムの偏光性能が低くなる。一方、例えば延伸するときの浴の温度が高すぎると、BはA+35よりも大きくなる。この場合、延伸中にフィルム内の結晶の破壊が進行し、後の延伸で十分な張力をかけて延伸することが困難になり、得られる偏光フィルムの偏光性能が低くなる。
 なお、延伸フィルムの膨潤度Bは、230~265%であることが好ましい。膨潤度Bを所望の範囲に制御するためには、上記のように延伸倍率や湿式延伸する際の水または水溶液の温度を調整すればよい。延伸フィルムの膨潤度Bは、実施例の項目において後述する方法により測定することができる。
 前述のとおり、フィルム原反を湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で延伸してもよい。このときの延伸倍率は3倍以下であることが好ましく、1.2~3倍がより好ましく、1.3~2.9倍がさらに好ましく、1.4~2.8倍が最も好ましい。延伸倍率が3倍を超えると、延伸中にフィルムの破断が多発し、安定して偏光フィルムを製造することが困難となるおそれがある。
 このときの水溶液中のホウ酸濃度は、2~6質量%であることが好ましく、2~5質量%がより好ましく、2~4質量%がさらに好ましい。ホウ酸の濃度が2質量%未満の場合、得られる偏光フィルムに色斑が多くなるおそれがある。またホウ酸の濃度が6質量%を超える場合、ホウ酸によるPVAの架橋が過剰となり、フィルムを高倍率で延伸することが困難となるおそれがある。
 また、偏光フィルムの色相をニュートラルグレーに近づけるため、ホウ酸水溶液にヨウ化カリウムを添加することも好ましい。ヨウ化カリウムの濃度は3~10質量%が好ましく、4~8質量%がより好ましい。ヨウ化カリウムの濃度が3質量%未満の場合、得られる偏光フィルムの青みが強くなるおそれがある。一方、ヨウ化カリウムの濃度が10質量%を超える場合、得られる偏光フィルムの赤みが強くなるおそれがある。ホウ酸水溶液は、他の成分として例えば鉄、ジルコニウム等の金属化合物を含んでいてもよい。
 上記延伸において、水溶液の温度に特に制限はないが、50~60℃が好ましく、55~60℃がより好ましく、57~60℃がさらに好ましい。延伸温度が50℃未満であると、フィルムを高倍率まで延伸することが困難となるおそれがある。また、延伸温度が60℃を超えると、得られる偏光フィルムの透過度が低下するおそれがある。
 延伸後の色調整は、ホウ酸とヨウ化カリウムを含有した水溶液中で行うことが好ましい。このとき、水溶液に塩化亜鉛、ヨウ化亜鉛等の金属化合物を添加してもよい。水溶液の温度は、偏光性能の低下を防ぐため、延伸温度よりも低い方が好ましく、具体的には20~50℃が好ましく、30~40℃がより好ましい。色調整の時間については、特に制限はない。
 得られた偏光フィルムの乾燥は、各種の乾燥機を用いてバッチ式、連続フロート式、連続ロール上接触式等の方法で行うことができる。乾燥温度としては、偏光フィルムからのヨウ素の昇華を防ぐため、またPVAと架橋したホウ酸の脱離反応を抑えるため、40~80℃で行うことが好ましく、45~70℃がより好ましく、50~60℃がさらに好ましい。乾燥時間については特に制限はなく、装置や乾燥温度によって異なるが、例えば3~6分の範囲内である。
 こうして得られた偏光フィルムは、偏光板等の用途に供するために優れた偏光性能を有していることが好ましい。すなわち、偏光フィルムの透過率は好ましくは43.0%以上であり、偏光度は好ましくは99.97%以上(より好ましくは99.98%以上)である。
 以下に本発明を実施例等により具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。実施例等において、PVAの粘度平均重合度P、フィルム原反の膨潤度A、延伸フィルムの膨潤度B、偏光フィルムの透過率Yおよび偏光度Vは、以下の方法で評価した。
(1)PVAの粘度平均重合度Pの測定
 PVA0.28g、蒸留水70g、および撹拌子を、100mL共通すり合わせ三角フラスコに投入した。95℃の恒温槽に、栓をした上記三角フラスコを浸漬し、撹拌子で撹拌しながらPVAを溶解し、0.4%PVA水溶液を作製した。このPVA水溶液をブフナー漏斗形ガラスろ過器3Gでろ過し、30℃の恒温水槽中で冷却して、重合度測定用サンプルとした。参照試料として、別の100mL共栓すり合わせ三角フラスコに蒸留水を70g入れて栓をし、30℃の恒温水槽に浸漬した。
 105℃の乾燥機で1時間加熱した蒸発皿を、デシケーターで30分間冷却し、蒸発皿の質量a(g)を測定した。この蒸発皿に重合度測定用サンプル10mLをホールピペットで移動させ、これを105℃の乾燥機で16時間乾燥後、デシケーターで30分間冷却し、質量b(g)を測定した。重合度測定用サンプルの濃度c(g/L)は、下記式により算出した。
 
  c = 1000×(b-a)/10
 
 オストワルド粘度計に、重合度測定用サンプル、あるいは蒸留水を10mLホールピペットで投入し、30℃の恒温水槽中で15分間安定させた。投入した重合度測定用サンプルの落下秒数t(s)と蒸留水の落下秒数t(s)を測定し、下記式により粘度平均重合度Pを算出した。
 
  η = t/t
  [η] = 2.303×Log(η/c)
  Log(P) = 1.613×Log([η]×10/8.29)
 
(2)フィルム原反の膨潤度Aの測定
 フィルム原反を5cm×5cmに裁断し、30℃の蒸留水1Lに4時間浸漬した。このフィルム原反を蒸留水中から取り出し、2枚のろ紙ではさんで表面の水滴を吸収させた後、質量Dを測定した。さらに、このフィルム原反を105℃の乾燥機で16時間乾燥し、デシケーターで30分間冷却した後、質量Eを測定し、下記式によりフィルム原反の膨潤度Aを算出した。
 
  A = 100×D/E(%)
 
(3)延伸フィルムの膨潤度Bの測定
 湿式延伸したフィルムを、延伸方向10cm×幅方向5cmに切り取り、さらにヨウ素0.03質量%、ヨウ化カリウム3質量%のヨウ素-ヨウ化カリウム水溶液(30℃)に4時間浸漬した。この延伸フィルムをヨウ素-ヨウ化カリウム水溶液から取り出し、2枚のろ紙ではさんで表面の水滴を吸収させた後、質量Fを測定した。この延伸フィルムを105℃の乾燥機で16時間乾燥し、デシケーターで30分間冷却した後、質量Gを測定し、下記式により延伸フィルムの膨潤度Bを算出した。
 
  B = 100×F/G(%)
 
(4)偏光フィルムの透過率Yの測定
 偏光フィルムの幅方向の中央部から、延伸方向に4cm×幅方向に4cmの正方形のサンプルを2枚採取し、日立製作所製の分光光度計U-4100(積分球付属)を用いて、JIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行い、1枚の偏光フィルムサンプルについて、延伸軸方向に対して45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値Y1(%)を求めた。もう1枚の偏光フィルムサンプルについても同様にして、45°傾けた場合の光の透過度と-45°傾けた場合の光の透過度を測定して、それらの平均値Y2(%)を求めた。下記式によりY1とY2を平均し、偏光フィルムの透過率Y(%)とした。
 
  Y = (Y1+Y2)/2
 
(5)偏光フィルムの偏光度Vの測定
 上記(4)で採取した2枚の偏光フィルムを、その延伸方向が平行になるように重ねた場合の光の透過率Y∥(%)、延伸方向が直交するように重ねた場合の光の透過率Y⊥(%)を、(4)に記載された透過率の場合と同様にして測定し、下記式により偏光度V(%)を求めた。
 
  V = {(Y∥-Y⊥)/(Y∥+Y⊥)}1/2×100
 
[実施例1]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを金属枠に固定し、120℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、230%であった。
 次に、上記のフィルム原反を流れ方向11cm×幅方向10cmにカットし、流れ方向を延伸方向としてチャック間4cmの延伸治具に取り付け、30℃の純水に1分間浸漬し、続けて、ヨウ素を0.03質量%、ヨウ化カリウムを3質量%の割合で含有する染色液(温度30℃)に浸漬し、0.13m/minの速度で2.6倍に延伸して、ヨウ素を吸着させた。この延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、260%であった。
 続けてこの延伸フィルムを、ホウ酸を4質量%、ヨウ化カリウムを6質量%の割合で含有する延伸液(温度57.5℃)に浸漬し、0.13m/minの速度で2.3倍に延伸した後、延伸方向を固定して50℃で4分間乾燥して偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.99%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例2]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを金属枠に固定し、115℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、240%であった。
 次に、実施例1と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、260%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.99%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例3]
 重合度9100、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み20μmのPVAフィルムを得た。このフィルムを金属枠に固定し、110℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、230%であった。
 次に、延伸倍率を2.5倍としたこと以外は実施例1と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、255%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.99%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例4]
 重合度5200、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを金属枠に固定し、110℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、205%であった。
 次に、実施例3と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、235%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.98%であり、偏光性能が良好な偏光フィルムが得られた。
[実施例5]
 重合度5500、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み30μmのPVAフィルムを得た。このフィルムを金属枠に固定し、130℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、215%であった。
 次に、実施例1と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、235%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.99%であり、偏光性能が良好な偏光フィルムが得られた。
[比較例1]
 重合度4800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する6.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを金属枠に固定し、120℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、220%であった。
 次に、延伸倍率を2.7倍としたこと以外は実施例1と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、245%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.92%であり、偏光フィルムの偏光度が若干不足していた。
[比較例2]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを金属枠に固定し、140℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、195%であった。
 次に、実施例1と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、220%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.92%であり、偏光フィルムの偏光度が若干不足していた。
[比較例3]
 重合度5800、ケン化度99.8モル%のPVA100質量部と、可塑剤としてグリセリン12質量部とを含有する5.5質量%PVA水溶液を、60℃の金属ロール上に流延し、60分乾燥して、厚み40μmのPVAフィルムを得た。このフィルムを金属枠に固定し、110℃で3分間熱処理をした。熱処理後のフィルム原反の膨潤度Aを上記(2)に記載した方法で測定したところ、250%であった。
 次に、実施例1と同様にして、上記のフィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、280%であった。
 続けて、実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.87%であり、偏光フィルムの偏光度が若干不足していた。
[比較例4]
 実施例1で得られたフィルム原反について、延伸倍率を1.7倍としたこと以外は実施例1と同様にして、フィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、240%であった。
 続けて、延伸倍率を3.5倍としたこと以外は実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.90%であり、偏光フィルムの偏光度が若干不足していた。
[比較例5]
 実施例1で得られたフィルム原反について、延伸倍率を4.2倍としたこと以外は実施例1と同様にして、フィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、240%であった。
 続けて、延伸倍率を1.4倍としたこと以外は実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.80%であり、偏光フィルムの偏光度が若干不足していた。
[比較例6]
 実施例1で得られたフィルム原反について、延伸倍率を1.2倍としたこと以外は実施例1と同様にして、フィルム原反を延伸しながらヨウ素を吸着させた。得られた延伸フィルムの膨潤度Bを上記(3)に記載した方法で測定したところ、230%であった。
 続けて、延伸倍率を4.6倍としたこと以外は実施例1と同様にして偏光フィルムを得た。この偏光フィルムの透過度および偏光度を、上記(4)および(5)に記載した方法で測定したところ、それぞれ44.0%、99.40%であり、偏光フィルムの偏光度が若干不足していた。そこで、偏光度を改善するために延伸倍率の目標値を4.6倍から5.0倍に変更したところ、延伸切れが発生して偏光フィルムを得ることができなかった。
 上記の結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の製造法によって得られた偏光フィルムは、偏光性能が高いという優れた特性を活かして、電卓、腕時計、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器等の液晶表示装置の構成部品である偏光板の作製に有効に用いることができる。

Claims (5)

  1.  重合度が5000以上のポリビニルアルコールを製膜して得られる、膨潤度がA(%)であるフィルム原反を、2.0~2.9倍に湿式延伸して、膨潤度がB(%)である延伸フィルムを得る工程を含む偏光フィルムの製造法であって、上記AとBとが下記式(1)および(2)を満足することを特徴とする、偏光フィルムの製造法。
     
      200 ≦ A ≦ 240      (1)
      A+20 ≦ B ≦ A+35    (2)
     
  2.  前記フィルム原反をヨウ素-ヨウ化カリウム水溶液中で湿式延伸する、請求項1に記載の偏光フィルムの製造法。
  3.  前記フィルム原反が、製膜後に115~130℃で熱処理されて得られたものである、請求項1または2に記載の偏光フィルムの製造法。
  4.  前記湿式延伸する工程に続いて、得られた延伸フィルムをさらにホウ酸水溶液中で3倍以下に延伸する工程を含む、請求項1~3のいずれか1項に記載の偏光フィルムの製造法。
  5.  請求項1~4のいずれか1項に記載の製造法によって得られる、透過率が43.0%以上、かつ偏光度が99.97%以上である偏光フィルム。
PCT/JP2009/070799 2008-12-18 2009-12-14 偏光フィルムの製造法 WO2010071093A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117016319A KR101726006B1 (ko) 2008-12-18 2009-12-14 편광 필름의 제조법
JP2010509606A JP5350368B2 (ja) 2008-12-18 2009-12-14 偏光フィルムの製造法
CN200980151002.8A CN102257413B (zh) 2008-12-18 2009-12-14 偏光膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-321800 2008-12-18
JP2008321800 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010071093A1 true WO2010071093A1 (ja) 2010-06-24

Family

ID=42268763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070799 WO2010071093A1 (ja) 2008-12-18 2009-12-14 偏光フィルムの製造法

Country Status (5)

Country Link
JP (1) JP5350368B2 (ja)
KR (1) KR101726006B1 (ja)
CN (1) CN102257413B (ja)
TW (1) TWI472811B (ja)
WO (1) WO2010071093A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338902A (zh) * 2010-09-03 2012-02-01 日东电工株式会社 偏振膜、含有偏振膜的光学膜叠层体、以及拉伸叠层体
JP2012203002A (ja) * 2011-03-23 2012-10-22 Nitto Denko Corp 偏光子及びその製造方法
JP2013037222A (ja) * 2011-08-09 2013-02-21 Nitto Denko Corp 偏光子及びその製造方法
JP2013097113A (ja) * 2011-10-31 2013-05-20 Kuraray Co Ltd 偏光フィルムの製造方法
JP2013140324A (ja) * 2011-12-06 2013-07-18 Nitto Denko Corp 偏光子の製造方法および偏光板の製造方法
JP2013164526A (ja) * 2012-02-13 2013-08-22 Kuraray Co Ltd ポリビニルアルコールフィルム
WO2014050697A1 (ja) * 2012-09-26 2014-04-03 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
KR20140051024A (ko) * 2012-10-22 2014-04-30 엘지디스플레이 주식회사 편광판 제조장치, 편광판 제조방법, 편광판 및 이를 포함하는 디스플레이 장치
CN103926644A (zh) * 2010-09-03 2014-07-16 日东电工株式会社 光学面板组装体的连续制造方法及装置
US9291744B2 (en) 2009-05-01 2016-03-22 Nitto Denko Corporation Method for producing polarizer
JP2016048382A (ja) * 2015-10-28 2016-04-07 株式会社クラレ ポリビニルアルコールフィルム
US9442235B2 (en) 2010-09-03 2016-09-13 Nitto Denko Corporation Roll of continuous web of optical film laminate and production method therefor
US9442234B2 (en) 2010-09-03 2016-09-13 Nitto Denko Corporation Method of producing roll of laminate strip with polarizing film
US9453953B2 (en) 2010-09-03 2016-09-27 Nitto Denko Corporation Thin polarizing film, optical laminate with thin polarizing film, and production method for thin polarizing film
JPWO2014168258A1 (ja) * 2013-04-11 2017-02-16 住友化学株式会社 光学異方性フィルムの製造方法
JPWO2016021432A1 (ja) * 2014-08-04 2017-06-01 住友化学株式会社 偏光フィルムの製造方法
KR20190012393A (ko) * 2017-07-27 2019-02-11 에스케이씨 주식회사 편광판 보호필름 및 이의 제조방법
CN114437384A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 聚乙烯醇光学膜及其制备方法和偏光片

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149620B (zh) * 2011-12-06 2017-04-12 日东电工株式会社 偏振片的制造方法及偏光板的制造方法
WO2013146459A1 (ja) * 2012-03-30 2013-10-03 株式会社クラレ ポリビニルアルコール系重合体フィルム
CN103076648B (zh) * 2013-01-31 2015-07-15 佛山纬达光电材料有限公司 一种实验室用偏光素子的简易制造方法及其装置
KR101460478B1 (ko) * 2013-06-18 2014-11-10 주식회사 엘지화학 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
KR101648243B1 (ko) * 2013-06-27 2016-08-12 제일모직주식회사 폴리엔 편광자, 이의 제조방법, 이를 포함하는 편광판 및 광학표시장치
JP6150428B2 (ja) * 2013-08-12 2017-06-21 日東電工株式会社 偏光膜、偏光膜を含む光学機能フィルム積層体、及び、偏光膜を含む光学フィルム積層体の製造方法、並びに偏光膜を有する有機el表示装置
JP6592509B2 (ja) * 2015-04-13 2019-10-16 株式会社クラレ ポリビニルアルコールフィルム
WO2017138551A1 (ja) * 2016-02-09 2017-08-17 株式会社クラレ 偏光フィルム及びその製造方法
CN107167860A (zh) * 2017-05-27 2017-09-15 中国石油化工集团公司 聚乙烯醇系薄膜及其测试方法
CN110356025B (zh) * 2018-04-09 2023-03-28 日东电工株式会社 偏振片的制造方法
ES2943291T3 (es) 2018-10-02 2023-06-12 Instr Laboratory Co Sensor de hemolisis desechable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175404A (ja) * 1989-12-05 1991-07-30 Kuraray Co Ltd 偏光フイルムおよびその製造法
JPH03287630A (ja) * 1990-04-05 1991-12-18 Kuraray Co Ltd ポリビニルアルコール系フイルムの製造方法および偏光フイルムの製造方法
JPH06118231A (ja) * 1992-10-01 1994-04-28 Kuraray Co Ltd 光学用フィルム
JP2003279748A (ja) * 2002-01-18 2003-10-02 Nitto Denko Corp 偏光フィルムおよび画像表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543748B2 (ja) 1987-07-03 1996-10-16 株式会社クラレ 偏光フイルム及びその製造法
JP3287630B2 (ja) * 1993-02-26 2002-06-04 カシオソフト株式会社 電話案内システム
JP3175404B2 (ja) * 1993-06-17 2001-06-11 松下電器産業株式会社 くし形フィルター用インピーダンス素子調整装置
JP3327423B2 (ja) 1993-10-21 2002-09-24 日本合成化学工業株式会社 偏光フイルムの製造法
JPH08190015A (ja) * 1995-01-11 1996-07-23 Kuraray Co Ltd 偏光膜の製造法
JPH10153709A (ja) * 1996-11-22 1998-06-09 Tokai Rubber Ind Ltd 偏光フィルムの製造方法
JP4737451B2 (ja) * 2000-12-22 2011-08-03 Jsr株式会社 架橋樹脂フィルム、およびその用途
US7110177B2 (en) * 2002-01-18 2006-09-19 Nitto Denko Corporation Polarizing film and image display
JP2005281476A (ja) * 2004-03-30 2005-10-13 Tomoegawa Paper Co Ltd 樹脂ビーズ含有塗料及びその製造方法
JP4433462B2 (ja) * 2004-05-12 2010-03-17 株式会社クラレ ポリビニルアルコール系重合体フィルムおよびその製造方法
JP2006139086A (ja) * 2004-11-12 2006-06-01 Fuji Photo Film Co Ltd 表示装置用の遮光膜及びその製造方法
JP2008076627A (ja) * 2006-09-20 2008-04-03 Fujifilm Corp カラーフィルタ及びその製造方法、並びに表示装置
JP4499131B2 (ja) * 2007-04-18 2010-07-07 株式会社クラレ 偏光フィルムの製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175404A (ja) * 1989-12-05 1991-07-30 Kuraray Co Ltd 偏光フイルムおよびその製造法
JPH03287630A (ja) * 1990-04-05 1991-12-18 Kuraray Co Ltd ポリビニルアルコール系フイルムの製造方法および偏光フイルムの製造方法
JPH06118231A (ja) * 1992-10-01 1994-04-28 Kuraray Co Ltd 光学用フィルム
JP2003279748A (ja) * 2002-01-18 2003-10-02 Nitto Denko Corp 偏光フィルムおよび画像表示装置

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575214B2 (en) 2009-05-01 2017-02-21 Nitto Denko Corporation Method for producing polarizer
US9329307B2 (en) 2009-05-01 2016-05-03 Nitto Denko Corporation Method for producing polarizer
US9291744B2 (en) 2009-05-01 2016-03-22 Nitto Denko Corporation Method for producing polarizer
JP2014112259A (ja) * 2010-09-03 2014-06-19 Nitto Denko Corp 偏光膜を有する光学フィルム積層体ロールの製造方法
JP2016040640A (ja) * 2010-09-03 2016-03-24 日東電工株式会社 偏光膜、偏光膜を含む光学フィルム積層体、及び、偏光膜を含む光学フィルム積層体の製造に用いるための延伸積層体、並びにそれらの製造方法、並びに偏光膜を有する有機el表示装置
JP2013047853A (ja) * 2010-09-03 2013-03-07 Nitto Denko Corp 偏光膜を有する積層体ストリップロール
US9459390B2 (en) 2010-09-03 2016-10-04 Nitto Denko Corporation Roll of continuous web of optical film laminate and production method therefor
US9453953B2 (en) 2010-09-03 2016-09-27 Nitto Denko Corporation Thin polarizing film, optical laminate with thin polarizing film, and production method for thin polarizing film
US9442234B2 (en) 2010-09-03 2016-09-13 Nitto Denko Corporation Method of producing roll of laminate strip with polarizing film
US9442235B2 (en) 2010-09-03 2016-09-13 Nitto Denko Corporation Roll of continuous web of optical film laminate and production method therefor
CN103926644B (zh) * 2010-09-03 2017-06-09 日东电工株式会社 光学面板组装体的连续制造方法及装置
JP2014078016A (ja) * 2010-09-03 2014-05-01 Nitto Denko Corp 偏光膜、偏光膜を含む光学フィルム積層体、及び、偏光膜を含む光学フィルム積層体の製造に用いるための延伸積層体
JP2012133312A (ja) * 2010-09-03 2012-07-12 Nitto Denko Corp 偏光膜、偏光膜を含む光学フィルム積層体、及び、偏光膜を含む光学フィルム積層体の製造に用いるための延伸積層体、並びにそれらの製造方法、並びに偏光膜を有する有機el表示装置
JP2014112240A (ja) * 2010-09-03 2014-06-19 Nitto Denko Corp 連続ウェブ状光学フィルム積層体ロール及びその製造方法
CN103926644A (zh) * 2010-09-03 2014-07-16 日东电工株式会社 光学面板组装体的连续制造方法及装置
CN102338902A (zh) * 2010-09-03 2012-02-01 日东电工株式会社 偏振膜、含有偏振膜的光学膜叠层体、以及拉伸叠层体
US9618668B2 (en) 2010-09-03 2017-04-11 Nitto Denko Corporation Method of producing roll of laminate strip with polarizing film
JP2014225021A (ja) * 2010-09-03 2014-12-04 日東電工株式会社 偏光膜、偏光膜を含む光学フィルム積層体、及び、偏光膜を含む光学フィルム積層体の製造に用いるための延伸積層体
JP2012203002A (ja) * 2011-03-23 2012-10-22 Nitto Denko Corp 偏光子及びその製造方法
KR20130018605A (ko) * 2011-08-09 2013-02-25 닛토덴코 가부시키가이샤 편광자 및 그 제조 방법
KR101991202B1 (ko) * 2011-08-09 2019-06-19 닛토덴코 가부시키가이샤 편광자 및 그 제조 방법
JP2013037222A (ja) * 2011-08-09 2013-02-21 Nitto Denko Corp 偏光子及びその製造方法
KR20180111726A (ko) * 2011-08-09 2018-10-11 닛토덴코 가부시키가이샤 편광자 및 그 제조 방법
KR101991130B1 (ko) * 2011-08-09 2019-06-19 닛토덴코 가부시키가이샤 편광자 및 그 제조 방법
TWI565975B (zh) * 2011-08-09 2017-01-11 Nitto Denko Corp Polarizer and manufacturing method thereof
JP2013097113A (ja) * 2011-10-31 2013-05-20 Kuraray Co Ltd 偏光フィルムの製造方法
JP2013140324A (ja) * 2011-12-06 2013-07-18 Nitto Denko Corp 偏光子の製造方法および偏光板の製造方法
JP2013164526A (ja) * 2012-02-13 2013-08-22 Kuraray Co Ltd ポリビニルアルコールフィルム
JP5587517B1 (ja) * 2012-09-26 2014-09-10 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
JP5563725B1 (ja) * 2012-09-26 2014-07-30 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
TWI611905B (zh) * 2012-09-26 2018-01-21 可樂麗股份有限公司 聚乙烯醇薄膜及其製法、偏光膜及其製法暨偏光板
WO2014050697A1 (ja) * 2012-09-26 2014-04-03 株式会社クラレ ポリビニルアルコールフィルムおよび偏光フィルム
KR20140051024A (ko) * 2012-10-22 2014-04-30 엘지디스플레이 주식회사 편광판 제조장치, 편광판 제조방법, 편광판 및 이를 포함하는 디스플레이 장치
KR101987682B1 (ko) * 2012-10-22 2019-06-11 엘지디스플레이 주식회사 편광판 제조장치, 편광판 제조방법, 편광판 및 이를 포함하는 디스플레이 장치
JPWO2014168258A1 (ja) * 2013-04-11 2017-02-16 住友化学株式会社 光学異方性フィルムの製造方法
JPWO2016021432A1 (ja) * 2014-08-04 2017-06-01 住友化学株式会社 偏光フィルムの製造方法
JP2016048382A (ja) * 2015-10-28 2016-04-07 株式会社クラレ ポリビニルアルコールフィルム
KR101985466B1 (ko) 2017-07-27 2019-06-03 에스케이씨 주식회사 편광판 보호필름 및 이의 제조방법
KR20190012393A (ko) * 2017-07-27 2019-02-11 에스케이씨 주식회사 편광판 보호필름 및 이의 제조방법
CN114437384A (zh) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 聚乙烯醇光学膜及其制备方法和偏光片
CN114437384B (zh) * 2020-10-30 2023-08-15 中国石油化工股份有限公司 聚乙烯醇光学膜及其制备方法和偏光片

Also Published As

Publication number Publication date
CN102257413B (zh) 2014-07-23
KR20110102902A (ko) 2011-09-19
KR101726006B1 (ko) 2017-04-11
TW201033658A (en) 2010-09-16
TWI472811B (zh) 2015-02-11
JP5350368B2 (ja) 2013-11-27
CN102257413A (zh) 2011-11-23
JPWO2010071093A1 (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5350368B2 (ja) 偏光フィルムの製造法
JP5628025B2 (ja) ポリビニルアルコールフィルム
JP6788673B2 (ja) 偏光フィルム及びその製造方法
WO2015020046A1 (ja) ビニルアルコール系重合体フィルム
JP5624803B2 (ja) ポリビニルアルコール系重合体フィルム
KR102232980B1 (ko) 광학 필름 제조용 원반 필름
WO2013146458A1 (ja) ポリビニルアルコール系重合体フィルムおよび偏光フィルム
TWI644960B (zh) 聚乙烯醇薄膜、偏光薄膜、及其等之製造方法
TW201509955A (zh) 光學薄膜製造用坯材薄膜
JP5179402B2 (ja) 偏光フィルム用ポリビニルアルコールフィルムおよびその製造方法、ならびにそれを用いた偏光フィルムの製造方法
JP5931125B2 (ja) 偏光フィルムの製造方法
JP2018135426A (ja) ポリビニルアルコールフィルム及びその製造方法、並びにそれを用いた偏光フィルム
JPH06118231A (ja) 光学用フィルム
JP7284716B2 (ja) 偏光フィルム及びその製造方法
JP5606704B2 (ja) 偏光フィルムの製造方法
JP6858499B2 (ja) 光学フィルムの製造方法
JP6776129B2 (ja) フィルム
WO2021132435A1 (ja) ポリビニルアルコールフィルム及び偏光フィルム
KR102682994B1 (ko) 편광 필름 및 그 제조 방법
JPH08190017A (ja) 偏光膜の製造方法
JP6792456B2 (ja) フィルム
WO2022145489A1 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルム並びに偏光板
JP2004170944A (ja) 偏光フィルムの製造法
JPH08190014A (ja) 偏光膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151002.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010509606

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016319

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09833396

Country of ref document: EP

Kind code of ref document: A1