WO2010038835A1 - グラフト共重合体の製造方法、その方法で得られたグラフト共重合体、及び該グラフト共重合体を含むゴム組成物とタイヤ - Google Patents
グラフト共重合体の製造方法、その方法で得られたグラフト共重合体、及び該グラフト共重合体を含むゴム組成物とタイヤ Download PDFInfo
- Publication number
- WO2010038835A1 WO2010038835A1 PCT/JP2009/067178 JP2009067178W WO2010038835A1 WO 2010038835 A1 WO2010038835 A1 WO 2010038835A1 JP 2009067178 W JP2009067178 W JP 2009067178W WO 2010038835 A1 WO2010038835 A1 WO 2010038835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- graft copolymer
- polymerization
- graft
- rubber
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F253/00—Macromolecular compounds obtained by polymerising monomers on to natural rubbers or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/548—Silicon-containing compounds containing sulfur
Definitions
- a natural copolymer and / or a synthetic diene rubber is graft-polymerized with a functional group-containing vinyl monomer by a rebink radical polymerization in an aqueous medium, and a graft copolymer (modified rubber polymer) latex is obtained.
- a method for efficiently producing, a rubber composition including a graft copolymer obtained from the latex, and having excellent low heat build-up, wear resistance, fracture characteristics, etc., and using the rubber composition for any of tire members It relates to a tire having the above properties.
- the living polymerization is a polymerization in which the growth reaction proceeds, but the termination reaction and the chain transfer reaction do not occur, and the growth terminal of the living polymer remains active after the monomer is consumed. Polymerization is started again.
- the molecular weight of the polymer increases in proportion to the amount of monomer consumed, and a polymer with a uniform molecular weight is obtained, and various functional groups can be easily introduced into the active terminal of the polymer.
- This living polymerization can be realized relatively easily by anionic polymerization and cationic polymerization.
- radical polymerization is an industrially extremely important polymerization method, and has the advantage that a large number of polar monomers that cannot be obtained by anionic polymerization can be introduced.
- living radical polymerization for example, (1) a method for producing an aqueous liquid containing a polymer in which a vinyl monomer is polymerized using a specific organic tellurium compound, a surfactant and / or a dispersant in an aqueous medium (for example, Patent Document 3), (2) Living radical polymer (macro living radical polymerization initiator) obtained by polymerizing a vinyl monomer using a living radical polymerization initiator composed of a specific organic tellurium compound, and a specific organic
- a method for producing a living radical polymer in which a vinyl monomer is polymerized using a mixture with a ditelluride compound for example, see Patent Document 4.
- a polymerization control agent living polymerization
- a polymerization control agent living polymerization
- a polymerization control agent and an emulsifier An emulsifier is produced in situ in an aqueous polymerization medium: and [2] an emulsion polymerization process is disclosed (see, for example, US Pat. .
- these techniques are applied and a radically polymerizable monomer is subjected to living radical graft polymerization on natural rubber or synthetic diene rubber in an aqueous medium.
- the present invention provides a living radical graft polymerization of a radical polymerizable monomer, particularly a functional group-containing radical polymerizable monomer, to natural rubber and / or synthetic diene rubber, A method for efficiently producing a coalescence, a rubber composition including a graft copolymer obtained by this method and excellent in low heat build-up, wear resistance, fracture characteristics, and the like, and the rubber composition as a tire member
- An object of the present invention is to provide a tire having the above properties.
- the present inventors have obtained the following knowledge.
- the polymerization control agent is preferably inert to water.
- a stable free radical forming compound an atom transfer radical polymerization agent, a reversible addition-cleavage chain transfer agent, an iniferter, an organic tellurium compound and an organic iodine compound are preferable, and an organic tellurium compound is particularly preferable.
- the radically polymerizable monomer to be grafted preferably has a functional group in the molecule, and the rubber composition containing the graft copolymer obtained by selecting this functional group includes:
- the dispersibility of carbon black and inorganic fillers will be good, and it will be excellent in low heat build-up and wear resistance and fracture characteristics, (5)
- the rubber composition for any of the tire members a tire excellent in low heat build-up, wear resistance, fracture characteristics, and the like can be obtained. I found. The present invention has been completed based on such findings.
- the present invention (1) Living radical graft polymerization of a radically polymerizable monomer on a rubber component comprising natural rubber and / or synthetic diene rubber in the presence of a polymerization control agent in an aqueous medium.
- Production method of polymer (2) Graft copolymer latex obtained by the method described in (1) above, (3) The graft copolymer latex according to (2), which is for tires, (4) A graft copolymer obtained by coagulating and drying the graft copolymer latex described in (2) or (3) above, (5) The graft copolymer according to (4), which is for tires, (6) A rubber composition comprising the graft copolymer according to (4) or (5) above, (7) The rubber composition according to (6), which is for tires, (8) The above (6) containing (B) carbon black and / or inorganic filler in a proportion of 5 to 100 parts by mass with respect to 100 parts by mass of the rubber component containing (A) the graft copo
- a graft copolymer is obtained by graft-polymerizing a radically polymerizable monomer to a natural rubber or a synthetic diene rubber by living radical polymerization in an aqueous medium.
- Polymer (modified rubber polymer) latex can be produced efficiently.
- living radical polymerization is carried out by emulsion polymerization in water (polymerization in micelles (organic solvent) or micelle surface in an aqueous medium), the degree of polymerization is higher than polymerization in organic solvents.
- a polymer can be produced, a polymer having a longer graft portion can be produced, and a gel content (toluene insoluble content) is reduced.
- a polymerization control agent used for performing living radical graft polymerization by using an organic tellurium compound having a specific structure that is inert to water, the graft copolymer latex of the above (1) is obtained. It can be manufactured more effectively.
- the organic tellurium compound has good stability in an aqueous system, and also has molecular weight controllability, functional group compatibility, ease of modification of the living polymer terminal, and the like.
- a radical polymerizable monomer to be grafted a monomer having a functional group in the molecule is used, and by selecting this functional group, the resulting graft copolymer is converted into carbon black contained in the rubber composition, It can be made excellent in interaction with the inorganic filler and can be made suitable as a rubber component for the rubber composition.
- the rubber composition containing the graft copolymer of (3) above has good dispersibility of carbon black and inorganic filler contained therein, and is excellent in low heat build-up, wear resistance and fracture characteristics. Become a thing.
- (5) By using the rubber composition of the above (4) for any tire member, a tire excellent in low heat build-up, wear resistance, fracture characteristics, and the like can be obtained.
- the method for producing a graft copolymer of the present invention comprises a natural rubber and / or a synthetic diene rubber in an aqueous medium in the presence of a polymerization control agent. It is characterized in that a radically polymerizable monomer is subjected to living radical graft polymerization on a rubber component.
- a radically polymerizable monomer is subjected to living radical graft polymerization on a rubber component.
- Living radical graft polymerization in the present invention is carried out in an aqueous medium. Since the emulsion polymerization is preferable, the raw rubber component is preferably used in the form of latex.
- the latex of natural rubber is not particularly limited, and for example, field latex, ammonia-treated latex, centrifugal concentrated latex, deproteinized latex treated with a surfactant or an enzyme, and combinations thereof can be used.
- the latex of the synthetic diene rubber is not particularly limited, and for example, butadiene rubber (BR) latex, isoprene rubber (IR) latex, styrene-butadiene copolymer rubber (SBR) latex, nitrile rubber (NBR) latex or the like is used. be able to.
- the origin of the latex of the synthetic diene rubber is not particularly limited, and those obtained by emulsion polymerization, those obtained by dispersing a solution polymer in an aqueous medium, those obtained by dissolving and emulsifying solid rubber, and the like, Either may be sufficient.
- each of the aforementioned latexes may be used alone or in combination of two or more.
- living radical graft polymerization is carried out in the presence of a polymerization controller in the reaction system, and a graft chain is introduced into the side chain of the rubber component. It becomes radical polymerization, and a terminal active living polymer is introduced as the graft chain.
- the polymerization controller is not particularly limited, and any conventional compound known as a polymerization controller in conventional living radical polymerization can be appropriately selected.
- an aqueous medium is used. In view of performing the living radical graft polymerization, it is preferable that it is inert to water, that is, not deactivated by the presence of water.
- examples of the polymerization control agent used in the living radical graft polymerization include a stable free radical forming compound, an atom transfer radical polymerization agent, a reversible addition-cleavage chain transfer agent, an iniferter, an organic tellurium compound, and an organic iodine compound.
- a stable free radical forming compound an atom transfer radical polymerization agent, a reversible addition-cleavage chain transfer agent, an iniferter, an organic tellurium compound, and an organic iodine compound.
- stable free radical forming compounds, iniferters and organic tellurium compounds are preferred.
- an organic tellurium compound is particularly preferable from the viewpoint of stability in an aqueous system.
- a stable free radical-forming compound is a compound that forms a stable free radical such as a nitroxy radical (R 2 N—O.) And advances living radical polymerization by the action of the radical. Radical polymerization by the action of nitroxy radicals is called NMP.
- Nitroxy radicals that are stable free radicals include cyclic groups such as 2,2,6,6-substituted-1-piperidinyloxy radicals and 2,2,5,5-substituted-1-pyrrolidinyloxy radicals. Nitroxy radicals from hydroxyamine are preferred.
- an alkyl group having 4 or less carbon atoms such as a methyl group or an ethyl group is suitable.
- phenyl-t-butylnitrone is phenyl-t-butylnitrone.
- 1-diphenylethylene is known as a compound that forms stable free radicals other than nitroxy radicals.
- the growing species has intermittent activity due to the rapid cycle of weak bond dissociation, growth, and bond formation at the polymer growth end, and the deactivation due to bimolecular termination and chain transfer is suppressed. Is done.
- Atom transfer radical polymerization agent using an atom transfer radical polymerization agent as a polymerization control agent mediates that an unstable radical is easily transferred between a growing polymer chain and the polymerization control agent, This is a catalytic reversible redox method that performs living radical polymerization.
- atom transfer radical polymerization agent for example, a combination of an organic halide and a transition metal complex can be used.
- the organic halide a highly reactive compound having a carbon-halogen bond (for example, a carbonyl compound having a halogen at the ⁇ -position or a compound having a halogen at the benzyl position) or a sulfonyl halide is preferable.
- the transition metal complex is not particularly limited, but is preferably a metal complex having an element belonging to Groups 7 to 11 of the periodic table as a central metal, more preferably 0-valent or monovalent copper, divalent copper, A complex of ruthenium, divalent iron, and divalent nickel, and particularly preferably a complex of copper.
- Controlled polymerization by reversible addition-fragmentation chain transfer occurs by rapid chain transfer reaction between growing polymer radicals and inert polymer chains. After initiation of polymerization, the polymerization control agent becomes part of an inactive polymer chain.
- Examples of the polymerization control agent used for the controlled polymerization by RAFT include dithioester, trithiocarbonate, xanthate, dithioacylhydrazone, and dibenzyltrithiocarbonate.
- the polymerization initiator generates free radicals that subsequently react with the polymerizable monomer.
- Monomer radicals react with other monomers and grow to form chains, which can react with polymerization control agents such as the dithioesters described above.
- the polymerization control agent breaks down and can form R. and react with another newly formed monomer or continue to grow. Theoretically, growth continues until there is no monomer and is in a stop phase.
- ⁇ Iniferta> By introducing a compound residue (iniferter) that is the starting point of living radical graft polymerization into the side chain of the polymer to be grafted, and living radical polymerization of the radical polymerizable monomer, It is formed.
- the compound that forms the iniferter include dithiocarbamate compounds and styrene / nitroxide compounds.
- Organic tellurium compounds have recently been found as polymerization control agents in living radical polymerization, have good stability in aqueous systems, molecular weight controllability, functional group compatibility, ease of modification of living polymer terminals, etc. In view of the above, in the present invention, it is used as the most suitable among various polymerization control agents.
- the organic tellurium compound will be described in detail.
- the organic tellurium compound used as a polymerization controller is represented by the general formula (1).
- R 1 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group or an aromatic heterocyclic group
- R 2 and R 3 each independently represents a hydrogen atom or 1 to 8 carbon atoms
- R 4 represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an oxycarbonyl group or a cyano group.
- Organic tellurium compound (I) and / or general formula (2) (R 5 Te) 2 (2) wherein R 5 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group, or an aromatic heterocyclic group, and two R 5 s may be the same or different.
- the groups represented by R 1 are specifically as follows.
- Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, sec-butyl, tert-butyl, cyclobutyl, and n-pentyl.
- a preferred alkyl group is a linear or branched alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
- aryl group a phenyl group, a naphthyl group, etc., as a substituted aryl group, a phenyl group having a substituent, a naphthyl group having a substituent, etc., as an aromatic heterocyclic group, a pyridyl group, A furyl group, a thienyl group, etc. can be mentioned.
- R 6 carbon number
- Preferred aryl groups are a phenyl group and a trifluoromethyl-substituted phenyl group. These substituents may be substituted one or two, and the para position or ortho position is preferable.
- examples of the alkyl group having 1 to 8 carbon atoms of R 2 and R 3 include the same alkyl groups as those described above for R 1 .
- the groups represented by R 4 are specifically as follows.
- Examples of the aryl group, substituted aryl group, and aromatic heterocyclic group include the same groups as those described above for R 1 .
- Examples of the acyl group include a formyl group, an acetyl group, and a benzoyl group.
- a carboxyl group for example, a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group N-butoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n-pentoxycarbonyl group, phenoxycarbonyl group and the like.
- Preferred oxycarbonyl groups are a methoxycarbonyl group and an ethoxycarbonyl group.
- each group represented by R 4 include an aryl group, a substituted aryl group, and an oxycarbonyl group.
- a preferred aryl group is a phenyl group
- preferred substituted aryl groups are a halogen atom-substituted phenyl group and a trifluoromethyl-substituted phenyl group.
- these substituents are preferably substituted by 1 to 5 groups.
- an alkoxy group or a trifluoromethyl group one or two substituents may be substituted.
- the para position or the ortho position is preferable, and in the case of two substitutions, the meta position is preferable.
- As a preferable oxycarbonyl group a methoxycarbonyl group and an ethoxycarbonyl group are preferable.
- R 1 represents an alkyl group having 1 to 4 carbon atoms
- R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 4 is a compound represented by an aryl group, a substituted aryl group, or an oxycarbonyl group.
- R 1 represents an alkyl group having 1 to 4 carbon atoms
- R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 4 represents a phenyl group or a substituted phenyl group.
- Examples of the organic tellurium compound (I) represented by the general formula (1) include (methylterranyl-methyl) benzene, (1-methylterranyl-ethyl) benzene, (2-methylterranyl-propyl) benzene, 1-chloro-4- (methylterranil).
- R 5 is the same as R 1 in the general formula (1), but is preferably an alkyl group having 1 to 4 carbon atoms or a phenyl group.
- the two R 5 s may be the same or different, but are preferably the same from the viewpoint of ease of production.
- Examples of the organic tellurium compound (II) represented by the general formula (2) include dimethylditelluride, diethylditelluride, di-n-propylditelluride, diisopropylditelluride, dicyclopropylditelluride.
- dimethyl ditelluride diethyl ditelluride, di-n-propyl ditelluride, di-n-butyl ditelluride, diphenyl ditelluride, particularly preferably dimethyl ditelluride, diethyl ditelluride, di- -N-propyl ditelluride, di-n-butyl ditelluride.
- organic tellurium compounds (II) may be used alone, or two or more thereof may be used in combination.
- the polymerization controller only the organic tellurium compound (I) may be used, or only the organic tellurium compound (II) may be used, or the organic tellurium compounds (I) and (II) may be used. And may be used in combination.
- Organic iodine compounds are used as control agents in controlled polymerization by degenerative transfer (DT). Controlled polymerization by DT occurs by direct exchange of atoms or groups between growing macroradical chains.
- the polymerization control agent provides an atom or group necessary for DT, and an organic iodine compound is preferably used.
- the organic iodine compound include alkyl iodides, perfluoroalkyl iodides, and active organic iodides.
- Polymerization initiator In the manufacturing method of the graft copolymer of this invention, you may use another polymerization initiator together with the above-mentioned various polymerization control agents. There is no restriction
- polymerization initiators examples include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobis (2-diaminopropane) hydrochloride 2,2-azobis (2-diaminopropane) dihydrochloride, 2,2-azobis (2,4-dimethylvaleronitrile), potassium persulfate, sodium persulfate, ammonium persulfate, other azo initiators and redox systems An initiator etc. are mentioned. Of the above, azo initiators and redox initiators are preferred from the viewpoint of performing living radical graft polymerization in an aqueous medium.
- azo initiator examples include 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), 2,2′-azobis (2 , 4-Dimethylvaleronitrile) (ADVN), 1,1′-azobis (1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2′-azobisisobutyrate (MAIB), 4,4′-azobis (4-cyanovaleric acid) (ACVA), 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobis (2-methylbutyramide), 2,2′-azobis (4 -Methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2-methylamidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propaline ], 2,2′-azobis [2-methyl-N-imidazolin-2-yl)
- redox initiator a combination of a peroxide and a reducing agent is used.
- the peroxide include water-soluble organic peroxides such as hydrogen peroxide, cumene hydroperoxide, and tert-butyl hydroperoxide, various water-soluble azo initiators, potassium persulfate, sodium persulfate, ammonium persulfate, and the like. These may be used, and one kind may be used alone, or two or more kinds may be used in combination.
- examples of the reducing agent include polyamines such as tetraethylenepentamine, mercaptans, ascorbic acid, salts that form reducing metal ions such as Fe 2+ salts, and the like. You may use it in combination of 2 or more types.
- the ratio of the peroxide and reducing agent used in the redox initiator depends on the type of peroxide and reducing agent used, but is usually about 10: 1 to 1:10, preferably 1: 5-3: 1.
- An example of a preferred combination of a peroxide and a reducing agent in a redox initiator can be a combination of tert-butyl hydroperoxide and tetraethylenepentamine.
- the polymerization temperature is usually about 0 to 80 ° C., preferably 0 to 60 ° C.
- the radical polymerizable monomer to be subjected to living radical graft polymerization to a rubber component made of natural rubber and / or synthetic diene rubber includes a nitrogen atom, an oxygen atom, a sulfur atom, Examples thereof include a compound having at least one functional group containing at least one selected from a halogen atom and a metal atom in the molecule, or an aromatic vinyl compound.
- Examples of the functional group include isocyanate group, thioisocyanate group, amino group, imino group, sulfone group, hydroxy group, carboxy group, thiocarboxy group, carbonyl group, thiocarbonyl group, formyl group, thioformyl group, silanol group.
- Hydrocarbyloxy group Hydrocarbyloxy group, nitrile group, pyridyl group, amide group, imide group, imidazolyl group, ammonium group, hydrazo group, azo group, diazo group, ketimine group, epoxy group, thioepoxy group, oxycarbonyl group (ester bond), carbonyl Thio group (thioester bond), oxy group (ether bond), glycidoxy group, sulfide group (thioether bond), disulfide group, mercapto group, hydrocarbylthio group, sulfonyl group, sulfinyl group, imine residue, other nitrogen-containing heterocycles Formula group, oxygen-containing heterocycle Group, sulfur-containing heterocyclic group, hydrocarbyloxy silyl group, organotin groups, and the like chlorine and bromine.
- One type of these functional groups may be contained in the radical polymerizable monomer, or two or more types may be contained.
- an isocyanate group, an amino group Preferred are those containing a nitrogen atom such as a group, imino group, amide group, imide group, pyridyl group, imine residue, and other nitrogen-containing heterocyclic groups, with an isocyanate group and a pyridyl group being particularly preferred.
- the radical polymerizable monomer having the functional group is not particularly limited as long as it is a compound having the functional group in the molecule and a radical polymerizable group, and the functional group is an isocyanate group or pyridyl.
- a radically polymerizable monomer having a group can be mentioned as a preferable one.
- Examples of such monomers include isocyanatomethyl (meth) acrylate, isocyanatoethyl (meth) acrylate, isocyanatopropyl (meth) acrylate, isocyanatobutyl (meth) acrylate, methacryloyl isocyanate, isocyanatomethyl (meth) ) Acrylamide, isocyanatoethyl (meth) acrylamide, isocyanatopropyl (meth) acrylamide, isocyanatobutyl (meth) acrylamide, 1-isocyanato-2-vinylbenzene, 1-cyanato-3-vinylbenzene, 1-isocyanato-4 -Vinylbenzene, 2-vinylpyridine (2-VP), 4-vinylpyridine (4-VP) and the like.
- radical polymerizable monomer having a functional group containing an oxygen atom examples include (meth) acrylic acid, (meth) acrylamide, (N-) monoalkyl (meth) acrylamides (for example, N-isopropyl (meth) ) Acrylamide), 2-hydroxyethyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, methyl vinyl ketone (MVK) And the like, and examples of the radical polymerizable monomer having a functional group containing a nitrogen atom include acrylonitrile and the like, and as the radical polymerizable monomer having a functional group containing an oxygen atom and a nitrogen atom, For example, N, N-dimethylaminoethyl methacrylate, N, N- Examples include
- examples of the radically polymerizable monomer having a functional group containing a metal atom include allyl-tri-n-butyltin and the like, and examples of the radically polymerizable monomer having a hydrocarbyloxysilyl group include ⁇ - Examples include methacryloxypropyltrimethoxysilane and vinylmethyldiethoxysilane.
- the above-mentioned radical polymerizable monomer having a functional group may be used alone or in combination of two or more.
- an aromatic vinyl compound is also preferable as the radical polymerizable monomer.
- the aromatic vinyl compound include styrene (St), ⁇ -methylstyrene ( ⁇ -MeSt), 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,4 Examples thereof include 6-trimethylstyrene, p-tert-butyl- ⁇ -methylstyrene, and p-tert-butylstyrene.
- a radically polymerizable monomer is attached to a rubber component composed of natural rubber and / or synthetic diene rubber in an aqueous medium in the presence of a polymerization control agent.
- a graft copolymer is produced by polymerization.
- living radical graft polymerization (1) Living radical graft polymerization is preferably carried out by emulsion polymerization.
- the raw rubber component is used in the form of latex and emulsion polymerization is carried out in the presence of a surfactant and / or a dispersant.
- the above-mentioned organic tellurium compound (I) and / or organic tellurium compound (II) is used as a polymerization control agent, and the above-mentioned azo-based initiator or redox-based initiator is used as a polymerization initiator. Perform graft polymerization.
- (3) As the radical polymerizable monomer to be grafted those having the above-mentioned functional group in the molecule are used. When using a commercial product containing a polymerization inhibitor, it is preferable to remove the polymerization inhibitor in advance by an appropriate technique.
- the graft amount of the radically polymerizable monomer is 0.1 to 20% by mass, more preferably 0.2 to 10% by mass, and still more preferably 0, based on the rubber component in the obtained graft copolymer. Control to be 5 to 10% by mass.
- a functional group-containing radical polymerizable monomer for living radical graft polymerization to a rubber component an emulsifier such as an anionic surfactant or a nonionic surfactant, and a water-soluble polymer such as polyvinyl alcohol if necessary.
- a monomer emulsion is prepared by mixing a dispersant such as a compound and an aqueous medium and emulsifying the mixture using an emulsifier.
- organic tellurium compounds (I) and / or (II) as a polymerization control agent are mixed therewith.
- an azo initiator or a redox initiator is added as a polymerization initiator to prepare a reaction solution.
- living radical graft polymerization is performed by heating the reaction solution at a predetermined temperature.
- the polymerization temperature is usually about 0 to 100 ° C., preferably 40 to 90 ° C.
- the polymerization temperature is usually 0 to It is about 80 ° C., preferably 0 to 70 ° C.
- the reaction time may be appropriately selected so that the polymerization reaction is completed according to the reaction temperature, the rubber component to be used, the radical polymerizable monomer, the emulsifier, the polymerization controller, the polymerization initiator, and the like. Preferably within 24 hours.
- aqueous medium examples include water, neutral water containing an inorganic salt, alkaline water containing an alkali, acidic water containing an acid, and water containing a polar solvent such as alcohol.
- emulsifier include anionic systems such as dodecylbenzene sulfonate, lauryl sulfate, dioctyl sulfosuccinate, dioctyl succinate, lauryl methyl taurate, polyoxyethylene alkyl ether sulfate, and lauryl phosphate.
- Surfactants, nonionic surfactants such as polyoxyethylene alkyl ether, and the like can be used.
- dispersant examples include nonionic polymer compounds such as polyvinyl alcohol, polyethylene oxide, and cellulose derivatives, polyacrylic acid and salts thereof, polymethacrylic acid and salts thereof, methacrylic acid esters and methacrylic acid and / or salts thereof.
- Water-soluble polymer compounds such as anionic polymer compounds such as copolymers with can be used.
- the concentration of the rubber component composed of natural rubber and / or synthetic diene rubber in the reaction solution is usually about 5 to 80% by mass, preferably 10 to 65% by mass from the viewpoint of polymerizability.
- the amount of the emulsifier (solid content) in the reaction solution is usually about 0.3 to 50% by mass, preferably 0.5 to 30% by mass, based on the total amount of the rubber component and the radical polymerizable monomer. is there.
- the amount of the polymerization control agent is usually about 0.01 to 30 parts by mass, preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the charged radical polymerizable monomer from the viewpoint of living radical polymerization. It is.
- the amount is usually 0.001 to 10 parts by mass, preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the charged radical polymerizable monomer.
- the total amount of the peroxide and the reducing agent is usually about 0.001 to 5 parts by mass, preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the charged radical polymerizable monomer. 1 part by mass.
- the amount of the functional group-containing radical polymerizable monomer used is such that the graft amount of the radical polymerizable monomer is the rubber component in the resulting graft copolymer (main chain component excluding the graft component of the graft copolymer). On the other hand, it is desirable that the amount is controlled to be preferably 0.01 to 50% by mass, more preferably 0.01 to 20% by mass. If the graft amount is 0.01% by mass or more, when the graft copolymer is contained in the rubber composition, the effect of improving the low heat buildup and wear resistance and fracture characteristics of the rubber composition is exhibited.
- the graft amount is a value calculated as follows. ⁇ Calculation of graft amount> The obtained graft copolymer is extracted with petroleum ether, further extracted with a 2: 1 mixed solvent of acetone and methanol, and the resulting extract is analyzed to determine the amount of radical polymerizable monomer and / or homopolymer thereof. Was calculated.
- Graft amount (mass%) ⁇ [(mass of radical polymerizable monomer used in reaction) ⁇ (mass of radical polymerizable monomer in extract) ⁇ (mass of homopolymer in extract)] / (Mass of rubber component in graft copolymer) ⁇ ⁇ 100
- a graft copolymer obtained by grafting a living radical polymer onto natural rubber and / or synthetic diene rubber can be obtained in the form of latex.
- the graft copolymer obtained by the method of the present invention is characterized by a low gel content (toluene insoluble content).
- the number average molecular weight of the grafted living radical polymer is usually about 5,000 to 3,000,000, preferably 10,000 to 2,000,000.
- the radically polymerizable monomer unit constituting the living radical polymer can have a functional group introduced therein.
- the active end of a polymer obtained by living anionic polymerization is modified to introduce a predetermined functional group
- the obtained graft copolymer is: Since the monomer unit constituting the living radical polymer of the graft chain can have a functional group, the number of functional groups in the polymer is obtained by modifying the active terminal of the polymer obtained by conventional living anion polymerization. Can be much more than Therefore, the graft copolymer has an extremely high interaction with the carbon black and the inorganic filler contained in the rubber composition, and when included in the rubber composition, the carbon black and the inorganic filler contained in the rubber composition.
- the dispersibility of the rubber composition is improved, and a rubber composition excellent in low heat build-up, wear resistance and fracture characteristics can be provided.
- the present invention also provides a graft copolymer latex obtained by the above-described method of the present invention. This graft copolymer latex is particularly suitable for tires.
- the graft copolymer of the present invention is obtained by coagulating and drying the above graft copolymer latex.
- the graft copolymer latex prepared by the above-described method is used with a coagulant, for example, an acid such as formic acid or sulfuric acid, or a salt such as sodium chloride.
- a coagulant for example, an acid such as formic acid or sulfuric acid, or a salt such as sodium chloride.
- the solid state graft copolymer can be obtained by drying using a dryer such as a vacuum dryer, an air dryer, or a drum dryer.
- the graft copolymer of the present invention when used as a rubber component of a rubber composition, from the viewpoint of obtaining a high interaction with carbon black and inorganic filler contained in the rubber composition as a reinforcing material.
- a radical polymerizable monomer a monomer having a functional group containing a nitrogen atom such as an isocyanate group or a pyridyl group in the molecule is subjected to living radical graft polymerization on natural rubber or synthetic diene rubber. Is preferred.
- the radical polymerizable monomer those exemplified as preferred radical polymerizable monomers in the above-described method for producing a graft copolymer can be used.
- the graft copolymer of the present invention is particularly suitable for tires. Since the graft copolymer of the present invention is obtained by living radical graft polymerization, it has much less toluene-insoluble matter (gel content) than the graft copolymer obtained by ordinary radical graft polymerization. For example, when the graft amount is about 3 to 5% by mass, the toluene insoluble content of the graft copolymer of the present invention using SBR as a raw material is usually about several mass%.
- the graft copolymer obtained by using SBR as a raw material and usual radical graft polymerization when the graft amount is about 3 to 5% by mass, the toluene insoluble content is usually about 10 to 10% by mass.
- the measuring method of a toluene insoluble part is demonstrated later.
- the rubber composition of the present invention is characterized by containing the graft copolymer of the present invention, specifically, (A) a rubber component containing the graft copolymer and 100 parts by mass of the rubber component And (B) a rubber composition containing carbon black and / or an inorganic filler in a proportion of 5 to 100 parts by mass.
- the rubber component (A) in the rubber composition of the present invention preferably contains 10% by mass or more of the graft copolymer, and more preferably contains 50% by mass or more. When the content of the graft copolymer in the rubber component is 10% by mass or more, the rubber composition exhibits an effect of improving low heat build-up, wear resistance, fracture characteristics, and the like.
- the said graft copolymer may be used 1 type, and may be used in combination of 2 or more type.
- other rubber components used in combination with the graft copolymer include natural rubber, synthetic isoprene rubber, butadiene rubber, styrene-butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene- Examples include ⁇ -olefin-diene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chloroprene rubber, halogenated butyl rubber, and mixtures thereof. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride.
- the reinforcing filler for the component (B) may contain carbon black, may contain an inorganic filler, or may contain both.
- Carbon black is not particularly limited, and for example, SRF, GPF, FEF, HAF, ISAF, SAF and the like are used, iodine adsorption amount (IA) is 60 mg / g or more, and dibutyl phthalate oil absorption amount (DBP) is 80 ml / 100 g.
- the above carbon black is preferable, but HAF, N339, IISAF, ISAF, and SAF, which are excellent in wear resistance, are particularly preferable.
- IA is measured according to JIS K 6217-1: 2001
- DBP is measured according to JIS K 6217-4: 2001.
- Inorganic fillers can be divided into silica and inorganic fillers other than silica. There is no restriction
- the silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. Wet silica that is noticeable is preferred.
- This wet silica has a nitrogen adsorption specific surface area (N 2 SA) of 140 to 280 m 2 / g according to the BET method (ISO 5794/1) from the viewpoint of balance of reinforcement, workability, wet grip properties, and wear resistance. It is preferably 150 to 250 m 2 / g.
- Suitable wet silica includes, for example, AQ, VN3, LP, NA, etc. manufactured by Tosoh Silica Co., Ltd. and Ultrazil VN3 (N 2 SA: 175 m 2 / g) manufactured by Degussa.
- examples of the inorganic filler other than silica include compounds represented by the following general formula (3).
- M 1 represents a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof, or carbonic acid of these metals.
- m, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10. In the case where x and z are both 0, the inorganic compound is at least one metal, metal oxide or metal hydroxide selected from aluminum, magnesium, titanium, calcium and zirconium.
- inorganic fillers represented by the above formula examples include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, alumina monohydrate such as boehmite and diaspore (Al 2 O 3 .H 2 O), gibbsite.
- alumina Al 2 O 3
- ⁇ -alumina and ⁇ -alumina examples include alumina monohydrate such as boehmite and diaspore (Al 2 O 3 .H 2 O), gibbsite.
- the content of the carbon black and / or inorganic filler of the component (B) is preferably in the range of 5 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A). . If this content is 5 parts by mass or more, the reinforcing effect is exhibited, and if it is 100 parts by mass or less, deterioration of workability can be suppressed. A more preferable content of the component (B) is 10 to 70 parts by mass.
- the following silane coupling agent can be contained in order to further improve the reinforcement effect.
- silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl).
- Ethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylmethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-tri
- the silane coupling agent may be used alone or in combination of two or more.
- the content varies depending on the type of silane coupling agent and inorganic filler, but is usually selected in the range of 1 to 20% by mass relative to the inorganic filler. If the amount is small, the effect as a coupling agent is hardly exhibited, and if it is large, the rubber component may be gelled. From the viewpoint of the effect as a coupling agent and the prevention of gelation, the preferred amount of the silane coupling agent is in the range of 5 to 15% by mass.
- the rubber composition of the present invention is preferably sulfur crosslinkable, and sulfur is suitably used as a vulcanizing agent.
- the amount used is preferably 0.1 to 10 parts by mass of sulfur (the total amount of sulfur and sulfur donors) per 100 parts by mass of the rubber component. This is because, within this range, the necessary elastic modulus and strength of the vulcanized rubber composition can be secured and low fuel consumption can be obtained. From this viewpoint, it is more preferable to add 0.5 to 5 parts by mass of sulfur.
- the rubber composition of the present invention includes various chemicals usually used in the rubber industry, for example, vulcanizing agents other than sulfur, vulcanization accelerators, process oils, plastics, and the like, as long as the object of the present invention is not impaired.
- Agent, anti-aging agent, anti-scorch agent, zinc white, stearic acid, thermosetting resin, thermoplastic resin and the like can be contained.
- the vulcanization accelerator that can be used in the present invention is not particularly limited, and examples thereof include M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), and CZ (N-cyclohexyl-2-benzothiazyl).
- Sulfenamide) or guanidine vulcanization accelerators such as DPG (diphenylguanidine) can be used, and the amount used is 0.1-5. 0 parts by mass is preferable, and 0.2 to 3.0 parts by mass is more preferable.
- examples of the process oil used as a softening agent that can be used in the rubber composition of the present invention include paraffinic, naphthenic, and aromatic oils. Aromatics are used for applications that emphasize tensile strength and wear resistance, and naphthenic or paraffinic systems are used for applications that emphasize hysteresis loss and low-temperature characteristics.
- the amount used is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component. can do.
- examples of the anti-aging agent that can be used in the rubber composition of the present invention include 3C (N-isopropyl-N′-phenyl-p-phenylenediamine, 6C [N- (1,3-dimethylbutyl) -N′- Phenyl-p-phenylenediamine], AW (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline), high-temperature condensate of diphenylamine and acetone, etc.
- the amount used is rubber. The amount is preferably from 0.1 to 6.0 parts by weight, more preferably from 0.3 to 5.0 parts by weight, based on 100 parts by weight of the component.
- the rubber composition of the present invention is prepared by mixing a kneading machine such as a Banbury mixer, a roll, or an internal mixer with the above-mentioned components (A), (B) and optional silane coupling agents and other rubber compounding agents. It can be prepared by using and kneading.
- the rubber composition of the present invention interacts with carbon black and inorganic fillers, which are obtained by subjecting natural rubber or synthetic diene rubber as a rubber component to living radical graft polymerization of a functional group-containing radical polymerizable monomer.
- carbon black and inorganic fillers which are obtained by subjecting natural rubber or synthetic diene rubber as a rubber component to living radical graft polymerization of a functional group-containing radical polymerizable monomer.
- the tire of the present invention is characterized in that the rubber composition of the present invention described above is used for any of tire members. Specifically, the rubber composition of the present invention containing various chemicals is processed into each member of a tire at an unvulcanized stage, and pasted and molded by a usual method on a tire molding machine, and a raw tire is molded. Is done. The green tire is heated and pressed in a vulcanizer to obtain a tire. Although there is no restriction
- inert gas such as nitrogen, argon, helium, etc. can be used in addition to normal air or air with adjusted oxygen partial pressure
- Production Example 3 Production of Dibutyl Ditelluride (DBDT) Dibutyl ditelluride (DBDT) was obtained in the same manner as in Production Example 1 by using an equimolar amount of butyl lithium instead of methyl lithium in Production Example 1.
- DBDT Dibutyl Ditelluride
- Example 1 Production of living radical 2-isocyanatoethyl methacrylate (2-IEM) grafted SBR using dimethylditelluride (DMeDT) 500 g of “PCL / SB latex 2108 (manufactured by JSR, total solid content 40% by mass)” as SBR latex 20 g (0.126 mol, 10% by mass of SBR) of 2-isocyanatoethyl methacrylate (manufactured by Aldrich) from which the polymerization inhibitor was previously removed using an inhibitor remover for t-butylcatechol (manufactured by Aldrich) as a radical polymerizable monomer.
- DMeDT dimethylditelluride
- Example 2 Production of Living Radical 2-IEM Grafted SBR Using Ethyl-2-Methyl-2-n-Butylterranyl-Propionate (BTEE)
- DMeDT dimethylditelluride
- BTEE 2-methyl-2-n-butylterranyl-propionate
- SBR was obtained.
- Example 3 Production of Living Radical 2-IEM Grafted SBR Using Phenyl-t-Butylnitrone (PBN)
- dimethylditelluride (DMeDT) and AIBN were combined with 0.2 g of phenyl-t-butylnitrone (PBN).
- Living radical polymerization was conducted in the same manner as in Example 1 except that the living radical 2-1EM graft SBR of Example 3 was obtained.
- Example 4 Production of Living Radical 2-IEM Grafted SBR Using ATRP Polymerization Control Agent
- dimethylditelluride (DMeDT) and AIBN were mixed with 0.63 g of transition metal compound (CuBr 2 ) and 4,4′-dipyridyl.
- Living radical polymerization was carried out in the same manner as in Example 1 except that the mixture was changed to a mixture of 0.38 g and ethyl 2-bromoacetate (0.47 g) to obtain a living radical 2-1EM graft SBR of Example 4.
- Example 5 Production of Living Radical 2-IEM Grafted SBR Using RAFT Polymerization Controller
- DMeDT dimethylditelluride
- Example 5 Production of Living Radical 2-IEM Grafted SBR Using RAFT Polymerization Controller
- DMeDT dimethylditelluride
- Example 5 Production of Living Radical 2-IEM Grafted SBR Using RAFT Polymerization Controller
- DMeDT dimethylditelluride
- Example 5 Production of Living Radical 2-IEM Grafted SBR Using RAFT Polymerization Controller
- Example 6 Production of Living Radical 2-IEM Grafted SBR Using 1,1-Diphenylethylene (DPE)
- DPE 1,1-Diphenylethylene
- DMeDT dimethylditelluride
- the product emulsified in addition to the product name “Emulgen 1108”) was added together with 420 ml of water, and these were stirred at room temperature for 30 minutes while purging with nitrogen.
- 164.21 mg (1 mmol) of 2,2′-azobis (2-methylpropionitrile) (AIBN) was added as a polymerization initiator and reacted at 60 ° C. for 6 hours to obtain a grafted SBR latex.
- 25% by mass saline solution and then 1% by mass sulfuric acid were poured into this latex to coagulate the rubber, washed with water and vacuum dried at 50 ° C. to obtain 2-1EM graft SBR of Comparative Example 1.
- Example 7 Production of Living Radical ⁇ -Methylstyrene ( ⁇ -MeSt) Grafted SBR Using DMMeDT 500 g of “PCL / SB Latex 2108 (manufactured by JSR, total solid content 40% by mass)” as a radical polymerizable monomer as SBR latex 22.7 g of ⁇ -methylstyrene ( ⁇ -MeSt) from which the polymerization inhibitor was removed using an inhibitor remover for t-butylcatechol (Aldrich) in advance was added in advance to 80 ml of water and 1.2 g of an emulsifier (manufactured by Kao Corporation, The product emulsified in addition to the trade name “Emulgen 1108”) was added together with 420 ml of water, and these were stirred at room temperature for 30 minutes while purging with nitrogen.
- PCL / SB Latex 2108 manufactured by JSR, total solid content 40% by mass
- Example 8 Production of Living Radical Styrene (St) Grafted High-cis BR Using DMMeDT
- 1,3-butadiene in cyclohexane solution (15.2 (Mass%) 7.11 g, 0.59 mL of a cyclohexane solution (0.56 mol / L) of neodymium neodecanoate, a toluene solution of methylaluminoxane MAO (trade name “PMAO” manufactured by Tosoh Akzo Co., Ltd.) 23 mol / L) 10.32 mL, 7.77 mL of a hexane solution (0.90 mol / L) of diisobutylaluminum hydride [manufactured by Kanto Chemical Co., Ltd.] were added, and after aging at room temperature for 2 minutes, chlorinated diethylalum
- the mixture was aged for 15 minutes while stirring.
- the concentration of neodymium in the catalyst solution thus obtained was 0.11 mol / L (M).
- a glass bottle with a rubber stopper having a volume of about 900 milliliters was dried and purged with nitrogen, and a dry-purified cyclohexane solution of 1,3-butadiene and dry cyclohexane were added thereto, respectively. 1,3-butadiene 12.5% by mass
- a cyclohexane solution of 400 g was charged.
- 2.28 mL (0.025 mmol in terms of neodymium) of the prepared catalyst solution was added, and polymerization was performed in a hot water bath at 50 ° C. for 1.0 hour.
- 3-glycidoxypropyltrimethoxysilane as a hexane solution (1.0 mol / L) was charged in 23.5 equivalents (compared to neodymium) and treated at 50 ° C. for 60 minutes.
- 1.2 mL of sorbitan trioleate (manufactured by Kanto Chemical Co., Inc.) alone was added, and after a further denaturation reaction at 50 ° C. for 1 hour, 2 mL of isopropanol was added to the polymerization system to stop the reaction.
- a hexane solution of a modified high cis polybutadiene rubber (modified high cis BR) having a high cis 1,4 bond content was obtained.
- Hexane was volatilized at room temperature until the BR concentration reached 50% by mass, and 350 g of water and 3 g of emulsifier (Emulgen 1108, manufactured by Kao Corporation) were added to 100 g of the solution. Stir for 30 minutes at room temperature to emulsify.
- DMeDT dimethylditelluride
- 2,2′-azobis was used as the polymerization initiator.
- Graft BR latex was obtained by adding 41.05 mg (0.25 mmol) of (2-methylpropionitrile) (AIBN) and reacting at 60 ° C. for 6 hours. 25% by mass saline solution and then 1% by mass sulfuric acid were poured into this latex to coagulate the rubber, washed with water, and vacuum dried at 50 ° C. to obtain a living radical St graft high cis BR of Example 8.
- Comparative Example 3 Production of St-grafted high-cis BR that is not a living radical St-grafted high-cis BR of Comparative Example 3 was obtained in the same manner as in Example 8 except that dimethylditelluride (DMeDT) was not added.
- DMeDT dimethylditelluride
- Non-grafted modified high cis BR The hexane solution of the modified high cis polybutadiene rubber (modified high cis BR) having a high cis 1,4 bond content obtained in Example 8 was further subjected to a trace amount of 2,2′-methylenebis (4- Re-precipitation was performed in isopropanol containing ethyl-6-tert-butylphenol (trade name “NOCRACK NS-5” manufactured by Ouchi Shinsei Chemical Co., Ltd.), and drum-dried to obtain a graft-free modified high cis BR. .
- Example 9 Manufacturing method of living radical acrylic acid (AA) graft end-modified SBR using DMMeDT
- 0.48 mmol of hexamethyleneimine (HMI) was added
- 0.48 mmol of n-butyllithium (n-BuLi) was further added, and a polymerization reaction was performed at 50 ° C. for 1.5 hours.
- the polymerization conversion rate at this time was almost 100%.
- Hexane is volatilized from this cyclohexane solution at room temperature until the SBR concentration reaches 50% by mass, and 350 g of water and 3 g of emulsifier (trade name “Emulgen 1108” manufactured by Kao Corporation) are added to 100 g of the solution (6 of the amount of SBR). (Mass%) was added and stirred at room temperature for 30 minutes to emulsify.
- emulsifier trade name “Emulgen 1108” manufactured by Kao Corporation
- Comparative Example 4 AA graft-end-modified SBR that is not a living radical (initiator BPO) AA graft terminal-modified SBR of Comparative Example 4 was obtained in the same manner as in Example 9 except that dimethylditelluride (DMeDT) was not added.
- DMeDT dimethylditelluride
- Example 10 Preparation of Acrylamide (AAM) Graft End-Modified SBR Using DMMeDT
- AAM acrylamide
- DMeDT dimethyl ditelluride
- TEPA tetraethylenepentamine
- Comparative Example 5 Preparation of AAM graft end-modified SBR that is not a living radical
- the AAM graft end-modified SBR of Comparative Example 4 was obtained in the same manner as in Example 10 except that dimethylditelluride (DMeDT) was not added.
- DMeDT dimethylditelluride
- Example 11 Production Method of AAM Graft End-Modified SBR Using DMMeDT
- AAM acrylamide
- DMeDT dimethyl ditelluride
- Comparative Example 6 Method for producing AAM graft end-modified SBR that is not a living radical
- the AAM graft end-modified SBR of Comparative Example 6 was obtained in the same manner as in Example 11 except that dimethylditelluride (DMeDT) was not added.
- DMeDT dimethylditelluride
- Reference example 3 Method for producing graft-free tin tetrachloride end-modified SBR
- the cyclohexane solution of tin tetrachloride end-modified SBR obtained in Example 9 is dried according to a conventional method without radical graft polymerization, and then graft-free tin tetrachloride end-modified SBR Got.
- Example 12 Production method of living radical 2-vinylpyridine (2-VP) graft NR using BTEE Field latex was centrifuged at a rotational speed of 7500 rpm using a latex separator (manufactured by Saito Centrifugal Co., Ltd.) to concentrate a dry rubber concentration of 60% by mass. Latex was obtained. 1000 g of this concentrated latex is put into a stainless steel reaction vessel equipped with a stirrer and a temperature control jacket, and 10 mL of water and 90 mg of an emulsifier (trade name “Emulgen 1108” manufactured by Kao Corporation) are previously added to t-butyl.
- an emulsifier trade name “Emulgen 1108” manufactured by Kao Corporation
- a catechol inhibitor remover (manufactured by Aldrich) was added to 1.7 g of 2-vinylpyridine (2-VP) from which the polymerization inhibitor had been removed and emulsified with 990 mL of water. For 30 minutes. Next, 38.0 g of BTEE obtained in Production Example 2 (133 mmol, 10-fold molar equivalent of tBuHp) was added, and immediately after that 1.2 g (13.3 mmol) of tert-butyl hydroperoxide (tBuHp) was used as a polymerization initiator. ) And 1.2 g of tetraethylenepentamine (TEPA) were added and reacted at 40 ° C. for 30 minutes to obtain a modified natural rubber latex.
- 2-VP 2-vinylpyridine
- Formic acid was added to the modified natural rubber latex to adjust the pH to 4.7 to coagulate the modified natural rubber latex.
- the solid material thus obtained was treated 5 times with a creper, passed through a shredder and crushed, then dried at 110 ° C. for 210 minutes with a hot air drier, and the living radical 2-VP graft of Example 12 was obtained.
- NR was obtained.
- Example 13 Production Method of Living Radical Allyl-Tri-n-butyltin (AllylSn) Graft NR Using BTEE
- BTEE 1.7 g of 2-vinylpyridine (2-VP)
- t -Living Radical Allyl-Tri- instead of 1.7 g of 2-vinylpyridine (2-VP), t -Living Radical Allyl-Tri-, as in Example 12, except that 5.5 g of allyl-tri-n-butyltin (AllylSn) from which the polymerization inhibitor had been removed was added using an inhibitor remover for butylcatechol (manufactured by Aldrich). An n-butyltin (AllylSn) graft NR was obtained.
- 2-VP 2-vinylpyridine
- Comparative Example 8 Method for producing allyl-tri-n-butyltin (AllylSn) graft NR that is not a living radical
- the allyl-tri-n-butyltin (AllylSn) graft NR of Comparative Example 8 was obtained in the same manner as in Example 13 except that BTEE was not added. .
- Example 14 Production method of living radical ⁇ -methacryloxypropyltrimethoxysilane (MPTMS) graft NR using BTEE
- MPTMS living radical ⁇ -methacryloxypropyltrimethoxysilane
- Example 12 instead of 1.7 g of 2-vinylpyridine (2-VP), a radical polymerizable monomer was previously used.
- Example 1 except that 4.1 g of ⁇ -methacryloxypropyltrimethoxysilane (MPTMS) (manufactured by Gelest, FW248.35) from which the polymerization inhibitor was removed using an inhibitor remover for t-butylcatechol (manufactured by Aldrich) was added.
- MPTMS ⁇ -methacryloxypropyltrimethoxysilane
- Comparative Example 9 Production Method of MPTMS Graft NR that is not a Living Radical MPTMS Graft NR of Comparative Example 8 was obtained in the same manner as Example 14 except that BTEE was not added.
- Example 15 Production Method of Living Radical 2-Hydroxyethyl Methacrylate (HEMA) Graft NR with High Charge of Radical Polymerizable Monomer Using BTEE
- emulsifier trade name “Emulgen 1108” manufactured by Kao Corporation
- emulgen 1108 90 mg, 2 -1.7 g of vinylpyridine (2-VP), 1.2 g (13.3 mmol) of tert-butyl hydroperoxide (tBuHp) and 1.2 g of tetraethylenepentamine (TEPA)
- the name “Emulgen 1108”) was changed to 1 g, 2-hydroxyethyl methacrylate (HEMA) 30 g, tBuHp 17 g and TEPA 17 g, in which the polymerization inhibitor was previously removed using an inhibitor remover for t-butylcatechol (manufactured by Aldrich).
- HEMA 2-hydroxyethyl methacrylate
- TEPA 17 g 2-hydroxyethyl meth
- Comparative Example 10 Method for producing HEMA graft NR with a large amount of HEMA charged which is not a living radical
- a HEMA graft NR of Comparative Example 10 was obtained in the same manner as in Example 15 except that BTEE was not added.
- Example 16 Production Method of Living Radical 2-Hydroxyethyl Methacrylate (HEMA) Graft NR Using BTEE
- HEMA Living Radical 2-Hydroxyethyl Methacrylate
- BTEE 2-vinylpyridine
- t-butyl was previously used as a radical polymerizable monomer.
- a living radical HEMA graft NR was obtained in the same manner as in Example 12 except that 2.1 g of HEMA from which the polymerization inhibitor was removed was added using an inhibitor remover for catechol (manufactured by Aldrich).
- Comparative Example 11 Method for producing HEMA graft NR that is not a living radical A HEMA graft NR of Comparative Example 11 was obtained in the same manner as in Example 16 except that BTEE was not added.
- Example 17 Production method of living radical N, N-diethylaminoethyl methacrylate (DEAEMA) graft NR using BTEE
- DEAEMA living radical N, N-diethylaminoethyl methacrylate
- Comparative Example 12 Method for producing DEAEMA graft NR that is not a living radical A DEAEMA graft NR of Comparative Example 12 was obtained in the same manner as in Example 17 except that BTEE was not added.
- Example 18 Production Method of Living Radical 2-IEM Graft Modified NR Using DMMeDT Field latex was centrifuged at a rotational speed of 7500 rpm using a latex separator (manufactured by Saito Centrifugal Co., Ltd.) to obtain a concentrated latex having a dry rubber concentration of 60% by mass. 1000 g of this concentrated latex is put into a stainless steel reaction vessel equipped with a stirrer and a temperature control jacket, and 80 ml of water and 1.2 mg of an emulsifier (trade name “Emulgen 1108” manufactured by Kao Corporation) are radically polymerizable.
- a latex separator manufactured by Saito Centrifugal Co., Ltd.
- a modified natural rubber latex was obtained by reacting at 60 ° C. for 30 minutes.
- Formic acid was added to the modified natural rubber latex to adjust the pH to 4.7 to coagulate the modified natural rubber latex.
- the solid material thus obtained was treated 5 times with a creper, passed through a shredder and crushed, then dried at 110 ° C. for 210 minutes with a hot air drier, and the living radical 2-IEM graft of Example 18 was obtained.
- NR was obtained.
- Comparative Example 13 Preparation of 2-IEM graft-modified NR that is not a living radical A DEAEMA graft NR of Comparative Example 13 was obtained in the same manner as in Example 18 except that DMeDT was not added.
- Example 19 Method for producing living radical acrylic acid (AA) graft NR using dibutyl ditelluride (DBDT) Field latex was centrifuged at a rotational speed of 7500 rpm using a latex separator [manufactured by Saito Centrifugal Co., Ltd.], and the dry rubber concentration was 60% by mass. A concentrated latex was obtained. 1000 g of this concentrated latex is put into a stainless steel reaction vessel equipped with a stirrer and a temperature control jacket, and 80 ml of water and 1.2 mg of an emulsifier (trade name “Emulgen 1108” manufactured by Kao Corporation) are radically polymerizable.
- a latex separator manufactured by Saito Centrifugal Co., Ltd.
- an emulsion added with 48 g (0.667 mol) of acrylic acid from which a polymerization inhibitor has been removed using an inhibitor remover for t-butylcatechol (Aldrich) in advance was added with 920 ml of water, and these were added to nitrogen. It stirred for 30 minutes at normal temperature, replacing.
- Comparative Example 14 Method for producing AA graft NR that is not a living radical An AA graft NR of Comparative Example 14 was obtained in the same manner as in Example 19 except that DBDT was not added.
- Example 20 Production Method of Living Radical Acrylic Acid (AA) Graft NR Using Ethyl-2-methyl-2-methylterranyl-propinate (MTEE)
- MTEE 2-methylterranyl-propionate
- V-70 instead of the polymerization initiator V-70, 547 mg (2.4 mmol) of ammonium persulfate (AP) and tetramethyl Living radical graft polymerization was performed in the same manner as in Example 19 except that 0.576 ml (3.866 mmol) of ethylenediamine (TMEDA, manufactured by Tokyo Chemical Industry Co., Ltd.) was used and the polymerization temperature was changed to 5 ° C. NR was obtained.
- TEDA ethylenediamine
- Comparative Example 15 Method for producing AA graft NR that is not a living radical An AA graft NR of Comparative Example 15 was obtained in the same manner as in Example 20 except that MTEE was not added.
- Reference example 4 Manufacture of unmodified natural rubber (NR) Formic acid is added to the field latex to adjust the pH to 4.7, the latex is coagulated, and the resulting solid is treated 5 times with a creper and passed through a shredder. Crumb was obtained to obtain an unmodified natural rubber (NR).
- NR unmodified natural rubber
- ATRP CuBr 2 / 4,4′-dipyridyl / 2-bromoethyl acetate
- RAFT dibenzyltrithiocarbonate
- Graft charge amount Charge amount (% by mass) of radically polymerizable monomer with respect to the rubber component in the graft copolymer (main chain component excluding the graft component of the graft copolymer).
- SBR Styrene butadiene copolymer
- NdBR Neodymium catalyst modified high cis polybutadiene rubber
- Modified SBR Terminal modified styrene butadiene copolymer 5
- NR Natural rubber
- Silane coupling agent Degussa, trademark “Si69”, bis (3-triethoxysilylpropyl) tetrasulfide * 5
- Anti-aging agent 6C N- (1,3-dimethylbutyl) -N′-phenyl- p-Phenylenediamine * 6
- Vulcanization accelerator DM Dibenzothiazyl disulfide * 7
- Vulcanization accelerator DG Diphenylguanidine * 8
- Vulcanization accelerator NS Nt-butyl-2-benzothiazylsulfenamide
- the living radical graft copolymers of Examples 1 to 20 obtained by living radical graft polymerization were all compared with the radical graft copolymers of Comparative Examples 1 to 15 obtained by the corresponding normal radical graft polymerization, respectively. Much less insoluble in toluene (gel amount).
- all of the living radical graft copolymers of Examples 1 to 20 were compared with the corresponding radical graft copolymers of Comparative Examples 1 to 15 in any of the carbon black compounded composition and the silica compounded composition.
- the Mooney viscosity decreased, loss tangent (tan ⁇ ) decreased, and excellent low heat build-up was achieved.
- TSb Tensile stress at the time of cutting was improved, and fracture resistance was improved.
- the living radical graft copolymers of Examples 1 to 20 all have lower loss tangent (tan ⁇ ) and tensile stress at break than the corresponding non-grafted rubbers of Reference Examples 1 to 4, respectively. (TSb) was improved.
- the method for producing a graft copolymer of the present invention comprises a rubber composition having low heat build-up and excellent wear resistance and fracture characteristics by living radical graft polymerization of a radical polymerizable monomer to natural rubber or synthetic diene rubber. It is possible to efficiently produce a modified rubber capable of giving a product, and thus a tire.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Graft Or Block Polymers (AREA)
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
一方、ラジカル重合は、工業的に極めて重要な重合法であり、アニオン重合ではできない極性モノマーを、多数導入できるという利点があるが、生長ラジカルの寿命が極めて短く、二分子停止反応といったイオン重合にはない重合停止機構があるため、従来リビング重合は不可能であると考えられていた。しかしながら、近年、2,2,6,6-テトラメチルピペリジニル-1-オキシラジカルなどの空気の存在下でも安定なラジカルが見出されて以来、リビングラジカル重合の研究が積極的に行われるようになってきた。このリビングラジカル重合においては、通常のラジカル重合で生じるポリマー同士の結合(ゲル化)を抑制し、極性モノマーグラフトを共重合体に導入することができる。なお、ゲル量が多いポリマーをゴム組成物に用いた場合には、破壊特性が著しく低下する。
また、極性基を主鎖に導入するよりも、グラフト重合によって側鎖に導入した方が、該極性基の運動性が高くなると共に、数多く導入することができる。従って、このものを、ゴム組成物に用いた場合、カーボンブラックや無機充填材との親和性が大きく向上する。
このようなリビングラジカル重合においては、得られる重合体の分子量の制御が容易であって、分子量分布が狭く、かつ末端変性が可能で、様々な官能基を末端に導入することができるなどの利点がある。
さらに、重合制御剤の存在下での重合(リビング重合)として、[1](a)少なくとも1種のモノマー、(b)重合制御剤及び乳化剤を含む水性重合媒質を調製すること、ここで、乳化剤は水性重合媒質中においてその場で製造される:及び[2]該モノマーの重合を水性重合媒質中で開始することを含む、乳化重合法(例えば、特許文献5参照)が開示されている。
しかしながら、これらの技術を適用し、水性媒体中で、天然ゴムや合成ジエン系ゴムに、ラジカル重合性単量体をリビングラジカルグラフト重合させた例は知られていない。
(1)リビングラジカルグラフト重合を、水系での乳化重合で実施する場合、有機溶媒中での重合に比べて、より重合度の高いポリマーを生成することができ、グラフト部分のより一層長いポリマーの生成が可能であること、
(2)リビングラジカル重合は、重合制御剤の存在下に行われるが、重合を水系で実施するには、該重合制御剤は、水に対して不活性であることが好ましいこと、
(3)上記重合制御剤としては、安定遊離ラジカル形成化合物、原子移動ラジカル重合剤、可逆付加-開裂連鎖移動剤、イニファータ、有機テルル化合物及び有機ヨウ素化合物などが好ましく、特に有機テルル化合物が好適であること、
(4)グラフトさせるラジカル重合性単量体としては、分子内に官能基を有するものが好ましく、この官能基を選択することにより、得られるグラフト共重合体を含むゴム組成物は、その中のカーボンブラックや無機充填材の分散性が良好となり、低発熱性及び耐摩耗性や破壊特性などの優れたものになること、
(5)上記ゴム組成物を、タイヤ部材のいずれかに用いることにより、低発熱性及び耐摩耗性や破壊特性などに優れるタイヤが得られること、
を見出した。
本発明は、かかる知見に基づいて完成したものである。
(1)水性媒体中において、重合制御剤の存在下、天然ゴム及び/又は合成ジエン系ゴムからなるゴム成分に、ラジカル重合性単量体をリビングラジカルグラフト重合させることを特徴とする、グラフト共重合体の製造方法、
(2)上記(1)に記載の方法で得られたことを特徴とするグラフト共重合体ラテックス、
(3)タイヤ用である上記(2)に記載のグラフト共重合体ラテックス、
(4)上記(2)又は(3)に記載のグラフト共重合体ラテックスを、凝固及び乾燥してなるグラフト共重合体、
(5)タイヤ用である上記(4)に記載のグラフト共重合体、
(6)上記(4)又は(5)に記載のグラフト共重合体を含有することを特徴とするゴム組成物、
(7)タイヤ用である上記(6)に記載のゴム組成物、
(8)(A)グラフト共重合体を含むゴム成分と、その100質量部に対して、(B)カーボンブラック及び/又は無機充填材を、5~100質量部の割合で含む上記(6)又は(7)に記載のゴム組成物、
(9)無機充填材に対し、シランカップリング剤を1~20質量%の割合で含む上記(8)に記載のゴム組成物、及び
(10)上記(6)~(9)のいずれかに記載のゴム組成物をタイヤ部材のいずれかに用いたことを特徴とするタイヤ、
を提供するものである。
(1)本発明のグラフト共重合体の製造方法によれば、水性媒体中において、天然ゴムや合成ジエン系ゴムに、ラジカル重合性単量体をリビングラジカル重合によりグラフト重合させることにより、グラフト共重合体(変性ゴム重合体)ラテックスを効率よく製造することができる。
特に、リビングラジカル重合を、水系での乳化重合(水性媒体中のミセル内(有機溶媒)やミセル表面での重合)で実施する場合、有機溶媒中での重合に比べて、より重合度の高いポリマーを生成することができ、グラフト部分のより一層長いポリマーの生成が可能であり、且つゲル分(トルエン不溶分)が少なくなる。
(2)リビングラジカルグラフト重合を行うのに用いる重合制御剤として、水に不活性なもの、特に特定の構造を有する有機テルル化合物を用いることにより、上記(1)のグラフト共重合体ラテックスを、より効果的に製造することができる。該有機テルル化合物は、水系において良好な安定性を有する上、分子量制御性、官能基適合性、リビングポリマー末端の変性容易性などを有している。
(3)グラフトさせるラジカル重合性単量体として、分子内に官能基を有するものを用い、この官能基を選択することにより、得られるグラフト共重合体を、ゴム組成物に含まれるカーボンブラックや無機充填材に対する相互作用に優れるものにし、ゴム組成物用のゴム成分として好適なものにすることができる。
(4)上記(3)のグラフト共重合体を含有するゴム組成物は、その中に含まれるカーボンブラックや無機充填材の分散性が良好となり、低発熱性及び耐摩耗性や破壊特性に優れるものになる。
(5)上記(4)のゴム組成物を、タイヤ部材のいずれかに用いることにより、低発熱性及び耐摩耗性や破壊特性などに優れるタイヤが得られる。
[グラフト共重合体の製造方法]
本発明のグラフト共重合体の製造方法(以下、単に本発明の方法と称することがある。)は、水性媒体中において、重合制御剤の存在下、天然ゴム及び/又は合成ジエン系ゴムからなるゴム成分に、ラジカル重合性単量体をリビングラジカルグラフト重合させることを特徴とする。
(原料ゴム成分)
本発明のグラフト共重合体の製造方法においては、グラフトされる原料ゴム成分として、天然ゴム及び/又は合成ジエン系ゴムが用いられるが、本発明におけるリビングラジカルグラフト重合は、水性媒体中で実施され、乳化重合が好ましいことから、上記原料ゴム成分は、ラテックスの形態で使用することが好ましい。
一方、合成ジエン系ゴムのラテックスとしては特に制限はなく、例えばブタジエンゴム(BR)ラテックス、イソプレンゴム(IR)ラテックス、スチレン-ブタジエン共重合ゴム(SBR)ラテックス、ニトリルゴム(NBR)ラテックスなどを用いることができる。
上記合成ジエン系ゴムのラテックスの由来については特に制限はなく、乳化重合によって得られたもの、溶液重合物を水性媒体に分散させたもの及び固形ゴムを溶解・乳化してラテックス化したものなど、いずれであってもよい。
本発明においては、前記の各ラテックスは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
本発明の方法においては、反応系に重合制御剤を存在させてリビングラジカルグラフト重合を行い、前記ゴム成分の側鎖に、グラフト鎖を導入するが、この場合、上記重合制御剤の存在によりリビングラジカル重合となり、上記グラフト鎖として、末端活性のリビングポリマーが導入される。
上記重合制御剤に特に制限はなく、従来リビングラジカル重合において、重合制御剤として知られている公知の化合物の中から、任意のものを適宜選択することができるが、本発明においては、水性媒体中でリビングラジカルグラフト重合を行う上から、水に対して不活性であるもの、すなわち水の存在により失活しないものであることが好ましい。
本発明の方法において、リビングラジカルグラフト重合に用いる重合制御剤としては、例えば安定遊離ラジカル形成化合物、原子移動ラジカル重合剤、可逆付加-開裂連鎖移動剤、イニファータ、有機テルル化合物及び有機ヨウ素化合物などを挙げることができる。反応性の観点から、安定遊離ラジカル形成化合物、イニファータ及び有機テルル化合物が好ましい。これらの中で、水系における安定性の観点から、有機テルル化合物が特に好ましい。
安定遊離ラジカル形成化合物は、ニトロキシラジカル(R2N-O・)などの安定遊離ラジカルを形成し、該ラジカルの作用により、リビングラジカル重合を進行させる化合物である。ニトロキシラジカルの作用によるラジカル重合は、NMPと呼ばれている。
安定遊離ラジカルであるニトロキシラジカルとしては、2,2,6,6-置換-1-ピペリジニルオキシラジカルや、2,2,5,5-置換-1-ピロリジニルオキシラジカルなど、環状ヒドロキシアミンからのニトロキシラジカルが好ましい。なお、置換基としてはメチル基やエチル基などの炭素数4以下のアルキル基が適当である。例えばフェニル-t-ブチルニトロンが挙げられる。また、ニトロキシラジカル以外の安定遊離ラジカルを形成する化合物として、例えば1-ジフェニルエチレンが知られている。
この安定遊離ラジカルの作用によるリビングラジカル重合では、ポリマー生長末端の弱い結合の解離、生長、結合生成の速いサイクルにより生長種が断続的に活性をもち、二分子停止及び連鎖移動による失活が抑制される。
重合制御剤として、原子移動ラジカル重合剤を用いる原子移動ラジカル重合(ATRP)は、成長しているポリマー鎖と重合制御剤との間の不安定なラジカルが容易に移動することを媒介して、リビングラジカル重合を行う触媒可逆的レドックス法である。
この原子移動ラジカル重合剤としては、例えば有機ハロゲン化物と遷移金属錯体との組合わせを用いることができる。上記有機ハロゲン化物としては、特に反応性の高い炭素-ハロゲン結合を有する化合物(例えばα位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物など)、あるいはハロゲン化スルホニル化合物などが好適である。
一方、遷移金属錯体としては、特に制限はないが、好ましくは周期表第7~11族に属する元素を中心金属とする金属錯体であり、より好ましくは0価又は1価の銅、2価のルテニウム、2価の鉄、2価のニッケルの錯体であり、特に好ましくは銅の錯体である。
可逆付加-開裂連鎖移動(RAFT)による制御された重合は、成長しているポリマーラジカルと不活発なポリマー鎖との間の急速連鎖移動反応によって生じる。重合開始後、重合制御剤は、不活発なポリマー鎖の一部となる。
このRAFTによる制御された重合に用いる重合制御剤としては、例えばジチオエステル、トリチオカーボネート、キサンテート、ジチオアシルヒドラゾン、ジベンジルトリチオカーボネートなどを挙げることができる。
RAFT重合では、重合開始剤は、重合性モノマーと続いて反応する遊離ラジカルを生成する。モノマーラジカルは他のモノマーと反応し、成長して鎖を形成し、これは上記ジチオエステルのような重合制御剤と反応することができる。重合制御剤はばらばらになり、R・を形成し、新たに形成する別のモノマーと反応したり、あるいは成長し続けることができる。理論的には、成長はモノマーがなくなるまで続き、そして停止段階となる。
グラフトされる重合体の側鎖に、リビングラジカルグラフト重合の開始点となる化合物残基(イニファータ)を導入し、ラジカル重合性単量体をリビングラジカル重合させることにより、リビングポリマーからなるグラフト鎖が形成される。
上記イニファータを形成する化合物としては、例えばジチオカルバメート系化合物や、スチレン/ニトロキシド系化合物などが用いられる。
有機テルル化合物は、リビングラジカル重合における重合制御剤として、最近見出された化合物であり、水系において良好な安定性を有する上、分子量制御性、官能基適合性、リビングポリマー末端の変性容易さなどの観点から、本発明においては、各種重合制御剤の中で最も好適なものとして用いる。以下、当該有機テルル化合物について詳述する。
本発明において、重合制御剤として用いる有機テルル化合物としては、一般式(1)
で表される有機テルル化合物(I)及び/又は一般式(2)
(R5Te)2 ・・・・・(2)
(式中、R5は、炭素数1~8のアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示し、2つのR5はたがいに同一であっても異なっていてもよい。)
で表される有機テルル化合物(II)を、好ましく挙げることができる。
炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~8の直鎖状、分岐鎖状又は環状のアルキル基を挙げることができる。好ましいアルキル基としては、炭素数1~4の直鎖状又は分岐鎖状のアルキル基、より好ましくは、メチル基又はエチル基である。
アリール基としては、フェニル基、ナフチル基等、置換アリール基としては置換基を有しているフェニル基、置換基を有しているナフチル基等、芳香族へテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。上記置換基を有しているアリール基の置換基としては、例えば、ハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基、シアノ基、-COR6で示されるカルボニル含有基(R6=炭素数1~8のアルキル基、アリール基、炭素数1~8のアルコキシ基、アリーロキシ基)、スルホニル基、トリフルオロメチル基等を挙げることができる。好ましいアリール基としては、フェニル基、トリフルオロメチル置換フェニル基である。また、これら置換基は、1個又は2個置換しているのが良く、パラ位若しくはオルト位が好ましい。
上記一般式(1)において、R4で示される基は、具体的には次のとおりである。
アリール基、置換アリール基、芳香族ヘテロ環基としては、上記R1で示した基と同様のものを挙げることができる。
アシル基としては、ホルミル基、アセチル基、ベンゾイル基等を挙げることができる。
オキシカルボニル基としては、-COOR7(R7=水素原子、炭素数1~8のアルキル基、アリール基)で示される基が好ましく、例えばカルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基が良い。
これらの有機テルル化合物(I)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
この一般式(2)で表される有機テルル化合物(II)としては、例えばジメチルジテルリド、ジエチルジテルリド、ジ-n-プロピルジテルリド、ジイソプロピルジテルリド、ジシクロプロピルジテルリド、ジ-n-ブチルジテルリド、ジ-sec-ブチルジテルリド、ジ-tert-ブチルジテルリド、ジシクロブチルジテルリド、ジフェニルジテルリド、ビス-(p-メトキシフェニル)ジテルリド、ビス-(p-アミノフェニル)ジテルリド、ビス-(p-ニトロフェニル)ジテルリド、ビス-(p-シアノフェニル)ジテルリド、ビス-(p-スルホニルフェニル)ジテルリド、ジナフチルジテルリド、ジピリジルジテルリド等が挙げられる。好ましくは、ジメチルジテルリド、ジエチルジテルリド、ジ-n-プロピルジテルリド、ジ-n-ブチルジテルリド、ジフェニルジテルリドがあり、特に好ましくは、ジメチルジテルリド、ジエチルジテルリド、ジ-n-プロピルジテルリド、ジ-n-ブチルジテルリドである。
これらの有機テルル化合物(II)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
本発明においては、重合制御剤として、上記の有機テルル化合物(I)のみを用いてもよいし、有機テルル化合物(II)のみを用いてもよく、あるいは有機テルル化合物(I)と(II)とを併用してもよい。
有機ヨウ素化合物は、デジェネレイティブ移動(DT)による制御された重合における制御剤として用いられる。DTによる制御された重合は、増殖しているマクロラジカル鎖間の原子又は基の直接交換によって生じる。この場合、重合制御剤は、DTに必要な原子又は基を提供するものであり、有機ヨウ素化合物が好適に用いられる。この有機ヨウ素化合物としては、例えばアルキルヨウ化物、ペルフルオロアルキルヨウ化物、活性有機ヨウ化物などを挙げることができる。
本発明のグラフト共重合体の製造方法においては、上述の各種重合制御剤と共に別の重合開始剤を併用しても良い。
この重合開始剤としては、特に制限はなく、各種ラジカル重合開始剤が用いられる。一般に用いられる重合開始剤の例としては、過酸化ベンゾイル、過酸化水素、クメンハイドロペルオキシド、tert-ブチルハイドロペルオキシド、ジ-tert-ブチルパーオキサイド、2,2-アゾビス(2-ジアミノプロパン)ヒドロクロライド、2,2-アゾビス(2-ジアミノプロパン)ジヒドロクロライド、2,2-アゾビス(2,4-ジメチルバレロニトリル)、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、他のアゾ系開始剤及びレドックス系開始剤等が挙げられる。
上述のうち、水性媒体中でリビングラジカルグラフト重合を行う観点からアゾ系開始剤及びレドックス系開始剤が好適である。
アゾ系開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(AMBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)(ACHN)、ジメチル-2,2’-アゾビスイソブチレート(MAIB)、4,4’-アゾビス(4-シアノバレリアン酸)(ACVA)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビス(2-メチルブチルアミド)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルアミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-シアノ-2-プロピルアゾホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等が挙げられる。
これらのアゾ系開始剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよいが、反応条件に応じて適宜選択することが好ましい。
レドックス系開始剤としては、過酸化物と還元剤との組合わせが用いられる。過酸化物としては、例えば過酸化水素、クメンヒドロペルオキシド、tert-ブチルヒドロペルオキシドなどの水溶性有機過酸化物、各種の水溶性アゾ系開始剤、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどが挙げられ、これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
一方、還元剤としては、例えばテトラエチレンペンタミンなどのポリアミン類、メルカプタン類、アスコルビン酸、Fe2+塩などの還元性金属イオンを形成する塩などが挙げられ、これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
レドックス系開始剤における過酸化物と還元剤との使用割合は、使用する過酸化物と還元剤の種類にもよるが、モル比で、通常10:1~1:10程度、好ましくは1:5~3:1である。
レドックス系開始剤における過酸化物と還元剤との好ましい組合わせの例としては、tert-ブチルヒドロペルオキシドとテトラエチレンペンタミンとの組合わせを挙げることができる。
このレドックス系開始剤を用いる場合、重合温度は、通常0~80℃程度、好ましくは0~60℃である。
本発明のグラフト共重合体の製造方法において、天然ゴム及び/又は合成ジエン系ゴムからなるゴム成分に、リビングラジカルグラフト重合させるラジカル重合性単量体としては、窒素原子、酸素原子、硫黄原子、ハロゲン原子及び金属原子の中から選ばれる少なくとも一種を含む官能基を分子内に少なくとも一つ有する化合物又は芳香族ビニル化合物を挙げることができる。
本発明においては、得られるグラフト共重合体をゴム組成物に用いた場合、該組成物に含まれるカーボンブラックや無機充填材に対する相互作用の観点から、上記官能基の中で、イソシアネート基、アミノ基、イミノ基、アミド基、イミド基、ピリジル基、イミン残基、他の含窒素複素環式基などの窒素原子を含むものが好ましく、特にイソシアネート基、ピリジル基が好適である。
上述の官能基を有するラジカル重合性単量体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
本発明のグラフト共重合体の製造方法においては、水性媒体中において、重合制御剤の存在下、天然ゴム及び/又は合成ジエン系ゴムからなるゴム成分に、ラジカル重合性単量体をリビングラジカルグラフト重合させることにより、グラフト共重合体を製造するが、当該グラフト共重合体を効率よく製造するには、下記の条件を採用することが好ましい。
<リビングラジカルグラフト重合の好ましい条件>
(1)リビングラジカルグラフト重合を乳化重合で行うのがよく、したがって、原料のゴム成分は、ラテックス形態で用い、界面活性剤及び/又は分散剤の存在下に乳化重合を行う。
(2)重合制御剤として、前述の有機テルル化合物(I)及び/又は有機テルル化合物(II)を用いると共に、重合開始剤として、前述のアゾ系開始剤又はレドックス系開始剤を用い、リビングラジカルグラフト重合を行う。
(3)グラフトさせるラジカル重合性単量体として、分子内に前述の官能基を有するものを用いる。重合禁止剤を含む市販品を用いる場合には、予め適切な手法で重合禁止剤を取り除くことが好ましい。
(4)ラジカル重合性単量体のグラフト量が、得られるグラフト共重合体中のゴム成分に対し、0.1~20質量%、より好ましくは0.2~10質量%、さらに好ましくは0.5~10質量%になるように制御する。
まず、ゴム成分にリビングラジカルグラフト重合させる官能基含有ラジカル重合性単量体と、アニオン系界面活性剤やノニオン系界面活性剤などの乳化剤と、必要に応じポリビニルアルコール類のような水溶性高分子化合物などの分散剤と、水性媒体とを混合し、乳化装置などを用いて乳化処理して単量体乳化液を調製する。
次いで、天然ゴムラテックス及び/又は合成ジエン系ゴムラテックスと、上記単量体乳化液と、水性媒体とを混合したのち、これに重合制御剤として有機テルル化合物(I)及び/又は(II)と、重合開始剤としてアゾ系開始剤又はレドックス系開始剤を加えて反応用液を調製する。
次に、この反応用液を所定の温度で加熱してリビングラジカルグラフト重合を行う。重合開始剤として、アゾ系開始剤を用いた場合、重合温度は、通常0~100℃程度、好ましくは40~90℃であり、レドックス系開始剤を用いた場合、重合温度は、通常0~80℃程度、好ましくは0~70℃である。
反応時間は、反応温度、用いるゴム成分、ラジカル重合性単量体、乳化剤、重合制御剤及び重合開始剤などの種類に応じ、重合反応が完結するように適宜選定すればよい。好ましくは24時間以内である。
なお、上記重合制御剤や重合開始剤は、単量体乳化液の調製工程で加えておいてもよい。
上記乳化剤の具体例としては、ドデシルベンゼンスルホン酸塩、ラウリル硫酸塩、ジオクチルスルホコハク酸塩、ジオクチルコハク酸塩、ラウリルメチルタウリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ラウリルリン酸塩等のアニオン系界面活性剤、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤などを用いることができる。
上記分散剤の具体例としては、ポリビニルアルコール、ポリエチレンオキシド、セルロース誘導体等のノニオン系高分子化合物、ポリアクリル酸及びその塩、ポリメタクリル酸及びその塩、メタクリル酸エステルとメタクリル酸及び/又はその塩との共重合体等のアニオン系高分子化合物などの水溶性高分子化合物等を用いることができる。
また、重合制御剤の量は、リビングラジカル重合性の観点から、仕込みラジカル重合性単量体100質量部に対して、通常0.01~30質量部程度、好ましくは0.1~20質量部である。重合開始剤としてアゾ系開始剤を用いる場合、その量は、仕込みラジカル重合性単量体100質量部に対して、通常0.001~10質量部、好ましくは0.01~5質量部である。レドックス系開始剤を用いる場合、過酸化物と還元剤との合計量は、仕込みラジカル重合性単量体100質量部に対して、通常0.001~5質量部程度、好ましくは0.01~1質量部である。
官能基含有ラジカル重合性単量体の使用量は、該ラジカル重合性単量体のグラフト量が、得られるグラフト共重合体中のゴム成分(グラフト共重合体のグラフト成分を除く主鎖成分)に対し、好ましくは0.01~50質量%、より好ましくは0.01~20質量%になるように制御されることが望ましい。このグラフト量が0.01質量%以上であれば、該グラフト共重合体をゴム組成物に含有させた場合、ゴム組成物の低発熱性及び耐摩耗性や破壊特性の改良効果が発揮され、20質量%以下であれば、ゴム成分本来の特性があまり損なわれることがなく、またゴム組成物の加工性の悪化を抑制することができる。
なお、上記グラフト量は、下記のようにして算出した値である。
<グラフト量の算出>
得られたグラフト共重合体を石油エーテルで抽出し、更にアセトンとメタノールの2:1混合溶媒で抽出し、得られた抽出物を分析してラジカル重合性単量体及び/又はそのホモポリマー量を算出した。
グラフト量(質量%)={[(反応に用いたラジカル重合性単量体の質量)-(抽出物中のラジカル重合性単量体の質量)-(抽出物中のホモポリマーの質量)]/(グラフト共重合体中のゴム成分の質量)}×100
本発明においては、グラフトされたリビングラジカルポリマーの数平均分子量は、通常5,000~3,000,000程度、好ましくは10,000~2,000,000である。また、該リビングラジカルポリマーを構成するラジカル重合性単量体単位を、官能基が導入されたものにすることができる。
従来リビングアニオン重合で得られたポリマーの活性末端を変性して、所定の官能基を導入することが行われているが、これに対し、本発明の方法では、得られるグラフト共重合体は、グラフト鎖のリビングラジカルポリマーを構成する単量体単位を官能基を有するものにし得ることから、ポリマー中の官能基の数は、従来のリビングアニオン重合で得られたポリマーの活性末端を変性したものに比べて、はるかに多くすることができる。したがって、当該グラフト共重合体は、ゴム組成物に含まれるカーボンブラックや無機充填材に対する相互作用が極めて高く、ゴム組成物に含有させた場合、該ゴム組成物に含まれるカーボンブラックや無機充填材の分散性が良好となり、低発熱性及び耐摩耗性や破壊特性などに優れるゴム組成物を与えることができる。
本発明はまた、前述した本発明の方法で得られたことを特徴とするグラフト共重合体ラテックスをも提供する。このグラフト共重合体ラテックスは、特にタイヤ用として好適である。
本発明のグラフト共重合体は、上記グラフト共重合体ラテックスを、凝固及び乾燥してなるものである。
本発明のグラフト共重合体を得るための具体的な方法としては、前述の方法により作製したグラフト共重合体ラテックスを、凝固剤、例えばギ酸、硫酸などの酸や、塩化ナトリウムなどの塩を用いて凝固させ、洗浄したのち、真空乾燥機、エアドライヤー、ドラムドライヤーなどの乾燥機を用いて乾燥することで、固形状態のグラフト共重合体を得ることができる。
本発明のグラフト共重合体としては、ゴム組成物のゴム成分として用いる場合には、ゴム組成物に補強材などとして含まれるカーボンブラックや無機充填材に対して、高い相互作用が得られる観点から、ラジカル重合性単量体として、分子内にイソシアネート基やピリジル基などの窒素原子を含む官能基を有する単量体を、天然ゴムや合成ジエン系ゴムにリビングラジカルグラフト重合させたものであることが好ましい。上記ラジカル重合性単量体としては、前述したグラフト共重合体の製造方法において、好ましいラジカル重合性単量体として例示したものを用いることができる。本発明のグラフト共重合体は、特にタイヤ用として好適である。
本発明のグラフト共重合体は、リビングラジカルグラフト重合によって得られるため、通常のラジカルグラフト重合によって得られたグラフト共重合体に比べてトルエン不溶分(ゲル分)がはるかに少ない。例えば、グラフト量が3~5質量%程度の場合、SBRを原料とする本発明のグラフト共重合体のトルエン不溶分は、通常数質量%程度である。これに対し、SBRを原料とし、通常のラジカルグラフト重合で得られるグラフト共重合体では、グラフト量が3~5質量%程度の場合、トルエン不溶分は、通常10数質量%程度である。なお、トルエン不溶分の測定方法については、後で説明する。
本発明のゴム組成物は、上記本発明のグラフト共重合体を含有することを特徴とし、具体的には、(A)当該グラフト共重合体を含むゴム成分と、その100質量部に対して、(B)カーボンブラック及び/又は無機充填材を、5~100質量部の割合で含むゴム組成物を挙げることができる。
((A)ゴム成分)
本発明のゴム組成物における(A)ゴム成分としては、当該グラフト共重合体を10質量%以上含むものが好ましく、50質量%以上含むものがより好ましい。ゴム成分中の当該グラフト共重合体の含有量が10質量%以上であれば、ゴム組成物は低発熱性及び耐摩耗性や破壊特性などの向上効果が発揮される。なお、当該グラフト共重合体は一種用いてもよく、二種以上を組み合わせて用いてもよい。
この(A)ゴム成分において、当該グラフト共重合体と併用される他のゴム成分としては、天然ゴム、合成イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロプレンゴム、ハロゲン化ブチルゴム及びこれらの混合物などが挙げられる。また、その一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでもよい。
本発明のゴム組成物においては、(B)成分の補強用充填材として、カーボンブラックを含んでいてもよいし、無機充填材を含んでいてもよく、あるいはその両方を含んでいてもよい。
<カーボンブラック>
カーボンブラックとしては特に制限はなく、例えばSRF、GPF、FEF、HAF、ISAF、SAF等が用いられ、ヨウ素吸着量(IA)が60mg/g以上、かつジブチルフタレート吸油量(DBP)が80ml/100g以上のカーボンブラックが好ましいが、耐摩耗性に優れるHAF、N339、IISAF、ISAF、SAFが特に好ましい。IAはJIS K 6217-1:2001に準拠し、DBPはJIS K 6217-4:2001に準拠して測定される。
無機充填材は、シリカ及びシリカ以外の無機充填材に分けることができる。
シリカとしては特に制限はなく、従来ゴムの補強用充填材として慣用されているものの中から任意に選択して用いることができる。
このシリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられるが、中でも破壊特性の改良効果並びにウェットグリップ性の両立効果が最も顕著である湿式シリカが好ましい。この湿式シリカは、補強性、加工性、ウェットグリップ性、耐摩耗性のバランスなどの面から、BET法(ISO 5794/1)による窒素吸着比表面積(N2SA)が140~280m2/gであることが好ましく、150~250m2/gであることがより好ましい。好適な湿式シリカとしては、例えば東ソー・シリカ(株)製のAQ、VN3、LP、NA等、デグッサ社製のウルトラジルVN3(N2SA:175m2/g)等が挙げられる。
mM1・xSiOy・zH2O ・・・・・(3)
(式中、M1は、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり、m、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。尚、上記式において、x、zがともに0である場合には、該無機化合物はアルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる少なくとも1つの金属、金属酸化物又は金属水酸化物となる。)
上記式で表されるこれらの無機フィラーは、単独で使用してもよいし、2種以上を混合して使用してもよい。
本発明のゴム組成物においては、(B)成分として無機充填材を用いる場合には、その補強効果をさらに向上させる目的で、下記のシランカップリング剤を含有させることができる。
シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルメチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド等が挙げられるが、これらの中で補強性改善効果等の点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド及び3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが好適である。
本発明のゴム組成物は、硫黄架橋性であることが好ましく、加硫剤として硫黄が好適に用いられる。その使用量としては、ゴム成分100質量部に対し、硫黄分(硫黄及び硫黄供与剤の硫黄分の合計量)を0.1~10質量部配合することが好ましい。この範囲であれば、加硫ゴム組成物の必要な弾性率及び強度を確保すると共に低燃費性を得ることができるからである。この観点から、硫黄分を0.5~5質量部配合することが更に好ましい。
本発明のゴム組成物は、ゴム成分として、天然ゴムや合成ジエン系ゴムに、官能基含有ラジカル重合性単量体をリビングラジカルグラフト重合させてなる、カーボンブラックや無機充填材に対して相互作用の高いグラフト共重合体を含むことにより、上記カーボンブラックや無機充填材の分散性が良好であって、低発熱性及び耐摩耗性や破壊特性などに優れている。したがって、本発明のゴム組成物は、特にタイヤ用に好適に用いられる。
本発明のタイヤは、前述した本発明のゴム組成物を、タイヤ部材のいずれかに用いたことを特徴とする。
具体的には、各種薬品を含有させた本発明のゴム組成物が未加硫の段階でタイヤの各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
上記タイヤ部材に特に制限はないが、トレッドに本発明のゴム組成物を用いることが好ましい。当該ゴム組成物をトレッドに用いたタイヤは、低発熱性及び耐摩耗性や破壊特性に優れたものになる。また、本発明のタイヤに充填する気体としては、通常の空気、あるいは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
なお、各例で得られたグラフト共重合体の性状及びゴム組成物の物性を以下に示す方法により求めた。
<グラフト共重合体の性状>
(1)グラフト量
明細書本文記載の方法に従って求めた。
(2)トルエン不溶分
グラフト共重合体0.2gをトルエン20ml中に加えて、室温にて24時間放置したのち、日立工機社製遠心分離機「CP70G」を用い、ローター温度10℃、回転数35,000rpm、90分間の条件でトルエン不溶ゲル分を分離する。その後、分離したゲル分を、50℃にて真空乾燥したのち秤量し、用いたグラフト共重合体の質量に対する割合を求め、トルエン不溶分として百分率で示す。
<ゴム組成物の物性>
(3)ムーニー粘度
JIS K 6300-1:2001に準拠して、130℃にてムーニー粘度ML1+4(130℃)を測定した。
(4)加硫ゴムの切断時引張応力(TSb)
ゴム組成物を145℃で33分間加硫して得た加硫ゴムに対し、JIS K 6251:2004に準拠して引張試験を行い、切断時引張応力(TSb)を測定した。TSbの値が大きいほど、耐破壊特性が良好であることを示す。
(5)加硫ゴムの損失正接(tanδ)
ゴム組成物を145℃で33分間加硫して得られた加硫ゴムに対し、粘弾性測定装置[レオメトリックス社製]を用い、温度50℃、動歪み5%、周波数15Hzで損失正接(tanδ)を測定し、参考例3、参考例5のtanδを100として指数表示した。値が小さいほど、低発熱性(低ロス性)に優れることを示す。
金属テルル[Aldrich社製、商品名「Tellurium(-40mesh)]3.19g(25mmol)をテトラヒドロフラン(THF)25mlに懸濁させ、メチルリチウム[関東化学(株)製、ジエチルエーテル溶液]25ml(28.5mmol)を0℃でゆっくり加えた(10分間)。この反応溶液を金属テルルが完全に消失するまで攪拌した(10分間)。この反応溶液に塩化アンモニウム溶液20mlを室温で加え、1時間攪拌した。有機層を分離し、水層をジエチルエーテルで3回抽出した。集めた有機層を芒硝で乾燥後、減圧濃縮し、黒紫色油状物2.69g(9.4mmol:収率75質量%)を得た。
金属テルル〔Aldrich製、商品名「Tellurium」(-40mesh)〕6.38g(50mmol)をTHF 50mlに懸濁させ、これにn-ブチルリチウム(Aldrich製、1.6Mヘキサン溶液)34.4ml(55mmol)を、室温でゆっくり滴下した(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(20分間)。この反応溶液に、エチル-2-ブロモ-イソブチレート 10.7g(55mmol)を室温で加え、2時間撹拌した。反応終了後、減圧下で溶媒を濃縮し、続いて減圧蒸留して、黄色油状物8.98g(収率59.5質量%)を得た。
製造例1におけるメチルリチウムの代わりにブチルリチウムを等モル量用いることにより製造例1と同様にしてジブチルジテルリド(DBDT)を得た。
金属テルル〔Aldrich製、商品名:Tellurium(-40mesh)〕6.38g(50mmol)をTHF 50mlに懸濁させ、これにメチルリチウム(上記と同じ)52.9ml(1.04Mジエチルエーテル溶液、55mmol)を、室温でゆっくり滴下した(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(20分間)。この反応溶液に、エチル-2-ブロモ-イソブチレート 10.7g(55mmol)を室温で加え、2時間撹拌した。反応終了後、減圧下で溶媒を濃縮し、続いて減圧蒸留して、黄色油状物6.53g(収率51質量%)を得た。
ジメチルジテルリド(DMeDT)を用いたリビングラジカル2-イソシアナトエチルメタクリレート(2-IEM)グラフトSBRの製造
SBRラテックスとして「PCL/SBラテックス2108(JSR製、全固形分40質量%)」を500g、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いた2-イソシアナトエチルメタクリレート(Aldrich 製)20g(0.126mol、SBRの10質量%)を予め80mlの水と1.2gの乳化剤(花王株式会社製、商品名「エマルゲン1108」)に加えて乳化したものを420mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、製造例1で得られたジメチルジテルリド(DMeDT)を1.358g(5mmol、重合開始剤の5倍等量モル分)加え、その直後に重合開始剤として2,2'-アゾビス(2-メチルプロピオニトリル)(AIBN)164.21mg(1mmol)を加えて、60℃で6時間反応させることにより、グラフトSBRラテックスを得た。このラテックスに25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥して、実施例1のリビングラジカル2-1EMグラフトSBRを得た。
エチル-2-メチル-2-n-ブチルテラニル-プロピオネート(BTEE)を用いたリビングラジカル2-IEMグラフトSBRの製造
実施例1において、ジメチルジテルリド(DMeDT)を、製造例2で得たエチル-2-メチル-2-n-ブチルテラニル-プロピオネート(BTEE)のAIBNの5倍等量モル分に変更した以外は実施例1と同様にリビングラジカル重合を行い、実施例2のリビングラジカル2-1EMグラフトSBRを得た。
フェニル-t-ブチルニトロン(PBN)を用いたリビングラジカル2-IEMグラフトSBRの製造
実施例1において、ジメチルジテルリド(DMeDT)とAIBNを、フェニル-t-ブチルニトロン(PBN)の0.2gに変更した以外は実施例1と同様にリビングラジカル重合を行い、実施例3のリビングラジカル2-1EMグラフトSBRを得た。
ATRP系重合制御剤を用いたリビングラジカル2-IEMグラフトSBRの製造
実施例1において、ジメチルジテルリド(DMeDT)とAIBNを、遷移金属化合物(CuBr2)0.63gと4,4'-ジピリジル0.38gと2-ブロモ酢酸エチル0.47gとの混合物に変更した以外は実例1と同様にリビングラジカル重合を行い、実施例4のリビングラジカル2-1EMグラフトSBRを得た。
RAFT系重合制御剤を用いたリビングラジカル2-IEMグラフトSBRの製造
実施例1において、ジメチルジテルリド(DMeDT)を、ジベンジルトリチオカーボネート0.144gに変更した以外は実施例1と同様にリビングラジカル重合を行い、実施例5のリビングラジカル2-1EMグラフトSBRを得た。
1,1-ジフェニルエチレン(DPE)を用いたリビングラジカル2-IEMグラフトSBRの製造
実施例1において、ジメチルジテルリド(DMeDT)を、1,1-ジフェニルエチレン(DPE)0.114g(0.63mmol)に変更した以外は実施例1と同様にリビングラジカル重合を行い、実施例6のリビングラジカル2-1EMグラフトSBRを得た。
リビングラジカルではない2-IEMグラフトSBRの製造
SBRラテックスとして「PCL/SBラテックス2108(JSR製、全固形分40質量%)」を500g、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いた2-イソシアナトエチルメタクリレート(Aldrich 製)20g(0.126mol、SBRの10質量%)を予め80mlの水と1.2gの乳化剤(花王株式会社製、商品名「エマルゲン1108」)に加えて乳化したものを420mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、重合開始剤として2,2'-アゾビス(2-メチルプロピオニトリル)(AIBN)164.21mg(1mmol)を加え、60℃で6時間反応させることにより、グラフトSBRラテックスを得た。このラテックスに25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥して、比較例1の2-1EMグラフトSBRを得た。
グラフトなしSBR(スチレン-ブタジエン共重合体)の製造
PCL(ペーパーコーティング用ラテックス)(商品名「PCL/SBラテックス2108(JSR製、全固形分40質量%)」に25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥してグラフトなしSBRを得た。
DMeDTを用いたリビングラジカルα-メチルスチレン(α-MeSt)グラフトSBRの製造
SBRラテックスとして「PCL/SBラテックス2108(JSR製、全固形分40質量%)」を500g、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたα-メチルスチレン(α-MeSt)22.7gを予め80mlの水と1.2gの乳化剤(花王株式会社製、商品名「エマルゲン1108」)に加えて乳化したものを420mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、製造例1で得られたジメチルジテルリド(DMeDT)を1.358g(5mmol)加え、その直後に重合開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)308.42mg(1mmol)(和光純薬製、商品名「V-70」)を加え、40℃で6時間反応させることにより、グラフトSBRラテックスを得た。このラテックスに25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥して、実施例7のリビングラジカルα-MeStグラフトSBRを得た。
リビングラジカルではないα-MeStグラフトSBRの製造
SBRラテックスとして「PCL/SBラテックス2108(JSR製、全固形分40質量%)」を500g、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたα-メチルスチレン(α-MeSt)22.7gを予め80mlの水と1.2gの乳化剤(花王株式会社製、商品名「エマルゲン1108」)に加えて乳化したものを420mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、重合開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)308.42mg(1mmol)(和光純薬製、商品名「V-70」)を加え、40℃で6時間反応させることにより、グラフトSBRラテックスを得た。このラテックスに25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥して、比較例2のα-MeStグラフトSBRを得た。
DMeDTを用いたリビングラジカルスチレン(St)グラフトハイシスBRの製造
乾燥及び窒素置換された、ゴム詮付容積100mLのガラスびんに、以下の順番に、1,3-ブタジエンのシクロヘキサン溶液(15.2質量%)7.11g、ネオジムネオデカノエートのシクロヘキサン溶液(0.56mol/L)0.59mL、メチルアルミノキサンMAO(東ソーアクゾ社製、商品名「PMAO」)のトルエン溶液(アルミニウム濃度として3.23mol/L)10.32mL、水素化ジイソブチルアルミ[関東化学(株)製]のヘキサン溶液(0.90mol/L)7.77mLを投入し、室温で2分間熟成した後、塩素化ジエチルアルミ[関東化学(株)製]のヘキサン溶液(0.95mol/L)1.45mLを加え室温で、時折撹拌しながら15分間熟成した。こうして得られた触媒溶液中のネオジムの濃度は、0.11mol/L(M)であった。次に、約900ミリリットル容積のゴム栓付きガラスびんを乾燥及び窒素置換し、乾燥精製された1,3-ブタジエンのシクロヘキサン溶液及び乾燥シクロヘキサンを各々投入し、1,3-ブタジエン 12.5質量%のシクロヘキサン溶液が400g投入された状態とした。次に、前記調製した触媒溶液 2.28mL(ネオジム換算0.025mmol)を投入し、50℃の温水浴中で1.0時間重合を行った。
この溶液を、BR濃度が50質量%になるまで室温にてヘキサンを揮発させ、その溶液100gに水350ml、乳化剤(エマルゲン1108、花王株式会社製)を3g(BR量の6質量%)加えて30分間室温にて撹拌し、乳化させた。その乳化溶液に、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたスチレン(関東化学製)5g(mol、BR量の10質量%)を予め20mlの水と0.3gの乳化剤(エマルゲン1108、花王株式会社製)に加えて乳化したものを130mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。
次に、製造例1で得られたジメチルジテルリド(DMeDT)を1.358g(5mmol、重合開始剤の5倍等量モル分)加え、その直後に重合開始剤として2,2'-アゾビス(2-メチルプロピオニトリル)(AIBN)41.05mg(0.25mmol)を加え、60℃で6時間反応させることにより、グラフトBRラテックスを得た。このラテックスに25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥して、実施例8のリビングラジカルStグラフトハイシスBRを得た。
リビングラジカルではないStグラフトハイシスBRの製造
ジメチルジテルリド(DMeDT)を加えない以外は実施例8と同様にして比較例3のStグラフトハイシスBRを得た。
グラフトなし変性ハイシスBR
実施例8で得られたシス1,4結合含有量の高い変性ハイシスポリブタジエンゴム(変性ハイシスBR)のヘキサン溶液を、ラジカルグラフト重合することなく、更に微量の2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)(大内新興化学(株)製、商品名「ノクラックNS-5」)を含むイソプロパノール中で再沈殿を行ない、ドラム乾燥することによりグラフトなし変性ハイシスBRを得た。
DMeDTを用いたリビングラジカルアクリル酸(AA)グラフト末端変性SBRの製法
乾燥し、窒素置換した800mLの耐圧ガラス容器に、シクロヘキサン 300g、1,3-ブタジエン 40g、スチレン 14g、ジテトラヒドロフリルプロパン 0.2mmol及びヘキサメチレンイミン(HMI)0.48mmolを加え、更にn-ブチルリチウム(n-BuLi)0.48mmolを加えた後、50℃で1.5時間重合反応を行った。この際の重合転化率は、ほぼ100%であった。次に、重合反応系に、変性剤として四塩化スズ 0.12mmolを速やかに加え、更に50℃で30分間変性反応を行った。その後、重合反応系に、イソプロパノール0.5mLを加えて重合反応を停止させて、四塩化スズ末端変性SBRのシクロヘキサン溶液を得た。
このシクロヘキサン溶液をSBR濃度が50質量%になるまで室温にてヘキサンを揮発させ、その溶液100gに水350ml、乳化剤(花王株式会社製、商品名「エマルゲン1108」)を3g(SBRの量の6質量%)加えて30分間室温にて撹拌し、乳化させた。その乳化溶液に、ラジカル重合性単量体として減圧蒸留したアクリル酸(AA、関東化学製)5g(0.07mol、SBR量の10質量%)を予め20mlの水と0.3gの乳化剤(エマルゲン1108、花王株式会社製)に加えて乳化したものを130mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。
次に、製造例1で得られたジメチルジテルリド(DMeDT)を0.679g(2.5mmol、重合開始剤の10倍等量モル分)加え、その直後に重合開始剤として過酸化ベンゾイル(BPO、Aldrich製)60.55mg(0.25mmol)を加え、70℃で6時間反応させることにより、グラフトSBRラテックスを得た。このラテックスに25質量%食塩水、続いて1質量%の硫酸を注いでゴムを凝固させ、水洗、50℃で真空乾燥して、リビングラジカルAAグラフト末端変性SBRを得た。
リビングラジカルではないAAグラフト末端変性SBRの製法(開始剤 BPO)
ジメチルジテルリド(DMeDT)を加えない以外は実施例9と同様にして比較例4のAAグラフト末端変性SBRを得た。
DMeDTを用いたアクリルアミド(AAM)グラフト末端変性SBRの製法
実施例9において、ラジカル重合性単量体であるアクリル酸の代わりに再結晶で精製したアクリルアミド(AAM)5gを用い、更にジメチルジテルリド(DMeDT)0.679g(2.5mmol、重合開始剤の10倍等量モル分)を加えた直後で且つ重合開始剤投入前にテトラエチレンペンタミン(TEPA)19mgを加え、重合開始剤としてBPOの代わりにクメンハイドロパーオキサイド(CHP、Aldrich製)38mg(0.25mmol)を用い、重合温度を5℃にした以外は実施例9と同様にリビングラジカルグラフト重合を行い、リビングラジカルAAMグラフト末端変性SBRを得た。
リビングラジカルではないAAMグラフト末端変性SBRの製法
ジメチルジテルリド(DMeDT)を加えない以外は実施例10と同様にして比較例4のAAMグラフト末端変性SBRを得た。
DMeDTを用いたAAMグラフト末端変性SBRの製法
実施例9において、ラジカル重合性単量体であるアクリル酸の代わりに再結晶で精製したアクリルアミド(AAM)5gを用い、更にジメチルジテルリド(DMeDT)0.679g(2.5mmol、重合開始剤の10倍等量モル分)を加えた直後で且つ重合開始剤投入前にテトラメチルエチレンジアミン[TMEDA、東京化成工業(株)製]を0.06ml(0.403mmol)を加え、重合開始剤としてBPOのかわりに過硫酸アンモニウム(AP、Aldrich製)を57mg(0.25mmol)用い、重合温度を5℃にした以外は実施例9と同様にリビングラジカルグラフト重合を行い、リビングラジカルAAMグラフト末端変性SBRを得た。
リビングラジカルではないAAMグラフト末端変性SBRの製法
ジメチルジテルリド(DMeDT)を加えない以外は実施例11と同様にして比較例6のAAMグラフト末端変性SBRを得た。
グラフトなし四塩化スズ末端変性SBRの製法
実施例9で得られた四塩化スズ末端変性SBRのシクロヘキサン溶液を、ラジカルグラフト重合することなく更に常法に従って乾燥することによりグラフトなし四塩化スズ末端変性SBRを得た。
BTEEを用いたリビングラジカル2-ビニルピリジン(2-VP)グラフトNRの製法
フィールドラテックスをラテックスセパレーター[斎藤遠心工業製]を用いて回転数7500rpmで遠心分離して、乾燥ゴム濃度60質量%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め10mLの水と90mgの乳化剤(花王株式会社製、商品名「エマルゲン1108」)を、予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いた2-ビニルピリジン(2-VP)1.7gに加えて乳化したものを990mLの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。
次に、製造例2で得られたBTEE38.0g(133mmol、tBuHpの10倍モル等量)を加え、その直後に重合開始剤としてtert-ブチルハイドロパーオキサイド(tBuHp)1.2g(13.3mmol)とテトラエチレンペンタミン(TEPA)1.2gとを加え、40℃で30分間反応させることにより、変性天然ゴムラテックスを得た。
この変性天然ゴムラテックスにギ酸を加えpHを4.7に調整し、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して、実施例12のリビングラジカル2-VPグラフトNRを得た。
リビングラジカルではない2-VPグラフトNRの製法
BTEEを加えない以外は実施例12と同様にして比較例7の2-VPグラフトNRを得た。
BTEEを用いたリビングラジカルアリル-トリ-n-ブチルスズ(AllylSn)グラフトNRの製法
実施例12において、2-ビニルピリジン(2-VP)1.7gの代わりに、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたアリル-トリ-n-ブチルスズ(AllylSn)5.5gを加える以外は、実施例12と同様にしてリビングラジカルアリル-トリ-n-ブチルスズ(AllylSn)グラフトNRを得た。
リビングラジカルではないアリル-トリ-n-ブチルスズ(AllylSn)グラフトNRの製法
BTEEを加えない以外は実施例13と同様にして比較例8のアリル-トリ-n-ブチルスズ(AllylSn)グラフトNRを得た。
BTEEを用いたリビングラジカルγ-メタクリロキシプロピルトリメトキシシラン(MPTMS)グラフトNRの製法
実施例12において、2-ビニルピリジン(2-VP)1.7gの代わりに、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたγ-メタクリロキシプロピルトリメトキシシラン(MPTMS)(Gelest社製、FW248.35)4.1gを加える以外は、実施例12と同様にしてリビングラジカルMPTMSグラフトNRを得た。
リビングラジカルではないMPTMSグラフトNRの製法
BTEEを加えない以外は実施例14と同様にして比較例8のMPTMSグラフトNRを得た。
BTEEを用いたラジカル重合性単量体仕込み量の多いリビングラジカル2-ヒドロキシエチルメタクリレート(HEMA)グラフトNRの製法
実施例12において、乳化剤(花王株式会社製、商品名「エマルゲン1108」)90mg、2-ビニルピリジン(2-VP)1.7g、tert-ブチルハイドロパーオキサイド(tBuHp)1.2g(13.3mmol)及びテトラエチレンペンタミン(TEPA)1.2gを、乳化剤(花王株式会社製、商品名「エマルゲン1108」)1g、予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いた2-ヒドロキシエチルメタクリレート(HEMA)30g、tBuHp 17g及びTEPA 17gに変更した以外は、実施例12と同様にして実施例15のHEMA仕込み量の多いリビングラジカルHEMAグラフトNRを得た。
リビングラジカルでないHEMA仕込み量の多いHEMAグラフトNRの製法
BTEEを加えない以外は実施例15と同様にして比較例10のHEMAグラフトNRを得た。
BTEEを用いたリビングラジカル2-ヒドロキシエチルメタクリレート(HEMA)グラフトNRの製法
実施例12において、2-ビニルピリジン(2-VP)1.7gの代わりに、ラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたHEMA 2.1gを加える以外は、実施例12と同様にしてリビングラジカルHEMAグラフトNRを得た。
リビングラジカルでないHEMAグラフトNRの製法
BTEEを加えない以外は実施例16と同様にして比較例11のHEMAグラフトNRを得た。
BTEEを用いたリビングラジカルN,N-ジエチルアミノエチルメタクリレート(DEAEMA)グラフトNRの製法
実施例12において、2-ビニルピリジン(2-VP)1.7gの代わりに、ラジカル重合性単量体として減圧蒸留したDEAEMA 3.0gを加える以外は、上記実施例12と同様にしてリビングラジカルDEAEMAグラフトNRを得た。
リビングラジカルではないDEAEMAグラフトNRの製法
BTEEを加えない以外は実施例17と同様にして比較例12のDEAEMAグラフトNRを得た。
DMeDTを用いたリビングラジカル2-IEMグラフト変性NRの製法
フィールドラテックスをラテックスセパレーター[斎藤遠心工業製]を用いて回転数7500rpmで遠心分離して、乾燥ゴム濃度60質量%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め80mlの水と1.2mgの乳化剤(花王株式会社製、商品名「エマルゲン1108」)をラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いた2-イソシアナトエチルメタクリレート(2-IEM)48g(0.302mol、NRの8質量%)に加えて乳化したものを920mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。
次に、製造例1で得られたジメチルジテルリド(DMeDT)3.259g(12mmol、重合開始剤の5倍モル等量)を加え、その直後に重合開始剤としてAIBN394mg(2.4mmol)を加え、60℃で30分間反応させることにより、変性天然ゴムラテックスを得た。
この変性天然ゴムラテックスにギ酸を加えpHを4.7に調整し、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して、実施例18のリビングラジカル2-IEMグラフトNRを得た。
リビングラジカルでない2-IEMグラフト変性NRの製法
DMeDTを加えない以外は実施例18と同様にして比較例13のDEAEMAグラフトNRを得た。
ジブチルジテルリド(DBDT)を用いたリビングラジカルアクリル酸(AA)グラフトNRの製法
フィールドラテックスをラテックスセパレーター[斎藤遠心工業製]を用いて回転数7500rpmで遠心分離して、乾燥ゴム濃度60質量%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め80mlの水と1.2mgの乳化剤(花王株式会社製、商品名「エマルゲン1108」)をラジカル重合性単量体として予めt-ブチルカテコール用インヒビターリムーバー(Aldrich製)を用いて重合禁止剤を取り除いたアクリル酸48g(0.667mol)に加えて乳化したものを920mlの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。
次に、製造例3で得られたジブチルジテルリド(DBDT)3.259g(12mmol、重合開始剤の5倍モル等量)を加え、その直後に重合開始剤として2,2'-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬製、商品名「V-70」)740mg(2.4mmol)を加え、40℃で30分間反応させることにより、変性天然ゴムラテックスを得た。
この変性天然ゴムラテックスにギ酸を加えpHを4.7に調整し、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して、実施例19のリビングラジカルAAグラフトNRを得た。
リビングラジカルではないAAグラフトNRの製法
DBDTを加えない以外は実施例19と同様にして比較例14のAAグラフトNRを得た。
エチル-2-メチル-2-メチルテラニル-プロピネート(MTEE)を用いたリビングラジカルアクリル酸(AA)グラフトNRの製法
実施例19において、DBDTの代わりに製造例4で得られたエチル-2-メチル-2-メチルテラニル-プロピオネート(MTEE)3.091g(12mmol、重合開始剤の5倍モル等量)を用い、重合開始剤V-70の代わりに過硫酸アンモニウム(AP)547mg(2.4mmol)とテトラメチルエチレンジアミン(TMEDA、東京化成工業(株)製)を0.576ml(3.866mmol)を用い、重合温度を5℃にした以外は実施例19と同様にリビングラジカルグラフト重合を行い、リビングラジカルAAグラフトNRを得た。
リビングラジカルではないAAグラフトNRの製法
MTEEを加えない以外は実施例20と同様にして比較例15のAAグラフトNRを得た。
未変性の天然ゴム(NR)の製造
フィールドラテックスにギ酸を加えpHを4.7に調整し、該ラテックスを凝固させ、更に、得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化し、未変性の天然ゴム(NR)を得た。
更に、実施例1~20、比較例1~15及び参考例1~4のグラフト共重合体及びグラフトなしのゴムを用いて第2表に示す配合組成の78種類のゴム組成物を調製した。
各ゴム組成物のムーニー粘度ML1+4(130℃)を測定すると共に、各ゴム組成物を、145℃、33分間の条件で加硫し、加硫ゴムの切断時引張応力(TSb)及び損失正接(tanδ)を測定した。これらの結果を第1表に示す。
ATRP: CuBr2/4,4'-ジピリジル/2-ブロモ酢酸エチル
RAFT: ジベンジルトリチオカーボネート
1)グラフト仕込み量:グラフト共重合体中のゴム成分(グラフト共重合体のグラフト成分を除く主鎖成分)に対するラジカル重合性単量体の仕込み量(質量%)
2)SBR:スチレンブタジエン共重合体
3)変性NdBR:ネオジム系触媒変性ハイシスポリブタジエンゴム
4)変性SBR:末端変性スチレンブタジエン共重合体
5)NR:天然ゴム
*1 実施例1~20及び比較例1~15のグラフト共重合体、並びに参考例1~4のグラフトなしのゴム
*2 カーボンブラック:N339カーボンブラック(N2SA=92m2/g)
*3 シリカ:東ソー・シリカ(株)製、商標「ニプシールAQ」
*4 シランカップリング剤:デグサ社製、商標「Si69」、ビス(3-トリエトキシシリルプロピル)テトラスルフィド
*5 老化防止剤6C:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*6 加硫促進剤DM:ジベンゾチアジルジスルフィド
*7 加硫促進剤DG:ジフェニルグアニジン
*8 加硫促進剤NS:N-t-ブチル-2-ベンゾチアジルスルフェンアミド
リビングラジカルグラフト重合で得られた実施例1~20のリビングラジカルグラフト共重合体はいずれも、それぞれ対応する通常のラジカルグラフト重合で得られた比較例1~15のラジカルグラフト共重合体と比較して、トルエン不溶分(ゲル量)がはるかに少ない。
また、実施例1~20のリビングラジカルグラフト共重合体はいずれも、それぞれ対応する比較例1~15のラジカルグラフト共重合体と比較して、カーボンブラック配合組成物及びシリカ配合組成物のいずれにおいてもムーニー粘度が低下すると共に、損失正接(tanδ)が低下し、より優れた低発熱性を奏することとなり、切断時引張応力(TSb)が向上し耐破壊特性もより良好となった。
そして、実施例1~20のリビングラジカルグラフト共重合体はいずれも、それぞれ対応する参考例1~4グラフトなしのゴムと比較しても、損失正接(tanδ)が低下し、且つ切断時引張応力(TSb)が向上した。
Claims (21)
- 水性媒体中において、重合制御剤の存在下、天然ゴム及び/又は合成ジエン系ゴムからなるゴム成分に、ラジカル重合性単量体をリビングラジカルグラフト重合させることを特徴とする、グラフト共重合体の製造方法。
- 重合制御剤が、安定遊離ラジカル形成化合物、原子移動ラジカル重合剤、可逆付加-開裂連鎖移動剤、イニファータ、有機テルル化合物及び有機ヨウ素化合物の中から選ばれる請求項1に記載のグラフト共重合体の製造方法。
- 重合制御剤が、水に対して不活性のものである請求項1又は2に記載のグラフト共重合体の製造方法。
- 重合制御剤が、有機テルル化合物である請求項2又は3に記載のグラフト共重合体の製造方法。
- 重合制御剤が、一般式(1)
で表される有機テルル化合物(I)及び/又は一般式(2)
(R5Te)2 ・・・・・(2)
(式中、R5は、炭素数1~8のアルキル基、アリール基、置換アリール基又は芳香族へテロ環基を示し、2つのR5はたがいに同一であっても異なっていてもよい。)
で表される有機テルル化合物(II)である請求項4に記載のグラフト共重合体の製造方法。 - 重合制御剤と共に、重合開始剤を用いる請求項1~5のいずれかに記載のグラフト共重合体の製造方法。
- リビングラジカルグラフト重合させるラジカル重合性単量体が、窒素原子、酸素原子、硫黄原子、ハロゲン原子及び金属原子の中から選ばれる少なくとも一種を含む官能基を分子内に少なくとも一つ有する化合物又は芳香族ビニル化合物である請求項1~6のいずれかに記載のグラフト共重合体の製造方法。
- 官能基が、イソシアネート基、チオイソシアネート基、アミノ基、イミノ基、スルホン基、ヒドロキシ基、カルボキシ基、チオカルボキシ基、カルボニル基、チオカルボニル基、ホルミル基、チオホルミル基、シラノール基、ヒドロカルビルオキシ基、ニトリル基、ピリジル基、アミド基、イミド基、イミダゾリル基、アンモニウム基、ヒドラゾ基、アゾ基、ジアゾ基、ケチミン基、エポキシ基、チオエポキシ基、オキシカルボニル基(エステル結合)、カルボニルチオ基(チオエステル結合)、オキシ基(エーテル結合)、グリシドキシ基、スルフィド基(チオエーテル結合)、ジスルフィド基、メルカプト基、ヒドロカルビルチオ基、スルホニル基、スルフィニル基、イミン残基、他の含窒素複素環式基、含酸素複素環式基、含硫黄複素環式基、ヒドロカルビルオキシシリル基、有機スズ基、塩素原子又は臭素原子である請求項7に記載のグラフト共重合体の製造方法。
- 芳香族ビニル化合物が、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン、2,4,6-トリメチルスチレン、p-tert-ブチル-α-メチルスチレン又はp-tert-ブチルスチレンである請求項7に記載のグラフト共重合体の製造方法。
- ラジカル重合性単量体のグラフト量が、グラフト共重合体中のゴム成分に対し、0.1~20質量%である請求項1~9のいずれかに記載のグラフト共重合体の製造方法。
- ラジカル重合性単量体のグラフト量が、グラフト共重合体中のゴム成分に対し、0.5~10質量%である請求項10に記載のグラフト共重合体の製造方法。
- リビングラジカルグラフト重合が、界面活性剤及び/又は分散剤の存在下で行われる請求項1~11のいずれかに記載のグラフト共重合体の製造方法。
- 請求項1~12のいずれかに記載の方法で得られたことを特徴とするグラフト共重合体ラテックス。
- タイヤ用である請求項13に記載のグラフト共重合体ラテックス。
- 請求項13又は14に記載のグラフト共重合体ラテックスを、凝固及び乾燥してなるグラフト共重合体。
- タイヤ用である請求項15に記載のグラフト共重合体。
- 請求項15又は16に記載のグラフト共重合体を含有することを特徴とするゴム組成物。
- タイヤ用である請求項17に記載のゴム組成物。
- (A)グラフト共重合体を含むゴム成分と、その100質量部に対して、(B)カーボンブラック及び/又は無機充填材を、5~100質量部の割合で含む請求項17又は18に記載のゴム組成物。
- 無機充填材に対し、シランカップリング剤を1~20質量%の割合で含む請求項19に記載のゴム組成物。
- 請求項17~20のいずれかに記載のゴム組成物をタイヤ部材のいずれかに用いたことを特徴とするタイヤ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/122,524 US20110224351A1 (en) | 2008-10-02 | 2009-10-01 | Method for producing graft copolymer, graft copolymer obtained by the method, rubber composition containing the graft copolymer, and tire |
JP2010531907A JP5560194B2 (ja) | 2008-10-02 | 2009-10-01 | グラフト共重合体の製造方法、その方法で得られたグラフト共重合体、及び該グラフト共重合体を含むゴム組成物とタイヤ |
CN200980148508.3A CN102239194B (zh) | 2008-10-02 | 2009-10-01 | 接枝共聚物的制造方法、用该方法获得的接枝共聚物以及含有该接枝共聚物的橡胶组合物和轮胎 |
EP09817867.6A EP2345679B1 (en) | 2008-10-02 | 2009-10-01 | Method for producing graft copolymer, graft copolymer obtained by the method, rubber composition containing the graft copolymer, and tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-257659 | 2008-10-02 | ||
JP2008257659 | 2008-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010038835A1 true WO2010038835A1 (ja) | 2010-04-08 |
Family
ID=42073593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/067178 WO2010038835A1 (ja) | 2008-10-02 | 2009-10-01 | グラフト共重合体の製造方法、その方法で得られたグラフト共重合体、及び該グラフト共重合体を含むゴム組成物とタイヤ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110224351A1 (ja) |
EP (1) | EP2345679B1 (ja) |
JP (1) | JP5560194B2 (ja) |
KR (1) | KR101613752B1 (ja) |
CN (1) | CN102239194B (ja) |
WO (1) | WO2010038835A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013076038A (ja) * | 2011-09-30 | 2013-04-25 | Bridgestone Corp | 変性天然ゴムラテックス及びその製造方法、並びに、変性天然ゴム、ゴム組成物、及びタイヤ |
JP2013079339A (ja) * | 2011-10-04 | 2013-05-02 | Bridgestone Corp | 変性天然ゴムラテックス及びその製造方法、並びに、変性天然ゴム、ゴム組成物、及びタイヤ |
US20130165588A1 (en) * | 2011-12-21 | 2013-06-27 | Ralf Mruk | Method of making a graft copolymer |
US20130165587A1 (en) * | 2011-12-21 | 2013-06-27 | Ralf Mruk | Graft copolymer |
KR101282844B1 (ko) * | 2010-08-13 | 2013-07-05 | 세종대학교산학협력단 | 공액디엔계 분절 공중합체의 제조 방법 |
JP2013139563A (ja) * | 2011-12-21 | 2013-07-18 | Goodyear Tire & Rubber Co:The | コポリマー、製造法、ゴム組成物及びタイヤ |
US8557926B2 (en) * | 2010-05-07 | 2013-10-15 | The Yokohama Rubber Co., Ltd. | Method for producing modified polymer |
WO2015114999A1 (ja) * | 2014-01-31 | 2015-08-06 | 横浜ゴム株式会社 | ポリマー変性剤組成物、変性ポリマー、ゴム組成物およびタイヤ |
JP2015199834A (ja) * | 2014-04-08 | 2015-11-12 | 東洋ゴム工業株式会社 | 共重合体及びその製造方法、並びにゴム組成物及び空気入りタイヤ |
JP2015229689A (ja) * | 2014-06-03 | 2015-12-21 | Jsr株式会社 | グラフト共重合体の製造方法、重合体組成物、粘着剤及び重合体 |
JP2016533406A (ja) * | 2014-06-03 | 2016-10-27 | エルジー・ケム・リミテッド | コア−シェル構造の重合体粒子及びこれを含むゴム組成物 |
WO2017170250A1 (ja) * | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | 共重合体の製造方法、及びラテックスの製造方法 |
CN108864774A (zh) * | 2018-07-20 | 2018-11-23 | 江南大学 | 一种棉织物染色用反应性自分散纳米炭黑的制备方法 |
CN113461866A (zh) * | 2021-07-28 | 2021-10-01 | 四川大学 | 亲水性废橡胶粉、高强度复合水凝胶及其制备方法与用途 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8759451B2 (en) * | 2011-12-21 | 2014-06-24 | The Goodyear Tire & Rubber Company | Method of making a graft copolymer |
JP6024757B2 (ja) * | 2012-09-25 | 2016-11-16 | 東レ株式会社 | 天然ゴム含有熱可塑性樹脂組成物およびその成形品 |
WO2014050665A1 (ja) * | 2012-09-25 | 2014-04-03 | Jsr株式会社 | 変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ |
JP5533985B2 (ja) * | 2012-11-16 | 2014-06-25 | 横浜ゴム株式会社 | 変性ポリマー |
CN103030755B (zh) * | 2013-01-18 | 2015-04-22 | 复旦大学 | 使用可逆加成-断裂转移自由基聚合合成嵌段共聚物的方法 |
CN103509159B (zh) * | 2013-09-23 | 2018-12-18 | 北京石油化工学院 | 低凝胶率溶聚丁苯橡胶的接枝改性方法 |
US10472449B2 (en) * | 2016-04-18 | 2019-11-12 | The University Of Akron | Polybutadiene graft copolymers as coupling agents for carbon black and silica dispersion in rubber compounds |
WO2018106398A1 (en) | 2016-12-05 | 2018-06-14 | Exxonmobil Chemical Patents Inc. | Poly(vinylbiphenyl) and poly(vinylcyclohexylstyrene) polymers and articles therefrom |
KR102155685B1 (ko) * | 2018-12-20 | 2020-09-14 | 금호석유화학 주식회사 | 시드 중합 조성물, 공액 디엔계 공중합체, 성형체 및 이의 제조방법 |
KR102188670B1 (ko) * | 2019-05-23 | 2020-12-08 | 한국타이어앤테크놀로지 주식회사 | 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어 |
KR102537159B1 (ko) | 2019-07-24 | 2023-05-30 | 주식회사 엘지화학 | 그라프트 공중합체의 제조방법 |
CN113880987B (zh) * | 2021-10-09 | 2023-05-16 | 安徽工程大学 | 一种橡胶用无机填料大分子改性剂及其制备方法、改性无机填料及应用 |
CN117603414B (zh) * | 2024-01-24 | 2024-04-26 | 山东耐斯特炭黑有限公司 | 一种导电炭黑的制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653763B2 (ja) | 1985-08-26 | 1994-07-20 | ダイセル化学工業株式会社 | セルロ−ス系カルバメ−ト誘導体 |
JPH0657767B2 (ja) | 1987-01-28 | 1994-08-03 | 住友化学工業株式会社 | 変性ゴム組成物 |
JPH07164821A (ja) * | 1993-12-10 | 1995-06-27 | Bridgestone Corp | 空気入りタイヤ |
WO2004014962A1 (ja) * | 2002-08-08 | 2004-02-19 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
WO2004014848A1 (ja) * | 2002-08-06 | 2004-02-19 | Otsuka Chemical Co., Ltd. | 有機テルル化合物、その製造方法、リビングラジカル重合開始剤、それを用いるポリマーの製造方法及びポリマー |
JP2005290024A (ja) * | 2004-03-31 | 2005-10-20 | Bridgestone Corp | ゴム組成物及びそれを用いた重荷重用空気入りタイヤ |
JP2006512459A (ja) | 2002-12-31 | 2006-04-13 | ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー | 制御された重合 |
JP2006152117A (ja) * | 2004-11-29 | 2006-06-15 | Bridgestone Corp | 大型車両用ラジアルタイヤ |
JP2006225524A (ja) | 2005-02-17 | 2006-08-31 | Kobe Univ | 有機テルル化合物を用いた水性液の製造方法 |
JP2006299278A (ja) | 2002-08-08 | 2006-11-02 | Otsuka Chemical Co Ltd | リビングラジカルポリマーの製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPR404801A0 (en) * | 2001-03-28 | 2001-04-26 | Polymerat Pty Ltd | A method of polymerization |
US7344752B2 (en) * | 2004-12-27 | 2008-03-18 | The Goodyear Tire & Rubber Company | Core-shell particles synthesized through controlled free radical polymerization |
US8604133B2 (en) * | 2005-02-14 | 2013-12-10 | Toyota Jidosha Kabushiki Kaisha | Graft copolymer and process for producing the same |
JP5019750B2 (ja) * | 2006-01-31 | 2012-09-05 | 株式会社ブリヂストン | 変性天然ゴム及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ |
-
2009
- 2009-10-01 US US13/122,524 patent/US20110224351A1/en not_active Abandoned
- 2009-10-01 CN CN200980148508.3A patent/CN102239194B/zh active Active
- 2009-10-01 EP EP09817867.6A patent/EP2345679B1/en active Active
- 2009-10-01 KR KR1020117007549A patent/KR101613752B1/ko not_active IP Right Cessation
- 2009-10-01 WO PCT/JP2009/067178 patent/WO2010038835A1/ja active Application Filing
- 2009-10-01 JP JP2010531907A patent/JP5560194B2/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653763B2 (ja) | 1985-08-26 | 1994-07-20 | ダイセル化学工業株式会社 | セルロ−ス系カルバメ−ト誘導体 |
JPH0657767B2 (ja) | 1987-01-28 | 1994-08-03 | 住友化学工業株式会社 | 変性ゴム組成物 |
JPH07164821A (ja) * | 1993-12-10 | 1995-06-27 | Bridgestone Corp | 空気入りタイヤ |
WO2004014848A1 (ja) * | 2002-08-06 | 2004-02-19 | Otsuka Chemical Co., Ltd. | 有機テルル化合物、その製造方法、リビングラジカル重合開始剤、それを用いるポリマーの製造方法及びポリマー |
WO2004014962A1 (ja) * | 2002-08-08 | 2004-02-19 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
JP2006299278A (ja) | 2002-08-08 | 2006-11-02 | Otsuka Chemical Co Ltd | リビングラジカルポリマーの製造方法 |
JP2006512459A (ja) | 2002-12-31 | 2006-04-13 | ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー | 制御された重合 |
JP2005290024A (ja) * | 2004-03-31 | 2005-10-20 | Bridgestone Corp | ゴム組成物及びそれを用いた重荷重用空気入りタイヤ |
JP2006152117A (ja) * | 2004-11-29 | 2006-06-15 | Bridgestone Corp | 大型車両用ラジアルタイヤ |
JP2006225524A (ja) | 2005-02-17 | 2006-08-31 | Kobe Univ | 有機テルル化合物を用いた水性液の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2345679A4 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8557926B2 (en) * | 2010-05-07 | 2013-10-15 | The Yokohama Rubber Co., Ltd. | Method for producing modified polymer |
TWI494336B (zh) * | 2010-05-07 | 2015-08-01 | Yokohama Rubber Co Ltd | Preparation of modified polymers |
KR101282844B1 (ko) * | 2010-08-13 | 2013-07-05 | 세종대학교산학협력단 | 공액디엔계 분절 공중합체의 제조 방법 |
JP2013076038A (ja) * | 2011-09-30 | 2013-04-25 | Bridgestone Corp | 変性天然ゴムラテックス及びその製造方法、並びに、変性天然ゴム、ゴム組成物、及びタイヤ |
JP2013079339A (ja) * | 2011-10-04 | 2013-05-02 | Bridgestone Corp | 変性天然ゴムラテックス及びその製造方法、並びに、変性天然ゴム、ゴム組成物、及びタイヤ |
US9133310B2 (en) * | 2011-12-21 | 2015-09-15 | The Goodyear Tire & Rubber Company | Graft copolymer |
US20130165588A1 (en) * | 2011-12-21 | 2013-06-27 | Ralf Mruk | Method of making a graft copolymer |
US20130165587A1 (en) * | 2011-12-21 | 2013-06-27 | Ralf Mruk | Graft copolymer |
JP2013139563A (ja) * | 2011-12-21 | 2013-07-18 | Goodyear Tire & Rubber Co:The | コポリマー、製造法、ゴム組成物及びタイヤ |
US9156932B2 (en) * | 2011-12-21 | 2015-10-13 | The Goodyear Tire & Rubber Company | Method of making a graft copolymer |
US9701761B2 (en) | 2014-01-31 | 2017-07-11 | The Yokohama Rubber Co., Ltd. | Polymer modifying agent composition, modified polymer, rubber composition and tire |
JP2015163667A (ja) * | 2014-01-31 | 2015-09-10 | 横浜ゴム株式会社 | ポリマー変性剤組成物、変性ポリマー、ゴム組成物およびタイヤ |
WO2015114999A1 (ja) * | 2014-01-31 | 2015-08-06 | 横浜ゴム株式会社 | ポリマー変性剤組成物、変性ポリマー、ゴム組成物およびタイヤ |
JP2015199834A (ja) * | 2014-04-08 | 2015-11-12 | 東洋ゴム工業株式会社 | 共重合体及びその製造方法、並びにゴム組成物及び空気入りタイヤ |
JP2015229689A (ja) * | 2014-06-03 | 2015-12-21 | Jsr株式会社 | グラフト共重合体の製造方法、重合体組成物、粘着剤及び重合体 |
JP2016533406A (ja) * | 2014-06-03 | 2016-10-27 | エルジー・ケム・リミテッド | コア−シェル構造の重合体粒子及びこれを含むゴム組成物 |
US9902796B2 (en) | 2014-06-03 | 2018-02-27 | Lg Chem, Ltd. | Core-shell structured polymer particles and rubber composition including the same |
WO2017170250A1 (ja) * | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | 共重合体の製造方法、及びラテックスの製造方法 |
CN108864774A (zh) * | 2018-07-20 | 2018-11-23 | 江南大学 | 一种棉织物染色用反应性自分散纳米炭黑的制备方法 |
CN113461866A (zh) * | 2021-07-28 | 2021-10-01 | 四川大学 | 亲水性废橡胶粉、高强度复合水凝胶及其制备方法与用途 |
Also Published As
Publication number | Publication date |
---|---|
EP2345679A1 (en) | 2011-07-20 |
KR101613752B1 (ko) | 2016-04-19 |
EP2345679B1 (en) | 2016-04-27 |
KR20110079634A (ko) | 2011-07-07 |
CN102239194A (zh) | 2011-11-09 |
JPWO2010038835A1 (ja) | 2012-03-01 |
JP5560194B2 (ja) | 2014-07-23 |
US20110224351A1 (en) | 2011-09-15 |
EP2345679A4 (en) | 2012-09-26 |
CN102239194B (zh) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5560194B2 (ja) | グラフト共重合体の製造方法、その方法で得られたグラフト共重合体、及び該グラフト共重合体を含むゴム組成物とタイヤ | |
JP4881534B2 (ja) | ジエン系ゴム・無機化合物複合体およびその製造方法並びにゴム組成物 | |
JP4852736B2 (ja) | ゴム組成物 | |
JP5021968B2 (ja) | ゴム組成物及びその製造方法 | |
KR100394130B1 (ko) | 디엔계고무조성물 | |
WO2019151126A1 (ja) | 組成物、架橋成形体及びタイヤ | |
JP5889787B2 (ja) | フリーラジカル開始重合によるヒドロキシアリール官能化共重合体の製造方法 | |
WO2019151127A1 (ja) | 組成物、架橋成形体及びタイヤ | |
JPWO2015029909A1 (ja) | タイヤ用ゴム組成物及びこれを用いる空気入りタイヤ | |
JP6252583B2 (ja) | 重合体組成物、架橋重合体、タイヤ及び重合体 | |
JP2007326990A (ja) | ゴム組成物及びそれを用いたタイヤ | |
WO2009151103A1 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP2011148956A (ja) | ゴム組成物及び該ゴム組成物を用いたトレッド及びタイヤ | |
JP5121300B2 (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP5319041B2 (ja) | ゴム組成物 | |
JP4117136B2 (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP2003253046A (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP3970631B2 (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP7160473B2 (ja) | 共役ジエン系共重合体組成物、その製造方法、およびそれを含むゴム組成物 | |
JP4670132B2 (ja) | 共役ジエン系重合体及びその製法 | |
JP4588176B2 (ja) | 共役ジエン系重合体及びそれを用いたゴム組成物 | |
JP2009029943A (ja) | ゴム組成物及びタイヤ | |
JP2007277338A (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
KR20230140390A (ko) | 중합체 조성물 및 그의 제조 방법, 배합물, 가교체 그리고 타이어 | |
JP2024062294A (ja) | 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980148508.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09817867 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010531907 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117007549 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2934/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009817867 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13122524 Country of ref document: US |