WO2010010613A1 - Procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide, et d'un composé de type paire d'ions - Google Patents

Procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide, et d'un composé de type paire d'ions Download PDF

Info

Publication number
WO2010010613A1
WO2010010613A1 PCT/JP2008/063179 JP2008063179W WO2010010613A1 WO 2010010613 A1 WO2010010613 A1 WO 2010010613A1 JP 2008063179 W JP2008063179 W JP 2008063179W WO 2010010613 A1 WO2010010613 A1 WO 2010010613A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
mol
purity
reaction
compound
Prior art date
Application number
PCT/JP2008/063179
Other languages
English (en)
Japanese (ja)
Inventor
学 菊田
真大 北尾
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN2008801295811A priority Critical patent/CN102046523A/zh
Priority to JP2010521556A priority patent/JP5461401B2/ja
Priority to PCT/JP2008/063179 priority patent/WO2010010613A1/fr
Priority to KR1020107025605A priority patent/KR101291903B1/ko
Publication of WO2010010613A1 publication Critical patent/WO2010010613A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a bis (fluorosulfonyl) imide anion compound used for the synthesis of battery electrolytes and ionic liquids and the like, and an ion-pair compound containing a bis (fluorosulfonyl) imide anion compound obtained by the production method. is there.
  • the production method of the bis (fluorosulfonyl) imide anion which is an anion containing fluorine element, is disclosed as a method using a very expensive raw material such as fluorosulfonic acid or fluoroisocyanate, or a reaction with a low yield. In many cases, this is a method using Alternatively, a gas that is not easy to handle is used, which is not preferable in terms of cost for production by a general industrial technique.
  • JP-A-8-511274 discloses a reaction between fluorosulfonic acid and urea, but uses a strongly acidic raw material and is very difficult to handle.
  • Martin et al. discloses a synthesis method using raw materials composed of urea and fluorosulfonic acid, but impurities such as fluorosulfonic acid remain. There is a problem.
  • the synthesis method which consists of sulfamic acid, thionyl chloride, and fluorosulfonic acid is also disclosed, many mixtures of a fluoride and a chloride exist.
  • a reaction using chlorosulfonic acid instead of fluorosulfonic acid, which is difficult to use industrially, is disclosed, but the reaction takes 24 hours or more, and a reaction bath is also used in the fluorination reaction.
  • the present inventors have carried out fluorine substitution on a bis (chlorosulfonyl) imide compound obtained using sulfamic acid, chlorosulfonic acid and a halogenating agent as raw materials.
  • a bis (chlorosulfonyl) imide compound obtained using sulfamic acid, chlorosulfonic acid and a halogenating agent as raw materials.
  • the reaction is controlled, and by using a basic catalyst together with an alkali metal fluoride salt in a halogen exchange fluorination reaction, efficient fluorination is possible, and there is almost no residual halogen atom other than fluorine.
  • a pure bis (fluorosulfonyl) imide anion compound can be obtained with sufficient yield and cost.
  • the sulfamic acid used in the present invention is not particularly limited, but is preferably subjected to a drying treatment. Although it does not specifically limit as a drying process, Heat drying, reduced pressure drying, and the storage in a dry gas can be mentioned.
  • sulfamic acid can be dried by heating at 60 ° C. or higher, preferably 80 ° C. or higher.
  • vacuum drying the pressure is preferably 10 kPa ⁇ s or less, and drying is accelerated by heating. It can also be dried by leaving it in a dry gas environment such as dry air, nitrogen, argon or helium for a long time. These drying methods may be used alone or in combination with, for example, introducing a dry gas into heat drying and vacuum drying.
  • containers used for drying are not particularly limited, and those dried by a dryer may be introduced into the reaction container.
  • sulfamic acid may be introduced into the reaction vessel in advance, and one or more of heating, decompression and introduction of dry gas may be appropriately performed.
  • the water content of the dried sulfamic acid is preferably 1% (% by weight, the same applies hereinafter) or less, more preferably 0.1% or less.
  • the chlorosulfonic acid used in the present invention is not particularly limited, but is preferably stored in a state of blocking moisture and having a purity of 95% or more, more preferably 98% or more.
  • moisture content mixes brings about a purity fall, and when the purity is less than 95%, it will bring about the fall of a yield.
  • halogenating agent used in the present invention is not particularly limited, phosphorus trichloride, phosphorus pentachloride and thionyl chloride are preferable from the viewpoint of easy handling, and thionyl chloride is particularly preferable from the viewpoint of easy removal of by-products.
  • the halogenating agent is stored in a state where moisture is blocked, and the purity is preferably 95% or more, and more preferably 98% or more.
  • the blending amount of sulfamic acid, chlorosulfonic acid and halogenating agent is preferably 0.9 to 1.1 mol of chlorosulfonic acid per 1 mol of sulfamic acid. Furthermore, it is particularly preferable to add 0.95 to 1.05 mol of chlorosulfonic acid. If the chlorosulfonic acid is less than 0.9 mol, the unreacted intermediate remains and the purity and yield are low. If the chlorosulfonic acid exceeds 1.1 mol, the chlorosulfonic acid remains and it is necessary to remove the strongly acidic substance. .
  • the halogenating agent is preferably added in an amount of 2.0 to 4.0 mol, more preferably 2.2 to 3.0 mol, per 1 mol of sulfamic acid.
  • the halogenating agent is less than 2.0 mol, the yield and purity are lowered. If the halogenating agent exceeds 4.0 mol, the cost increases.
  • the order of introducing the sulfamic acid, chlorosulfonic acid and halogenating agent into the reactor is not particularly limited, but it is preferable to introduce them at 80 ° C. or lower.
  • the volatilization of the raw material causes coloring, a decrease in yield, and a decrease in purity.
  • the dry gas used at the time of introduction is not particularly limited, but the moisture is preferably 1% or less, and more preferably 0.1% or less.
  • the dry gas include dry air, nitrogen, argon, helium, carbon dioxide, and the like. Among these, a gas containing no oxygen is preferable for the fluorine substitution reaction to be performed continuously.
  • the introduced sulfamic acid, chlorosulfonic acid and halogenating agent are stirred and mixed, and the reaction is carried out by heating.
  • the reaction is heated from the introduction temperature of the raw material to the reaction reaching temperature as needed.
  • the method for heating the reaction vessel is not particularly limited, and examples include heating with steam, heating with a heat medium, and heating with an electric heater.
  • the contents are preferably heated with boiling and reflux conditions appropriately controlled.
  • the time required for the temperature rise is preferably 24 hours or less, and more preferably 12 hours or less. When the time required for temperature rise exceeds 24 hours, the yield decreases.
  • the solution temperature is preferably allowed to reach 100 to 150 ° C., more preferably 105 to 140 ° C., and most preferably 110 to 130 ° C.
  • the solution temperature is less than 100 ° C., the reaction is not completed, and the yield and purity tend to decrease.
  • the solution temperature exceeds 150 ° C., it is colored due to thermal decomposition of the introduced raw materials and reaction products, resulting in a decrease in purity and yield.
  • the reaction time is preferably maintained within 24 hours after reaching the reaction temperature, and the reaction time is more preferably within 12 hours, most preferably within 6 hours from the viewpoint of time reduction and cost reduction. preferable. If it exceeds 24 hours, the coloring becomes strong, and the purity and yield decrease.
  • the dry gas used during the reaction is preferably a gas that does not contain oxygen, such as nitrogen, argon, helium, and carbon dioxide, preferably has a moisture content of 0.5% or less, and more preferably has a moisture content of 0.1% or less.
  • the oxygen concentration is preferably 1% or less. When the moisture content of the dry gas exceeds 0.1%, the yield and purity are lowered, and when the oxygen concentration exceeds 1%, coloring occurs and the purity is lowered.
  • the amount of the dry gas introduced is preferably 0.005 to 10 liters / minute with respect to 1 mol of sulfamic acid.
  • hydrochloric acid and sulfur dioxide as by-products by the reaction are removed by gas, and removal from the reaction vessel by the introduced dry gas stream is preferable from the viewpoint of yield and purity. Therefore, the most preferred dry gas is nitrogen, argon or helium.
  • a base catalyst is preferable, and aliphatic tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, tri (hydroxyethyl) amine, methylpiperidine, dimethylpiperazine, diazabicyclooctane, Trialkylphosphine such as trimethylphosphine and triethylphosphine is preferable.
  • the catalyst is preferably added in the range of 0.0001 to 0.1 mole per mole of sulfamic acid.
  • the solvent may not be used, but can be added. Although it does not specifically limit as a solvent which can be added, The compound which does not have an aromatic proton is preferable.
  • the bis (chlorosulfonyl) imidic acid obtained by this reaction may be subjected to fluorine substitution as it is, or may be once transferred to a storage container and stored. Furthermore, fluorine substitution may be performed as a bis (chlorosulfonyl) imidoate by a neutralization reaction, and it may be once stored in a storage container.
  • Compounds used for neutralization include hydroxides and carbonates of alkali metals such as potassium, sodium, lithium, and calcium.
  • alkali metals such as potassium, sodium, lithium, and calcium.
  • potassium chloride, sodium chloride, lithium chloride It is preferable to carry out dehydrohalogenation using halides such as calcium chloride, potassium bromide and potassium iodide.
  • Bis (chlorosulfonyl) imide acid or bis (chlorosulfonyl) imidoate can be converted to a bis (fluorosulfonyl) imide salt compound by fluorine substitution.
  • the fluoride salt used for the fluorine substitution is not particularly limited, but ion pair compounds having a fluorine atom such as hydrofluoric acid, ammonium fluoride, metal fluoride, and quaternary ammonium fluoride salt can be exemplified. From this point, metal fluoride is preferable, and LiF, KF, CaF 2 , CsF, and RbF are more preferable because of reactivity. These fluoride salts are preferably dried well, preferably have a moisture content of 0.5% or less, more preferably 0.2% or less, and 0.1% or less. Is most preferred. If the water content exceeds 0.5%, the reaction rate of the fluorine substitution decreases, and an excessive fluoride salt is required, resulting in an increase in cost.
  • the method for drying the fluoride salt is not particularly limited, and heat drying, hot air drying, reduced pressure drying, drying with a dry gas, and the like can be used. Furthermore, you may dry directly by pressure reduction or superheating in the reaction container used for fluorine substitution. Or after dispersing in an organic solvent to form a slurry, drying may be performed by mixing a dehydrating agent such as molecular sieve.
  • the shape of the fluoride salt used in this reaction is not particularly limited, but those having a large surface area are preferred.
  • Examples of the method for increasing the surface area include a spray drying method and a mechanical pulverization method using a bead mill or a ball mill. Of these, those spray-dried are particularly preferred.
  • These fluoride salts can be used alone or in combination of a plurality of fluoride salts.
  • the amount of these fluoride salts is not particularly limited, but it is preferably used in an amount of 3.0 to 9.0 mol with respect to 1 mol of bis (chlorosulfonyl) imidic acid. Further, it is preferably used in an amount of 3.0 to 5.0 mol from the viewpoint of cost. It is preferably used in an amount of 2.0 to 6.0 mol with respect to 1 mol of bis (chlorosulfonyl) imidoate, and particularly preferably 2.0 to 3.0 mol in terms of cost.
  • Fluorine substitution is carried out by mixing bis (chlorosulfonyl) imidic acid or bis (chlorosulfonyl) imidate with a fluoride salt.
  • the mixing method is not particularly limited, and examples thereof include direct mixing with a fluoride salt, mixing into a slurry in which the fluoride salt is dispersed, introduction into a column packed with fluoride salt, and the like.
  • a catalyst may be added.
  • the catalyst that can be added is not particularly limited, but a base catalyst is particularly preferable.
  • Base catalysts include primary amines such as ammonia, methylamine, ethylamine, propylamine, hydroxyethylamine, aniline, dimethylamine, methylethylamine, diethylamine, dipropylamine, dibutylamine, dihydroxyethylamine, piperidine, piperazine, diphenylamine and the like.
  • Tertiary amine trimethylamine, diethylmethylamine, ethyldimethylamine, triethylamine, tripropylamine, tributylamine, tri (hydroxyethyl) amine
  • tertiary amines such as methylpiperidine, dimethylpiperazine
  • aromatics such as pyridine, imidazole, methylimidazole Examples are amines, and these salts are also included.
  • a tertiary amine and an aromatic amine are preferable from the viewpoint of reactivity and the like, and triethylamine and pyridine are particularly preferable from the viewpoint of cost and ease of removal.
  • base catalysts can be used alone or in combination of a plurality of base catalysts.
  • the base catalyst can be used regardless of the presence or absence of a reaction solvent, and in the range of 0.0001 to 1.2 mol per 1 mol of bis (chlorosulfonyl) imidic acid or bis (chlorosulfonyl) imidate from the viewpoint of cost. It is preferable to add at.
  • Fluorine substitution can be carried out without a solvent or by adding a solvent.
  • Solvents that can be added are not particularly limited, but aromatic solvents such as benzene, toluene, xylene, and anisole, ester solvents such as ethyl acetate, propyl acetate, and butyl acetate, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, methyl Ether solvents such as ethyl ether, diethyl ether, tetrahydrofuran and dioxane, alcohol solvents such as methanol, ethanol, propanol and butanol, aprotic polarities such as acetonitrile, nitromethane, dimethyl sulfoxide, N, N-dimethylformamide and benzonitrile A solvent etc.
  • aromatic solvents such as benzene, toluene, xylene, and anisole
  • ester solvents such as ethyl acetate,
  • aprotic polar solvents are preferable from the viewpoint of reaction rate and yield
  • acetonitrile, N, N-dimethylformamide, tetrahydrofuran, dioxane, and ethyl acetate are particularly preferable from the viewpoint of cost and solvent removal.
  • solvents can be used alone or in a mixture of a plurality of solvents.
  • the reaction temperature is not particularly limited, but it is preferably controlled in the range of 5 to 100 ° C, more preferably in the range of 5 to 70 ° C.
  • the reaction temperature is less than 5 ° C., the reaction rate becomes slow and a reaction time is required.
  • reaction temperature exceeds 100 degreeC, coloring will become large and purity and a yield will fall.
  • moisture it is preferable to prevent moisture from being mixed in the fluorine substitution.
  • transducing dry gas into a reaction container can be used.
  • the dry gas that can be used include dry air, nitrogen, argon, helium, carbon dioxide, and the like.
  • the moisture is preferably 0.5% or less, and more preferably 0.1% or less. . If the moisture content of the dry gas exceeds 0.5%, the yield and purity are lowered.
  • the bis (fluorosulfonyl) imidate obtained by the reaction can be used as it is. Further, the purity may be further increased by purification.
  • the purification method is not particularly limited, and examples thereof include reprecipitation using a solvent, recrystallization, distillation of bis (fluorosulfonyl) imidic acid, and the like.
  • Example 1 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) 38 g (0.33 mol) with a purity of 97% or more manufactured by Kojun Pharmaceutical Co., Ltd., and 106 g (0.77 mol) of phosphorous trichloride (99% or more with a purity of Wako Pure Chemical Industries) were slowly added dropwise to dry nitrogen (dew point -60 C. or less) was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 110 ° C. over 4 hours and maintained at the reaction temperature for 10 hours, and then cooled to room temperature to obtain 90 g of a reaction product A-1 containing bis (chlorosulfonyl) imidic acid.
  • the flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • 90 g of the reactant A-1 was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 25 ° C. for 48 hours. Thereafter, the reaction solution was filtered and concentrated, and further dissolved in ethanol at 60 ° C. and cooled to obtain 35 g of white crystals.
  • Example 2 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried at room temperature under a reduced pressure of 1.6 kPa for 8 hours, and the water content after drying was 600 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) 38 g (0.33 mol) with a purity of 97% or more manufactured by Kojun Pharmaceutical Co., Ltd., and 130 g (0.61 mol) of phosphorus pentachloride (99% or more with a purity of Wako Pure Chemical Industries) were slowly added dropwise, and dry nitrogen (dew point -60 C. or less) was introduced at 0.02 liter / min for 60 minutes.
  • the flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • 115 g of reactant A-2 was added dropwise over 2 hours while cooling the solution, and then maintained at a temperature of 25 ° C. for 48 hours. Thereafter, the reaction solution was filtered and concentrated, further dissolved in ethanol at 60 ° C., and cooled to obtain 40 g of white crystals.
  • Example 3 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) Charge 35 g (0.30 mol), purity 97% or more, made by Kojun Pharmaceutical Co., Ltd., add 146 g (1.08 mol) thionyl chloride (purity 95% or more, manufactured by Wako Pure Chemical Industries), dry nitrogen (dew point -60 °C or less) Was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 130 ° C. over 8 hours, maintained at the reaction temperature for 4 hours, and then cooled to room temperature to obtain 65 g of a reaction product A-3 containing bis (chlorosulfonyl) imidic acid.
  • the flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • 65 g of the reaction product A-3 was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 40 ° C. for 8 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 62 g of white crystals.
  • the resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity Chlorine was 1.5 ppm and the yield was 92%.
  • Example 4 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heating dryer at 50 ° C. for 1 hour, and the moisture after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid, chlorosulfonic acid (sum) 36 g (0.31 mol) of Koyo Pure Chemical Co., Ltd., with purity of 97% or more) were added, and 88 g (0.65 mol) of thionyl chloride (purity 95% or more of Wako Pure Chemical Industries, Ltd.) and 0.2 g (0.002 mol) of triethylamine were added. Then, dry argon (dew point of ⁇ 60 ° C.
  • Example 5 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid, thionyl chloride (Wako Pure) Chlorosulfonic acid (Wako Pure Chemicals purity 97% or more) 36 g (0.31 mol) was added dropwise while charging 100 g (0.74 mol) of pharmaceutical product purity 95% or more) and heating to 50 ° C., and dry nitrogen (dew point) ⁇ 60 ° C. or less) was introduced at 0.02 liter / min for 60 minutes.
  • the temperature of the vessel was raised to 100 ° C. over 8 hours, and after maintaining the reaction temperature for 12 hours, the vessel was cooled to room temperature to obtain 60 g of a reaction product A-5 containing bis (chlorosulfonyl) imidic acid.
  • Example 6 30 g (0.31 mol) of sulfamic acid (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) was dried for 3 hours under a reduced pressure of 1.3 kPa with a vacuum dryer at 60 ° C., and the water content after drying was 150 ppm. It was.
  • a 500 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, then 30 g (0.31 mol) of dried sulfamic acid, thionyl chloride (Wako Pure) 88 g (0.65 mol) of pharmaceutical product purity 95% or higher and 36 g (0.31 mol) of chlorosulfonic acid (purity 97% or higher product manufactured by Wako Pure Chemical Industries) were charged, and dry nitrogen (dew point -60 ° C. or lower) was set to 0. 0. 0. Introduced at 05 liters / minute for 60 minutes. Next, the temperature of the container was raised to 130 ° C. over 8 hours, and after maintaining the reaction temperature for 1 hour, it was cooled to room temperature to obtain 65 g of bis (chlorosulfonyl) imidic acid.
  • the flask was placed, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • dry nitrogen dew point: ⁇ 60 ° C. or lower
  • 65 g of bis (chlorosulfonyl) imidic acid was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 40 ° C. for 12 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 61 g of white crystals.
  • the resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectra of such 1382Cm -1 bis and (fluorosulfonyl) imide potassium, electromagnetic induction plasma emission analysis (ICP analysis) As a result, the impurity chlorine was 55 ppm, and the yield was 96%.
  • ICP analysis electromagnetic induction plasma emission analysis
  • Example 7 30 g (0.31 mol) of sulfamic acid (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) was dried at 6.7 kPa for 1 hour at room temperature, and the moisture after drying was 3000 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature.
  • Example 8 30 g (0.31 mol) of sulfamic acid (purity 99.5% or more, manufactured by Wako Pure Chemical Industries, Ltd.) 50 g, thionyl chloride in a 300 ml flask equipped with a reflux condenser, thermometer, stirring device, heating device, and dry gas introduction tube Charged with 100 g (0.74 mol) (purity 95% or higher, manufactured by Wako Pure Chemical Industries) and 36 g (0.31 mol) chlorosulfonic acid (purity 97% or higher, manufactured by Wako Pure Chemical Industries), dry nitrogen (dew point -60 ° C or lower) was introduced at 0.02 liter / min for 60 minutes, and then the vessel was heated to 120 ° C.
  • sulfamic acid purity 99.5% or more, manufactured by Wako Pure Chemical Industries, Ltd.
  • reaction product is cooled, 30 g (0.4 mol) of potassium chloride (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) is added, the hydrochloric acid gas is driven off, and the reaction product A- containing potassium bis (chlorosulfonyl) imide is added. 70 g of 8 was obtained.
  • potassium chloride purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.
  • the reaction solution was filtered and concentrated to obtain 61 g of white crystals.
  • the resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, the result of electromagnetic induction plasma emission spectrometry (ICP analysis)
  • the impurity chlorine was 55 ppm, and the yield was 95%.
  • ground potassium fluoride 35 g, 0.47 mol
  • 200 ml of methylene chloride was added
  • the reaction product B-1 was dissolved in 100 ml of methylene chloride and added into the flask.
  • the mixture was stirred for 3 hours at room temperature and then heated to 150 ° C. while distilling off the solvent.
  • the IR spectrum of the dried product in the flask was measured, and a peak of potassium bis (fluorosulfonyl) imide was observed.
  • 100 ml of tetrahydrofuran was added to the dried solid, filtered, and then added dropwise to methylene chloride to obtain 17 g of a dark brown solid.
  • This crystal was found to be a mixture containing potassium bis (fluorosulfonyl) imide from the IR spectrum.
  • the IR spectrum 845cm -1, purity by analogy from the peak and the peak of the other impurities 1188Cm -1 is estimated to less than 50%, and the yield was estimated to about 30% or less.
  • Examples of utilization of the bis (fluorosulfonyl) imide compound according to the present invention include device materials such as battery electrolytes and ionic liquids, production of pharmaceutical intermediates, and applications such as lubricating oil and heat medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne un procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide en substituant un composé de type anion du bis(chlorosulfonyl)imide, obtenu à partir d'acide sulfamique, d'acide chlorosulfonique, et d'un agent halogénant, par du fluor, qui est utilisé comme procédé de production d'un composé fluoré destiné à une utilisation, par exemple, dans la synthèse d'électrolytes d'accumulateurs et de liquides ioniques. Selon le procédé ci-dessus, l'inclusion d'impuretés peut être réduite, et un composé fluoré de pureté élevée d'un composé de type bis(fluorosulfonyl)imide peut être produit de manière efficace avec un rendement élevé. Un catalyseur basique peut être utilisé dans la réaction de substitution de l'anion bis(chlorosulfonyl)imide avec du fluor. Le catalyseur basique est de préférence un composé contenant de l'azote.
PCT/JP2008/063179 2008-07-23 2008-07-23 Procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide, et d'un composé de type paire d'ions WO2010010613A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801295811A CN102046523A (zh) 2008-07-23 2008-07-23 双(氟磺酰基)亚胺阴离子化合物的制备方法和离子对化合物
JP2010521556A JP5461401B2 (ja) 2008-07-23 2008-07-23 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法
PCT/JP2008/063179 WO2010010613A1 (fr) 2008-07-23 2008-07-23 Procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide, et d'un composé de type paire d'ions
KR1020107025605A KR101291903B1 (ko) 2008-07-23 2008-07-23 비스(플루오로설포닐)이미드 음이온 화합물의 제조 방법과 이온대화합물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063179 WO2010010613A1 (fr) 2008-07-23 2008-07-23 Procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide, et d'un composé de type paire d'ions

Publications (1)

Publication Number Publication Date
WO2010010613A1 true WO2010010613A1 (fr) 2010-01-28

Family

ID=41570091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063179 WO2010010613A1 (fr) 2008-07-23 2008-07-23 Procédé de production d'un composé de type anion du bis(fluorosulfonyl)imide, et d'un composé de type paire d'ions

Country Status (4)

Country Link
JP (1) JP5461401B2 (fr)
KR (1) KR101291903B1 (fr)
CN (1) CN102046523A (fr)
WO (1) WO2010010613A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140580A1 (fr) * 2009-06-03 2010-12-09 セントラル硝子株式会社 Procédé de production d'un sel d'acide imidique
WO2011149095A1 (fr) * 2010-05-28 2011-12-01 株式会社日本触媒 Sel de métal alcalin de fluorosulfonylimide, et procédé de production dudit sel de métal alcalin
WO2012026360A1 (fr) * 2010-08-24 2012-03-01 三菱マテリアル株式会社 Méthode de fabrication de bis(fluorosulfonyl)imide
WO2012096371A1 (fr) * 2011-01-14 2012-07-19 住友電気工業株式会社 Procédé de fabrication de composé du fluor
WO2012108284A1 (fr) * 2011-02-10 2012-08-16 日本曹達株式会社 Procédé pour la production de sel d'ammonium de fluorosulfonylimide
WO2012117961A1 (fr) * 2011-03-03 2012-09-07 日本曹達株式会社 Procédé de fabrication de sel d'ammonium de fluorosulfonylimide
US8377406B1 (en) 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
WO2013058069A1 (fr) * 2011-10-18 2013-04-25 住友電気工業株式会社 Procédé de fabrication d'un sel d'imide
TWI406869B (zh) * 2010-09-01 2013-09-01 Nippon Catalytic Chem Ind An alkali metal salt of fluosulfonyl imide and a process for producing the same
WO2014024682A1 (fr) * 2012-08-06 2014-02-13 日本曹達株式会社 Procédé de fabrication de bis(halosulfonyl)amine
US20140075746A1 (en) * 2011-05-24 2014-03-20 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
WO2014185125A1 (fr) * 2013-05-17 2014-11-20 住友電気工業株式会社 Batterie à sels fondus au sodium
US9233849B2 (en) 2011-03-03 2016-01-12 Nippon Soda Co., Ltd. Process for producing fluorine-containing sulfonylimide salt
JP2016145147A (ja) * 2015-02-03 2016-08-12 株式会社日本触媒 フルオロスルホニルイミド化合物の製造方法
EP3090984A1 (fr) * 2015-05-07 2016-11-09 Lonza Ltd Procédé de préparation de sels de certaines amines et de bis (fluorosulfonyl)-imide
JP2016204218A (ja) * 2015-04-24 2016-12-08 ステラケミファ株式会社 フルオロスルホニルイミド化合物の製造方法
JP2017514779A (ja) * 2014-04-18 2017-06-08 アルケマ フランス フルオロスルホニル基を含むイミドの調製
US9947967B2 (en) 2009-11-27 2018-04-17 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
JP2018172274A (ja) * 2012-11-22 2018-11-08 アルケマ フランス フルオロスルホニル基を含むイミド塩を調製するための方法
JP2019501858A (ja) * 2015-11-26 2019-01-24 シーエルエス インコーポレイテッド リチウムビス(フルオロスルホニル)イミドの新規の製造方法
EP3383842A4 (fr) * 2015-12-04 2019-08-21 Coorstek Fluorochemicals, Inc. Procédé de production de bis(fluorosulfonyl)imide d'hydrogène
FR3081720A1 (fr) * 2018-06-01 2019-12-06 Arkema France Procede de recuperation et/ou purification d'un sel de potassium du bis(fluorosulfonyl)imide
CN113165875A (zh) * 2018-11-16 2021-07-23 麻省固能控股有限公司 纯化的双(氟磺酰基)亚胺锂(LiFSI)产物、纯化粗制LiFSI的方法以及纯化的LiFSI产物的用途
WO2021171948A1 (fr) * 2020-02-27 2021-09-02 株式会社日本触媒 Composition, matériau de solution électrolytique et solution électrolytique
JP2021525207A (ja) * 2018-05-23 2021-09-24 アルケマ フランス フルオロスルホニル基を含有するイミド塩を調製するための方法
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
WO2022186160A1 (fr) 2021-03-01 2022-09-09 株式会社日本触媒 Méthode de production d'un compact d'électrolyte et compact d'électrolyte
WO2023276812A1 (fr) 2021-06-30 2023-01-05 株式会社日本触媒 Procédé de production de composition et solution électrolytique non aqueuse
WO2023276561A1 (fr) 2021-06-30 2023-01-05 株式会社日本触媒 Procédé de production d'une solution électrolytique non aqueuse
WO2023276568A1 (fr) 2021-06-30 2023-01-05 株式会社日本触媒 Méthode de purification d'une solution aqueuse de sulfonylimide, méthode de production d'un électrolyte non aqueux et méthode de production d'une composition d'électrolyte

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663393B (zh) * 2012-09-10 2015-09-30 江苏华盛精化工股份有限公司 双氟代磺酰亚胺锂的制备方法
US9284268B2 (en) * 2013-11-04 2016-03-15 Coorstek Fluorochemicals, Inc. Synthesis of fluorotrifluoromethylsulfonyl imide
CN104230722A (zh) * 2014-03-31 2014-12-24 深圳新宙邦科技股份有限公司 双氟磺酰亚胺鎓盐的制备方法
WO2017080831A1 (fr) * 2015-11-13 2017-05-18 Lonza Ltd Procédé de préparation de bis(fluorosulfonyl)imide et de ses sels
CN106219503B (zh) * 2016-07-12 2018-11-30 武汉松石科技股份有限公司 一种双(氟磺酰)亚胺及其碱金属盐的制备方法
FR3059994B1 (fr) * 2016-12-08 2021-03-19 Arkema France Procede de sechage et de purification de lifsi
FR3059993A1 (fr) * 2016-12-08 2018-06-15 Arkema France Procede de sechage et de purification du sel de lithium de bis(fluorosulfonyl)imide
KR101955096B1 (ko) * 2017-06-26 2019-03-06 임광민 매우 간단하고 효율적인 리튬 비스(플루오로술포닐)이미드의 새로운 제조방법
CN109911870A (zh) * 2017-11-28 2019-06-21 株式会社日本触媒 磺酰亚胺化合物、其制造方法、电解质组合物、电解液及锂离子电池
EP3750848B1 (fr) * 2018-04-10 2024-01-24 LG Energy Solution, Ltd. Méthode de préparation de sel de bis(fluorosulfonyl)imide de lithium
CN110155967A (zh) * 2019-06-18 2019-08-23 山东安博新材料研究院有限公司 一种双氟磺酰亚胺锂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522681A (ja) * 2000-12-29 2004-07-29 ハイドロ−ケベック ハロスルホニル基、又はジハロホスホニル基を含む化合物をフッ素化するための方法
JP2007182410A (ja) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522681A (ja) * 2000-12-29 2004-07-29 ハイドロ−ケベック ハロスルホニル基、又はジハロホスホニル基を含む化合物をフッ素化するための方法
JP2007182410A (ja) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANABU KIKUTA: "Chumoku Sareru Ion Ekitai no Gijutsu", SHINKI ANION-KEI NO ION-SEI EKITAI, JETI, vol. 54, no. 4, 1 April 2006 (2006-04-01), pages 117 - 119 *
MARTIN BERAN: "A New Method of the Preparation of Imido-bis(sulfuric acid) Dihalogenide, (F,Cl), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride", Z. ANORG. ALLG. CHEM, vol. 631, no. 1, 2005, pages 55 - 59 *

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840856B2 (en) 2009-06-03 2014-09-23 Central Glass Company, Limited Method for producing imidic acid salt
JP2010280586A (ja) * 2009-06-03 2010-12-16 Central Glass Co Ltd イミド酸塩の製造方法
WO2010140580A1 (fr) * 2009-06-03 2010-12-09 セントラル硝子株式会社 Procédé de production d'un sel d'acide imidique
US9947967B2 (en) 2009-11-27 2018-04-17 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
JP5074636B2 (ja) * 2010-05-28 2012-11-14 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
US9586833B2 (en) 2010-05-28 2017-03-07 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide, and production method therefor
US9079780B2 (en) 2010-05-28 2015-07-14 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide, and production method therefor
JPWO2011149095A1 (ja) * 2010-05-28 2013-07-25 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
US9985317B2 (en) 2010-05-28 2018-05-29 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide, and production method therefor
WO2011149095A1 (fr) * 2010-05-28 2011-12-01 株式会社日本触媒 Sel de métal alcalin de fluorosulfonylimide, et procédé de production dudit sel de métal alcalin
JP2012046360A (ja) * 2010-08-24 2012-03-08 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミドの製造方法
WO2012026360A1 (fr) * 2010-08-24 2012-03-01 三菱マテリアル株式会社 Méthode de fabrication de bis(fluorosulfonyl)imide
TWI406869B (zh) * 2010-09-01 2013-09-01 Nippon Catalytic Chem Ind An alkali metal salt of fluosulfonyl imide and a process for producing the same
JP2012144412A (ja) * 2011-01-14 2012-08-02 Sumitomo Electric Ind Ltd フッ素化合物の製造方法
CN103313933A (zh) * 2011-01-14 2013-09-18 住友电气工业株式会社 制造氟化合物的方法
CN103313933B (zh) * 2011-01-14 2015-09-02 住友电气工业株式会社 制造氟化合物的方法
WO2012096371A1 (fr) * 2011-01-14 2012-07-19 住友電気工業株式会社 Procédé de fabrication de composé du fluor
JP5729885B2 (ja) * 2011-02-10 2015-06-03 日本曹達株式会社 フルオロスルホニルイミド塩の製造方法
CN103347811A (zh) * 2011-02-10 2013-10-09 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
CN103347811B (zh) * 2011-02-10 2015-08-19 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
EP2674395A1 (fr) * 2011-02-10 2013-12-18 Nippon Soda Co., Ltd. Procédé pour la production de sel d'ammonium de fluorosulfonylimide
WO2012108284A1 (fr) * 2011-02-10 2012-08-16 日本曹達株式会社 Procédé pour la production de sel d'ammonium de fluorosulfonylimide
US9242862B2 (en) 2011-02-10 2016-01-26 Nippon Soda Co., Ltd. Process for production of fluorosulfonylimide ammonium salt
JPWO2012108284A1 (ja) * 2011-02-10 2014-07-03 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
EP2674395A4 (fr) * 2011-02-10 2014-07-23 Nippon Soda Co Procédé pour la production de sel d'ammonium de fluorosulfonylimide
CN103391896A (zh) * 2011-03-03 2013-11-13 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
JPWO2012117961A1 (ja) * 2011-03-03 2014-07-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
US9233849B2 (en) 2011-03-03 2016-01-12 Nippon Soda Co., Ltd. Process for producing fluorine-containing sulfonylimide salt
EP2660196A4 (fr) * 2011-03-03 2014-06-25 Nippon Soda Co Procédé de fabrication de sel d'ammonium de fluorosulfonylimide
JP2015157758A (ja) * 2011-03-03 2015-09-03 日本曹達株式会社 フルオロスルホニルイミド塩の製造方法
TWI461392B (zh) * 2011-03-03 2014-11-21 Nippon Soda Co 氟磺醯基醯亞胺銨鹽之製造方法
EP2660196A1 (fr) * 2011-03-03 2013-11-06 Nippon Soda Co., Ltd. Procédé de fabrication de sel d'ammonium de fluorosulfonylimide
EP3170789B1 (fr) 2011-03-03 2018-04-18 Nippon Soda Co., Ltd. Procédé de fabrication de sel d' ammonium fluorosulfonylimide
JP5740466B2 (ja) * 2011-03-03 2015-06-24 日本曹達株式会社 フルオロスルホニルイミド塩の製造方法
WO2012117961A1 (fr) * 2011-03-03 2012-09-07 日本曹達株式会社 Procédé de fabrication de sel d'ammonium de fluorosulfonylimide
US9096502B2 (en) 2011-03-03 2015-08-04 Nippon Soda Co., Ltd. Production process for fluorosulfonylimide ammonium salt
US20140075746A1 (en) * 2011-05-24 2014-03-20 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
US9440852B2 (en) 2011-05-24 2016-09-13 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
JP2015205815A (ja) * 2011-05-24 2015-11-19 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
JP2014516907A (ja) * 2011-05-24 2014-07-17 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
US9394172B2 (en) 2011-05-24 2016-07-19 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
US10547084B2 (en) 2011-05-24 2020-01-28 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
WO2013058069A1 (fr) * 2011-10-18 2013-04-25 住友電気工業株式会社 Procédé de fabrication d'un sel d'imide
JP2013087019A (ja) * 2011-10-18 2013-05-13 Sumitomo Electric Ind Ltd イミド塩の製造方法
US9352966B2 (en) 2011-10-18 2016-05-31 Sumitomo Electric Industries, Ltd. Method for producing imide salt
WO2014024682A1 (fr) * 2012-08-06 2014-02-13 日本曹達株式会社 Procédé de fabrication de bis(halosulfonyl)amine
JPWO2014024682A1 (ja) * 2012-08-06 2016-07-25 日本曹達株式会社 ビス(ハロスルホニル)アミンの製造方法
EP2881365B1 (fr) 2012-08-06 2018-11-28 Nippon Soda Co., Ltd. Procédé de fabrication de bis(halosulfonyl)amine
US9650250B2 (en) 2012-08-06 2017-05-16 Nippon Soda Co., Ltd. Method for producing bis(halosulfonyl)amine
JP2017226597A (ja) * 2012-08-06 2017-12-28 日本曹達株式会社 ビス(ハロスルホニル)アミンの製造方法
US8377406B1 (en) 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
JP2018172274A (ja) * 2012-11-22 2018-11-08 アルケマ フランス フルオロスルホニル基を含むイミド塩を調製するための方法
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
JP2014229357A (ja) * 2013-05-17 2014-12-08 住友電気工業株式会社 ナトリウム溶融塩電池
US9711827B2 (en) 2013-05-17 2017-07-18 Sumitomo Electric Industries, Ltd. Sodium molten salt battery
WO2014185125A1 (fr) * 2013-05-17 2014-11-20 住友電気工業株式会社 Batterie à sels fondus au sodium
CN111498819A (zh) * 2014-04-18 2020-08-07 阿肯马法国公司 制备含有氟磺酰基基团的酰亚胺
US10128525B2 (en) 2014-04-18 2018-11-13 Arkema France Preparation of imides containing a fluorosulfonyl group
JP2017514779A (ja) * 2014-04-18 2017-06-08 アルケマ フランス フルオロスルホニル基を含むイミドの調製
EP3131847B1 (fr) * 2014-04-18 2020-01-01 Arkema France Preparation d'imides contenant un groupement fluorosulfonyle
JP2020100548A (ja) * 2014-04-18 2020-07-02 アルケマ フランス フルオロスルホニル基を含むイミドの調製
JP2016145147A (ja) * 2015-02-03 2016-08-12 株式会社日本触媒 フルオロスルホニルイミド化合物の製造方法
JP2016204218A (ja) * 2015-04-24 2016-12-08 ステラケミファ株式会社 フルオロスルホニルイミド化合物の製造方法
EP3090984A1 (fr) * 2015-05-07 2016-11-09 Lonza Ltd Procédé de préparation de sels de certaines amines et de bis (fluorosulfonyl)-imide
JP2019501858A (ja) * 2015-11-26 2019-01-24 シーエルエス インコーポレイテッド リチウムビス(フルオロスルホニル)イミドの新規の製造方法
US11597650B2 (en) 2015-11-26 2023-03-07 CLS Inc. Method for preparing lithium bis(fluorosulfonyl)imide
EP3383842A4 (fr) * 2015-12-04 2019-08-21 Coorstek Fluorochemicals, Inc. Procédé de production de bis(fluorosulfonyl)imide d'hydrogène
JP2021525207A (ja) * 2018-05-23 2021-09-24 アルケマ フランス フルオロスルホニル基を含有するイミド塩を調製するための方法
JP7441801B2 (ja) 2018-05-23 2024-03-01 アルケマ フランス フルオロスルホニル基を含有するイミド塩を調製するための方法
FR3081720A1 (fr) * 2018-06-01 2019-12-06 Arkema France Procede de recuperation et/ou purification d'un sel de potassium du bis(fluorosulfonyl)imide
WO2019229363A3 (fr) * 2018-06-01 2020-03-12 Arkema France Procede de recuperation et/ou purification d'un sel de potassium du bis(fluorosulfonyl)imide
CN113165875A (zh) * 2018-11-16 2021-07-23 麻省固能控股有限公司 纯化的双(氟磺酰基)亚胺锂(LiFSI)产物、纯化粗制LiFSI的方法以及纯化的LiFSI产物的用途
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
JPWO2021171948A1 (fr) * 2020-02-27 2021-09-02
WO2021171948A1 (fr) * 2020-02-27 2021-09-02 株式会社日本触媒 Composition, matériau de solution électrolytique et solution électrolytique
JP7340685B2 (ja) 2020-02-27 2023-09-07 株式会社日本触媒 組成物、電解液材料及び電解液
WO2022186160A1 (fr) 2021-03-01 2022-09-09 株式会社日本触媒 Méthode de production d'un compact d'électrolyte et compact d'électrolyte
WO2023276812A1 (fr) 2021-06-30 2023-01-05 株式会社日本触媒 Procédé de production de composition et solution électrolytique non aqueuse
WO2023276561A1 (fr) 2021-06-30 2023-01-05 株式会社日本触媒 Procédé de production d'une solution électrolytique non aqueuse
WO2023276568A1 (fr) 2021-06-30 2023-01-05 株式会社日本触媒 Méthode de purification d'une solution aqueuse de sulfonylimide, méthode de production d'un électrolyte non aqueux et méthode de production d'une composition d'électrolyte

Also Published As

Publication number Publication date
CN102046523A (zh) 2011-05-04
JP5461401B2 (ja) 2014-04-02
KR20100134755A (ko) 2010-12-23
JPWO2010010613A1 (ja) 2012-01-05
KR101291903B1 (ko) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5461401B2 (ja) ビス(フルオロスルホニル)イミドアニオン化合物の製造方法
JP4705476B2 (ja) フッ素化合物の製造方法
KR101890787B1 (ko) 리튬비스플루오로설포닐이미드의 제조 방법
EP3024779B1 (fr) Synthèse de bis(fluorosulfonyl)imide d'hydrogène
US8377406B1 (en) Synthesis of bis(fluorosulfonyl)imide
RU2655326C2 (ru) Получение гексафторфосфатной соли и пентафторида фосфора
KR101901480B1 (ko) 이미드염의 제조 방법
JP6292996B2 (ja) フルオロ硫酸リチウムとそれを含む溶液の製造方法
JP7128427B2 (ja) 四フッ化硫黄の製造方法
JP5788791B2 (ja) フッ素−硫黄化合物の臭素促進的合成
KR20160065820A (ko) 오불화인의 정제 방법
JP6691740B2 (ja) フルオロスルホニルイミド化合物の製造方法
JP5341425B2 (ja) フッ化物ガスの製造方法
US7393980B2 (en) Use of a composition of an ionic nature as a substrate reagent, a composition constituting a fluorination reagent and a method using same
WO2000029324A1 (fr) Procede permettant de purifier l'hexafluorophosphate de lithium
JPH0416407B2 (fr)
JPH02218630A (ja) ハロフルオロベンゼンの製造法
KR20140012881A (ko) 설폰이미드 화합물 및 그 염들의 제조 방법
US6869582B2 (en) Process for the synthesis of BrSF5
WO2019044286A1 (fr) Procédé de production de sel métallique d'acide perfluoroalcane sulfonylimide
WO2000046180A1 (fr) Production d'anions-n(cf3)2 et utilisation de ceux-ci
JPH06345421A (ja) アンモニウム氷晶石の製造法
JPS60112750A (ja) テトラフルオロイソフタロニトリル
JPS60112751A (ja) テトラフルオロフタロニトリル類の製法
JP2007153757A (ja) 1,2−ジアリールアミノ−1,2−エチレンジカルボン酸アルキルエステルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129581.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521556

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107025605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08791436

Country of ref document: EP

Kind code of ref document: A1