WO2010010613A1 - Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound - Google Patents

Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound Download PDF

Info

Publication number
WO2010010613A1
WO2010010613A1 PCT/JP2008/063179 JP2008063179W WO2010010613A1 WO 2010010613 A1 WO2010010613 A1 WO 2010010613A1 JP 2008063179 W JP2008063179 W JP 2008063179W WO 2010010613 A1 WO2010010613 A1 WO 2010010613A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
mol
purity
reaction
compound
Prior art date
Application number
PCT/JP2008/063179
Other languages
French (fr)
Japanese (ja)
Inventor
学 菊田
真大 北尾
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to JP2010521556A priority Critical patent/JP5461401B2/en
Priority to PCT/JP2008/063179 priority patent/WO2010010613A1/en
Priority to KR1020107025605A priority patent/KR101291903B1/en
Priority to CN2008801295811A priority patent/CN102046523A/en
Publication of WO2010010613A1 publication Critical patent/WO2010010613A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a bis (fluorosulfonyl) imide anion compound used for the synthesis of battery electrolytes and ionic liquids and the like, and an ion-pair compound containing a bis (fluorosulfonyl) imide anion compound obtained by the production method. is there.
  • the production method of the bis (fluorosulfonyl) imide anion which is an anion containing fluorine element, is disclosed as a method using a very expensive raw material such as fluorosulfonic acid or fluoroisocyanate, or a reaction with a low yield. In many cases, this is a method using Alternatively, a gas that is not easy to handle is used, which is not preferable in terms of cost for production by a general industrial technique.
  • JP-A-8-511274 discloses a reaction between fluorosulfonic acid and urea, but uses a strongly acidic raw material and is very difficult to handle.
  • Martin et al. discloses a synthesis method using raw materials composed of urea and fluorosulfonic acid, but impurities such as fluorosulfonic acid remain. There is a problem.
  • the synthesis method which consists of sulfamic acid, thionyl chloride, and fluorosulfonic acid is also disclosed, many mixtures of a fluoride and a chloride exist.
  • a reaction using chlorosulfonic acid instead of fluorosulfonic acid, which is difficult to use industrially, is disclosed, but the reaction takes 24 hours or more, and a reaction bath is also used in the fluorination reaction.
  • the present inventors have carried out fluorine substitution on a bis (chlorosulfonyl) imide compound obtained using sulfamic acid, chlorosulfonic acid and a halogenating agent as raw materials.
  • a bis (chlorosulfonyl) imide compound obtained using sulfamic acid, chlorosulfonic acid and a halogenating agent as raw materials.
  • the reaction is controlled, and by using a basic catalyst together with an alkali metal fluoride salt in a halogen exchange fluorination reaction, efficient fluorination is possible, and there is almost no residual halogen atom other than fluorine.
  • a pure bis (fluorosulfonyl) imide anion compound can be obtained with sufficient yield and cost.
  • the sulfamic acid used in the present invention is not particularly limited, but is preferably subjected to a drying treatment. Although it does not specifically limit as a drying process, Heat drying, reduced pressure drying, and the storage in a dry gas can be mentioned.
  • sulfamic acid can be dried by heating at 60 ° C. or higher, preferably 80 ° C. or higher.
  • vacuum drying the pressure is preferably 10 kPa ⁇ s or less, and drying is accelerated by heating. It can also be dried by leaving it in a dry gas environment such as dry air, nitrogen, argon or helium for a long time. These drying methods may be used alone or in combination with, for example, introducing a dry gas into heat drying and vacuum drying.
  • containers used for drying are not particularly limited, and those dried by a dryer may be introduced into the reaction container.
  • sulfamic acid may be introduced into the reaction vessel in advance, and one or more of heating, decompression and introduction of dry gas may be appropriately performed.
  • the water content of the dried sulfamic acid is preferably 1% (% by weight, the same applies hereinafter) or less, more preferably 0.1% or less.
  • the chlorosulfonic acid used in the present invention is not particularly limited, but is preferably stored in a state of blocking moisture and having a purity of 95% or more, more preferably 98% or more.
  • moisture content mixes brings about a purity fall, and when the purity is less than 95%, it will bring about the fall of a yield.
  • halogenating agent used in the present invention is not particularly limited, phosphorus trichloride, phosphorus pentachloride and thionyl chloride are preferable from the viewpoint of easy handling, and thionyl chloride is particularly preferable from the viewpoint of easy removal of by-products.
  • the halogenating agent is stored in a state where moisture is blocked, and the purity is preferably 95% or more, and more preferably 98% or more.
  • the blending amount of sulfamic acid, chlorosulfonic acid and halogenating agent is preferably 0.9 to 1.1 mol of chlorosulfonic acid per 1 mol of sulfamic acid. Furthermore, it is particularly preferable to add 0.95 to 1.05 mol of chlorosulfonic acid. If the chlorosulfonic acid is less than 0.9 mol, the unreacted intermediate remains and the purity and yield are low. If the chlorosulfonic acid exceeds 1.1 mol, the chlorosulfonic acid remains and it is necessary to remove the strongly acidic substance. .
  • the halogenating agent is preferably added in an amount of 2.0 to 4.0 mol, more preferably 2.2 to 3.0 mol, per 1 mol of sulfamic acid.
  • the halogenating agent is less than 2.0 mol, the yield and purity are lowered. If the halogenating agent exceeds 4.0 mol, the cost increases.
  • the order of introducing the sulfamic acid, chlorosulfonic acid and halogenating agent into the reactor is not particularly limited, but it is preferable to introduce them at 80 ° C. or lower.
  • the volatilization of the raw material causes coloring, a decrease in yield, and a decrease in purity.
  • the dry gas used at the time of introduction is not particularly limited, but the moisture is preferably 1% or less, and more preferably 0.1% or less.
  • the dry gas include dry air, nitrogen, argon, helium, carbon dioxide, and the like. Among these, a gas containing no oxygen is preferable for the fluorine substitution reaction to be performed continuously.
  • the introduced sulfamic acid, chlorosulfonic acid and halogenating agent are stirred and mixed, and the reaction is carried out by heating.
  • the reaction is heated from the introduction temperature of the raw material to the reaction reaching temperature as needed.
  • the method for heating the reaction vessel is not particularly limited, and examples include heating with steam, heating with a heat medium, and heating with an electric heater.
  • the contents are preferably heated with boiling and reflux conditions appropriately controlled.
  • the time required for the temperature rise is preferably 24 hours or less, and more preferably 12 hours or less. When the time required for temperature rise exceeds 24 hours, the yield decreases.
  • the solution temperature is preferably allowed to reach 100 to 150 ° C., more preferably 105 to 140 ° C., and most preferably 110 to 130 ° C.
  • the solution temperature is less than 100 ° C., the reaction is not completed, and the yield and purity tend to decrease.
  • the solution temperature exceeds 150 ° C., it is colored due to thermal decomposition of the introduced raw materials and reaction products, resulting in a decrease in purity and yield.
  • the reaction time is preferably maintained within 24 hours after reaching the reaction temperature, and the reaction time is more preferably within 12 hours, most preferably within 6 hours from the viewpoint of time reduction and cost reduction. preferable. If it exceeds 24 hours, the coloring becomes strong, and the purity and yield decrease.
  • the dry gas used during the reaction is preferably a gas that does not contain oxygen, such as nitrogen, argon, helium, and carbon dioxide, preferably has a moisture content of 0.5% or less, and more preferably has a moisture content of 0.1% or less.
  • the oxygen concentration is preferably 1% or less. When the moisture content of the dry gas exceeds 0.1%, the yield and purity are lowered, and when the oxygen concentration exceeds 1%, coloring occurs and the purity is lowered.
  • the amount of the dry gas introduced is preferably 0.005 to 10 liters / minute with respect to 1 mol of sulfamic acid.
  • hydrochloric acid and sulfur dioxide as by-products by the reaction are removed by gas, and removal from the reaction vessel by the introduced dry gas stream is preferable from the viewpoint of yield and purity. Therefore, the most preferred dry gas is nitrogen, argon or helium.
  • a base catalyst is preferable, and aliphatic tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, tri (hydroxyethyl) amine, methylpiperidine, dimethylpiperazine, diazabicyclooctane, Trialkylphosphine such as trimethylphosphine and triethylphosphine is preferable.
  • the catalyst is preferably added in the range of 0.0001 to 0.1 mole per mole of sulfamic acid.
  • the solvent may not be used, but can be added. Although it does not specifically limit as a solvent which can be added, The compound which does not have an aromatic proton is preferable.
  • the bis (chlorosulfonyl) imidic acid obtained by this reaction may be subjected to fluorine substitution as it is, or may be once transferred to a storage container and stored. Furthermore, fluorine substitution may be performed as a bis (chlorosulfonyl) imidoate by a neutralization reaction, and it may be once stored in a storage container.
  • Compounds used for neutralization include hydroxides and carbonates of alkali metals such as potassium, sodium, lithium, and calcium.
  • alkali metals such as potassium, sodium, lithium, and calcium.
  • potassium chloride, sodium chloride, lithium chloride It is preferable to carry out dehydrohalogenation using halides such as calcium chloride, potassium bromide and potassium iodide.
  • Bis (chlorosulfonyl) imide acid or bis (chlorosulfonyl) imidoate can be converted to a bis (fluorosulfonyl) imide salt compound by fluorine substitution.
  • the fluoride salt used for the fluorine substitution is not particularly limited, but ion pair compounds having a fluorine atom such as hydrofluoric acid, ammonium fluoride, metal fluoride, and quaternary ammonium fluoride salt can be exemplified. From this point, metal fluoride is preferable, and LiF, KF, CaF 2 , CsF, and RbF are more preferable because of reactivity. These fluoride salts are preferably dried well, preferably have a moisture content of 0.5% or less, more preferably 0.2% or less, and 0.1% or less. Is most preferred. If the water content exceeds 0.5%, the reaction rate of the fluorine substitution decreases, and an excessive fluoride salt is required, resulting in an increase in cost.
  • the method for drying the fluoride salt is not particularly limited, and heat drying, hot air drying, reduced pressure drying, drying with a dry gas, and the like can be used. Furthermore, you may dry directly by pressure reduction or superheating in the reaction container used for fluorine substitution. Or after dispersing in an organic solvent to form a slurry, drying may be performed by mixing a dehydrating agent such as molecular sieve.
  • the shape of the fluoride salt used in this reaction is not particularly limited, but those having a large surface area are preferred.
  • Examples of the method for increasing the surface area include a spray drying method and a mechanical pulverization method using a bead mill or a ball mill. Of these, those spray-dried are particularly preferred.
  • These fluoride salts can be used alone or in combination of a plurality of fluoride salts.
  • the amount of these fluoride salts is not particularly limited, but it is preferably used in an amount of 3.0 to 9.0 mol with respect to 1 mol of bis (chlorosulfonyl) imidic acid. Further, it is preferably used in an amount of 3.0 to 5.0 mol from the viewpoint of cost. It is preferably used in an amount of 2.0 to 6.0 mol with respect to 1 mol of bis (chlorosulfonyl) imidoate, and particularly preferably 2.0 to 3.0 mol in terms of cost.
  • Fluorine substitution is carried out by mixing bis (chlorosulfonyl) imidic acid or bis (chlorosulfonyl) imidate with a fluoride salt.
  • the mixing method is not particularly limited, and examples thereof include direct mixing with a fluoride salt, mixing into a slurry in which the fluoride salt is dispersed, introduction into a column packed with fluoride salt, and the like.
  • a catalyst may be added.
  • the catalyst that can be added is not particularly limited, but a base catalyst is particularly preferable.
  • Base catalysts include primary amines such as ammonia, methylamine, ethylamine, propylamine, hydroxyethylamine, aniline, dimethylamine, methylethylamine, diethylamine, dipropylamine, dibutylamine, dihydroxyethylamine, piperidine, piperazine, diphenylamine and the like.
  • Tertiary amine trimethylamine, diethylmethylamine, ethyldimethylamine, triethylamine, tripropylamine, tributylamine, tri (hydroxyethyl) amine
  • tertiary amines such as methylpiperidine, dimethylpiperazine
  • aromatics such as pyridine, imidazole, methylimidazole Examples are amines, and these salts are also included.
  • a tertiary amine and an aromatic amine are preferable from the viewpoint of reactivity and the like, and triethylamine and pyridine are particularly preferable from the viewpoint of cost and ease of removal.
  • base catalysts can be used alone or in combination of a plurality of base catalysts.
  • the base catalyst can be used regardless of the presence or absence of a reaction solvent, and in the range of 0.0001 to 1.2 mol per 1 mol of bis (chlorosulfonyl) imidic acid or bis (chlorosulfonyl) imidate from the viewpoint of cost. It is preferable to add at.
  • Fluorine substitution can be carried out without a solvent or by adding a solvent.
  • Solvents that can be added are not particularly limited, but aromatic solvents such as benzene, toluene, xylene, and anisole, ester solvents such as ethyl acetate, propyl acetate, and butyl acetate, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, methyl Ether solvents such as ethyl ether, diethyl ether, tetrahydrofuran and dioxane, alcohol solvents such as methanol, ethanol, propanol and butanol, aprotic polarities such as acetonitrile, nitromethane, dimethyl sulfoxide, N, N-dimethylformamide and benzonitrile A solvent etc.
  • aromatic solvents such as benzene, toluene, xylene, and anisole
  • ester solvents such as ethyl acetate,
  • aprotic polar solvents are preferable from the viewpoint of reaction rate and yield
  • acetonitrile, N, N-dimethylformamide, tetrahydrofuran, dioxane, and ethyl acetate are particularly preferable from the viewpoint of cost and solvent removal.
  • solvents can be used alone or in a mixture of a plurality of solvents.
  • the reaction temperature is not particularly limited, but it is preferably controlled in the range of 5 to 100 ° C, more preferably in the range of 5 to 70 ° C.
  • the reaction temperature is less than 5 ° C., the reaction rate becomes slow and a reaction time is required.
  • reaction temperature exceeds 100 degreeC, coloring will become large and purity and a yield will fall.
  • moisture it is preferable to prevent moisture from being mixed in the fluorine substitution.
  • transducing dry gas into a reaction container can be used.
  • the dry gas that can be used include dry air, nitrogen, argon, helium, carbon dioxide, and the like.
  • the moisture is preferably 0.5% or less, and more preferably 0.1% or less. . If the moisture content of the dry gas exceeds 0.5%, the yield and purity are lowered.
  • the bis (fluorosulfonyl) imidate obtained by the reaction can be used as it is. Further, the purity may be further increased by purification.
  • the purification method is not particularly limited, and examples thereof include reprecipitation using a solvent, recrystallization, distillation of bis (fluorosulfonyl) imidic acid, and the like.
  • Example 1 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) 38 g (0.33 mol) with a purity of 97% or more manufactured by Kojun Pharmaceutical Co., Ltd., and 106 g (0.77 mol) of phosphorous trichloride (99% or more with a purity of Wako Pure Chemical Industries) were slowly added dropwise to dry nitrogen (dew point -60 C. or less) was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 110 ° C. over 4 hours and maintained at the reaction temperature for 10 hours, and then cooled to room temperature to obtain 90 g of a reaction product A-1 containing bis (chlorosulfonyl) imidic acid.
  • the flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • 90 g of the reactant A-1 was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 25 ° C. for 48 hours. Thereafter, the reaction solution was filtered and concentrated, and further dissolved in ethanol at 60 ° C. and cooled to obtain 35 g of white crystals.
  • Example 2 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried at room temperature under a reduced pressure of 1.6 kPa for 8 hours, and the water content after drying was 600 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) 38 g (0.33 mol) with a purity of 97% or more manufactured by Kojun Pharmaceutical Co., Ltd., and 130 g (0.61 mol) of phosphorus pentachloride (99% or more with a purity of Wako Pure Chemical Industries) were slowly added dropwise, and dry nitrogen (dew point -60 C. or less) was introduced at 0.02 liter / min for 60 minutes.
  • the flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • 115 g of reactant A-2 was added dropwise over 2 hours while cooling the solution, and then maintained at a temperature of 25 ° C. for 48 hours. Thereafter, the reaction solution was filtered and concentrated, further dissolved in ethanol at 60 ° C., and cooled to obtain 40 g of white crystals.
  • Example 3 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) Charge 35 g (0.30 mol), purity 97% or more, made by Kojun Pharmaceutical Co., Ltd., add 146 g (1.08 mol) thionyl chloride (purity 95% or more, manufactured by Wako Pure Chemical Industries), dry nitrogen (dew point -60 °C or less) Was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 130 ° C. over 8 hours, maintained at the reaction temperature for 4 hours, and then cooled to room temperature to obtain 65 g of a reaction product A-3 containing bis (chlorosulfonyl) imidic acid.
  • the flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • 65 g of the reaction product A-3 was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 40 ° C. for 8 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 62 g of white crystals.
  • the resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity Chlorine was 1.5 ppm and the yield was 92%.
  • Example 4 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heating dryer at 50 ° C. for 1 hour, and the moisture after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid, chlorosulfonic acid (sum) 36 g (0.31 mol) of Koyo Pure Chemical Co., Ltd., with purity of 97% or more) were added, and 88 g (0.65 mol) of thionyl chloride (purity 95% or more of Wako Pure Chemical Industries, Ltd.) and 0.2 g (0.002 mol) of triethylamine were added. Then, dry argon (dew point of ⁇ 60 ° C.
  • Example 5 30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid, thionyl chloride (Wako Pure) Chlorosulfonic acid (Wako Pure Chemicals purity 97% or more) 36 g (0.31 mol) was added dropwise while charging 100 g (0.74 mol) of pharmaceutical product purity 95% or more) and heating to 50 ° C., and dry nitrogen (dew point) ⁇ 60 ° C. or less) was introduced at 0.02 liter / min for 60 minutes.
  • the temperature of the vessel was raised to 100 ° C. over 8 hours, and after maintaining the reaction temperature for 12 hours, the vessel was cooled to room temperature to obtain 60 g of a reaction product A-5 containing bis (chlorosulfonyl) imidic acid.
  • Example 6 30 g (0.31 mol) of sulfamic acid (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) was dried for 3 hours under a reduced pressure of 1.3 kPa with a vacuum dryer at 60 ° C., and the water content after drying was 150 ppm. It was.
  • a 500 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, then 30 g (0.31 mol) of dried sulfamic acid, thionyl chloride (Wako Pure) 88 g (0.65 mol) of pharmaceutical product purity 95% or higher and 36 g (0.31 mol) of chlorosulfonic acid (purity 97% or higher product manufactured by Wako Pure Chemical Industries) were charged, and dry nitrogen (dew point -60 ° C. or lower) was set to 0. 0. 0. Introduced at 05 liters / minute for 60 minutes. Next, the temperature of the container was raised to 130 ° C. over 8 hours, and after maintaining the reaction temperature for 1 hour, it was cooled to room temperature to obtain 65 g of bis (chlorosulfonyl) imidic acid.
  • the flask was placed, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: ⁇ 60 ° C. or lower) was introduced at 0.05 liter / min.
  • dry nitrogen dew point: ⁇ 60 ° C. or lower
  • 65 g of bis (chlorosulfonyl) imidic acid was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 40 ° C. for 12 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 61 g of white crystals.
  • the resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectra of such 1382Cm -1 bis and (fluorosulfonyl) imide potassium, electromagnetic induction plasma emission analysis (ICP analysis) As a result, the impurity chlorine was 55 ppm, and the yield was 96%.
  • ICP analysis electromagnetic induction plasma emission analysis
  • Example 7 30 g (0.31 mol) of sulfamic acid (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) was dried at 6.7 kPa for 1 hour at room temperature, and the moisture after drying was 3000 ppm.
  • a 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature.
  • Example 8 30 g (0.31 mol) of sulfamic acid (purity 99.5% or more, manufactured by Wako Pure Chemical Industries, Ltd.) 50 g, thionyl chloride in a 300 ml flask equipped with a reflux condenser, thermometer, stirring device, heating device, and dry gas introduction tube Charged with 100 g (0.74 mol) (purity 95% or higher, manufactured by Wako Pure Chemical Industries) and 36 g (0.31 mol) chlorosulfonic acid (purity 97% or higher, manufactured by Wako Pure Chemical Industries), dry nitrogen (dew point -60 ° C or lower) was introduced at 0.02 liter / min for 60 minutes, and then the vessel was heated to 120 ° C.
  • sulfamic acid purity 99.5% or more, manufactured by Wako Pure Chemical Industries, Ltd.
  • reaction product is cooled, 30 g (0.4 mol) of potassium chloride (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) is added, the hydrochloric acid gas is driven off, and the reaction product A- containing potassium bis (chlorosulfonyl) imide is added. 70 g of 8 was obtained.
  • potassium chloride purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.
  • the reaction solution was filtered and concentrated to obtain 61 g of white crystals.
  • the resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, the result of electromagnetic induction plasma emission spectrometry (ICP analysis)
  • the impurity chlorine was 55 ppm, and the yield was 95%.
  • ground potassium fluoride 35 g, 0.47 mol
  • 200 ml of methylene chloride was added
  • the reaction product B-1 was dissolved in 100 ml of methylene chloride and added into the flask.
  • the mixture was stirred for 3 hours at room temperature and then heated to 150 ° C. while distilling off the solvent.
  • the IR spectrum of the dried product in the flask was measured, and a peak of potassium bis (fluorosulfonyl) imide was observed.
  • 100 ml of tetrahydrofuran was added to the dried solid, filtered, and then added dropwise to methylene chloride to obtain 17 g of a dark brown solid.
  • This crystal was found to be a mixture containing potassium bis (fluorosulfonyl) imide from the IR spectrum.
  • the IR spectrum 845cm -1, purity by analogy from the peak and the peak of the other impurities 1188Cm -1 is estimated to less than 50%, and the yield was estimated to about 30% or less.
  • Examples of utilization of the bis (fluorosulfonyl) imide compound according to the present invention include device materials such as battery electrolytes and ionic liquids, production of pharmaceutical intermediates, and applications such as lubricating oil and heat medium.

Abstract

A process for producing a bis(fluorosulfonyl)imide anion compound by substituting a bis(chlorosulfonyl)imide anion compound, obtained from sulfamic acid, chlorosulfonic acid, and a halogenating agent, with fluorine is used as a process for producing a fluorine compound for use, for example, in the synthesis of battery electrolytes and ionic liquids. According to the above process, the inclusion of impurities can be reduced, and a high-purity fluorine compound of a bis(fluorosulfonyl)imide compound can be efficiently produced at a high yield. A base catalyst can be used in the reaction for substituting the bis(chlorosulfonyl)imide anion with fluorine. The base catalyst is preferably a nitrogen-containing compound.

Description

ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物Process for producing bis (fluorosulfonyl) imide anion compound and ion-pair compound
 本発明は、電池電解質やイオン液体の合成などに使用されるビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびその製造方法により得られるビス(フルオロスルホニル)イミドアニオン化合物を含むイオン対化合物に関するものである。 The present invention relates to a method for producing a bis (fluorosulfonyl) imide anion compound used for the synthesis of battery electrolytes and ionic liquids and the like, and an ion-pair compound containing a bis (fluorosulfonyl) imide anion compound obtained by the production method. is there.
 フッ素元素を含むアニオン化合物は多く報告されており有用であるが、その合成方法は電解フッ素を使用するなど特殊な装置を必要とするものが殆どである。フッ素元素を含むアニオンであるビス(フルオロスルホニル)イミドアニオンの製造方法は、開示されているものでは、フルオロスルホン酸やフルオロイソシアネートなどの非常に高価な原料を使用する方法や、収率の低い反応を用いる方法である場合が多い。あるいは、取り扱いが容易でないガスを用いており、一般的な工業的技術での製造としてはコスト的にも好ましくない。 Many anion compounds containing elemental fluorine have been reported and are useful, but most of the synthesis methods require special equipment such as using electrolytic fluorine. The production method of the bis (fluorosulfonyl) imide anion, which is an anion containing fluorine element, is disclosed as a method using a very expensive raw material such as fluorosulfonic acid or fluoroisocyanate, or a reaction with a low yield. In many cases, this is a method using Alternatively, a gas that is not easy to handle is used, which is not preferable in terms of cost for production by a general industrial technique.
 例えば、特開平8-511274号公報では、フルオロスルホン酸と尿素の反応が開示されているが、強酸性の原料を使用しており非常に取り扱いにくい。 For example, JP-A-8-511274 discloses a reaction between fluorosulfonic acid and urea, but uses a strongly acidic raw material and is very difficult to handle.
 また、ビス(クロロスルホニル)イミド化合物を合成し、塩素原子をフッ素原子に変換する方法も開示されているが、原料としてコストが高いクロロスルホニルイソシアネートを用いており、不純物として残存ハロゲンが含まれているなどの問題点がある。 In addition, a method of synthesizing a bis (chlorosulfonyl) imide compound and converting a chlorine atom to a fluorine atom is disclosed, but high-cost chlorosulfonyl isocyanate is used as a raw material, and residual halogen is contained as an impurity. There are problems such as being.
 特表2004-522681号公報では80℃以下の穏やかな条件でフッ素化する例が報告されているが、実質的にニトロメタンなどの高価な溶媒を用いており、使用するフッ化物塩もNaFやKFの場合で8当量用いていることから工業的に有利とは言い難い。また、出発原料の98%を転化するのに30時間以上を要している。 In Japanese Patent Publication No. 2004-522681, an example of fluorination under mild conditions of 80 ° C. or less is reported, but an expensive solvent such as nitromethane is substantially used, and the fluoride salt used is NaF or KF. In this case, since 8 equivalents are used, it is not industrially advantageous. In addition, it takes 30 hours or more to convert 98% of the starting material.
 また、Martinら(Z.Anorg.Allg.Chem.631,55(2005))には、尿素、フルオロスルホン酸よりなる原料を用いる合成方法が開示されているが、不純物のフルオロスルホン酸が残存するという問題がある。また、スルファミン酸、塩化チオニル、フルオロスルホン酸よりなる合成方法も開示されているが、フッ化物と塩化物の混合物が多く存在している。さらには、工業的に使用することが難しいフルオロスルホン酸の代わりにクロロスルホン酸を用いた反応も開示されているが、反応に24時間以上も要しており、フッ素化反応においても反応浴を120℃さらには170℃~180℃にすることが必要であり、副反応により生成物の純度が十分とはいえず、精製に多くのステップを含んでおり、収率が低いことが推察される。
特開平8-511274号公報 特表2004-522681号公報 Z. Anorg. Allg. Chem. 631, 55(2005)
Martin et al. (Z. Anorg. Allg. Chem. 631, 55 (2005)) discloses a synthesis method using raw materials composed of urea and fluorosulfonic acid, but impurities such as fluorosulfonic acid remain. There is a problem. Moreover, although the synthesis method which consists of sulfamic acid, thionyl chloride, and fluorosulfonic acid is also disclosed, many mixtures of a fluoride and a chloride exist. Furthermore, a reaction using chlorosulfonic acid instead of fluorosulfonic acid, which is difficult to use industrially, is disclosed, but the reaction takes 24 hours or more, and a reaction bath is also used in the fluorination reaction. It is necessary to set the temperature to 120 ° C., further 170 ° C. to 180 ° C., and the purity of the product cannot be said to be sufficient due to side reactions, and it is assumed that the yield is low because many steps are involved in purification. .
JP-A-8-511274 JP-T-2004-522681 Z. Anorg. Allg. Chem. 631, 55 (2005)
 このように、ビス(フルオロスルホニル)イミドアニオン化合物を合成するためには、従来の製造方法では高いコストや低い収率の反応を用いることが必要であり、得られたビス(フルオロスルホニル)イミド化合物の純度も高純度ではなかった。 Thus, in order to synthesize a bis (fluorosulfonyl) imide anion compound, it is necessary to use a high cost and low yield reaction in the conventional production method, and the obtained bis (fluorosulfonyl) imide compound The purity of was not high.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、原料としてスルファミン酸、クロロスルホン酸およびハロゲン化剤を用いて得られたビス(クロロスルホニル)イミド化合物をフッ素置換することにより、ビス(フルオロスルホニル)イミドアニオン化合物を十分な収率かつ高純度で得られることを見出し、本発明のビス(フルオロスルホニル)イミドアニオン化合物の製造方法を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have carried out fluorine substitution on a bis (chlorosulfonyl) imide compound obtained using sulfamic acid, chlorosulfonic acid and a halogenating agent as raw materials. Thus, it was found that the bis (fluorosulfonyl) imide anion compound can be obtained in sufficient yield and high purity, and the production method of the bis (fluorosulfonyl) imide anion compound of the present invention has been completed.
 本発明によれば、反応のコントロールを行い、ハロゲン交換フッ素化反応においてアルカリ金属フッ化物塩と共に塩基性触媒を用いることにより効率的なフッ素化が可能となり、フッ素以外の残存ハロゲン原子がほとんどない高純度のビス(フルオロスルホニル)イミドアニオン化合物を十分な収率やコストで得ることができる。 According to the present invention, the reaction is controlled, and by using a basic catalyst together with an alkali metal fluoride salt in a halogen exchange fluorination reaction, efficient fluorination is possible, and there is almost no residual halogen atom other than fluorine. A pure bis (fluorosulfonyl) imide anion compound can be obtained with sufficient yield and cost.
 本発明で使用する、スルファミン酸は特に限定しないが、乾燥処理を施したものが好ましい。乾燥処理としては特に限定されないが、加熱乾燥、減圧乾燥、乾燥気体中での保管を挙げることができる。 The sulfamic acid used in the present invention is not particularly limited, but is preferably subjected to a drying treatment. Although it does not specifically limit as a drying process, Heat drying, reduced pressure drying, and the storage in a dry gas can be mentioned.
 加熱乾燥では、スルファミン酸を60℃以上、好ましくは80℃以上で加熱することにより乾燥することができる。減圧乾燥では、圧力10kPa・s以下が好ましく、加熱することで乾燥が促進される。また、乾燥空気、窒素、アルゴン、ヘリウムなどの乾燥した気体の環境に長時間放置することでも乾燥される。これら乾燥方法は単独でもよく、加熱乾燥および減圧乾燥に乾燥気体を導入するなど組み合わせて実施することもできる。 In heat drying, sulfamic acid can be dried by heating at 60 ° C. or higher, preferably 80 ° C. or higher. In vacuum drying, the pressure is preferably 10 kPa · s or less, and drying is accelerated by heating. It can also be dried by leaving it in a dry gas environment such as dry air, nitrogen, argon or helium for a long time. These drying methods may be used alone or in combination with, for example, introducing a dry gas into heat drying and vacuum drying.
 これらの乾燥に使用する容器は特に限定されず、乾燥機により乾燥されたものを反応容器に導入しても良い。また、あらかじめ反応容器にスルファミン酸を導入し、加熱、減圧および乾燥気体の導入のうちの一又は二以上を適宜行ってもよい。 These containers used for drying are not particularly limited, and those dried by a dryer may be introduced into the reaction container. Alternatively, sulfamic acid may be introduced into the reaction vessel in advance, and one or more of heating, decompression and introduction of dry gas may be appropriately performed.
 乾燥されたスルファミン酸の水分は1%(重量%、以下同様)以下であることが好ましく、さらには0.1%以下であることが好ましい。 The water content of the dried sulfamic acid is preferably 1% (% by weight, the same applies hereinafter) or less, more preferably 0.1% or less.
 本発明で使用するクロロスルホン酸は特に限定されないが、水分を遮断した状態で保管され、純度が95%以上であるものが好ましく、さらには純度が98%以上のものが特に好ましい。水分が混入する状態で保管された物は純度低下をもたらし、純度が95%未満であると、収率の低下をもたらす。 The chlorosulfonic acid used in the present invention is not particularly limited, but is preferably stored in a state of blocking moisture and having a purity of 95% or more, more preferably 98% or more. The thing stored in the state in which the water | moisture content mixes brings about a purity fall, and when the purity is less than 95%, it will bring about the fall of a yield.
 本発明で使用するハロゲン化剤は特に限定されないが、取り扱いの容易さなどから三塩化リン、五塩化リン、塩化チオニルが好ましく、さらには、副生物の除去の容易さから塩化チオニルが特に好ましい。 Although the halogenating agent used in the present invention is not particularly limited, phosphorus trichloride, phosphorus pentachloride and thionyl chloride are preferable from the viewpoint of easy handling, and thionyl chloride is particularly preferable from the viewpoint of easy removal of by-products.
 ハロゲン化剤も同様に水分を遮断した状態で保管され、純度が95%以上であるものが好ましく、さらには純度が98%以上のものが好ましい。 Similarly, the halogenating agent is stored in a state where moisture is blocked, and the purity is preferably 95% or more, and more preferably 98% or more.
 スルファミン酸、クロロスルホン酸、ハロゲン化剤の配合量は、スルファミン酸1モルに対して、クロロスルホン酸を0.9~1.1モル加えることが好ましい。さらには、クロロスルホン酸を0.95~1.05モル加えることが特に好ましい。クロロスルホン酸が0.9モルを下回ると未反応中間体が残り純度や収率が低くなり、1.1モルを上回るとクロロスルホン酸が残存し、強酸性物質を除去することが必要になる。 The blending amount of sulfamic acid, chlorosulfonic acid and halogenating agent is preferably 0.9 to 1.1 mol of chlorosulfonic acid per 1 mol of sulfamic acid. Furthermore, it is particularly preferable to add 0.95 to 1.05 mol of chlorosulfonic acid. If the chlorosulfonic acid is less than 0.9 mol, the unreacted intermediate remains and the purity and yield are low. If the chlorosulfonic acid exceeds 1.1 mol, the chlorosulfonic acid remains and it is necessary to remove the strongly acidic substance. .
 ハロゲン化剤はスルファミン酸1モルに対して2.0~4.0モルを加えることが好ましく、さらには2.2~3.0モル加えることが特に好ましい。ハロゲン化剤が2.0モルを下回ると収率や純度が低下する。ハロゲン化剤が4.0モルを上回るとコストが高くなる。 The halogenating agent is preferably added in an amount of 2.0 to 4.0 mol, more preferably 2.2 to 3.0 mol, per 1 mol of sulfamic acid. When the halogenating agent is less than 2.0 mol, the yield and purity are lowered. If the halogenating agent exceeds 4.0 mol, the cost increases.
 スルファミン酸、クロロスルホン酸、ハロゲン化剤は反応器へ導入する順序は特に限定されないが、80℃以下で導入することが好ましい。80℃を超える温度で導入すると原料の揮散により、着色、収率の低下、純度の低下をもたらし、さらには、安全性の観点から60℃以下で導入することがさらに好ましい。 The order of introducing the sulfamic acid, chlorosulfonic acid and halogenating agent into the reactor is not particularly limited, but it is preferable to introduce them at 80 ° C. or lower. When introduced at a temperature exceeding 80 ° C., the volatilization of the raw material causes coloring, a decrease in yield, and a decrease in purity. Furthermore, it is more preferable to introduce at 60 ° C. or less from the viewpoint of safety.
 原料を導入する際には、水分の混入を防ぐことが好ましく、乾燥気体で反応容器を置換することが好ましい。導入時に使用する乾燥気体は特に限定されないが、水分が1%以下であることが好ましく、さらには水分が0.1%以下であることが特に好ましい。乾燥気体の種類としては、乾燥空気、窒素、アルゴン、ヘリウム、二酸化炭素などが例示され、この中で、酸素を含まない気体が、続けて実施するフッ素置換反応に対して好ましい。 When introducing the raw material, it is preferable to prevent moisture from being mixed, and it is preferable to replace the reaction vessel with a dry gas. The dry gas used at the time of introduction is not particularly limited, but the moisture is preferably 1% or less, and more preferably 0.1% or less. Examples of the dry gas include dry air, nitrogen, argon, helium, carbon dioxide, and the like. Among these, a gas containing no oxygen is preferable for the fluorine substitution reaction to be performed continuously.
 導入されたスルファミン酸、クロロスルホン酸、ハロゲン化剤は攪拌混合され、加熱されることで反応が実施される。反応は原料の導入温度から随時反応到達温度に昇温される。反応容器の加熱方法は特に限定されないが、蒸気による加熱、熱媒による加熱、電気式ヒータによる加熱などが例示される。内容物は沸騰、還流状態が適度にコントロールされた加熱が好ましい。昇温に要する時間は24時間以下であることが好ましく、さらには12時間以下であることが好ましい。昇温に要する時間が24時間を越えると、収率が低下する。 The introduced sulfamic acid, chlorosulfonic acid and halogenating agent are stirred and mixed, and the reaction is carried out by heating. The reaction is heated from the introduction temperature of the raw material to the reaction reaching temperature as needed. The method for heating the reaction vessel is not particularly limited, and examples include heating with steam, heating with a heat medium, and heating with an electric heater. The contents are preferably heated with boiling and reflux conditions appropriately controlled. The time required for the temperature rise is preferably 24 hours or less, and more preferably 12 hours or less. When the time required for temperature rise exceeds 24 hours, the yield decreases.
 反応は溶液温度を100~150℃に到達させることが好ましく、105~140℃に到達させることがより好ましく、110~130℃に到達させることが最も好ましい。溶液温度が100℃未満であると、反応が完結せずに、収率、純度が低下する傾向がある。溶液温度が150℃を超えると、導入された原料や反応生成物の熱分解のため着色し、純度や収率の低下が起こる。 In the reaction, the solution temperature is preferably allowed to reach 100 to 150 ° C., more preferably 105 to 140 ° C., and most preferably 110 to 130 ° C. When the solution temperature is less than 100 ° C., the reaction is not completed, and the yield and purity tend to decrease. When the solution temperature exceeds 150 ° C., it is colored due to thermal decomposition of the introduced raw materials and reaction products, resulting in a decrease in purity and yield.
 反応時間は、反応温度に到達後その温度を24時間以内維持することが好ましく、時間短縮とコスト削減の観点から反応時間は12時間以内とすることがより好ましく、6時間以内とすることが最も好ましい。24時間を越えると着色が強くなり、純度や収率が低下する。 The reaction time is preferably maintained within 24 hours after reaching the reaction temperature, and the reaction time is more preferably within 12 hours, most preferably within 6 hours from the viewpoint of time reduction and cost reduction. preferable. If it exceeds 24 hours, the coloring becomes strong, and the purity and yield decrease.
 また、反応中は反応溶液および反応液上部の空隙に乾燥気体を導入することが好ましい。反応中に使用される乾燥気体は、窒素、アルゴン、ヘリウム、二酸化炭素などの酸素を含まない気体が好ましく、水分が0.5%以下であることが好ましく、さらには水分が0.1%以下、酸素濃度が1%以下であることが好ましい。乾燥気体の水分が0.1%を超えると収率と純度が低下し、酸素濃度が1%を超えると着色し、純度が低下する。これら乾燥気体の導入量はスルファミン酸1モルに対して0.005~10リットル/分であることが好ましい。 In addition, it is preferable to introduce a dry gas into the reaction solution and the space above the reaction solution during the reaction. The dry gas used during the reaction is preferably a gas that does not contain oxygen, such as nitrogen, argon, helium, and carbon dioxide, preferably has a moisture content of 0.5% or less, and more preferably has a moisture content of 0.1% or less. The oxygen concentration is preferably 1% or less. When the moisture content of the dry gas exceeds 0.1%, the yield and purity are lowered, and when the oxygen concentration exceeds 1%, coloring occurs and the purity is lowered. The amount of the dry gas introduced is preferably 0.005 to 10 liters / minute with respect to 1 mol of sulfamic acid.
 反応による副生成物の塩酸および二酸化硫黄は気体で除去されることが好ましく、導入される乾燥気体気流によって反応容器から除かれることが、収率、純度の点から好ましい。よって、最も好ましい乾燥気体は、窒素、アルゴン、ヘリウムである。 It is preferable that hydrochloric acid and sulfur dioxide as by-products by the reaction are removed by gas, and removal from the reaction vessel by the introduced dry gas stream is preferable from the viewpoint of yield and purity. Therefore, the most preferred dry gas is nitrogen, argon or helium.
 この反応では触媒はなくても良いが、添加することもできる。 In this reaction, no catalyst is required, but it can be added.
 添加できる触媒としては、塩基触媒が好ましく、さらにはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリ(ヒドロキシエチル)アミン、メチルピペリジン、ジメチルピペラジン、ジアザビシクロオクタンなどの脂肪族三級アミン化合物やトリメチルフォスフィン、トリエチルフォスフィンなどのトリアルキルフォスフィンが好ましい。触媒はスルファミン酸1モルに対して0.0001~0.1モルの範囲で加えられることが好ましい。 As the catalyst that can be added, a base catalyst is preferable, and aliphatic tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, tri (hydroxyethyl) amine, methylpiperidine, dimethylpiperazine, diazabicyclooctane, Trialkylphosphine such as trimethylphosphine and triethylphosphine is preferable. The catalyst is preferably added in the range of 0.0001 to 0.1 mole per mole of sulfamic acid.
 この反応では溶媒はなくても良いが、添加することもできる。添加できる溶媒としては特に限定されないが、芳香族プロトンを持たない化合物が好ましい。 In this reaction, the solvent may not be used, but can be added. Although it does not specifically limit as a solvent which can be added, The compound which does not have an aromatic proton is preferable.
 この反応で得られたビス(クロロスルホニル)イミド酸は、このままフッ素置換を行っても良く、また、一旦保管容器に移し保存してもよい。さらには、中和反応によりビス(クロロスルホニル)イミド酸塩としてフッ素置換を行っても良く、一旦保管容器中で保管しても良い。 The bis (chlorosulfonyl) imidic acid obtained by this reaction may be subjected to fluorine substitution as it is, or may be once transferred to a storage container and stored. Furthermore, fluorine substitution may be performed as a bis (chlorosulfonyl) imidoate by a neutralization reaction, and it may be once stored in a storage container.
 中和に用いる化合物としては、カリウム、ナトリウム、リチウム、カルシウムなどのアルカリ金属の水酸化物や炭酸塩などがあるが、中和反応から生じる水を防ぐために、塩化カリウム、塩化ナトリウム、塩化リチウム、塩化カルシウム、臭化カリウム、ヨウ化カリウムなどのハロゲン化物を用いて脱ハロゲン化水素を行うことが好まししい。 Compounds used for neutralization include hydroxides and carbonates of alkali metals such as potassium, sodium, lithium, and calcium. To prevent water generated from the neutralization reaction, potassium chloride, sodium chloride, lithium chloride, It is preferable to carry out dehydrohalogenation using halides such as calcium chloride, potassium bromide and potassium iodide.
 ビス(クロロスルホニル)イミド酸またはビス(クロロスルホニル)イミド酸塩はフッ素置換によってビス(フルオロスルホニル)イミド塩化合物に変換することができる。 Bis (chlorosulfonyl) imide acid or bis (chlorosulfonyl) imidoate can be converted to a bis (fluorosulfonyl) imide salt compound by fluorine substitution.
 フッ素置換に使用するフッ化物塩は特に限定されないが、フッ酸、フッ化アンモニウム、金属フッ化物、フッ化第四級アンモニウム塩などのフッ素原子を持つイオン対化合物を例示することができ、特にコストの点から金属フッ化物が好ましく、より好ましくは反応性からLiF、KF、CaF、CsF、RbFである。これらフッ化物塩はよく乾燥させたものを用いるのが好ましく、水分含有量が0.5%以下であることが好ましく、さらには0.2%以下が特に好ましく、0.1%以下であることが最も好ましい。水分が0.5%を超えると、フッ素置換の反応率が低下し、過剰のフッ化物塩を必要とすることからコストが増加する。 The fluoride salt used for the fluorine substitution is not particularly limited, but ion pair compounds having a fluorine atom such as hydrofluoric acid, ammonium fluoride, metal fluoride, and quaternary ammonium fluoride salt can be exemplified. From this point, metal fluoride is preferable, and LiF, KF, CaF 2 , CsF, and RbF are more preferable because of reactivity. These fluoride salts are preferably dried well, preferably have a moisture content of 0.5% or less, more preferably 0.2% or less, and 0.1% or less. Is most preferred. If the water content exceeds 0.5%, the reaction rate of the fluorine substitution decreases, and an excessive fluoride salt is required, resulting in an increase in cost.
 フッ化物塩の乾燥方法は特に限定されないが、加熱乾燥、熱風乾燥、減圧乾燥、乾燥気体による乾燥などを用いることができる。さらには、フッ素置換に使用する反応容器内で、減圧または過熱などにより直接乾燥を行っても良い。もしくは、有機溶媒へ分散させスラリー状とした後、モレキュラーシーブなどの脱水剤を混合することで乾燥を行っても良い。 The method for drying the fluoride salt is not particularly limited, and heat drying, hot air drying, reduced pressure drying, drying with a dry gas, and the like can be used. Furthermore, you may dry directly by pressure reduction or superheating in the reaction container used for fluorine substitution. Or after dispersing in an organic solvent to form a slurry, drying may be performed by mixing a dehydrating agent such as molecular sieve.
 本反応で使用するフッ化物塩の形状は特に限定されないが、表面積が大きいものが好ましい。表面積を大きくする方法としてはスプレードライによる方法や、ビーズミル、ボールミルなどによる機械的な粉砕を例示することができる。このなかでスプレードライしたものが特に好ましい。 The shape of the fluoride salt used in this reaction is not particularly limited, but those having a large surface area are preferred. Examples of the method for increasing the surface area include a spray drying method and a mechanical pulverization method using a bead mill or a ball mill. Of these, those spray-dried are particularly preferred.
 これらフッ化物塩は、単独または複数のフッ化物塩を組み合わせて用いることができる。これらフッ化物塩の量は特に限定されるものではないが、ビス(クロロスルホニル)イミド酸1モルに対して3.0~9.0モルで用いることが好ましい。さらにはコストの点から3.0~5.0モルで用いることが好ましい。ビス(クロロスルホニル)イミド酸塩1モルに対しては2.0~6.0モルで用いることが好ましく、コストの点から2.0~3.0モルで用いることが特に好ましい。 These fluoride salts can be used alone or in combination of a plurality of fluoride salts. The amount of these fluoride salts is not particularly limited, but it is preferably used in an amount of 3.0 to 9.0 mol with respect to 1 mol of bis (chlorosulfonyl) imidic acid. Further, it is preferably used in an amount of 3.0 to 5.0 mol from the viewpoint of cost. It is preferably used in an amount of 2.0 to 6.0 mol with respect to 1 mol of bis (chlorosulfonyl) imidoate, and particularly preferably 2.0 to 3.0 mol in terms of cost.
 フッ素置換はビス(クロロスルホニル)イミド酸もしくはビス(クロロスルホニル)イミド酸塩をフッ化物塩と混合することにより実施される。混合方法は特に限定されないが、フッ化物塩との直接混合、フッ化物塩を分散させたスラリーへの混合、フッ化物塩を充填したカラムへの導入などを例示することができる。 Fluorine substitution is carried out by mixing bis (chlorosulfonyl) imidic acid or bis (chlorosulfonyl) imidate with a fluoride salt. The mixing method is not particularly limited, and examples thereof include direct mixing with a fluoride salt, mixing into a slurry in which the fluoride salt is dispersed, introduction into a column packed with fluoride salt, and the like.
 フッ素置換では触媒を添加してもよい。添加できる触媒としては特に限定されないが、塩基触媒が特に好ましい。塩基触媒としては、アンモニア、メチルアミン、エチルアミン、プロピルアミン、ヒドロキシエチルアミン、アニリンなどの一級アミン、ジメチルアミン、メチルエチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジヒドロキシエチルアミン、ピペリジン、ピペラジン、ジフェニルアミンなどの二級アミン、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリ(ヒドロキシエチル)アミン、メチルピペリジン、ジメチルピペラジンなどの三級アミン、ピリジン、イミダゾール、メチルイミダゾールなどの芳香族アミンが例示され、これらの塩も含まれる。さらには、反応性などの観点から、三級アミン、芳香族アミンが好ましく、コストの点や除去の容易性から、トリエチルアミン、ピリジンが特に好ましい。 In the case of fluorine substitution, a catalyst may be added. The catalyst that can be added is not particularly limited, but a base catalyst is particularly preferable. Base catalysts include primary amines such as ammonia, methylamine, ethylamine, propylamine, hydroxyethylamine, aniline, dimethylamine, methylethylamine, diethylamine, dipropylamine, dibutylamine, dihydroxyethylamine, piperidine, piperazine, diphenylamine and the like. Tertiary amine, trimethylamine, diethylmethylamine, ethyldimethylamine, triethylamine, tripropylamine, tributylamine, tri (hydroxyethyl) amine, tertiary amines such as methylpiperidine, dimethylpiperazine, aromatics such as pyridine, imidazole, methylimidazole Examples are amines, and these salts are also included. Furthermore, a tertiary amine and an aromatic amine are preferable from the viewpoint of reactivity and the like, and triethylamine and pyridine are particularly preferable from the viewpoint of cost and ease of removal.
 これら塩基触媒は、単独もしくは複数の塩基触媒を組み合わせて用いることができる。 These base catalysts can be used alone or in combination of a plurality of base catalysts.
 塩基触媒は反応溶媒の有無にかかわらず用いることもでき、コストの点からビス(クロロスルホニル)イミド酸もしくはビス(クロロスルホニル)イミド酸塩1モルに対して0.0001~1.2モルの範囲で添加することが好ましい。 The base catalyst can be used regardless of the presence or absence of a reaction solvent, and in the range of 0.0001 to 1.2 mol per 1 mol of bis (chlorosulfonyl) imidic acid or bis (chlorosulfonyl) imidate from the viewpoint of cost. It is preferable to add at.
 フッ素置換は無溶媒もしくは溶媒を添加して実施することができる。 Fluorine substitution can be carried out without a solvent or by adding a solvent.
 添加できる溶媒としては、特に限定されないが、ベンゼン、トルエン、キシレン、アニソールなどの芳香族溶媒、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン溶媒、メチルエチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル溶媒、メタノール、エタノール、プロパノール、ブタノールなどのアルコール溶媒、アセトニトリル、ニトロメタン、ジメチルスルホシキシド、N,N-ジメチルホルムアミド、ベンゾニトリルなどの非プロトン性極性溶媒などが例示される。さらに、反応速度および収率の点から非プロトン性極性溶媒およびエステル溶媒、エーテル溶媒が好ましく、コスト、溶媒除去の点から、アセトニトリル、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、酢酸エチルが特に好ましい。 Solvents that can be added are not particularly limited, but aromatic solvents such as benzene, toluene, xylene, and anisole, ester solvents such as ethyl acetate, propyl acetate, and butyl acetate, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, methyl Ether solvents such as ethyl ether, diethyl ether, tetrahydrofuran and dioxane, alcohol solvents such as methanol, ethanol, propanol and butanol, aprotic polarities such as acetonitrile, nitromethane, dimethyl sulfoxide, N, N-dimethylformamide and benzonitrile A solvent etc. are illustrated. Further, aprotic polar solvents, ester solvents, and ether solvents are preferable from the viewpoint of reaction rate and yield, and acetonitrile, N, N-dimethylformamide, tetrahydrofuran, dioxane, and ethyl acetate are particularly preferable from the viewpoint of cost and solvent removal. .
 これら溶媒は単独もしくは複数の溶媒の混合にて用いることができる。 These solvents can be used alone or in a mixture of a plurality of solvents.
 フッ素置換では反応温度は特に限定されないが、5~100℃の範囲で制御することが好ましく、5~70℃の範囲がさらに好ましい。反応温度が5℃未満となると、反応速度が遅くなり、反応時間を要する。反応温度が100℃を超えると着色が大きくなり、純度と収率が低下する。 In the fluorine substitution, the reaction temperature is not particularly limited, but it is preferably controlled in the range of 5 to 100 ° C, more preferably in the range of 5 to 70 ° C. When the reaction temperature is less than 5 ° C., the reaction rate becomes slow and a reaction time is required. When reaction temperature exceeds 100 degreeC, coloring will become large and purity and a yield will fall.
 また、フッ素置換では水分の混入を防ぐことが好ましい。水分の混入を防ぐ方法としては特に限定されないが、密閉状態での反応を実施するか、乾燥気体を反応容器に導入する方法を用いることができる。使用できる乾燥気体としては、乾燥空気、窒素、アルゴン、ヘリウム、二酸化炭素などが例示され、水分が0.5%以下であることが好ましく、さらには水分が0.1%以下であることが好ましい。乾燥気体の水分が0.5%を超えると収率と純度が低下する。 In addition, it is preferable to prevent moisture from being mixed in the fluorine substitution. Although it does not specifically limit as a method of preventing mixing of water | moisture content, The method of implementing reaction in a sealed state or introduce | transducing dry gas into a reaction container can be used. Examples of the dry gas that can be used include dry air, nitrogen, argon, helium, carbon dioxide, and the like. The moisture is preferably 0.5% or less, and more preferably 0.1% or less. . If the moisture content of the dry gas exceeds 0.5%, the yield and purity are lowered.
 反応により得られるビス(フルオロスルホニル)イミド酸塩はそのまま用いることもできる。また、精製によりさらに純度を高めても良い。 The bis (fluorosulfonyl) imidate obtained by the reaction can be used as it is. Further, the purity may be further increased by purification.
 精製の方法としては特に限定されないが、溶媒を用いた再沈、または再結晶、ビス(フルオロスルホニル)イミド酸の蒸留などを例示することができる。 The purification method is not particularly limited, and examples thereof include reprecipitation using a solvent, recrystallization, distillation of bis (fluorosulfonyl) imidic acid, and the like.
 以下に実施例を述べるが、本発明はこれらの実施例に限定されるものではない。 Examples will be described below, but the present invention is not limited to these examples.
[実施例1]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を50℃の加熱乾燥機で1時間乾燥し、乾燥後の水分は1500ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、クロロスルホン酸(和光純薬製 純度97%以上)38g(0.33モル)を仕込み、三塩化リン(和光純薬製 純度99%以上)106g(0.77モル)をゆっくりと滴下し、乾燥窒素(露点-60℃以下)を0.02リットル/分で60分導入した。次いで、容器を4時間かけて110℃まで昇温し、10時間反応温度を維持したのち、室温まで冷却し、ビス(クロロスルホニル)イミド酸を含む反応物A-1を90g得た。
[Example 1]
30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm. A 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) 38 g (0.33 mol) with a purity of 97% or more manufactured by Kojun Pharmaceutical Co., Ltd., and 106 g (0.77 mol) of phosphorous trichloride (99% or more with a purity of Wako Pure Chemical Industries) were slowly added dropwise to dry nitrogen (dew point -60 C. or less) was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 110 ° C. over 4 hours and maintained at the reaction temperature for 10 hours, and then cooled to room temperature to obtain 90 g of a reaction product A-1 containing bis (chlorosulfonyl) imidic acid.
 次いで、60℃、1.3kPaで3時間乾燥することで水分が200ppm以下になったフッ化カリウム(和光純薬製 スプレードライ品)90g(1.55モル)とモレキュラーシーブにより乾燥することで水分が100ppm以下になったアセトニトリル(和光純薬製 純度99%以上)1000g、モレキュラーシーブで乾燥し水分が500ppm以下になったトリエチルアミン(和光純薬製 純度98%以上)6g(0.06モル)を2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥窒素(露点-60℃以下)を0.05リットル/分で導入した。次いで、溶液を冷却しながら90gの反応物A-1を2時間かけて滴下したのち、温度25℃に48時間保持した。その後、反応液をろ過、濃縮した後、さらに60℃でエタノールに溶解し、冷却して生じた白色の結晶を35gを得た。得られた白色結晶は赤外スペクトル分析の結果845cm-1、1188cm-1、1382cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、誘導結合高周波プラズマ発光分析の結果、不純物の塩素が2.5ppmであり、収率は52%であった。 Next, 90 g (1.55 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content became 200 ppm or less by drying at 60 ° C. and 1.3 kPa for 3 hours and water by drying with molecular sieve 1000 g of acetonitrile (purity 99% or more manufactured by Wako Pure Chemical Industries, Ltd.) with a water content of 100 ppm or less, 6 g (0.06 mol) of triethylamine (purity 98% or more manufactured by Wako Pure Chemical Industries, Ltd.) dried with molecular sieves and having a water content of 500 ppm or less. The flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: −60 ° C. or lower) was introduced at 0.05 liter / min. Next, 90 g of the reactant A-1 was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 25 ° C. for 48 hours. Thereafter, the reaction solution was filtered and concentrated, and further dissolved in ethanol at 60 ° C. and cooled to obtain 35 g of white crystals. The resulting white crystals infrared spectroscopy results 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity chlorine Was 2.5 ppm, and the yield was 52%.
[実施例2]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を室温で1.6kPaの減圧下で8時間乾燥し、乾燥後の水分は600ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、クロロスルホン酸(和光純薬製 純度97%以上)38g(0.33モル)を仕込み、五塩化リン(和光純薬製 純度99%以上)130g(0.61モル)をゆっくりと滴下し、乾燥窒素(露点-60℃以下)を0.02リットル/分で60分導入した。次いで、容器を4時間かけて110℃まで昇温し、この反応温度を16時間維持したのち、室温まで冷却し、ビス(クロロスルホニル)イミド酸を含む反応物A-2を115g得た。
[Example 2]
30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried at room temperature under a reduced pressure of 1.6 kPa for 8 hours, and the water content after drying was 600 ppm. A 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) 38 g (0.33 mol) with a purity of 97% or more manufactured by Kojun Pharmaceutical Co., Ltd., and 130 g (0.61 mol) of phosphorus pentachloride (99% or more with a purity of Wako Pure Chemical Industries) were slowly added dropwise, and dry nitrogen (dew point -60 C. or less) was introduced at 0.02 liter / min for 60 minutes. Next, the temperature of the vessel was raised to 110 ° C. over 4 hours, and this reaction temperature was maintained for 16 hours. After cooling to room temperature, 115 g of a reaction product A-2 containing bis (chlorosulfonyl) imidic acid was obtained.
 次いで、60℃において1.3kPaで3時間乾燥することで水分が200ppm以下になったフッ化カリウム(和光純薬製 スプレードライ品)90g(1.55モル)とモレキュラーシーブにより乾燥することで水分が100ppm以下になったジオキサン(和光純薬製 純度99%以上)1100g、モレキュラーシーブで乾燥し水分が500ppm以下になったトリエチルアミン(和光純薬製 純度98%以上)8g(0.08モル)を2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥窒素(露点-60℃以下)を0.05リットル/分で導入した。次いで、溶液を冷却しながら115gの反応物A-2を2時間かけて滴下したのち、温度25℃に48時間保持した。その後、反応液をろ過、濃縮を行い、さらに60℃でエタノールに溶解し、冷却して生じた白色の結晶40gを得た。得られた白色結晶は赤外スペクトル分析の結果845cm-1、1188cm-1、1382cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、誘導結合高周波プラズマ発光分析の結果、不純物の塩素が15.2ppmであり、収率は59%であった。 Next, 90 g (1.55 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content was reduced to 200 ppm or less by drying at 1.3 kPa at 60 ° C. for 3 hours and water was dried by molecular sieve. 1100 g of dioxane (purity 99% or more manufactured by Wako Pure Chemical Industries, Ltd.) with a water content of 100 ppm or less, and 8 g (0.08 mol) of triethylamine (purity 98% or more manufactured by Wako Pure Chemical Industries, Ltd.) dried with molecular sieves and having a water content of 500 ppm or less. The flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: −60 ° C. or lower) was introduced at 0.05 liter / min. Next, 115 g of reactant A-2 was added dropwise over 2 hours while cooling the solution, and then maintained at a temperature of 25 ° C. for 48 hours. Thereafter, the reaction solution was filtered and concentrated, further dissolved in ethanol at 60 ° C., and cooled to obtain 40 g of white crystals. The resulting white crystals infrared spectroscopy results 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity chlorine Was 15.2 ppm and the yield was 59%.
[実施例3]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を50℃の加熱乾燥機で1時間乾燥し、乾燥後の水分は1500ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、クロロスルホン酸(和光純薬製 純度97%以上)35g(0.30モル)を仕込み、塩化チオニル(和光純薬製 純度95%以上)146g(1.08モル)を添加し、乾燥窒素(露点-60℃以下)を0.02リットル/分で60分導入した。次いで、容器を8時間かけて130℃まで昇温し、4時間反応温度を維持したのち、室温まで冷却し、ビス(クロロスルホニル)イミド酸を含む反応物A-3を65g得た。
[Example 3]
30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm. A 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid and chlorosulfonic acid (sum) Charge 35 g (0.30 mol), purity 97% or more, made by Kojun Pharmaceutical Co., Ltd., add 146 g (1.08 mol) thionyl chloride (purity 95% or more, manufactured by Wako Pure Chemical Industries), dry nitrogen (dew point -60 ℃ or less) Was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 130 ° C. over 8 hours, maintained at the reaction temperature for 4 hours, and then cooled to room temperature to obtain 65 g of a reaction product A-3 containing bis (chlorosulfonyl) imidic acid.
 次いで、60℃および1.3kPaで3時間乾燥することで水分が200ppm以下になったフッ化カリウム(和光純薬製 スプレードライ品)65g(1.12モル)とモレキュラーシーブにより乾燥することで水分が300ppm以下になったアセトニトリル(和光純薬製 純度99%以上)1000g、モレキュラーシーブで乾燥し水分が500ppm以下になったトリエチルアミン(和光純薬製 純度98%以上)2g(0.02モル)を2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥窒素(露点-60℃以下)を0.05リットル/分で導入した。次いで、溶液を冷却しながら65gの反応物A-3を2時間かけて滴下したのち、温度40℃に8時間保持した。その後、反応液をろ過、濃縮を行い、白色の結晶62gを得た。得られた白色結晶は赤外スペクトル分析の結果、845cm-1、1188cm-1、1382cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、誘導結合高周波プラズマ発光分析の結果、不純物の塩素が1.5ppmであり、収率は92%であった。 Next, 65 g (1.12 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content was reduced to 200 ppm or less by drying at 60 ° C. and 1.3 kPa for 3 hours, and water by drying with molecular sieves. 1000 g of acetonitrile (purity 99% or more manufactured by Wako Pure Chemical Industries) with a water content of 300 ppm or less, and 2 g (0.02 mol) of triethylamine (purity 98% or more manufactured by Wako Pure Chemical Industries) dried with molecular sieves and having a water content of 500 ppm or less. The flask was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: −60 ° C. or lower) was introduced at 0.05 liter / min. Next, 65 g of the reaction product A-3 was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 40 ° C. for 8 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 62 g of white crystals. The resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity Chlorine was 1.5 ppm and the yield was 92%.
[実施例4]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を50℃の加熱乾燥機で1時間乾燥し、乾燥後の水分は1500ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、クロロスルホン酸(和光純薬製 純度97%以上)36g(0.31モル)を仕込み、塩化チオニル(和光純薬製 純度95%以上)88g(0.65モル)、トリエチルアミン0.2g(0.002モル)を添加し、乾燥アルゴン(露点-60℃以下)を0.02リットル/分で60分導入した。次いで、容器を8時間かけて105℃まで昇温し、反応温度を12時間維持したのち、室温まで冷却し、ビス(クロロスルホニル)イミド酸を含む反応物A-4を63g得た。
[Example 4]
30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heating dryer at 50 ° C. for 1 hour, and the moisture after drying was 1500 ppm. A 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid, chlorosulfonic acid (sum) 36 g (0.31 mol) of Koyo Pure Chemical Co., Ltd., with purity of 97% or more) were added, and 88 g (0.65 mol) of thionyl chloride (purity 95% or more of Wako Pure Chemical Industries, Ltd.) and 0.2 g (0.002 mol) of triethylamine were added. Then, dry argon (dew point of −60 ° C. or lower) was introduced at 0.02 liter / min for 60 minutes. The vessel was then heated to 105 ° C. over 8 hours and maintained at the reaction temperature for 12 hours and then cooled to room temperature to obtain 63 g of a reaction product A-4 containing bis (chlorosulfonyl) imidic acid.
 次いで、60℃および1.3kPaで3時間乾燥することで水分が200ppm以下になったフッ化リチウム(和光純薬製 純度98%以上)72g(1.24モル)とモレキュラーシーブにより乾燥することで水分が300ppm以下になった酢酸エチル(和光純薬製 純度99%以上)1000g、モレキュラーシーブで乾燥し水分が500ppm以下になったトリエチルアミン(和光純薬製 純度98%以上)2g(0.02モル)を2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥アルゴン(露点-60℃以下)を0.05リットル/分で導入した。次いで、溶液を冷却しながら61gの反応物A-3を2時間かけて滴下したのち、25℃に20時間保持した。その後、反応液をろ過、濃縮を行い、エタノールに溶解し、塩化メチレンに沈殿させて白色の結晶52gを得た。得られた白色結晶は赤外スペクトル分析の結果、845cm-1、1192cm-1、1385cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドリチウムと同定され、誘導結合高周波プラズマ発光分析の結果、不純物の塩素が5.3ppmであり、収率は77%であった。 Next, by drying at 60 ° C. and 1.3 kPa for 3 hours with 72 g (1.24 mol) of lithium fluoride (purity 98% or more, manufactured by Wako Pure Chemical Industries, Ltd.) whose water content became 200 ppm or less, and molecular sieve 1000 g of ethyl acetate (purity 99% or more, manufactured by Wako Pure Chemical Industries) with a water content of 300 ppm or less, 2 g (0.02 mol) of triethylamine (purity 98% or more, manufactured by Wako Pure Chemical) after drying with molecular sieves, the water content was 500 ppm or less ) Was placed in a 2 liter flask, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry argon (dew point of −60 ° C. or lower) was introduced at 0.05 liter / min. Next, 61 g of reactant A-3 was added dropwise over 2 hours while cooling the solution, and then kept at 25 ° C. for 20 hours. Thereafter, the reaction solution was filtered and concentrated, dissolved in ethanol, and precipitated in methylene chloride to obtain 52 g of white crystals. The resulting white crystals result of infrared spectrum analysis, 845cm -1, 1192cm -1, identified from the absorption spectrum, etc. 1385Cm -1 and bis (fluorosulfonyl) imide lithium, inductively coupled plasma emission spectrometry results, the impurity Chlorine was 5.3 ppm and the yield was 77%.
[実施例5]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を50℃の加熱乾燥機で1時間乾燥し、乾燥後の水分は1500ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、塩化チオニル(和光純薬製 純度95%以上)100g(0.74モル)を仕込み50℃に加熱しながらクロロスルホン酸(和光純薬製 純度97%以上)36g(0.31モル)を滴下し、乾燥窒素(露点-60℃以下)を0.02リットル/分で60分導入した。次いで、容器を8時間かけて100℃まで昇温し、12時間反応温度を維持したのち、室温まで冷却しビス(クロロスルホニル)イミド酸を含む反応物A-5を60g得た。
[Example 5]
30 g (0.31 mol) of sulfamic acid (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was dried with a heat dryer at 50 ° C. for 1 hour, and the water content after drying was 1500 ppm. A 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, and then 30 g (0.31 mol) of dried sulfamic acid, thionyl chloride (Wako Pure) Chlorosulfonic acid (Wako Pure Chemicals purity 97% or more) 36 g (0.31 mol) was added dropwise while charging 100 g (0.74 mol) of pharmaceutical product purity 95% or more) and heating to 50 ° C., and dry nitrogen (dew point) −60 ° C. or less) was introduced at 0.02 liter / min for 60 minutes. Next, the temperature of the vessel was raised to 100 ° C. over 8 hours, and after maintaining the reaction temperature for 12 hours, the vessel was cooled to room temperature to obtain 60 g of a reaction product A-5 containing bis (chlorosulfonyl) imidic acid.
 次いで、室温で10mmHgで3時間乾燥することで水分が1500ppm以下になったフッ化アンモニウム(和光純薬製 純度95%以上)12g(0.31モル)をアセトニトリル200gに溶解し、反応物A-5を中和した。さらに、60℃において1.3kPaで3時間乾燥することで水分が200ppmになったフッ化カリウム(和光純薬製 スプレードライ品)40g(0.69モル)、モレキュラーシーブにより乾燥することで水分が300ppm以下になったアセトニトリル(和光純薬製 純度99%以上)2000gを2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥アルゴン(露点-60℃以下)を0.05リットル/分で導入した。次いで、溶液を冷却しながら中和した反応物A-5を2時間かけて滴下したのち、室温に20時間保持した。その後、反応液をろ過、濃縮を行い白色の結晶54gを得た。得られた白色結晶は赤外スペクトル分析の結果845cm-1、1188cm-1、1382cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、誘導結合高周波プラズマ発光分析の結果、不純物の塩素が6.5ppmであり、収率は80%であった。 Next, 12 g (0.31 mol) of ammonium fluoride (purity 95% or more, manufactured by Wako Pure Chemical Industries, Ltd.) whose water content was reduced to 1500 ppm or less by drying at 10 mmHg for 3 hours at room temperature was dissolved in 200 g of acetonitrile, and reactant A- 5 was neutralized. Furthermore, 40 g (0.69 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content became 200 ppm by drying at 1.3 kPa for 3 hours at 60 ° C., and moisture by drying with molecular sieve. Add 2000 g of acetonitrile (purity 99% or more, manufactured by Wako Pure Chemical Industries, Ltd.) to 300 ppm or less into a 2 liter flask, set a reflux condenser, thermometer, stirrer, and heating device, and dry argon (dew point -60 ° C or less) Was introduced at 0.05 liter / min. Next, the reaction product A-5, which was neutralized while cooling the solution, was added dropwise over 2 hours, and then kept at room temperature for 20 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 54 g of white crystals. The resulting white crystals infrared spectroscopy results 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity chlorine Was 6.5 ppm, and the yield was 80%.
[実施例6]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を60℃の減圧乾燥機で1.3kPaまで減圧した状態で3時間乾燥し、乾燥後の水分は150ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた500mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、塩化チオニル(和光純薬製 純度95%以上)88g(0.65モル)、クロロスルホン酸(和光純薬製 純度97%以上)36g(0.31モル)を仕込み、乾燥窒素(露点-60℃以下)を0.05リットル/分で60分導入した。次いで、容器を8時間かけて130℃まで昇温し、1時間反応温度を維持したのち、室温まで冷却しビス(クロロスルホニル)イミド酸65gを得た。
[Example 6]
30 g (0.31 mol) of sulfamic acid (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) was dried for 3 hours under a reduced pressure of 1.3 kPa with a vacuum dryer at 60 ° C., and the water content after drying was 150 ppm. It was. A 500 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature, then 30 g (0.31 mol) of dried sulfamic acid, thionyl chloride (Wako Pure) 88 g (0.65 mol) of pharmaceutical product purity 95% or higher and 36 g (0.31 mol) of chlorosulfonic acid (purity 97% or higher product manufactured by Wako Pure Chemical Industries) were charged, and dry nitrogen (dew point -60 ° C. or lower) was set to 0. 0. Introduced at 05 liters / minute for 60 minutes. Next, the temperature of the container was raised to 130 ° C. over 8 hours, and after maintaining the reaction temperature for 1 hour, it was cooled to room temperature to obtain 65 g of bis (chlorosulfonyl) imidic acid.
 次いで、60℃において1.3kPaで3時間乾燥することで水分が200ppmになったフッ化カリウム(和光純薬製 スプレードライ品)72g(1.24モル)とモレキュラーシーブにより乾燥することで水分が100ppmになったアセトニトリル(和光純薬製 純度99%以上)1500g、モレキュラーシーブで乾燥し水分が500ppmになったピリジン(和光純薬製 純度99%以上)1g(0.01モル)を2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥窒素(露点-60℃以下)を0.05リットル/分で導入した。次いで、溶液を冷却しながらビス(クロロスルホニル)イミド酸65gを2時間かけて滴下したのち、温度40℃に12時間保持した。その後、反応液をろ過、濃縮することで白色の結晶61gを得た。得られた白色結晶は赤外スペクトル分析の結果、845cm-1、1188cm-1、1382cm-1などの吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、電磁誘導プラズマ発光分析(ICP分析)の結果、不純物の塩素が55ppmであり、収率は96%であった。 Next, 72 g (1.24 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content became 200 ppm by drying at 1.3 kPa for 3 hours at 60 ° C. and the molecular sieve were used to dry the water. 1 liter (0.01 mol) of pyridine (purity 99% or more, manufactured by Wako Pure Chemical Industries, Ltd.) 1500 g of acetonitrile (purity 99% or higher, manufactured by Wako Pure Chemical Industries, Ltd.), 100 ppm, and pyridine (purified 99% or more, manufactured by Wako Pure Chemical Industries, Ltd.) dried with molecular sieves and having a water content of 500 ppm. The flask was placed, a reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: −60 ° C. or lower) was introduced at 0.05 liter / min. Next, 65 g of bis (chlorosulfonyl) imidic acid was added dropwise over 2 hours while cooling the solution, and then kept at a temperature of 40 ° C. for 12 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 61 g of white crystals. The resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectra of such 1382Cm -1 bis and (fluorosulfonyl) imide potassium, electromagnetic induction plasma emission analysis (ICP analysis) As a result, the impurity chlorine was 55 ppm, and the yield was 96%.
[実施例7]
 スルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を室温下に6.7kPaで1時間乾燥し、乾燥後の水分は3000ppmであった。還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコを加熱乾燥し室温に冷却した後、乾燥したスルファミン酸30g(0.31モル)、塩化チオニル(和光純薬製 純度95%以上)150g(1.11モル)、クロロスルホン酸(和光純薬製 純度97%以上)40g(0.34モル)を滴下し、乾燥窒素(露点-60℃以下)を0.02リットル/分で導入した後、トリエチルアミンを1g(0.03モル)添加した。次いで、容器を12時間かけて140℃まで昇温し、1時間反応温度を維持したのち、室温まで冷却し、ビス(クロロスルホニル)イミド酸を含む反応物A-7を60g得た。
[Example 7]
30 g (0.31 mol) of sulfamic acid (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) was dried at 6.7 kPa for 1 hour at room temperature, and the moisture after drying was 3000 ppm. A 300 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube was dried by heating and cooled to room temperature. 150 g (1.11 mol) of pharmaceutical purity 95% or more and 40 g (0.34 mol) of chlorosulfonic acid (purity 97% or more, manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise, and dry nitrogen (dew point -60 ° C or lower) was 0. After introduction at 0.02 liter / min, 1 g (0.03 mol) of triethylamine was added. The vessel was then heated to 140 ° C. over 12 hours and maintained at the reaction temperature for 1 hour and then cooled to room temperature to obtain 60 g of a reaction product A-7 containing bis (chlorosulfonyl) imidic acid.
 次いで、60℃において1.3kPaで3時間乾燥することで水分が200ppmになったフッ化カリウム(和光純薬製 スプレードライ品)160g(2.75モル)の粉体を攪拌しながら乾燥窒素中で反応物A-7を2時間かけて滴下し混合した。次に反応物を0.05g(0.0006モル)のピリジンを含むアセトニトリル(和光純薬製 純度99%以上)2000gで洗浄し、ろ液をろ過、濃縮を行い白色の結晶50gを得た。得られた白色結晶は赤外スペクトル分析の結果845cm-1、1188cm-1、1382cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、誘導結合高周波プラズマ発光分析の結果、不純物の塩素が2.5ppmであり、収率は81%であった。 Next, 160 g (2.75 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content was 200 ppm by drying at 1.3 kPa for 3 hours at 60 ° C. was stirred in dry nitrogen. The reaction product A-7 was added dropwise over 2 hours and mixed. Next, the reaction product was washed with 2000 g of acetonitrile (0.05% or more by Wako Pure Chemical Industries, Ltd.) containing 0.05 g (0.0006 mol) of pyridine, and the filtrate was filtered and concentrated to obtain 50 g of white crystals. The resulting white crystals infrared spectroscopy results 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, inductively coupled plasma emission spectrometry results, the impurity chlorine Was 2.5 ppm and the yield was 81%.
[実施例8]
 還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた300mlのフラスコにスルファミン酸(和光純薬製 純度99.5%以上)30g(0.31モル)を50g、塩化チオニル(和光純薬製 純度95%以上)100g(0.74モル)、クロロスルホン酸(和光純薬製 純度97%以上)36g(0.31モル)を仕込み、乾燥窒素(露点-60℃以下)を0.02リットル/分で60分導入し、次いで、容器を6時間かけて120℃まで昇温し、4時間120℃を維持した。その後、反応物を冷却し、塩化カリウム(和光純薬製 純度99.5%以上)を30g(0.4モル)加え、塩酸ガスを追い出し、ビス(クロロスルホニル)イミドカリウムを含む反応物A-8を70g得た。
[Example 8]
30 g (0.31 mol) of sulfamic acid (purity 99.5% or more, manufactured by Wako Pure Chemical Industries, Ltd.) 50 g, thionyl chloride in a 300 ml flask equipped with a reflux condenser, thermometer, stirring device, heating device, and dry gas introduction tube Charged with 100 g (0.74 mol) (purity 95% or higher, manufactured by Wako Pure Chemical Industries) and 36 g (0.31 mol) chlorosulfonic acid (purity 97% or higher, manufactured by Wako Pure Chemical Industries), dry nitrogen (dew point -60 ° C or lower) Was introduced at 0.02 liter / min for 60 minutes, and then the vessel was heated to 120 ° C. over 6 hours and maintained at 120 ° C. for 4 hours. Thereafter, the reaction product is cooled, 30 g (0.4 mol) of potassium chloride (purity 99.5% or more manufactured by Wako Pure Chemical Industries, Ltd.) is added, the hydrochloric acid gas is driven off, and the reaction product A- containing potassium bis (chlorosulfonyl) imide is added. 70 g of 8 was obtained.
 次いで、60℃において1.3kPaで3時間乾燥することで水分が200ppmになったフッ化カリウム(和光純薬製 スプレードライ品)72g(1.24モル)とモレキュラーシーブにより乾燥することで水分が100ppmになった酢酸エチル(和光純薬製 純度99%以上)1500g、モレキュラーシーブで乾燥し水分が500ppmになったピリジン(和光純薬製 純度99%以上)1g(0.01モル)を2リットルのフラスコにいれ、還流冷却管、温度計、攪拌装置、加熱装置をセットし、乾燥窒素(露点-60℃以下)を0.05リットル/分で導入した。次いで溶液を冷却しながらビス(クロロスルホニル)イミド酸65gを2時間かけて滴下したのち、温度60℃に6時間保持した。その後、反応液をろ過・濃縮することで白色の結晶61gを得た。得られた白色結晶は赤外スペクトル分析の結果、845cm-1、1188cm-1、1382cm-1など吸収スペクトルからビス(フルオロスルホニル)イミドカリウムと同定され、電磁誘導プラズマ発光分析(ICP分析)の結果、不純物の塩素が55ppmであり、収率は95%であった。 Next, 72 g (1.24 mol) of potassium fluoride (spray-dried product manufactured by Wako Pure Chemical Industries, Ltd.) whose water content became 200 ppm by drying at 1.3 kPa for 3 hours at 60 ° C. and the molecular sieve were used to dry the water. 2 liters of 1,500 g of ethyl acetate (purity 99% or higher, manufactured by Wako Pure Chemical), 100 ppm, and 1 g (0.01 mole) of pyridine (purified 99% or higher, manufactured by Wako Pure Chemical), dried with molecular sieves and having a water content of 500 ppm A reflux condenser, a thermometer, a stirrer, and a heating device were set, and dry nitrogen (dew point: −60 ° C. or lower) was introduced at 0.05 liter / min. Next, 65 g of bis (chlorosulfonyl) imidic acid was added dropwise over 2 hours while cooling the solution, and then the temperature was maintained at 60 ° C. for 6 hours. Thereafter, the reaction solution was filtered and concentrated to obtain 61 g of white crystals. The resulting white crystals result of infrared spectrum analysis, 845cm -1, 1188cm -1, identified from the absorption spectrum, etc. 1382Cm -1 bis and (fluorosulfonyl) imide potassium, the result of electromagnetic induction plasma emission spectrometry (ICP analysis) The impurity chlorine was 55 ppm, and the yield was 95%.
[比較例1]
 還流冷却管、温度計、攪拌装置、加熱装置、乾燥気体導入管を備えた200mlのフラスコに、尿素(和光純薬製 純度99%以上)6g(0.10モル)、塩化チオニル(和光純薬製 純度95%以上)50g(0.41モル)を仕込み、フルオロスルホン酸(和光純薬製 純度97%以上)40g(0.40モル)を取り扱いに注意しながら滴下した。滴下終了後、乾燥窒素(露点-60℃以下)を0.05リットル/分で導入し、ゆっくりと110℃まで昇温し、4時間110℃を維持し、反応物B-1を得た。
[Comparative Example 1]
In a 200 ml flask equipped with a reflux condenser, a thermometer, a stirrer, a heating device, and a dry gas introduction tube, 6 g (0.10 mol) of urea (purity 99% or more manufactured by Wako Pure Chemical Industries), thionyl chloride (Wako Pure Chemical Industries, Ltd.) 50 g (0.41 mol) (purity 95% or higher) was charged, and 40 g (0.40 mol) of fluorosulfonic acid (purity 97% or higher, manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise with care in handling. After completion of the dropwise addition, dry nitrogen (dew point of −60 ° C. or lower) was introduced at 0.05 liter / min. The temperature was slowly raised to 110 ° C. and maintained at 110 ° C. for 4 hours to obtain a reaction product B-1.
 次いで、粉砕したフッ化カリウム(35g、0.47モル)を500mlのフラスコに入れ、塩化メチレン200mlを添加し、反応物B-1を塩化メチレン100mlに溶解し、フラスコ内へ添加した。混合物は3時間室温で攪拌した後、溶媒を留去させながら150℃まで加熱した。冷却後、フラスコ内の乾固物のIRスペクトルを測定したが、ビス(フルオロスルホニル)イミドカリウムのピークが認められた。この乾固物にテトラヒドロフランを100ml加え、濾過した後、塩化メチレンに滴下して濃褐色の固形物17g得た。この結晶はIRスペクトルよりビス(フルオロスルホニル)イミドカリウムを含む混合物であることが分った。IRスペクトルの845cm-1、1188cm-1のピークとその他の不純物のピークより類推して純度は50%以下と推察され、収率はおよそ30%以下と推察された。 Next, ground potassium fluoride (35 g, 0.47 mol) was placed in a 500 ml flask, 200 ml of methylene chloride was added, and the reaction product B-1 was dissolved in 100 ml of methylene chloride and added into the flask. The mixture was stirred for 3 hours at room temperature and then heated to 150 ° C. while distilling off the solvent. After cooling, the IR spectrum of the dried product in the flask was measured, and a peak of potassium bis (fluorosulfonyl) imide was observed. 100 ml of tetrahydrofuran was added to the dried solid, filtered, and then added dropwise to methylene chloride to obtain 17 g of a dark brown solid. This crystal was found to be a mixture containing potassium bis (fluorosulfonyl) imide from the IR spectrum. The IR spectrum 845cm -1, purity by analogy from the peak and the peak of the other impurities 1188Cm -1 is estimated to less than 50%, and the yield was estimated to about 30% or less.
 本発明によるビス(フルオロスルホニル)イミド化合物の活用例としては、電池電解質やイオン性液体などのデバイス材料、医薬中間体などの製造、潤滑油や熱媒などの応用が挙げられる。 Examples of utilization of the bis (fluorosulfonyl) imide compound according to the present invention include device materials such as battery electrolytes and ionic liquids, production of pharmaceutical intermediates, and applications such as lubricating oil and heat medium.

Claims (4)

  1.  スルファミン酸、クロロスルホン酸およびハロゲン化剤より得られるビス(クロロスルホニル)イミドアニオン化合物をフッ素置換することを特徴とする、ビス(フルオロスルホニル)イミドアニオン化合物の製造方法。 A process for producing a bis (fluorosulfonyl) imide anion compound, characterized in that a bis (chlorosulfonyl) imide anion compound obtained from sulfamic acid, chlorosulfonic acid and a halogenating agent is substituted with fluorine.
  2.  前記ビス(クロロスルホニル)イミドアニオンをフッ素置換する反応において塩基触媒を使用することを特徴とする、請求項1に記載のビス(フルオロスルホニル)イミドアニオン化合物の製造方法。 The method for producing a bis (fluorosulfonyl) imide anion compound according to claim 1, wherein a base catalyst is used in the reaction of substituting the bis (chlorosulfonyl) imide anion with fluorine.
  3.  前記塩基触媒が窒素含有化合物であることを特徴とする、請求項1又は2に記載のビス(フルオロスルホニル)イミドアニオン化合物の製造方法。 The method for producing a bis (fluorosulfonyl) imide anion compound according to claim 1 or 2, wherein the base catalyst is a nitrogen-containing compound.
  4.  請求項1~3のいずれか1項に記載の製造方法によって得られるビス(フルオロスルホニル)イミドアニオン化合物を含むイオン対化合物。 An ion pair compound comprising a bis (fluorosulfonyl) imide anion compound obtained by the production method according to any one of claims 1 to 3.
PCT/JP2008/063179 2008-07-23 2008-07-23 Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound WO2010010613A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010521556A JP5461401B2 (en) 2008-07-23 2008-07-23 Method for producing bis (fluorosulfonyl) imide anion compound
PCT/JP2008/063179 WO2010010613A1 (en) 2008-07-23 2008-07-23 Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound
KR1020107025605A KR101291903B1 (en) 2008-07-23 2008-07-23 Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound
CN2008801295811A CN102046523A (en) 2008-07-23 2008-07-23 Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063179 WO2010010613A1 (en) 2008-07-23 2008-07-23 Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound

Publications (1)

Publication Number Publication Date
WO2010010613A1 true WO2010010613A1 (en) 2010-01-28

Family

ID=41570091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063179 WO2010010613A1 (en) 2008-07-23 2008-07-23 Process for producing bis(fluorosulfonyl)imide anion compound, and ion-pair compound

Country Status (4)

Country Link
JP (1) JP5461401B2 (en)
KR (1) KR101291903B1 (en)
CN (1) CN102046523A (en)
WO (1) WO2010010613A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140580A1 (en) * 2009-06-03 2010-12-09 セントラル硝子株式会社 Method for producing imidic acid salt
WO2011149095A1 (en) * 2010-05-28 2011-12-01 株式会社日本触媒 Alkali metal salt of fluorosulfonyl imide, and production method therefor
WO2012026360A1 (en) * 2010-08-24 2012-03-01 三菱マテリアル株式会社 Bis(fluorosulfonyl)imide manufacturing method
WO2012096371A1 (en) * 2011-01-14 2012-07-19 住友電気工業株式会社 Method for producing fluorine compound
WO2012108284A1 (en) * 2011-02-10 2012-08-16 日本曹達株式会社 Process for production of fluorosulfonylimide ammonium salt
WO2012117961A1 (en) * 2011-03-03 2012-09-07 日本曹達株式会社 Manufacturing method for fluorosulfonylimide ammonium salt
US8377406B1 (en) 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
WO2013058069A1 (en) * 2011-10-18 2013-04-25 住友電気工業株式会社 Method for producing imide salt
TWI406869B (en) * 2010-09-01 2013-09-01 Nippon Catalytic Chem Ind An alkali metal salt of fluosulfonyl imide and a process for producing the same
WO2014024682A1 (en) * 2012-08-06 2014-02-13 日本曹達株式会社 Method for producing bis(halosulfonyl)amine
US20140075746A1 (en) * 2011-05-24 2014-03-20 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
JP2014162680A (en) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd Method for manufacturing a fluorosulfonylimide salt
WO2014185125A1 (en) * 2013-05-17 2014-11-20 住友電気工業株式会社 Sodium molten salt battery
US9233849B2 (en) 2011-03-03 2016-01-12 Nippon Soda Co., Ltd. Process for producing fluorine-containing sulfonylimide salt
JP2016145147A (en) * 2015-02-03 2016-08-12 株式会社日本触媒 Manufacturing method of fluorosulfonylimide compound
EP3090984A1 (en) * 2015-05-07 2016-11-09 Lonza Ltd Method for preparation of the salts of certain amines and bis(fluorosulfonyl)-imide
JP2016204218A (en) * 2015-04-24 2016-12-08 ステラケミファ株式会社 Manufacturing method of fluorosulfonylimide compound
JP2017514779A (en) * 2014-04-18 2017-06-08 アルケマ フランス Preparation of imides containing fluorosulfonyl groups
US9947967B2 (en) 2009-11-27 2018-04-17 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
JP2018172274A (en) * 2012-11-22 2018-11-08 アルケマ フランス Method for preparing imide salt containing fluorosulphonyl group
JP2019501858A (en) * 2015-11-26 2019-01-24 シーエルエス インコーポレイテッド Novel process for producing lithium bis (fluorosulfonyl) imide
EP3383842A4 (en) * 2015-12-04 2019-08-21 Coorstek Fluorochemicals, Inc. Process for producing hydrogen bis(fluorosulfonyl)imide
FR3081720A1 (en) * 2018-06-01 2019-12-06 Arkema France PROCESS FOR RECOVERY AND / OR PURIFICATION OF A BIS POTASSIUM SALT (FLUOROSULFONYL) IMIDE
CN113165875A (en) * 2018-11-16 2021-07-23 麻省固能控股有限公司 Purified lithium bis (fluorosulfonyl) imide (LiFSI) products, methods of purifying crude LiFSI, and uses of purified LiFSI products
WO2021171948A1 (en) * 2020-02-27 2021-09-02 株式会社日本触媒 Composition, electrolytic solution material, and electrolytic solution
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
WO2022186160A1 (en) 2021-03-01 2022-09-09 株式会社日本触媒 Electrolyte compact production method and electrolyte compact
WO2023276568A1 (en) 2021-06-30 2023-01-05 株式会社日本触媒 Method for purifying aqueous sulfonylimide solution, method for producing non-aqueous electrolyte, and method for producing electrolyte composition
WO2023276561A1 (en) 2021-06-30 2023-01-05 株式会社日本触媒 Method for producing nonaqueous electrolyte solution
WO2023276812A1 (en) 2021-06-30 2023-01-05 株式会社日本触媒 Composition production method and non-aqueous electrolyte solution
JP7441801B2 (en) 2018-05-23 2024-03-01 アルケマ フランス Method for preparing imide salts containing fluorosulfonyl groups

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663393B (en) * 2012-09-10 2015-09-30 江苏华盛精化工股份有限公司 The preparation method of two fluoro sulfimide lithium
US9284268B2 (en) * 2013-11-04 2016-03-15 Coorstek Fluorochemicals, Inc. Synthesis of fluorotrifluoromethylsulfonyl imide
CN104230722A (en) * 2014-03-31 2014-12-24 深圳新宙邦科技股份有限公司 Preparation method of bifluorosulfonyl imide onium salt
JP2018535181A (en) * 2015-11-13 2018-11-29 ロンザ・リミテッド Bis (fluorosulfonyl) -imide and process for preparing the salt
CN106219503B (en) * 2016-07-12 2018-11-30 武汉松石科技股份有限公司 It is a kind of double(Fluorine sulphonyl)The preparation method of imines and its alkali metal salt
FR3059994B1 (en) * 2016-12-08 2021-03-19 Arkema France LIFSI DRYING AND PURIFICATION PROCESS
FR3059993A1 (en) * 2016-12-08 2018-06-15 Arkema France PROCESS FOR DRYING AND PURIFYING BIS (FLUOROSULFONYL) IMIDE LITHIUM SALT
KR101955096B1 (en) * 2017-06-26 2019-03-06 임광민 Novel preparing method of very efficient and simple lithium bis(fluorosulfonyl)imide
CN109911870A (en) * 2017-11-28 2019-06-21 株式会社日本触媒 Sulfimine compound, its manufacturing method, electrolyte composition, electrolyte and lithium ion battery
WO2019199013A1 (en) 2018-04-10 2019-10-17 주식회사 엘지화학 Method for preparing lithium bis(fluorosulfonyl)imide salt
CN110155967A (en) * 2019-06-18 2019-08-23 山东安博新材料研究院有限公司 A kind of preparation method of double fluorine sulfimide lithiums

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2007182410A (en) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd Method for producing fluorine compound and fluorine compound obtained thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2007182410A (en) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd Method for producing fluorine compound and fluorine compound obtained thereby

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANABU KIKUTA: "Chumoku Sareru Ion Ekitai no Gijutsu", SHINKI ANION-KEI NO ION-SEI EKITAI, JETI, vol. 54, no. 4, 1 April 2006 (2006-04-01), pages 117 - 119 *
MARTIN BERAN: "A New Method of the Preparation of Imido-bis(sulfuric acid) Dihalogenide, (F,Cl), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride", Z. ANORG. ALLG. CHEM, vol. 631, no. 1, 2005, pages 55 - 59 *

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840856B2 (en) 2009-06-03 2014-09-23 Central Glass Company, Limited Method for producing imidic acid salt
JP2010280586A (en) * 2009-06-03 2010-12-16 Central Glass Co Ltd Method for producing imidic acid salt
WO2010140580A1 (en) * 2009-06-03 2010-12-09 セントラル硝子株式会社 Method for producing imidic acid salt
US9947967B2 (en) 2009-11-27 2018-04-17 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
JP5074636B2 (en) * 2010-05-28 2012-11-14 株式会社日本触媒 Fluorosulfonylimide alkali metal salt and process for producing the same
US9079780B2 (en) 2010-05-28 2015-07-14 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide, and production method therefor
US9985317B2 (en) 2010-05-28 2018-05-29 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide, and production method therefor
JPWO2011149095A1 (en) * 2010-05-28 2013-07-25 株式会社日本触媒 Fluorosulfonylimide alkali metal salt and process for producing the same
WO2011149095A1 (en) * 2010-05-28 2011-12-01 株式会社日本触媒 Alkali metal salt of fluorosulfonyl imide, and production method therefor
US9586833B2 (en) 2010-05-28 2017-03-07 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide, and production method therefor
JP2012046360A (en) * 2010-08-24 2012-03-08 Mitsubishi Materials Corp Method for producing bis(fluorosulfonyl)imide
WO2012026360A1 (en) * 2010-08-24 2012-03-01 三菱マテリアル株式会社 Bis(fluorosulfonyl)imide manufacturing method
TWI406869B (en) * 2010-09-01 2013-09-01 Nippon Catalytic Chem Ind An alkali metal salt of fluosulfonyl imide and a process for producing the same
CN103313933B (en) * 2011-01-14 2015-09-02 住友电气工业株式会社 Manufacture the method for fluorine cpd
CN103313933A (en) * 2011-01-14 2013-09-18 住友电气工业株式会社 Method for producing fluorine compound
JP2012144412A (en) * 2011-01-14 2012-08-02 Sumitomo Electric Ind Ltd Method for producing fluorine compound
WO2012096371A1 (en) * 2011-01-14 2012-07-19 住友電気工業株式会社 Method for producing fluorine compound
US9242862B2 (en) 2011-02-10 2016-01-26 Nippon Soda Co., Ltd. Process for production of fluorosulfonylimide ammonium salt
CN103347811A (en) * 2011-02-10 2013-10-09 日本曹达株式会社 Process for production of fluorosulfonylimide ammonium salt
WO2012108284A1 (en) * 2011-02-10 2012-08-16 日本曹達株式会社 Process for production of fluorosulfonylimide ammonium salt
EP2674395A4 (en) * 2011-02-10 2014-07-23 Nippon Soda Co Process for production of fluorosulfonylimide ammonium salt
EP2674395A1 (en) * 2011-02-10 2013-12-18 Nippon Soda Co., Ltd. Process for production of fluorosulfonylimide ammonium salt
CN103347811B (en) * 2011-02-10 2015-08-19 日本曹达株式会社 The manufacture method of fluorine sulfimide ammonium salt
JP5729885B2 (en) * 2011-02-10 2015-06-03 日本曹達株式会社 Method for producing fluorosulfonylimide salt
JPWO2012108284A1 (en) * 2011-02-10 2014-07-03 日本曹達株式会社 Method for producing fluorosulfonylimide ammonium salt
JP2015157758A (en) * 2011-03-03 2015-09-03 日本曹達株式会社 Method for producing fluorosulfonylimide salt
EP2660196A1 (en) * 2011-03-03 2013-11-06 Nippon Soda Co., Ltd. Manufacturing method for fluorosulfonylimide ammonium salt
EP3170789B1 (en) 2011-03-03 2018-04-18 Nippon Soda Co., Ltd. Production process for fluorosulfonylimide ammonium salt
JPWO2012117961A1 (en) * 2011-03-03 2014-07-07 日本曹達株式会社 Method for producing fluorosulfonylimide ammonium salt
WO2012117961A1 (en) * 2011-03-03 2012-09-07 日本曹達株式会社 Manufacturing method for fluorosulfonylimide ammonium salt
TWI461392B (en) * 2011-03-03 2014-11-21 Nippon Soda Co Method for producing fluorosulfonyl imide ammonium salt
US9233849B2 (en) 2011-03-03 2016-01-12 Nippon Soda Co., Ltd. Process for producing fluorine-containing sulfonylimide salt
EP2660196A4 (en) * 2011-03-03 2014-06-25 Nippon Soda Co Manufacturing method for fluorosulfonylimide ammonium salt
JP5740466B2 (en) * 2011-03-03 2015-06-24 日本曹達株式会社 Method for producing fluorosulfonylimide salt
CN103391896A (en) * 2011-03-03 2013-11-13 日本曹达株式会社 Manufacturing method for fluorosulfonylimide ammonium salt
US9096502B2 (en) 2011-03-03 2015-08-04 Nippon Soda Co., Ltd. Production process for fluorosulfonylimide ammonium salt
US9440852B2 (en) 2011-05-24 2016-09-13 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
US20140075746A1 (en) * 2011-05-24 2014-03-20 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
JP2014516907A (en) * 2011-05-24 2014-07-17 アルケマ フランス Process for producing lithium or sodium bis (fluorosulfonyl) imidide
JP2015205815A (en) * 2011-05-24 2015-11-19 アルケマ フランス Method for producing lithium or sodium bis(fluorosulfonyl)imide
US9394172B2 (en) 2011-05-24 2016-07-19 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
US10547084B2 (en) 2011-05-24 2020-01-28 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
WO2013058069A1 (en) * 2011-10-18 2013-04-25 住友電気工業株式会社 Method for producing imide salt
JP2013087019A (en) * 2011-10-18 2013-05-13 Sumitomo Electric Ind Ltd Method for producing imide salt
US9352966B2 (en) 2011-10-18 2016-05-31 Sumitomo Electric Industries, Ltd. Method for producing imide salt
JPWO2014024682A1 (en) * 2012-08-06 2016-07-25 日本曹達株式会社 Method for producing bis (halosulfonyl) amine
WO2014024682A1 (en) * 2012-08-06 2014-02-13 日本曹達株式会社 Method for producing bis(halosulfonyl)amine
EP2881365B1 (en) 2012-08-06 2018-11-28 Nippon Soda Co., Ltd. Method for producing bis(halosulfonyl)amine
US9650250B2 (en) 2012-08-06 2017-05-16 Nippon Soda Co., Ltd. Method for producing bis(halosulfonyl)amine
JP2017226597A (en) * 2012-08-06 2017-12-28 日本曹達株式会社 Method for producing bis(halosulfonyl)amine
US8377406B1 (en) 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
JP2018172274A (en) * 2012-11-22 2018-11-08 アルケマ フランス Method for preparing imide salt containing fluorosulphonyl group
JP2014162680A (en) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd Method for manufacturing a fluorosulfonylimide salt
US9711827B2 (en) 2013-05-17 2017-07-18 Sumitomo Electric Industries, Ltd. Sodium molten salt battery
WO2014185125A1 (en) * 2013-05-17 2014-11-20 住友電気工業株式会社 Sodium molten salt battery
JP2014229357A (en) * 2013-05-17 2014-12-08 住友電気工業株式会社 Sodium molten salt battery
US10128525B2 (en) 2014-04-18 2018-11-13 Arkema France Preparation of imides containing a fluorosulfonyl group
JP2017514779A (en) * 2014-04-18 2017-06-08 アルケマ フランス Preparation of imides containing fluorosulfonyl groups
CN111498819A (en) * 2014-04-18 2020-08-07 阿肯马法国公司 Preparation of imides containing fluorosulfonyl groups
JP2020100548A (en) * 2014-04-18 2020-07-02 アルケマ フランス Preparation of imides containing fluorosulfonyl group
EP3131847B1 (en) * 2014-04-18 2020-01-01 Arkema France Preparation of imides containing a fluorosulphonyl group
JP2016145147A (en) * 2015-02-03 2016-08-12 株式会社日本触媒 Manufacturing method of fluorosulfonylimide compound
JP2016204218A (en) * 2015-04-24 2016-12-08 ステラケミファ株式会社 Manufacturing method of fluorosulfonylimide compound
EP3090984A1 (en) * 2015-05-07 2016-11-09 Lonza Ltd Method for preparation of the salts of certain amines and bis(fluorosulfonyl)-imide
JP2019501858A (en) * 2015-11-26 2019-01-24 シーエルエス インコーポレイテッド Novel process for producing lithium bis (fluorosulfonyl) imide
US11597650B2 (en) 2015-11-26 2023-03-07 CLS Inc. Method for preparing lithium bis(fluorosulfonyl)imide
EP3383842A4 (en) * 2015-12-04 2019-08-21 Coorstek Fluorochemicals, Inc. Process for producing hydrogen bis(fluorosulfonyl)imide
JP7441801B2 (en) 2018-05-23 2024-03-01 アルケマ フランス Method for preparing imide salts containing fluorosulfonyl groups
FR3081720A1 (en) * 2018-06-01 2019-12-06 Arkema France PROCESS FOR RECOVERY AND / OR PURIFICATION OF A BIS POTASSIUM SALT (FLUOROSULFONYL) IMIDE
WO2019229363A3 (en) * 2018-06-01 2020-03-12 Arkema France Process for recovering and/or purifying a potassium bis(fluorosulfonyl)imide salt
CN113165875A (en) * 2018-11-16 2021-07-23 麻省固能控股有限公司 Purified lithium bis (fluorosulfonyl) imide (LiFSI) products, methods of purifying crude LiFSI, and uses of purified LiFSI products
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
WO2021171948A1 (en) * 2020-02-27 2021-09-02 株式会社日本触媒 Composition, electrolytic solution material, and electrolytic solution
JP7340685B2 (en) 2020-02-27 2023-09-07 株式会社日本触媒 Composition, electrolyte material and electrolyte
WO2022186160A1 (en) 2021-03-01 2022-09-09 株式会社日本触媒 Electrolyte compact production method and electrolyte compact
WO2023276812A1 (en) 2021-06-30 2023-01-05 株式会社日本触媒 Composition production method and non-aqueous electrolyte solution
WO2023276561A1 (en) 2021-06-30 2023-01-05 株式会社日本触媒 Method for producing nonaqueous electrolyte solution
WO2023276568A1 (en) 2021-06-30 2023-01-05 株式会社日本触媒 Method for purifying aqueous sulfonylimide solution, method for producing non-aqueous electrolyte, and method for producing electrolyte composition

Also Published As

Publication number Publication date
KR101291903B1 (en) 2013-07-31
JPWO2010010613A1 (en) 2012-01-05
JP5461401B2 (en) 2014-04-02
KR20100134755A (en) 2010-12-23
CN102046523A (en) 2011-05-04

Similar Documents

Publication Publication Date Title
JP5461401B2 (en) Method for producing bis (fluorosulfonyl) imide anion compound
KR101890787B1 (en) Process for producing lithium bisfluorosulfonylimide
EP3024779B1 (en) Synthesis of hydrogen bis(fluorosulfonyl)imide
US8377406B1 (en) Synthesis of bis(fluorosulfonyl)imide
RU2655326C2 (en) Production of hexafluorophosphate salt and phosphorus pentafluoride
JP2007182410A (en) Method for producing fluorine compound and fluorine compound obtained thereby
US9352966B2 (en) Method for producing imide salt
JP6292996B2 (en) Method for producing lithium fluorosulfate and a solution containing the same
JP7128427B2 (en) Method for producing sulfur tetrafluoride
JP5788791B2 (en) Bromine-promoted synthesis of fluorine-sulfur compounds
KR20160065820A (en) Method for purifying phosphorus pentafluoride
JP6691740B2 (en) Method for producing fluorosulfonylimide compound
JP5341425B2 (en) Method for producing fluoride gas
US7393980B2 (en) Use of a composition of an ionic nature as a substrate reagent, a composition constituting a fluorination reagent and a method using same
EP2323990B1 (en) Methods for the production of 2-halo-4-nitroimidazole and intermediates thereof
WO2000029324A1 (en) Method of purifying lithium hexafluorophosphate
CN111989295A (en) Production of lithium hexafluorophosphate
WO2014024682A1 (en) Method for producing bis(halosulfonyl)amine
JPH0416407B2 (en)
JPH02218630A (en) Preparation of halofluorobenzene
KR20140012881A (en) Process for preparing a sulfonimide compound and its salts
US6869582B2 (en) Process for the synthesis of BrSF5
EP3288923B1 (en) Method for preparing 5-fluoro-1h-pyrazole-4-carbonyl fluorides
WO2019044286A1 (en) Method for producing perfluoroalkane sulfonylimide acid metal salt
WO2000046180A1 (en) N(cf3)2-anion generation and its use

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129581.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521556

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107025605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08791436

Country of ref document: EP

Kind code of ref document: A1