WO2009119841A1 - 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置 - Google Patents

硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置 Download PDF

Info

Publication number
WO2009119841A1
WO2009119841A1 PCT/JP2009/056379 JP2009056379W WO2009119841A1 WO 2009119841 A1 WO2009119841 A1 WO 2009119841A1 JP 2009056379 W JP2009056379 W JP 2009056379W WO 2009119841 A1 WO2009119841 A1 WO 2009119841A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light emitting
emitting device
group
Prior art date
Application number
PCT/JP2009/056379
Other languages
English (en)
French (fr)
Inventor
滝沢 健一
禎昭 古屋敷
小林 博
正人 新原
波奈子 加藤
麻理 阿部
山崎 正典
森 寛
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to US12/935,116 priority Critical patent/US8629222B2/en
Priority to EP09726172A priority patent/EP2270100A4/en
Publication of WO2009119841A1 publication Critical patent/WO2009119841A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

 耐光性(特に耐紫外線性)及び密着性に優れると共に、十分な耐熱性・耐水熱性及び成膜性を有し、さらに硬化する際に発泡が少なく、長期間使用してもクラックや剥離、着色、発泡を生じない硬化性ポリシロキサン組成物を提供する。特定のヒドロシリル基含有ポリシロキサン化合物、特定のシラノール基を一分子中に2個以上含有するポリシロキサン化合物、並びに、脱水素縮合反応触媒を含むことを特徴とする硬化性ポリシロキサン組成物。

Description

硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置
 本発明は、新規な硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置に関する。詳しくは、耐熱性、耐光性、成膜性、密着性に優れ、さらに発泡性の低い硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置に関する。
 半導体発光デバイス、特に発光ダイオード(light emitting diode:以下適宜「LED」と略する。)や半導体レーザー等の半導体発光デバイスにおいては、半導体発光素子を透明の樹脂等の部材(半導体発光デバイス用部材)によって封止したものが一般的である。
 この半導体発光デバイス用部材としては、例えばエポキシ樹脂が用いられている。また、このエポキシ樹脂等の中に蛍光体などの顔料を含有させることによって、半導体発光素子からの発光波長を変換するものなどが知られている。
 しかし、エポキシ樹脂は吸湿性が高いので、半導体発光デバイスを長時間使用した際に生ずる半導体発光素子からの熱によってクラックが生じたり、また水分の浸入により蛍光体や発光素子が劣化するなどの課題があった。
 また近年、LEDの発光波長の短波長化に伴いエポキシ樹脂が劣化して着色するために、長時間の点灯及び高出力での使用においては半導体発光デバイスの輝度が著しく低下するという課題もあった。
 これらの課題に対して、エポキシ樹脂の代替品として耐熱性、紫外耐光性に優れるシリコーン樹脂が使用されるようになった。即ち、耐熱性、紫外耐光性に優れた材料として、シリコーン樹脂(ポリシロキサン組成物)を用いた半導体発光デバイスが提案されている(例えば特許文献1~5参照)。
特開2006-077234号公報 特開2006-291018号公報 特開2006-294821号公報 国際公開2006/090804号パンフレット 特許第3277749号公報
 さらに、例えば、特許文献1~4には、特定のオルガノポリシロキサンを用いたLED素子封止用硬化性樹脂組成物が記載されている。特許文献1~4に記載のオルガノポリシロキサンは、有機基導入にて架橋度を調整したことにより、4官能ケイ素のみを用いたガラス材料と比較して製膜性向上している。しかし、架橋成分として用いられる3官能以上のケイ素の使用量が多く、その硬化物は硬くもろいガラス状である。このため、パワーLEDなどの大型半導体発光デバイスに塗布した場合、LEDチップやリフレクターとの接着界面にて応力を緩和できず、長期点灯使用時あるいはリフローなどの熱衝撃時に封止剤剥離を起こしやすい。
 また、本発明者らは、特許文献4で、上記課題を解決しうる、特定のケイ素含有半導体発光デバイス用部材を開示した。しかしながら、近紫外~紫外線領域の短波長LEDを使用する半導体発光デバイスでは、着色などの劣化を生じやすいため、かかる短波長の光に対して耐光性を付与することが望まれた。また、さらに放熱が大きい半導体パワーデバイスに用いる場合は、耐光性、成膜性、密着性を維持しつつ、耐熱・耐水熱安定性のレベルをさらに上げることが望ましかった。特に蛍光体を含有させた組成物とした場合は、長時間の点灯及び高出力での使用においても蛍光体の輝度が維持される耐熱安定性が要求された。また、半導体発光デバイス用部材の製造工程における低沸不純物の揮発を抑え、硬化物重量歩留まりを向上させることも望まれていた。
 また、特許文献5のポリシロキサン組成物はLED素子封用樹脂組成物として使用されうるゲル状物質であるが、ゲル状のものはLED点灯時にその性状が安定せず、発光素子を保護するという目的を封止用硬化性樹脂組成物が担うべきであることを鑑みれば好適とは言えない。さらに、内在的に脱水素型の反応で硬化する系であることから、副生する水素ガスの影響によって発泡を生じてしまうという決定的な問題があった。この発泡は、以下の問題を引き起こす要因となるため、これを解決する手段が望まれていた。
(i)半導体発光装置の封止材として用いる場合に、封止材とその他部材の界面に存在する発泡により、剥離の問題が生じる。
(ii)蛍光体の界面や、その他部材の界面に発泡が生ずると発泡中の空気によりLEDチップから出る熱を逃がす伝熱性を低下させる上、蛍光体やその他部材の劣化を起こしやすい。
(iii)泡の影響によって、発光素子の励起光が抜けてしまい易くなり、光の変換効率が著しく低減する。
(iv)常に均一な製品を作ることが難しい。
 以上の背景から、耐光性(特に耐紫外線性)及び密着性に優れると共に、十分な耐熱性及び成膜性を有し、長期間使用してもクラックや剥離、着色を生じることなく半導体発光デバイスを封止でき、蛍光体を含有した際に高い輝度維持率が得られる光学部材が求められていた。また、封止材として硬化する際に発泡が少なく、導光性が良好で劣化の少ない半導体発光装置とすることができ、蛍光体を含有した際に高い輝度維持率を長期間維持できる光学部材が求められていた。
 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、耐光性(特に耐紫外線性)及び密着性に優れると共に、十分な耐熱性・耐水熱性及び成膜性を有し、さらに硬化する際に発泡が少なく、長期間使用してもクラックや剥離、着色、発泡を生じることなく半導体発光デバイスを封止でき、蛍光体を含有した際に高い輝度維持率が得られる光学部材、それを形成するための光学部材形成液である硬化性ポリシロキサン組成物、ならびにその優れた特性を活かした航空宇宙産業用部材、半導体発光装置、照明装置、画像表示装置を提供することにある。
 本発明者らは、ポリシロキサン組成物について特に発泡性を改善するべく鋭意検討を重ねた結果、特定構造を有する2種類以上のポリシロキサン化合物、および脱水素縮合反応触媒を含むことを特徴とする硬化性ポリシロキサン組成物は、耐光性のみならず密着性にも優れ、かつ、従来と比べても極めて高い耐熱性及び耐水熱性を有し、さらには良好な成膜性を有する上に、蛍光体を含有した際に高い輝度維持率を有する半導体発光デバイス用部材が得られることを見出し、本発明を完成させた。
 さらに、本発明の半導体発光デバイス用部材形成液、およびその硬化物は、前述の半導体発光デバイス分野のみならず、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が要求される航空宇宙産業用材料や、その他の材料にも適用性を有することを見出した。
  即ち、本発明の要旨は、以下の〔1〕~〔19〕に存する。
〔1〕 ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物、
シラノール基を一分子中に2個以上含有するシロキサン化合物、及び、
脱水素縮合反応触媒を含有し、
下記の硬化試験において、高さの平均値が0.12cm以下の硬化物となる
ことを特徴とする硬化性ポリシロキサン組成物。
〔硬化試験〕
(1)硬化性ポリシロキサン組成物2gを底面直径5cm、高さ1cmのポリテトラフルオロエチレン製容器内にて空気中で、気温150℃にて6時間静置する。
(2)前記(1)の処理の後、前記ポリテトラフルオロエチレン製容器内を45度傾けた状態で30分間静置しても全く流動性が無い(硬化した)ことを確認する。
(3)容器内底から前記硬化物の上面までの高さの平均値を測定する。 
〔2〕 ヒドロシリル基を一分子中に1個以上含有し、且つ、シラノール基を一分子中に1個以上含有するシロキサン化合物、及び、
脱水素縮合反応触媒を含有し、
前記の硬化試験において、高さの平均値が0.12cm以下の硬化物となる
ことを特徴とする硬化性ポリシロキサン組成物。
〔3〕 ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物、
シラノール基を一分子中に2個以上含有するシロキサン化合物、及び、
脱水素縮合反応触媒を含有する
ことを特徴とする半導体発光装置用硬化性ポリシロキサン組成物。
〔4〕 ヒドロシリル基を一分子中に1個以上含有し、且つ、シラノール基を一分子中に1個以上含有するシロキサン化合物、及び、
脱水素縮合反応触媒を含有する
ことを特徴とする半導体発光装置用硬化性ポリシロキサン組成物。
〔5〕 下記一般式(1)で表されるポリシロキサン化合物、下記一般式(2)で表され、かつシラノール基を一分子中に2個以上含有するポリシロキサン化合物、並びに脱水素縮合反応触媒を含むことを特徴とする硬化性ポリシロキサン組成物。
Figure JPOXMLDOC01-appb-C000003
一般式(1)中、R~RおよびR~Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基、およびR101112Siから選ばれる基を示す。R、R~R12は、それぞれ独立して、水素原子、アルキル基、アルケニル基およびアリル基から選ばれる基を示す。lは、2以上の整数を示す。mは、0以上の整数を示す。 
(R13SiO3/2(R1415SiO2/2(R161718SiO1/2r ・・・(2)
一般式(2)中、R13~R18は、それぞれ独立して、水素原子、アルキル基、アルケニル基、水酸基およびアリル基から選ばれる基を示す。 p、q、およびrは、0以上の整数を示し、p+q+r≧1である。
〔6〕 前記脱水素縮合反応触媒が、金属、ヒドロキシルアミン、及びホウ素からなる群から選ばれる1以上を含むことを特徴とする、前記〔1〕~〔5〕に記載の硬化性ポリシロキサン組成物。
〔7〕 さらに下記一般式(3)で表されるポリシロキサン化合物を含むことを特徴とする前記〔1〕~〔6〕に記載の硬化性ポリシロキサン組成物。
Figure JPOXMLDOC01-appb-C000004
 式中、R19はアルケニル基、R20は各々同じでも異なっていても良い炭素数6以下の1価の炭化水素基又は炭素数3以下のアルコキシ基である。また、s、uは正数、t≧0、x≧0、y≧0である。
〔8〕 前記の硬化試験において、高さの平均値が0.12cm以下の硬化物となる前記〔3〕~〔7〕に記載の硬化性ポリシロキサン組成物。
〔9〕 空気中で、気温150℃にて6時間以内に硬化する前記〔1〕~〔8〕に記載の硬化性ポリシロキサン組成物。
〔10〕 前記硬化性ポリシロキサン組成物の温度20℃での589nmにおける屈折率が、1.42以下である前記〔1〕~〔9〕に記載の硬化性ポリシロキサン組成物。
〔11〕 硬化性ポリシロキサン組成物が含有するシロキサン化合物のケイ素原子に結合した全置換基のうち、ヒドリド基とシラノール基を除く置換基の95mol%以上がメチル基である前記〔1〕~〔10〕に記載の硬化性ポリシロキサン組成物。
〔12〕 前記脱水素縮合反応触媒の金属成分としてPt、Pd、Pb、Sn、Zn、Fe、Ti、Zr、Biから選ばれる1以上を用いる前記〔1〕~〔11〕に記載の硬化性ポリシロキサン組成物。
〔13〕 前記〔1〕~〔12〕に記載の硬化性ポリシロキサン組成物を硬化させて得られるポリシロキサン硬化物。
〔14〕 デュロメータタイプAによる硬度測定値(ショアA)が5以上90以下であり、かつ膜 厚1mmとした時の400nm以上800nm以下の全ての波長における光透過率が、80%以上である前記〔13〕に記載のポリシロキサン硬化物。
〔15〕 前記〔13〕又は〔14〕に記載のポリシロキサン硬化物を含む光学部材。
〔16〕 前記〔13〕又は〔14〕に記載のポリシロキサン硬化物を含む航空宇宙産業用部材。
〔17〕 前記〔15〕に記載の光学部材を備えた半導体発光装置。
〔18〕 前記〔17〕に記載の半導体発光装置を備えた照明装置。
〔19〕 前記〔17〕に記載の半導体発光装置を備えた画像表示装置。
 本発明の硬化性ポリシロキサン組成物は、耐熱性、耐光性、耐水熱性、耐UV性に優れ、さらに発泡が抑制されている。また本発明の硬化性ポリシロキサン組成物を用いることで、上記の優れた特性を有するポリシロキサン硬化物を得ることができる。
 また、本発明のポリシロキサン硬化物は、光線透過性(透明性)、耐光性、耐熱性、耐水熱性等が高く、発泡が抑制されているため、種々の光学部材に好適にもちいることができる。
 該光学部材は、半導体発光装置、導光板、及び導波路に好適に用いることができる。さらに、本発明の硬化性ポリシロキサン組成物、ポリシロキサン硬化物及び光学部材は、前述の特性に加えて、耐水熱性、耐UV性等も高いため、これらの種々の特性が要求される材料、例えば紫外~近紫外の領域に発光する半導体発光素子(紫外~近紫外LED)を用いたデバイスの材料、航空宇宙産業用材料、その他の材料にも適用することできる。
実施形態A-1を示す概略断面図である。 実施形態A-2を示す概略断面図である。 実施形態B-1を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態B-2を示す概略断面図である。 実施形態B-3を示す概略断面図である。 実施形態B-4を示す概略断面図である。 実施形態B-5を示す概略断面図である。 実施形態B-6を示す概略断面図である。 実施形態B-7を示す概略断面図である。 実施形態B-8を示す概略断面図である。 実施形態B-9を示す概略断面図である。 実施形態B-10を示す概略断面図である。 実施形態B-11を示す概略断面図である。 実施形態B-12を示す概略断面図である。 実施形態B-13を示す概略断面図である。 実施形態B-14を示す概略断面図である。 実施形態B-15を示す概略断面図である。 実施形態B-16を示す概略断面図である。 実施形態B-17を示す概略断面図である。 実施形態B-18を示す概略断面図である。 実施形態B-19を示す概略断面図である。 実施形態B-20を示す概略断面図である。 実施形態B-21を示す概略断面図である。 実施形態B-21について示す要部断面図である。 実施形態B-22を示す概略断面図である。 実施形態B-22について示す要部断面図である。 実施形態B-23を示す概略断面図である。 実施形態B-23について示す要部斜視図である。 実施形態B-24を示す概略断面図である。 実施形態B-24について示す要部断面図である。 実施形態B-24について示す要部斜視図である。 実施形態B-25を示す概略断面図である。 実施形態B-26を示す概略断面図である。 実施形態B-27を示す概略断面図である。 実施形態B-28を示す概略断面図である。 実施形態B-29を示す概略断面図である。 実施形態B-30を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態B-31を示す概略断面図である。 実施形態B-32を示す概略断面図である。 実施形態B-33を示す概略断面図である。 実施形態B-34を示す概略断面図である。 実施形態B-35を示す概略断面図である。 実施形態B-36を示す概略断面図である。 実施形態B-37を示す概略断面図である。 実施形態B-38を示す概略断面図である。 実施形態B-39を示す概略断面図である。 実施形態B-40を示す概略断面図である。 実施形態B-41を示す概略断面図である。 各実施形態の要部の他の構成例の説明図である。 (a)、(b)はいずれも、各実施形態の基本概念の説明図である。
符号の説明
1,1A,1B 発光装置(半導体発光装置)
2 発光素子
3A 透明部材(半導体発光装置用部材)
3B 蛍光体部(半導体発光装置用部材)
4a,4b 発光素子から放射された光の一部
5 蛍光体部に含有される蛍光体粒子、蛍光イオン、蛍光染料などの蛍光成分特有の波長の光
11 モールド部
12,13 リード端子
14 ミラー(カップ部)
15 導電ワイヤ
16 絶縁基板
16a 凹所
17 プリント配線
18 枠材
19 封止部
19a 封止機能部
19b レンズ機能部
19c 凹部
19d 貫通孔
21 発光層部
23 反射層
24 バンプ
33,34 蛍光体部
35 固体媒質
36 蓋体
101 カップ
102 LEDチップ
103 LED素子
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内であれば種々に変更して実施することができる。
[1]硬化性ポリシロキサン組成物 
 本発明の硬化性ポリシロキサン組成物の1つの態様は、ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物、及び、シラノール基を一分子中に2個以上含有するシロキサン化合物を含有することを特徴とする。
 また、本発明の硬化性ポリシロキサン組成物の別の1つの態様は、ヒドロシリル基を一分子中に1個以上含有し、且つ、シラノール基を一分子中に1個以上含有するシロキサン化合物を含有することを特徴とする。
 ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物とは、1分子中に少なくとも2個、好ましくは3個以上のSiH結合を有するオルガノハイドロジェンシラン又は直鎖状、分岐状、3次元ネット状のオルガノハイドロジェンポリシロキサンである。なかでもオルガノハイドロジェンポリシロキサンが硬化時に揮発しにくく好ましい。このオルガノハイドロジェンポリシロキサンの置換基としては後述の基を用いることが出来るが、好ましくは脂肪族不飽和結合を有さないものが良い。
 前記オルガノハイドロジェンポリシロキサンにおいて、ケイ素原子に結合した置換又は非置換の一価炭化水素基としては、通常、炭素数1~12、好ましくは1~8程度のものが挙げられ、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。また、3wt%以内の炭素数1~3のアルコキシ基が含まれていても良い。
 上記オルガノハイドロジェンシラン及びオルガノハイドロジェンポリシロキサンとしては、(CH)SiH、(CHSiH、(C)SiH、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体などが挙げられる。
 中でも前記一般式(1)で表される化合物を好ましく用いることが出来る。
 シラノール基を一分子中に2個以上含有するシロキサン化合物とは、前記ヒドロシリル基含有シロキサン化合物と脱水素縮合反応により組成物を硬化させる架橋剤として作用するものであり、1分子中に少なくとも2個以上のシラノール基を有する直鎖状、分岐状、3次元ネット状のオルガノポリシロキサンである。このオルガノポリシロキサンの置換基としては前述のオルガノハイドロジェンポリシロキサンと同様の置換基を用いることが出来るが、好ましくは脂肪族不飽和結合を有さないものが良い。中でも一般式(2)で表される化合物を好ましく用いることが出来る。
 ヒドロシリル基を一分子中に1個以上含有し、且つ、シラノール基を一分子中に1個以上含有するシロキサン化合物とは、前記ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物と、前記シラノール基を一分子中に2個以上含有するシロキサン化合物の特性を併せ持ち、一分子中にヒドロシリル基を1個以上、シラノール基を1個以上有する直鎖状、分岐状、3次元ネット状のオルガノポリシロキサンである。このオルガノポリシロキサンの置換基としては前述のオルガノハイドロジェンポリシロキサンと同様の置換基を用いることが出来るが、好ましくは脂肪族不飽和結合を有さないものが良い。このような化合物は例えば前記一分子中にヒドロシリル基を2個以上含有するオルガノハイドロジェンポリシロキサンと、一分子中にシラノール基を2個以上含有するオルガノポリシロキサンを脱水素縮合や加水分解重縮合などの方法で反応させて得ることが出来る。なお、前記の製法は一例であり、製法はこれに限定されるものではない。
 また、本発明の硬化性ポリシロキサン組成物の1つの態様は、下記一般式(1)で表されるポリシロキサン化合物、下記一般式(2)で表され、かつシラノール基を一分子中に2個以上含有するポリシロキサン化合物、および脱水素縮合触媒(好ましくは、金属、ヒドロキシルアミン、又は、ホウ素)を含有する硬化触媒を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、R~RおよびR~Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基、およびR101112Siから選ばれる基を示す。R、R~R12は、それぞれ独立して、水素原子、アルキル基、アルケニル基およびアリル基から選ばれる基を示す。lは、2以上の整数を示す。mは、0以上の整数を示す。
 (R13SiO3/2(R1415SiO2/2(R161718SiO1/2・・・(2)
 一般式(2)中、R13~R18は、それぞれ独立して、水素原子、アルキル基、アルケニル基、およびアリル基から選ばれる基を示す。
 p、q、およびrは、0以上の整数を示し、p+q+r≧1である。
 R~R18うち、少なくとも80mol%以上、好ましくは95mol%以上、さらに好ましくは99mol%以上がメチル基であることが好ましい。
 また、本発明の硬化性ポリシロキサン組成物の1つの態様として、前記硬化性ポリシロキサン組成物にさらに、下記一般式(3)等で表される、アルケニル基を有するポリシロキサン化合物を含ませることができる。
Figure JPOXMLDOC01-appb-C000006
 式中、R19はアルケニル基、R20は各々同じでも異なっていても良い炭素数6以下の1価の炭化水素基、炭素数3以下のアルコキシ基であり、少なくとも80%以上、好ましくは95mol%以上、さらに好ましくは99mol%以上がメチル基であることが好ましい。また、s、uは正数、t≧0、x≧0、y≧0である。
 上記アルケニル基を有する珪素含有化合物としては、例えば同じでも異なっていても良いビニル基含有ポリオルガノシロキサンを挙げることができ、これらを1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。上記の中でも分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサンが好ましい。
 分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサンとして具体的には、Gelest社製の両末端ビニルポリジメチルシロキサン: 
 DMS-V00、 
 DMS-V03、 
 DMS-V05、 
 DMS-V21、 
 DMS-V22、 
 DMS-V25、 
 DMS-V31、 
 DMS-V33、 
 DMS-V35、 
 DMS-V41、 
 DMS-V42、 
 DMS-V46、 
 DMS-V52、 
Gelest社製の両末端ビニルジメチルシロキサン-ジフェニルシロキサンコポリマー:
 PDV-0325、 
 PDV-0331、 
 PDV-0341、 
 PDV-0346、 
 PDV-0525、 
 PDV-0541、 
 PDV-1625、 
 PDV-1631、 
 PDV-1635、 
 PDV-1641、 
 PDV-2331、 
 PDV-2335、 
Gelest社製の両末端ビニルフェニルメチルシロキサン:
 PMV-9925、 
Gelest社製のトリメチルシリル基封鎖ビニルメチルシロキサン-ジメチルシロキサンコポリマー:
 VDT-123、 
 VDT-127、 
 VDT-131、 
 VDT-153、 
 VDT-431、 
 VDT-731、 
 VDT-954、 
Gelest社製のビニルT-構造ポリマー:
 VTT-106、 
 MTV-124、 
その他、ビニル基含有環状ジメチルポリシロキサン
等が挙げられる。
 以下、本発明の硬化性ポリシロキサン組成物の特徴につき説明する。
[1-1]ヒドロシリル基含有ポリシロキサン化合物
 本発明の硬化性ポリシロキサン組成物は、好ましくは、下記一般式(1)で表されるヒドロシリル基含有ポリシロキサン化合物を含有する。ヒドロシリル基をシロキサン骨格内に有していることにより、架橋密度のチューニングを容易に行うことができる。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、R~RおよびR~Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基、およびR101112Siから選ばれる基を示す。R、R~R12は、それぞれ独立して、水素原子、アルキル基、アルケニル基およびアリル基から選ばれる基を示す。lは、2以上の整数を示す。mは、0以上の整数を示す。
(R~RおよびR~R
 R~RおよびR~Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基、およびR101112Siからなる群より選ばれる基を示す。このうち、アルキル基、アルケニル基、アリル基、およびR101112Siは、さらにハロゲン原子に置換されていてもよい。
 好ましいアルキル基としては、例えば、メチル基、エチル基、プロピル基、トリフルオロプロピル基が挙げられる。
 好ましいアルケニル基としては、例えば、ビニル基が挙げられる。
 好ましいアリル基としては、例えば、フェニル基が挙げられる。
 これらの中でも、好ましいものとしては、フェニル基、メチル基等が挙げられる。
(R、R~R12
 R、R~R12は、それぞれ独立して、水素原子、アルキル基、アルケニル基およびアリル基から選ばれる基を示す。アルキル基、アルケニル基およびアリル基は、さらにハロゲン原子に置換されていてもよく、好ましいアルキル基、アルケニル基およびアリル基は、前記R~RおよびR~Rにおけるとものと同様である。
 これらの中でも、好ましいものとしては、フェニル基、メチル基等が挙げられる。
 一般式(1)のヒドロシリル基含有ポリシロキサン化合物としては、具体的には、例えば水素基末端ポリジメチルシロキサン(Hydride terminated Polydimethylsiloxanes)やトリメチルシリル基末端ポリメチルヒドロシロキサン(Polymethylhydrosiloxanes trimethylsilyl terminated)などが挙げられる。これらは市販品を使用することも可能であり、例えば、信越化学工業製KF-99、KF-9901、東レダウコーニング社製SH 1107シリーズ、Momentive Performance Materials社製 TSF484, TSL9586、旭化成ワッカー社製 H-Siloxane、Gelest社製HMS シリーズ、DMSシリーズなどを挙げることができる。
 前記ヒドロシリル基含有ポリシロキサン化合物においては、ポリスチレン換算の重量平均分子量が重要であり、通常160以上、好ましくは500以上である。
 このうち、本発明の硬化性ポリシロキサンを硬化物とさせた場合に、気温200℃以上における収縮を抑制するためには、重量平均分子量はさらに5000以上であることが好ましく、本発明の硬化性ポリシロキサンの硬化を容易とするためには、重量平均分子量はさらに27000以上であることが好ましい。
 また、重量平均分子量は、通常700000以下、好ましくは100000以下である。
 このうち、粘度を下げて、ハンドリングをよくするためには、重量平均分子量は、さらに90000以下であることが好ましい。
 前記ヒドロシリル基含有ポリシロキサン化合物は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
[1-2]水酸基を一分子中に2個以上含有するポリシロキサン化合物 
 本発明の硬化性ポリシロキサン組成物は、好ましくは、下記一般式(2)で表され、かつ水酸基を一分子中に2個以上含有するポリシロキサン化合物を含有する。水酸基を一分子中に2個以上含有することにより、直線的に、また三官能分子と反応して架橋しながら三次元的に、その分子量を高分子化することが可能となる。
(R13SiO3/2(R1415SiO2/2(R161718SiO1/2r ・・・(2)
 一般式(2)中、R13~R18は、それぞれ独立して、水素原子、アルキル基、アルケニル基、およびアリル基から選ばれる基を示す。
p、q、およびrは、0以上の整数を示し、p+q+r≧1である。
(R13~R18
 R13~R18は、それぞれ独立して、水素原子、アルキル基、アルケニル基およびアリル基から選ばれる基を示す。アルキル基、アルケニル基およびアリル基は、さらにハロゲン原子に置換されていてもよく、好ましいアルキル基、アルケニル基およびアリル基は、前記R~RおよびR~Rにおけるとものと同様である。
 これらの中でも、好ましいものとしては、フェニル基、メチル基等が挙げられる。
 前記シラノール基を一分子中に2個以上含有するポリシロキサン化合物においては、硬化時の粘度上昇を適度に抑制する観点から、分子中のシラノール基の量を多すぎないようにすることが重要である。即ち、R13~R18におけるシラノール基の数はR13~R18の置換基全体数に対して、通常99.9%以下、好ましくは99.5%以下、更に好ましくは99%以下であり、通常1%以上、好ましくは1.5%以上、更に好ましくは、2%以上である。シラノール基量が多すぎると粘度上昇率が大きすぎるため、ハンドリングが良くない。また、シラノール基量が少なすぎると反応の進行が遅くなるか、不十分である場合がある。
 一般式(2)の水酸基を一分子中に2個以上含有するポリシロキサン化合物の具体例としては、例えば、ヒドロキシ末端ポリジメチルシロキサン(Silanol terminated polydimethylsiloxanes)などが挙げられる。また、これら水酸基を一分子中に2個以上含有するポリシロキサン化合物は市販のものを使用することができ、例えば、Momentive Performance Materials社製ヒドロキシ末端ポリジメチルシロキサンでは、XC96-723、XF3905、YF3057、YF3800、YF3802、YF3807、YF3897などが挙げられる。
 前記水酸基を一分子中に2個以上含有するポリシロキサン化合物のポリスチレン換算の重量平均分子量は、通常160以上、好ましくは400以上、さらに好ましくは500以上、また、通常700000以下、好ましくは50000以下、さらに好ましくは30000以下である。この範囲を下回ると、硬化物が固く脆くなるという可能性がある。また、この範囲を上回ると、硬化しづらくなる可能性がある。
 前記水酸基を一分子中に2個以上含有するポリシロキサン化合物は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
[1-3-1]ポリシロキサン化合物の混合物 
 本発明のポリシロキサン組成物は、例えば、ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物、及び、シラノール基を一分子中に2個以上含有するシロキサン化合物を含有するが、その配合量はSi-H(ヒドロシリル基)とSi-OH(シラノール基)のモル比で、通常100:1~1:100、好ましくは20:1~1:20、更に好ましくは10:1~1:10である。前記一般式(1)のポリシロキサン化合物が多すぎても、一般式(2)のポリシロキサン化合物が多すぎても硬化が不十分となる。
 ヒドロシリル基及びシラノール基を一分子中に1個以上含有するシロキサン化合物は単独にて脱水素触媒と混合することにより硬化性組成物とすることができるが、必要に応じて互いに異なる分子量のSiH/SiOH含有シロキサン化合物、あるいは異なるSiH/SiOH比のシロキサン化合物を混合することにより硬化性に優れた組成物とすることができる。
  本発明のポリシロキサン組成物は、少なくとも前記一般式(1)および、(2)のポリシロキサン化合物を含有するが、その配合量はSi-H(ヒドロシリル基)とSi-OH(シラノール基)のモル比で、通常100:1~1:100、好ましくは20:1~1:20、更に好ましくは10:1~1:10である。前記一般式(1)のポリシロキサン化合物が多すぎても、一般式(2)のポリシロキサン化合物が多すぎても硬化が不十分となる。
 前記一般式(1)および、(2)、(3)のポリシロキサン化合物のR~R20の置換基は、ヒドリド基と水酸基を除く置換基の95mol%以上、好ましくは98mol%以上、更に好ましくは99mol%以上がアルキル基であるものが好ましい。アルキル基は通常100mol%以下である。アルキル基はメチル基、エチル基、プロピル基などが挙げられるが、安定性の観点からメチル基が好ましい。
 即ち、ヒドリド基および水酸基は、硬化反応に必須の置換基であるため、適宜含有されている必要があるが、それ以外の置換基は硬化物の光及び熱的安定性の観点から、アルキル基を多く含むものが好ましい。アルキル基が少なすぎて他の官能基に置換されると、安定性が劣るようになる。
[1-3-2]脱水素縮合反応触媒(硬化触媒ともいう)
 本発明の硬化性ポリシロキサン組成物は、脱水素縮合反応触媒、特にシロキサン化合物脱水素縮合反応触媒を含有する。シロキサン化合物脱水素縮合反応触媒としては、金属、ホウ素及びヒドロキシルアミンからなる群から選ばれる少なくとも1つを含有することが好ましい。金属成分としては、Pt, Pd, Pb, Sn, Zn, Fe, Ti, Zr, Biから選ばれる1以上を用いるのが好ましく、中でもPt,Pd,Snが反応活性高いことから好ましく、特に適度な活性を有し反応速度制御しやすく、工業的に入手の容易なSnが好ましい。Sn系硬化触媒の中では、Sn(IV)系が更に好ましい。また硬化物を電極近くで使用する場合にはヒドロキシルアミンや白金系触媒などを用いると電極着色などを起こしにくく好ましい。
 硬化触媒の具体例としては、例えば、ジオクチルスズジラウレート、2-エチルヘキサン酸スズ、ステアリン酸亜鉛、ジエチルヒドロキシルアミン、トリス(ペンタフルオロフェニル)ボランなどを挙げることができる。 また白金ビニルシロキサン錯体、塩化白金酸なども好適に用いることが出来るが活性高く硬化物が発泡体となりやすいので、必要に応じてエチニルシクロヘキサノールなどの硬化抑制剤を併用したり、硬化温度をステップ昇温とすると発泡を抑制することができる。
 前記硬化触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。 また任意の反応促進剤や反応抑制剤と併用しても良い。
 前記硬化触媒は、本発明の硬化性ポリシロキサン組成物が少なくとも硬化し、かつ硬化時にひどく発泡しない程度の量を入れることが肝要である。例えば、ヒドロキシルアミン、ホウ素または金属元素換算で、総原料重量中通常0.001重量%以上、好ましくは0.002重量%以上、より好ましくは0.005重量%以上、また、通常0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下含有する。
 特に、Sn(IV)系硬化触媒を用いる場合は、経時的に生じる酸化スズの量を抑える観点から、0.08重量%以下であることが好ましい。
 なお、前記の硬化触媒の含有率は、ICP分析により測定できる。
 [1-4]硬化性
 本発明の硬化性ポリシロキサン組成物は、空気中で、気温150℃にて通常6時間以内、好ましくは4時間以内、さらに好ましくは3時間以内に硬化することが好ましい。即ち、本発明の硬化性ポリシロキサン組成物は比較的硬化時間が短いため、経済的に優れ、また、中にフィラーを混練した際に、そのフィラーが沈降したりしないという技術的意義がある。また、150℃という比較的低温により硬化が可能であるため、半導体発光装置の構成要素、特に半導体発光素子や蛍光体の熱による性能低下を抑制することもできる。
 ここで、本発明において、「硬化」とは、流動性を示す状態から、流動性を示さない状態に変化することをいい、例えば、対象物を水平より45度傾けた状態で30分間静置しても全く流動性があるかないかでそれぞれ未硬化状態、硬化状態を判断することができる。
 本発明の硬化性ポリシロキサン組成物が、気温150℃で硬化する時間として、好ましくは、6時間以内であり、更に好ましくは5時間以内である。また、通常0.2時間以上、好ましくは0.5時間以上である。硬化時間が長すぎると、中にフィラーを混練した際に、そのフィラーが沈降したりする上、長時間の硬化処理を必要とするため、コスト高である。短すぎると、ハンドリングが難しく、レベリング前に硬化して形成面にムラができる場合がある。
 硬化速度を早くするためには、適切な触媒を選択する、分岐の多いポリシロキサン原料を使用する、分子量の高いポリシロキサン原料を使用する、硬化時に発生する水素など脱離成分の除去を積極的に行う、などの方法がある。
 また、本発明の硬化性ポリシロキサン組成物は、硬化により膜厚が比較的薄くなる特徴がある。これは、発泡が少なく、均一な膜を作製しうる点で優れた技術的意義を有する。
 即ち、本発明の硬化性ポリシロキサン組成物は、下記の硬化試験において、高さ(厚さ)の平均値が通常0.12cm以下、好ましくは0.118cm以下、更に好ましくは0.115cm以下であり、通常0.09cm以上、好ましくは0.1cm以上である。高さの平均値が大きくなるのは、泡や空気をかみこんでいるということであり、高さの平均値が大きすぎると、発泡しやすくなっている場合がある、小さすぎると固形分が少ないか、硬化収縮を起こしやすい場合がある。
 〔硬化試験〕
 (1)硬化性ポリシロキサン組成物2gを底面直径5cm、高さ1cmのポリテトラフルオロエチレン製容器内にて空気中で、気温150℃にて6時間静置する。
 (2)前記(1)の処理の後、前記ポリテトラフルオロエチレン製容器内を45度傾けた状態で30分間静置しても全く流動性が無い(硬化した)ことを確認する。 
 (3)容器内底から前記硬化物の上面までの高さの平均値を測定する。
 なお、前記(3)における高さの平均値は、具体的には、例えば以下の(4)~(6)の手順で測定される。
 (4)前記硬化性ポリシロキサン組成物を中で硬化させた後(前記(2)の処理後)のポリテトラフルオロエチレン製容器に水を入れる。
 (5)入った水の体積を測定し、これを底面積5cmで除したものを「水の高さの平均値」とする。
 (6)下式により算出する。
 {高さの平均値(cm)}={容器高さ(1cm)}-{水の高さの平均値(cm)}
 硬化物が発泡体とならず高さの平均値を好ましい範囲とするためには、発生する水素や溶存空気・水分などの軽沸揮発成分が十分に硬化性組成物系外に出た後に硬化が起きるように硬化速度を制御すると良い。例えば一般式(1)の化合物:一般式(2)の化合物の組成比が1:10~10:1とすると良い。一般式(1)(2)の化合物に加え一般式(3)の化合物を添加する場合には、(1)(2)の総和:(3)の比が10:1~1:1、好ましくは5:1~1:1とするとよい。また一般式(1)の化合物の有するヒドロシリル基と一般式(2)の化合物の有するシラノール基のモル比、SiH/SiOHが通常1~20、好ましくは1~10となるように原料を選択すると良い。原料ポリシロキサンの分子量は反応活性に影響を与えるので、例えば一般式(2)のシラノール基含有ポリシロキサンの分子量は500~の範囲が好ましい。好適な触媒の濃度は触媒の種類により異なり一概には言えないが、総原料重量中通常0.001重量%以上、好ましくは0.002重量%以上、より好ましくは0.005重量%以上、また、通常0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下である。
 [1-5]屈折率
 本発明の硬化性ポリシロキサン組成物の屈折率は、該硬化性ポリシロキサン化合物の温度が20℃における波長589nmの光の屈折率が、通常1.42以下、好ましくは1.419以下、更に好ましくは1.418以下であり、通常1.35以上、好ましくは1.40以上である。光学部材に応用する場合には一般的な発光デバイスの屈折率が約2.5以下であるが、本発明においては樹脂の光安定性の観点からも比較的屈折率の低いものを選択することが好ましい。
 本発明の硬化性ポリシロキサン組成物は、含有するシロキサン化合物のケイ素原子に結合した全置換基のうち、ヒドリド基とシラノール基を除く置換基の80mol%以上、好ましくは95mol%以上、さらに好ましくは99mol%以上がアルキル基であることが好ましい。また、アルキル基は、メチル基であることが好ましい。
 シロキサン化合物のケイ素原子に結合した全置換基のうち、ヒドリド基とシラノール基を除く置換基のモル分率は、液体H-核磁気共鳴スペクトル、固体H-核磁気共鳴スペクトル、固体Si-核磁気共鳴スペクトル、又は、これらを相補的に組み合わせて用いることにより、測定したスペクトルから、(シロキサン化合物のケイ素原子に結合したアルキル基のピークの総面積から算出したモル比)/(シロキサン化合物のケイ素原子に結合した全置換基(ヒドリド基と水酸基を除く)のピークの総面積から算出したモル比)によりモル百分率を算出することができる。
 具体的には、前記一般式(1)(2)(3)の置換基R~R20のうち、ヒドリド基と水酸基を除く置換基総量の80mol%以上、好ましくは95mol%以上、更に好ましくは98mol%以上、特に好ましくは99mol%以上がアルキル基であるものが好ましい。また、前記屈折率が大きすぎ、発光デバイスの屈折率を上回ると、光取り出し効率が向上しない可能性がある。また、屈折率が小さすぎると例えば光取り出し効率が既存の半導体発光デバイス用部材と比較して向上しない可能性がある。
 本発明の硬化性ポリシロキサン組成物の屈折率は、通常屈折計により測定することができる。具体的には、Abbe屈折計(ナトリウムD線(589nm)使用)を用いることができる。
 本発明の硬化性ポリシロキサン組成物の屈折率を、上記範囲とする方法としては、例えば、後述するように、前記ポリシロキサン化合物の種類や配合量を適宜選択することが挙げられる。特に、前記ポリシロキサン化合物(前記一般式(1)および(2)の化合物)のいずれか、好ましくは全てにおいて、温度が20℃における波長589nmの光の屈折率が、通常1.42以下、好ましくは1.419以下、更に好ましくは1.418以下であり、通常1.35以上、好ましくは1.40以上である。前記屈折率が大きすぎ、発光デバイスの屈折率を上回ると、光取り出し効率が向上しない可能性がある。また、屈折率が小さすぎると例えば光取り出し効率が既存の半導体発光デバイス用部材と比較して向上しない可能性がある。なお、前記ポリシロキサン化合物の屈折率の測定は、各々本発明の硬化性ポリシロキサン組成物の屈折率の測定と同様に行なうことができる。
 [1-6]硬化性ポリシロキサン組成物の特性
 本発明の硬化性ポリシロキサン組成物の粘度に制限は無いが、液温25℃において、通常20mPa・s以上、好ましくは100mPa・s以上、より好ましくは200mPa・s以上、また、通常1500mPa・s以下、好ましくは1000mPa・s以下、より好ましくは800mPa・s以下である。なお、前記粘度はRV型粘度計(例えばブルックフィールド社製RV型粘度計「RVDV-IIPro」により測定できる。
 [1-7]他の部材との組み合わせ
 本発明の硬化性ポリシロキサン組成物は単独で用いても良いが、粘度、硬化速度、硬化物の硬度、塗布しやすさの向上などの性状の調整を目的として、他の液状媒体と混合しても良い。
 使用される液状媒体としては無機系材料および/または有機系材料が使用できる。
 無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル-ゲル法により加水分解重合して成る溶液、またはこれらの組み合わせを固化した無機系材料(例えばシロキサン結合を有する無機系材料)等を挙げることができる。
 有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として珪素含有化合物を使用するのが好ましい。
 珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、ハンドリングの容易さ等の点から、シリコーン系材料が好ましい。
 シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば一般組成式(1)で表される化合物及び/またはそれらの混合物が挙げられる。
(RSiO1/2(RSiO2/2(RSiO3/2(SiO4/2・・・式(1)
  ここで、RからRは同じであっても異なってもよく、有機官能基、シリル基、水酸基、水素原子からなる群から選択される。またM、D、T及びQは0から1未満であり、M+D+T+Q=1を満足する数である。
 シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系材料を挙げることができる。これらの中では、付加重合硬化タイプ(付加型シリコーン系材料)、縮合硬化タイプ(縮合型シリコーン系材料)、紫外線硬化タイプが好適である。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
 [1-7-1]付加型シリコーン系材料
 付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシランとヒドロシランをPt触媒などの付加型触媒の存在下に反応させて得られるSi-C-C-Si結合を架橋点に有する化合物等を挙げることができる。これらは市販のものを使用することができ、例えば付加重合硬化タイプの具体的商品名としては、信越化学工業社製「LPS-1400」「LPS-2410」「LPS-3400」等が挙げられる。
 上記付加型シリコーン系材料は、具体的には、例えば下記平均組成式(1a)で表される(A)アルケニル基含有オルガノポリシロキサンと、下記平均組成式(2a)で表される(B)ヒドロシリル基含有オルガノポリシロキサンとを、(A)の総アルケニル基に対して(B)の総ヒドロシリル基量が0.5~2.0倍となる量比で混合し、触媒量の(C)付加反応触媒の存在下に反応させて得ることが出来る。
 (A)アルケニル基含有オルガノポリシロキサンは、下記組成式(1a)で示される1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンである。
  RSiO〔(4-n)/2〕     (1a)
(但し、式(1a)中、Rは同一又は異種の置換又は非置換の1価炭化水素基、アルコキシ基、又は水酸基であり、nは1≦n<3を満たす正数である。ただし、Rのうち少なくとも1つはアルケニル基である。)
 (B)ヒドロシリル基含有ポリオルガノシロキサンは、下記組成式(2a)で示される1分子中に少なくとも2個のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンである。
  R’SiO〔(4-a-b)/2〕      (2a)
(但し、式(2a)中、R’はアルケニル基を除く同一又は異種の置換又は非置換の1価の炭化水素基であり、a及びbは0.7≦a≦2.1、0.001≦b≦1.0かつ、0.8≦a+b≦2.6を満たす正数である。)
 以下、付加型シリコーン樹脂につき更に詳しく説明する。
 上記式(1a)のRにおいて、アルケニル基とはビニル基、アリル基、ブテニル基、ペンテニル基などの炭素数2~8のアルケニル基であることが好ましい。また、Rが炭化水素基である場合は、メチル基、エチル基などのアルキル基、ビニル基、フェニル基等の炭素数1~20の1価炭化水素基から選択されるものが好ましく、より好ましくは、メチル基、エチル基、フェニル基である。Rはそれぞれ同じでも異なっていても良いが、耐UV性が要求される場合にはRの80%以上はメチル基であることが好ましい。Rが炭素数1~8のアルコキシ基や水酸基であってもよいが、アルコキシ基や水酸基の含有率は(A)の重量の3%以下であることが好ましい。
 上記組成式(1a)において、nは1≦n<3を満たす正数であるが、この値が3以上であると封止材としての十分な強度が得られなくなり、1未満であると合成上このオルガノポリシロキサンの合成が困難になる。
 なお、(A)アルケニル基含有オルガノポリシロキサンは、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
 次に、(B)ヒドロシリル基含有ポリオルガノシロキサンは、(A)アルケニル基含有オルガノポリシロキサンとヒドロシリル化反応をすることにより、組成物を硬化させる架橋剤として作用するものである。
 組成式(2a)において、R’はアルケニル基を除く一価の炭化水素基を表わす。ここで、R’としては、組成式(1a)中のRと同様の基(ただし、アルケニル基を除く)を挙げることができる。また、耐UV性要求される用途に用いる場合には少なくとも80%以上はメチル基であることが好ましい。
 組成式(2a)において、aは、通常0.7以上、好ましくは0.8以上であり、通常2.1以下、好ましくは2以下の正の数である。また、bは、通常0.001以上、好ましくは0.01以上であり、通常1.0以下の正の数である。ただし、a+bは、0.8以上、好ましくは1以上であり、2.6以下、好ましくは2.4以下である。
 さらに、(B)ヒドロシリル基含有ポリオルガノシロキサンは、1分子中に少なくとも2個、好ましくは3個以上のSiH結合を有する。
 この(B)ヒドロシリル基含有ポリオルガノシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は、通常3以上、また、通常1000以下、好ましくは300以下のものを使用することができる。
 なお、(B)ヒドロシリル基含有ポリオルガノシロキサンは、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記(B)ヒドロシリル基含有ポリオルガノシロキサンの配合量は、(A)アルケニル基含有オルガノポリシロキサンの総アルケニル基量に依存する。具体的には、(A)アルケニル基含有オルガノポリシロキサンの総アルケニル基に対して、(B)ヒドロシリル基含有ポリオルガノシロキサンの総SiH量が、通常0.5モル倍以上、好ましくは0.8モル倍以上、また、通常2.0モル倍以下、好ましくは1.5モル倍以下となる量とすればよい。
 (C)付加反応触媒は、(A)アルケニル基含有オルガノポリシロキサン中のアルケニル基と(B)ヒドロシリル基含有ポリオルガノシロキサン中のSiH基とのヒドロシリル化付加反応を促進するための触媒である。この(C)付加反応触媒としては、例えば、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。
 なお、(C)付加反応触媒は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
 この付加反応触媒の配合量は触媒量とすることができるが、通常、白金族金属として、(A)アルケニル基含有オルガノポリシロキサン及び(B)ヒドロシリル基含有ポリオルガノシロキサンの合計重量に対して、1ppm以上、特に2ppm以上、また、500ppm以下、特に100ppm以下配合することが好ましい。
 付加型シリコーン系材料を得るための組成物には、上記(A)アルケニル基含有オルガノポリシロキサン、(B)ヒドロシリル基含有ポリオルガノシロキサン及び(C)付加反応触媒に加え、任意成分として硬化性、ポットライフを与えるための付加反応制御剤、硬度・粘度を調節するための例えばアルケニル基を有する直鎖状のジオルガノポリシロキサンの他にも直鎖状の非反応性オルガノポリシロキサン、ケイ素原子数が2~10個程度の直鎖状又は環状の低分子オルガノポリシロキサンなどを本発明の効果を損なわない範囲で含有させても良い。
 付加型シリコーン系材料は公知のものを使用することができ、さらには金属やセラミックスへの密着性を向上させる添加剤や有機基を導入しても良い。例えば、特許3909826号公報、特許3910080号公報、特開2003-128922号公報、特開2004-221308号公報、特開2004-186168号公報に記載のシリコーン材料が好適である。
 付加型シリコーン材料は硬化時に脱離する成分が無く硬化収縮しにくい、白金など本願発明の組成物と共通の硬化触媒を用いることが出来る、分子デザインによる硬化物の屈折率や硬度の選択・触媒設計による硬化速度の選択の自由度が高いなどの利点がある。付加型シリコーンと本願発明組成物の混合物 は本願発明組成物による優れた耐熱性、耐UV性、接着性とともに前記付加型シリコーンの利点を併せ持つ組成物とすることができる。
 [1-7-2]縮合型シリコーン系材料
 縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi-O-Si結合を架橋点に有する化合物を挙げることができる。
 具体的には、下記一般式(1b)及び/又は(2b)で表わされる化合物、及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物が挙げられる。
  Mm+ m-1 (1b)
 (式(1b)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Yは、1価の有機基を表わし、mは、Mの価数を表わす1以上の整数を表わし、nは、X基の数を表わす1以上の整数を表わす。但し、m≧nである。)
 (Ms+ s-t-1        (2b)
 (式(2b)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Yは、1価の有機基を表わし、Yは、u価の有機基を表わし、sは、Mの価数を表わす1以上の整数を表わし、tは、1以上、s-1以下の整数を表わし、uは、2以上の整数を表わす。)
  また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いることができる。金属キレート化合物は、Ti、Ta、Zr、Hf、Zn、Snのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましい。
  縮合型シリコーン系材料は公知のものを使用することができ、例えば、特開2006-77234号公報、特開2006-291018号公報、特開2006-316264号公報、特開2006-336010号公報、特開2006-348284号公報、および国際公開2006/090804号パンフレットに記載の半導体発光装置用部材が好適である。
  縮合型シリコーン材料は耐熱性・耐光性、接着性に優れる、分子デザインによる硬化物の屈折率や硬度選択の自由度が高いなどの利点がある。縮合型シリコーンと本願発明組成物の混合物 は本願発明組成物による優れた耐熱性、耐UV性、接着性とともに前記縮合型シリコーンの利点を併せ持つ組成物とすることができる。
[2]ポリシロキサン硬化物
 本発明のポリシロキサン硬化物は、本発明の硬化性ポリシロキサン組成物を硬化させて得られることを特徴とする。以下、その特性につき説明する。
 [2-1]屈折率
 本発明のポリシロキサン硬化物の屈折率は、該本発明のポリシロキサン硬化物の温度が20℃における波長589nmの光の屈折率が、通常1.55以下、好ましくは1.42以下、更に好ましくは1.419以下であり、特に好ましくは1.418以下であり、通常1.35以上、好ましくは1.40以上である。光学部材に応用する場合には一般的な発光デバイスの屈折率が約2.5以下であるが、本発明においては樹脂の光安定性の観点から比較的屈折率の低いものを選択することが好ましい。前記屈折率が大きすぎ、発光デバイスの屈折率を上回ると、光取り出し効率が向上しない可能性がある。また、屈折率が小さすぎると例えば光取り出し効率が既存の半導体発光デバイス用部材と比較して向上しない可能性がある。
 本発明のポリシロキサン硬化物の屈折率は、通常屈折計により測定することができる。
 具体的には、例えば膜圧1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、Abbe屈折計(ナトリウムD線(589nm)使用)を用いることができる。
[2-2]透過率
 本発明のポリシロキサン硬化物は、膜厚1mmとした時の400nm以上800nm以下の全ての波長における光透過率が、通常80%以上、好ましくは90%以上、さらに好ましくは95%以上である。
 [2-3]その他物性
 本発明のポリシロキサン硬化物は、上記特性を主な特徴とするが、その他、下記の構造や性質を有していることが好ましい。
[2-3-1]基本骨格
 本発明のポリシロキサン硬化物の基本骨格は、通常はメタロキサン骨格、好ましくはガラス(ケイ酸塩ガラス)などと同じ無機質のシロキサン骨格(シロキサン結合)であることが好ましい。シロキサン結合は、下記表1の化学結合の比較表からも明らかなように、ポリシロキサン硬化物を光学部材の用途等に用いるときに、以下の優れた特徴がある。
(I)結合エネルギーが大きく、熱分解・光分解しにくいため、耐光性が良好である。
(II)電気的に若干分極している。
(III)鎖状構造の自由度は大きく、フレキシブル性に富む構造が可能であり、シロキサン鎖中心に自由回転可能である。
(IV)酸化度が大きく、これ以上酸化されない。
(V)電気絶縁性に富む。
Figure JPOXMLDOC01-appb-T000008
 これらの特徴から、シロキサン結合が3次元的に、しかも高架橋度で結合した骨格で形成されるシリコーン系のポリシロキサン硬化物は、エポキシ樹脂などと異なりガラス或いは岩石などの無機質に近く、耐熱性・耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリコーン系ポリシロキサン硬化物は、紫外領域に吸収を持たないため光分解が起こりにくく、耐光性に優れる。
 本発明のポリシロキサン硬化物のケイ素含有率は、通常20重量%以上、好ましくは25重量%以上、さらに好ましくは30重量%以上である。一方、上限としては、SiOのみからなるガラスのケイ素含有率が47重量%であるという理由から、通常47重量%以下の範囲である。ただし、ポリシロキサン硬化物を高屈折率とする場合は、高屈折率化に必要な成分を含有させることがあるため、通常10重量%以上であり、通常47重量%以下である。
 なお、ポリシロキサン硬化物の前記ケイ素含有率は、例えば以下の方法を用いて誘導結合高周波プラズマ分光(inductively coupled plasma spectrometry:以下適宜「ICP」と略する。)分析を行ない、その結果に基づいて算出することができる。
 〔ケイ素含有率の測定〕
 ポリシロキサン硬化物を100μm程度に粉砕し、白金るつぼ中にて大気中、450℃で1時間、ついで750℃で1時間、950℃で1.5時間保持して焼成し、炭素成分を除去した後、得られた残渣少量に10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にてpHを中性程度に調整しつつケイ素として数ppm程度になるよう定容し、ICP分析を行なう。
 [2-3-2]UV透過率
 本発明のポリシロキサン硬化物を、半導体発光装置用の光学部材に用いる場合には、膜厚1mmでの半導体発光装置の発光波長における光透過率が、通常80%以上、中でも85%以上、更には90%以上であることが好ましい。半導体発光装置は各種の技術によりその光取り出し効率が高められているが、半導体発光素子を封止したり蛍光体を保持したりするための透光性部材の透明度が低いと、これを用いた半導体発光装置の輝度が低減するため、高輝度な半導体発光装置製品を得にくくなる傾向にある。
 ここで「半導体発光装置の発光波長」とは、半導体発光装置の種類に応じて異なる値であるが、一般的には、通常300nm以上、好ましくは350nm以上、また、通常900nm以下、好ましくは500nm以下の範囲の波長を指す。この範囲の波長における光透過率が低いと、ポリシロキサン硬化物が光を吸収してしまい、光取り出し効率が低下して、高輝度の半導体発光装置を得ることができなくなる。更に、光取り出し効率が低下した分のエネルギーは熱に変わり、半導体発光装置の熱劣化の原因となるため好ましくない。
 なお、紫外~青色領域(波長300nm~500nm)においては封止部材が光劣化しやすいので、この領域に発光波長を有する半導体発光装置に、耐久性に優れた本発明のポリシロキサン硬化物を使用すれば、その効果が大きくなるので好ましい。
 なお、ポリシロキサン硬化物の光透過率は、例えば以下の手法により、膜厚1mmに成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度計により測定することができる。
 〔透過率の測定〕
 ポリシロキサン硬化物の、傷や凹凸による散乱の無い厚さ約1mmの平滑な表面の単独硬化物膜を用いて、紫外分光光度計(島津製作所製 UV-3100)を使用し、波長200nm~800nmにおいて透過度測定を行なう。
 但し、半導体発光装置の形状は様々であり、大多数は0.1mmを超える厚膜状態での使用であるが、LEDチップ(発光素子)から離れた位置に薄膜状の蛍光体層(例えばナノ蛍光体粒子や蛍光イオンを含む厚さ数μmの層)を設ける場合や、LEDチップの直上に薄膜上に高屈折光取り出し膜を設ける場合等、薄膜使用の用途もある。この様な場合には、この膜厚において80%以上の透過率を示すことが好ましい。このような薄膜状の適用形態においても、本発明のポリシロキサン硬化物は優れた耐光性、耐熱性を示し、封止性能に優れ、クラック等なく安定して成膜できる。
[2-3-3]ピーク面積比
 本発明のポリシロキサン硬化物は、次の条件を満たすことが好ましい。即ち、本発明のポリシロキサン硬化物は、固体Si-核磁気共鳴スペクトルにおいて、(ケミカルシフト-40ppm以上0ppm以下のピークの総面積)/(ケミカルシフト-40ppm未満のピークの総面積)の比(以下適宜、「本発明にかかるピーク面積比」という)が、通常3以上、好ましくは5以上、より好ましくは10以上、また、通常200以下、好ましくは100以下、より好ましくは50以下であることが好ましい。
 本発明にかかるピーク面積比が上記の範囲にあることは、本発明のポリシロキサン硬化物が、2官能シランを、3官能シランや4官能シランなどの3官能以上のシランよりも多く有することを表わす。このように、2官能以下のシランを多く有することにより、本発明のポリシロキサン硬化物はエラストマー状を呈することが可能となり、応力を緩和することが可能となる。
 ただし、本発明のポリシロキサン硬化物は、本発明にかかるピーク面積比についての上記条件を満たさなくともエラストマー状を呈する場合がある。例えば、ケイ素以外の金属のアルコキシド等のカップリング剤を架橋剤として用いて本発明のポリシロキサン硬化物を製造した場合などが、この場合に該当する。本発明のポリシロキサン硬化物がエラストマー状を呈するための手法は任意であり、この本発明にかかるピーク面積比についての上記条件に限定されるものではない。
 [2-3-4]官能基
  本発明のポリシロキサン硬化物は、ポリフタルアミドなどの樹脂、セラミック又は金属の表面に存在する所定の官能基(例えば、水酸基、メタロキサン結合中の酸素など)と水素結合可能な官能基を有していてもよい。半導体発光装置用の容器(後述するカップ等。以下適宜「半導体発光装置容器」という)は、通常、セラミック又は金属で形成されている。また、セラミックや金属の表面には、通常は水酸基が存在する。そこで、密着性を担保させることを目的として、当該水酸基と水素結合可能な官能基を有していてもよい。ただし、前述のように、本発明の硬化性ポリシロキサンにおいて、本発明の硬化性ポリシロキサン組成物は、含有するシロキサン化合物のケイ素原子に結合した全置換基のうち、ヒドリド基とシラノール基を除く置換基の80mol%以上、好ましくは95mol%以上、さらに好ましくは99mol%以上がアルキル基であることが好ましい。また、アルキル基は、メチル基であることが好ましい。
 シロキサン化合物のケイ素原子に結合した全置換基のうち、ヒドリド基とシラノール基を除く置換基のモル分率は、液体H-核磁気共鳴スペクトル、固体H-核磁気共鳴スペクトル、固体Si-核磁気共鳴スペクトル、又は、これらを相補的に組み合わせて用いることにより、測定したスペクトルから、(シロキサン化合物のケイ素原子に結合したアルキル基のピークの総面積から算出したモル比)/(シロキサン化合物のケイ素原子に結合した全置換基(ヒドリド基と水酸基を除く)のピークの総面積から算出したモル比)によりモル百分率を算出することができる。
 前記一般式(1)および、(2)、(3)のポリシロキサン化合物のR~R20の置換基は、ヒドリド基と水酸基を除く置換基の80mol%以上、好ましくは95mol%以上、さらに好ましくは99mol%以上がアルキル基であることが好ましいので、当該水酸基と水素結合可能な官能基の含有量も当該範囲内であることが好ましい。
 本発明のポリシロキサン硬化物が有する、前記の水酸基に対して水素結合が可能な官能基としては、例えば、シラノール基、アルコキシ基、アミノ基、イミノ基、メタクリル基、アクリル基、チオール基、エポキシ基、エーテル基、カルボニル基、カルボキシル基、スルホン酸基等が挙げられる。中でも耐熱性の観点からシラノール基、アルコキシ基が好ましい。なお、前記官能基は1種でも良く、2種以上でもよい。
 なお、本発明のポリシロキサン硬化物が、前記のように、水酸基に対して水素結合が可能な官能基を有しているか否かは、固体Si-NMR、固体H-NMR、赤外線吸収スペクトル(IR)、ラマンスペクトルなどの分光学的手法により確認することができる。
 [2-3-5]耐熱性
 本発明のポリシロキサン硬化物は、耐熱性に優れる。即ち、高温条件下に放置した場合でも、所定の波長を有する光における透過率が変動しにくい性質を有する。具体的には、本発明のポリシロキサン硬化物は、200℃に500時間放置した前後において、波長400nmの光に対する透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
 なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、[2-3-2]で前述したUV透過率の測定方法と同様にして測定することができる。
 [2-3-6]耐UV性
 本発明のポリシロキサン硬化物は、耐光性に優れる。即ち、UV(紫外光)を照射した場合でも、所定の波長を有する光に対する透過率が変動しにくい性質を有する。具体的には、本発明のポリシロキサン硬化物は、中心波長380nm、放射強度0.4kW/mの光を72時間照射した前後において、波長400nmの光における透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
 なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、[2-3-2]で前述したUV透過率の測定方法と同様にして測定することができる。
 [2-3-7]触媒残留量
 本発明のポリシロキサン硬化物は、通常、硬化触媒を用いて製造される。そのため、本発明のポリシロキサン硬化物には、通常は、これらの触媒が残留している。具体的には、本発明のポリシロキサン硬化物は、前記の硬化触媒を、金属元素換算で、通常0.001重量%以上、好ましくは0.01重量%以上、より好ましくは0.02重量%以上、また、通常0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下だけ含有する。
 なお、前記の硬化触媒の含有率は、ICP分析により測定できる。
 [2-3-8]低沸点成分
 本発明のポリシロキサン硬化物はTG-mass(熱分解MSクロマトグラム)において、40℃~210℃の範囲の加熱発生ガスのクロマトグラム積分面積が小さいものであることが好ましい。
 TG-massは、ポリシロキサン硬化物を昇温してポリシロキサン硬化物中の低沸点成分を検出するものであるが、40℃~210℃の範囲にクロマトグラム積分面積が大きい場合、水、溶媒および3員環から5員環の環状シロキサンといった、低沸点成分が成分中に存在することを示す。このような場合、(i)低沸点成分が多くなり、硬化物を使用していく過程において気泡の発生またはブリードアウトし半導体発光装置容器との密着性が低くなる可能性や、(ii)使用時の発熱により気泡の発生またはブリードアウトするなどの可能性がある。そこで、本発明のポリシロキサン硬化物はかかる低沸点成分が少ないものが好ましい。
 本発明のポリシロキサン硬化物において、TG-massで検出される前記低沸点成分量を低く抑える方法としては、例えば、下記の方法を挙げることができる。
(i)重合硬化反応を十分に行ない、低分子量の未反応原料が残存しないようにする。
(ii)重合反応等の反応工程以外の工程において、低沸点成分を効率良く除去する。例えば、原料中の低沸点成分を予め除去しておくことがそれに相当する。具体的には、例えば通常60℃以上、好ましくは80℃以上、より好ましくは100℃以上、また、通常150℃以下、好ましくは130℃以下、より好ましくは120℃以下で100mmHg以下、好ましくは20mmHg以下の圧力にて低沸点成分を留去する過程を重合前の各原料成分に対して行うことである。
 [2-3-9]硬度
 本発明のポリシロキサン硬化物は、エラストマー状を呈する部材であることが好ましい。一般に半導体発光装置等の光学部材には熱膨張係数の異なる部材を複数使用することが多いが、本発明のポリシロキサン硬化物がエラストマー状を呈することにより、光学部材に用いられる部材の伸縮による応力を緩和することができる。したがって、使用中に剥離、クラック、断線などを起こしにくく、耐リフロー性及び耐温度サイクル性に優れる半導体デバイスを提供することができる。
 具体的には、ポリシロキサン硬化物は、デュロメータタイプAによる硬度測定値(ショアA)が、通常5以上、好ましくは7以上、より好ましくは10以上、また、通常90以下、好ましくは80以下、より好ましくは70以下である。上記範囲の硬度測定値を有することにより、本発明の光学部材は、クラックが発生しにくく、耐リフロー性及び耐温度サイクル性に優れるという利点を得ることができる。
 なお、硬度測定値(ショアA)は、JIS K6253に記載の方法により測定することができる。具体的には、古里精機製作所製のA型ゴム硬度計を用いて測定を行なうことができる。
 [2-3-10]他の部材との組み合わせ
 本発明のポリシロキサン硬化物は単独で封止材として用いても良いが、有機蛍光体、酸素や水分により劣化しやすい蛍光体、半導体発光装置を封止する場合等、より厳密に酸素や水分からの遮断を要求される用途においては、本発明のポリシロキサン硬化物により蛍光体の保持や半導体発光素子の封止・光取り出しを実施し、さらにその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施しても良い。この場合の形状に制限は無く、本発明のポリシロキサン硬化物による封止体、塗布物あるいは塗布面が実質的に金属・ガラス・高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通が無い状態になっていれば良い。
 また、本発明のポリシロキサン硬化物は、上述のように密着性が良好なため、半導体発光装置用接着剤として用いることが出来る。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体発光装置と外部光学部材とを接着する場合などに、本発明のポリシロキサン硬化物を塗布、印刷、ポッティングなどすることにより用いることが出来る。本発明のポリシロキサン硬化物は特に耐光性、耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光装置用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光装置を提供することが出来る。
 なお、本発明のポリシロキサン硬化物は、これのみで十分密着性を担保しうるものであるが、更に密着性を担保することを目的として、ポリシロキサン硬化物と直接接する表面に密着性改善のための表面処理を行なっても良い。このような、表面処理としては、例えばプライマーやシランカップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射・電子線照射を用いた物理的表面処理、サンドブラストやエッチング・微粒子塗布などによる粗面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例えば、特開平5-25300号公報、稲垣訓宏著「表面化学」Vol.18 No.9、pp21-26、黒崎和夫著「表面化学」Vol.19 No.2、pp44-51(1998)等に開示される公知の表面処理方法が挙げられる。
 [2-3-11]その他
 本発明のポリシロキサン硬化物の形状及び寸法に制限は無く任意である。例えば、ポリシロキサン硬化物が何らかの半導体発光装置容器内を充填する封止材として使用される場合には、本発明のポリシロキサン硬化物の形状及び寸法は、その半導体発光装置容器の形状及び寸法に応じて決定される。また、ポリシロキサン硬化物が何らかの基板の表面に形成される場合は、通常は膜状に形成されることが多く、その寸法は用途に応じて任意に設定される。本発明のポリシロキサン硬化物を導光板や航空宇宙産業用部材に用いる場合にも、その適用する部位に合わせて、任意に形状を用いることができる。
 ただし、本発明のポリシロキサン硬化物は、膜状に形成する場合、厚膜に形成することができることを利点の一つとしている。従来用いられてきた光学部材は、厚膜化すると内部応力等によりクラック等が生じて厚膜化が困難であったが、本発明のポリシロキサン硬化物はそのようなことは無く、安定して厚膜化が可能である。具体的範囲を挙げると、本発明のポリシロキサン硬化物は、通常0.1μm以上、好ましくは10μm以上、より好ましくは100μm以上の厚みで形成することが好ましい。なお、上限に制限は無いが、通常10mm以下、好ましくは5mm以下、より好ましくは1mm以下である。ここで、膜の厚みが一定でない場合には、膜の厚みとは、その膜の最大の厚み部分の厚さのことを指すものとする。
 また、本発明のポリシロキサン硬化物は、通常、従来よりも長期間にわたってクラックや剥離を生じることなく半導体発光装置を封止できる。具体的には、本発明のポリシロキサン硬化物を用いて半導体発光装置を封止し、当該半導体発光装置に、通常20mA以上、好ましくは350mA以上の駆動電流を通電して温度85℃相対湿度85%にて連続点灯を行った場合に、通常500時間以上、好ましくは1000時間以上、より好ましくは2000時間以上経過後の輝度が、点灯直後の輝度と比較して低下しない。
 また、用途によっては、ポリシロキサン硬化物は、その他の成分を含有していてもよい。例えば、本発明のポリシロキサン硬化物を半導体発光装置の構成部材として用いる場合などにおいては、蛍光体や無機粒子などを含有させてもよい。なお、この点については、用途の説明と共に、後で説明する。
 また、その他の成分は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
 [3]ポリシロキサン組成物及びポリシロキサン硬化物の製造方法
 本発明の硬化性ポリシロキサン組成物は、前記一般式(1)のヒドロシリル基含有ポリシロキサン化合物、前記一般式(2)のシラノール基を一分子中に2個以上含有するポリシロキサン化合物および前記硬化触媒、および必要に応じてその他の添加物を混合することにより得られる。その混合方法は特に限定されない。 
 また、本発明のもう一つの態様において、本発明の硬化性ポリシロキサン組成物は前記一般式(1)のヒドロシリル基含有ポリシロキサン化合物、前記一般式(2)のシラノール基を一分子中に2個以上含有するポリシロキサン化合物、さらに前記一般式(3)のアルケニル基を一分子中に2個以上含有するポリシロキサン化合物、及び脱水素縮合触媒と付加縮合触媒、必要に応じてその他の添加物を混合することにより得られる。その混合方法は特に限定されない。この組成物を加熱硬化すると(1)と(2)の脱水素縮合反応と、(1)と(3)の付加重合反応が同時に進行し、組成物のシラノール基総量がアルケニル基とヒドロシリル基の総和より多い場合、得られる硬化物はシラノール基を有する接着性に優れたポリシロキサンとなる。脱水素縮合触媒と付加重合触媒は各々別に使用しても良いが、白金系触媒のように脱水素縮合触媒と付加重合触媒の機能を兼ね備える触媒を1種類使用しても良い。
 また、本発明のポリシロキサン硬化物を製造する方法は、本発明の硬化性ポリシロキサン化合物を硬化させる工程を有していれば制限されない。なお、重縮合物が溶媒を含有している場合には、乾燥させる前に事前に溶媒を留去するようにしてもよい。
 本発明のポリシロキサン硬化物は、通常、空気中で、気温150℃にて6時間以内で硬化するが、本発明を実施する上で、好ましい硬化条件を以下に詳述する。
 硬化処理は、常圧で実施する場合、通常15℃以上、好ましくは50℃以上、より好ましくは100℃以上、また、通常300℃以下、好ましくは200℃以下、より好ましくは170℃以下の範囲で行なう。加圧下で液相を維持することでより高い温度で行なうことも可能である。
 硬化時間は反応温度により異なるが、通常0.1時間以上、好ましくは0.5時間以上、更に好ましくは0.8時間以上、また、通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。
 以上の硬化条件において、時間が短くなったり温度が低すぎたりすると、重合が不十分なため硬化物の強度が不十分となる可能性がある。また、時間が長くなったり温度が高すぎたりすると、硬化性ポリシロキサン組成物の分子量が高くなり、硬化が早すぎて硬化物の構造が不均一となり、クラックを生じやすくなる。さらに消費エネルギーの観点から経済性にも劣るようになる。以上の傾向を踏まえて、所望の物性値に応じて条件を適宜選択することが望ましい。
 原料の混合工程において溶媒を用いた場合には、通常、前記硬化処理(重合工程)の前ないしは最中に硬化性ポリシロキサン組成物から溶媒を留去することが好ましい(溶媒留去工程)。これにより、溶媒を含まない硬化性ポリシロキサン組成物(液状の半重縮合物)を得ることができ、そのまま重合に供することが出来る。
 溶媒を留去する方法は、本発明の効果を著しく損なわない限り任意である。ただし、硬化性ポリシロキサン組成物の分解開始温度以上の温度で溶媒の留去を行なうことは避けるようにする。
 溶媒の留去を行なう際の温度条件の具体的な範囲を挙げると、通常60℃以上、好ましくは80℃以上、より好ましくは100℃以上、また、通常450℃以下、好ましくは300℃以下、より好ましくは200℃以下である。この範囲の下限を下回ると溶媒の留去が不十分となる可能性があり、上限を上回ると硬化性ポリシロキサン組成物がゲル化する可能性がある。
 また、溶媒の留去を行なう際の圧力条件は、通常は常圧である。さらに、必要に応じて溶媒留去時の反応液の沸点が分解開始温度に達しないように減圧する。また、圧力の下限は、硬化性ポリシロキサン化合物の主成分が留出しない程度である。
 本発明のポリシロキサン硬化物を、半導体発光装置として用いる場合であって、該半導体発光装置と共に加熱される場合は、通常は該半導体発光装置の構成要素の耐熱温度以下の温度、好ましくは200℃以下で硬化することが好ましい。また、本発明は上述のように、150℃程度またはそれ以下という比較的低温により硬化が可能であるため、半導体発光装置の構成要素、特に半導体発光素子や蛍光体の安定を目的とする場合は、150℃ 以下で硬化することが好ましい。
 [3-5]その他
 上述の重合工程の後、得られたポリシロキサン硬化物に対し、必要に応じて各種の後処理を施しても良い。後処理の種類としては、モールド部との密着性の改善のための表面処理、反射防止膜の作製、光取り出し効率向上のための微細凹凸面の作製等が挙げられる。
 [4]光学部材
 本発明のポリシロキサン硬化物の用途は制限されないが、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性、少発泡性などの種々の特性が高いため、様々な光学部材に好適に用いることができる。本発明のポリシロキサン硬化物を含む光学部材の用途の具体例としては、半導体発光装置、導光板、及び宇宙産業用部材等が挙げられる。
 本発明のポリシロキサン硬化物を含む光学部材は、光学部材の用途によって適宜形状や透明度等を定めて用いたり、蛍光体や無機粒子等の他の化合物を併用したりしてもよい。これらの他の化合物を併用するときは、例えば、硬化性ポリシロキサン組成物に混合させ、用いればよい。
 例えば、本発明の光学部材を半導体発光装置の半導体発光素子等を封止するための部材(封止材)に用いる場合、蛍光体粒子及び/又は無機粒子を併用することで、特定の用途に用いるときさらに好適に使用することが可能となる。以下、これらの蛍光体粒子及び無機粒子の併用について説明する。
 [4-1]蛍光体
 本発明のポリシロキサン硬化物を光学部材として用いる場合、例えば、本発明の硬化性ポリシロキサン組成物中に蛍光体を分散させて、後述する半導体発光装置のカップ内にモールドしたり、適当な透明支持体上に薄層状に塗布したりすることにより、波長変換用部材として使用することができる。なお、蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
 [4-1-1]蛍光体の種類
  蛍光体の組成には特に制限はないが、結晶母体であるY、ZnSiO等に代表される金属酸化物、Ca(POCl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活剤または共付活剤として組み合わせたものが好ましい。
 結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa、SrS、ZnS等の硫化物、YS等の酸硫化物、(Y,Gd)Al12、YAlO、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,Ca)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119、(Ba,Sr,Mg)O・Al、BaAlSi、SrAl、SrAl1425、YAl12等のアルミン酸塩、YSiO、ZnSiO等の珪酸塩、SnO、Y等の酸化物、GdMgB10、(Y,Gd)BO等の硼酸塩、Ca10(PO(F,Cl)、(Sr,Ca,Ba,Mg)10(POCl等のハロリン酸塩、Sr、(La,Ce)PO等のリン酸塩等を挙げることができる。
 ただし、上記の結晶母体及び付活剤または共付活剤は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
 具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「YSiO:Ce3+」、「YSiO:Tb3+」及び「YSiO:Ce3+,Tb3+」を「YSiO:Ce3+,Tb3+」と、「LaS:Eu」、「YS:Eu」及び「(La,Y)S:Eu」を「(La,Y)S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
 [4-1-1-1]赤色蛍光体
 赤色の蛍光を発する蛍光体(以下適宜、「赤色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
 このような赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
 さらに、特開2004-300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
 また、そのほか、赤色蛍光体としては、(La,Y)S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O:Eu、Y:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)SiO:Eu,Mn、(Ba,Mg)SiO:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO:Eu等のEu付活アルミン酸塩蛍光体、LiY(SiO:Eu、Ca(SiO:Eu、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)Al12:Ce、(Tb,Gd)Al12:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)Si:Eu、(Mg,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(POCl:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(BaMg)Si:Eu,Mn、(Ba,Sr,Ca,Mg)(Zn,Mg)Si:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF・GeO:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La):Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP:Eu,Mn、(Sr,Ca,Ba,Mg,Zn):Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)WO:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)Si:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-xScCe(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGe12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
 赤色蛍光体としては、β-ジケトネート、β-ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]-4,4’,7,7’-テトラフェニル}ジインデノ[1,2,3-cd:1’,2’,3’-lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
 また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)SiO:Eu、(Sr,Mg)(PO:Sn2+、SrCaAlSiN:Eu、Eu付活αサイアロン等のEu付活酸窒化物蛍光体等が挙げられる。
 [4-1-1-2]緑色蛍光体
 緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
 このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)SiO:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
 また、そのほか、緑色蛍光体としては、SrAl1425:Eu、(Ba,Sr,Ca)Al:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)AlSi:Eu、(Ba,Mg)SiO:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu等のEu付活珪酸塩蛍光体、YSiO:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr-Sr:Eu等のEu付活硼酸リン酸塩蛍光体、SrSi-2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体、ZnSiO:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、YAl12:Tb等のTb付活アルミン酸塩蛍光体、Ca(SiO:Tb、LaGaSiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y(Al,Ga)12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)(Al,Ga)12:Ce等のCe付活アルミン酸塩蛍光体、CaScSi12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe付活珪酸塩蛍光体、CaSc:Ce等のCe付活酸化物蛍光体、SrSi:Eu、(Sr,Ba,Ca)Si:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)S:Tb等のTb付活酸硫化物蛍光体、LaPO:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO:Ce,Tb、NaGd:Ce,Tb、(Ba,Sr)(Ca,Mg,Zn)B:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、CaMg(SiOCl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In):Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)(Mg,Zn)(SiOCl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。
 また、緑色蛍光体としては、ピリジン-フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、ヘキシルサリチレートを配位子として有するテルビウム錯体等の有機蛍光体を用いることも可能である。
[4-1-1-3]青色蛍光体
 青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
 このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)(POCl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al:Euまたは(Sr,Ca,Ba)Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
 また、そのほか、青色蛍光体としては、Sr:Sn等のSn付活リン酸塩蛍光体、SrAl1425:Eu、BaMgAl1017:Eu、BaAl13:Eu等のEu付活アルミン酸塩蛍光体、SrGa:Ce、CaGa:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(POCl:Eu、(Ba,Sr,Ca)(PO(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAlSi:Eu、(Sr,Ba)MgSi:Eu等のEu付活珪酸塩蛍光体、Sr:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、YSiO:Ce等のCe付活珪酸塩蛍光体、CaWO等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO:Eu,Mn、(Sr,Ca)10(PO・nB:Eu、2SrO・0.84P・0.16B:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、SrSi・2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
 また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
 [4-1-1-4]黄色蛍光体
 黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」という。)が発する蛍光の具体的な波長の範囲を例示すると、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長が短すぎると黄色成分が少なくなり演色性が劣る半導体発光装置となる可能性があり、長すぎると半導体発光装置の輝度が低下する可能性がある。
 このような黄色蛍光体としては、例えば、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。特に、RE12:Ce(ここで、REは、Y,Tb,Gd,Lu,Smの少なくとも1種類の元素を表し、Mは、Al,Ga,Scの少なくとも1種類の元素を表す。)やM 12:Ce(ここで、Mは2価の金属元素、Mは3価の金属元素、Mは4価の金属元素)等で表されるガーネット構造を有するガーネット系蛍光体、AE:Eu(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表し、Mは、Si,Geの少なくとも1種類の元素を表す。)等で表されるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN:Ce(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表す。)等のCaAlSiN構造を有する窒化物系蛍光体等のCeで付活した蛍光体などが挙げられる。
 また、そのほか、黄色蛍光体としては、CaGa:Eu(Ca,Sr)Ga:Eu、(Ca,Sr)(Ga,Al):Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。
 [4-1-1-5]その他の蛍光体
 本発明のポリシロキサン硬化物は、上述したもの以外の蛍光体を含有させることも可能である。例えば、本発明のポリシロキサン硬化物は、イオン状の蛍光物質や有機・無機の蛍光成分を均一・透明に溶解・分散させた蛍光ガラスとすることもできる。
 [4-1-2]蛍光体の粒径
 本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径(D50)で、通常0.1μm以上、好ましくは2μm以上、さらに好ましくは5μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは20μm以下である。蛍光体の中央粒径(D50)が上記範囲にある場合は、後述する半導体発光装置において、半導体発光素子から発する光が充分に散乱される。また、半導体発光素子から発する光が充分に蛍光体粒子に吸収されるため、波長変換が高効率に行われると共に、蛍光体から発せられる光が全方向に照射される。これにより、複数種類の蛍光体からの一次光を混色して白色にすることができると共に、均一な白色が得られるため、半導体発光装置が発する合成光において、均一な白色光と照度が得られる。一方、蛍光体の中央粒径(D50)が上記範囲より大きい場合は、蛍光体が発光部の空間を充分に埋めることができないため、後述する半導体発光装置において、半導体発光素子からの光が充分に蛍光体に吸収されない可能性がある。また、蛍光体の中央粒径(D50)が、上記範囲より小さい場合は、蛍光体の発光効率が低下するため、半導体発光装置の照度が低下する可能性がある。
 蛍光体粒子の粒度分布(QD)は、ポリシロキサン硬化物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。
 なお、本発明において、中央粒径(D50)および粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
 〔重量基準粒度分布曲線の測定方法〕
 (1)気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
 (2)レーザ回折式粒度分布測定装置(堀場製作所 LA-300)により、粒径範囲0.1μm~600μmにて測定する。
 (3)この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75-D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
 また、蛍光体粒子の形状も、ポリシロキサン硬化物の形成に影響を与えない限り、例えば、蛍光体部形成液(蛍光体と硬化性ポリシロキサン化合物との混合液のことをいう。)の流動性等に影響を与えない限り、特に限定されない。
 [4-1-3]蛍光体の表面処理
 本発明に使用する蛍光体は、耐水性を高める目的で、またはポリシロキサン硬化物中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。かかる表面処理の例としては、特開2002-223008号公報に記載の有機材料、無機材料、ガラス材料などを用いた表面処理、特開2000-96045号公報等に記載の金属リン酸塩による被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処理などが挙げられる。
 表面処理の具体例を挙げると、例えば蛍光体の表面に上記金属リン酸塩を被覆させるには、以下の(i)~(iii)の表面処理を行う。
 (i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と、塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に混合し、攪拌する。
 (ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。
 (iii)水分を除去する。
 また、表面処理の他の例のうち好適な例を挙げると、シリカコートとしては、水ガラスを中和してSiOを析出させる方法、アルコキシシランを加水分解したものを表面処理する方法(例えば、特開平3-231987号公報)等が挙げられ、分散性を高める点においてはアルコキシシランを加水分解したものを表面処理する方法が好ましい。
 [4-1-4]蛍光体の混合方法
 本発明において、蛍光体粒子を加える方法は特に制限されない。蛍光体粒子の分散状態が良好な場合であれば、上述の硬化性ポリシロキサン組成物に後混合するだけでよい。即ち、本発明の硬化性ポリシロキサン組成物と蛍光体とを混合し、蛍光体部形成液を用意して、この蛍光体部形成液を用いてポリシロキサン組成物を作製すればよい。
 なお、蛍光体の中には加水分解性のものもあるが、本発明のポリシロキサン硬化物は、塗布前の液状態(硬化性ポリシロキサン組成物)において、遊離の水分はほとんど存在しないので、そのような蛍光体でも加水分解してしまうことなく使用することが可能である。
 また、蛍光体粒子や無機粒子(後述する)を本発明のポリシロキサン硬化物に分散させる場合には、粒子表面に分散性改善のため有機配位子による修飾を行うことも可能である。従来、半導体発光装置の部材として用いられてきた付加型シリコーン樹脂は、このような有機配位子により硬化阻害を受けやすく、このような表面処理を行った粒子を混合・硬化することができなかった。これは、付加反応型シリコーン樹脂に使用されている白金系の触媒が、これらの有機配位子と強い相互作用を持ち、ヒドロシリル化の能力を失い、硬化不良を起こすためである。このような被毒物質としてはN、P、S等を含む有機化合物の他、Sn、Pb、Hg、Bi、As等の重金属のイオン性化合物、アセチレン基等、多重結合を含む有機化合物(フラックス、アミン類、塩ビ、硫黄加硫ゴム)などが挙げられる。これに対し、本発明のポリシロキサン硬化物は、これらの被毒物質による硬化阻害を起こしにくい縮合型の硬化機構によるものである。このため、本発明のポリシロキサン硬化物は有機配位子により表面改質した蛍光体粒子や無機粒子、さらには錯体蛍光体などの蛍光成分との混合使用の自由度が大きく、蛍光体バインダーや高屈折率ナノ粒子導入透明材料として優れた特徴を備えるものである。
 [4-1-5]蛍光体の含有率
 本発明のポリシロキサン硬化物における蛍光体の含有率は、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。白色LEDや白色照明等の用途に用いる白色発光の半導体発光装置を例に挙げると、蛍光体を均一に分散して半導体発光素子を含むパッケージの凹部全体を埋めてポッティングする場合には、蛍光体総量として、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上、また、通常35重量%以下、好ましくは30重量%以下、より好ましくは28重量%以下である。
 また、同用途で蛍光体を高濃度に分散したものを、半導体発光装置の半導体発光素子の発光面より遠方(例えば、半導体発光素子を含む凹部を透明封止材で埋めたパッケージ開口面や、LED気密封止用ガラス蓋体・レンズ・導光板等の外部光学部材の出光面など)に薄膜状に塗布する場合には、通常5重量%以上、好ましくは7重量%以上、より好ましくは10重量%以上、また、通常90重量%以下、好ましくは80重量%以下、より好ましくは70重量%以下である。
 また、一般に、半導体発光素子の発光色と蛍光体の発光色とを混色して白色を得る場合、半導体発光素子の発光色を一部透過させることになるため、蛍光体含有率は低濃度となり、上記範囲の下限近くの領域となる。一方、半導体発光素子の発光を全て蛍光体発光色に変換して白色を得る場合には、高濃度の蛍光体が好ましいため、蛍光体含有率は上記範囲の上限近くの領域となる。蛍光体含有率がこの範囲より多いと塗布性能が悪化したり、光学的な干渉作用により蛍光体の利用効率が低くなり、半導体発光装置の輝度が低くなったりする可能性がある。また、蛍光体含有率がこの範囲より少ないと、蛍光体による波長変換が不十分となり、目的とする発光色を得られなくなる可能性がある。
 以上白色発光の半導体発光装置用途について例示したが、具体的な蛍光体含有率は目的色、蛍光体の発光効率、混色形式、蛍光体比重、塗布膜厚、半導体発光装置の形状により多様であり、この限りではない。
 本発明の硬化性ポリシロキサン組成物はエポキシ樹脂やシリコーン樹脂など従来の光学部材用材料と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良く、高濃度の蛍光体や無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。また、必要に応じて重合度の調整やアエロジル等チキソ材を含有させることにより高粘度にすることも可能であり、目的の蛍光体含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
 なお、ポリシロキサン硬化物における蛍光体の含有率は、蛍光体組成が特定出来ていれば、蛍光体含有試料を粉砕後予備焼成し炭素成分を除いた後にフッ酸処理によりケイ素成分をケイフッ酸として除去し、残渣を希硫酸に溶解して主成分の金属元素を水溶液化し、ICPや炎光分析、蛍光X線分析などの公知の元素分析方法により主成分金属元素を定量し、計算により蛍光体含有率を求めることが出来る。また、蛍光体形状や粒径が均一で比重が既知であれば塗布物断面の画像解析により単位面積あたりの粒子個数を求め蛍光体含有率に換算する簡易法も用いることが出来る。
 また、蛍光体部形成液における蛍光体の含有率は、ポリシロキサン硬化物における蛍光体の含有率が前記範囲に収まるように設定すればよい。したがって、蛍光体部形成液が乾燥工程において重量変化しない場合は蛍光体部形成液における蛍光体の含有率はポリシロキサン硬化物における蛍光体の含有率と同様になる。また、蛍光体部形成液が溶媒等を含有している場合など、蛍光体部形成液が乾燥工程において重量変化する場合は、その溶媒等を除いた蛍光体部形成液における蛍光体の含有率がポリシロキサン硬化物における蛍光体の含有率と同様になるようにすればよい。
 [4-2]無機粒子(フィラー)の併用
 また、本発明のポリシロキサン硬化物を少なくとも備えることを特徴とした光学部材を、半導体発光装置に使用する場合などにおいては、光学的特性や作業性を向上させるため、また、以下の<1>~<5>の何れかの効果を得ることを目的として、更に無機粒子を含有させても良い。
<1>ポリシロキサン硬化物に光散乱物質として無機粒子を混入し、半導体発光装置の光を散乱させることにより、蛍光体に当たる半導体発光素子の光量を増加させ、波長変換効率を向上させると共に、半導体発光装置から外部に放出される光の指向角を広げる。
<2>ポリシロキサン硬化物に結合剤として無機粒子を配合することにより、クラックの発生を防止する。
 <3>硬化性ポリシロキサン化合物に、粘度調整剤として無機粒子を配合することにより、当該形成液の粘度を高くする。
 <4>ポリシロキサン硬化物に無機粒子を配合することにより、その収縮を低減する。
 <5>ポリシロキサン硬化物に無機粒子を配合することにより、その屈折率を調整して、光取り出し効率を向上させる。
 この場合は、硬化性ポリシロキサン化合物に、蛍光体の粉末と同様に、無機粒子を目的に応じて適量混合すればよい。この場合、混合する無機粒子の種類及び量によって得られる効果が異なる。
 例えば、無機粒子が粒径約10nmの超微粒子状シリカ(日本アエロジル株式会社製、商品名:AEROSIL#200やRX200)の場合、硬化性ポリシロキサン化合物のチクソトロピック性が増大するため、上記<3>の効果が大きい。
 また、無機粒子が粒径約数μmの破砕シリカ若しくは真球状シリカの場合、チクソトロピック性の増加はほとんど無く、ポリシロキサン硬化物の骨材としての働きが中心となるので、上記<2>及び<4>の効果が大きい。
 また、ポリシロキサン硬化物とは屈折率が異なる粒径約1μmの無機粒子を用いると、ポリシロキサン硬化物と無機粒子との界面における光散乱が大きくなるので、上記<1>の効果が大きい。
 また、ポリシロキサン硬化物より屈折率の大きな粒径3~5nm、具体的には発光波長以下の粒径をもつ無機粒子を用いると、ポリシロキサン硬化物の透明性を保ったまま屈折率を向上させることができるので、上記<5>の効果が大きい。
 従って、混合する無機粒子の種類は目的に応じて選択すれば良い。また、その種類は単一でも良く、複数種を組み合わせてもよい。また、分散性を改善するためにシランカップリング剤などの表面処理剤で表面処理されていても良い。
 [4-2-1]無機粒子の種類
 使用する無機粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどの無機酸化物粒子やダイヤモンド粒子が例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。
 無機粒子の形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合は、本発明のポリシロキサン硬化物と屈折率を同等としたり、水系・溶媒系の透明ゾルとして硬化性ポリシロキサン化合物に加えたりすることが好ましい。
 [4-2-2]無機粒子の中央粒径
 これらの無機粒子(一次粒子)の中央粒径は特に限定されないが、通常、蛍光体粒子の1/10以下程度である。具体的には、目的に応じて以下の中央粒径のものが用いられる。例えば、無機粒子を光散乱材として用いるのであれば、その中央粒径は0.1~10μmが好適である。また、例えば、無機粒子を骨材として用いるのであれば、その中央粒径は1nm~10μmが好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いるのであれば、その中央粒子は10~100nmが好適である。また、例えば、無機粒子を屈折率調整剤として用いるのであれば、その中央粒径は1~10nmが好適である。
 [4-2-3]無機粒子の混合方法
 本発明において、無機粒子を混合する方法は特に制限されないが、通常は、蛍光体と同様に遊星攪拌ミキサー等を用いて脱泡しつつ混合することが推奨される。例えばアエロジルのような凝集しやすい小粒子を混合する場合には、粒子混合後必要に応じビーズミルや三本ロール、高せん断の攪拌機などを用いて凝集粒子の解砕を行ってから蛍光体等の混合容易な大粒子成分を混合しても良い。
 [4-2-4]無機粒子の含有率
 本発明のポリシロキサン硬化物における無機粒子の含有率は、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。例えば、無機粒子を光散乱剤として用いる場合は、その含有率は0.01~10重量%が好適である。また、例えば、無機粒子を骨材として用いる場合は、その含有率は1~50重量%が好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いる場合は、その含有率は0.1~20重量%が好適である。また、例えば、無機粒子を屈折率調整剤として用いる場合は、その含有率は10~80重量%が好適である。無機粒子の量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
 本発明の硬化性ポリシロキサン組成物はエポキシ樹脂やシリコーン樹脂など従来の光学部材用材料と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良く、高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。また、必要に応じて重合度の調整やアエロジル等チキソ材のを含有させることにより高粘度にすることも可能であり、目的の無機粒子含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
 なお、ポリシロキサン硬化物における無機粒子の含有率は、前出の蛍光体含有量と同様に測定することが出来る。
 また、本発明の硬化性ポリシロキサン組成物における無機粒子の含有率は、ポリシロキサン硬化物における無機粒子の含有率が前記範囲に収まるように設定すればよい。したがって、硬化性ポリシロキサン組成物が乾燥工程において重量変化しない場合は硬化性ポリシロキサン組成物における無機粒子の含有率はポリシロキサン硬化物における無機粒子の含有率と同様になる。また、硬化性ポリシロキサン組成物が溶媒等を含有している場合など、硬化性ポリシロキサン組成物が乾燥工程において重量変化する場合は、その溶媒等を除いた硬化性ポリシロキサン組成物における無機粒子の含有率がポリシロキサン硬化物における無機粒子の含有率と同様になるようにすればよい。
 [4-3]導電性フィラー・熱伝導性フィラーの併用
 また、本発明のポリシロキサン硬化物を少なくとも備えてなることを特徴とする光学部材を、半導体発光装置に使用する場合などにおいては、導電性を付与し印刷やポッティングなどの技術を用いて半田使用温度より低温で電気回路を形成させることを目的として、導電性フィラーを含有させても良い。
 使用する導電性フィラーの種類としては、銀粉、金粉、白金粉、パラジウム粉などの貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉、ステンレス粉などの卑貴金属粉、銀などの貴金属でめっき、合金化した卑貴金属粉、貴金属や卑金属で被覆された有機樹脂粉やシリカ粉、その他カーボンブラック、グラファイト粉などのカーボン系フィラーなどが例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。また、導電性フィラーは、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
 導電性フィラーの供給形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合や、微細な配線を印刷形成する必要が有る場合には、凝集の無い水系・溶媒系の透明ゾル或いは再分散容易な表面修飾付きナノ粒子粉末として硬化性ポリシロキサン化合物に加えることが好ましい。
 これらの金属粉の形状としては、フレーク状(リン片状)、球状、粒状、樹枝状(デンドライト状)、球状の一次粒子が3次元状に凝集した形状などがある。この内、導電性、コスト、信頼性の面より銀粉を主体とすることが好ましく、導電性の面より、銀粉に少量のカーボンブラック及び/またはグラファイト粉を併用することがより好ましい。また、導電性、信頼性の面からフレーク状、球状の銀粉を使用することが好ましく、フレーク状と球状の銀粉を併用することが最も好ましい。また、必要により、シリカ、タルク、マイカ、硫酸バリウム、酸化インジウムなどの無機フィラーなどを少量配合しても良い。
 銀粉とカーボンブラック及び/またはグラファイト微粉末の好ましい配合比(質量比)は、銀粉とカーボンブラック及び/またはグラファイト微粉末の合計量を100質量比とした時、銀粉としての上限は、好ましくは99.5質量比以下、より好ましくは99質量比以下である。銀粉としての下限は、85質量比以上、より好ましくは90質量比以上である。
 導電性フィラーの中央粒径は特に限定されないが、通常0.1μm以上、好ましくは0.5μm以上、更に好ましくは1μm以上であり、通常50μm以下、好ましくは20μm以下、更に好ましくは10μm以下である。また、特に透明性や微細加工性が要求される場合には通常3nm以上、好ましくは10nm以上であり、通常150nm以下、好ましくは100nm以下である。
 また、導電性フィラーの含有率は該導電性フィラーとバインダー樹脂の合計量を100重量%としたとき、通常50重量%以上、好ましくは75重量%以上、より好ましくは80質量比以上である。また、接着性、インキの粘性の観点から、通常95重量%以下、好ましくは93重量%以下、より好ましくは90重量%以下である。導電性フィラーの量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
 また、本発明のポリシロキサン硬化物を少なくとも備えてなることを特徴とする光学部材を半導体発光装置に使用する場合などにおいては、熱伝導性を付与し印刷やポッティングなどの技術を用いてダイボンド層を設けることを目的として、熱伝導性フィラーを含有させても良い。
 使用する熱伝導性フィラーの種類としては、銀粉、金粉、白金粉、パラジウム粉などの貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉、ステンレス粉などの卑貴金属粉、銀などの貴金属でめっき、合金化した卑貴金属粉、その他カーボンブラック、グラファイト粉、などのカーボン系フィラー、SiC,SiNなどのセラミックス粉、ダイヤモンド粉などが例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。また、熱伝導性フィラーは、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。熱伝導性フィラーの使用量や粒径は、前記導電性フィラーと同様であることが好ましい。
 本発明の硬化性ポリシロキサン組成物はエポキシ樹脂やシリコーン樹脂など従来の光学部材用材料と比較して低粘度かつ蛍光体や無機粒子とのなじみが良く、高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る特徴を有する。また必要に応じて重合度の調整やアエロジル等チキソ材を含有させることにより高粘度にすることも可能であり、目的の無機粒子含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
 なお、硬化性ポリシロキサン組成物における無機粒子の含有率は、前出の蛍光体含有量と同様に測定することが出来る。
 [4-4]他の部材との組み合わせ
 本発明の硬化性ポリシロキサン組成物は単独で封止材料として用いても良いが、有機蛍光体、酸素や水分により劣化しやすい蛍光体、半導体発光装置を封止する場合等、より厳密に酸素や水分からの遮断を要求される用途においては、本発明の部材により蛍光体の保持や半導体発光素子の封止・光取り出しを実施し、さらにその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施しても良い。この場合の半導体発光装置の形状は特に制限無く、本発明の硬化性ポリシロキサン組成物による封止体、塗布物あるいは塗布面が実質的に金属・ガラス・高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通無い状態になっていれば良い。
 また、本発明の硬化性ポリシロキサン組成物は、上述のように密着性が良好なため、半導体発光装置用接着剤として用いることが出来る。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体発光装置と外部光学部材とを接着する場合などに、本発明のポリシロキサン硬化物を塗布、印刷、ポッティングなどすることにより用いることが出来る。本発明のポリシロキサン硬化物は特に耐光性、耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光装置用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光装置を提供することが出来る。
 なお、本発明のポリシロキサン硬化物は、これのみで十分密着性を担保しうるものであるが、更に密着性を担保することを目的として、ポリシロキサン硬化物と直接接する表面に密着性改善のための表面処理を行っても良い。このような、表面処理としては、例えばプライマーやシランカップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射・電子線照射を用いた物理的表面処理、サンドブラストやエッチング・微粒子塗布などによる粗面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例えば、特開平5-25300号、稲垣訓宏著「表面化学」Vol.18 No.9、pp21-26、黒崎和夫著「表面化学」Vol.19 No.2、pp44-51(1998)等に開示される公知の表面処理方法が挙げられる。
 [5]半導体発光装置の実施形態
 本発明のポリシロキサン硬化物を少なくとも備えてなる本発明の光学部材の例として、本発明の光学部材を少なくとも備えてなる半導体発光装置(以下、適宜「本発明の半導体発光装置」ということがある。)を例に挙げて、実施形態を用いて説明する。なお、以下の各実施形態では、本発明の半導体発光装置を適宜「発光装置」と略称することがある。さらに、本発明の半導体発光装置に用いる本発明の光学部材は、半導体発光装置用部材と呼ぶこととする。また、どの部位に本発明の光学部材を用いるかについては、全ての実施形態の説明の後にまとめて説明する。但し、これらの実施形態はあくまでも説明の便宜のために用いるものであって、本発明の光学部材を少なくとも備えてなる半導体発光装置の例は、これらの実施形態に限られるものではない。
 [5-1]基本概念
 本発明に係る半導体発光装置用部材を用いた本発明の半導体発光装置は、例えば、以下のA)、B)の適用例がある。本発明に係る半導体発光装置用部材は、何れの適用例においても、従来の半導体発光装置用の光学部材と比較して、優れた光耐久性及び熱耐久性を示し、クラックや剥離が起きにくく、輝度の低下が少ない。したがって、本発明に係る半導体発光装置用部材によれば、長期にわたって信頼性の高い部材を提供することができる。
 A)発光素子の発光色をそのまま利用する半導体発光装置。
 B)発光素子の近傍に蛍光体部を配設し、発光素子からの光により蛍光体部中の蛍光体や蛍光体成分を励起させ、蛍光を利用して所望の波長の光を発光する半導体発光装置。
 A)の適用例においては、本発明に係る半導体発光装置用部材の高い耐久性、透明性および封止材性能を生かし、単独使用にて高耐久封止材、光取り出し膜、各種機能性成分保持剤として用いることができる。特に、本発明に係る半導体発光装置用部材を上記無機粒子等を保持する機能性成分保持剤として用い、本発明に係る半導体発光装置用部材に透明高屈折成分を保持させた場合には、本発明に係る半導体発光装置用部材を発光素子の出光面と密着させて使用し、かつ、発光素子に近い屈折率にすることで、発光素子の出光面での反射を低減し、より高い光取り出し効率を得ることが可能となる。
 また、B)の適用例においても、本発明に係る半導体発光装置用部材は、上記のA)の適用例と同様の優れた性能を発揮することができ、かつ、蛍光体や蛍光体成分を保持することにより高耐久性で光取り出し効率の高い蛍光体部を形成することができる。さらに、本発明に係る半導体発光装置用部材に、蛍光体や蛍光体成分に加えて透明高屈折成分を併せて保持させた場合、本発明に係る半導体発光装置用部材の屈折率を発光素子や蛍光体の屈折率近傍にすることで、界面反射を低減し、より高い光取り出し効率を得ることができる。
 以下に、本発明に係る半導体発光装置用部材を適用した各実施形態の基本概念について、図50(a),(b)を参照しながら説明する。なお、図50は各実施形態の基本概念の説明図であり、(a)は上記のA)の適用例に対応し、(b)は上記のB)の適用例に対応している。
 各実施形態の発光装置(半導体発光装置)1A,1Bは、図50(a),(b)に示すように、LEDチップからなる発光素子2と、発光素子2の近傍に配設された本発明に係る半導体発光装置用部材3A,3Bとを備えている。
 ただし、図50(a)に示すような、上記A)の適用例に対応した実施形態(実施形態A-1,A-2)においては、発光装置1Aは半導体発光装置用部材3Aに蛍光体や蛍光体成分を含まない。この場合、半導体発光装置用部材3Aは、発光素子2の封止、光取り出し機能、機能性成分保持などの各機能を発揮する。なお、以下の説明において、蛍光体や蛍光体成分を含有しない半導体発光装置用部材3Aを、適宜「透明部材」と呼ぶ。
 一方、図50(b)に示すような、上記B)の適用例に対応した実施形態(実施形態B-1~B-41)においては、発光装置1Bは半導体発光装置用部材3Bに蛍光体や蛍光体成分を含む。この場合、半導体発光装置用部材3Bは、図50(a)の半導体発光装置用部材3Aが発揮しうる諸機能に加え、波長変換機能も発揮できる。なお、以下の説明において、蛍光体や蛍光体成分を含有する半導体発光装置用部材3Bを、適宜「蛍光体部」と呼ぶ。また、蛍光体部は、その形状や機能などに応じて、適宜、符号33,34などで示す場合もある。
 発光素子2は、例えば、青色光ないし紫外光を放射するLEDチップにより構成されるが、これら以外の発光色のLEDチップであってもよい。
 また、透明部材3Aは、発光素子2の高耐久性封止材、光取出し膜、諸機能付加膜などの機能を発揮するものである。透明部材3Aは単独で用いてもよいが、蛍光体や蛍光体成分を除けば本発明の効果を著しく損なわない限り任意の添加剤を含有させることができる。
 一方、蛍光体部3Bは、発光素子2の高耐久性封止材、光取出し膜、諸機能付加膜などの機能を発揮しうると共に、発光素子2からの光により励起されて所望の波長の光を発光する波長変換機能を発揮するものである。蛍光体部3Bは、発光素子2からの光により励起されて所望の波長の光を発光する蛍光物質を少なくとも含んでいればよい。このような蛍光物質の例としては、上に例示した各種の蛍光体が挙げられる。蛍光体部3Bの発光色としては、赤色(R),緑色(G),青色(B)の3原色は勿論のこと、蛍光灯のような白色や電球のような黄色も可能である。要するに、蛍光体部3Bは、励起光とは異なる所望の波長の光を放射する波長変換機能を有している。
 図50(a)に示す上述の発光装置1Aでは、発光素子2から放射された光4は、透明部材3Aを透過し、発光装置1Aの外部に放射される。したがって、発光装置1Aでは、発光素子2から放射された光4は、発光素子2から放射された際の発光色のままで利用される。
 一方、図50(b)に示す発光装置1Bでは、発光素子2から放射された光の一部4aは蛍光体部3Bをそのまま透過し、発光装置1Bの外部へ放射される。また、発光装置1Bでは、発光素子2から放射された光の他の一部4bが蛍光体部3Bに吸収されて蛍光体部3Bが励起され、蛍光体部3Bに含有される蛍光体粒子、蛍光イオン、蛍光染料等の蛍光成分特有の波長の光5が発光装置1Bの外部へ放射される。
 したがって、発光装置1Bからは、発光素子2で発光して蛍光体部3Bを透過した光4aと蛍光体部3Bで発光した光5との合成光6が、波長変換された光として放射されることになり、発光素子2の発光色と蛍光体部3Bの発光色とで発光装置1B全体としての発光色が決まることになる。なお、発光素子2で発光して蛍光体部3Bを透過する光4aは必ずしも必要ではない。
[5-2]実施形態
 [A.蛍光を利用しない実施形態]
 〔実施形態A-1〕
 本実施形態の発光装置1Aは、図1に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。この発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。なお、導電ワイヤ15,15は、発光素子2から放射される光を妨げないように、断面積の小さいものが用いられている。
 ここにおいて、発光素子2としては、紫外~赤外域までどのような波長の光を発するものを用いてもよいが、ここでは、窒化ガリウム系のLEDチップを用いているものとする。また、この発光素子2は、図1における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図1の上方を前方として説明する。
 また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。この封止部19は、本発明に係る半導体発光装置用部材である透明部材3Aにより形成されたもので、上記のポリシロキサン硬化物の原料でポッティングを行なうことにより形成できる。
 しかして、本実施形態の発光装置1Aは、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができる。また、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
 さらに、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、封止部3Aを、曇りや濁りがなく透明性が高いものとすることができるため、光色の均一性に優れ、発光装置1A間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Aの長寿命化を図ることが可能となる。
 〔実施形態A-2〕
 本実施形態の発光装置1Aは、図2に示すように、発光素子2の前面を透明部材3Aが覆っており、また、その透明部材上に、透明部材3Aとは異なる材料で封止部19が形成された他は、上記の実施形態A-1と同様に構成されている。また、発光素子2表面の透明部材3Aは、光取出し膜、封止膜として機能する透明の薄膜であり、例えば、発光素子2のチップ形成時に上記のポリシロキサン硬化物の原料をスピンコーティング等で塗布することにより形成できる。なお、実施形態A-1と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Aにおいても、実施形態A-1と同様に、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができ、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
 さらに、実施形態A-1と同様の利点を得ることも可能である。
 [B.蛍光を利用した実施形態]
 〔実施形態B-1〕
 本実施形態の発光装置1Bは、図3(a)に示すように、LEDチップからなる発光素子2と、透光性の透明な材料を砲弾形に成形したモールド部11とを備えている。モールド部11は発光素子2を覆っており、発光素子2は導電性材料により形成したリード端子12,13に電気的に接続されている。リード端子12,13はリードフレームにより形成されている。
 発光素子2は、窒化ガリウム系のLEDチップであり、図3(a)における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図3の上方を前方として説明する。発光素子2の後面はリード端子13の前端部に取り付けられたミラー(カップ部)14に対してダイボンドによって接合されている。また、発光素子2は、上述のp形半導体層及びn形半導体層それぞれに導電ワイヤ(例えば、金ワイヤ)15,15がボンディングにより接続され、この導電ワイヤ15,15を介して発光素子2とリード端子12,13とが電気的に接続されている。なお、導電ワイヤ15,15は発光素子2から放射される光を妨げないように断面積の小さいものが用いられている。
 ミラー14は発光素子2の側面及び後面から放射された光を前方に反射する機能を有し、LEDチップから放射された光及びミラー14により前方に反射された光は、レンズとして機能するモールド部11の前端部を通してモールド部11から前方に放射される。モールド部11は、ミラー14、導電ワイヤ15,15、リード端子12,13の一部とともに、発光素子2を覆っており、発光素子2が大気中の水分などと反応することによる特性の劣化が防止されている。各リード端子12,13の後端部はそれぞれモールド部11の後面から外部に突出している。
 ところで、発光素子2は、図3(b)に示すように、窒化ガリウム系半導体からなる発光層部21が、蛍光体部3B上に半導体プロセスを利用して形成されており、蛍光体部3Bの後面には反射層23が形成されている。発光層部21からの発光による光は全方位に放射されるが、蛍光体部3Bに吸収された一部の光は蛍光体部3Bを励起し、上記蛍光成分特有の波長の光を放射する。この蛍光体部3Bで発光した光は反射層3によって反射されて前方へ放射される。したがって、発光装置1Bは、発光層部21から放射された光と蛍光体部3Bから放射された光との合成光が得られることになる。
 しかして、本実施形態の発光装置1Bは、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなる。ここで、蛍光体部3Bとして透光性に優れたものを用いれば、発光素子2から放射された光の一部がそのまま外部へ放射されるとともに、発光素子2から放射された光の他の一部によって発光中心となる蛍光成分が励起されて当該蛍光成分特有の発光による光が外部へ放射されるから、発光素子2から放射される光と蛍光体部3Bの蛍光成分から放射される光との合成光を得ることができ、また、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、蛍光体部3Bとして、曇りや濁りがなく透明性が高いものを用いれば、光色の均一性に優れ、発光装置1B間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Bの長寿命化を図ることが可能となる。
 また、本実施形態の発光装置1Bでは、蛍光体部3Bが発光素子2を形成する基板に兼用されているので、発光素子2からの光の一部により蛍光体部中の発光中心となる蛍光体を効率良く励起することができ、当該蛍光成分特有の発光による光の輝度を高めることができる。
〔実施形態B-2〕
 本実施形態の発光装置1Bは、図4に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。ここにおいて、発光素子2は、実施形態B-1と同様の構成であって、窒化ガリウム系半導体からなる発光層部21が蛍光体部3B上に形成され、蛍光体部3Bの後面に反射層23が形成されている。また、発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。
 また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。
 しかして、本実施形態の発光装置1Bにおいても、実施形態B-1と同様に、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなるので、発光素子2からの光と蛍光体からの光との合成光を得ることができる。また、実施形態B-1と同様、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができ、長寿命化を図ることも可能となる。
〔実施形態B-3〕
 本実施形態の発光装置1Bの基本構成は実施形態B-2と略同じであって、実施形態B-2で説明した枠材18(図4参照)を用いておらず、図5に示すように、封止部19の形状が異なる。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 本実施形態における封止部19は、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。
 しかして、本実施形態の発光装置1Bでは、実施形態B-2に比べて部品点数を少なくすることができ、小型化及び軽量化を図ることができる。しかも、封止部19の一部にレンズとして機能するレンズ機能部19bを設けたことにより、指向性の優れた配光を得ることができる。
 〔実施形態B-4〕
 本実施形態の発光装置1Bの基本構成は実施形態B-2と略同じであって、図6に示すように、絶縁基板16の一面(図6における上面)に発光素子2を収納する凹所16aが設けられており、凹所16aの底部に発光素子2が実装され、凹所16a内に封止部19を設けている点に特徴がある。ここにおいて、絶縁基板16に形成されたプリント配線17,17は凹所16aの底部まで延長され、導電ワイヤ15,15を介して発光素子2の窒化ガリウム系半導体からなる発光層部21に電気的に接続されている。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは封止部19が絶縁基板16の上面に形成された凹所16aを充填することで形成されているので、実施形態B-2で説明した枠材18(図5参照)や実施形態B-3で説明した成形用金型を用いることなく封止部19を形成することができ、実施形態B-2,B-3に比べて発光素子2の封止工程を簡便に行えるという利点がある。
〔実施形態B-5〕
 本実施形態の発光装置1Bの基本構成は実施形態B-4と略同じであって、図7に示すように、発光素子2が絶縁基板16に所謂フリップチップ実装されている点に特徴がある。すなわち、発光素子2は、発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれの表面側に導電性材料からなるバンプ24,24が設けられており、発光層部21がフェースダウンでバンプ24,24を介して絶縁基板16のプリント配線17,17と電気的に接続されている。したがって、本実施形態における発光素子2は、絶縁基板16に最も近い側に発光層部21が配設され、絶縁基板16から最も遠い側に反射層23が配設され、発光層部21と反射層23との間に蛍光体部3Bが介在することになる。なお、実施形態B-4と同様の構成要素には同一の符号を付して説明を省略する。
 本実施形態の発光装置1Bでは、反射層23で図7における下方(後方)へ反射された光は、凹所16aの内周面で反射されて同図における上方(前方)へ放射される。ここにおいて、凹所16aの内周面であってプリント配線17,17以外の部位には、反射率の高い材料からなる反射層を別途に設けることが望ましい。
 しかして、本実施形態の発光装置1Bでは絶縁基板16に設けられたプリント配線17,17と発光素子2とを接続するために実施形態B-4のような導電ワイヤ15,15を必要としないので、実施形態B-4に比べて機械的強度及び信頼性を向上させることが可能となる。
〔実施形態B-6〕
 本実施形態の発光装置1Bの基本構成は実施形態B-5と略同じであって、図8に示すように、実施形態B-5で説明した反射層23を設けていない点が相違する。要するに、本実施形態の発光装置1Bでは、発光層部21で発光した光及び蛍光体部3Bで発光した光が封止部19を透過してそのまま前方へ放射されることになる。なお、実施形態B-5と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-5に比べて部品点数を削減できて製造が容易になる。
〔実施形態B-7〕
 本実施形態の発光装置1Bの基本構成は実施形態B-1と略同じであって、図9に示すように、発光素子2を覆うモールド部11を備えており、モールド部11を蛍光体部と一体に形成している点に特徴がある。なお、実施形態B-1と同様の構成要素には同一の符号を付して説明を省略する。
 本実施形態の発光装置1Bの製造にあたっては、モールド部11を設けていない仕掛品を蛍光体部形成液を溜めた成形金型の中に浸漬し、蛍光体部形成液(重縮合体)を硬化させる方法などによってモールド部11を形成している。
 しかして、本実施形態では、モールド部11が蛍光体部と一体に形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、モールド部11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
 〔実施形態B-8〕
 本実施形態の発光装置1Bの基本構成は実施形態B-1と略同じであって、図10に示すように、モールド部11の外面に後面が開口されたカップ状の蛍光体部3Bが装着されている点に特徴がある。すなわち、本実施形態では、実施形態B-1のように発光素子2に蛍光体部3Bを設ける代わりに、モールド部11の外周に沿う形状の蛍光体部3Bを設けているのである。なお、実施形態B-1と同様の構成要素には同一の符号を付して説明を省略する。
 本実施形態における蛍光体部3Bは、実施形態B-7で説明した蛍光体部形成液(重縮合体)を硬化させる方法により薄膜として形成してもよいし、あるいは予め固体の蛍光体部をカップ状に成形加工した部材をモールド部11に装着するようにしてもよい。
 しかして、本実施形態の発光装置1Bでは、実施形態B-7の発光装置1Bのようにモールド部11全体を蛍光体部と一体に形成する場合に比べて、蛍光体部の材料使用量の削減を図ることができ、低コスト化を図れる。
 〔実施形態B-9〕
 本実施形態の発光装置1Bの基本構成は、実施形態B-2と略同じであって、図11に示すように、絶縁基板16の一面(図11の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B-2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B-10〕
 本実施形態の発光装置1Bの基本構成は、実施形態B-2と略同じであって、図12に示すように、絶縁基板16の一面(図12の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B-2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
 また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B-9に比べてより一層効率的に行えるという利点がある。
 〔実施形態B-11〕
 本実施形態の発光装置1Bの基本構成は実施形態B-2と略同じであって、図13に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B-2で説明した蛍光体部3Bと同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
 〔実施形態B-12〕
 本実施形態の発光装置1Bの基本構成は実施形態B-2と略同じであって、図14に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B-2で説明した蛍光体部3Bと同様と同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成されているので、蛍光体部の励起、発光を実施形態B-11に比べてより一層効率的に行えるという利点がある。
 〔実施形態B-13〕
 本実施形態の発光装置1Bの基本構成は実施形態B-3と略同じであって、図15に示すように、絶縁基板16の上面側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここに、封止部19は、実施形態B-3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B-3と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B-12に比べてより一層効率的に行えるという利点がある。
 〔実施形態B-14〕
 本実施形態の発光装置1Bの基本構成は実施形態B-3と略同じであって、図16に示すように、絶縁基板16の一面(図16の上面)側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここに、封止部19は、実施形態B-3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B-3と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。
 〔実施形態B-15〕
 本実施形態の発光装置1Bの基本構成は実施形態B-3と略同じであって、図17に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に透光性樹脂からなる封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B-3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B-3と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-13,B-14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。
 〔実施形態B-16〕
 本実施形態の発光装置1Bの基本構成は実施形態B-3と略同じであって、図18に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B-3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B-3と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-13,B-14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B-15に比べてより一層効率的に行えるという利点がある。
 〔実施形態B-17〕
 本実施形態の発光装置1Bの基本構成は実施形態B-4と略同じであって、図19に示すように、絶縁基板16の一面(図19における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここにおいて、蛍光体部は実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-4と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部3Bにより形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B-15に比べてより一層効率的に行えるという利点がある。
 〔実施形態B-18〕
 本実施形態の発光装置1Bの基本構成は実施形態B-4と略同じであって、図20に示すように、絶縁基板16の一面(図20における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、蛍光体部3Bは実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-4と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
 〔実施形態B-19〕
 本実施形態の発光装置1Bの基本構成は実施形態B-4と略同じであって、図21に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-4と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
 〔実施形態B-20〕
 本実施形態の発光装置1Bの基本構成は実施形態B-4と略同じであって、図22に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-4と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面にも蛍光体部3Bが配設されているので、実施形態B-19に比べて蛍光体部の励起、発光がより一層効率的に行われるという利点がある。
 〔実施形態B-21〕
 本実施形態の発光装置1Bの基本構成は実施形態B-5と略同じであって、図23に示すように、絶縁基板16の一面(図23における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図24に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-5と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21から前方へ放射された光が反射層23によって一旦、凹所16aの内底面側に向けて反射されるので、凹所16aの内底面及び内周面に反射層を設けておけば、凹所16aの内底面及び内周面でさらに反射されて前方へ放射されることになって光路長を長くとれ、蛍光体部3Bにより効率的に励起、発光を行うことができるという利点がある。
 〔実施形態B-22〕
 本実施形態の発光装置1Bの基本構成は実施形態B-5と略同じであって、図25に示すように、絶縁基板16の一面(図25における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図26に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-5と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部3Bにより形成されているので、蛍光体部3Bとして後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
 〔実施形態B-23〕
 本実施形態の発光装置1Bの基本構成は実施形態B-6と略同じであって、図27に示すように、発光素子2の上面に、予めロッド状に加工した蛍光体部3Bを配設している点に特徴がある。ここにおいて、発光素子2及び蛍光体部3Bの周囲には透光性材料からなる封止部19が形成されており、蛍光体部3Bは一端面(図27における下端面)が発光素子2の発光層部21に密着し他端面(図27における上端面)が露出している。なお、実施形態B-6と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、上記一端面が発光素子2の発光層部21に密着する蛍光体部3Bがロッド状に形成されているので、発光層部21で発光した光を蛍光体部3Bの上記一端面を通して蛍光体部3Bへ効率的に取り込むことができ、取り込んだ光により励起された蛍光体部3Bの発光を蛍光体部3Bの上記他端面を通して外部へ効率的に放射させることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図28に示すように蛍光体部3Bを比較的小径のファイバー状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
 〔実施形態B-24〕
 本実施形態の発光装置1Bの基本構成は実施形態B-23と略同じであって、図29に示すように、絶縁基板16の凹所16a内に設けた封止部19を備え、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図30に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための貫通孔19dを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B-1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B-23と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、封止部19も蛍光体部3Bにより形成されているので、長寿命化及び発光の高効率化を図ることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図31に示すように蛍光体部3Bを比較的小径のファイバー状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
 〔実施形態B-25〕
 本実施形態の発光装置1Bの基本構成は実施形態B-2と略同じであって、図32に示すように絶縁基板16の一面(図32における上面)側に配設された枠材18を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、枠材18の内側の封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散されている点に特徴がある。また、本実施形態では、蛍光体部3Bとして、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。
 したがって、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。
 本実施形態では、蛍光体部3Bから青色光が放射されるとともに、蛍光体粉末から黄色光が放射され、いずれの発光色とも異なる白色光を得ることができる。
 なお、既存の蛍光体粉末や蛍光体部の蛍光体粒子ではそれぞれに発光可能な材料が限定されており、いずれか一方だけでは所望の光色が得られないこともあり、このような場合には本実施形態は極めて有効である。つまり、蛍光体部3Bだけで所望の光色特性が得られない場合には、蛍光体部3Bに欠けている適当な光色特性を有する蛍光体粉末を併用して補完することにより、所望の光色特性の発光装置1Bが実現できる。また、本実施形態では、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。ここに、蛍光体部3Bと蛍光体粉末とで発光色を略同色とする場合には、例えば、蛍光体部3Bの蛍光体粒子として赤色光を発光するP・SrF・BaF:Eu3+を用いるとともに、蛍光体粉末として赤色光を発光するYS:Eu3+を用いれば、赤色発光の高効率化を図れる。この蛍光体部3Bと蛍光体粉末との組み合わせは一例であって他の組み合わせを採用してもよいことは勿論である。
 〔実施形態B-26〕
 本実施形態の発光装置1Bの基本構成は実施形態B-3と略同じであって、図33に示すように、絶縁基板16の一面(図33の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-3と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-27〕
 本実施形態の発光装置1Bの基本構成は実施形態B-4と略同じであって、図34に示すように、絶縁基板16の上面に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-4と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-28〕
 本実施形態の発光装置1Bの基本構成は実施形態B-5と略同じであって、図35に示すように、絶縁基板16の一面(図35における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-5と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-29〕
 本実施形態の発光装置1Bの基本構成は実施形態B-6と略同じであって、図36に示すように、絶縁基板16の一面(図36における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-6と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-30〕
 本実施形態の発光装置1Bの基本構成は実施形態B-1と略同じであって、図37(a),(b)に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-1と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-31〕
 本実施形態の発光装置1Bの基本構成は実施形態B-8と略同じであって、図38に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21(図38では図示を略している。)がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-8と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-32〕
 本実施形態の発光装置1Bの基本構成は実施形態B-11と略同じであって、図39に示すように、絶縁基板16の一面(図39の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-11と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-33〕
 本実施形態の発光装置1Bの基本構成は実施形態B-15と略同じであって、図40に示すように、絶縁基板16の一面(図40の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-15と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-34〕
 本実施形態の発光装置1Bの基本構成は実施形態B-19と略同じであって、図41に示すように、絶縁基板16の一面(図41における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-19と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-35〕
 本実施形態の発光装置1Bの基本構成は実施形態B-12,B-22と略同じであって、図42に示すように、絶縁基板16の一面(図42における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-12,B-22と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-36〕
 本実施形態の発光装置1Bの基本構成は実施形態B-12と略同じであって、図43に示すように、絶縁基板16の上面側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-12と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-37〕
 本実施形態の発光装置1Bの基本構成は実施形態B-16と略同じであって、図44に示すように、絶縁基板16の一面(図44の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-16と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-38〕
 本実施形態の発光装置1Bの基本構成は実施形態B-20と略同じであって、図45に示すように、絶縁基板16の一面(図45における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-20と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-39〕
 本実施形態の発光装置1Bの基本構成は実施形態B-5,B-12と略同じであって、図46に示すように、絶縁基板16の一面(図46における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-5,B-12と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-40〕
 本実施形態の発光装置1Bの基本構成は実施形態B-20,B-21と略同じであって、図47に示すように、絶縁基板16の一面(図47における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP・AlF・MgF・CaF・SrF・BaCl:Eu2+)を用いている。なお、実施形態B-20,B-21と同様の構成要素には同一の符号を付して説明を省略する。
 しかして、本実施形態の発光装置1Bでは、実施形態B-25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B-25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
 〔実施形態B-41〕
 本実施形態の発光装置1Bの基本構成は実施形態B-2と略同じであって、図48に示すように、絶縁基板16の一面(図48の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B-2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。ここに、発光素子2と封止部19の上面側は、ガラスや高気密樹脂よりなる透明蓋体36により外界の酸素や水分から遮断されている。なお、実施形態B-2と同様の構成要素には同一の符号を付して説明を省略する。蓋体36と封止部19は直接接していても空隙を有していても良いが、空隙無い方が光取り出し効率高く輝度高い半導体発光装置を得ることができる。空隙を有する場合、真空封止や不活性ガス封入とすることが好ましい。
 しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性を高めたり、長時間使用に伴うクラックや剥離を抑制したりすることが可能となる。
 また、本実施形態では、水分や酸素など蛍光体・封止樹脂の劣化を促進する外界因子の侵入や、熱・光による封止樹脂分解ガスの揮発が蓋体36により抑制されるため、これらに起因する輝度低下や封止部収縮剥離が低減できるという利点がある。
 ところで、上記各実施形態では、蛍光体部3Bを所望の形状に加工したりゾルゲル法で形成したりしているが、図49に示すように、蛍光体部3Bを直径が可視波長よりもやや大きな球状に形成して多数の蛍光体部3Bを透光性材料からなる固体媒質35中に分散させて上記各実施形態における蛍光体部の代わりに用いるようにすれば、可視波長域での蛍光体部の透明性を維持しながらも蛍光体部の材料使用量の低減化を図ることができ、低コスト化を図れる。
 また、上記各実施形態の発光装置1Bは1個の発光素子2しか備えていないが、複数個の発光素子2により1単位のモジュールを構成し、モジュールの少なくとも一部に発光物質としての蛍光体部を近接して配設するようにしてもよいことは勿論である。なお、例えば実施形態B-1で説明したような砲弾形のモールド部11を備える発光装置の場合には複数個の発光装置を同一プリント基板に実装して1単位のモジュールを構成するようにしてもよい。また、例えば実施形態B-2で説明したような表面実装型の発光装置については複数個の発光素子2を同一の絶縁基板16上に配設して1単位のモジュールを構成するようにしてもよい。
 〔半導体発光装置用部材の適用〕
 以上説明した各実施形態A-1,A-2,B-1~B-41の発光装置(半導体発光装置)1A,1Bにおいて、本発明に係る半導体発光装置部材を適用する箇所は特に制限されない。上記の各実施形態においては、透明部材3Aや蛍光体部3B,33,34などを形成する部材として本発明に係る半導体発光装置部材を適用した例を示したが、これ以外にも、例えば上述のモールド部11、枠材18、封止部19等を形成する部材として好適に用いることができる。これらの部材として本発明に係る半導体発光装置部材を用いることにより、上述した優れた封止性、透明性、耐光性、耐熱性、成膜性、長期間使用に伴うクラックや剥離の抑制等の各種の効果を得ることが可能となる。
 また、本発明に係る半導体発光装置部材を適用する場合には、本発明を適用する箇所に応じて、適宜変形を加えるのが好ましい。例えば、蛍光体部3B,33,34に本発明を適用する場合には、上述した蛍光体粒子又は蛍光体イオンや蛍光染料等の蛍光成分を本発明に係る半導体発光装置用部材に混合して用いればよい。これによって、上に挙げた各種効果に加え、蛍光体の保持性を高めるという効果を得ることができる。
 また、本発明に係る半導体発光装置用部材は耐久性に優れているので、蛍光体を含まず単独で使用しても、光耐久性(紫外線耐久性)や熱耐久性に優れた封止材料(無機系接着剤用途)として、発光素子(LEDチップ等)を封止することが可能である。
 また、先述した無機粒子を本発明に係る半導体発光装置用部材に混合して用いれば、上に挙げた各種効果に加え、無機粒子の併用の説明において先述した効果を得ることが可能となる。特に、無機粒子を併用することにより、発光素子の屈折率と近い屈折率となるように調整したものは、好適な光取り出し膜として作用する。
 〔半導体発光装置の用途等〕
 半導体発光装置は、例えば、発光装置に用いることができる。半導体発光装置を発光装置に用いる場合、当該発光装置は、赤色蛍光体、青色蛍光体及び緑色蛍光体の混合物を含む蛍光体含有層を、光源上に配置すればよい。この場合、赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有する層が積層されていてもよい。
 発光装置において、蛍光体含有層は光源の上部に設けることができる。蛍光体含有層は、光源と封止樹脂部との間の接触層として、または、封止樹脂部の外側のコーティング層として、または、外部キャップの内側のコーティング層として提供できる。また、封止樹脂内に蛍光体を含有させた形態をとることもできる。
 使用される封止樹脂としては、本発明の硬化性ポリシロキサン組成物を用いることができる。また、その他の樹脂を使用することもできる。そのような樹脂としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル-ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることができる。なお、封止樹脂は、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
 封止樹脂に対する蛍光体の使用量は特に限定されるものではないが、通常、封止樹脂100重量部に対して0.01重量部以上、好ましくは0.1重量部以上、より好ましくは1重量部以上、また、通常100重量部以下、好ましくは80重量部以下、より好ましくは60重量部以下である。
 また、封止樹脂に蛍光体や無機粒子以外の成分を含有させることもできる。例えば、色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工・酸化および熱安定化剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させることができる。なお、これらの成分は、1種で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
 光源に制限は無いが、350nm~500nmの範囲にピーク波長を有する光を発光するものが好ましく、具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。その中でも、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlGaN発光層、GaN発光層、またはInGaN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInGaN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InGaN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。
 なお、上記においてX+Yの値は通常0.8~1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
 GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlGaN層、GaN層、またはInGaN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
 発光装置は、白色光を発するものであり、装置の発光効率が20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数Raが80以上、好ましくは85以上、より好ましくは88以上である。
 発光装置は、単独で、又は複数個を組み合わせることにより、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置として使用することができる。
 さらに、本発明の光学部材はLED素子封止用、特に青色LED及び紫外LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光素子を励起光源とし、蛍光体により波長変換した白色LED及び電球色LEDなどの高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもその優れた耐熱性、耐紫外線性、透明性等の特性から下記のディスプレイ材料等の用途に用いることができる。
 ディスプレイ材料としては、例えば、液晶ディスプレイの基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等の液晶表示装置周辺材料、次世代フラットパネルディスプレイであるカラープラズマディスプレイ(PDP)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材・前面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス液晶(PALC)ディスプレイの基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等、有機EL(エレクトロルミネッセンス)ディスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、フィールドエミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等が挙げられる。
 本発明の光学部材は密着性に優れ、困難な重ね塗りによる積層が可能である。この特性を生かし、例えばメチル基主体の本発明の光学部材を低屈折率層とし、フェニル基などの高屈折有機基やジルコニアナノ粒子などを導入した高屈折率層と積層することにより、屈折率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れた導光層を容易に形成することができる。
 [6]導光板
 本発明のポリシロキサン硬化物を少なくとも備えてなる本発明の光学部材の例として、本発明の光学部材を少なくとも備えてなる導光板(以下、適宜「本発明の導光板」ということがある。)について説明する。
 本発明の硬化性ポリシロキサン組成物、又はポリシロキサン硬化物は、光学部材として、光通信システム、特に光送受信モジュールに使用することができる。光信号を伝送するための光導波路においては、高生産性、低コストのみならず、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が要求される。上記特性を有する点で、特に光学機器において、例えばディスプレイなどの表示装置の表示部や、ファクシミリ、電話、携帯電話、その他各種家電のボタン部分などを表示する際に、光源から発する光を所望の部位で発光させる導光板として利用することが好ましい。本発明の硬化性ポリシロキサン組成物、及びポリシロキサン硬化物は、特に高屈折率を達成できるため、光学部材として、導光板、及び光導波路のいわゆるコア層(コア部)に好適である。
 [7]航空宇宙産業用部材
 本発明のポリシロキサン硬化物を少なくとも備えてなる本発明の光学部材の例として、本発明の光学部材を少なくとも備えてなる航空宇宙産業用部材(以下、適宜「本発明の航空宇宙産業用部材」ということがある。)について説明する。
 本発明の硬化性ポリシロキサン組成物、又はポリシロキサン硬化物は、光学部材として用いたときに、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が高く、これらの特性が要求される航空宇宙産業用材料に使用することができる。航空宇宙産業用材料としては、例えば、カーボン系ナノ材料とコンポジット化することにより静電気除電材料・導電性接着剤・ガスケット用材料・閃光防御材料・電磁遮蔽材料・タンク用材料・ロケット外材などとして使用することが出来る。
 以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明を目的とするものであって、本発明をこれらの態様に限定することを意図したものではない。
 [実施例1]
 20mLのスクリュー管に、Momentive Performance Materials製両末端シラノールジメチルシロキサンジフェニルシロキサン共重合体シリコーンオイルYF-3057を6g、信越化学製メチル/ヒドリド系シリコーンオイルKF-9901 を0.14g(Si-H/Si-OH=6)、触媒として日東化成製ネオスタンU-810(ジオクチルスズジラウレート)を0.006g仕込み、室温大気下にて30分撹拌し、反応液(硬化性ポリシロキサン化合物)を得た。反応液2gを直径5cmのポリテトラフルオロエチレン製シャーレに入れて小さな孔を開けたアルミホイルで覆って、恒温器(オーブン)中150℃にて3時間保持し、厚さ1.08mmの無色透明エラストマー状膜(ポリシロキサン硬化物)を得た。泡は直径0.5mm程度のものがひとつあったのみであり、ショアAの硬度は20であった。
 [実施例2]
 Momentive Performance Materials製両末端シラノールジメチルシロキサンジフェニルシロキサン共重合体シリコーンオイルYF-3057をYF-3807に変更し、KF-9901を0.08g(Si-H/Si-OH=4)とした以外は、実施例1の方法に従って厚さ1.09mmの無色透明エラストマー状膜を得た。泡は無く、ショアAの硬度は16であった。
 [実施例3]
 KF-9901のかわりに信越化学工業製KF-99を0.03g使用した(Si-H/Si-OH=3)、以外は、実施例1の方法に従って厚さ1.05mmの無色透明エラストマー状膜を得た。泡は無く、ショアAの硬度は20であった。
 [実施例4]
 日東化成製ネオスタンU-810(ジオクチルスズジラウレート)のかわりにSTREM製2-エチルヘキサン酸スズを使用した以外は、実施例1の方法に従って厚さ1.10mmの無色透明エラストマー状膜を得た。泡は直径0.5mm程度のものが3個あったのみでありショアAの硬度は24であった。
 [実施例5]
 日東化成製ネオスタンU-810(ジオクチルスズジラウレート)のかわりに東京化成製ジエチルヒドロキシルアミンを0.012g使用し、硬化させるときにアルミホイルに孔をあけなかった以外は、実施例1の方法に従って厚さ1.12mmの無色透明エラストマー状膜を得た。泡は無く、ショアAの硬度は20であった。
 [実施例6]
 日東化成製ネオスタンU-810(ジオクチルスズジラウレート)のかわりにAldrich製トリスペンタフルオロフェニルボランを0.0004g使用した以外は、実施例1の方法に従って厚さ1.11mmの無色透明エラストマー状膜を得た。泡は無く、ショアAの硬度は18であった。
 [実施例7]
 信越化学工業株式会社製付加型シリコーン樹脂LPS2410の主剤 3g、同硬化剤 0.3g、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製の両末端シラノールジメチルポリシロキサン YF-3057 1.39gをガラススクリュー管瓶に計量し、密栓して25℃で5分間マグネチックスターラーを用いて混合攪拌を行った。LPS-2410の主剤と硬化剤を混合した液はビニル基含有量1.19mmol、SiH基含有量1.48mmolであった。さらにYF-3057(シラノール基含有量0.0417mmol)を加えた組成物のSiH/SiOH比率は5であった。得られた組成物のうち2gを直径5cmのポリテトラフルオロエチレン製シャーレに入れ、25℃、15分間0.1kPaの条件下で真空脱泡し、小さな孔を開けたアルミホイルで覆って、恒温器(オーブン)中150℃にて2時間保持し、厚さ1.08mmの無色透明エラストマー状膜(ポリシロキサン硬化物)を得た。泡は無く、ショアAの硬度は28であった。
 [実施例8]
 信越化学工業株式会社製付加型シリコーン樹脂OE6351の主剤 1.5g、同硬化剤 1.5g、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製の両末端シラノールジメチルポリシロキサン YF-3057 2.1gをガラススクリュー管瓶に計量し、密栓して25℃で5分間マグネチックスターラーを用いて混合攪拌を行った。OE6351の主剤と硬化剤を混合した液はビニル基含有量0.828mmol、SiH基含有量1.269mmolであった。さらにYF-3057(シラノール基含有量0.0417mmol)を加えた組成物のSiH/SiOH比率は5であった。得られた組成物のうち2gを実施例7と同様の方法に従って厚さ1.10mmの無色透明エラストマー状膜を得た。泡は無く、ショアAの硬度は25であった。
 [ポリシロキサン硬化物の屈折率の測定]
 ポリシロキサン硬化物の屈折率は、膜圧約1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、Abbe屈折計(ナトリウムD線(589nm)使用)を用いて20℃にて測定した。
 [ポリシロキサン硬化物の透過率の測定]
 ポリシロキサン硬化物の透過率は、膜圧約1mmに成形した平滑な表面の単独・独立硬化物膜をサンプルとして、紫外分光光度計(例として島津製作所製 UV-3100)を使用し、200nm~800nmにおいて透過率測定を行うことによって測定した。
 [ポリシロキサン硬化物の耐UV性の測定]
 ポリシロキサン硬化物の耐UV性は、膜圧約1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、松下電工マシン&ビジョン社製UV照射装置(アイキュアANUP5204)を使用してUV照射を行った。250nm以下の光はフィルターにてカットし、サンプルから光ファイバーまでの距離をフィルター厚み込みで2mmとして照射・測定を実施した。
 その結果、実施例1~6のポリシロキサン硬化物はいずれも20h照射しても、変色や割れ等を生じなかった。
 [ポリシロキサン硬化物の耐熱性・耐水熱性の測定]
 ポリシロキサン硬化物の耐熱性・耐水熱性は、膜圧約1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、耐熱性については、200℃常湿度下にて、耐水熱性については85℃85%RH下にて500h保存し、その保存前後の重量減少率にて評価を行った。
 その結果、実施例1~6のポリシロキサン硬化物はいずれも500hの保存後、200℃下については99%以上、85℃85%RH下については99%以上の重量維持率を示し、かつ変色や割れ、大きな硬度変化等を一切生じなかった。
Figure JPOXMLDOC01-appb-T000009
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月28日出願の日本特許出願(特願2008-088316号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の硬化性ポリシロキサン組成物、及びポリシロキサン硬化物の用途は特に制限されないが、半導体分野特に半導体発光装置分野において、封止材として好適に用いることができ、例えば照明装置、画像表示装置、薄型テレビなどの液晶バックライト用光源などの広範な分野において好適に使用することが出来る。特に耐UV性に優れる特徴から、従来適切な封止材の無かった近紫外光・紫外光を発する半導体発光装置、並びにそれが適用されうる照明装置、及び画像表示装置等の各分野において、その産業上の利用可能性は極めて高い。
 さらに、近紫外・紫外光により励起される蛍光体保持用のバインダーとして使用することにより青色励起より広範な蛍光体を選択することが可能となり、高演色性、高輝度の半導体発光装置の提供が可能となる。このような紫外光励起の赤・緑・青蛍光体による白色光源は高演色性で色再現性に優れ、本発明の硬化性ポリシロキサン化合物、およびその硬化物を液晶ディスプレイのバックライト、住宅や店舗用照明、理化学用・医療用・工程検査用などの写真撮像用照明などに用いることにより、長時間連続して見つめていても眼の疲れや体の不調を起こしにくい高品質の照明を提供することができる。
 また、本発明の硬化性ポリシロキサン組成物、およびポリシロキサン硬化物は、前述の半導体発光装置の分野のみならず、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が要求される航空宇宙産業用材料や、その他の材料、例えば、熱伝導性シート、熱伝導性接着材、絶縁性熱伝導材料、アンダーフィル材、シーラント、光学用導波路構造材、導光板、導光シート、反射光制御材料、診断用マイクロフルイド材料、微生物培養媒体、ナノインプリント用材料にも適用性が高いため、航空宇宙・光学・電気電子・バイオ等の各分野において、その産業上の利用可能性は極めて高い。

Claims (19)

  1.  ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物、
    シラノール基を一分子中に2個以上含有するシロキサン化合物、及び、
    脱水素縮合反応触媒を含有し、
    下記の硬化試験において、高さの平均値が0.12cm以下の硬化物となる
    ことを特徴とする硬化性ポリシロキサン組成物。
    〔硬化試験〕
    (1)硬化性ポリシロキサン組成物2gを底面直径5cm、高さ1cmのポリテトラフルオロエチレン製容器内にて空気中で、気温150℃にて6時間静置する。
    (2)前記(1)の処理の後、前記ポリテトラフルオロエチレン製容器内を45度傾けた状態で30分間静置しても全く流動性が無い(硬化した)ことを確認する。
    (3)容器内底から前記硬化物の上面までの高さの平均値を測定する。
  2.  ヒドロシリル基を一分子中に1個以上含有し、且つ、シラノール基を一分子中に1個以上含有するシロキサン化合物、及び、
    脱水素縮合反応触媒を含有し、
    下記硬化試験において、高さの平均値が0.12cm以下の硬化物となる
    ことを特徴とする硬化性ポリシロキサン組成物。
    〔硬化試験〕
    (1)硬化性ポリシロキサン組成物2gを底面直径5cm、高さ1cmのポリテトラフルオロエチレン製容器内にて空気中で、気温150℃にて6時間静置する。
    (2)前記(1)の処理の後、前記ポリテトラフルオロエチレン製容器内を45度傾けた状態で30分間静置しても全く流動性が無い(硬化した)ことを確認する。
    (3)容器内底から前記硬化物の上面までの高さの平均値を測定する。
  3.  ヒドロシリル基を一分子中に2個以上含有するシロキサン化合物、
    シラノール基を一分子中に2個以上含有するシロキサン化合物、及び、
    脱水素縮合反応触媒を含有する
    ことを特徴とする半導体発光装置用硬化性ポリシロキサン組成物。
  4.  ヒドロシリル基を一分子中に1個以上含有し、且つ、シラノール基を一分子中に1個以上含有するシロキサン化合物、及び、
    脱水素縮合反応触媒を含有する
    ことを特徴とする半導体発光装置用硬化性ポリシロキサン組成物。
  5.  下記一般式(1)で表されるポリシロキサン化合物、下記一般式(2)で表され、かつシラノール基を一分子中に2個以上含有するポリシロキサン化合物、並びに脱水素縮合反応触媒を含むことを特徴とする硬化性ポリシロキサン組成物。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)中、R~RおよびR~Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基、およびR101112Siから選ばれる基を示す。R、R~R12は、それぞれ独立して、水素原子、アルキル基、アルケニル基およびアリル基から選ばれる基を示す。lは、2以上の整数を示す。mは、0以上の整数を示す。
    (R13SiO3/2(R1415SiO2/2(R161718SiO1/2r ・・・(2)
    一般式(2)中、R13~R18は、それぞれ独立して、水素原子、アルキル基、アルケニル基、水酸基およびアリル基から選ばれる基を示す。
    p、q、およびrは、0以上の整数を示し、p+q+r≧1である。
  6.  前記脱水素縮合反応触媒が、金属、ヒドロキシルアミン、及びホウ素からなる群から選ばれる1以上を含むことを特徴とする、請求項1~5のいずれか1項に記載の硬化性ポリシロキサン組成物。
  7.  さらに下記一般式(3)で表されるポリシロキサン化合物を含むことを特徴とする請求項1~6のいずれか1項に記載の硬化性ポリシロキサン組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、R19はアルケニル基、R20は各々同じでも異なっていても良い炭素数6以下の1価の炭化水素基又は炭素数3以下のアルコキシ基である。また、s、uは正数、t≧0、x≧0、y≧0である。
  8.  下記硬化試験において、高さの平均値が0.12cm以下の硬化物となる請求項3~7のいずれか1項に記載の硬化性ポリシロキサン組成物。
    〔硬化試験〕
    (1)硬化性ポリシロキサン組成物2gを底面直径5cm、高さ1cmのポリテトラフルオロエチレン製容器内にて空気中で、気温150℃にて6時間静置する。
    (2)前記(1)の処理の後、前記ポリテトラフルオロエチレン製容器内を45度傾けた状態で30分間静置しても全く流動性が無い(硬化した)ことを確認する。
    (3)容器内底から前記硬化物の上面までの高さの平均値を測定する。
  9.  空気中で、気温150℃にて6時間以内に硬化する請求項1~8のいずれか1項に記載の硬化性ポリシロキサン組成物。
  10.  前記硬化性ポリシロキサン組成物の温度20℃での589nmにおける屈折率が、1.42以下である請求項1~9のいずれか1項に記載の硬化性ポリシロキサン組成物。
  11.  シロキサン化合物のケイ素原子に結合した全置換基のうち、ヒドリド基とシラノール基を除く置換基の95mol%以上がメチル基である請求項1~10のいずれか1項に記載の硬化性ポリシロキサン組成物。
  12.  前記脱水素縮合反応触媒の金属成分としてPt、Pd、Pb、Sn、Zn、Fe、Ti、Zr、Biから選ばれる1以上を用いる請求項1~11のいずれか1項に記載の硬化性ポリシロキサン組成物。
  13.  請求項1~12のいずれか1項に記載の硬化性ポリシロキサン組成物を硬化させて得られるポリシロキサン硬化物。
  14.  デュロメータタイプAによる硬度測定値(ショアA)が5以上90以下であり、かつ膜厚1mmとした時の400nm以上800nm以下の全ての波長における光透過率が、80%以上である請求項13に記載のポリシロキサン硬化物。
  15.  請求項13又は14に記載のポリシロキサン硬化物を含む光学部材。
  16.  請求項13又は14に記載のポリシロキサン硬化物を含む航空宇宙産業用部材。
  17.  請求項15に記載の光学部材を備えた半導体発光装置。
  18.  請求項17に記載の半導体発光装置を備えた照明装置。
  19.  請求項18に記載の半導体発光装置を備えた画像表示装置。
PCT/JP2009/056379 2008-03-28 2009-03-27 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置 WO2009119841A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/935,116 US8629222B2 (en) 2008-03-28 2009-03-27 Curable polysiloxane composition, and polysiloxane cured product, optical member, member for aerospace industry, semiconductor light-emitting device, illuminating device and image display device using the same
EP09726172A EP2270100A4 (en) 2008-03-28 2009-03-27 CURABLE POLYSILOXANE COMPOSITION, AND POLYSILOXANE CURED PRODUCT, OPTICAL ELEMENT, AEROSPACE ELEMENT, SEMICONDUCTOR LIGHT EMITTING DEVICE, ILLUMINATION SYSTEM, AND IMAGE DISPLAY DEVICE USING THE CURABLE POLYSILOXANE COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008088316 2008-03-28
JP2008-088316 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119841A1 true WO2009119841A1 (ja) 2009-10-01

Family

ID=41114026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056379 WO2009119841A1 (ja) 2008-03-28 2009-03-27 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置

Country Status (4)

Country Link
US (1) US8629222B2 (ja)
EP (1) EP2270100A4 (ja)
JP (1) JP5552748B2 (ja)
WO (1) WO2009119841A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021542A1 (en) * 2010-07-22 2012-01-26 Advanced Optoelectronic Technology, Inc. Method of packaging light emitting device
JP2012046714A (ja) * 2010-07-30 2012-03-08 Mitsubishi Chemicals Corp 半導体発光装置用樹脂組成物
WO2012058798A1 (en) * 2010-11-02 2012-05-10 Henkel China Co. Ltd. Hydrosilicone resin and preparation process thereof
US20120181482A1 (en) * 2009-09-16 2012-07-19 Dalian Luminglight Co., Ltd. Light-conversion flexible polymer material and use thereof

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698184B2 (en) 2011-01-21 2014-04-15 Cree, Inc. Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature
US9443903B2 (en) 2006-06-30 2016-09-13 Cree, Inc. Low temperature high strength metal stack for die attachment
WO2011065322A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法
WO2011065321A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法
JP5545246B2 (ja) * 2010-03-30 2014-07-09 信越化学工業株式会社 樹脂組成物及び発光半導体素子用リフレクター、及び発光半導体装置
KR101342287B1 (ko) * 2010-04-28 2013-12-16 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 장치용 패키지 및 발광 장치
JP2011238811A (ja) * 2010-05-12 2011-11-24 Konica Minolta Opto Inc 波長変換素子および発光装置
JP2012021131A (ja) * 2010-06-18 2012-02-02 Mitsubishi Chemicals Corp 半導体発光デバイス部材用2液型硬化性ポリオルガノシロキサン組成物、該組成物を硬化させてなるポリオルガノシロキサン硬化物及びその製造方法
US8835199B2 (en) * 2010-07-28 2014-09-16 GE Lighting Solutions, LLC Phosphor suspended in silicone, molded/formed and used in a remote phosphor configuration
CN104576899A (zh) * 2010-08-17 2015-04-29 柯尼卡美能达先进多层薄膜株式会社 发光装置的制造方法
JP2012089750A (ja) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd 半導体封止充てん用熱硬化性樹脂組成物及び半導体装置
KR101719636B1 (ko) 2011-01-28 2017-04-05 삼성전자 주식회사 반도체 장치 및 그 제조 방법
US8754440B2 (en) * 2011-03-22 2014-06-17 Tsmc Solid State Lighting Ltd. Light-emitting diode (LED) package systems and methods of making the same
US8604684B2 (en) 2011-05-16 2013-12-10 Cree, Inc. UV stable optical element and LED lamp using same
KR101738602B1 (ko) * 2011-10-17 2017-06-08 신에쓰 가가꾸 고교 가부시끼가이샤 축합반응 경화형 실리콘 박리 코팅 조성물
CA2855120A1 (en) 2011-11-10 2013-05-16 Momentive Performance Materials Inc. Moisture curable organopolysiloxane composition
WO2013070227A1 (en) 2011-11-10 2013-05-16 Momentive Performance Materials Inc. Moisture curable composition of a polymer having silyl groups
WO2013090127A1 (en) 2011-12-15 2013-06-20 Momentive Performance Materials, Inc. Moisture curable organopolysiloxane compositions
KR20140113948A (ko) 2011-12-15 2014-09-25 모멘티브 퍼포먼스 머티리얼즈 인크. 수분 경화성 오가노폴리실록산 조성물
EP2797692A4 (en) 2011-12-29 2015-08-19 Momentive Performance Mat Inc MOISTURE-HARDENABLE ORGANOPOLYSILOXANE COMPOSITION
US9006357B2 (en) * 2011-12-29 2015-04-14 3M Innovative Properties Company Curable polysiloxane composition
EP2797985B1 (en) * 2011-12-29 2015-09-23 3M Innovative Properties Company Curable-on-demand polysiloxane coating composition
WO2013116086A1 (en) * 2012-01-30 2013-08-08 Cree, Inc. Low temperature high strength metal stack for die attachment
JP5583710B2 (ja) 2012-03-22 2014-09-03 信越化学工業株式会社 新規オルガノポリシロキサン、これを含む化粧料及びオルガノポリシロキサンの製造方法
KR20130109759A (ko) * 2012-03-28 2013-10-08 삼성전자주식회사 발광소자 패키지
KR101570753B1 (ko) * 2012-06-05 2015-11-20 다우 코닝 (차이나) 홀딩 코포레이션., 엘티디. 전력 컨버터에서 사용하기 위한 연성 점착성 겔
JP5859421B2 (ja) * 2012-06-05 2016-02-10 信越化学工業株式会社 光半導体封止用硬化性組成物及びこれを用いた光半導体装置
US8822593B2 (en) * 2012-06-22 2014-09-02 Shin-Etsu Chemical Co., Ltd. Curable resin composition, hardened material thereof, and optical semiconductor apparatus
JP6003402B2 (ja) * 2012-08-28 2016-10-05 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置
TWI460265B (zh) * 2012-11-12 2014-11-11 Ritedia Corp 導熱複合材料及其衍生之發光二極體
US9570661B2 (en) 2013-01-10 2017-02-14 Cree, Inc. Protective coating for LED lamp
TW201434882A (zh) 2013-03-13 2014-09-16 Momentive Performance Mat Inc 可濕氣固化之有機聚矽氧烷組成物
US9657922B2 (en) 2013-03-15 2017-05-23 Cree, Inc. Electrically insulative coatings for LED lamp and elements
SG11201508122UA (en) 2013-04-01 2015-10-29 Rensselaer Polytech Inst Organic phosphor-functionalized nanoparticles and compositions comprising the same
WO2014183029A2 (en) 2013-05-10 2014-11-13 Momentive Performance Materials Inc. Non-metal catalyzed room temperature moisture curable organopolysiloxane compositions
EP3022779B1 (en) * 2013-07-19 2020-03-18 Lumileds Holding B.V. Pc led with optical element and without substrate carrier
US10174169B2 (en) 2013-11-26 2019-01-08 Momentive Performance Materials Inc. Moisture curable compound with metal-arene complexes
EP3090008A4 (en) 2013-12-31 2017-10-18 3M Innovative Properties Company Curable organosiloxane oligomer compositions
JP5924633B2 (ja) * 2014-03-10 2016-05-25 国立大学法人京都大学 表面修飾基材の製造方法、接合体の製造方法、新規ヒドロシラン化合物および表面修飾基材
KR20170037954A (ko) * 2014-07-28 2017-04-05 스미또모 가가꾸 가부시키가이샤 실리콘계 밀봉재 조성물 및 반도체 발광 장치
WO2016060223A1 (ja) * 2014-10-16 2016-04-21 住友大阪セメント株式会社 表面修飾金属酸化物粒子分散液及びその製造方法、表面修飾金属酸化物粒子-シリコーン樹脂複合組成物、表面修飾金属酸化物粒子-シリコーン樹脂複合体、光学部材、及び発光装置
WO2016120953A1 (ja) 2015-01-26 2016-08-04 セントラル硝子株式会社 半導体封止用硬化性樹脂組成物およびその硬化物、並びにこれらを用いた半導体装置
WO2016137881A1 (en) 2015-02-23 2016-09-01 King Industries Curable coating compositions of silane functional polymers
KR102411541B1 (ko) * 2015-08-07 2022-06-22 삼성디스플레이 주식회사 고분자 필름 형성용 조성물, 이로부터 제조된 고분자 필름 및 상기 고분자 필름을 포함한 전자 소자
FI129889B (en) * 2015-10-09 2022-10-31 Inkron Ltd Dielectric siloxane particle films and devices containing them
TWI552412B (zh) * 2015-12-28 2016-10-01 財團法人工業技術研究院 有機發光裝置
JP2019514201A (ja) * 2016-04-18 2019-05-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 光電子部品の製造方法、および光電子部品
JP6672991B2 (ja) * 2016-04-25 2020-03-25 信越化学工業株式会社 縮合硬化性樹脂組成物及び半導体装置
DE102016115907A1 (de) * 2016-08-26 2018-03-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
KR20190041020A (ko) * 2016-09-07 2019-04-19 스미또모 가가꾸 가부시키가이샤 파장 변환 시트, 적층체 및 발광 장치, 및, 파장 변환 시트의 제조 방법
JP6873654B2 (ja) * 2016-10-19 2021-05-19 Mcppイノベーション合同会社 硬化性ポリシロキサン組成物、該硬化性ポリシロキサン組成物を含む半導体発光装置用封止材及び、該封止材の硬化物を備えた半導体発光装置
JP6775429B2 (ja) * 2017-01-16 2020-10-28 日本特殊陶業株式会社 波長変換部材の製造方法
JP6378379B2 (ja) * 2017-02-24 2018-08-22 ダウ シリコーンズ コーポレーション 電力変換装置で使用するための軟質粘着性ゲル
KR20230117645A (ko) 2017-04-26 2023-08-08 오티아이 루미오닉스 인크. 표면의 코팅을 패턴화하는 방법 및 패턴화된 코팅을포함하는 장치
US10875813B2 (en) 2017-07-17 2020-12-29 Northrop Grumman Innovation Systems, Inc. Preceramic resin formulations, impregnated fibers comprising the preceramic resin formulations, and related methods
US10731036B2 (en) * 2017-07-17 2020-08-04 Northrop Grumman Innovation Systems, Inc. Preceramic resin formulations, ceramic materials comprising the preceramic resin formulations,and related articles and methods
JP2019176023A (ja) * 2018-03-28 2019-10-10 京セラ株式会社 半導体封止用樹脂組成物及び半導体装置
CN112041376B (zh) * 2018-04-16 2023-04-04 信越化学工业株式会社 有机el用透明干燥剂及其使用方法
US10662310B2 (en) * 2018-04-24 2020-05-26 Osram Opto Semiconductors Gmbh Optoelectronic component having a conversation element with a high refractive index
US10870757B2 (en) 2018-07-25 2020-12-22 Northrop Grumman Innovation Systems, Inc. Insulation, insulation precursors, and rocket motors, and related methods
US11472750B2 (en) 2018-08-27 2022-10-18 Northrop Grumman Systems Corporation Barrier coating resin formulations, and related methods
MX2021009425A (es) 2019-02-13 2021-09-10 Dow Global Technologies Llc Formulacion de poliolefina curable por humedad.
JPWO2020241368A1 (ja) * 2019-05-31 2020-12-03
CN114008140B (zh) * 2019-05-31 2023-11-07 陶氏东丽株式会社 固化性聚有机硅氧烷组合物以及由该固化性聚有机硅氧烷组合物的固化物形成的光学构件
US11685817B2 (en) 2019-06-04 2023-06-27 Dow Silicones Corporation Bridged frustrated Lewis pairs as thermal trigger for reactions between Si-H and epoxide

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231987A (ja) 1989-12-26 1991-10-15 Kasei Optonix Co Ltd 螢光体及びその製造方法
JPH0525300A (ja) 1991-07-22 1993-02-02 Sekisui Fine Chem Kk 表面が改質されたプラスチツク微粒子及びその製造方法
JPH0586188A (ja) * 1991-09-30 1993-04-06 Kanegafuchi Chem Ind Co Ltd ケイ素系ハイブリツド材料
JPH0649249A (ja) * 1991-08-09 1994-02-22 Shin Etsu Chem Co Ltd 表面特性を改良したシール及びシールの表面特性の改良方法
JPH06200163A (ja) * 1992-12-28 1994-07-19 Toray Dow Corning Silicone Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH0748544A (ja) * 1993-08-06 1995-02-21 Toshiba Silicone Co Ltd 表面処理用組成物及びゴムの表面処理方法
JPH07126530A (ja) * 1993-09-10 1995-05-16 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物及びゴム部品
JPH08259818A (ja) * 1995-03-24 1996-10-08 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物及びゴム部品
JPH08269331A (ja) * 1995-04-03 1996-10-15 Shin Etsu Chem Co Ltd シリコーンゲル組成物及びポッティング材
JPH0977978A (ja) * 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd 硬化性シリコーンエラストマー組成物及びその製造方法
JPH11222524A (ja) * 1997-11-18 1999-08-17 Shin Etsu Chem Co Ltd ヒドロシリル化反応触媒及びこれを用いたシリコーン組成物
JP2000026732A (ja) * 1998-07-10 2000-01-25 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2000096045A (ja) 1998-09-18 2000-04-04 Kasei Optonix Co Ltd 電界放出型ディスプレイ用蛍光膜及びこれを用いた電界 放出型ディスプレイ装置
JP2002223008A (ja) 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv 発光素子
JP2002322285A (ja) * 2001-04-26 2002-11-08 Dow Corning Toray Silicone Co Ltd 硬化性シリコーン組成物の水性エマルジョンの製造方法、その製造装置および硬化シリコーン粒状物の懸濁液の製造方法
JP2003128922A (ja) 2001-10-19 2003-05-08 Dow Corning Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004221308A (ja) 2003-01-15 2004-08-05 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2005179541A (ja) * 2003-12-19 2005-07-07 Dow Corning Toray Silicone Co Ltd 付加反応硬化型オルガノポリシロキサン樹脂組成物
JP2006077234A (ja) 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Led素子封止用樹脂組成物および該組成物を硬化してなる硬化物
WO2006090804A1 (ja) 2005-02-23 2006-08-31 Mitsubishi Chemical Corporation 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2006291018A (ja) 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP2006294821A (ja) 2005-04-08 2006-10-26 Nichia Chem Ind Ltd 耐熱性及び耐光性に優れる発光装置
JP2006316264A (ja) 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP3909826B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP2008088316A (ja) 2006-10-03 2008-04-17 Kyoto Univ Ta酸化物を主体とする蛍光体及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923705A (en) 1974-10-30 1975-12-02 Dow Corning Method of preparing fire retardant siloxane foams and foams prepared therefrom
GB2065661B (en) * 1979-12-17 1984-02-15 Gen Electric Silicone foam compositions with burn resistant properties
JPH0764944A (ja) 1993-08-30 1995-03-10 Fuji Xerox Co Ltd ニューラルネットワークの学習方法
US5506302A (en) 1993-09-10 1996-04-09 Shin-Etsu Chemical Co., Inc. Organopolysiloxane composition and rubber substrate having a coating thereof
US6140446A (en) 1997-11-18 2000-10-31 Shin-Etsu Chemical Co., Ltd. Hydrosilylation catalysts and silicone compositions using the same
JP2006500432A (ja) 2002-04-18 2006-01-05 ロディア・シミ 金属触媒の存在下で脱水素縮合により架橋可能なシリコーン組成物
FR2853321B1 (fr) 2003-04-03 2005-05-06 Rhodia Chimie Sa Composition reticulable pour electrolyte de batterie
FR2856690B1 (fr) * 2003-06-30 2005-09-16 Rhodia Chimie Sa Composition silicone reticulable par desydrogenocondensation en presence d'un catalyseur metallique
JP4803339B2 (ja) * 2003-11-20 2011-10-26 信越化学工業株式会社 エポキシ・シリコーン混成樹脂組成物及び発光半導体装置
US20060035092A1 (en) * 2004-08-10 2006-02-16 Shin-Etsu Chemical Co., Ltd. Resin composition for sealing LED elements and cured product generated by curing the composition
EP1820824B1 (en) 2006-02-20 2008-08-13 Shin-Etsu Chemical Co., Ltd. Heat curable silicone composition

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231987A (ja) 1989-12-26 1991-10-15 Kasei Optonix Co Ltd 螢光体及びその製造方法
JPH0525300A (ja) 1991-07-22 1993-02-02 Sekisui Fine Chem Kk 表面が改質されたプラスチツク微粒子及びその製造方法
JPH0649249A (ja) * 1991-08-09 1994-02-22 Shin Etsu Chem Co Ltd 表面特性を改良したシール及びシールの表面特性の改良方法
JPH0586188A (ja) * 1991-09-30 1993-04-06 Kanegafuchi Chem Ind Co Ltd ケイ素系ハイブリツド材料
JPH06200163A (ja) * 1992-12-28 1994-07-19 Toray Dow Corning Silicone Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH0748544A (ja) * 1993-08-06 1995-02-21 Toshiba Silicone Co Ltd 表面処理用組成物及びゴムの表面処理方法
JPH07126530A (ja) * 1993-09-10 1995-05-16 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物及びゴム部品
JPH08259818A (ja) * 1995-03-24 1996-10-08 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物及びゴム部品
JPH08269331A (ja) * 1995-04-03 1996-10-15 Shin Etsu Chem Co Ltd シリコーンゲル組成物及びポッティング材
JP3277749B2 (ja) 1995-04-03 2002-04-22 信越化学工業株式会社 シリコーンゲル組成物及びポッティング材
JPH0977978A (ja) * 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd 硬化性シリコーンエラストマー組成物及びその製造方法
JPH11222524A (ja) * 1997-11-18 1999-08-17 Shin Etsu Chem Co Ltd ヒドロシリル化反応触媒及びこれを用いたシリコーン組成物
JP2000026732A (ja) * 1998-07-10 2000-01-25 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2000096045A (ja) 1998-09-18 2000-04-04 Kasei Optonix Co Ltd 電界放出型ディスプレイ用蛍光膜及びこれを用いた電界 放出型ディスプレイ装置
JP2002223008A (ja) 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv 発光素子
JP3909826B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP2002322285A (ja) * 2001-04-26 2002-11-08 Dow Corning Toray Silicone Co Ltd 硬化性シリコーン組成物の水性エマルジョンの製造方法、その製造装置および硬化シリコーン粒状物の懸濁液の製造方法
JP2003128922A (ja) 2001-10-19 2003-05-08 Dow Corning Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004221308A (ja) 2003-01-15 2004-08-05 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2005179541A (ja) * 2003-12-19 2005-07-07 Dow Corning Toray Silicone Co Ltd 付加反応硬化型オルガノポリシロキサン樹脂組成物
JP2006077234A (ja) 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Led素子封止用樹脂組成物および該組成物を硬化してなる硬化物
WO2006090804A1 (ja) 2005-02-23 2006-08-31 Mitsubishi Chemical Corporation 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2006291018A (ja) 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP2006294821A (ja) 2005-04-08 2006-10-26 Nichia Chem Ind Ltd 耐熱性及び耐光性に優れる発光装置
JP2006316264A (ja) 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2008088316A (ja) 2006-10-03 2008-04-17 Kyoto Univ Ta酸化物を主体とする蛍光体及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HYOMEN KAGAKU, vol. 18, no. 9, pages 21 - 26
NORIHIRO INAGAKI, HYOMCN KAGAKU, vol. 19, no. 2, 1998, pages 44 - 51
NORIHIRO INAGAKI, HYOMEN KAGAKU, vol. 19, no. 2, 1998, pages 44 - 51
See also references of EP2270100A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181482A1 (en) * 2009-09-16 2012-07-19 Dalian Luminglight Co., Ltd. Light-conversion flexible polymer material and use thereof
US9068077B2 (en) * 2009-09-16 2015-06-30 Dalian Luminglight Co., Ltd. Light-conversion flexible polymer material and use thereof
US20120021542A1 (en) * 2010-07-22 2012-01-26 Advanced Optoelectronic Technology, Inc. Method of packaging light emitting device
JP2012046714A (ja) * 2010-07-30 2012-03-08 Mitsubishi Chemicals Corp 半導体発光装置用樹脂組成物
WO2012058798A1 (en) * 2010-11-02 2012-05-10 Henkel China Co. Ltd. Hydrosilicone resin and preparation process thereof

Also Published As

Publication number Publication date
US20110098420A1 (en) 2011-04-28
JP2009256670A (ja) 2009-11-05
US8629222B2 (en) 2014-01-14
JP5552748B2 (ja) 2014-07-16
EP2270100A1 (en) 2011-01-05
EP2270100A4 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5552748B2 (ja) 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置
JP6213585B2 (ja) 半導体デバイス用部材、及び半導体発光デバイス
JP5742916B2 (ja) シリコーン系半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5761397B2 (ja) 半導体発光デバイス用部材形成液、半導体発光デバイス用部材、航空宇宙産業用部材、半導体発光デバイス、及び蛍光体組成物
JP4882413B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007116139A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2010100743A (ja) 蛍光体含有組成物の製造方法
JP4876626B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5446078B2 (ja) 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
JP2009102514A (ja) 蛍光体含有組成物の製造方法、及び半導体発光デバイスの製造方法
JP2009224754A (ja) 半導体発光装置、照明装置、及び画像表示装置
JP2010100733A (ja) 蛍光体含有組成物の製造方法
JP4119940B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009179677A (ja) 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材
JP4119938B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5694875B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2008276175A (ja) 光学部材、光導波路および導光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009726172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12935116

Country of ref document: US