WO2009119249A1 - 有機エレクトロルミネッセント素子 - Google Patents

有機エレクトロルミネッセント素子 Download PDF

Info

Publication number
WO2009119249A1
WO2009119249A1 PCT/JP2009/053716 JP2009053716W WO2009119249A1 WO 2009119249 A1 WO2009119249 A1 WO 2009119249A1 JP 2009053716 W JP2009053716 W JP 2009053716W WO 2009119249 A1 WO2009119249 A1 WO 2009119249A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hole injection
injection layer
hole
organic
Prior art date
Application number
PCT/JP2009/053716
Other languages
English (en)
French (fr)
Inventor
敬之 福松
郁美 市橋
宮崎 浩
小田 敦
Original Assignee
新日鐵化学株式会社
財団法人山形県産業技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社, 財団法人山形県産業技術振興機構 filed Critical 新日鐵化学株式会社
Priority to US12/922,635 priority Critical patent/US8847367B2/en
Priority to KR1020107024067A priority patent/KR101528490B1/ko
Priority to EP09725501.2A priority patent/EP2276085B1/en
Priority to CN200980108794.0A priority patent/CN101990718B/zh
Priority to JP2010505474A priority patent/JP5123375B2/ja
Publication of WO2009119249A1 publication Critical patent/WO2009119249A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to an organic electroluminescent element (hereinafter sometimes abbreviated as an organic EL element or an element) used for a planar light source or a display element.
  • an organic electroluminescent element hereinafter sometimes abbreviated as an organic EL element or an element
  • Organic EL elements have been actively developed from the viewpoint of application to displays and lighting.
  • the driving principle of the organic EL element is as follows. That is, holes and electrons are injected from the anode and the cathode, respectively, and these are transported through the organic thin film, recombined in the light emitting layer to generate an excited state, and light emission can be obtained from this excited state.
  • the movement of carriers in the organic EL element is limited by the energy barrier between the electrode and the organic thin film and the low carrier mobility in the organic thin film, there is a limit to improving the light emission efficiency.
  • Patent Document 1 discloses that by using a phthalocyanine-based metal complex as a hole injection layer, it is possible to reduce the voltage of the device and improve the driving stability. Since it has absorption in the visible light region, there has been a problem that luminous efficiency is lowered. In addition, there is a problem that it is difficult to adjust the chromaticity of color development.
  • Patent Document 2 discloses an organic EL element in which an np organic layer adjacent to an anode and an np junction layer including a p-type organic layer provided on the n-type organic layer are arranged.
  • the difference between the LUMO energy level of the n-type organic layer and the Fermi energy level of the anode is 2.0 eV or less
  • the difference between the LUMO energy level of the n-type organic layer and the HOMO energy level of the p-type organic layer is 1.
  • An organic electroluminescent element that is 0 eV or less is disclosed.
  • the n-type organic layer can be read as a hole injection layer.
  • a p-type organic layer can be read as a positive hole transport layer or a light emitting layer.
  • Patent Document 2 discloses 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), fluorine as an electron-donating compound used for the n-type organic layer.
  • Substituted 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), cyano-substituted PTCDA, naphthalenetetracarboxylic dianhydride (NTCDA), fluorine-substituted NTCDA, cyano-substituted NTCDA, or hexa Nitrile hexaazatriphenylene (HAT) is disclosed.
  • the present invention is to provide a high-quality organic EL element that has high luminous efficiency even at a low voltage, and has little change with time during continuous driving.
  • the present invention relates to a hole injection material for an organic electroluminescent device comprising a carboxylic acid derivative represented by the following general formula (1).
  • X represents O or N—R
  • R represents H or a monovalent substituent.
  • the present invention also includes a carboxylic acid derivative represented by the above general formula (1) in an organic electroluminescent device having at least one light emitting layer and a hole injection layer between an anode and a cathode facing each other.
  • the present invention relates to an organic electroluminescent device having a hole injection layer.
  • the present invention contains a hole transporting material having an ionization potential (IP) of 6.0 eV or less in at least one of the hole injection layer and the layer adjacent to the hole injection layer.
  • IP ionization potential
  • the layer adjacent to the hole injection layer may be a hole transport layer or a light emitting layer.
  • the hole transport material having an IP of 6.0 eV or less is preferably an arylamine hole transport material.
  • the hole injection material for organic EL elements of the present invention is a carboxylic acid derivative represented by the above general formula (1).
  • the organic EL device of the present invention has at least one light emitting layer and a hole injection layer between an opposing anode and cathode, and contains a carboxylic acid derivative represented by the above general formula (1). It has a hole injection layer.
  • X represents O or N—R.
  • R represents hydrogen or a monovalent substituent bonded to a nitrogen atom, and preferred substituents are exemplified below.
  • substituents may be further substituted with the above-mentioned substituents or halogen.
  • substituents or halogen For example, an aryl group, an aromatic heterocyclic group, or a heterocyclic group may be further substituted with an alkyl group, halogen, or the like.
  • the substituent is used for calculating the carbon number. Include the carbon number of the substituent to be substituted.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • Preferred X is NR in which R is the above substituent in addition to O and NH. More preferable X is O, NH or NR in which R is the following substituent.
  • This R is an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aromatic heterocyclic group having 5 to 10 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
  • the cycloalkyl group, aryl group or aromatic heterocyclic group may be substituted with an alkyl group having 1 to 6 carbon atoms or halogen.
  • the hole injection layer of the organic EL device of the present invention contains a material containing at least one compound selected from the compounds represented by the general formula (1).
  • This hole injection layer may be formed from only the compound of the general formula (1) or a mixture thereof, or may be mixed with other hole injection materials.
  • the compound represented by the general formula (1) may be used in an amount of 0.1 wt% or more, preferably 1 wt% or more, but 50 wt% in order to fully exhibit the effects of the present invention. % Or more, more preferably 80 wt% or more.
  • the hole injection layer referred to in the present invention is a layer disposed on the anode side with respect to the light emitting layer, and includes a hole injection material or a hole injection material and a hole transport material as main active components, and contains holes.
  • a layer having a function of injecting. Therefore, the hole injection layer can contain a hole transporting material in addition to the hole injection material.
  • a hole transporting material it may be referred to as a hole injecting and transporting layer, but is understood as a form of the hole injecting layer herein.
  • the hole injection material as used in the field of this invention means the material used for the said hole injection layer.
  • the hole transporting material is preferably a hole transporting material having an ionization potential (IP) of 6.0 eV or less.
  • IP ionization potential
  • an arylamine hole transporting material is preferably exemplified.
  • the layer adjacent to the hole injection layer is preferably a hole transport layer or a light emitting layer. In the case of a light emitting layer, the hole transport layer is omitted.
  • the hole injecting layer contains a hole transporting material
  • the ratio of the hole injecting material to the hole transporting material can vary widely, but the weight ratio is 1: 9 to 9: 1, preferably 3 : 7 to 7: 3 is preferable.
  • the hole injection layer may contain the compound represented by the general formula (1) in an amount of 0.1 wt% or more, preferably 1 wt% or more. Therefore, it is preferable to use 10 wt% or more, more preferably 30 wt% or more.
  • 1 and 2 are schematic cross-sectional views showing an example of the organic EL element of the present invention.
  • FIG. 1 shows a basic configuration example of the organic EL element of the present invention. Consists of an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 on a substrate 1. When contained in at least one of the injection layer and the light emitting layer, the hole transport layer may be omitted. When the electron transporting material is contained in at least one of the light emitting layer and the electron injection layer, the electron transport layer may be omitted. Moreover, you may provide another layer as needed. Examples of other layers include, but are not limited to, an electron blocking layer and a hole blocking layer.
  • the organic EL device of the present invention has a hole injection layer and one or more light emitting layers as essential layers.
  • the light emitting layer may be a single layer or a light emitting layer having a multilayer structure in which a plurality of light emitting layers are stacked.
  • FIG. 2 shows another embodiment of the organic EL device of the present invention.
  • FIG. 2 shows an example of an element configuration in which the basic element configuration of FIG. 1 is stacked in a tandem type.
  • An anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 are stacked on the substrate 1.
  • a plurality of units in which the electron injection layer 7 is laminated are laminated between both electrodes. The number of stacked units can be changed as required. Further, a metal thin film may be sandwiched between the adjacent electron injection layer and hole injection layer. The details of each layer are the same as the basic configuration of FIG.
  • the element configuration of the present invention may be a single-layer structure of the basic element configuration shown in FIG.
  • a multilayer structure there are a plurality of hole injection layers, and at least one, preferably all of the hole injection layers, is a hole injection layer containing the compound of the general formula (1).
  • the device performance is improved regardless of whether it is a single layer structure or a multilayer structure. The effect is great when applied to a multilayer structure.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet is used.
  • a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also one of preferable methods.
  • Anode 2 is provided on the substrate 1.
  • This anode is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum or the like, an oxide of indium and / or tin, an oxide of zinc and / or tin, an oxide of tungsten and / or tin. It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode is often formed by a sputtering method, a vacuum deposition method, or the like.
  • anode can also be formed by coating.
  • a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode can be formed by stacking different materials.
  • the thickness of the anode 2 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the film thickness of the anode 2 is usually 1 to 1000 nm, preferably 10 to 500 nm. If it is possible to be opaque, the anode may be the same as the substrate. Further, it is possible to laminate different conductive materials on the anode.
  • the hole injection layer 3 is provided on the anode 2.
  • a material containing at least one compound selected from the compounds represented by the general formula (1) is used for the hole injection layer.
  • This hole injection layer may be formed from only the compound of the general formula (1) or a mixture thereof, or may be mixed with other hole injection materials. Further, as described above, the hole injection layer 3 can also contain a hole transport material.
  • the compounding quantity of the compound represented by General formula (1) is as above-mentioned, when using this compound with an n-type material and using it as a dopant, even if it is 0.1 wt% or more, it is constant. However, when mixed with other hole injection materials, 50 wt% or more is preferable in order to sufficiently exhibit the effects of the present invention.
  • hole injection materials include phthalocyanine compounds such as copper phthalocyanine, organic compounds such as polyaniline and polythiophene, and metal oxides such as vanadium oxide, ruthenium oxide, and molybdenum oxide.
  • the hole injection layer can be formed by thinning the hole injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the film thickness of the hole injection layer is 30 nm or less, preferably 20 nm or less, when formed only from the compound of the general formula (1). More preferably, it is 5 to 15 nm. If the thickness is greater than this, the organic EL element will be increased in voltage and efficiency due to a decrease in hole injection characteristics, and consequently drive stability will be decreased. In the case where the hole injection layer is formed from a mixed layer of the compound of the general formula (1) and another hole injection material, it is usually 1 to 300 nm, preferably 5 to 100 nm.
  • a hole transporting material can be contained in the hole injection layer, but also in this case, the film thickness is usually 1 to 300 nm, preferably 5 to 100 nm.
  • the film thickness is usually 1 to 300 nm, preferably 5 to 100 nm.
  • the hole transport layer 4 is provided on the hole injection layer 3.
  • the hole transport layer plays a role of efficiently transporting holes from the anode to the light emitting layer.
  • the hole transporting material contained in the hole transporting layer is not particularly limited as long as it is a compound having hole transporting properties, but is preferably a compound having an IP of 6.0 eV or less, more preferably 5. 8 eV or less. If it is larger than this range, the hole transfer from the hole injection layer to the hole transport layer cannot be performed smoothly, which leads to higher voltage and lower efficiency of the organic EL device, and hence lower driving stability.
  • triazole derivatives As hole transport materials, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, Examples thereof include fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • arylamine-based hole transporting material shown below.
  • arylamine hole transporting material examples include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′-bis (3 -Methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4- Di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phen
  • the film thickness of the hole transport layer is usually 1 to 300 nm, preferably 5 to 100 nm, and a thin film is formed on the hole injection layer by the same method as the hole injection layer.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the light-emitting layer 5 is provided on the hole transport layer 4.
  • the light emitting layer has a function of recombining holes and electrons to emit light.
  • the emissive light emitting layer may be formed from a single light emitting layer, or may be formed by laminating a plurality of light emitting layers adjacent to each other.
  • the light emitting layer is composed of a host material and a fluorescent light emitting material or a phosphorescent light emitting material, and any material conventionally used for forming these layers can be used. In the case where the light emitting layer contains a hole transporting material, the hole transporting layer may not be provided between the hole injection layer and the light emitting layer.
  • Host materials include fused ring derivatives such as anthracene and pyrene, which have been known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives and distyrylbenzene derivatives.
  • Bisstyryl derivatives tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, in polymer systems, polyphenylene vinylene derivatives, polyparaphenylene Derivatives, polythiophene derivatives and the like can be used.
  • condensed ring derivatives such as perylene and rubrene, quinacridone derivatives, phenoxazone 660, DCM1, perinone, coumarin derivatives, pyromethene (diazaindacene) derivatives, cyanine dyes and the like can be used.
  • a material containing an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold is preferable.
  • Preferred phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as Ir (bt) 2 ⁇ acac3, and complexes such as PtOEt3.
  • the film thickness of the emissive layer is usually 1 to 300 nm, preferably 5 to 100 nm, and a thin film is formed on the hole transport layer by the same method as the hole injection layer. It is also preferable to sequentially stack a plurality of light emitting layer materials to form a light emitting layer having a multilayer structure, but the thickness of the light emitting layer in this case is also preferably in the above range.
  • Electron transport layer Although the electron transport layer 6 is provided on the light emitting layer 5, when an electron transport material is contained in a light emitting layer, it is not necessary to provide.
  • the electron transport layer is formed of a compound that can efficiently transport electrons injected from the cathode between electrodes to which an electric field is applied in the direction of the light emitting layer.
  • the electron transporting compound used for the electron transporting layer needs to be a compound that has high electron transport efficiency from the cathode and that can efficiently transport injected electrons with high electron mobility. is there.
  • Examples of the electron transport material satisfying such conditions include metal complexes such as Alq3, metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3- or 5-hydroxyflavones.
  • Metal complex such as Alq3, metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3- or 5-hydroxyflavones.
  • Examples thereof include silicon carbide, n-type zinc sulfide, and n-type zinc selenide.
  • the film thickness of the electron transport layer is usually 1 to 300 nm, preferably 5 to 100 nm, and a thin film is formed on the light emitting layer by the same method as the hole injection layer.
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • Electron Injection Layer Furthermore, providing the electron injection layer 7 on the electron transport layer 6 is also an effective method for improving the efficiency of the device.
  • the electron injection layer plays a role of injecting electrons into the light emitting layer.
  • Specific examples of the electron injection material include alkali metal salts such as LiF, MgF 2 , and Li 2 O, alkaline earth metal salts, alkali metal oxides, alkaline earth metal salts, alkali metal complexes such as Liq, and Li, Cs , Alkali metals such as Ca, alkaline earth metals and the like.
  • the film thickness of the electron injection layer is usually 0.1 to 300 nm, preferably 0.5 to 50 nm, and a thin film is formed on the light emitting layer or the electron transport layer by the same method as the hole injection layer.
  • the electron injection layer may be formed of only the above material alone, or a layer in which the electron injection material and the electron transport layer material are mixed at an arbitrary ratio. In this case, either the electron injection layer or the electron transport may be omitted.
  • the cathode 8 plays a role of injecting electrons into the electron injection layer.
  • the material used as the cathode can be the material used for the anode, but a metal having a low work function is preferable for efficient electron injection, such as tin, magnesium, indium, calcium, aluminum, A suitable metal such as lithium or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • the film thickness of the cathode is usually 1 to 1000 nm, preferably 10 to 500 nm, and a thin film is formed on the electron injection layer or the light emitting unit by the same method as the hole injection layer.
  • This cathode may have a single layer structure composed of one or more of the above materials.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, it is possible to produce a device in which both the anode and the cathode are transparent.
  • each layer can be formed as described above.
  • the hole injection layer 3 to the electron injection layer 7 are sequentially provided in the shape of the anode 2 to form the first unit (I).
  • the hole injection layer 3 to the electron injection layer 7 are sequentially provided on the electron injection layer 7 which is the uppermost layer of the unit (I) to form the second unit (II).
  • similarly up to the Nth unit (N) can be provided in the same manner.
  • a cathode 8 is provided on the electron injection layer 7 of the unit (N).
  • the unit is also referred to as a light emitting unit because it has a light emitting layer as a center.
  • the same symbols as those in FIG. 2 the same symbols as those in FIG.
  • a cathode 8 an electron injection layer 7, an electron transport layer 6, a light emitting layer 5, a hole transport layer 4, a hole injection layer 3, and an anode 2 are laminated on the substrate 1 in this order. It is also possible to provide the organic EL element of the present invention between two substrates, at least one of which is highly transparent as described above. Also in this case, layers can be added or omitted as necessary. The same applies to the multilayer structure shown in FIG.
  • the organic EL element can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • the organic EL device of the present invention by using the compound of the general formula (1) for the hole injection layer, a device having higher luminous efficiency at a lower voltage and greatly improved driving stability can be obtained. Excellent performance in full-color or multi-color panel applications.
  • a triarylamine compound is used for the hole transport layer, the effect is further increased.
  • the hole injecting and transporting evaluation test was performed using the evaluation element shown in FIG.
  • This evaluation element has an anode 2, a hole injection layer 3, a hole transport layer 4, and a cathode 8 on a glass substrate 1.
  • Example 1 In FIG. 3, each thin film was laminated at a vacuum degree of 1.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode electrode made of ITO having a thickness of 150 nm was formed.
  • exemplary compound 1 was formed to a thickness of 10 nm as a material for forming a hole injection layer on ITO.
  • NPB 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl
  • Al aluminum
  • Example 2 An evaluation element was produced in the same manner as in Example 1 except that the exemplified compound 14 was used as a material for forming the hole injection layer.
  • Comparative Example 1 An evaluation element was prepared in the same manner as in Example 1 except that CuPc (copper-phthalocyanine) was used as a material for forming the hole injection layer.
  • CuPc copper-phthalocyanine
  • Comparative Example 2 An evaluation element was prepared in the same manner as in Example 1 except that NTCDA (1,4,5,8-naphthalenetetracarboxylic dianhydride) was used as a material for forming the hole injection layer.
  • NTCDA 1,4,5,8-naphthalenetetracarboxylic dianhydride
  • the current density in Table 1 indicates the current density value (A / m 2 ) that flowed at 5V. As shown in Table 1, it can be seen that the hole injection material of the present invention exhibits better hole injection properties even at the same voltage.
  • the IP of NPB is 5.4 eV.
  • Example 3 An evaluation element was prepared in the same manner as in Example 1 except that the thickness of the hole injection layer was 20 nm and the thickness of the hole transport layer was 100 nm.
  • Comparative Example 3 An evaluation element was prepared in the same manner as in Example 3 except that NTCDA was used as a material for forming the hole injection layer.
  • each thin film was laminated at a vacuum degree of 1.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode electrode made of ITO having a thickness of 110 nm was formed.
  • Exemplified Compound 1 was formed to a thickness of 10 nm as a hole injection layer on ITO.
  • NPB was formed to a thickness of 25 nm as a hole transport layer.
  • DNA (9,10-di (2-naphthyl) anthracene) and TBP (2,5,8,11-tetratertiary butylperylene) as the light emitting layer are deposited as different evaporation sources.
  • TBP was co-evaporated to 1.0 wt% to form a thickness of 30 nm.
  • Alq3 tris (8-quinolinolato) aluminum complex
  • Alq3 and Liq ((8-quinolinolato) lithium complex) were co-deposited on the electron transport layer from different deposition sources so that Liq was 25% by weight to form a thickness of 10 nm.
  • aluminum (Al) was formed to a thickness of 100 nm as a cathode electrode on the electron injection layer, and 1 unit of organic EL element was produced.
  • Example 5 An organic EL device was produced in the same manner as in Example 4 except that the hole injection layer was changed to a mixed layer of Exemplified Compound 1 and NPB (weight ratio 50:50) 10 nm.
  • Comparative Example 4 An organic EL device was produced in the same manner as in Example 4 except that the hole injection layer was an NTCDA layer.
  • the organic EL element had light emission characteristics as shown in Table 3.
  • the luminance, voltage, and luminous efficiency are values at 100 A / m 2
  • the half-life is 250 A / m 2 .
  • each thin film was laminated at a vacuum degree of 1.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode electrode made of ITO having a thickness of 110 nm was formed.
  • Exemplified Compound 1 was formed to a thickness of 10 nm as a hole injection layer on ITO.
  • NPB was formed to a thickness of 10 nm as a hole transport layer.
  • NPB and rubrene (5,6,11,12-tetraphenyltetracene) are used as the first light emitting layer on the hole transport layer layer from different vapor deposition sources so that the rubrene content becomes 1.0 wt%.
  • Co-deposited to a thickness of 20 nm.
  • DNA (9,10-di (2-naphthyl) anthracene) and TBP (2,5,8,11-tetratertiarybutylperylene) are used as the second light emitting layer from different vapor deposition sources, and TBP is 1 Co-evaporated to 0.0 wt% to form a thickness of 30 nm.
  • Alq3 tris (8-quinolinolato) aluminum complex
  • Alq3 and Liq ((8-quinolinolato) lithium complex) were co-deposited on the electron transport layer from different deposition sources so that Liq was 25% by weight to form a thickness of 10 nm.
  • aluminum (Al) was formed to a thickness of 100 nm as a cathode electrode on the electron injection layer, and 1 unit of organic EL element was produced.
  • Example 7 An organic EL device was produced in the same manner as in Example 6 except that the hole transport layer was omitted and the thickness of the first light emitting layer was changed to 30 nm.
  • Comparative Example 5 An organic EL device was produced in the same manner as in Example 6 except that NTCDA was used as the hole injection layer material.
  • Example 8 In FIG. 2, each thin film was laminated at a vacuum degree of 1.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode electrode made of ITO having a thickness of 110 nm was formed.
  • Exemplified Compound 1 was formed to a thickness of 10 nm as a hole injection layer on ITO.
  • NPB was formed to a thickness of 25 nm as a hole transport layer.
  • NPB and rubrene were co-deposited from different vapor deposition sources as a first light emitting layer so that the rubrene content would be 1.0 wt%, thereby forming a thickness of 20 nm.
  • DNA and TBP were co-deposited from different vapor deposition sources so that the TBP was 1.0% by weight to form a thickness of 30 nm.
  • Alq3 was formed to a thickness of 30 nm as an electron transport layer.
  • Alq3 and Liq were co-deposited from different vapor deposition sources so that Liq was 25% by weight to form a thickness of 10 nm, and subsequently Al was added at 0.05 nm / s.
  • An electron injection layer was formed by vapor deposition of 2 nm.
  • Exemplified Compound 1 as a hole injection layer was again formed to a thickness of 50 nm at the same rate as described above.
  • Comparative Example 6 A 2-unit organic EL device was prepared in the same manner as in Example 8 except that NTCDA was used as the hole injection layer material.
  • the organic EL device of the present invention it is possible to obtain a device having high luminous efficiency and greatly improved driving stability even at a low voltage as compared with the prior art. Furthermore, an element with little deterioration during high temperature storage can be obtained. As a result, excellent performance can be exhibited in application to full-color or multi-color panels.
  • the organic electroluminescent device is a flat panel display (for example, for OA computers and wall-mounted televisions), an in-vehicle display device, a light source utilizing characteristics of a mobile phone display or a surface light emitter (for example, a light source of a copying machine, It can be applied to liquid crystal displays and back light sources for instruments, display panels, and marker lamps, and its technical value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 低い電圧で発光効率が高くかつ駆動安定性においても大きく改善された有機エレクトロルミネッセント素子(有機EL素子)用正孔注入材料及びそれを使用した有機EL素子を開示する。  この有機EL素子用正孔注入材料は、ベンゼンヘキサカルボン酸無水物、ベンゼンヘキサカルボン酸イミド又はベンゼンヘキサカルボン酸イミドのN置換体から選ばれる。また、この有機EL素子は、対向する陽極と陰極の間に、少なくとも1層の発光層と正孔注入層を有し、正孔注入層中に上記有機EL素子用正孔注入材料を含む。この有機EL素子は、正孔注入層又はこれに隣接する層にイオン化ポテンシャル(IP)が6.0eV以下である正孔輸送性材料を含有することができる。

Description

有機エレクトロルミネッセント素子
  本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセント素子(以下、有機EL素子又は素子と略記することがある。)に関する。
  有機EL素子は、ディスプレイや照明への応用の観点から活発に開発が行われている。有機EL素子の駆動原理は、以下のようなものである。すなわち、陽極及び陰極からそれぞれホールと電子が注入され、これらが有機薄膜中を輸送され、発光層において再結合し励起状態が生じ、この励起状態から発光が得られる。発光効率を高めるためには、効率良くホール及び電子を注入させ、有機薄膜中を輸送させることが必要である。しかしながら、有機EL素子内のキャリアの移動は、電極と有機薄膜間のエネルギー障壁や、有機薄膜内のキャリア移動度の低さにより制限を受けるため、発光効率の向上にも限界がある。
  かかる問題を解決する方法として、陽極と正孔輸送層の間に正孔注入層を挿入することにより、陽極からの正孔注入性を向上させ、より低い電圧で発光層へ正孔を輸送する手法が考えられている。
  例えば、特許文献1には、正孔注入層としてフタロシアニン系金属錯体を用いることで、素子の低電圧化や駆動安定性の向上が可能であることが開示されているが、フタロシアニン系金属錯体は可視光領域に吸収を持つため、発光効率が低下する問題があった。また、発色の色度調整もしづらい問題があった。
また、特許文献2には、陽極に隣接するn型有機層と、n型有機層上に設けられるp型有機層からなるnp接合層を配置した有機EL素子を開示している。そして、n型有機層のLUMOエネルギー準位と陽極のフェルミエネルギー準位差が2.0eV以下であり、n型有機層のLUMOエネルギー準位とp型有機層のHOMOエネルギー準位差が1.0eV以下である有機エレクトロルミネッセント素子が開示されている。ここで、n型有機層は正孔注入層と読み替えることができる。また、p型有機層は正孔輸送層又は発光層と読み替えることができる。
 さらに、特許文献2は、n型有機層に使用される電子授与性化合物として、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)、フッ素置換の3,4,9,10-ぺリレンテトラカルボン酸二無水物(PTCDA)、シアノ置換のPTCDA、ナフタレンテトラカルボン酸二無水物(NTCDA)、フッ素置換のNTCDA、シアノ置換のNTCDA、又はヘキサニトリルヘキサアザトリフェニレン(HAT)を開示している。
特開昭63-295695号公報 WO2005-109542号公報
  本発明は低い電圧であっても発光効率が高く、しかも連続駆動時の経時変化が少なくて高品質な有機EL素子を提供することにある。
  本発明は、下記一般式(1)で表わされるカルボン酸誘導体からなる有機エレクトロルミネッセント素子用正孔注入材料に関する。
Figure JPOXMLDOC01-appb-I000003
  ここで、XはO又はN-Rを示し、RはH又は1価の置換基を示す。  
 また、本発明は、対向する陽極と陰極の間に、少なくとも1層の発光層と正孔注入層を有する有機エレクトロルミネッセント素子において、上記一般式(1)で表わされるカルボン酸誘導体を含む正孔注入層を有することを特徴とする有機エレクトロルミネッセント素子に関する。
  更に、本発明は、上記正孔注入層又は正孔注入層に隣接する層の少なくともいずれかの層にイオン化ポテンシャル(IP)が6.0eV以下である正孔輸送性材料を含有することを特徴とする有機エレクトロルミネッセント素子に関する。上記正孔注入層に隣接する層は、正孔輸送層又は発光層であることがよい。そして、IPが6.0eV以下である正孔輸送性材料としては、好ましくはアリールアミン系正孔輸送性材料がある。
は、本発明の有機EL素子の一例を示した模式断面図を示す。 は、タンデム型有機EL素子の一例を示した模式断面図を示す。 は、正孔注入輸送性の評価用の素子の模式断面図を示す。
  本発明の有機EL素子用正孔注入材料は、上記一般式(1)で表わされるカルボン酸誘導体である。
 本発明の有機EL素子は、対向する陽極と陰極の間に、少なくとも1層の発光層と正孔注入層を有しており、上記一般式(1)で表わされるカルボン酸誘導体を含有する正孔注入層を有する。
 まず、上記一般式(1)で表わされるカルボン酸誘導体又は有機EL素子用正孔注入材料について説明する。
 一般式(1)において、XはO又はN-Rを示す。ここで、Rは窒素原子と結合する水素又は1価の置換基を示すが、好ましい置換基を次に例示する。
  炭素数1~20、好ましくは1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ターシャルブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、炭素数3~20、好ましくは5~10のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、炭素数2~20、好ましくは2~6のアルケニル基(例えば、ビニル基、アリル基等)、炭素数2~20、好ましくは2~6のアルキニル基(例えば、エチニル基、プロパルギル基等)、炭素数6~20、好ましくは6~10のアリール基(例えば、フェニル基、ナフチル基等)、炭素数3~20、好ましくは5~10の芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)、炭素数3~20、好ましくは5~10の複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、炭素数1~20、好ましくは1~6のフッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等がある。
  これらの置換基は、上記の置換基又はハロゲン等によって更に置換されていてもよい。例えば、アリール基、芳香族複素環基、複素環基は、更にアルキル基やハロゲン等によって更に置換されていてもよく、置換基が更に置換されている場合は炭素数の計算には置換基に置換する置換基の炭素数を含める。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 好ましいXは、O、NHの他、Rが上記の置換基であるNRである。より好ましいXは、O、NHの他、Rが次の置換基であるNRである。このRは、炭素数1~6のアルキル基、炭素数5~10のシクロアルキル基、炭素数6~10のアリール基、炭素数5~10の芳香族複素環基、炭素数1~6のフッ化炭化水素基又はシアノ基である。そして、シクロアルキル基、アリール基又は芳香族複素環基は、炭素数1~6のアルキル基又はハロゲンで置換されていてもよい。
  以下に、一般式(1)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
  本発明の有機EL素子の正孔注入層には、上記一般式(1)で表される化合物から選ばれる少なくとも1種の化合物を含む材料が含まれる。この正孔注入層は、一般式(1)の化合物のみ又はその混合物から形成されてもよく、他の正孔注入材料と混合されたものであってもよい。混合する場合、一般式(1)で表される化合物が0.1wt%以上、有利には1wt%以上となるように使用すればよいが、本発明の効果を十分に発揮するためには50wt%以上、より好ましくは80wt%以上となるように使用することがよい。
 本発明でいう正孔注入層は、発光層に対し陽極側に配置された層であって、正孔注入材料又は正孔注入材料と正孔輸送性材料を主たる有効成分として含み、正孔を注入する機能を有する層をいう。したがって、正孔注入層には正孔注入材料の他に正孔輸送性材料を含むこともできる。正孔輸送性材料を含む場合、正孔注入輸送層とも称されることがあるが、本明細書では正孔注入層の一形態であると理解される。また、本発明でいう正孔注入材料は、上記正孔注入層に使用される材料を意味する。
 正孔注入層に正孔輸送性材料を含む場合、正孔輸送性材料としてはイオン化ポテンシャル(IP)が6.0eV以下である正孔輸送性材料であることが好ましい。IPが6.0eV以下である正孔輸送性材料としては、アリールアミン系正孔輸送性材料が好ましく例示される。
 また、正孔注入層が正孔輸送性材料を含む場合であっても、含まない場合であっても、正孔注入層に隣接する層にIPが6.0eV以下である正孔輸送性材料を含むことが好ましい。正孔注入層が正孔輸送性材料を含まない場合に、より有効である。この正孔注入層に隣接する層としては、正孔輸送層又は発光層であることが好ましい。発光層である場合は、正孔輸送層は省略される。
 正孔注入層に、正孔輸送性材料を含む場合、正孔注入材料と正孔輸送性材料の割合は広く変化することができるが、重量比で1:9~9:1、好ましくは3:7~7:3の範囲とすることがよい。そして、この場合の正孔注入層には、一般式(1)で表される化合物が0.1wt%以上、有利には1wt%以上含むことがよいが、本発明の効果を十分に発揮するためには10wt%以上、より好ましくは30wt%以上となるように使用することがよい。
  以下、本発明を、図面を参照して説明する。図1~2は本発明の有機EL素子の一例を示す模式断面図である。
 符号の説明:1 基板、2 陽極、3 正孔注入層、4 正孔輸送層、5  発光層、6  電子輸送層、7  電子注入層、8  陰極 
 まず、有機EL素子の構成について、説明する。
  図1に本発明の有機EL素子の基本構成例を示す。基板1の上に陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8で構成されるが、正孔輸送性材料を正孔注入層又は発光層の少なくともいずれかの層に含有する場合、正孔輸送層は無くてもよい。電子輸送性材料を発光層又は電子注入層の少なくともいずれかの層に含有する場合、電子輸送層は無くてもよい。また、必要により他の層を設けてもよい。他の層とは、例えば電子阻止層や正孔阻止層が挙げられるが、これらに限定されるものではない。
 そして、本発明の有機EL素子は、正孔注入層と一層以上の発光層を必須の層として有する。発光層は1層であっても、複数の発光層を積層した多層構造の発光層あってもよい。
 図2に本発明の有機EL素子の別の態様を示す。図2は、図1の基本素子構成をタンデム型に積層した素子構成の1例を示す。基板1の上に陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8が積層されるが、この内、正孔注入層3~電子注入層7が積層されたユニットが両極間に複数積層される。このユニットの積層数は必要に応じてその層数を変化させることができる。また、隣接する電子注入層と正孔注入層の間に金属薄膜を挟持させてもよい。各層の詳細については、図1の基本構成と同様である。
  本発明の有機EL素子の好ましい構成例を以下に示すが、これに限定されない。
A.単層構成例
1)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
2)陽極/正孔注入層/正孔輸送層/発光層/発光層/電子輸送層/電子注入層/陰極
3)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
B.多層構成例
1)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/金属薄膜/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
3)陽極/正孔注入層/正孔輸送層/発光層/発光層/電子輸送層/電子注入層/金属薄膜/正孔注入層/正孔輸送層/発光層/発光層/電子輸送層/電子注入層/陰極
  上記のように、本発明の素子構成は、図1で示される基本素子構成が単層の単層構造でも、これが多層化された多層構造であってもよい。多層構造の場合、正孔注入層は複数存在するが、その少なくとも1つ、好ましくは全部の正孔注入層が一般式(1)の化合物を含む正孔注入層とする。このような正孔注入層を設けることにより、単層構造であっても多層構造であっても、素子の性能を向上させる。多層構造に適用するとその効果が大きい。
 以下、各層について詳細に説明する。
(1)基板
  基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
(2)陽極
  基板1上には陽極2が設けられる。この陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物、亜鉛及び/又はスズの酸化物、タングステン及び/又はスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板上に塗布することにより陽極を形成することもできる。更に、導電性高分子の場合は電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる。陽極は異なる物質で積層して形成することも可能である。陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常、60%以上、好ましくは80%以上とすることがよい。陽極2の膜厚については、通常、1~1000nm、好ましくは10~500nmである。なお不透明でよい場合、陽極は基板と同一でもよい。また、更には上記の陽極の上に異なる導電材料を積層することも可能である。
(3)正孔注入層
 陽極2の上に正孔注入層3が設けられる。正孔注入層には、上記一般式(1)で表される化合物から選ばれる少なくとも1種の化合物を含む材料が使用される。この正孔注入層は、一般式(1)の化合物のみ又はその混合物から形成されてもよく、他の正孔注入材料と混合されたものであってもよい。また、上記したように、正孔注入層3は正孔輸送材料を含むことも可能である。一般式(1)で表される化合物の配合量は前記のとおりであるが、この化合物をn型材料と共に使用する場合で、ドーパントとして使用する場合は、0.1wt%以上であっても一定の効果を奏するが、他の正孔注入材料と混合使用する場合は、本発明の効果を十分に発揮するためには50wt%以上が好ましい。
 他の正孔注入材料としては、銅フタロシアニン等のフタロシアニン化合物、ポリアニリン、ポリチオフェン等の有機化合物や、バナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物が挙げられる。
 正孔注入層は、上記正孔注入材料を、例えば真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
 正孔注入層の膜厚については、一般式(1)の化合物のみから形成される場合、30nm以下、好ましくは20nm以下である。更に好ましくは5~15nmである。これ以上の厚さになると、正孔注入特性の低下による、有機EL素子の高電圧化や低効率化、ひいては駆動安定性の低下を引き起こす。また、正孔注入層が、一般式(1)の化合物と他の正孔注入材料の混合層から形成される場合、通常、1~300nm、好ましくは5~100nmである。
 また、正孔注入層に、正孔輸送性材料を含有させることもできるが、この場合も、膜厚としては通常、1~300nm、好ましくは5~100nmである。正孔注入層に正孔輸送性材料を含有させる場合は、正孔注入層に隣接する正孔輸送層を設けなくても良い。
(4)正孔輸送層
 正孔注入層3の上に正孔輸送層4が設けられる。正孔輸送層は、陽極から発光層へ効率良く正孔を輸送する役割を担う。正孔輸送層に含有される正孔輸送性材料は正孔輸送性を有する化合物であれば特に限定されるものではないが、IPが6.0eV以下である化合物が好ましく、より好ましくは5.8eV以下である。これより大きくなると、正孔注入層から正孔輸送層への正孔移動がスムーズに行えず、有機EL素子の高電圧化や低効率化、ひいては駆動安定性の低下を引き起こす。
 正孔輸送性材料としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
  具体的には、以下に示すアリールアミン系正孔輸送性材料を用いることが好ましい。
  アリールアミン系正孔輸送性材料の代表例としては、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル;N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル;N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル;4,4’-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には、2個の縮合芳香族環を分子内に有する4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(α-NPD)等、トリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4''-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
  正孔輸送層の膜厚については、通常、1~300nm、好ましくは5~100nmであり、正孔注入層と同様の方法にて正孔注入層上に薄膜形成される。この正孔輸送層は、上記材料の1種又は2種以上からなる一層構造であってもよい。
 (5)発光層
  正孔輸送層4の上には発光層5が設けられる。発光層は正孔及び電子を再結合させ、発光する機能を有する。
  発光層は、単一の発光層から形成されていてもよいし、複数の発光層を隣接して積層して構成されていてもよい。なお発光層は、ホスト材料と蛍光性発光材料又は燐光性発光材料から構成され、従来これらの層の形成に用いられた任意の材料を用いることができる。また、発光層に正孔輸送性材料を含有する場合は、正孔注入層と発光層の間に正孔輸送層を設けなくても良い。
 ホスト材料としては、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できる。
 ホスト材料に添加する蛍光性発光材料としては、ペリレン、ルブレンなどの縮合環誘導体、キナクリドン誘導体、フェノキサゾン660、DCM1、ペリノン、クマリン誘導体、ピロメテン(ジアザインダセン)誘導体、シアニン色素などが使用できる。
 ホスト材料に添加する燐光性発光材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金などから選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。
  発光層の膜厚については、通常、1~300nm、好ましくは5~100nmであり、正孔輸送層上に正孔注入層と同様の方法にて薄膜形成される。複数の発光層材料を順次積層して多層構造の発光層とすることも好ましいが、この場合の発光層の厚みも上記の範囲とすることがよい。
(6)電子輸送層
  発光層5の上には電子輸送層6が設けられるが、発光層中に電子輸送性材料を含有する場合は、設けなくても良い。電子輸送層は、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。電子輸送層に用いられる電子輸送性化合物としては、陰極からの電子輸送効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
  このような条件を満たす電子輸送材料としては、Alq3などの金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-又は5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼンキノキサリン化合物、フェナントロリン誘導体、2-t-ブチル-9,10-N,N'-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
  電子輸送層の膜厚については、通常、1~300nm、好ましくは5~100nmであり、正孔注入層と同様の方法にて発光層上に薄膜形成される。この電子輸送層は、上記材料の1種又は2種以上からなる一層構造であってもよい。
(7)電子注入層
  更に、電子輸送層6の上には電子注入層7を設けることも素子の効率を向上させる有効な方法である。電子注入層は、発光層に電子を注入する役割を果たす。
 電子注入材料の具体例としては、LiF、MgF2、Li2O等のアルカリ金属塩、アルカリ土類金属塩、アルカリ金属酸化物、アルカリ土類金属塩、Liq等のアルカリ金属錯体及びLi、Cs、Ca等のアルカリ金属、アルカリ土類金属等があげられる。
  電子注入層の膜厚については、通常、0.1~300nm、好ましくは0.5~50nmであり、正孔注入層と同様の方法にて発光層又は電子輸送層上に薄膜形成される。
 電子注入層は、上記材料単体のみで形成してもよいし、電子注入材料と電子輸送層材料を任意の割合で混合した層を形成してもよい。この場合、電子注入層又は電子輸送のいずれかを省略してもよい。
(8)陰極
  陰極8は、電子注入層に電子を注入する役割を果たす。陰極として用いられる材料は、前記陽極に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、リチウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数合金電極が挙げられる。
  また、低仕事関数金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
  陰極の膜厚については、通常、1~1000nm、好ましくは10~500nmであり、正孔注入層と同様の方法にて電子注入層又は発光ユニット上に薄膜形成される。この陰極は、上記材料の1種又は2種以上からなる一層構造であってもよい。
  また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することも可能である。
 図2に示す多層構造の有機EL素子の場合においても、各層は上記の説明のようにして形成することができる。例えば、陽極2状に正孔注入層3~電子注入層7を順次設けて第1のユニット(I)とする。次に、ユニット(I)の最上部の層である電子注入層7の上に、正孔注入層3~電子注入層7を順次設けて第2のユニット(II)とする。更に、同様にして第Nのユニット(N)までを同様に設けることができる。ユニット(N)の電子注入層7の上には陰極8を設ける。なお、上記ユニットは発光層を中心とするので発光ユニットともいう。また、図2中、図1と同じ記号は同じものをさす。
  なお、図1とは逆の構造、すなわち、基板1上に陰極8、電子注入層7、電子輸送層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、既述したように少なくとも一方が透明性の高い2枚の基板の間に本発明の有機EL素子を設けることも可能である。この場合も、必要により層を追加したり、省略したりすることが可能である。図2に示す多層構造の場合も同様である。
 また、本発明では、有機EL素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明の有機EL素子によれば、正孔注入層に一般式(1)の化合物を用いることで、従来より低い電圧で発光効率が高くかつ駆動安定性においても大きく改善された素子が得られ、フルカラーあるいはマルチカラーのパネルへの応用において優れた性能を発揮できる。そして、正孔輸送層にトリアリールアミン系化合物を用いると、その効果がより増大する。
  以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
 正孔注入輸送性評価試験は、図3に示す評価用素子を用いて行った。この評価用素子はガラス基板1上に、陽極2、正孔注入層3、正孔輸送層4、陰極8を有する。
実施例1
 図3において、膜厚150nmのITOからなる陽極電極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度1.0×10-5 Paで積層させた。まず、まず、ITO上に正孔注入層を形成する材料として例示化合物1を10nmの厚さに形成した。次に、正孔輸送層としてNPB(4,4'-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル)を110nmの厚さに形成した。最後に、正孔輸送層上に陰極電極としてアルミニウム(Al)を100nmの厚さに形成し、正孔注入輸送性評価用素子を作成した。
実施例2
 正孔注入層を形成する材料として例示化合物14を用いた以外は、実施例1と同様にして評価用素子を作成した。
比較例1
 正孔注入層を形成する材料としてCuPc(銅-フタロシアニン)を用いた以外は、実施例1と同様にして評価用素子を作成した。
比較例2
 正孔注入層を形成する材料としてNTCDA(1,4,5,8-ナフタレンテトラカルボン酸二無水物)を用いた以外は、実施例1と同様にして評価用素子を作成した。
 得られた正孔注入輸送性評価用素子に外部電源を接続し直流電圧を印加したところ、表1に示すような電流-電圧特性を有することが確認された。表1の電流密度は、5Vにおける流れた電流密度値(A/m)を示す。表1に示すように、本発明の正孔注入材料は同じ電圧であっても、より良好な正孔注入性を示すことがわかる。なお、NPBのIPは5.4eVである。
Figure JPOXMLDOC01-appb-T000007
実施例3
 正孔注入層の膜厚を20nmにし、正孔輸送層の膜厚を100nmにした以外は、実施例1と同様にして評価用素子を作成した。
比較例3
 正孔注入層を形成する材料としてNTCDAを用いた以外は、実施例3と同様にして評価用素子を作成した。
 得られた正孔注入輸送性評価用素子に外部電源を接続し直流電圧を印加したところ、表2に示すような電流-電圧特性を有することが確認された。
Figure JPOXMLDOC01-appb-T000008
実施例4 
 図1において、膜厚110nmのITOからなる陽極電極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度1.0×10-5 Paで積層させた。まず、ITO上に正孔注入層として例示化合物1を10nmの厚さに形成した。次に、正孔輸送層としてNPBを25nmの厚さに形成した。次に、正孔輸送層層上に、発光層としてDNA(9,10-ジ(2-ナフチル)アントラセン)とTBP(2,5,8,11-テトラターシャリーブチルペリレン)とを異なる蒸着源から、TBPが1.0重量%になるよう共蒸着し、30nmの厚さに形成した。次に、電子輸送層としてAlq3(トリス(8-キノリノラト)アルミニウム錯体)を30nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてAlq3とLiq((8-キノリノラト)リチウム錯体)とを異なる蒸着源から、Liqが25重量%になるよう共蒸着し、10nmの厚さに形成した。最後に、電子注入層上に陰極電極としてアルミニウム(Al)を100nmの厚さに形成し、1ユニットの有機EL素子を作成した。
実施例5
  正孔注入層を例示化合物1とNPBの混合層(重量比50:50)10nmにした以外は実施例4と同様にして有機EL素子を作成した。
比較例4 
  正孔注入層をNTCDAの層にした以外は実施例4と同様にして有機EL素子を作成した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表3に示すような発光特性を有することが確認された。表3~6において、輝度、電圧及び発光効率は、100A/m2、半減寿命は250A/m2での値を示す。
Figure JPOXMLDOC01-appb-T000009
実施例6 
 図1において、膜厚110nmのITOからなる陽極電極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度1.0×10-5 Paで積層させた。まず、ITO上に正孔注入層として例示化合物1を10nmの厚さに形成した。次に、正孔輸送層としてNPBを10nmの厚さに形成した。次に、正孔輸送層層上に、1つめの発光層としてNPBとルブレン(5,6,11,12-テトラフェニルテトラセン)とを異なる蒸着源から、ルブレンが1.0重量%になるよう共蒸着し、20nmの厚さに形成した。次に、2つめの発光層としてDNA(9,10-ジ(2-ナフチル)アントラセン)とTBP(2,5,8,11-テトラターシャリーブチルペリレン)とを異なる蒸着源から、TBPが1.0重量%になるよう共蒸着し、30nmの厚さに形成した。次に、電子輸送層としてAlq3(トリス(8-キノリノラト)アルミニウム錯体)を30nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてAlq3とLiq((8-キノリノラト)リチウム錯体)とを異なる蒸着源から、Liqが25重量%になるよう共蒸着し、10nmの厚さに形成した。最後に、電子注入層上に陰極電極としてアルミニウム(Al)を100nmの厚さに形成し、1ユニットの有機EL素子を作成した。
実施例7 
 正孔輸送層を省き、1つめの発光層膜厚を30nmにした以外は、実施例6と同様にして有機EL素子を作成した。
比較例5
 正孔注入層材料として、NTCDAを用いた以外は、実施例6と同様にして有機EL素子を作成した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表4に示すような発光特性を有することが確認された。
Figure JPOXMLDOC01-appb-T000010
実施例8
  図2において、膜厚110 nmのITOからなる陽極電極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度1.0×10-5 Paで積層させた。まず、ITO上に正孔注入層として例示化合物1を10nmの厚さに形成した。次に、正孔輸送層としてNPBを25nmの厚さに形成した。次に、正孔輸送層上に、1つめの発光層としてNPBとルブレンとを異なる蒸着源から、ルブレンが1.0重量%になるよう共蒸着し、20nmの厚さに形成した。次に、2つめの発光層としてDNAとTBPとを異なる蒸着源から、TBPが1.0重量%になるよう共蒸着し、30nmの厚さに形成した。次に、電子輸送層としてAlq3を30nmの厚さに形成した。更に、電子輸送層上に、Alq3とLiqとを異なる蒸着源から、Liqが25重量%になるよう共蒸着し、10nmの厚さに形成した後、続いてAlを0.05nm/sにて2nm蒸着し、電子注入層を形成した。次に、再び正孔注入層である例示化合物1を上記と同レートにて50nmの厚さに形成した。続いて正孔輸送層から電子注入層までを上記と同じように成膜した。最後に、電子注入層上に陰極電極としてアルミニウム(Al)を100nmの厚さに形成し、2ユニットの有機EL素子を作成した。
比較例6 
 正孔注入層材料として、NTCDAを用いた以外は、実施例8と同様にして2ユニットの有機EL素子を作成した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表5に示すような発光特性を有することが確認された。
Figure JPOXMLDOC01-appb-T000011
産業上の利用の可能性
  本発明の有機EL素子によれば、従来の技術に比べて、低い電圧であっても発光効率が高く、かつ駆動安定性においても大きく改善された素子が得られる。更には、高温保存時の劣化の少ない素子を得ることができる。この結果、フルカラーあるいはマルチカラーのパネルへの応用において優れた性能を発揮できる。従って、本発明による有機電界発光素子はフラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きい。

Claims (5)

  1.  下記一般式(1)で表わされるカルボン酸誘導体からなることを特徴とする有機エレクトロルミネッセント素子用正孔注入材料。
    Figure JPOXMLDOC01-appb-I000001
      ここで、XはO又はN-Rを示し、RはH又は1価の置換基を示す。
  2.  対向する陽極と陰極の間に、少なくとも1層の発光層と正孔注入層を有する有機エレクトロルミネッセント素子において、下記一般式(1)で表わされるカルボン酸誘導体を含む正孔注入層を有することを特徴とする有機エレクトロルミネッセント素子。
    Figure JPOXMLDOC01-appb-I000002
      ここで、XはO又はN-Rを示し、RはH又は1価の置換基を示す。
  3.  一般式(1)で表わされるカルボン酸誘導体を含む正孔注入層又は該正孔注入層に隣接する層の少なくとも1層にイオン化ポテンシャルが6.0eV以下である正孔輸送性材料を含有することを特徴とする請求項2に記載の有機エレクトロルミネッセント素子。
  4.  正孔注入層に隣接する層が正孔輸送層又は発光層である請求項3に記載の有機エレクトロルミネッセント素子。

  5.  イオン化ポテンシャルが6.0eV以下である正孔輸送性材料がアリールアミン系正孔輸送性材料である請求項3に記載の有機エレクトロルミネッセント素子。
PCT/JP2009/053716 2008-03-27 2009-02-27 有機エレクトロルミネッセント素子 WO2009119249A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/922,635 US8847367B2 (en) 2008-03-27 2009-02-27 Organic electroluminescent device
KR1020107024067A KR101528490B1 (ko) 2008-03-27 2009-02-27 유기 전계 발광 소자
EP09725501.2A EP2276085B1 (en) 2008-03-27 2009-02-27 Organic electroluminescent device
CN200980108794.0A CN101990718B (zh) 2008-03-27 2009-02-27 有机场致发光元件
JP2010505474A JP5123375B2 (ja) 2008-03-27 2009-02-27 有機エレクトロルミネッセント素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008083672 2008-03-27
JP2008-083672 2008-03-27

Publications (1)

Publication Number Publication Date
WO2009119249A1 true WO2009119249A1 (ja) 2009-10-01

Family

ID=41113455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053716 WO2009119249A1 (ja) 2008-03-27 2009-02-27 有機エレクトロルミネッセント素子

Country Status (7)

Country Link
US (1) US8847367B2 (ja)
EP (1) EP2276085B1 (ja)
JP (1) JP5123375B2 (ja)
KR (1) KR101528490B1 (ja)
CN (1) CN101990718B (ja)
TW (1) TWI478624B (ja)
WO (1) WO2009119249A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079291A (ja) * 2008-08-26 2010-04-08 Kyocera Mita Corp 電子写真感光体
JP2014208621A (ja) * 2013-03-26 2014-11-06 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、表示装置、電子機器及び照明装置
JP2016075738A (ja) * 2014-10-03 2016-05-12 東洋インキScホールディングス株式会社 カラーフィルタ用着色組成物及びカラーフィルタ

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969854B2 (en) * 2011-02-28 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting layer and light-emitting element
TWI743606B (zh) 2011-02-28 2021-10-21 日商半導體能源研究所股份有限公司 發光元件
US10259984B2 (en) 2011-09-23 2019-04-16 Synoil Fluids Holdings Inc. Pyromellitamide gelling agents
WO2013040718A1 (en) 2011-09-23 2013-03-28 Synoil Fluids Holdings Inc. Pyromellitamide gelling agents
EP2780325B1 (de) 2011-11-17 2016-02-03 Merck Patent GmbH Spiro-dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
EP2787552A4 (en) * 2011-11-28 2015-07-29 Oceans King Lighting Science ELECTROLUMINESCENT POLYMERS DEVICE AND METHOD FOR THE PRODUCTION THEREOF
KR20220005650A (ko) 2012-02-14 2022-01-13 메르크 파텐트 게엠베하 유기 전계발광 소자용 스피로비플루오렌 화합물
KR102268696B1 (ko) 2012-03-15 2021-06-23 메르크 파텐트 게엠베하 전자 소자
DE102012011335A1 (de) 2012-06-06 2013-12-12 Merck Patent Gmbh Verbindungen für Organische Elekronische Vorrichtungen
EP2898042B1 (de) 2012-09-18 2016-07-06 Merck Patent GmbH Materialien für elektronische vorrichtungen
KR101963104B1 (ko) 2012-10-31 2019-03-28 메르크 파텐트 게엠베하 전자 디바이스
KR101716069B1 (ko) 2012-11-12 2017-03-13 메르크 파텐트 게엠베하 전자 소자용 재료
CN104884572B (zh) 2013-01-03 2017-09-19 默克专利有限公司 用于电子器件的材料
US9217102B2 (en) 2013-03-22 2015-12-22 Synoil Fluids Holdings Inc. Amide branched aromatic gelling agents
KR20140122655A (ko) * 2013-04-10 2014-10-20 포항공과대학교 산학협력단 역구조 유기 발광 다이오드 및 이의 제조방법
EP3044286B1 (de) 2013-09-11 2018-01-31 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
EP3120396B1 (de) 2014-03-18 2021-06-02 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
US10465108B2 (en) 2014-11-04 2019-11-05 Synoil Fluids Holdings Inc. Amide branched aromatic gelling agent breakers
WO2016091353A1 (de) 2014-12-12 2016-06-16 Merck Patent Gmbh Organische verbindungen mit löslichen gruppen
KR102660538B1 (ko) 2015-07-22 2024-04-24 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
CN113248392B (zh) 2015-07-29 2024-04-16 默克专利有限公司 用于有机电致发光器件的材料
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
CN106410054B (zh) * 2015-12-09 2019-03-12 广东阿格蕾雅光电材料有限公司 仅空穴有机半导体二极管器件
WO2017133829A1 (de) 2016-02-05 2017-08-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
EP3978477A3 (en) 2016-06-03 2022-06-22 Merck Patent GmbH Materials for organic electroluminescent devices
TWI764942B (zh) 2016-10-10 2022-05-21 德商麥克專利有限公司 電子裝置
DE102017008794A1 (de) 2016-10-17 2018-04-19 Merck Patent Gmbh Materialien zur Verwendung in elektronischen Vorrichtungen
WO2018083053A1 (de) 2016-11-02 2018-05-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
JP7101669B2 (ja) 2016-11-25 2022-07-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機エレクトロルミネッセンス素子(oled)の材料としてのビスベンゾフラン縮合2,8-ジアミノインデノ[1,2-b]フルオレン誘導体およびその関連化合物
KR102540425B1 (ko) 2016-11-25 2023-06-07 메르크 파텐트 게엠베하 유기 전계발광 소자 (oled) 용 재료로서 비스벤조푸란-융합된 2,8-디아미노인데노[1,2-b]플루오렌 유도체 및 관련 화합물
KR20180085860A (ko) * 2017-01-19 2018-07-30 삼성디스플레이 주식회사 유기 전계 발광 소자
WO2018141706A1 (de) 2017-02-02 2018-08-09 Merck Patent Gmbh Materialien für elektronische vorrichtungen
JP7118990B2 (ja) 2017-03-02 2022-08-16 メルク パテント ゲーエムベーハー 電子デバイス用材料
US11767299B2 (en) 2017-06-23 2023-09-26 Merck Patent Gmbh Materials for organic electroluminescent devices
TW201920070A (zh) 2017-06-28 2019-06-01 德商麥克專利有限公司 用於電子裝置之材料
TWI779067B (zh) 2017-07-28 2022-10-01 德商麥克專利有限公司 電子裝置用材料
CN111051294B (zh) 2017-09-08 2024-04-19 默克专利有限公司 用于电子器件的材料
CN108675975A (zh) 2017-10-17 2018-10-19 默克专利有限公司 用于有机电致发光器件的材料
US11832513B2 (en) 2017-11-23 2023-11-28 Merck Patent Gmbh Materials for electronic devices
TWI820057B (zh) 2017-11-24 2023-11-01 德商麥克專利有限公司 用於有機電致發光裝置的材料
US11639339B2 (en) 2017-11-24 2023-05-02 Merck Patent Gmbh Materials for organic electroluminescent devices
CN109935712A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 Qled器件及其制备方法
CN111465599A (zh) 2017-12-15 2020-07-28 默克专利有限公司 用于有机电致发光器件中的取代芳族胺
JP7402800B2 (ja) 2017-12-20 2023-12-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ヘテロ芳香族化合物
KR102174374B1 (ko) * 2018-02-21 2020-11-04 고려대학교 세종산학협력단 유기전계발광소자용 조성물, 이로부터 제조된 정공주입층 재료 및 정공주입층을 포함하는 유기전계발광소자
TW201938761A (zh) 2018-03-06 2019-10-01 德商麥克專利有限公司 用於有機電致發光裝置的材料
TWI802656B (zh) 2018-03-06 2023-05-21 德商麥克專利有限公司 用於有機電致發光裝置之材料
US20210020843A1 (en) 2018-03-16 2021-01-21 Merck Patent Gmbh Materials for organic electroluminescent devices
CN112639053A (zh) 2018-08-28 2021-04-09 默克专利有限公司 用于有机电致发光器件的材料
TWI823993B (zh) 2018-08-28 2023-12-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
CN112585242A (zh) 2018-08-28 2021-03-30 默克专利有限公司 用于有机电致发光器件的材料
CN112639052A (zh) 2018-09-12 2021-04-09 默克专利有限公司 用于有机电致发光器件的材料
CN111018866B (zh) * 2018-10-09 2021-02-12 中国科学院化学研究所 一种苯三酰亚胺及其衍生物的廉价高效的制备方法
CN112930343A (zh) 2018-10-31 2021-06-08 默克专利有限公司 用于有机电致发光器件的材料
CN111793072B (zh) * 2019-04-09 2021-11-02 上海和辉光电股份有限公司 一种异吲哚衍生物、其用途及包含其的oled器件
TW202136181A (zh) 2019-12-04 2021-10-01 德商麥克專利有限公司 有機電致發光裝置用的材料
KR20230043106A (ko) 2020-07-22 2023-03-30 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
CN114075207B (zh) * 2020-08-11 2023-04-07 上海和辉光电股份有限公司 一种空穴注入材料及有机电致发光器件
WO2022059415A1 (ja) * 2020-09-17 2022-03-24 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および撮像装置
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH04320486A (ja) * 1991-04-19 1992-11-11 Mitsubishi Kasei Corp 有機電界発光素子
JPH1135687A (ja) * 1997-07-17 1999-02-09 Sumitomo Chem Co Ltd ポリシラン共重合体、その製造方法、それを用いた有機エレクトロルミネッセンス素子及び電子写真感光体
JP2004143044A (ja) * 2002-10-21 2004-05-20 Chemiprokasei Kaisha Ltd ビスイミド誘導体、その製造方法、それよりなる正孔輸送材料および/または発光材料、それを用いた有機エレクトロルミネッセンス素子
WO2005109542A1 (en) 2004-05-11 2005-11-17 Lg Chem. Ltd. Organic electronic device
WO2007080801A1 (ja) * 2006-01-11 2007-07-19 Idemitsu Kosan Co., Ltd. 新規イミド誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2008198769A (ja) * 2007-02-13 2008-08-28 Nippon Steel Chem Co Ltd 有機エレクトロルミネッセント素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320486B2 (ja) * 1999-08-05 2009-08-26 ソニー株式会社 固体撮像素子の駆動方法
JP4512217B2 (ja) * 1999-08-20 2010-07-28 富士フイルム株式会社 アリールシラン化合物、発光素子材料およびそれを使用した発光素子
US6670645B2 (en) * 2000-06-30 2003-12-30 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
KR100867493B1 (ko) * 2000-11-24 2008-11-06 도레이 가부시끼가이샤 발광 소자 재료 및 이를 이용한 발광 소자
WO2003095445A1 (en) * 2002-05-07 2003-11-20 Lg Chem, Ltd. New organic compounds for electroluminescence and organic electroluminescent devices using the same
US7018757B2 (en) * 2003-01-31 2006-03-28 Samsung Electronics Co., Ltd. Photoconductor materials based on complex of charge generating material
JP4627528B2 (ja) * 2004-03-29 2011-02-09 三井化学株式会社 新規化合物、および該化合物を用いた有機エレクトロニクス素子
JP2006114544A (ja) * 2004-10-12 2006-04-27 Chisso Corp 有機電界発光素子
TWI378984B (en) * 2005-02-25 2012-12-11 Toray Industries Light-emitting element material and light-emitting element
KR101384046B1 (ko) * 2006-05-11 2014-04-09 이데미쓰 고산 가부시키가이샤 유기 전계발광 소자
US8106391B2 (en) * 2007-09-28 2012-01-31 Idemitsu Kosan Co., Ltd. Organic EL device
WO2010011658A2 (en) * 2008-07-21 2010-01-28 The Johns Hopkins University Pyromellitic diimide organic semiconductors and devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH04320486A (ja) * 1991-04-19 1992-11-11 Mitsubishi Kasei Corp 有機電界発光素子
JPH1135687A (ja) * 1997-07-17 1999-02-09 Sumitomo Chem Co Ltd ポリシラン共重合体、その製造方法、それを用いた有機エレクトロルミネッセンス素子及び電子写真感光体
JP2004143044A (ja) * 2002-10-21 2004-05-20 Chemiprokasei Kaisha Ltd ビスイミド誘導体、その製造方法、それよりなる正孔輸送材料および/または発光材料、それを用いた有機エレクトロルミネッセンス素子
WO2005109542A1 (en) 2004-05-11 2005-11-17 Lg Chem. Ltd. Organic electronic device
WO2007080801A1 (ja) * 2006-01-11 2007-07-19 Idemitsu Kosan Co., Ltd. 新規イミド誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2008198769A (ja) * 2007-02-13 2008-08-28 Nippon Steel Chem Co Ltd 有機エレクトロルミネッセント素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079291A (ja) * 2008-08-26 2010-04-08 Kyocera Mita Corp 電子写真感光体
JP2014208621A (ja) * 2013-03-26 2014-11-06 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、表示装置、電子機器及び照明装置
JP2018129543A (ja) * 2013-03-26 2018-08-16 株式会社半導体エネルギー研究所 発光素子、ディスプレイモジュール、照明モジュール、表示装置、照明装置及び電子機器
JP2019033292A (ja) * 2013-03-26 2019-02-28 株式会社半導体エネルギー研究所 発光装置
JP2019033293A (ja) * 2013-03-26 2019-02-28 株式会社半導体エネルギー研究所 発光装置
US10347847B2 (en) 2013-03-26 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10446766B2 (en) 2013-03-26 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP2019218367A (ja) * 2013-03-26 2019-12-26 株式会社半導体エネルギー研究所 混合材料および発光素子
JP2016075738A (ja) * 2014-10-03 2016-05-12 東洋インキScホールディングス株式会社 カラーフィルタ用着色組成物及びカラーフィルタ

Also Published As

Publication number Publication date
JP5123375B2 (ja) 2013-01-23
EP2276085A1 (en) 2011-01-19
TWI478624B (zh) 2015-03-21
CN101990718B (zh) 2012-04-18
US20110101319A1 (en) 2011-05-05
KR20110007154A (ko) 2011-01-21
EP2276085A4 (en) 2012-10-17
CN101990718A (zh) 2011-03-23
US8847367B2 (en) 2014-09-30
TW200942072A (en) 2009-10-01
KR101528490B1 (ko) 2015-06-12
EP2276085B1 (en) 2013-11-20
JPWO2009119249A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5123375B2 (ja) 有機エレクトロルミネッセント素子
KR102258067B1 (ko) 저휘도에서의 oled 디바이스 효율 감소
JP6286033B2 (ja) 発光領域に正孔輸送性ホストを有する燐光有機発光デバイス
CN112521399B (zh) 有机电致发光材料和装置
US10510973B2 (en) Color-stable organic light emitting diode stack
JP7174533B2 (ja) 有機エレクトロルミネセンス材料及びデバイス
JP6089280B2 (ja) 有機エレクトロルミネッセンス素子
KR100741104B1 (ko) 유기 발광 소자
TWI634681B (zh) 包含輔助電極之有機發光裝置
WO2012166101A1 (en) Oled having multi-component emissivie layer
TWI623119B (zh) 有機發光裝置及包含其之平板顯示裝置
KR20150063026A (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
KR20150026055A (ko) 파이렌 화합물 및 이를 포함하는 유기전계발광소자
CN108794536B (zh) 有机电致发光材料和装置
CN110713485A (zh) 有机电致发光材料和装置
JP5551344B2 (ja) 有機el素子
US20230276694A1 (en) Organic electroluminescent materials and devices
CN103187538A (zh) 绿色有机发光二极管以及包括所述二极管的平板显示装置
JP2003317965A (ja) 有機エレクトロルミネッセンス素子および表示装置
JP2008177455A (ja) 発光素子
JP5791129B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置
JP2010251585A (ja) 有機電界発光素子
JP2009010181A (ja) 発光素子
KR100659131B1 (ko) 유기 발광 소자
JP4656111B2 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108794.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505474

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009725501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024067

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12922635

Country of ref document: US