WO2009101683A1 - ハニカム構造体の製造方法 - Google Patents

ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2009101683A1
WO2009101683A1 PCT/JP2008/052375 JP2008052375W WO2009101683A1 WO 2009101683 A1 WO2009101683 A1 WO 2009101683A1 JP 2008052375 W JP2008052375 W JP 2008052375W WO 2009101683 A1 WO2009101683 A1 WO 2009101683A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
manufacturing
paste
honeycomb structure
material paste
Prior art date
Application number
PCT/JP2008/052375
Other languages
English (en)
French (fr)
Inventor
Hiroki Sato
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to PCT/JP2008/052375 priority Critical patent/WO2009101683A1/ja
Priority to EP08291249A priority patent/EP2090414B1/en
Priority to US12/369,876 priority patent/US8574386B2/en
Publication of WO2009101683A1 publication Critical patent/WO2009101683A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/14Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM).
  • PM particulate matter
  • a honeycomb structure in which the respective filters are integrated by bonding the outer peripheral surfaces of a plurality of filters made of a porous ceramic sintered body via a sealing material layer is disclosed (for example, see Patent Document 1).
  • Such a honeycomb structure can be manufactured by the following method. First, a ceramic powder, a binder, a dispersion medium liquid, and the like are mixed to prepare a wet mixture. Next, this wet mixture is extruded, and the extruded molded body is cut into a predetermined length to produce a columnar honeycomb molded body. Thereafter, a predetermined paste of each cell is filled with a sealing material paste so that any one end of each cell of the honeycomb formed body is sealed. Next, the honeycomb formed body filled with the sealing material paste is subjected to a degreasing process and a firing process, thereby manufacturing a honeycomb fired body that functions as a filter.
  • honeycomb fired bodies are bundled through a sealing material layer to produce an aggregate of honeycomb fired bodies, and then, if necessary, the outer periphery of the honeycomb fired body aggregate is subjected to cutting,
  • a honeycomb structure is manufactured by forming a coat layer on the outer periphery of the aggregate.
  • honeycomb structure used as a catalyst carrier a porous structure containing a first inorganic material (for example, ceramic particles), a second inorganic material (for example, inorganic fibers or ceramic particles having a large particle size) and an inorganic binder.
  • a honeycomb structure having a structure in which ceramic units are joined via a sealing material is disclosed (for example, see Patent Document 2).
  • a honeycomb formed body having substantially the same shape as the honeycomb fired body to be manufactured is manufactured.
  • the honeycomb fired body is manufactured by subjecting the body to various treatments such as sealing, degreasing, and firing.
  • the size of the honeycomb fired body is slightly smaller than the size of the honeycomb formed body through the firing treatment. And such a reduction in size cannot be avoided. Therefore, when manufacturing a honeycomb formed body, it was necessary to manufacture a honeycomb formed body slightly larger than the size of the honeycomb fired body in anticipation of size reduction.
  • the amount of size reduction is an expected value, and there may be variations in the size of the honeycomb fired body produced due to variations in the firing conditions. If the honeycomb fired bodies vary in size, when the honeycomb structure is manufactured by bundling a plurality of honeycomb fired bodies, the end faces of the honeycomb structure are uneven. Had to do. However, the end surface polishing is a process that should be omitted if possible. This is because the polishing process may cause inconvenience such as chipping on the end face of the honeycomb structure. Further, the increase in the number of processes directly leads to an increase in cost.
  • honeycomb formed body that is substantially the same shape as the honeycomb fired body to be manufactured is manufactured and subjected to various treatments as in the above-described method for manufacturing a honeycomb structure, productivity may be lowered. This tendency was particularly remarkable when a honeycomb structure having a short length in the longitudinal direction was manufactured. This will be explained in a little more detail.
  • a plurality of honeycomb formed bodies are stored in a single firing jig.
  • the size of the firing jig is the same, when the honeycomb formed body becomes small, the proportion of the space between the honeycomb formed bodies increases, and as a result, the productivity of the honeycomb fired body decreases. Will be.
  • the size of the firing jig is the same, for example, the number of honeycomb molded bodies that can be accommodated in the firing jig even if the size of the honeycomb molded body is halved.
  • the number of honeycomb formed bodies that can be stored is not more than twice. Further, it is desirable to use a firing jig having an optimal size according to the size of the honeycomb formed body.
  • the present inventors have intensively studied in order to solve the above-mentioned problems, and have completed the invention on a method for manufacturing a honeycomb structure with high productivity.
  • the manufacturing method of the honeycomb structure according to claim 1 Forming a columnar honeycomb formed body in which a plurality of cells are arranged in parallel in the longitudinal direction across the cell wall by molding a ceramic raw material; A step of producing a honeycomb fired body by firing the honeycomb formed body, Producing a honeycomb block using at least one honeycomb fired body; A method for manufacturing a honeycomb structure including: A method for manufacturing a honeycomb structured body comprising: a step of firing the honeycomb formed body to produce a honeycomb fired body, and then cutting the honeycomb fired body into at least two.
  • the obtained honeycomb fired body is cut.
  • the dimensional accuracy in the longitudinal direction of each honeycomb fired body to be manufactured is excellent, and the variation in the size of each honeycomb fired body can be reduced.
  • the honeycomb fired body is manufactured by subjecting the honeycomb formed body to a firing treatment, and the obtained honeycomb fired body is cut, It is suitable for manufacturing a short honeycomb structure.
  • the honeycomb molded body is accommodated in the firing jig and fired, and when the same size firing jig is used, as described above, the size of the honeycomb molded body is As it becomes smaller, productivity tends to decrease.
  • a honeycomb fired body having a predetermined length is manufactured by performing a firing process on the honeycomb formed body and then performing a cutting process. .
  • a firing jig similar to the conventional one can be suitably used.
  • the method for manufacturing a honeycomb structure according to claim 2 wherein the method for manufacturing the honeycomb structure according to claim 1, Further, the method includes a step of filling a plug material paste so that either one end of each cell of the cut honeycomb fired body is sealed.
  • the honeycomb structure used as a filter can be manufactured by filling the plug material paste into the predetermined end of each cell of the honeycomb fired body.
  • the predetermined part of the edge part of a cell can be more reliably sealed by solidifying or baking a sealing material paste.
  • the method for manufacturing a honeycomb structured body according to claim 5 is a method of manufacturing the honeycomb block of the method for manufacturing a honeycomb structured body according to claim 2 or 3, wherein the honeycomb fired body is cut into at least two. After that, before filling the sealing material paste, a plurality of honeycomb fired bodies obtained by cutting are bundled through the adhesive paste.
  • a method for manufacturing a honeycomb structured body according to claim 6 is a method of manufacturing the honeycomb block of the method for manufacturing a honeycomb structured body according to claim 2 or 3, wherein the honeycomb fired body is cut into at least two. And after filling the sealing material paste, A plurality of honeycomb fired bodies obtained by cutting are bundled through an adhesive paste.
  • a honeycomb structure hereinafter, also referred to as a collective honeycomb structure in which a honeycomb block is composed of a plurality of honeycomb fired bodies can be preferably manufactured.
  • a honeycomb structure having excellent reliability can be manufactured by forming a coat layer on the outer periphery.
  • by forming the coat layer it is possible to manufacture a honeycomb structure having high outer peripheral accuracy (dimensional accuracy of the outer peripheral side surface).
  • the composition of the sealing material paste is substantially the same as the composition of the adhesive paste.
  • internal stress due to the difference in the thermal expansion coefficient of the constituent members is less likely to occur in the manufactured honeycomb structure, and the reliability is more reliable.
  • a honeycomb structure having excellent properties can be manufactured.
  • the composition of the sealing material paste is substantially the same as the composition of the coating material paste.
  • internal stress due to the difference in the thermal expansion coefficient of the constituent members is less likely to occur in the manufactured honeycomb structure, and it is more reliable.
  • a honeycomb structure having excellent properties can be manufactured.
  • the composition of the sealing material paste is substantially the same as the composition of the ceramic raw material.
  • peeling and cracking are less likely to occur between the honeycomb fired body and the sealing portion during use.
  • the sealing portion is a sealing portion formed through a firing process, the above-described peeling and cracking are less likely to occur.
  • a method for manufacturing a honeycomb structured body Forming a columnar honeycomb formed body in which a plurality of cells are arranged in parallel in the longitudinal direction across the cell wall by molding a ceramic raw material; A step of filling the sealing material paste so as to seal predetermined portions at both ends of each cell of the honeycomb molded body, and then subjecting the honeycomb molded body to a firing treatment to produce a honeycomb fired body; Producing a honeycomb block comprising at least one honeycomb fired body; A method for manufacturing a honeycomb structure including: After the honeycomb formed body is fired to produce a honeycomb fired body, the honeycomb fired body is cut into at least two parts, and further cut to obtain a honeycomb fired body with a predetermined portion sealed at one end. A honeycomb structure manufactured by filling a predetermined portion with a plug material paste so that either one end of each cell is sealed, and then subjecting the plug material paste to firing treatment Is the method.
  • the obtained honeycomb fired body is cut.
  • the dimensional accuracy in the longitudinal direction of each honeycomb fired body to be manufactured is excellent, and the variation in the size of each honeycomb fired body can be reduced.
  • the method for manufacturing a honeycomb structured body according to claim 13 since the honeycomb fired body is manufactured by subjecting the honeycomb formed body to firing treatment, and then the obtained honeycomb fired body is cut, the length in the longitudinal direction is increased. It is suitable for manufacturing a short honeycomb structure. The reason for this is as already described.
  • a collective honeycomb structure in which a plurality of honeycomb fired bodies are bundled can be preferably manufactured.
  • the method for manufacturing a honeycomb structure according to claim 15, wherein the method for manufacturing the honeycomb structure according to claim 13 or 14, After performing the step of forming the honeycomb block, a step of applying a coating material paste to the outer periphery of the honeycomb block to form a coating layer is further performed.
  • a honeycomb structure having excellent reliability can be manufactured by forming a coat layer on the outermost periphery.
  • the method for manufacturing a honeycomb structure according to claim 16 is the method for manufacturing the honeycomb structure according to claim 15, wherein the composition of the adhesive paste and the composition of the coating material paste are substantially the same.
  • the composition of the adhesive paste and the composition of the coating material paste are substantially the same, internal stress due to the difference in the thermal expansion coefficient of the constituent members is less likely to occur in the manufactured honeycomb structure, and the reliability is further improved. Can be manufactured.
  • the composition of the sealing material paste is substantially the same as the composition of the ceramic raw material.
  • FIG. 1A to FIG. 1F are explanatory diagrams for explaining the manufacturing process of the first embodiment.
  • a wet mixture for forming a molded body is prepared by mixing silicon carbide powder, an organic binder, a plasticizer, a lubricant, and water having different average particle sizes as ceramic raw materials.
  • honeycomb formed body having a predetermined shape.
  • an extrusion mold is selected so that each cell has a predetermined shape.
  • the honeycomb formed body manufactured here has a length in the longitudinal direction that is approximately twice the length in the longitudinal direction of the design value of the honeycomb structure to be manufactured. At this time, the length of the honeycomb formed body is determined in consideration of the shrinkage during firing and the cutting allowance. Further, the honeycomb formed body is dried using a dryer.
  • the “honeycomb molded body” includes not only a green molded body immediately after extrusion molding but also a molded body after being subjected to a drying process and a degreasing process.
  • the honeycomb fired body 120 produced in the step (3) is cut into two equal parts in the longitudinal direction.
  • the honeycomb fired body is cut using a diamond cutter, an outer peripheral diamond grindstone, an inner peripheral diamond grindstone, a multi-wire, a multi-blade or the like.
  • a honeycomb fired body 20 having a length in the longitudinal direction that is the same as the length in the longitudinal direction of the design value of the honeycomb structure to be manufactured can be manufactured (see FIG. 1B). .
  • a sealing material paste is applied to the end portions of the cells 21 so that either one end portion of each cell 21 is sealed. Fill.
  • a sealing material paste with which it fills here what consists of an inorganic binder, an organic binder, and an inorganic particle is used, for example.
  • the sealing material paste may further contain inorganic fibers and / or whiskers. And the sealing material paste filled at this process is solidified by heating, and the sealing part 22a is formed (refer FIG.1 (c)).
  • FIG. 1E is a partially enlarged cross-sectional view taken along the line AA in FIG.
  • the honeycomb fired body aggregate 110 is cut along the broken line in FIG. 1D using a diamond cutter to form a honeycomb block, and a coating paste is applied to the outer peripheral surface of the honeycomb block.
  • the honeycomb structure 10 is completed by solidifying the coating material paste by heating to form the coating layer 12 (see FIG. 1 (f)).
  • the coating material paste for example, a paste-like composition having substantially the same composition as the sealing material paste is used.
  • FIG. 2 is a perspective view schematically showing an example of the honeycomb structure according to the first embodiment
  • FIG. 3A is an example of the honeycomb fired body constituting the honeycomb structure according to the first embodiment
  • FIG. 3B is a perspective view schematically showing
  • FIG. 3B is a sectional view taken along the line BB.
  • a plurality of honeycomb fired bodies 20 are bundled through an adhesive layer 11 to form a honeycomb block 15, and the outer periphery of the honeycomb block 15 is coated. Layer 12 is formed. Further, as shown in FIGS. 3A and 3B, the honeycomb fired body 20 has a large number of cells 21 arranged in parallel in the longitudinal direction (the direction of arrow a in FIG. 3A). A cell wall 23 that separates 21 from each other functions as a filter.
  • the cell 21 formed in the honeycomb fired body 20 is sealed with a sealing portion 22a formed by solidifying the sealing material paste at the end portion on the inlet side of the exhaust gas as shown in FIG. 3 (b).
  • the exhaust gas outlet side end portion is sealed with a sealing portion 22a formed by solidifying the sealing material paste, and the exhaust gas outlet side end portion flows into the sealed cell 21.
  • the arrow has shown the flow of exhaust gas.
  • the adhesive layer 11 and the coat layer 12 are formed using a paste that is substantially the same as the sealing material paste for forming the sealing portion 22a.
  • solidification means that the reaction between each component in the composition does not occur, and the moisture content in the composition is removed, so that the state of the composition changes due to physical action, and the adhesive properties. Is expressed (improves the hardness of the composition).
  • firing refers to decomposing and removing unstable components (moisture, binder, etc.) in the molded body, and forming a stable compound by advancing reactions (including recrystallization) between the components, The strength is further improved.
  • FIG. 4 is a cross-sectional view schematically showing an example of an exhaust gas purification apparatus in which a honeycomb structure is installed.
  • the exhaust gas purification device 40 is mainly disposed between the honeycomb structure 10, a casing (metal container) 41 that covers the outside of the honeycomb structure 10, and between the honeycomb structure 10 and the casing 41.
  • An inlet pipe 43 connected to an internal combustion engine such as an engine is connected to an end of the casing 41 on the side where the exhaust gas is introduced.
  • a discharge pipe 44 connected to the outside is connected to the other end.
  • the arrows indicate the flow of exhaust gas.
  • exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 41 through the introduction pipe 43 and flows into the honeycomb structure 10 from the inlet side cell. Then, after passing through the cell wall, PM is collected and purified by the cell wall, and then discharged from the outlet side cell to the outside of the honeycomb structure and discharged to the outside through the discharge pipe 44.
  • the regeneration process of the honeycomb structure 10 is performed.
  • the honeycomb structure 10 is heated by flowing gas heated using a heating means (not shown) into the through holes of the honeycomb structure, and PM deposited on the cell walls is burned and removed. Further, PM may be burned and removed using a post-injection method.
  • the honeycomb formed body is fired to produce a honeycomb fired body, and then the obtained honeycomb fired body is cut.
  • the dimensional accuracy in the longitudinal direction of each honeycomb fired body to be manufactured is excellent, and the variation in the size of each honeycomb fired body can be reduced. Therefore, it is suitable for manufacturing a honeycomb structure with less unevenness on the end face without performing a polishing process.
  • the obtained honeycomb fired body is cut after the honeycomb fired body is produced, two honeycomb fired bodies are produced from one honeycomb molded body, and the honeycomb fired body can be efficiently produced. it can. As a result, the production efficiency of the honeycomb structure is improved and the number of honeycomb structures produced per unit time can be increased, leading to a reduction in manufacturing cost.
  • the sealing material paste when forming the sealing portion that seals the end portion of the cell, the sealing material paste is solidified after being filled with the sealing material paste. The end portion can be reliably sealed.
  • Example 1 (1) Wet mixing of 52.8% by weight of silicon carbide coarse powder having an average particle size of 22 ⁇ m and 22.6% by weight of fine powder of silicon carbide having an average particle size of 0.5 ⁇ m with respect to the resulting mixture 2.1% by weight of acrylic resin, 4.6% by weight of organic binder (methyl cellulose), 2.8% by weight of lubricant (Unilube manufactured by NOF Corporation), 1.3% by weight of glycerin, and 13.8% by weight of water And then kneading to obtain a wet mixture, and then performing an extrusion molding step of extrusion molding. A raw honeycomb having substantially the same shape as that shown in FIG. A molded body was produced.
  • the raw honeycomb molded body was dried using a microwave dryer to prepare a dried honeycomb molded body. Then, after placing the dried honeycomb molded body on a firing jig, degreasing treatment is performed at 400 ° C., and further, firing treatment is performed under conditions of 2200 ° C. and 3 hours under an atmospheric pressure of argon atmosphere,
  • the porosity is 45%
  • the average pore diameter is 15 ⁇ m
  • the size is 34.3 mm ⁇ 34.3 mm ⁇ 300.5 mm
  • the number of cells (cell density) is 46.5 cells / cm 2 (300 cpsi)
  • the thickness of the cell wall A honeycomb fired body made of a silicon carbide sintered body having a thickness of 0.25 mm (10 mil) was produced.
  • honeycomb fired body was divided into two equal parts using an outer peripheral diamond grindstone having a plate thickness of 0.5 mm to obtain a honeycomb fired body of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm.
  • a sealing material paste was filled into the end of a predetermined cell so that one of the ends of each cell was sealed. Then, the filled sealing material paste was solidified by heating with hot air at 180 ° C. for 15 minutes.
  • the sealing material paste is composed of 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water.
  • An encapsulant paste was used.
  • an adhesive paste is applied to the side surface of the honeycomb fired body manufactured through the above steps (1) to (4), and the 16 honeycomb fired bodies are bonded via the adhesive paste, Furthermore, the adhesive paste is solidified at 180 ° C. for 20 minutes to produce a square pillar-shaped honeycomb fired body aggregate, and then the outer periphery of the honeycomb fired body aggregate is cut using a diamond cutter. Thus, a cylindrical honeycomb block having an adhesive layer thickness of 1 mm was produced.
  • a paste having the same composition as the sealing material paste used in the step (4) was used as the adhesive paste.
  • a coating material paste was applied to the outer peripheral portion of the honeycomb block to form a coating material paste layer. Then, this coating material paste layer was solidified at 180 ° C. for 20 minutes to produce a cylindrical honeycomb structure having a diameter of 143.8 mm and a length of 150 mm and having a coating layer formed on the outer periphery. At this time, as the coating material paste, a paste having the same composition as that of the sealing material paste used in the step (4) was used.
  • Example 1 (Comparative Example 1) (1) Except that the length in the longitudinal direction of the raw honeycomb molded body produced through the extrusion forming step is approximately halved, the same as in the step (1) of Example 1 is shown in FIG. A raw honeycomb formed body having substantially the same shape as the above-described shape and having no cells sealed was produced.
  • the raw honeycomb molded body was dried using a microwave dryer to prepare a dried honeycomb molded body. Thereafter, the end portion of a predetermined cell was filled with a sealing material paste so that either one end portion of each cell was sealed.
  • a sealing material paste a composition having the same composition as the wet mixture for forming a molded body was used.
  • the honeycomb molded body filled with the sealing material paste was subjected to a degreasing process and a firing process under the same conditions as in the step (2) of Example 1 to produce a honeycomb fired body.
  • the manufactured honeycomb fired body has a porosity of 45%, an average pore diameter of 15 ⁇ m, a size of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm, and the number of cells (cell density) of 46.5 cells / cm 2.
  • a honeycomb fired body made of a silicon carbide sintered body (300 cpsi) and having a cell wall thickness of 0.25 mm (10 mil).
  • the pressure loss and the collection limit of the honeycomb structure manufactured in Example 1 were comparable to those of the honeycomb structure manufactured in Comparative Example 1 (conventional method).
  • FIG. 5A to FIG. 5F are explanatory diagrams for explaining the manufacturing process of the second embodiment.
  • an adhesive paste serving as an adhesive layer is applied to the side surface of the honeycomb fired body 120 produced in the step (1) to form an adhesive paste layer.
  • the process of sequentially stacking other honeycomb fired bodies is repeated to produce a honeycomb fired body aggregate 110 ′ in which a predetermined number of honeycomb fired bodies are bundled.
  • the aggregate of the honeycomb fired bodies is heated to solidify the adhesive paste layer to form the adhesive layer 11 (see FIG. 5B).
  • the adhesive paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the sealing material paste may further contain inorganic fibers and / or whiskers.
  • the honeycomb fired body aggregate 110 ′ produced in the step (2) is divided into two equal parts in the longitudinal direction by a diamond cutter, an outer peripheral diamond grindstone, an inner peripheral mold.
  • An aggregate 110 of honeycomb fired bodies having the same longitudinal length as the design value of the honeycomb structure to be manufactured is manufactured by cutting with a diamond grindstone, a multi-wire, a multi-blade or the like (FIG. 5). (See (c)).
  • FIG. 5E is a partially enlarged sectional view taken along the line CC of FIG. 5D.
  • the sealing material paste a paste having substantially the same composition as that of the adhesive paste used in the step (2) is used.
  • the honeycomb structure 10 is completed (see FIG. 5 (f)).
  • the coating material paste for forming the coating layer a paste having substantially the same composition as the sealing material paste used in the step (4) is used.
  • honeycomb structure in which the sealing portions at both ends of each cell are sealing portions formed by solidifying the sealing material paste.
  • the configuration of the honeycomb structure manufactured in the present embodiment is the same as that of the honeycomb structure manufactured in the first embodiment.
  • Example 2 (1) First, using the same method as the steps (1) and (2) of Example 1, the porosity is 45%, the average pore diameter is 15 ⁇ m, and the size is 34.3 mm ⁇ 34.3 mm ⁇ 300.
  • an adhesive paste is applied to the side surface of the manufactured honeycomb fired body manufactured through the step (1), and the 16 honeycomb fired bodies are bonded via the adhesive paste.
  • the adhesive paste is composed of 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water. Adhesive paste was used.
  • the aggregate of the honeycomb fired bodies was divided into two equal parts using an outer peripheral diamond grindstone having a plate thickness of 0.5 mm to obtain an aggregate of honeycomb fired bodies having a longitudinal length of 150 mm.
  • a sealing portion was formed at one end of each cell.
  • the sealing material paste a paste having the same composition as that of the adhesive paste used in the step (2) was used.
  • the outer periphery of the aggregate of the honeycomb fired bodies was cut using a diamond cutter to produce a cylindrical honeycomb block having a thickness of 1 mm as an adhesive layer.
  • a coat layer using the same method as in the process of manufacturing the honeycomb structure.
  • the coating material paste a paste having the same composition as that of the sealing material paste used in the step (4) was used.
  • FIG. 6A to FIG. 6F are explanatory diagrams for explaining the manufacturing process of the third embodiment.
  • a plurality of the honeycomb fired bodies 20 produced in the step (1) are bundled through the adhesive layer 11 using the same method as in the step (6) of the first embodiment, An aggregate 110 of honeycomb fired bodies is produced.
  • the adhesive paste a paste having the same composition as that of the sealing material paste used in the following step (3) is used (see FIG. 6C).
  • FIG. 6E is a partially enlarged cross-sectional view taken along the line DD in FIG. 6D.
  • a honeycomb structure is completed by cutting and forming a coat layer using the same method as in the step (7) of the first embodiment (see FIG. 6F).
  • the coating material paste a paste having substantially the same composition as the sealing material paste used in the step (3) is used.
  • honeycomb structure in which the sealing portions at both ends of each cell are sealing portions formed by solidifying the sealing material paste. it can.
  • the configuration of the honeycomb structure manufactured in the present embodiment is the same as that of the honeycomb structure manufactured in the first embodiment.
  • Example 3 a honeycomb fired body of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm was produced using the same method as in (1) to (3) of Example 1.
  • an adhesive paste is applied to the side surface of the manufactured honeycomb fired body manufactured through the step (1), and the 16 honeycomb fired bodies are bonded via the adhesive paste.
  • the adhesive paste was solidified at 180 ° C. for 20 minutes to produce a quadrangular columnar honeycomb fired body aggregate.
  • the adhesive paste is composed of 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water. Adhesive paste was used.
  • a sealing portion was formed at one end of each cell.
  • the sealing material paste a paste having the same composition as that of the adhesive paste used in the step (2) was used.
  • the outer periphery of the aggregate of the honeycomb fired bodies was cut using a diamond cutter to produce a cylindrical honeycomb block having a 1 mm thick adhesive layer.
  • a coat layer using the same method as in the process of manufacturing the honeycomb structure.
  • the coating material paste a paste having the same composition as that of the sealing material paste used in the step (3) was used.
  • the manufactured honeycomb structure has the same configuration. And the process of the manufacturing method of the honeycomb structure which concerns on each embodiment is as showing in FIG.
  • FIG. 7 is a process diagram in the method for manufacturing a honeycomb structured body according to the first to third embodiments. As shown in FIG. 7, in the method for manufacturing a honeycomb structure according to the first to third embodiments, the timing for cutting the honeycomb fired body, the timing for binding a plurality of honeycomb fired bodies, and the cutting are obtained. The timing of filling the cells of the honeycomb fired body with the plug material paste is different.
  • FIG. 8A to FIG. 8G are explanatory diagrams for explaining the manufacturing process of the fourth embodiment.
  • a wet mixture for forming a molded body is prepared by mixing silicon carbide powder, an organic binder, a plasticizer, a lubricant, and water having different average particle sizes as ceramic raw materials.
  • honeycomb formed body 130 having a predetermined shape (see FIG. 8A).
  • an extrusion mold is selected so that each cell has a predetermined shape.
  • the honeycomb formed body 130 produced here has a length in the longitudinal direction that is approximately twice the length in the longitudinal direction of the design value of the honeycomb structure to be produced. At this time, the length of the honeycomb formed body is determined in consideration of the shrinkage during firing and the cutting allowance. Further, the honeycomb formed body is dried using a dryer.
  • a predetermined amount of a plug material paste is filled into predetermined ends of each cell of the honeycomb formed body 130 to seal each cell.
  • a sealing mask is applied to the end face of the honeycomb formed body, and only the cells that need to be sealed are filled with the sealing material paste.
  • the sealing material paste is filled so that the cells are sealed in a checkered pattern at each end face, and each cell is sealed only at one end.
  • the sealing material paste has cells that are sealed in a checkered pattern at each end surface, and each cell includes both cells that are sealed at both ends and cells that are not sealed at both ends. It may be filled as is.
  • a composition having substantially the same composition as the wet mixture is used as the sealing material paste.
  • the honeycomb formed body in which the predetermined end of each cell is sealed is placed on a firing jig, the honeycomb formed body is heated in a degreasing furnace, and degreasing treatment is performed to decompose and remove organic substances in the honeycomb formed body Do.
  • the honeycomb molded body that has been subjected to the degreasing treatment is placed in a firing furnace while being placed on a firing jig, and is fired at a predetermined temperature (for example, 2200 to 2300 ° C.). 120 is manufactured (see FIG. 8B).
  • the sealing part 22b formed at both ends of the honeycomb fired body is a sealing part obtained by firing the sealing material paste.
  • the honeycomb fired body produced in the step (4) is cut into two equal parts in the longitudinal direction.
  • the honeycomb fired body is cut using a diamond cutter, an outer peripheral diamond grindstone, an inner peripheral diamond grindstone, a multi-wire, a multi-blade or the like.
  • a honeycomb fired body 20 having a length in the longitudinal direction that is the same as the length in the longitudinal direction of the design value of the honeycomb structure to be manufactured can be manufactured (see FIG. 8C).
  • the sealing portion 22b is formed only in a predetermined cell on one end face side.
  • the end of the cell that needs to be sealed so that either one end of each cell 21 is sealed
  • the sealing material paste is filled in the end portions of the cells that are not sealed yet.
  • the plug material paste like the plug material paste filled in the above (3), a paste material having substantially the same composition as the wet mixture used in forming the honeycomb formed body is used.
  • step (6) the honeycomb fired body that has undergone step (6) is again fired.
  • the baking treatment is performed by the same method as in the step (4).
  • the honeycomb fired body 20 in which the sealing portion 22b formed by subjecting the sealing material paste to the firing treatment is formed at the predetermined end of each cell 21 can be manufactured (FIG. 8 ( d)).
  • an adhesive paste serving as the adhesive layer 11 is applied to the side surface of the honeycomb fired body in which predetermined end portions of each cell are sealed to form an adhesive paste layer.
  • a process of sequentially stacking other honeycomb fired bodies on the paste layer is repeated to produce a honeycomb fired body aggregate 110 in which a predetermined number of honeycomb fired bodies are bundled.
  • the adhesive paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the adhesive paste may further contain inorganic fibers and / or whiskers.
  • the aggregate of the honeycomb fired bodies is heated to solidify the adhesive paste layer by heating to form the adhesive layer 11 (see FIGS. 8 (e) and 8 (f)).
  • FIG. 8 (f) is a partially enlarged cross-sectional view taken along the line EE of FIG. 8 (e).
  • the honeycomb fired body aggregate 110 is subjected to cutting along the broken line in FIG. 8E to form a honeycomb block using a diamond cutter, and a coating material paste is applied to the outer peripheral surface of the honeycomb block. Then, the coating material paste is heated and solidified to form the coating layer 12, thereby completing the honeycomb structure 10 (see FIG. 8G).
  • the coating material paste for example, a paste having substantially the same composition as that of the adhesive paste used in the step (8) is used.
  • FIG. 9 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb structure according to the fourth embodiment
  • FIG. 9 (b) is a sectional view taken along line FF. .
  • the honeycomb structure of the present embodiment forms a honeycomb block by binding a plurality of honeycomb fired bodies through an adhesive layer, and further, on the outer periphery of the honeycomb block. A coat layer is formed.
  • the honeycomb fired body 20 constituting the honeycomb structure of the present embodiment is in the longitudinal direction (the direction of arrow a in FIG. 9A) as shown in FIGS. 9A and 9B.
  • a large number of cells 21 are arranged in parallel, and a cell wall 23 that separates the cells 21 functions as a filter.
  • the cells 21 formed in the honeycomb fired body 20 are sealed with the sealing portion 22b formed by firing the sealing material paste at the end on the inlet side of the exhaust gas, as shown in FIG. 9B.
  • the exhaust gas outlet side end portion is sealed with a sealing portion 22b formed by firing the sealing material paste, and the exhaust gas outlet side end portion flows into the sealed cell 21 Always flows through the cell wall 23 separating the cells 21 and then flows out of the cell 21 where the gas inlet end is sealed.
  • PM Is captured by the cell wall 23 and the exhaust gas is purified.
  • the arrow shows the flow of exhaust gas.
  • the sealing portion that seals one end surface side of the sealing portion that seals the cells is formed through one firing process, and the other end surface side is formed. It has the same configuration as the honeycomb structure manufactured in the first embodiment, except that the sealing portion for sealing is formed through two firing processes.
  • the honeycomb formed body is fired to produce a honeycomb fired body, and then the obtained honeycomb fired body is cut.
  • the dimensional accuracy in the longitudinal direction of each honeycomb fired body to be manufactured is excellent, and the variation in the size of each honeycomb fired body can be reduced. Therefore, it is suitable for manufacturing a honeycomb structure with less unevenness on the end face without performing a polishing process.
  • the obtained honeycomb fired body is cut after the honeycomb fired body is produced, two honeycomb fired bodies are produced from one honeycomb molded body, and the honeycomb fired body can be efficiently produced. it can. As a result, the production efficiency of the honeycomb structure is improved and the number of honeycomb structures produced per unit time can be increased, leading to a reduction in manufacturing cost.
  • the sealing portion for sealing the end portion of the cell is filled with the sealing material paste, the sealing portion is formed through one or two firing processes. A predetermined end of each cell is surely sealed.
  • the coated honeycomb structure since the coat layer is formed on the outer periphery of the honeycomb structure, the manufactured honeycomb structure does not leak PM from the outer peripheral side surface of the honeycomb structure when purifying exhaust gas, It will be excellent in performance.
  • Example 4 (1) In the same manner as in the step (1) of Example 1, a raw honeycomb molded body having substantially the same shape as that shown in FIG. did.
  • the raw honeycomb formed body was dried using a microwave dryer to prepare a dried honeycomb formed body. Thereafter, the plug material paste was filled into predetermined cells of the dried honeycomb molded body. Specifically, in each cell, the sealing material paste was filled so that either one end was sealed. Then, it dried again using the dryer.
  • the sealing material paste a paste having the same composition as the wet mixture used when the honeycomb formed body was produced by extrusion molding was used.
  • the honeycomb fired body is divided into two equal parts by the same method as in the step (3) of Example 1, and the size of only one end face side of a predetermined cell is 34.3 mm.
  • a honeycomb fired body of ⁇ 34.3 mm ⁇ 150 mm was produced.
  • the honeycomb fired body obtained in the step (4) is sealed at the end of a cell that has not been sealed so that one of the ends of each cell is sealed.
  • Filled with material paste a paste having the same composition as the wet mixture used when the honeycomb formed body was produced by extrusion molding was used.
  • step (6) Next, the honeycomb fired body was fired again under the same conditions as in step (3) above. In this step, the sealing material paste filled in the step (5) becomes a sealing portion formed through a baking process.
  • an adhesive paste is applied to the side surface of the honeycomb fired body manufactured through the steps (1) to (6), and the 16 honeycomb fired bodies are bonded via the adhesive paste. Furthermore, the adhesive paste is solidified at 180 ° C. for 20 minutes to produce a square pillar-shaped honeycomb fired body aggregate, and then the outer periphery of the honeycomb fired body aggregate is cut using a diamond cutter. Thus, a cylindrical honeycomb block having an adhesive layer thickness of 1 mm was produced.
  • the adhesive paste is composed of 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water. Adhesive paste was used.
  • a coating material paste was applied to the outer peripheral portion of the honeycomb block to form a coating material paste layer. Then, this coating material paste layer was dried at 180 ° C. for 20 minutes to produce a cylindrical honeycomb structure having a diameter of 143.8 mm and a length of 150 mm and having a coating layer formed on the outer periphery.
  • a paste having the same composition as the adhesive paste used in the step (7) was used as the coating material paste.
  • the sealing portion on one end face side is formed through one firing process, and the sealing portion on the other end face side is subjected to two firing processes. It will be formed after that.
  • the honeycomb structure manufactured in Example 4 had the same pressure loss and collection limit as those of the honeycomb structure manufactured in Comparative Example 1.
  • FIG. 10A to FIG. 10G are explanatory views for explaining a manufacturing process of the fifth embodiment.
  • a sealing portion 22b that has undergone a firing process is formed on one end face side.
  • the other end face side is filled with the sealing material paste 122, and the honeycomb fired body 20 having the same length in the longitudinal direction as the design value of the honeycomb structure to be manufactured is manufactured (FIG. 10A).
  • FIG. 10D is a partially enlarged cross-sectional view taken along the line GG in FIG.
  • the adhesive paste a paste having substantially the same composition as that of the wet mixture used in manufacturing the honeycomb formed body is used.
  • FIG. 10F is a partially enlarged cross-sectional view taken along the line HH in FIG.
  • honeycomb structure 10 is completed through the same process as the process (9) of the fourth embodiment (see FIG. 10G).
  • a honeycomb structure can be manufactured through such steps.
  • the configuration of the honeycomb structure manufactured by the manufacturing method of the present embodiment is the same as the configuration of the honeycomb structure of the fourth embodiment except that the adhesive layer is formed through a firing process.
  • the same function and effect as those of the fourth embodiment can be enjoyed.
  • the adhesive layer is formed through the firing process, the strength of bonding the honeycomb fired bodies to each other is increased, and after the PM is collected by the honeycomb structure, the regeneration process of the honeycomb structure is performed. When this is performed, cracks due to heat are unlikely to occur. Furthermore, it is possible to prevent the honeycomb fired body from being displaced due to the pressure of the exhaust gas during use or from falling off the honeycomb fired body.
  • Example 5 (1) First, using the same method as in the steps (1) to (4) of Example 4, the size sealed only on one end face side of a predetermined cell is 34.3 mm ⁇ 34.3 mm ⁇ . A 150 mm honeycomb fired body was produced.
  • a sealing material paste is applied to the end portions of the cells that have not been sealed so that any one end portion of each cell is sealed. Filled.
  • the sealing material paste a paste having the same composition as the wet mixture used when the honeycomb formed body was produced by extrusion molding was used.
  • the honeycomb fired body was again fired under the same conditions as in the step (3) of Example 4.
  • the sealing material paste filled in the step (2) and the adhesive paste applied in the step (3) are subjected to a baking treatment to become a sealing portion and an adhesive layer, respectively.
  • FIG. 11A to FIG. 11G are explanatory diagrams for explaining the manufacturing process of the sixth embodiment.
  • an adhesive paste serving as an adhesive layer is applied to the side surface of the honeycomb fired body 20 in which the end of a predetermined cell on one end face side is sealed to form an adhesive paste layer 111.
  • an assembly 110 of honeycomb fired bodies in which a predetermined number of honeycomb fired bodies 20 are bundled is manufactured by sequentially repeating the process of laminating other honeycomb fired bodies 20 on the adhesive paste layer 111 (FIG. 11 ( c) and FIG. 11 (d)).
  • FIG. 11D is a partially enlarged cross-sectional view taken along the line II of FIG. 11C.
  • the adhesive paste a paste-like material having substantially the same composition as the wet mixture used when the honeycomb formed body is formed is used.
  • the cells are still sealed among the end portions of the cells that need to be sealed so that any one end portion of each cell is sealed. Fill the end of the cell with no sealant paste.
  • the sealing material paste a paste-like material having substantially the same composition as the wet mixture used when the honeycomb formed body is formed is used.
  • the honeycomb fired body aggregate 110 having undergone the step (3) is again fired.
  • the firing treatment is performed by the same method as the step (4) of the fourth embodiment.
  • the honeycomb fired body aggregate 110 in which the sealing portions 22b formed by subjecting the sealing material paste to the firing treatment are formed at predetermined end portions of the respective cells 21 (Refer FIG.11 (e) and FIG.11 (f)).
  • FIG. 11F is a partially enlarged cross-sectional view taken along the line JJ of FIG.
  • the adhesive layer 11 ′ is also formed through the firing process.
  • the honeycomb structure 10 is completed by performing the same process as the process (9) of the fourth embodiment (see FIG. 11G).
  • a honeycomb structure can be manufactured through such steps.
  • the configuration of the honeycomb structure manufactured in the present embodiment is the same as the configuration of the honeycomb structure manufactured in the fifth embodiment.
  • Example 6 (1) First, using the same method as in the steps (1) to (4) of Example 4, the size sealed only on one end face side of a predetermined cell is 34.3 mm ⁇ 34.3 mm ⁇ . A 150 mm honeycomb fired body was produced.
  • an adhesive paste is applied to the side surface of the honeycomb fired body manufactured through the step (1), and the 16 honeycomb fired bodies are bonded to each other through the adhesive paste.
  • An assembly was produced.
  • the adhesive paste a paste having the same composition as that of the wet mixture used when the honeycomb formed body was produced by extrusion molding was used.
  • sealing material paste a paste having the same composition as the wet mixture used when the honeycomb formed body was produced by extrusion molding was used.
  • the honeycomb fired body was again fired under the same conditions as in the step (3) of Example 4.
  • the adhesive paste applied in the step (2) and the sealing material paste filled in the step (3) are subjected to a baking process to become an adhesive layer and a sealing portion, respectively.
  • the honeycomb structure manufactured in Example 6 had the same pressure loss and collection limit as those of the honeycomb structure manufactured in Comparative Example 1.
  • the timing of performing the second baking process is different, or the timing of filling the sealing material paste is different.
  • the process of the manufacturing method of the honeycomb structure which concerns on each embodiment is as showing in FIG.
  • FIG. 12 is a process diagram in the method for manufacturing a honeycomb structured body according to the fourth to sixth embodiments. As shown in FIG. 12, in the method for manufacturing a honeycomb structure according to the fourth embodiment and the fifth embodiment, the timing of performing the second firing process is different, and as a result, the target to be fired is different. It becomes. Further, in the method for manufacturing a honeycomb structure according to the sixth embodiment, the timing for binding a plurality of honeycomb fired bodies is different as compared with the fifth embodiment.
  • This embodiment is different from the method for manufacturing a honeycomb structure according to the first embodiment in that a sealing material is formed by firing a plug material paste filled in predetermined end portions of cells.
  • a sealing material is formed by firing a plug material paste filled in predetermined end portions of cells.
  • the end portion of each cell of the honeycomb fired body is filled with a sealing material paste so that the end portion of each cell is sealed. Then, a baking process is performed on the conditions similar to the process of (1) of 1st embodiment, and a sealing part is formed by baking the said sealing material paste.
  • a sealing material paste filled here for example, a paste-like material having substantially the same composition as that of the wet mixture used when forming the honeycomb formed body is used.
  • a honeycomb structure is completed in the same manner as the steps (6) and (7) of the first embodiment.
  • the adhesive paste and the coating material paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the sealing material paste may further contain inorganic fibers and / or whiskers.
  • the sealing portions at both ends of each cell are sealing portions formed through a firing process.
  • the configuration of the honeycomb structure manufactured in the present embodiment is the same as that of the honeycomb structure manufactured in the first embodiment except that the sealing portion is formed through a firing process.
  • the same functions and effects as the effects (1) and (3) of the first embodiment can be enjoyed.
  • This embodiment is different from the method for manufacturing a honeycomb structure in the seventh embodiment in that an adhesive paste is fired to form an adhesive layer, and a coating material paste is fired to form a coat layer.
  • (1) In the method for manufacturing a honeycomb structure of the present embodiment, first, in any cell using the same method as the steps (1) to (4) of the method for manufacturing the honeycomb structure of the first embodiment. A honeycomb fired body in which no sealing portion is formed is also produced.
  • an adhesive paste serving as an adhesive layer is applied to the side surface of the honeycomb fired body to form an adhesive paste layer, and other honeycomb fired bodies are sequentially placed on the adhesive paste layer.
  • the process of laminating is repeated to produce an aggregate of honeycomb fired bodies in which a predetermined number of honeycomb fired bodies are bundled.
  • the adhesive paste a paste having substantially the same composition as that of the wet mixture used in manufacturing the honeycomb formed body is used.
  • the aggregate of honeycomb fired bodies produced in the step (3) is subjected to a firing process under the same conditions as in the step (3) of the first embodiment.
  • the sealing material paste filled in the step (2) and the adhesive paste layer formed in the step (3) are baked to form a sealing portion and an adhesive layer, respectively. When it is done.
  • the aggregate of honeycomb fired bodies is cut using a diamond cutter to form a honeycomb block, the coating material paste is applied to the outer peripheral surface of the honeycomb block, and the coating material paste is fired by heating.
  • a honeycomb structure is completed by forming a coating layer.
  • the coating material paste a paste having substantially the same composition as the wet mixture used when the honeycomb formed body is manufactured is used.
  • the sealing portions at both ends of each cell are both sealing portions formed through the firing treatment, and the adhesive layer is formed through the firing treatment.
  • a honeycomb structure can be manufactured which is a material layer and the coat layer is a coat layer formed through a firing process.
  • the method for manufacturing a honeycomb structure according to the first to eighth embodiments is a method for manufacturing a honeycomb structure in which predetermined cells are sealed. Therefore, such a honeycomb structure can be suitably used as a filter.
  • the main component of the constituent material is silicon carbide, but the main component of the constituent material of the honeycomb structure manufactured in the embodiment of the present invention is
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, titanium nitride, carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, alumina, zirconia, cordierite, mullite, aluminum titanate, etc.
  • silicon carbide It may be an oxide ceramic or the like. Of these, non-oxide ceramics are preferred, and silicon carbide is particularly preferred. It is because it is excellent in heat resistance, mechanical strength, thermal conductivity and the like.
  • silicon-containing ceramics in which metallic silicon is blended with the above-mentioned ceramics, ceramics bonded with silicon or a silicate compound, and the like are also cited as the main components of the constituent materials, and among these, silicon carbide is blended with silicon carbide. (Silicon-containing silicon carbide) is desirable. In particular, a silicon-containing silicon carbide ceramic containing 60 wt% or more of silicon carbide is desirable.
  • the manufacturing method of the honeycomb structure according to the first to eighth embodiments is a manufacturing method of the honeycomb structure in which predetermined cells are sealed.
  • the manufacturing method of the honeycomb structure of the present embodiment Is a method for manufacturing a honeycomb structure which is not sealed.
  • FIG. 13A to FIG. 13D are explanatory views for explaining a manufacturing process of the ninth embodiment.
  • the manufacturing method of the honeycomb structure of the present embodiment first, the following ceramic raw materials are used as the ceramic raw material, and the manufacturing method of the honeycomb structure of the first embodiment (1) and (2) A honeycomb formed body that has been subjected to a drying process is manufactured using the same method as in the step.
  • a wet mixture containing silica-alumina fibers, alumina particles, and an inorganic binder is used as the ceramic raw material.
  • the honeycomb formed body is subjected to degreasing treatment and firing treatment, and the honeycomb fired body 120 is manufactured.
  • the degreasing conditions are preferably 400 ° C. and 2 hours.
  • the firing temperature is preferably 600 to 1200 ° C., more preferably 600 to 1000 ° C.
  • the honeycomb structured body in which the cells are not sealed by performing the same steps as the steps (4), (6) and (7) of the manufacturing method of the honeycomb structured body of the first embodiment. 10 is completed (see FIGS. 13B to 13D).
  • the adhesive paste and the coating material paste use pastes having substantially the same structure.
  • the adhesive paste and the coating material paste for example, a mixture of an inorganic binder, ceramic particles, inorganic fibers and / or whiskers, or the like is used.
  • the honeycomb structure manufactured by such a manufacturing method can be suitably used as a catalyst carrier.
  • the same function and effect as the function and effect (1) of the first embodiment can be enjoyed.
  • the adhesive layer and the coat layer are formed using substantially the same material, internal stress is generated in the manufactured honeycomb structure due to the difference in the thermal expansion coefficients of the constituent materials. It will be difficult to perform and will be more reliable.
  • Example 7 (1) 40% by weight of ⁇ -alumina particles having an average particle diameter of 2 ⁇ m, 10% by weight of silica-alumina fibers (average fiber diameter of 10 ⁇ m, average fiber length of 100 ⁇ m, aspect ratio of 10), silica sol (solid concentration of 30% by weight) 50% by weight Extrusion process in which 6 parts by weight of methylcellulose (organic binder), a plasticizer and a lubricant are added and kneaded to 100 parts by weight of the resulting mixture to obtain a wet mixture, followed by extrusion
  • a raw honeycomb formed body having substantially the same shape as that shown in FIG. 3A and having no cell sealing was produced.
  • the raw honeycomb molded body was dried using a microwave dryer and a hot air dryer to prepare a dried honeycomb molded body. Then, after placing the dried body of the honeycomb formed body on a firing jig, degreasing treatment is performed at 400 ° C., and further, firing treatment is performed at 800 ° C. for 2 hours, whereby the porosity is 45%, Honeycomb firing with an average pore diameter of 15 ⁇ m, a size of 34.3 mm ⁇ 34.3 mm ⁇ 300.5 mm, a cell number (cell density) of 93 cells / cm 2 (600 cpsi), and a cell wall thickness of 0.2 mm The body was manufactured.
  • honeycomb fired body was divided into two equal parts using a peripheral diamond grindstone having a plate thickness of 0.5 mm to obtain a honeycomb fired body of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm.
  • an adhesive paste is applied to the side surface of the honeycomb fired body manufactured through the above steps (1) to (3), and the 16 honeycomb fired bodies are adhered through the adhesive paste.
  • a rectangular columnar honeycomb fired body aggregate was prepared, and then the outer periphery of the honeycomb fired body aggregate was cut using a diamond cutter to prepare a cylindrical honeycomb block.
  • the adhesive paste ⁇ -alumina (average particle diameter 2 ⁇ m) 29 wt%, silica-alumina fiber (average fiber diameter 10 ⁇ m, average fiber length 100 ⁇ m) 7 wt%, silica sol (solid concentration 30 wt%) 34 wt% %, 5% by weight of carboxymethyl cellulose, and 25% by weight of water were used.
  • a coating material paste was applied to the outer peripheral portion of the honeycomb block to form a coating material paste layer.
  • the coating material paste the same paste as the adhesive paste used in the step (4) was used.
  • the adhesive paste and the coating material paste are dried at 120 ° C., and further solidified at 700 ° C. for 2 hours.
  • the diameter of the adhesive layer is 1 mm and the coating layer is formed on the outer periphery.
  • a columnar honeycomb structure of 143.8 mm ⁇ length 150 mm was manufactured.
  • the process order of the honeycomb structure manufacturing method is different from the process order of the honeycomb structure manufacturing method in the ninth embodiment.
  • FIG. 14A to FIG. 14E are explanatory diagrams for explaining the manufacturing process of the tenth embodiment.
  • (1) In the method for manufacturing a honeycomb structure of the present embodiment, first, the honeycomb fired body is obtained by performing the same steps as the steps (1) and (2) of the method for manufacturing the honeycomb structure of the ninth embodiment. 120 is manufactured (see FIG. 14A).
  • a honeycomb fired body aggregate 110 ′ in which a predetermined number of honeycomb fired bodies are bundled is obtained using the same method as the process (2) of the method for manufacturing a honeycomb structure according to the second embodiment. It is manufactured (see FIG. 14B).
  • the honeycomb fired body aggregate 110 ′ is cut using the same method as the process (3) of the method for manufacturing the honeycomb structure according to the second embodiment, and the honeycomb fired body aggregate 110 is cut. Is manufactured (see FIG. 14C).
  • Example 8 (1) Using a method similar to the steps (1) and (2) of Example 7, the porosity is 45%, the average pore diameter is 15 ⁇ m, and the size is 34.3 mm ⁇ 34.3 mm ⁇ 300.5 mm. A honeycomb fired body having a cell number (cell density) of 93 cells / cm 2 (600 cpsi) and a cell wall thickness of 0.2 mm was manufactured.
  • the aggregate of the honeycomb fired bodies was divided into two equal parts using an outer peripheral diamond grindstone having a plate thickness of 0.5 mm. Subsequently, a cylindrical honeycomb block was manufactured by cutting the outer periphery of the aggregate of the honeycomb fired bodies using a diamond cutter.
  • a coating material paste was applied to the outer peripheral portion of the honeycomb block to form a coating material paste layer.
  • the same paste as the adhesive paste used in the step (2) was used as the coating material paste.
  • the adhesive paste and the coating material paste are dried at 120 ° C., and further solidified at 700 ° C. for 2 hours.
  • the diameter of the adhesive layer is 1 mm and the coating layer is formed on the outer periphery.
  • a columnar honeycomb structure of 143.8 mm ⁇ length 150 mm was manufactured.
  • the ninth and tenth embodiments described so far have different manufacturing processes for the honeycomb structure
  • the manufactured honeycomb structure has the same configuration.
  • the process of the manufacturing method of the honeycomb structure which concerns on each embodiment is as showing in FIG.
  • FIG. 15 is a process diagram in the method for manufacturing a honeycomb structured body according to the ninth embodiment and the tenth embodiment. As shown in FIG. 15, in the method for manufacturing a honeycomb structure according to the ninth embodiment and the tenth embodiment, the timing for cutting the honeycomb fired body and the timing for binding a plurality of honeycomb fired bodies are different. .
  • the method for manufacturing a honeycomb structure according to the ninth and tenth embodiments is a method for manufacturing a honeycomb structure in which predetermined cells are not sealed. Therefore, such a honeycomb structure can be suitably used as a catalyst carrier.
  • a wet mixture containing inorganic fibers (silica-alumina fibers), inorganic particles (alumina particles), and an inorganic binder is used as the ceramic raw material. It is desirable.
  • silica-alumina fiber for example, alumina fiber, silica fiber, silicon carbide fiber, glass fiber, potassium titanate fiber and the like can be used. These may be used alone or in combination of two or more.
  • the inorganic particles for example, silicon carbide, silicon nitride, alumina, silica, zirconia, titania, ceria, mullite and the like can be used in addition to the alumina particles. These may be used alone or in combination of two or more.
  • inorganic sol for example, inorganic sol, a clay-type binder, etc. are mentioned.
  • alumina sol, silica sol, titania sol, or water glass is desirable.
  • clay binder clay, kaolin, montmorillonite, or double chain structure type clay (sepiolite, attapulgite, etc.) is desirable. These may be used alone or in combination of two or more.
  • the inorganic binder does not necessarily need to be blended.
  • Such a ceramic raw material has a high specific surface area and is suitable for producing a honeycomb structure that can be used as a catalyst carrier (honeycomb catalyst).
  • a ceramic raw material containing inorganic fibers, inorganic particles, and an inorganic binder is used as a ceramic raw material for manufacturing a honeycomb structure used as a catalyst carrier.
  • a ceramic raw material for manufacturing the honeycomb structure a cordierite or a raw material for producing a fired body of aluminum titanate may be used.
  • a degreasing condition and baking conditions are changed suitably according to a ceramic raw material.
  • the shapes of the cross sections perpendicular to the longitudinal direction of the honeycomb fired bodies of the respective cells are all the same and are quadrangular.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body of each cell may be, for example, an octagon and a quadrangle.
  • a large number of cells 71a and 71b are arranged in parallel in the longitudinal direction (in the direction of arrow a in FIG. 16A) with the cell wall 73 therebetween.
  • One end of each of the cells 71a and 71b is sealed with a sealing portion 72a.
  • the shape of the cross section perpendicular to the longitudinal direction of the cell 71a is a tetragon
  • the shape of the cross section perpendicular to the longitudinal direction of the cell 71b is an octagon.
  • the cells of the honeycomb structure may be sealed at predetermined end portions similarly to the first to eighth embodiments, or may not be sealed as in the ninth and tenth embodiments. Also good.
  • a plurality of rectangular pillar-shaped honeycomb structures are bundled to produce an aggregate of honeycomb fired bodies, and then a cutting process is performed to produce a honeycomb block.
  • a plurality of honeycomb fired bodies manufactured in advance with a predetermined shape may be bundled to form a honeycomb block.
  • FIGS. 17A to 17C are perspective views schematically showing another example of the honeycomb fired body manufactured by the method for manufacturing a honeycomb structure according to the embodiment of the present invention. That is, as shown in FIGS. 17A to 17C, honeycomb fired bodies 220, 230, and 240 in which a plurality of cells 221, 231, and 241 are formed with cell walls 223, 233, and 243 separated from each other.
  • the ceramic blocks may be bundled one by one.
  • four honeycomb fired bodies 220, 230, and 240 may be used.
  • the cells of the honeycomb structure may be sealed at predetermined end portions similarly to the first to eighth embodiments, or may not be sealed as in the ninth and tenth embodiments. Also good.
  • the honeycomb structure manufactured in the embodiment of the present invention may support the catalyst.
  • the honeycomb structures of the ninth and tenth embodiments are suitable for supporting a catalyst.
  • a method for supporting the catalyst on the honeycomb structure for example, an oxide film made of alumina or the like having a high specific surface area is formed on the surface of the honeycomb structure, and noble metal, alkali metal, alkaline earth is formed on the surface of the oxide film. Examples thereof include a method of applying a catalyst containing a similar metal, an oxide or the like.
  • the catalyst may be supported not on the honeycomb structure after completion but on the inorganic particles (ceramic powder) in the wet mixture.
  • the catalyst can be supported on the honeycomb structure, and in the honeycomb structure on which the catalyst is supported, and in the exhaust gas purification apparatus using this honeycomb structure, CO and HC contained in the exhaust gas are contained. And harmful components such as NOx can be purified. Moreover, the combustion temperature of PM can also be lowered.
  • the sealing material paste used in the embodiment of the present invention is a paste containing at least inorganic particles and an inorganic binder
  • examples of the inorganic particles include carbides and nitrides. Specific examples include inorganic powders made of silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable. Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among inorganic binders, silica sol is desirable.
  • the sealing material paste may further contain inorganic fibers and / or whiskers.
  • the inorganic fibers and / or whiskers include ceramic fibers such as silica-alumina, mullite, alumina, and silica. Etc. These may be used alone or in combination of two or more. Among inorganic fibers and / or whiskers, alumina fibers are desirable.
  • the sealing material paste may have substantially the same composition as the wet mixture used when the honeycomb fired body is produced by extrusion molding.
  • the sealing material paste used for forming the sealing part formed without undergoing the firing treatment is desirably the former (a sealing material paste containing at least inorganic particles and an inorganic binder), and the sealing paste formed through the firing treatment.
  • the latter (wet mixture) is desirable for the sealing material paste used for forming the stopper.
  • the former sealing material paste may be used as a material for a sealing part formed through a baking process, or the latter sealing material paste may be used as a material for a sealing part formed without undergoing a baking process. Also good.
  • the shape of the honeycomb structure manufactured in the embodiment of the present invention is not limited to the columnar shape illustrated in FIG. 2, and may be any columnar shape such as an elliptical column shape or a polygonal column shape.
  • the porosity of the honeycomb fired body manufactured in the first to eighth embodiments of the present invention is not particularly limited, but is desirably 35 to 60%.
  • the honeycomb fired body preferably has an average pore size of 5 to 30 ⁇ m.
  • the porosity and pore diameter can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the particle size of the ceramic powder contained in the wet mixture to be extruded is not particularly limited, but the honeycomb fired body manufactured through a subsequent firing step It is preferable that the size of is less smaller than the size of the degreased honeycomb formed body.
  • a combination of 100 parts by weight of a powder having an average particle diameter of 1.0 to 50 ⁇ m and 5 to 65 parts by weight of a powder having an average particle diameter of 0.1 to 1.0 ⁇ m is preferable.
  • the inorganic fibers contained in the wet mixture to be extruded preferably have an aspect ratio of 2 to 1000, more preferably 5 to 800. Desirably, 10 to 500 are more desirable.
  • the honeycomb structures manufactured in the ninth and tenth embodiments of the present invention include inorganic fibers and inorganic particles.
  • the content of inorganic fibers is preferably 3 to 70% by weight. 3 to 50% by weight is more desirable, 5 to 40% by weight is more desirable, and 8 to 30% by weight is most desirable.
  • the content of inorganic particles is desirably 30 to 97% by weight, more desirably 30 to 90% by weight, still more desirably 40 to 80% by weight, and most desirably 50 to 75% by weight.
  • the organic binder contained in the wet mixture to be extruded is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and polyethylene glycol. Moreover, it does not specifically limit as a plasticizer contained in the said wet mixture, For example, glycerol etc. are mentioned.
  • the lubricant contained in the wet mixture is not particularly limited, and examples thereof include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the wet mixture.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, an organic solvent such as benzene, and an alcohol such as methanol.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the honeycomb fired bodies when a plurality of honeycomb fired bodies are bundled, an adhesive paste is applied to the side surface of each honeycomb fired body, and the honeycomb fired bodies are sequentially stacked. ing.
  • a gap holding material is attached to the surface of the honeycomb fired bodies, and the plurality After the honeycomb fired bodies are combined, the honeycomb fired bodies may be bound using a method of injecting an adhesive paste into the gaps between the honeycomb fired bodies.
  • a plurality of honeycomb fired bodies are bundled in the honeycomb block.
  • a honeycomb block is manufactured by binding a plurality of honeycomb fired bodies. There is no need, and the honeycomb block may be made of one honeycomb fired body.
  • the shape of the cross section perpendicular to the longitudinal direction is the same as the cross section perpendicular to the longitudinal direction of the honeycomb block. What is necessary is just to produce the substantially same honeycomb molded object.
  • FIG. 1A to FIG. 1F are explanatory diagrams for explaining the manufacturing process of the first embodiment.
  • FIG. 2 is a perspective view schematically showing an example of the honeycomb structure of the first embodiment.
  • FIG. 3 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb structure according to the first embodiment, and
  • FIG. 3 (b) is a cross-sectional view taken along line BB. .
  • FIG. 4 is a cross-sectional view schematically showing an example of an exhaust gas purification apparatus in which a honeycomb structure is installed.
  • FIG. 5A to FIG. 5F are explanatory diagrams for explaining the manufacturing process of the second embodiment.
  • FIG. 6A to FIG. 6F are explanatory diagrams for explaining the manufacturing process of the third embodiment.
  • FIG. 7 is a process diagram in the method for manufacturing a honeycomb structured body according to the first to third embodiments.
  • FIG. 8A to FIG. 8G are explanatory diagrams for explaining the manufacturing process of the fourth embodiment.
  • FIG. 9A is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb structure of the fourth embodiment
  • FIG. 9B is a sectional view taken along the line FF.
  • FIG. 10A to FIG. 10G are explanatory views for explaining a manufacturing process of the fifth embodiment.
  • FIG. 11A to FIG. 11G are explanatory diagrams for explaining the manufacturing process of the fifth embodiment.
  • FIG. 12 is a process diagram in the method for manufacturing a honeycomb structured body according to the fourth to sixth embodiments.
  • FIG. 13 (a) to 13 (d) are explanatory views for explaining a manufacturing process of the ninth embodiment.
  • 14 (a) to 14 (e) are explanatory diagrams for explaining the manufacturing process of the tenth embodiment.
  • FIG. 15 is a process diagram in the method for manufacturing a honeycomb structured body according to the ninth embodiment and the tenth embodiment.
  • Fig. 16 (a) is a perspective view schematically showing another example of the honeycomb fired body constituting the honeycomb structure according to the present invention
  • Fig. 16 (b) is a KK of Fig. 16 (a). It is line sectional drawing.
  • FIGS. 17A to 17C are perspective views schematically showing another example of the honeycomb fired body manufactured by the method for manufacturing a honeycomb structure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

本発明は、生産性の高いハニカム構造体の製造方法に関し、本発明のハニカム構造体の製造方法は、セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、上記ハニカム成形体に焼成処理を施してハニカム焼成体を作製する工程と、少なくとも1つのハニカム焼成体を用いてハニカムブロックを作製する工程と、を含むハニカム構造体の製造方法であって、上記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、上記ハニカム焼成体を少なくとも二つに切断する工程を含むことを特徴とする。

Description

ハニカム構造体の製造方法
本発明は、ハニカム構造体の製造方法に関する。
従来、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化するフィルタとして、例えば、多孔質セラミックを用いたハニカム構造体からなるハニカムフィルタが種々提案されている。
このようなハニカム構造体として、多孔質セラミック焼結体からなる複数のフィルタの外周面同士をシール材層を介して接着することにより、各フィルタを一体化したハニカム構造体が開示されている(例えば、特許文献1参照)。
このようなハニカム構造体は、下記のような方法により製造することができる。
まず、セラミック粉末とバインダと分散媒液等とを混合して湿潤混合物を調製する。
次に、この湿潤混合物を押出成形し、押し出された成形体を所定の長さに切断することにより、柱状のハニカム成形体を作製する。
その後、ハニカム成形体の各セルのいずれか一方の端部が封止されるように各セルの所定の端部に封止材ペーストを充填する。次に、封止材ペーストが充填されたハニカム成形体に、脱脂処理及び焼成処理を施し、フィルタとして機能するハニカム焼成体を作製する。
次に、複数のハニカム焼成体をシール材層を介して結束させてハニカム焼成体の集合体を作製し、その後、必要に応じて、ハニカム焼成体の集合体の外周に切削加工を施したり、この集合体の外周にコート層を形成したりすることによりハニカム構造体を製造する。
また、触媒担体として使用するハニカム構造体として、第1の無機材料(例えば、セラミック粒子)、第2の無機材料(例えば、無機繊維や粒径の大きなセラミック粒子)と無機バインダとを含む多孔質セラミックユニットが、シール材を介して接合した構造のハニカム構造体が開示されている(例えば、特許文献2参照)
特開2001-162121号公報 WO2005/0636521号パンフレット
特許文献1及び特許文献2に記載されたハニカム構造体の製造方法では、押出成形によりハニカム成形体を作製する時点で、作製するハニカム焼成体と略同形のハニカム成形体を作製し、このハニカム成形体に、封止、脱脂、焼成等の各種処理を施してハニカム焼成体を作製している。
このような製造方法において、ハニカム焼成体のサイズは、焼成処理を経ることにより、ハニカム成形体のサイズよりも若干小さくなる。そして、このようなサイズの縮小は避けることができない。
そのため、ハニカム成形体を作製する際には、サイズの縮小を見込んで、ハニカム焼成体のサイズよりも若干大きいハニカム成形体を作製する必要があった。
しかしながら、サイズの縮小量は予想値であり、焼成条件のバラツキ等により作製したハニカム焼成体のサイズにバラツキが生じることがあった。
そして、ハニカム焼成体のサイズにバラツキが生じると、複数個のハニカム焼成体を結束させてハニカム構造体を製造した場合に、ハニカム構造体の端面に凹凸が生じることとなり、場合によっては、端面研磨を行う必要があった。
しかしながら、端面研磨は、可能であれば省略が望まれる工程である。なぜなら、研磨処理を行うことにより、ハニカム構造体の端面に欠け等の不都合が発生する場合があるからである。また、工程数の増加がそのままコストの増加に繋がるからである。
また、上述したハニカム構造体の製造方法のように、作製するハニカム焼成体と略同形のハニカム成形体を作製して各種処理を行う場合、生産性が低くなる場合があった。特に、長手方向の長さの短いハニカム構造体を製造する場合には、この傾向が顕著であった。
これについて、もう少し詳しく説明する。
上述したようなハニカム構造体の製造方法において、ハニカム成形体に焼成処理を施す際には、通常、複数個のハニカム成形体を1個の焼成用治具に収納した状態で行う。ここで、成形体の焼結を確実かつ均一に進行させるには、ハニカム成形体を焼成用治具内に収納する際に、ハニカム成形体同士をある程度離間させて収納する必要がある。
そのため、焼成用治具の大きさが同一である場合、ハニカム成形体の小さくなると、ハニカム成形体同士の間のスペースが占める割合が増加することとなり、その結果、ハニカム焼成体の生産性が低下することとなる。
別の言い方をすると、焼成用治具の大きさが同一である場合、例えば、ハニカム成形体のサイズが1/2になっても、焼成用治具内に収納することできるハニカム成形体の数が2倍になるわけではなく、収納することできるハニカム成形体の数は2倍以下となる。
また、焼成用治具は、ハニカム成形体の大きさに合せて最適な大きさのものを用いることが望ましい。
そこで、本発明者らは上記課題を解決するために鋭意検討を行い、生産性の高いハニカム構造体の製造方法について発明を完成した。
即ち、請求項1に記載のハニカム構造体の製造方法は、
セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、
上記ハニカム成形体に焼成処理を施してハニカム焼成体を作製する工程と、
少なくとも1つのハニカム焼成体を用いてハニカムブロックを作製する工程と、
を含むハニカム構造体の製造方法であって、
上記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、上記ハニカム焼成体を少なくとも二つに切断する工程を含むことを特徴とするハニカム構造体の製造方法である。
請求項1に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断している。
このように、焼成処理後に切断処理を行うことにより、作製する各ハニカム焼成体の長手方向の寸法精度が優れることとなり、各ハニカム焼成体の大きさのバラツキを小さくすることができる。
また、請求項1に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断しているため、長手方向の長さの短いハニカム構造体を製造するのに適している。
ハニカム構造体の製造方法においては、焼成用治具にハニカム成形体を収納して焼成処理を行うが、同一サイズの焼成用治具を使用する場合、上述したように、ハニカム成形体のサイズが小さくなると生産性が低下していく傾向にある。
これに対して、請求項1に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施した後、切断処理を行うことにより、所定の長さのハニカム焼成体を作製している。
そのため、長手方向の長さの短いハニカム構造体を製造する場合であっても、優れた生産性を備えることとなる。
また、例えば、長手方向の長さが、従来の長さの半分の長さのハニカム構造体を製造する場合にも、従来と同様の焼成用治具を好適に使用することができる。
請求項2に記載のハニカム構造体の製造方法は、請求項1に記載のハニカム構造体の製造方法において、
さらに、切断されたハニカム焼成体の各セルのいずれか一方の端部が封止されるように封止材ペーストを充填する工程を含む。
このように、ハニカム焼成体の各セルの所定の端部に封止材ペーストを充填することにより、フィルタとして使用するハニカム構造体を製造することができる。
請求項3に記載のハニカム構造体の製造方法は、請求項2に記載のハニカム構造体の製造方法において、
上記封止材ペーストを充填した後、上記切断されたハニカム焼成体の両端部の封止材ペーストの固化又は焼成を行う。
このように、封止材ペーストを固化、又は、焼成することによりセルの端部の所定の箇所をより確実に封止することができる。
請求項4に記載のハニカム構造体の製造方法は、請求項1~3のいずれかに記載のハニカム構造体の製造方法において、
上記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、上記ハニカム焼成体を少なくとも二つに切断する前に、接着材ペーストを介して上記ハニカム焼成体を複数個結束する。
また、請求項5に記載のハニカム構造体の製造方法は、請求項2又は3に記載のハニカム構造体の製造方法の上記ハニカムブロックを作製する工程において、上記ハニカム焼成体を少なくとも二つに切断した後であって、上記封止材ペーストを充填する前に、接着材ペーストを介して、切断して得たハニカム焼成体を複数個結束する。
また、請求項6に記載のハニカム構造体の製造方法は、請求項2又は3に記載のハニカム構造体の製造方法の上記ハニカムブロックを作製する工程において、上記ハニカム焼成体を少なくとも二つに切断し、上記封止材ペーストを充填した後に、
接着材ペーストを介して、切断して得たハニカム焼成体を複数個結束する。
請求項4~6に記載のハニカム構造体の製造方法では、ハニカムブロックが複数のハニカム焼成体からなるハニカム構造体(以下、集合型ハニカム構造体ともいう)を好適に製造することができる。
請求項7に記載のハニカム構造体の製造方法は、請求項1~6のいずれかに記載のハニカム構造体の製造方法において、
上記ハニカムブロックを形成する工程を行った後、さらに、上記ハニカムブロックの外周にコート材ペーストを塗布してコート層を形成する工程を行う
請求項7に記載のハニカム構造体の製造方法では、最外周にコート層を形成することにより信頼性に優れるハニカム構造体を製造することができる。また、コート層を形成することにより、外周精度(外周側面の寸法精度)の高いハニカム構造体を製造することができる。
請求項8に記載のハニカム構造体の製造方法は、請求項2~7のいずれかに記載のハニカム構造体の製造方法のハニカムブロックを作製する工程において充填する封止材ペーストが、少なくとも無機粒子と無機バインダとを含む。
さらに、請求項9に記載のハニカム構造体の製造方法は、請求項8に記載の封止材ペーストが、さらに無機繊維及び/又はウィスカを含む。
請求項8又は9に記載のハニカム構造体の製造方法では、上記組成の封止材ペーストを使用しており、この封止材ペーストは、焼成処理を経ることなく形成する封止部の材料として特に適しており、所定のセルが確実に封止されたハニカム構造体を製造することができる。
請求項10に記載のハニカム構造体の製造方法は、請求項4~9のいずれかに記載のハニカム構造体の製造方法において、
上記封止材ペーストの組成が、上記接着材ペーストの組成と略同一である。
このように封止材ペーストの組成と、接着材ペーストの組成とが略同一であると、製造したハニカム構造体において構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れるハニカム構造体を製造することができる。
請求項11に記載のハニカム構造体の製造方法は、請求項7~9のいずれかに記載のハニカム構造体の製造方法において、
上記封止材ペーストの組成が、上記コート材ペーストの組成と略同一である。
このように封止材ペーストの組成と、コート材ペーストの組成とが略同一であると、製造したハニカム構造体において構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れるハニカム構造体を製造することができる。
請求項12に記載のハニカム構造体の製造方法は、請求項3~9のいずれかに記載のハニカム構造体の製造方法において、
上記封止材ペーストの組成は、上記セラミック原料の組成と略同一である。
このように封止材ペーストとセラミック原料の組成とが同一であると、製造したハニカム構造体において、ハニカム焼成体と封止部との間で使用時に剥離やクラックが発生しにくくなる。また、特に、封止部が焼成処理を経て形成された封止部であると、上記剥離やクラックがより発生しにくくなる。
請求項13に記載のハニカム構造体の製造方法は、
セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、
上記ハニカム成形体の各セルの両端の所定箇所が封止されるように封止材ペーストを充填した後、このハニカム成形体に焼成処理を施してハニカム焼成体を作製する工程と、
少なくとも1つのハニカム焼成体からなるハニカムブロックを作製する工程と、
を含むハニカム構造体の製造方法であって、
上記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、上記ハニカム焼成体を少なくとも二つに切断し、さらに、切断して得た、片端の所定箇所が封止されたハニカム焼成体の各セルのいずれか一方の端部が封止されるように封止材ペーストを所定箇所に充填し、その後、上記封止材ペーストに焼成処理を施すことを特徴とするハニカム構造体の製造方法である。
請求項13に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断している。
このように、焼成処理後に切断処理を行うことにより、作製する各ハニカム焼成体の長手方向の寸法精度が優れることとなり、各ハニカム焼成体の大きさのバラツキを小さくすることができる。
また、請求項13に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断しているため、長手方向の長さの短いハニカム構造体を製造するのに適している。この理由は、既に説明したとおりである。
請求項14に記載のハニカム構造体の製造方法は、請求項13に記載のハニカム構造体の製造方法において、
さらに、2回目の封止材ペーストの充填を行い、焼成処理を施した後、接着材ペーストを介して、上記切断されたハニカム焼成体を複数個結束して、上記ハニカムブロックを作製する工程を行う。
請求項14に記載のハニカム構造体の製造方法では、複数個のハニカム焼成体が結束された集合型ハニカム構造体を好適に製造することができる。
請求項15に記載のハニカム構造体の製造方法は、請求項13又は14に記載のハニカム構造体の製造方法において、
上記ハニカムブロックを形成する工程を行った後、さらに、上記ハニカムブロックの外周にコート材ペーストを塗布してコート層を形成する工程を行う。
請求項15に記載のハニカム構造体の製造方法では、最外周にコート層を形成することにより信頼性に優れるハニカム構造体を製造することができる。
請求項16に記載のハニカム構造体の製造方法は、請求項15に記載のハニカム構造体の製造方法において、上記接着材ペーストの組成と上記コート材ペーストの組成とが略同一である。
このように接着材ペーストの組成と、コート材ペーストの組成とが略同一であると、製造したハニカム構造体において構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れるハニカム構造体を製造することができる。
請求項17に記載のハニカム構造体の製造方法は、請求項13~16のいずれかに記載のハニカム構造体の製造方法において、
上記封止材ペーストの組成が、上記セラミック原料の組成と略同一である。
このように封止材ペーストとセラミック原料の組成とが同一であると、製造したハニカム構造体において、ハニカム焼成体と封止部との間で使用時に剥離やクラックがより発生しにくくなる。
以下、本発明の実施形態について説明する。
(第一実施形態)
まず、本実施形態におけるハニカム構造体の製造方法について工程順に説明する。
図1(a)~図1(f)は、第一実施形態の製造工程を説明するための説明図である。
(1)セラミック原料として平均粒子径の異なる炭化ケイ素粉末と有機バインダと可塑剤と潤滑剤と水とを混合することにより、成形体作製用の湿潤混合物を調製する。
(2)上記湿潤混合物を押出成形機に投入し、上記湿潤混合物を押出成形することにより所定の形状のハニカム成形体を作製する。ここでは、各セルが所定の形状となるよう押出成形用金型を選定する。
なお、ここで作製するハニカム成形体は、長手方向の長さが、製造するハニカム構造体の設計値の長手方向の長さの約2倍の長さを有する。このとき、ハニカム成形体の長さは、焼成時の収縮量と、切断される切り代とを考慮して決定する。
さらに、ハニカム成形体を乾燥機を用いて乾燥させる。
(3)次に、上記(2)の工程で作製したニカム成形体を焼成用治具に載置した後、脱脂炉中で加熱し、ハニカム成形体中の有機物を分解除去する脱脂処理を行う。
続いて、上記脱脂処理を施したハニカム成形体を焼成用治具に載置したまま、焼成炉内に投入し、所定の温度(例えば、2200~2300℃)で焼成処理を行い、ハニカム焼成体120を作製する(図1(a)参照)。
なお、本発明において、「ハニカム成形体」には、押出成形直後の生形成体は勿論のこと、乾燥処理や脱脂処理を施した後の成形体もハニカム成形体に含むこととする。
(4)次に、上記(3)の工程で作製したハニカム焼成体120を長手方向に2等分に切断する。
上記ハニカム焼成体の切断は、ダイヤモンドカッター、外周型ダイヤモンド砥石、内周型ダイヤモンド砥石、マルチワイヤ、マルチブレード等を用いて行う。
このような切断処理を行うことにより、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一のハニカム焼成体20を作製することができる(図1(b)参照)。
(5)次に、上記(4)の工程で作製したハニカム焼成体20について、各セル21のいずれか一方の端部が封止されるように、セル21の端部に封止材ペーストを充填する。
なお、ここで充填する封止材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記封止材ペーストはさらに無機繊維及び/又はウィスカを含んでいてもよい。
そして、この工程で充填した封止材ペーストを加熱により固化させて封止部22aを形成する(図1(c)参照)。
(6)次に、各セルの所定の端部が封止された上記ハニカム焼成体20の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体が結束されたハニカム焼成体の集合体110を作製する。ここで、接着材ペーストとしては、上記封止材ペーストと略同一の組成を有するものを使用する。
続いて、上記ハニカム焼成体の集合体110を加熱して接着材ペースト層を固化させて接着材層11とする(図1(d)、図1(e)参照)。
なお、図1(e)は、図1(d)のA-A線断面における部分拡大断面図である。
(7)その後、ダイヤモンドカッターを用いてハニカム焼成体の集合体110に、図1(d)中の破線に沿って切削加工を施してハニカムブロックとし、ハニカムブロックの外周面にコート材ペーストを塗布し、コート材ペーストを加熱により固化させてコート層12を形成することによりハニカム構造体10を完成する(図1(f)参照)。
ここで、コート材ペーストとしては、例えば、上記封止材ペーストと略同一の組成をペースト状組成物を使用する。
次に、このような製造方法を経て製造されるハニカム構造体について、図面を参照しながら説明する。
図2は、第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図であり、図3(a)は、第一実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図であり、図3(b)は、そのB-B線断面図である。
本実施形態のハニカム構造体10は、図2に示すようにハニカム焼成体20が接着材層11を介して複数個結束されてハニカムブロック15を構成し、さらに、このハニカムブロック15の外周にコート層12が形成されている。
また、ハニカム焼成体20は、図3(a)及び図3(b)に示すように、長手方向(図3(a)中、矢印aの方向)に多数のセル21が並設され、セル21同士を隔てるセル壁23がフィルタとして機能するようになっている。
即ち、ハニカム焼成体20に形成されたセル21は、図3(b)に示すように、排ガスの入口側の端部が封止材ペーストを固化させて形成した封止部22aで封止されるか、又は、排ガスの出口側の端部が封止材ペーストを固化させて形成した封止部22aで封止され、排ガスの出口側の端部が封止されたセル21に流入した排ガスは、必ずセル21を隔てるセル壁23を通過した後、ガスの入口側の端部が封止されたセル21から流出するようになっており、排ガスがこのセル壁23を通過する際、PMがセル壁23部分で捕捉され、排ガスが浄化される。
なお、図3(b)中、矢印は、排ガスの流れを示している。
また、ハニカム構造体10では、接着材層11とコート層12とが、封止部22aを形成するための封止材ペーストと略同一のペーストを用いて形成されている。
なお、本明細書において、固化とは、組成物中の各成分間での反応は起こさず、組成物中の水分等を除去することにより、物理的作用によって組成物の状態が変化し接着特性を発現させる(組成物の硬さを向上させる)ことをいう。一方、焼成とは、成形体中の不安定成分(水分、バインダ等)を分解、除去し、各成分間の反応(再結晶を含む)を進行させて安定な化合物を形成することをいい、強度が一段と向上する。
また、上記ハニカム構造体は、排ガス浄化装置に用いることができる。
以下に、本実施形態のハニカム構造体の製造方法により製造したハニカム構造体を用いた排ガス浄化装置について、簡単に説明しておく。
図4は、ハニカム構造体が設置された排ガス浄化装置の一例を模式的に示した断面図である。
図4に示すように、排ガス浄化装置40は、主に、ハニカム構造体10、ハニカム構造体10の外方を覆うケーシング(金属容器)41、ハニカム構造体10とケーシング41との間に配置されるアルミナ製の保持シール材42から構成されており、ケーシング41の排ガスが導入される側の端部には、エンジン等の内燃機関に連結された導入管43が接続されており、ケーシング41の他端部には、外部に連結された排出管44が接続されている。
なお、図4中、矢印は排ガスの流れを示している。
このような構成からなる排ガス浄化装置40では、エンジン等の内燃機関から排出された排ガスは、導入管43を通ってケーシング41内に導入され、入口側セルからハニカム構造体10の内部に流入し、セル壁を通過し、このセル壁でPMが捕集されて浄化された後、出口側セルからハニカム構造体外に排出され、排出管44を通って外部へ排出されることとなる。
また、排ガス浄化装置40では、ハニカム構造体10のセル壁に大量のPMが堆積し、圧力損失が高くなると、ハニカム構造体10の再生処理が行われる。
上記再生処理では、図示しない加熱手段を用いて加熱されたガスをハニカム構造体の貫通孔の内部へ流入させることで、ハニカム構造体10を加熱し、セル壁に堆積したPMを燃焼除去する。また、ポストインジェクション方式を用いてPMを燃焼除去してもよい。
以下、第一実施形態の作用効果について説明する。
(1)本実施形態では、ハニカム構造体を製造する際に、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断している。
このように、焼成処理後に切断処理を行うことにより、作製する各ハニカム焼成体の長手方向の寸法精度が優れることとなり、各ハニカム焼成体の大きさのバラツキを小さくすることができる。従って、特に研磨処理を行うことなく、端面の凹凸の少ないハニカム構造体を製造するのに適している。
また、ハニカム焼成体を作製した後、得られたハニカム焼成体を切断しているため、1つのハニカム成形体から2つのハニカム焼成体を作製することとなり、ハニカム焼成体を効率良く作製することができる。その結果、ハニカム構造体の生産効率が向上し、単位時間あたりのハニカム構造体の生産個数を増やすことができるので、製造コストを低減させることにつながる。
(2)本実施形態では、セルの端部を封止する封止部を形成する際に、封止材ペーストを充填した後、封止材ペーストを固化させているため、各セルの所定の端部を確実に封止することができる。
(3)本実施形態では、ハニカム構造体を構成する封止部、接着材層及びコート層を略同一の材料を用いて形成しているため、製造したハニカム構造体において構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れることとなる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例1)
(1)平均粒子径22μmの炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを湿式混合し、得られた混合物に対して、アクリル樹脂2.1重量%、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日本油脂社製 ユニルーブ)2.8重量%、グリセリン1.3重量%、及び、水13.8重量%を加えて混練して湿潤混合物を得た後、押出成形する押出成形工程を行い、図3(a)に示した形状と略同様の形状であって、セルを封止していない生のハニカム成形体を作製した。
(2)次に、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体を作製した。そして、ハニカム成形体の乾燥体を焼成用治具に載置した後、400℃で脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行うことにより、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が46.5個/cm(300cpsi)、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
(3)次に、上記ハニカム焼成体を板厚0.5mmの外周型ダイヤモンド砥石を用いて上記ハニカム焼成体を2等分し、34.3mm×34.3mm×150mmのハニカム焼成体とした。
(4)次に、各セルのいずれか一方の端部が封止されるように、所定のセルの端部に封止材ペーストを充填した。その後、充填した封止材ペーストを180℃の熱風による加熱を15分間行うことにより固化させた。
ここでは、封止材ペーストとして、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる封止材ペーストを使用した。
(5)次に、上記(1)~(4)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃、20分で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製し、続いて、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さが1mmの円柱状のハニカムブロックを作製した。
ここで、接着材ペーストとしては、上記(4)の工程で使用した封止材ペーストと同一の組成のペーストを使用した。
(6)次に、ハニカムブロックの外周部にコート材ペーストを塗布し、コート材ペースト層を形成した。そして、このコート材ペースト層を180℃、20分で固化させ、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
この際、コート材ペーストとしては、上記(4)の工程で使用した封止材ペーストと同一の組成のペーストを使用した。
(比較例1)
(1)押出形成工程を経て作製する生のハニカム成形体の長手方向の長さを約半分にした以外は、実施例1の(1)の工程と同様にして、図3(a)に示した形状と略同様の形状であって、セルを封止していない生のハニカム成形体を作製した。
(2)次に、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体を作製した。その後、各セルのいずれか一方の端部が封止されるように、所定のセルの端部に封止材ペーストを充填した。
ここで、封止材ペーストとしては、成形体作製用の湿潤混合物と同一の組成の組成物を使用した。
(3) 次に、封止材ペーストを充填したハニカム成形体に、実施例1の(2)の工程と同様の条件で、脱脂処理及び焼成処理を行い、ハニカム焼成体を作製した。
ここで、作製したハニカム焼成体は、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×150mm、セルの数(セル密度)が46.5個/cm(300cpsi)、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体である。
(4)次に、上記(3)の工程で作製したハニカム焼成体を用いて、実施例1の(5)及び(6)の工程と同様の方法を用いることにより、複数個のハニカム焼成体が接着材層を介して結束したハニカム構造体を作製した。
(ハニカム構造体の評価)
(1)圧力損失の測定
実施例1及び比較例1のそれぞれで製造したハニカム構造体を用いて、図4に示した排ガス浄化装置40を組み上げた。そして、排ガス浄化装置40の導入管43に2Lのコモンレール式ディーゼルエンジンを接続した。さらに、ハニカム構造体の前後に圧力計を取り付けた。
そして、エンジンを回転数1500min-1、トルク50Nmで運転し、運転開始から5分後の差圧を測定した。
(2)捕集限界の測定
実施例1及び比較例1のそれぞれで製造したハニカム構造体を用いて、図4に示した排ガス浄化装置40を組み上げた。そして、排ガス浄化装置40の導入管43に2Lのコモンレール式ディーゼルエンジンを接続した。
そして、エンジンを回転数2000min-1、トルク50Nmで所定時間運転し、その後、再生処理を行う実験を、運転時間を増加させながら継続して行い、ハニカム構造体(特に封止部)にクラックが発生するか否かを観察した。
そして、クラックが発生した際に捕集していたPMの量を捕集限界とした。
そして、実施例1で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1(従来の方法)で作製したハニカム構造体と同程度であった。
(第二実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第一実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図5(a)~図5(f)は、第二実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、まず、第一実施形態のハニカム構造体の製造方法の(1)~(3)の工程と同様の方法を用いて、いずれのセルにも封止部が形成されていないハニカム焼成体120を作製する(図5(a)参照)。
(2)次に、上記(1)の工程で作製したハニカム焼成体120の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体が結束されたハニカム焼成体の集合体110′を作製する。
続いて、上記ハニカム焼成体の集合体を加熱して接着材ペースト層を固化させて接着材層11とする(図5(b)参照)。
ここで、接着材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記封止材ペーストはさらに無機繊維及び/又はウィスカを含んでいてもよい。
(3)次に、上記(2)の工程で作製したハニカム焼成体の集合体110′を、長手方向の長さが2等分されるように、ダイヤモンドカッター、外周型ダイヤモンド砥石、内周型ダイヤモンド砥石、マルチワイヤ、マルチブレード等を用いて切断し、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一のハニカム焼成体の集合体110を作製する(図5(c)参照)。
(4)その後、各セルのいずれか一方の端部が封止されるように、セルの端部に封止材ペーストを充填する。さらに、充填した封止材ペーストを加熱により固化させて封止部を形成する(図5(d)、図5(e)参照)。
なお、図5(e)は、図5(d)のC-C線断面における部分拡大断面図である。
ここで、上記封止材ペーストとしては、上記(2)の工程で使用する接着材ペーストと略同一の組成のペーストを使用する。
(5)次に、第一実施形態の(7)の工程と同様の方法を用いて、図5(d)中の破線に沿った切削加工と、コート層12の形成とを行うことにより、ハニカム構造体10を完成する(図5(f)参照)。
ここで、コート層を形成する際のコート材ペーストとしては、上記(4)の工程で使用する封止材ペーストと略同一の組成のペーストを使用する。
本実施形態では、このような工程を経ることにより、各セルの両端の封止部がともに、封止材ペーストが固化されて形成された封止部であるハニカム構造体を製造することができる。
また、本実施形態で製造されるハニカム構造体の構成は、第一実施形態で製造されるハニカム構造体と同様である。
第二実施形態に係るハニカム構造体の製造方法では、第一実施形態の作用効果と同様の作用効果を享受することができる。
以下、本発明の第二実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例2)
(1)まず、実施例1の(1)及び(2)の工程と同様の方法を用いて、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が46.5個/cm(300cpsi)、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
(2)次に、上記(1)の工程を経て作製した作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
(3)次に、上記ハニカム焼成体の集合体を板厚0.5mmの外周型ダイヤモンド砥石を用いて2等分し、長手方向の長さが150mmのハニカム焼成体の集合体とした。
(4)次に、実施例1の(4)の工程と同様の方法を用いて、各セルのいずれか一方の端部に封止部を形成した。
ここで、封止材ペーストとしては、上記(2)の工程で用いた接着材ペーストと同一の組成のペーストを使用した。
(5)その後、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さ1mmの円柱状のハニカムブロックを作製し、さらに、実施例1の(6)の工程と同様の方法を用いてコート層を形成し、ハニカム構造体を製造した。
ここで、コート材ペーストとしては、上記(4)の工程で用いた封止材ペーストと同一の組成のペーストを使用した。
実施例2で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1で作製したハニカム構造体と同程度であった。
(第三実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第一実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図6(a)~図6(f)は、第三実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、まず、第一実施形態のハニカム構造体の製造方法の(1)~(4)の工程と同様の方法を用いて、長手方向の長さが、製造するハニカム構造体の設計値の長手方向の長さと同一で、いずれのセルにも封止部が形成されていないハニカム焼成体20を作製する(図6(a)、図6(b)参照)。
(2)次に、上記(1)の工程で作製したハニカム焼成体20を、第1実施形態の(6)の工程と同様の方法を用いて接着材層11を介して複数個結束させ、ハニカム焼成体の集合体110を作製する。
ここで、接着材ペーストとしては、下記(3)の工程で使用する封止材ペーストと略同一の組成のペーストを使用する(図6(c)参照)。
(3)次に、上記ハニカム焼成体の集合体110において、各セル21のいずれか一方の端部が封止されるように、セル21の端部に封止材ペーストを充填する。さらに、充填した封止材ペーストを加熱により固化させて封止部22aを形成する(図6(d)、図6(e)参照)。
上記封止材ペーストとしては、第一実施形態の(5)の工程で充填する封止材ペーストと同様の封止材ペーストを使用する。なお、図6(e)は、図6(d)のD-D線断面における部分拡大断面図である。
(4)次に、第一実施形態の(7)の工程と同様の方法を用いて、切削加工とコート層の形成とを行うことにより、ハニカム構造体を完成する(図6(f)参照)。
ここで、コート材ペーストとしては、上記(3)の工程で使用する封止材ペーストと略同一の組成のペーストを使用する。
本実施形態では、このような工程を経ることにより、各セルの両端の封止部がともに、封止材ペーストを固化させることにより形成された封止部であるハニカム構造体を製造することができる。
また、本実施形態で製造されるハニカム構造体の構成は、第一実施形態で製造されるハニカム構造体と同様である。
第三実施形態に係るハニカム構造体の製造方法では、第一実施形態の作用効果と同様の作用効果を享受することができる。
以下、本発明の第三実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例3)
(1)まず、実施例1の(1)~(3)と同様の方法を用いて、34.3mm×34.3mm×150mmのハニカム焼成体を作製した。
(2)次に、上記(1)の工程を経て作製した作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃、20分で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
(3)次に、実施例1の(4)の工程と同様の方法を用いて、各セルのいずれか一方の端部に封止部を形成した。
ここで、封止材ペーストとしては、上記(2)の工程で使用した接着材ペーストと同一の組成のペーストを使用した。
(4)その後、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さ1mmの円柱状のハニカムブロックを作製し、さらに、実施例1の(6)の工程と同様の方法を用いてコート層を形成し、ハニカム構造体を製造した。
ここで、コート材ペーストとしては、上記(3)の工程で使用した封止材ペーストと同一の組成のペーストを使用した。
実施例3で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1で作製したハニカム構造体と同程度であった。
ここまで説明した第一実施形態~第三実施形態は、ハニカム構造体の製造工程が異なるものの、製造されるハニカム構造体は、同様の構成を備えることとなる。
そして、各実施形態に係るハニカム構造体の製造方法の工程は、図7に示す通りである。
図7は、第一実施形態~第三実施形態に係るハニカム構造体の製造方法における工程図である。
図7に示すように、第一実施形態~第三実施形態に係るハニカム構造体の製造方法では、ハニカム焼成体を切断するタイミング、ハニカム焼成体を複数個結束させるタイミング、及び、切断して得たハニカム焼成体のセルに封止材ペーストを充填するタイミングが異なることとなる。
(第四実施形態)
まず、本実施形態におけるハニカム構造体の製造方法について工程順に説明する。
図8(a)~図8(g)は、第四実施形態の製造工程を説明するための説明図である。
(1)セラミック原料として平均粒子径の異なる炭化ケイ素粉末と有機バインダと可塑剤と潤滑剤と水とを混合することにより、成形体作製用の湿潤混合物を調製する。
(2)上記湿潤混合物を押出成形機に投入し、上記湿潤混合物を押出成形することにより所定の形状のハニカム成形体130を作製する(図8(a)参照)。ここでは、各セルが所定の形状となるよう押出成形用金型を選定する。
なお、ここで作製するハニカム成形体130は、長手方向の長さが、製造するハニカム構造体の設計値の長手方向の長さの約2倍の長さを有する。このとき、ハニカム成形体の長さは、焼成時の収縮量と、切断される切り代とを考慮して決定する。
さらに、ハニカム成形体を乾燥機を用いて乾燥させる。
(3)さらに、ハニカム成形体130の各セルの所定の端部に、封止材ペーストを所定量充填し、各セルを封止する。セルを封止する際には、ハニカム成形体の端面に封止用のマスクを当てて、封止の必要なセルにのみ封止材ペーストを充填する。
ここで、封止材ペーストは、各端面においてセルが市松模様に封止され、かつ、各セルはいずれか一方の端部のみが封止されるように充填されている。
なお、封止材ペーストは、各端面において、セルが市松模様に封止され、かつ、各セルは両端部がともに封止されたセルと、両端部がともに封止されていないセルとが存在するように充填されていてもよい。
ここで、封止材ペーストとしては、上記湿潤混合物と略同一の組成の組成物を使用する。
(4)各セルの所定の端部が封止されたハニカム成形体中を焼成用治具に載置した後、脱脂炉中で加熱し、ハニカム成形体中の有機物を分解除去する脱脂処理を行う。
続いて、上記脱脂処理を施したハニカム成形体を焼成用治具に載置したまま、焼成炉内に投入し、所定の温度(例えば、2200~2300℃)で焼成処理を行い、ハニカム焼成体120を作製する(図8(b)参照)。
ここで、ハニカム焼成体の両端部に形成された封止部は22bは、封止材ペーストが焼成された封止部である。
(5)次に、上記(4)の工程で作製したハニカム焼成体を長手方向に2等分に切断する。
上記ハニカム焼成体の切断は、ダイヤモンドカッター、外周型ダイヤモンド砥石、内周型ダイヤモンド砥石、マルチワイヤ、マルチブレード等を用いて行う。
このような切断処理を行うことにより、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一のハニカム焼成体20を作製することができる(図8(c)参照)。
また、切断して得たハニカム焼成体20は、一方の端面側の所定のセルのみ封止部22bが形成されていることとなる。
(6)上記(1)~(5)の工程を経て作製したハニカム焼成体20について、各セル21のいずれか一方の端部が封止されるように、封止する必要のあるセルの端部のうち、未だ封止されていないセルの端部に封止材ペーストを充填する。
ここで、封止材ペーストとしては、上記(3)で充填した封止材ペーストと同様、ハニカム成形体を作成する際に使用する湿潤混合物と略同一の組成を有するペースト状物を使用する。
(7)次に、上記(6)の工程を経たハニカム焼成体に再度、焼成処理を施す。
ここで、焼成処理は、上記(4)の工程と同様の方法で行う。
この工程を経ることにより、封止材ペーストに焼成処理を施して形成した封止部22bが各セル21の所定の端部に形成されたハニカム焼成体20を作製することができる(図8(d)参照)。
(8)次に、各セルの所定の端部が封止された上記ハニカム焼成体の側面に、接着材層11となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体が結束されたハニカム焼成体の集合体110を作製する。ここで、接着材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記接着材ペーストはさらに無機繊維及び/又はウィスカを含んでいてもよい。
続いて、上記ハニカム焼成体の集合体を加熱して接着材ペースト層を加熱により固化させて接着材層11とする(図8(e)、図8(f)参照)。
なお、図8(f)は、図8(e)のE-E線断面における部分拡大断面図である。
(9)その後、ダイヤモンドカッターを用いてハニカム焼成体の集合体110に、図8(e)中の破線に沿った切削加工を施してハニカムブロックとし、ハニカムブロックの外周面にコート材ペーストを塗布し、コート材ペーストを加熱して固化させてコート層12を形成することによりハニカム構造体10を完成する(図8(g)参照)。
ここで、コート材ペーストとしては、例えば、上記(8)の工程で使用する接着材ペーストと略同一の組成を有するペーストを使用する。
次に、このような製造方法を経て製造されるハニカム構造体について、図面を参照しながら説明する。
図9(a)は、第四実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図であり、図9(b)は、そのF-F線断面図である。
本実施形態のハニカム構造体は、図2に示したハニカム構造体10と同様、ハニカム焼成体が接着材層を介して複数個結束されてハニカムブロックを構成し、さらに、このハニカムブロックの外周にコート層が形成されている。
そして、本実施形態のハニカム構造体を構成するハニカム焼成体20は、図9(a)及び図9(b)に示すように、長手方向(図9(a)中、矢印aの方向)に多数のセル21が並設され、セル21同士を隔てるセル壁23がフィルタとして機能するようになっている。
即ち、ハニカム焼成体20に形成されたセル21は、図9(b)に示すように、排ガスの入口側の端部が封止材ペーストを焼成させて形成した封止部22bで封止されるか、又は、排ガスの出口側の端部が封止材ペーストを焼成させて形成した封止部22bで封止され、排ガスの出口側の端部が封止されたセル21に流入した排ガスは、必ずセル21を隔てるセル壁23を通過した後、ガスの入口側の端部が封止されたセル21から流出するようになっており、排ガスがこのセル壁23を通過する際、PMがセル壁23部分で捕捉され、排ガスが浄化される。
なお、図9(b)中、矢印は排ガスの流れを示す。
従って、本実施形態で製造されるハニカム構造体は、セルを封止する封止部について、一方の端面側を封止する封止部が1回の焼成処理を経て形成され、他方の端面側を封止する封止部が2回の焼成処理を経て形成されている以外は、第1実施形態で製造されるハニカム構造体と同様の構成を備えている。
以下、第四実施形態の作用効果について説明する。
(1)本実施形態では、ハニカム構造体を製造する際に、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断している。
このように、焼成処理後に切断処理を行うことにより、作製する各ハニカム焼成体の長手方向の寸法精度が優れることとなり、各ハニカム焼成体の大きさのバラツキを小さくすることができる。従って、特に研磨処理を行うことなく、端面の凹凸の少ないハニカム構造体を製造するのに適している。
また、ハニカム焼成体を作製した後、得られたハニカム焼成体を切断しているため、1つのハニカム成形体から2つのハニカム焼成体を作製することとなり、ハニカム焼成体を効率良く作製することができる。その結果、ハニカム構造体の生産効率が向上し、単位時間あたりのハニカム構造体の生産個数を増やすことができるので、製造コストを低減させることにつながる。
(2)本実施形態では、セルの端部を封止する封止部について、封止材ペーストを充填した後、1回又は2回の焼成処理を経て封止部が形成されているため、各セルの所定の端部が確実に封止されることとなる。
(3)本実施形態では、ハニカム構造体の外周にコート層を形成するため、製造したハニカム構造体は、排ガスを浄化する際に、ハニカム構造体の外周側面からPMが漏れることがなく、信頼性に優れることとなる。
以下、本発明の第四実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例4)
(1)実施例1の(1)の工程と同様にして、図2(a)に示した形状と略同様の形状であって、セルの封止をしていない生のハニカム成形体を作製した。
(2)次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体を作製した。その後、上記ハニカム成形体の乾燥体の所定のセルに封止材ペーストを充填した。具体的には、各セルにおいて、いずれか一方の端部が封止されるように封止材ペーストを充填した。その後、再び乾燥機を用いて乾燥させた。
ここで、封止材ペーストとしては、ハニカム成形体を押出成形にて作製する際に使用する湿潤混合物と同一の組成のペーストを使用した。
(3)次に、ハニカム成形体の乾燥体を焼成用治具に載置した後、400℃で脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行うことにより、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が46.5個/cm(300cpsi)、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
(4)次に、実施例1の(3)の工程と同様の方法で、上記ハニカム焼成体を2等分し、所定のセルの一方の端面側のみ封止された大きさが34.3mm×34.3mm×150mmのハニカム焼成体を作製した。
(5)次に、上記(4)の工程で得たハニカム焼成体について、各セルのいずれか一方の端部が封止されるように、未だ封止されていないセルの端部に封止材ペーストを充填した。
ここで、封止材ペーストとしては、ハニカム成形体を押出成形にて作製する際に使用する湿潤混合物と同一の組成のペーストを使用した。
(6)次に、上記(3)の工程と同様の条件で、ハニカム焼成体に再度焼成処理を施した。
この工程では、上記(5)の工程で充填した封止材ペーストが、焼成処理を経て形成された封止部となる。
(7)次に、上記(1)~(6)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃、20分で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製し、続いて、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さが1mmの円柱状のハニカムブロックを作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
(8)次に、ハニカムブロックの外周部にコート材ペーストを塗布し、コート材ペースト層を形成した。そして、このコート材ペースト層を180℃、20分で乾燥して、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
ここで、コート材ペーストとしては、上記(7)の工程で使用した接着材ペーストと同一の組成のペーストを使用した。
このような実施例4で作製したハニカム構造体では、一方の端面側の封止部は1回の焼成処理を経て形成されており、他方の端面側の封止部は2回の焼成処理を経て形成されていることとなる。
実施例4で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1で作製したハニカム構造体と同程度であった。
(第五実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第四実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図10(a)~図10(g)は、第五実施形態の製造工程を説明するための説明図である。
(1)まず、第四実施形態のハニカム構造体の製造方法の(1)~(6)の工程と同様の方法を用いて、一方の端面側に焼成処理を経た封止部22bが形成され、他方の端面側に封止材ペースト122が充填され、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一のハニカム焼成体20を作製する(図10(a)、図10(b)参照)。
(2)次に、上記(1)の工程で作製したハニカム焼成体20の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層111を形成し、この接着材ペースト層111の上に、順次他のハニカム焼成体20を積層する工程を繰り返して所定数のハニカム焼成体が結束されたハニカム焼成体の集合体110を作製する(図10(c)、図10(d)参照)。なお、図10(d)は、図10(c)のG-G線断面における部分拡大断面図である。
ここで、接着材ペーストとしては、ハニカム成形体を作製する際に使用する湿潤混合物と略同一の組成のペーストを使用する。
(3)次に、上記(2)の工程で作製したハニカム焼成体の集合体110に、焼成処理を施す。
ここで、焼成処理は、第四実施形態の(4)の工程と同様の方法で行う。
この工程を経ることにより、焼成処理を経た封止部22b及び接着材層11′が形成されることとなる(図10(e)、図10(f)参照)。なお、図10(f)は、図10(e)のH-H線断面における部分拡大断面図である。
(4)その後、第四実施形態の(9)の工程と同様の工程を経ることにより、ハニカム構造体10を完成する(図10(g)参照)。
本実施形態では、このような工程を経ることによりハニカム構造体を製造することができる。
また、本実施形態の製造方法により製造されるハニカム構造体の構成は、接着材層が焼成処理を経て形成されている以外は、第四実施形態のハニカム構造体の構成と同様である。
第五実施形態に係るハニカム構造体の製造方法では、第四実施形態の作用効果と同様の作用効果を享受することができる。
また、本実施形態では、接着材層を焼成処理を経て形成しているため、ハニカム焼成体同士を接着する力が強くなり、ハニカム構造体でPMを捕集した後、ハニカム構造体の再生処理を行った際に、熱によるクラックが発生しにくい。さらに、使用時に排ガスの圧力によるハニカム焼成体の位置ズレや、ハニカム焼成体の抜けが発生することを防止することができる。
以下、本発明の第五実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例5)
(1)まず、実施例4の(1)~(4)の工程と同様の方法を用いて、所定のセルの一方の端面側のみ封止された大きさが34.3mm×34.3mm×150mmのハニカム焼成体を作製した。
(2)上記(1)の工程で得たハニカム焼成体について、各セルのいずれか一方の端部が封止されるように、未だ封止されていないセルの端部に封止材ペーストを充填した。
ここで、封止材ペーストとしては、ハニカム成形体を押出成形にて作製する際に使用する湿潤混合物と同一の組成のペーストを使用した。
(3)次に、上記(1)、(2)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、ハニカム焼成体の集合体を作製した。
ここで、接着材ペーストとしては、上記(2)の工程で使用した封止材ペーストと同一の組成のペーストを使用した。
(4)次に、実施例4の(3)の工程と同様の条件で、ハニカム焼成体に再度焼成処理を施した。
この工程では、上記(2)の工程で充填した封止材ペースト、及び、上記(3)工程で塗布した接着材ペーストが、焼成処理を経て、それぞれ封止部及び接着材層となる。
(5)その後、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さ1mmの円柱状のハニカムブロックを作製し、さらに、実施例4の(8)の工程と同様の方法を用いてコート層の形成を行い、ハニカム構造体を完成した。
実施例5で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1で作製したハニカム構造体と同程度であった。
(第六実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第四実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図11(a)~図11(g)は、第六実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、まず、第四実施形態のハニカム構造体の製造方法の(1)~(5)の工程と同様の方法を用いて、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一で、一方の端面側の所定のセルのみ焼成処理を経た封止部22bが形成されているハニカム焼成体20を作製する(図11(a)、図11(b)参照)。
(2)次に、一方の端面側の所定のセルの端部が封止されたハニカム焼成体20の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層111を形成し、この接着材ペースト層111の上に、順次他のハニカム焼成体20を積層する工程を繰り返して所定数のハニカム焼成体20が結束されたハニカム焼成体の集合体110を作製する(図11(c)、図11(d)参照)。なお、図11(d)は、図11(c)のI-I線断面における部分拡大断面図である。
ここで、接着材ペーストとしては、ハニカム成形体を作成する際に使用する湿潤混合物と略同一の組成を有するペースト状物を使用する。
(3)次に、ハニカム焼成体の集合体110において、各セルのいずれか一方の端部が封止されるように、封止する必要のあるセルの端部のうち、未だ封止されていないセルの端部に封止材ペーストを充填する。
ここで、封止材ペーストとしては、ハニカム成形体を作成する際に使用する湿潤混合物と略同一の組成を有するペースト状物を使用する。
(4)上記(3)の工程を経たハニカム焼成体の集合体110に再度、焼成処理を施す。
ここで、焼成処理は、第四実施形態の(4)の工程と同様の方法で行う。
この工程を経ることにより、封止材ペーストに焼成処理を施して形成した封止部22bが各セル21の所定の端部に形成されたハニカム焼成体の集合体110を製造することができる(図11(e)、図11(f)参照)。なお、図11(f)は、図11(e)のJ-J線断面における部分拡大断面図である。
また、この工程を経たハニカム焼成体の集合体110では、接着材層11′も焼成処理を経て形成されていることとなる。
(5)次に、第四実施形態の(9)の工程と同様の工程を行うことにより、ハニカム構造体10を完成する(図11(g)参照)。
本実施形態では、このような工程を経ることによりハニカム構造体を製造することができる。
また、本実施形態で製造されるハニカム構造体の構成は、第五実施形態で製造されるハニカム構造体の構成と同様である。
第六実施形態に係るハニカム構造体の製造方法では、第五実施形態の作用効果と同様の作用効果を享受することができる。
以下、本発明の第六実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例6)
(1)まず、実施例4の(1)~(4)の工程と同様の方法を用いて、所定のセルの一方の端面側のみ封止された大きさが34.3mm×34.3mm×150mmのハニカム焼成体を作製した。
(2)次に、上記(1)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、ハニカム焼成体の集合体を作製した。
ここで、接着材ペーストとしては、ハニカム成形体を押出成形にて作製する際に使用する湿潤混合物と同一の組成のペーストを使用した。
(3)上記(2)の工程で得たハニカム焼成体の集合体について、各セルのいずれか一方の端部が封止されるように、未だ封止されていないセルの端部に封止材ペーストを充填した。
ここで、封止材ペーストとしては、ハニカム成形体を押出成形にて作製する際に使用する湿潤混合物と同一の組成のペーストを使用した。
(4)次に、実施例4の(3)の工程と同様の条件で、ハニカム焼成体に再度焼成処理を施した。
この工程では、上記(2)工程で塗布した接着材ペースト、及び、上記(3)の工程で充填した封止材ペーストが、焼成処理を経て、それぞれ接着材層及び封止部となる。
(5)その後、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さ1mmの円柱状のハニカムブロックを作製し、さらに、実施例4の(8)の工程と同様の方法を用いてコート層の形成を行い、ハニカム構造体を完成した。
実施例6で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1で作製したハニカム構造体と同程度であった。
ここまで説明した第四実施形態~第六実施形態は、2回目の焼成処理を行うタイミングが異なるか、封止材ペーストを充填するタイミングが異なることとなる。
そして、各実施形態に係るハニカム構造体の製造方法の工程は、図12に示す通りである。
図12は、第四実施形態~第六実施形態に係るハニカム構造体の製造方法における工程図である。
図12に示すように、第四実施形態及び第五実施形態に係るハニカム構造体の製造方法では、2回目の焼成処理を行うタイミングが異なり、その結果、焼成処理が施される対象が異なることとなる。また、第六実施形態に係るハニカム構造体の製造方法では、第五実施形態に比べて、ハニカム焼成体を複数個結束するタイミングが異なることとなる。
(第七実施形態)
本実施形態は、セルの所定の端部に充填した封止材ペーストを焼成して封止部を形成する点で、第一実施形態におけるハニカム構造体の製造方法と異なる。
(1)本実施形態のハニカム構造体の製造方法では、まず、第一実施形態のハニカム構造体の製造方法の(1)~(4)の工程と同様の方法を用いて、いずれのセルにも封止部が形成されていないハニカム焼成体を作製する。
(2)次に、上記ハニカム焼成体の各セルのいずれか一方の端部が封止されるように、セルの端部に封止材ペーストを充填する。その後、第一実施形態の(3)の工程と同様の条件で焼成処理を行い、上記封止材ペーストを焼成することにより封止部を形成する。
なお、ここで充填する封止材ペーストとしては、例えば、ハニカム成形体を作成する際に使用する湿潤混合物と略同一の組成を有するペースト状物を使用する。
(3)次に、第一実施形態の(6)及び(7)の工程と同様にして、ハニカム構造体を完成する。
なお、この際、接着材ペースト及びコート材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記封止材ペーストはさらに無機繊維及び/又はウィスカを含んでいてもよい。
本実施形態では、このような工程を経ることにより、各セルの両端の封止部がともに、焼成処理を経て形成された封止部であるハニカム構造体を製造することができる。
また、本実施形態で製造されるハニカム構造体の構成は、封止部が焼成処理を経て形成されている以外は、第一実施形態で製造されるハニカム構造体と同様である。
第七実施形態に係るハニカム構造体の製造方法では、第一実施形態の(1)及び(3)の作用効果と同様の作用効果を享受することができる。
(第八実施形態)
本実施形態は、接着材ペーストを焼成して接着材層を形成し、コート材ペーストを焼成してコート層を形成する点で、第七実施形態におけるハニカム構造体の製造方法と異なる。
(1)本実施形態のハニカム構造体の製造方法では、まず、第一実施形態のハニカム構造体の製造方法の(1)~(4)の工程と同様の方法を用いて、いずれのセルにも封止部が形成されていないハニカム焼成体を作製する。
(2)次に、上記ハニカム焼成体の各セルのいずれか一方の端部が封止されるように、セルの端部に封止材ペーストを充填する。
(3)次に、上記ハニカム焼成体の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体が結束されたハニカム焼成体の集合体を作製する。
ここで、接着材ペーストとしては、ハニカム成形体を作製する際に使用する湿潤混合物と略同一の組成のペーストを使用する。
(4)次に、上記(3)の工程で作製したハニカム焼成体の集合体に、第一実施形態の(3)の工程と同様の条件で焼成処理を施す。
この工程を経ることにより、上記(2)の工程で充填した封止材ペースト、及び、上記(3)の工程で形成した接着材ペースト層が焼成され、それぞれ封止部及び接着材層が形成されるととなる。
(5)次に、その後、ダイヤモンドカッターを用いてハニカム焼成体の集合体に切削加工を施してハニカムブロックとし、ハニカムブロックの外周面にコート材ペーストを塗布し、コート材ペーストを加熱により焼成してコート層を形成することによりハニカム構造体を完成する。
ここで、コート材ペーストとしては、ハニカム成形体を作製する際に使用する湿潤混合物と略同一の組成のペーストを使用する。
本実施形態では、このような工程を経ることにより、各セルの両端の封止部がともに、焼成処理を経て形成された封止部であり、接着材層が焼成処理を経て形成された接着材層であり、コート層が焼成処理を経て形成されたコート層であるハニカム構造体を製造することができる。
第八実施形態に係るハニカム構造体の製造方法では、第四実施形態の作用効果と同様の作用効果を享受することができる。
以上、第一~第八の実施形態に係るハニカム構造体の製造方法は、所定のセルが封止されているハニカム構造体の製造方法である。従って、このようなハニカム構造体は、フィルタとして好適に使用することができる。
また、第一~第八の実施形態で製造されるハニカム構造体は、構成材料の主成分が炭化ケイ素であるが、本発明の実施形態で製造されるハニカム構造体の構成材料の主成分は、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック等であってもよい。
これらのなかでは、非酸化物セラミックが好ましく、炭化ケイ素が特に好ましい。耐熱性、機械強度、熱伝導率等に優れるからである。
なお、上述したセラミックに金属ケイ素を配合したケイ素含有セラミック、ケイ素やケイ酸塩化合物で結合されたセラミック等も構成材料の主成分として挙げられ、これらのなかでは、炭化ケイ素に金属ケイ素が配合されたもの(ケイ素含有炭化ケイ素)が望ましい。特に、炭化ケイ素を60wt%以上含むケイ素含有炭化ケイ素質セラミックが望ましい。
(第九実施形態)
第一~第八の実施形態に係るハニカム構造体の製造方法は、所定のセルが封止されているハニカム構造体の製造方法であるが、本実施形態のハニカム構造体の製造方法は、セルが封止されていないハニカム構造体の製造方法である。
図13(a)~図13(d)は、第九実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、まず、セラミック原料として下記のセラミック原料を使用する以外は、第一実施形態のハニカム構造体の製造方法の(1)及び(2)の工程と同様の方法を用いて、乾燥処理がされたハニカム成形体を作製する。
本実施形態では、セラミック原料として、シリカ-アルミナ繊維とアルミナ粒子と無機バインダとを含む湿潤混合物を使用する。
(2)次に、第一実施形態のハニカム構造体の製造方法の(3)の工程と同様の方法を用いて、ハニカム成形体に脱脂処理及び焼成処理を施し、ハニカム焼成体120を作製する(図13(a)参照)。
ここで、脱脂条件は、400℃、2時間が望ましい。また、焼成温度は、600~1200℃が望ましく、600~1000℃がより望ましい。
(3)次に、第一実施形態のハニカム構造体の製造方法の(4)、(6)及び(7)の工程と同様の工程を行うことにより、セルが封止されていないハニカム構造体10を完成する(図13(b)~図13(d)参照)。
この際、接着材ペーストとコート材ペーストとは略同一の組織のペーストを使用する。
上記接着材ペースト及びコート材ペーストとしては、例えば、無機バインダとセラミック粒子と無機繊維及び/又はウィスカとを混合したもの等を使用する。
このような製造方法で製造されたハニカム構造体は、触媒担体として好適に使用することができる。
第九実施形態に係るハニカム構造体の製造方法では、第一実施形態の(1)の作用効果と同様の作用効果を享受することができる。
また、本実施形態では、接着材層とコート層とを略同一の材料を用いて形成しているため、製造したハニカム構造体において、構成材料の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れることとなる。
以下、本発明の第九実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例7)
(1)平均粒子径2μmのγアルミナ粒子40重量%と、シリカ-アルミナ繊維(平均繊維径10μm、平均繊維長100μm、アスペクト比10)10重量%、シリカゾル(固体濃度30重量%)50重量%を混合し、得られた混合物100重量部に対して、メチルセルロース(有機バインダ)6重量部、可塑剤及び潤滑剤を少量加えて混錬して湿潤混合物を得た後、押出成形する押出成形工程を行い、図3(a)に示した形状と略同様の形状であって、セルの封止をしていない生のハニカム成形体を作製した。
(2)次に、マイクロ波乾燥機及び熱風乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体を作製した。そして、ハニカム成形体の乾燥体を焼成用治具に載置した後、400℃で脱脂処理を行い、さらに、800℃、2時間の条件で焼成処理を行うことにより、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が93個/cm(600cpsi)、セル壁の厚さが0.2mmのハニカム焼成体を製造した。
(3)次に、上記ハニカム焼成体を板厚0.5mmの外周型ダイヤモンド砥石を用いて2等分し、34.3mm×34.3mm×150mmのハニカム焼成体とした。
(4)次に、上記(1)~(3)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させて四角柱状のハニカム焼成体の集合体を作製し、続いて、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、円柱状のハニカムブロックを作製した。
ここで、接着材ペーストとしては、γアルミナ(平均粒子径2μm)29重量%、シリカ-アルミナ繊維(平均繊維径10μm、平均繊維長100μm)7重量%、シリカゾル(固体濃度30重量%)34重量%、カルボキシメチルセルロース5重量%、及び、水25重量%を混合して得たペーストを使用した。
(5)次に、ハニカムブロックの外周部にコート材ペーストを塗布し、コート材ペースト層を形成した。ここで、コート材ペーストとしては、上記(4)の工程で使用した接着材ペーストと同様のペーストを使用した。
次に、接着材ペーストとコート材ペーストとを120℃で乾燥させ、さらに、700℃、2時間の条件で固化させ、接着材層の厚さが1mmで、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
(第十実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第九実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図14(a)~図14(e)は、第十実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、まず、第九実施形態のハニカム構造体の製造方法の(1)及び(2)の工程と同様の工程を行うことにより、ハニカム焼成体120を作製する(図14(a)参照)。
(2)次に、第二実施形態のハニカム構造体の製造方法の(2)の工程と同様の方法を用いて、所定数のハニカム焼成体が結束されたハニカム焼成体の集合体110′を作製する(図14(b)参照)。
(3)次に、第二実施形態のハニカム構造体の製造方法の(3)の工程と同様の方法を用いて、ハニカム焼成体の集合体110′を切断し、ハニカム焼成体の集合体110を製造する(図14(c)参照)。
(4)次に、第二実施形態のハニカム構造体の製造方法の(5)の工程と同様の方法を用いて、図14(d)中の破線に沿ったの切削加工と、コート層12の形成とを行い、セルが封止されていないハニカム構造体10を完成する(図14(e)参照)。
このような製造方法で製造されたハニカム構造体は、触媒担体として好適に使用することができる。
第十実施形態に係るハニカム構造体の製造方法では、第九実施形態の作用効果と同様の作用効果を享受することができる。
以下、本発明の第十実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例8)
(1)実施例7の(1)及び(2)の工程と同様の方法を用いて、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が93個/cm(600cpsi)、セル壁の厚さが0.2mmのハニカム焼成体を製造した。
(2)次に、上記(1)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させて四角柱状のハニカム焼成体の集合体を作製した。
ここで、接着材ペーストとしては、実施例7の(4)の工程で使用したものと同様の接着材ペーストを使用した。
(3)次に、上記ハニカム焼成体の集合体を板厚0.5mmの外周型ダイヤモンド砥石を用いて2等分した。
続いて、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、円柱状のハニカムブロックを作製した。
(4)次に、ハニカムブロックの外周部にコート材ペーストを塗布し、コート材ペースト層を形成した。ここで、コート材ペーストとしては、上記(2)の工程で使用した接着材ペーストと同様のペーストを使用した。
次に、接着材ペーストとコート材ペーストとを120℃で乾燥させ、さらに、700℃、2時間の条件で固化させ、接着材層の厚さが1mmで、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
ここまで説明した第九及び第十実施形態は、ハニカム構造体の製造工程が異なるものの、製造されるハニカム構造体は、同様の構成を備えることとなる。
そして、各実施形態に係るハニカム構造体の製造方法の工程は、図15に示す通りである。
図15は、第九実施形態及び第十実施形態に係るハニカム構造体の製造方法における工程図である。
図15に示すように、第九実施形態及び第十実施形態に係るハニカム構造体の製造方法では、ハニカム焼成体を切断するタイミング、及び、ハニカム焼成体を複数個結束させるタイミングが異なることとなる。
以上、第九及び第十の実施形態に係るハニカム構造体の製造方法は、所定のセルが封止されていないハニカム構造体の製造方法である。従って、このようなハニカム構造体は、触媒担体として好適に使用することができる。
また、第九及び第十の実施形態に係るハニカム構造体の製造方法では、セラミック原料として、無機繊維(シリカ-アルミナ繊維)と無機粒子(アルミナ粒子)と無機バインダとを含む湿潤混合物を使用することが望ましい。
上記無機繊維としては、シリカ-アルミナ繊維以外に、例えば、アルミナ繊維、シリカ繊維、炭化珪素繊維、ガラス繊維、チタン酸カリウム繊維等が使用できる。これらは単独で用いても良いし、2種以上併用してもよい。
上記無機粒子としては、アルミナ粒子以外に、例えば、炭化珪素、窒化珪素、アルミナ、シリカ、ジルコニア、チタニア、セリア、ムライト等が使用できる。これらは単独で用いても良いし、2種以上併用してもよい。
上記無機バインダとしては特に限定されないが、例えば、無機ゾル、粘土系バインダ等が挙げられる。上記無機ゾルとしては、アルミナゾル、シリカゾル、チタニアゾル、又は、水ガラスが望ましい。上記粘土系バインダとしては、白土、カオリン、モンモリロナイト、又は、複鎖構造型粘土(セピオライト、アタパルジャイト等)が望ましい。これらは単独で用いても良いし、2種以上併用してもよい。なお、無機バインダは必ずしも配合されていなくてもよい。
また、上記セラミック原料には、有機バインダ、分散媒、成形助剤等を適宜添加してもよい。
このようなセラミック原料は、高比表面積を有し、触媒担体(ハニカム触媒)として使用することができるハニカム構造体を製造するのに適している。
第九及び第十実施形態では、触媒担体として使用するハニカム構造体を製造するためのセラミック原料として、無機繊維、無機粒子及び無機バインダを含むセラミック原料を使用しているが、触媒担体として使用するハニカム構造体を製造するためのセラミック原料としては、コージエライト、又は、チタン酸アルミニウムの焼成体を作製するための原料を使用してもよい。
なお、これらのセラミック原料を使用する場合には、セラミック原料に応じて、脱脂条件や焼成条件を適宜変更する。
(その他の実施形態)
第一~第十の実施形態に係るハニカム構造体において、各セルのハニカム焼成体の長手方向に垂直な断面の形状は、全て同一で、かつ、4角形であるが、本発明の実施形態のハニカム構造体において、各セルのハニカム焼成体の長手方向に垂直な断面の形状は、例えば、8角形と4角形であってもよい。
図16(a)、(b)に示したハニカム焼成体70は、多数のセル71a、71bがセル壁73を隔てて長手方向(図16(a)中、矢印aの方向)に並設されており、セル71a、71bはいずれか一方の端部が封止部72aにより封止されている。
ここで、セル71aの上記長手方向に垂直な断面の形状は4角形であり、セル71bの上記長手方向に垂直な断面の形状は8角形である。
この場合、ハニカム構造体のセルは所定の端部は、第一~第八の実施形態と同様に封止してもよいし、第九及び第十の実施形態と同様に封止しなくてもよい。
第一~第十の実施形態のハニカム構造体の製造方法では、四角柱状のハニカム構造体を複数個結束させて、ハニカム焼成体の集合体を作製した後、切削加工を施してハニカムブロックを作製しているが、本発明の実施形態のハニカム構造体の製造方法では、予め、所定の形状で作製したハニカム焼成体を複数個結束してハニカムブロックとしてもよい。
図17(a)~(c)は、本発明の実施形態のハニカム構造体の製造方法で作製するハニカム焼成体の別の一例を模式的に示す斜視図である。
即ち、図17(a)~(c)に示したような、複数のセル221、231、241がセル壁223、233、243を隔てて形成されたハニカム焼成体220、230、240を所定の個数ずつ結束させてセラミックブロックとしてもよい。
なお、図2に示したハニカムブロック15を作製する場合は、ハニカム焼成体220、230、240をそれぞれ4個ずつ使用すればよい。
この場合、ハニカム構造体のセルは所定の端部は、第一~第八の実施形態と同様に封止してもよいし、第九及び第十の実施形態と同様に封止しなくてもよい。
ここまで説明した本発明の実施形態では、製造したハニカム構造体に触媒を担持させることは記載していないが、本発明の実施形態で製造されたハニカム構造体は、触媒を担持させてもよい。特に、第九及び第十実施形態のハニカム構造体は、触媒を担持させるのに適している。
ハニカム構造体に触媒を担持させる方法としては、例えば、ハニカム構造体の表面に比表面積の高いアルミナ等からなる酸化物膜を形成し、この酸化物膜の表面に、貴金属、アルカリ金属、アルカリ土類金属、酸化物等を含む触媒を付与する方法等が挙げられる。
なお、触媒の担持は、ハニカム構造体を完成した後ではなく、湿潤混合物中の無機粒子(セラミック粉末)に担持させてもよい。
このような方法を用いることにより、ハニカム構造体に触媒を担持させることができ、触媒が担持されたハニカム構造体や、このハニカム構造体を用いた排ガス浄化装置では排ガスに含有されるCO、HC及びNOx等の有害成分を浄化することができる。また、PM の燃焼温度を低下させることもできる。
本発明の実施形態で使用する封止材ペーストが少なくとも無機粒子と無機バインダとを含むペーストである場合、無機粒子としては、例えば、炭化物、窒化物等を挙げることができる。具体的には、炭化ケイ素、窒化ケイ素、窒化ホウ素からなる無機粉末等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子のなかでは、熱伝導性に優れる炭化ケイ素が望ましい。
また、無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダのなかでは、シリカゾルが望ましい。
また、上記封止材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよく、この場合、無機繊維及び/又はウィスカとしては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維及び/又はウィスカのなかでは、アルミナファイバが望ましい。
また、上記封止材ペーストについては既に説明したように、ハニカム焼成体を押出成形にて作製する際に使用する湿潤混合物と略同一の組成を有するものであってもよい。
そして、焼成処理を経ることなく形成した封止部の形成に使用する封止材ペーストは、前者(少なくとも無機粒子と無機バインダとを含む封止材ペースト)が望ましく、焼成処理を経て形成した封止部の形成に使用する封止材ペーストは、後者(湿潤混合物)が望ましい。
ただし、前者の封止材ペーストを焼成処理を経て形成する封止部の材料として用いてもよいし、後者の封止材ペーストを焼成処理を経ることなく形成する封止部の材料として用いてもよい。
本発明の実施形態で製造するハニカム構造体の形状は、図2に示した円柱状に限定されるものではなく、楕円柱状、多角柱状等の任意の柱の形状であればよい。
本発明の第一~第八実施形態で製造されるハニカム焼成体の気孔率は特に限定されないが、35~60%であることが望ましい。
また、上記ハニカム焼成体の平均気孔径は、5~30μmであることが望ましい。
なお、上記気孔率及び気孔径は、例えば、水銀圧入法、アルキメデス法、走査型電子顕微鏡(SEM)による測定等の従来公知の方法により測定することができる。
本発明の第一~第八実施形態のハニカム構造体の製造方法において、押出成形する湿潤混合物に含まれるセラミック粉末の粒径は特に限定されないが、後の焼成工程を経て作製されたハニカム焼成体の大きさが、脱脂されたハニカム成形体の大きさに比べて小さくなる場合が少ないものが好ましい。
例えば、1.0~50μmの平均粒径を有する粉末100重量部と0.1~1.0μmの平均粒径を有する粉末5~65重量部とを組み合わせたものが好ましい。
本発明の第九及び第十実施形態のハニカム構造体の製造方法において、押出形成する湿潤混合物に含まれる無機繊維は、そのアスペクト比が2~1000のものが望ましく、5~800のものがより望ましく、10~500のものがさらに望ましい。
また、本発明の第九及び第十実施形態で製造されたハニカム構造体には、無機繊維と無機粒子とが含まれるが、ここで、無機繊維の含有量は、3~70重量%が望ましく、3~50重量%がより望ましく、5~40重量%がさらに望ましく、8~30重量%が最も望ましい。一方、無機粒子の含有量は、30~97重量%が望ましく、30~90重量%がより望ましく、40~80重量%がさらに望ましく、50~75重量%が最も望ましい。
本発明の実施形態のハニカム構造体の製造方法において、押出成形する湿潤混合物に含まれる有機バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。
また、上記湿潤混合物に含まれる可塑剤としては特に限定されず、例えば、グリセリン等が挙げられる。
また、上記湿潤混合物に含まれる潤滑剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
上記潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、湿潤混合物に含まれていなくてもよい。
また、上記湿潤混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。
さらに、上記湿潤混合物中には、成形助剤が添加されていてもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
さらに、上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
また、第一実施形態~第十実施形態では、複数個のハニカム焼成体を結束させる際に、各ハニカム焼成体の側面に接着材ペーストを塗布し、ハニカム焼成体を順次積層する方法を採用している。しかしながら、複数個のハニカム焼成体を結束させる際には、例えば、ハニカム焼成体間のスペースを確保するために、ハニカム焼成体の表面に空隙保持材を貼り付け、空隙保持材を介して複数個のハニカム焼成体を組み合わせた後、ハニカム焼成体間の空隙に接着材ペーストを注入する方法を用いて、ハニカム焼成体を結束させてもよい。
また、第一実施形態~第十実施形態において、ハニカムブロックは複数個のハニカム焼成体が結束されているが、本発明の実施形態では、複数個のハニカム焼成体結束させてハニカムブロックを作製する必要はなく、ハニカムブロックを1個のハニカム焼成体で作製してもよい。
そして、このようなハニカムブロックが1個のハニカム焼成体で作製する際には、湿潤混合物を押出成形する工程において、長手方向に垂直な断面の形状が、ハニカムブロックの長手方向に垂直な断面と略同一のハニカム成形体を作製すればよい。
図1(a)~図1(f)は、第一実施形態の製造工程を説明するための説明図である。 図2は、第一実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図3(a)は、第一実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図であり、図3(b)は、そのB-B線断面図である。 図4は、ハニカム構造体が設置された排ガス浄化装置の一例を模式的に示した断面図である。 図5(a)~図5(f)は、第二実施形態の製造工程を説明するための説明図である。 図6(a)~図6(f)は、第三実施形態の製造工程を説明するための説明図である。 図7は、第一実施形態~第三実施形態に係るハニカム構造体の製造方法における工程図である。 図8(a)~図8(g)は、第四実施形態の製造工程を説明するための説明図である。 図9(a)は、第四実施形態のハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図であり、図9(b)は、そのF-F線断面図である。 図10(a)~図10(g)は、第五実施形態の製造工程を説明するための説明図である。 図11(a)~図11(g)は、第五実施形態の製造工程を説明するための説明図である。 図12は、第四実施形態~第六実施形態に係るハニカム構造体の製造方法における工程図である。 図13(a)~13(d)は、第九実施形態の製造工程を説明するための説明図である。 図14(a)~14(e)は、第十実施形態の製造工程を説明するための説明図である。 図15は、第九実施形態及び第十実施形態に係るハニカム構造体の製造方法における工程図である。 図16(a)は、本発明に係るハニカム構造体を構成するハニカム焼成体の別の一例を模式的に示す斜視図であり、図16(b)は、図16(a)のK-K線断面図である。 図17(a)~(c)は、本発明のハニカム構造体の製造方法で作製するハニカム焼成体の別の一例を模式的に示す斜視図である。
符号の説明
10 ハニカム構造体
11 接着材層
12 コート層
15 ハニカムブロック
20 ハニカム焼成体
21 セル
22、22a、22b 封止部
23 セル壁

Claims (17)

  1. セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、
    前記ハニカム成形体に焼成処理を施してハニカム焼成体を作製する工程と、
    少なくとも1つのハニカム焼成体を用いてハニカムブロックを作製する工程と、
    を含むハニカム構造体の製造方法であって、
    前記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、前記ハニカム焼成体を少なくとも二つに切断する工程を含むことを特徴とするハニカム構造体の製造方法。
  2. さらに、切断されたハニカム焼成体の各セルのいずれか一方の端部が封止されるように封止材ペーストを充填する工程を含む請求項1に記載のハニカム構造体の製造方法。
  3. 前記切断されたハニカム焼成体の両端部の所定箇所に封止材ペーストを充填した後、前記切断されたハニカム焼成体の両端部の封止材ペーストの固化又は焼成を行う請求項1又は2に記載のハニカム構造体の製造方法。
  4. 前記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、前記ハニカム焼成体を少なくとも二つに切断する前に、接着材ペーストを介して前記ハニカム焼成体を複数個結束する請求項1~3のいずれかに記載のハニカム構造体の製造方法。
  5. 前記ハニカムブロックを作製する工程において、前記ハニカム焼成体を少なくとも二つに切断した後であって、前記封止材ペーストを充填する前に、
    接着材ペーストを介して、切断して得たハニカム焼成体を複数個結束する請求項2又は3に記載のハニカム構造体の製造方法。
  6. 前記ハニカムブロックを作製する工程において、前記ハニカム焼成体を少なくとも二つに切断し、前記封止材ペーストを充填した後に、
    接着材ペーストを介して、切断して得たハニカム焼成体を複数個結束する請求項2又は3に記載のハニカム構造体の製造方法。
  7. 前記ハニカムブロックを形成する工程を行った後、さらに、前記ハニカムブロックの外周にコート材ペーストを塗布してコート層を形成する工程を行う請求項1~6のいずれかに記載のハニカム構造体の製造方法。
  8. 前記ハニカムブロックを作製する工程において充填する封止材ペーストは、少なくとも無機粒子と無機バインダとを含む請求項2~7のいずれかに記載のハニカム構造体の製造方法。
  9. 前記封止材ペーストは、さらに無機繊維及び/又はウィスカを含む請求項8に記載のハニカム構造体の製造方法。
  10. 前記封止材ペーストの組成は、前記接着材ペーストの組成と略同一である請求項4~9のいずれかに記載のハニカム構造体の製造方法。
  11. 前記封止材ペーストの組成は、前記コート材ペーストの組成と略同一である請求項7~9のいずれかに記載のハニカム構造体の製造方法。
  12. 前記封止材ペーストの組成は、前記セラミック原料の組成と略同一である請求項3~9のいずれかに記載のハニカム構造体の製造方法。
  13. セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、
    前記ハニカム成形体の各セルの両端の所定箇所が封止されるように封止材ペーストを充填した後、このハニカム成形体に焼成処理を施してハニカム焼成体を作製する工程と、
    少なくとも1つのハニカム焼成体からなるハニカムブロックを作製する工程と、
    を含むハニカム構造体の製造方法であって、
    前記ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、前記ハニカム焼成体を少なくとも二つに切断し、さらに、切断して得た、片端の所定箇所が封止されたハニカム焼成体の各セルのいずれか一方の端部が封止されるように封止材ペーストを所定箇所に充填し、その後、前記封止材ペーストに焼成処理を施すことを特徴とするハニカム構造体の製造方法。
  14. さらに、2回目の封止材ペーストの充填を行い、焼成処理を施した後、接着材ペーストを介して、前記切断されたハニカム焼成体を複数個結束して、前記ハニカムブロックを作製する工程を行う請求項13に記載のハニカム構造体の製造方法。
  15. 前記ハニカムブロックを形成する工程を行った後、さらに、前記ハニカムブロックの外周にコート材ペーストを塗布してコート層を形成する工程を行う請求項13又は14に記載のハニカム構造体の製造方法。
  16. 前記接着材ペーストの組成と前記コート材ペーストの組成とが略同一である請求項15に記載のハニカム構造体の製造方法。
  17. 前記封止材ペーストの組成は、前記セラミック原料の組成と略同一である請求項13~16のいずれかに記載のハニカム構造体の製造方法。
PCT/JP2008/052375 2008-02-13 2008-02-13 ハニカム構造体の製造方法 WO2009101683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/052375 WO2009101683A1 (ja) 2008-02-13 2008-02-13 ハニカム構造体の製造方法
EP08291249A EP2090414B1 (en) 2008-02-13 2008-12-29 Method for manufacturing honeycomb structured body
US12/369,876 US8574386B2 (en) 2008-02-13 2009-02-12 Method for manufacturing honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052375 WO2009101683A1 (ja) 2008-02-13 2008-02-13 ハニカム構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2009101683A1 true WO2009101683A1 (ja) 2009-08-20

Family

ID=40677588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052375 WO2009101683A1 (ja) 2008-02-13 2008-02-13 ハニカム構造体の製造方法

Country Status (3)

Country Link
US (1) US8574386B2 (ja)
EP (1) EP2090414B1 (ja)
WO (1) WO2009101683A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385773A (zh) * 2019-08-29 2019-10-29 济源市东方自动化设备有限公司 一种陶瓷棒笼式压制模具组件
WO2020047708A1 (en) * 2018-09-03 2020-03-12 Corning Incorporated Honeycomb body with porous material

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051556A1 (en) * 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
EP1632657B1 (en) 2003-11-05 2013-08-21 Ibiden Co., Ltd. Method of producing honeycomb structure body
DE602004014271D1 (de) * 2004-05-06 2008-07-17 Ibiden Co Ltd Wabenstruktur und herstellungsverfahren dafür
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
JP4870559B2 (ja) 2005-03-28 2012-02-08 イビデン株式会社 ハニカム構造体
WO2007023653A1 (ja) * 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
CN101146589B (zh) * 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
JPWO2007086183A1 (ja) * 2006-01-27 2009-06-18 イビデン株式会社 ハニカム構造体及びその製造方法
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
EP2261192A4 (en) * 2008-03-31 2011-08-31 Ibiden Co Ltd METHOD FOR PRODUCING A HONEYCOMB STRUCTURE
WO2011030461A1 (ja) 2009-09-14 2011-03-17 イビデン株式会社 ハニカム構造体の製造方法
WO2011132297A1 (ja) 2010-04-22 2011-10-27 イビデン株式会社 ハニカム構造体
JP5377558B2 (ja) * 2011-03-30 2013-12-25 日本碍子株式会社 ハニカム乾燥体の切断方法及びハニカム乾燥体切断装置
US9499442B1 (en) * 2013-03-15 2016-11-22 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
GB2520776A (en) * 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
CN108484210B (zh) * 2018-06-01 2020-12-08 阜阳市鑫源建材有限公司 一种孔隙率高的碳化硅多孔陶瓷制备方法
JP6982555B2 (ja) * 2018-08-02 2021-12-17 日本碍子株式会社 ハニカム構造体の製造方法
CN112876198B (zh) * 2021-03-31 2022-02-18 武汉钢铁有限公司 一种免烧焦罐衬板用涂料及其使用方法
CN113816716B (zh) * 2021-09-24 2022-11-29 江苏润沃达环境科技有限公司 一种碳化硅质蜂窝结构体拼接浆料制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166404A (ja) * 2000-11-29 2002-06-11 Ibiden Co Ltd セラミック構造体の製造方法
JP2004167482A (ja) * 2002-11-08 2004-06-17 Ibiden Co Ltd 排気ガス浄化用ハニカムフィルタおよびその製造方法
WO2005002709A1 (ja) * 2003-06-23 2005-01-13 Ibiden Co., Ltd. ハニカム構造体

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790319A (ja) * 1993-06-25 1995-04-04 Tokai Konetsu Kogyo Co Ltd ハニカム焼成体の製造方法
EP1382443B1 (en) 1996-01-12 2013-04-24 Ibiden Co., Ltd. A filter for purifying exhaust gas
EP1666121B1 (en) 1999-09-29 2009-01-21 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP3803009B2 (ja) 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
JPWO2002096827A1 (ja) 2001-05-31 2004-09-09 イビデン株式会社 多孔質セラミック焼結体及びその製造方法、ディーゼルパティキュレートフィルタ
JP2003103181A (ja) * 2001-09-28 2003-04-08 Ngk Insulators Ltd ハニカム触媒、ハニカム中間体及びハニカム触媒の製造方法
EP1719881B1 (en) 2002-02-05 2016-12-07 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
ES2312794T5 (es) 2002-02-05 2012-12-18 Ibiden Co., Ltd. Filtro de tipo panal para purificar gases de escape
DE60318937T3 (de) 2002-03-04 2013-10-10 Ibiden Co., Ltd. Verwendung eines wabenfilters zur abgasreinigung
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US20050169819A1 (en) 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
WO2003084640A1 (fr) 2002-04-09 2003-10-16 Ibiden Co., Ltd. Filtre en nid d'abeille pour la clarification d'un gaz d'echappement
EP2020486A3 (en) 2002-04-10 2009-04-15 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
ES2295617T3 (es) 2002-04-11 2008-04-16 Ibiden Co., Ltd. Filtro de nido de abejas para clarificar gas de escape.
US7090714B2 (en) * 2002-06-17 2006-08-15 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP4455818B2 (ja) * 2003-01-14 2010-04-21 日本碍子株式会社 セラミックハニカム構造体およびその製造方法
JP4369141B2 (ja) * 2003-02-18 2009-11-18 日本碍子株式会社 ハニカムフィルタ及び排ガス浄化システム
JP4516017B2 (ja) 2003-02-28 2010-08-04 イビデン株式会社 セラミックハニカム構造体
EP1538309A4 (en) 2003-05-06 2006-03-08 Ibiden Co Ltd HONEYCOMB STRUCTURE BODY
JP4569865B2 (ja) 2003-07-14 2010-10-27 日立金属株式会社 セラミックハニカムフィルタ及びその製造方法
WO2005005017A1 (ja) * 2003-07-14 2005-01-20 Hitachi Metals, Ltd. セラミックハニカムフィルタ及びその製造方法
US20060051556A1 (en) 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
EP1632657B1 (en) 2003-11-05 2013-08-21 Ibiden Co., Ltd. Method of producing honeycomb structure body
DE602004021291D1 (de) * 2003-11-12 2009-07-09 Ibiden Co Ltd Keramikstrukturkörper
JP4815108B2 (ja) 2003-12-26 2011-11-16 イビデン株式会社 ハニカム構造体
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP4666390B2 (ja) 2004-04-05 2011-04-06 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
DE602004014271D1 (de) * 2004-05-06 2008-07-17 Ibiden Co Ltd Wabenstruktur und herstellungsverfahren dafür
KR100668547B1 (ko) 2004-05-18 2007-01-16 이비덴 가부시키가이샤 허니콤 구조체 및 배기 가스 정화 장치
EP1647790B1 (en) 2004-07-01 2008-08-20 Ibiden Co., Ltd. Method of manufacturing porous ceramic body
ATE392594T1 (de) 2004-08-04 2008-05-15 Ibiden Co Ltd Durchlaufbrennofen und verfahren zur herstellung eines porösen keramikglieds damit
KR100844250B1 (ko) 2004-08-04 2008-07-07 이비덴 가부시키가이샤 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조 방법
EP1818639A4 (en) 2004-08-04 2007-08-29 Ibiden Co Ltd FURNACE AND METHOD FOR PRODUCING A BURNTED POROUS CERAMIC ARTICLE USING THE FUEL
WO2006013932A1 (ja) 2004-08-06 2006-02-09 Ibiden Co., Ltd. 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
CN1973171B (zh) 2004-08-10 2010-05-05 揖斐电株式会社 烧制炉及利用该烧制炉制造陶瓷部件的方法
JPWO2006022131A1 (ja) 2004-08-25 2008-05-08 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
WO2006025283A1 (ja) 2004-08-31 2006-03-09 Ibiden Co., Ltd. 排気浄化システム
WO2006035823A1 (ja) 2004-09-30 2006-04-06 Ibiden Co., Ltd. ハニカム構造体
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
JP5001009B2 (ja) 2004-10-12 2012-08-15 イビデン株式会社 セラミックハニカム構造体
WO2006057344A1 (ja) 2004-11-26 2006-06-01 Ibiden Co., Ltd. ハニカム構造体
CN100450577C (zh) 2004-12-28 2009-01-14 揖斐电株式会社 过滤器和过滤器集合体
JP4870657B2 (ja) 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
JP4880581B2 (ja) 2005-02-04 2012-02-22 イビデン株式会社 セラミックハニカム構造体
JP2006223983A (ja) 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
JP4870559B2 (ja) 2005-03-28 2012-02-08 イビデン株式会社 ハニカム構造体
WO2006103811A1 (ja) 2005-03-28 2006-10-05 Ibiden Co., Ltd. ハニカム構造体
KR100911641B1 (ko) 2005-03-30 2009-08-12 이비덴 가부시키가이샤 탄화 규소 함유 입자, 탄화 규소질 소결체를 제조하는방법, 탄화 규소질 소결체, 및 필터
WO2006112061A1 (ja) 2005-04-07 2006-10-26 Ibiden Co., Ltd. ハニカム構造体
JP2006289237A (ja) 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
WO2006117899A1 (ja) 2005-04-28 2006-11-09 Ibiden Co., Ltd. ハニカム構造体
WO2006126278A1 (ja) 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
WO2006132011A1 (ja) 2005-06-06 2006-12-14 Ibiden Co., Ltd. 梱包材及びハニカム構造体の輸送方法
WO2006137159A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137151A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
WO2007010643A1 (ja) 2005-07-21 2007-01-25 Ibiden Co., Ltd. ハニカム構造体及び排ガス浄化装置
WO2007015550A1 (ja) 2005-08-03 2007-02-08 Ibiden Co., Ltd. 炭化珪素質焼成用治具及び多孔質炭化珪素体の製造方法
WO2007023653A1 (ja) 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
US7867598B2 (en) * 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
CN101146589B (zh) 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
CN101242937B (zh) 2005-10-05 2011-05-18 揖斐电株式会社 挤压成形用模具和多孔质陶瓷部件的制造方法
KR100831836B1 (ko) 2005-10-12 2008-05-28 이비덴 가부시키가이샤 벌집형 유닛 및 벌집형 구조체
CN101061293B (zh) 2005-11-18 2011-12-21 揖斐电株式会社 蜂窝结构体
KR100882401B1 (ko) 2005-11-18 2009-02-05 이비덴 가부시키가이샤 벌집형 구조체
US20070187651A1 (en) 2005-12-26 2007-08-16 Kazuya Naruse Method for mixing powder, agitation apparatus, and method for manufacturing honeycomb structured body
CN101312809A (zh) 2005-12-26 2008-11-26 揖斐电株式会社 蜂窝结构体的制造方法
WO2007074528A1 (ja) 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
CN101312895A (zh) 2005-12-27 2008-11-26 揖斐电株式会社 搬运装置和蜂窝结构体的制造方法
JPWO2007086183A1 (ja) 2006-01-27 2009-06-18 イビデン株式会社 ハニカム構造体及びその製造方法
WO2007086143A1 (ja) 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
JPWO2007097056A1 (ja) 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
WO2007097000A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
ATE551167T1 (de) 2006-02-28 2012-04-15 Ibiden Co Ltd Verfahren zur herstellung von einem wabenstrukturkörper
DE602006002244D1 (de) * 2006-02-28 2008-09-25 Ibiden Co Ltd Trageelement für Trocknung, Trocknungsverfahren eines Presslings mit Wabenstruktur, und Verfahren zur Herstellung eines Wabenkörpers.
WO2007102216A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122715A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007122716A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129390A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 脱脂用治具組立装置、脱脂用治具分解装置、脱脂用治具循環装置、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
EP1875997B1 (en) 2006-07-07 2009-03-18 Ibiden Co., Ltd. End face processing apparatus, end face processing method for honeycomb molded body, and manufacturing method for honeycomb structure
WO2008032390A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008032391A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
PL1900709T3 (pl) 2006-09-14 2010-11-30 Ibiden Co Ltd Sposób wytwarzania korpusu o strukturze plastra miodu i kompozycja materiałowa do wypalanego korpusu o strukturze plastra miodu
WO2008047404A1 (fr) 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
WO2008090625A1 (ja) 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
WO2008099454A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099450A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008114335A1 (ja) 2007-02-21 2008-09-25 Ibiden Co., Ltd. 加熱炉及びハニカム構造体の製造方法
JP5164575B2 (ja) 2007-03-29 2013-03-21 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
ATE532760T1 (de) 2007-03-29 2011-11-15 Ibiden Co Ltd Wabenstruktur und zugehöriges herstellungsverfahren
JPWO2008120386A1 (ja) 2007-03-29 2010-07-15 イビデン株式会社 ハニカム構造体
WO2008126320A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008129691A1 (ja) 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126319A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2008139581A1 (ja) 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009057213A1 (ja) 2007-10-31 2009-05-07 Ibiden Co., Ltd. ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101682A1 (ja) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166404A (ja) * 2000-11-29 2002-06-11 Ibiden Co Ltd セラミック構造体の製造方法
JP2004167482A (ja) * 2002-11-08 2004-06-17 Ibiden Co Ltd 排気ガス浄化用ハニカムフィルタおよびその製造方法
WO2005002709A1 (ja) * 2003-06-23 2005-01-13 Ibiden Co., Ltd. ハニカム構造体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047708A1 (en) * 2018-09-03 2020-03-12 Corning Incorporated Honeycomb body with porous material
CN110385773A (zh) * 2019-08-29 2019-10-29 济源市东方自动化设备有限公司 一种陶瓷棒笼式压制模具组件
CN110385773B (zh) * 2019-08-29 2024-05-17 济源市东方自动化设备有限公司 一种陶瓷棒笼式压制模具组件

Also Published As

Publication number Publication date
EP2090414B1 (en) 2012-10-31
US20090199953A1 (en) 2009-08-13
US8574386B2 (en) 2013-11-05
EP2090414A3 (en) 2011-05-04
EP2090414A2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2009101683A1 (ja) ハニカム構造体の製造方法
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
KR100953292B1 (ko) 허니콤 구조체 및 배기 가스 처리 장치
JP6028735B2 (ja) セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体
EP1965047B1 (en) Honeycomb structured body
KR101108902B1 (ko) 허니컴 필터
JPWO2003084640A1 (ja) 排気ガス浄化用ハニカムフィルタ
JPWO2008126335A1 (ja) ハニカム構造体及びハニカム構造体の製造方法
WO2007058007A1 (ja) ハニカム構造体
JPWO2008120291A1 (ja) ハニカム構造体の製造方法
EP2108448B1 (en) Honeycomb catalyst body
JP2009255037A (ja) ハニカム構造体
KR101076641B1 (ko) 허니컴 구조체
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2009101691A1 (ja) ハニカム構造体
US8883286B2 (en) Honeycomb structure
EP2221099B1 (en) Honeycomb structure
WO2009118808A1 (ja) ハニカム構造体
WO2009095982A1 (ja) ハニカム構造体
WO2011067823A1 (ja) ハニカムフィルタ及び排ガス浄化装置
JP2011224538A (ja) ハニカムフィルタ及び排ガス浄化装置
WO2009118811A1 (ja) ハニカム構造体
JP2009215153A (ja) ハニカム構造体の製造方法
WO2009118809A1 (ja) ハニカム構造体
WO2009118812A1 (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP