WO2009101682A1 - ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法 - Google Patents

ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2009101682A1
WO2009101682A1 PCT/JP2008/052374 JP2008052374W WO2009101682A1 WO 2009101682 A1 WO2009101682 A1 WO 2009101682A1 JP 2008052374 W JP2008052374 W JP 2008052374W WO 2009101682 A1 WO2009101682 A1 WO 2009101682A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb structure
sealing portion
sealing
manufacturing
Prior art date
Application number
PCT/JP2008/052374
Other languages
English (en)
French (fr)
Inventor
Hiroki Sato
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to PCT/JP2008/052374 priority Critical patent/WO2009101682A1/ja
Priority to PL08291144T priority patent/PL2090351T3/pl
Priority to EP08291144A priority patent/EP2090351B1/en
Priority to US12/363,396 priority patent/US8168127B2/en
Publication of WO2009101682A1 publication Critical patent/WO2009101682A1/ja
Priority to US13/419,467 priority patent/US8323557B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/09Ceramic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a honeycomb structure, an exhaust gas purification device, and a method for manufacturing a honeycomb structure.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM).
  • PM particulate matter
  • Patent Document 1 discloses a honeycomb structure in which each filter is integrated by bonding the outer peripheral surfaces of a plurality of filters made of a porous ceramic sintered body through a sealing material layer. Is disclosed (for example, see Patent Document 1).
  • Such a honeycomb structure can be manufactured by the following method. First, a ceramic powder, a binder, a dispersion medium liquid, and the like are mixed to prepare a wet mixture. Next, this wet mixture is extruded, and the extruded molded body is cut into a predetermined length to produce a columnar honeycomb molded body. Thereafter, a predetermined paste of each cell is filled with a sealing material paste so that any one end of each cell of the honeycomb formed body is sealed. Next, the honeycomb formed body filled with the sealing material paste is subjected to a degreasing process and a firing process, thereby manufacturing a honeycomb fired body that functions as a filter.
  • honeycomb fired bodies are bundled through a sealing material layer to produce an aggregate of honeycomb fired bodies, and then, if necessary, the outer periphery of the honeycomb fired body aggregate is subjected to cutting,
  • a honeycomb structure is manufactured by forming a coat layer on the outer periphery of the aggregate.
  • a honeycomb formed body having substantially the same shape as the honeycomb fired body to be manufactured is manufactured at the time of manufacturing the honeycomb formed body by extrusion molding.
  • a honeycomb fired body is manufactured by performing various treatments such as stopping, degreasing, and firing.
  • the size of the honeycomb fired body is slightly smaller than the size of the honeycomb formed body through the firing treatment. And such a reduction in size cannot be avoided. Therefore, when manufacturing a honeycomb formed body, it was necessary to manufacture a honeycomb formed body slightly larger than the size of the honeycomb fired body in anticipation of size reduction.
  • the amount of size reduction is an expected value, and there may be variations in the size of the honeycomb fired body produced due to variations in the firing conditions. If the honeycomb fired bodies vary in size, when the honeycomb structure is manufactured by bundling a plurality of honeycomb fired bodies, the end faces of the honeycomb structure are uneven. Had to do. However, the end surface polishing is a process that should be omitted if possible. This is because the polishing process may cause inconveniences such as chipping of the end face of the honeycomb structure and the introduction of polishing powder into the pores of the cell wall of the honeycomb structure. Further, the increase in processes such as end face polishing and cleaning for removing the polishing powder that has entered the pores of the cell wall directly leads to an increase in cost.
  • honeycomb formed body that is substantially the same shape as the honeycomb fired body to be manufactured is manufactured and subjected to various treatments as in the above-described method for manufacturing a honeycomb structure, productivity may be lowered. This tendency was particularly remarkable when a honeycomb structure having a short length in the longitudinal direction was manufactured. This will be explained in a little more detail.
  • a plurality of honeycomb formed bodies are stored in a single firing jig.
  • the honeycomb formed body in order to advance the sintering of the formed body reliably and uniformly, when the honeycomb formed body is stored in the firing jig, it is necessary to store the honeycomb formed bodies apart from each other to some extent. Therefore, when the size of the firing jig is the same, when the honeycomb formed body becomes smaller, the proportion of the space (space) between the honeycomb formed bodies increases. As a result, the production of the honeycomb fired body The performance will be reduced. In other words, when the size of the firing jig is the same, for example, the number of honeycomb molded bodies that can be accommodated in the firing jig even if the size of the honeycomb molded body is halved.
  • the number of honeycomb formed bodies that can be stored is not more than twice.
  • the honeycomb structure according to claim 1 A honeycomb composed of a columnar honeycomb fired body in which a plurality of cells are arranged side by side in the longitudinal direction across a cell wall, and one of the ends of the cells is sealed by a sealing portion formed of a sealing material paste A honeycomb structure with blocks, Among the sealing parts, the sealing part on one end face side of the honeycomb fired body is a fired first sealing part, and the sealing part on the other end face side of the honeycomb fired body is unfired.
  • the honeycomb structure is a second sealing portion.
  • the honeycomb structure according to claim 1 can be efficiently manufactured by the method for manufacturing a honeycomb structure of the present invention described later.
  • the sealing portion on one end face side is a fired sealing portion, and the sealing on the other end face side is performed.
  • the part is an unfired sealing part. Therefore, thermal stress can be relaxed in the unfired sealing portion, and cracks and peeling are unlikely to occur even at high temperatures in the fired sealing portion, and PM leakage is unlikely to occur.
  • the honeycomb structure according to claim 2 in the honeycomb structure according to claim 1,
  • the unfired second sealing portion is a sealing portion solidified by heat treatment.
  • the unfired sealing portion is a solidified sealing portion, the end portion of the cell can be more reliably sealed while maintaining the effect of relieving the thermal stress described above.
  • the honeycomb structure according to claim 3 is the honeycomb structure according to claim 1 or 2
  • the second sealing portion is formed using a sealing material paste including at least inorganic particles and an inorganic binder.
  • a sealing material paste is excellent in adhesion to the cell wall, has a required strength, and is particularly suitable for forming an unfired sealing portion.
  • honeycomb structure according to claim 4 in the honeycomb structure according to any one of claims 1 to 3,
  • the honeycomb block is formed by binding a plurality of honeycomb fired bodies through an adhesive layer.
  • the honeycomb structure according to claim 5 is the honeycomb structure according to any one of claims 1 to 3,
  • the honeycomb block is composed of one honeycomb fired body.
  • a honeycomb structure according to claim 6 is the honeycomb structure according to any one of claims 1 to 5, A coat layer is formed on the outer periphery of the honeycomb block.
  • the honeycomb structure according to the sixth aspect since PM leakage from the outer peripheral side surface is less likely to occur, the reliability is further improved. Further, by forming the coat layer, it is possible to increase the outer peripheral accuracy (dimensional accuracy of the outer peripheral side surface) of the honeycomb structure.
  • the honeycomb structure according to claim 7 is the honeycomb structure according to claim 4 or 6,
  • the composition of the second sealing portion is substantially the same as the composition of the adhesive layer.
  • the composition of the second sealing portion and the composition of the adhesive layer are substantially the same, internal stress due to the difference in the thermal expansion coefficients of the constituent members is less likely to occur, and the reliability is further improved.
  • the honeycomb structure according to claim 8 is the honeycomb structure according to claim 6 or 7,
  • the composition of the second sealing portion is substantially the same as the composition of the coat layer. As described above, when the composition of the second sealing portion and the composition of the coat layer are substantially the same, internal stress due to the difference in thermal expansion coefficients of the constituent members hardly occurs, and the reliability is further improved.
  • a honeycomb structure according to claim 9 is the honeycomb structure according to any one of claims 1 to 8,
  • the composition of the first sealing portion is substantially the same as the composition of the honeycomb fired body.
  • internal stress due to the difference in the thermal expansion coefficients of the constituent members hardly occurs, and the reliability is further improved.
  • the temperature becomes close to 1000 ° C. it is difficult to deteriorate, can maintain strength, and is excellent in reliability.
  • the composition of the sealing portion is substantially the same as any of the composition of the adhesive layer, the coat layer, and the honeycomb fired body. Therefore, when manufacturing a honeycomb structure, it is not necessary to separately prepare a sealing material paste for forming a sealing portion.
  • a honeycomb structure according to claim 10 is the honeycomb structure according to any one of claims 1 to 9,
  • the plurality of cells formed in the honeycomb fired body includes a large volume cell and a relatively small small volume cell in which the cross section of the cell perpendicular to the longitudinal direction is relatively large, In the large-capacity cell, the first sealing portion is formed, The second sealing portion is formed in the small volume cell.
  • a honeycomb structure including such cells is suitable for collecting a large amount of PM while suppressing an increase in pressure loss.
  • An exhaust gas purifying apparatus is provided.
  • the honeycomb structure is arranged such that an end surface side on which the first sealing portion is formed is an exhaust gas outflow side, and a side on which the second sealing portion is formed is an exhaust gas inflow side. This is an exhaust gas purifying device.
  • An exhaust gas purifying apparatus includes the honeycomb structure according to any one of the first to tenth aspects as a honeycomb structure, wherein the first sealing portion (fired sealing portion) is an exhaust gas. Since the outflow side and the second sealing portion (unfired sealing portion) are located on the exhaust gas inflow side, the thermal stress caused by the high temperature exhaust gas generated on the exhaust gas inflow side can be relieved and the regeneration treatment can be performed. When performed, it is possible to prevent cracking of the sealing portion on the exhaust gas outflow side, which becomes higher in temperature, and separation of the honeycomb fired body from the sealing portion.
  • a method for manufacturing a honeycomb structured body Forming a columnar honeycomb formed body in which a plurality of cells are arranged in parallel in the longitudinal direction across the cell wall by molding a ceramic raw material; Filling a plug material paste so that cells at predetermined locations on both ends of the honeycomb molded body are sealed; The honeycomb formed body is fired to produce a honeycomb fired body having a first sealing portion formed; Producing a honeycomb block comprising at least one honeycomb fired body;
  • a method for manufacturing a honeycomb structure including: Furthermore, the step of cutting the honeycomb fired body in which the first sealing portion is formed in a predetermined location; The sealing material paste is filled with a sealing material paste in a predetermined portion of the end of the cut honeycomb honeycomb body opposite to the side where the first sealing portion is formed, and subjected to heat treatment. And a step of forming a second sealing portion by solidifying the structure of the honeycomb structure.
  • the honeycomb structure according to claims 1 to 10 can be preferably manufactured.
  • the obtained honeycomb fired body is cut.
  • the method for manufacturing a honeycomb structure according to claim 12 is particularly suitable for manufacturing a honeycomb structure having a short length in the longitudinal direction.
  • the honeycomb molded body is accommodated in the firing jig and fired, and when the same size firing jig is used, as described above, the size of the honeycomb molded body is As it becomes smaller, productivity tends to decrease.
  • a honeycomb fired body having a predetermined length is manufactured by performing a firing process on the honeycomb formed body and then performing a cutting process. . Therefore, even when a honeycomb structure having a short length in the longitudinal direction is manufactured, excellent productivity is provided.
  • honeycomb fired body when manufacturing a honeycomb structure having a length in the longitudinal direction that is half of the conventional length, firing can be performed using a firing jig similar to the conventional one. Therefore, when the honeycomb fired body is cut, it is desirable to divide it into two equal parts. Of course, it may be cut into three or more. Moreover, when cut into three or more, the honeycomb fired body other than both ends (in the center) can be used for manufacturing another honeycomb structure.
  • the method for manufacturing a honeycomb structure according to claim 16 wherein the method for manufacturing the honeycomb structure according to claim 12, A honeycomb fired body in which the first sealing portion is formed, and then a plurality of the honeycomb fired bodies are bundled through an adhesive layer to form the first sealing portion at both ends. Make a block, Next, after cutting the honeycomb block bound through the adhesive layer, the second sealing is provided at the end of the honeycomb block opposite to the side where the first sealing portion is formed. The process of forming a part is performed.
  • the honeycomb fired body is formed such that a plurality of cells are composed of a large volume cell having a relatively large cross section of the cell perpendicular to the longitudinal direction and a relatively small volume cell.
  • the first sealing portion is formed,
  • the second sealing portion is formed in the small volume cell.
  • a honeycomb structure suitable for collecting a large amount of PM can be manufactured while suppressing an increase in pressure loss.
  • a coating material paste is applied to the outer periphery of the honeycomb block, and then the coating material paste is solidified to form a coating layer.
  • the sealing material paste that forms the second sealing portion includes at least inorganic particles and an inorganic binder.
  • the sealing material paste having such a composition is excellent in adhesion to the cell wall, has a necessary strength, and is particularly suitable for forming the second sealing portion (unfired sealing portion). Yes.
  • the composition of the second sealing portion is substantially the same as the composition of the adhesive layer.
  • the manufacturing method of the honeycomb structure according to claim 21 is the manufacturing method of the honeycomb structure according to claim 18 or 19,
  • the composition of the second sealing portion is substantially the same as the composition of the coat layer.
  • the composition of the first sealing portion is substantially the same as the composition of the honeycomb fired body.
  • the internal components caused by the difference in the thermal expansion coefficients of the constituent members Stress is less likely to occur.
  • the temperature becomes close to 1000 ° C. it is difficult to deteriorate, can maintain strength, and is excellent in reliability.
  • the composition of the sealing portion is the same as any of the composition of the adhesive layer, the coat layer, and the honeycomb fired body. Therefore, when manufacturing a honeycomb structure, there is no need to prepare a sealing material paste separately, and an adhesive paste, a coating material paste, or a wet mixture for producing a honeycomb formed body can be used as a sealing material paste. it can.
  • FIG. 1A to FIG. 1H are explanatory diagrams for explaining the manufacturing process of the first embodiment.
  • a wet mixture is prepared by mixing silicon carbide powder having a different average particle size, an organic binder, a plasticizer, a lubricant and water as ceramic raw materials.
  • honeycomb formed body 130 having a predetermined shape (see FIG. 1A).
  • an extrusion mold is selected so that each cell 121 has a predetermined shape.
  • the honeycomb formed body 130 produced here has a length in the longitudinal direction that is approximately twice the length in the longitudinal direction of the design value of the honeycomb structure to be produced. At this time, the length of the honeycomb formed body is determined in consideration of the shrinkage during firing and the cutting allowance. Further, the honeycomb formed body is dried using a dryer.
  • a predetermined amount of the sealing material paste 122 is filled into a predetermined end of each cell 121 of the honeycomb formed body 130 to seal each cell 121.
  • a sealing mask is applied to the end face of the honeycomb formed body, and only the cells that need to be sealed are filled with the sealing material paste (see FIG. 1B).
  • the sealing material paste is filled so that the cells are sealed in a checkered pattern at each end face in the honeycomb structure finally obtained, and each cell is sealed only at one end.
  • the sealing material paste a composition having substantially the same composition as the wet mixture (substantially the same composition as the honeycomb formed body) is used.
  • the sealing material paste may have the same composition as the wet mixture, but the viscosity may be adjusted in consideration of, for example, the filling properties into the cells.
  • the adjustment of the viscosity may be performed by changing the blending amount of an organic solvent or water.
  • the honeycomb formed body 130 After placing the honeycomb formed body 130 in which predetermined end portions of each cell are sealed on a firing jig, the honeycomb formed body 130 is heated in a degreasing furnace to perform a degreasing process for removing organic substances in the honeycomb formed body. . Subsequently, the honeycomb molded body that has been subjected to the degreasing treatment is placed in a firing furnace while being placed on a firing jig, and is fired at a predetermined temperature (for example, 2200 to 2300 ° C.). 120 is manufactured (see FIG. 1C).
  • the sealing portion 22b formed through the firing process is referred to as a first sealing portion.
  • the “honeycomb formed body” includes not only a green formed body immediately after extrusion molding but also a formed body after drying treatment and degreasing treatment.
  • the honeycomb fired body 120 produced in the step (4) is cut into two equal parts in the longitudinal direction to obtain the honeycomb fired body 20 (see FIG. 1 (d)).
  • the honeycomb fired body is cut using a diamond cutter, an outer peripheral diamond grindstone, an inner peripheral diamond grindstone, a multi-wire, a multi-blade or the like.
  • a honeycomb fired body 20 having a longitudinal length that is the same as the design value of the honeycomb structure to be manufactured can be manufactured.
  • the honeycomb fired body 20 obtained by cutting is sealed only in predetermined cells on one end face side.
  • a predetermined paste cell is filled with a sealing material paste.
  • the sealing material paste filled here uses what consists of an inorganic binder, an organic binder, and an inorganic particle, for example. This sealing material paste may further contain inorganic fibers and / or whiskers.
  • the sealing material paste filled in this step is heated and solidified to form an unfired sealing portion (solidified sealing portion) 22a (see FIG. 1E).
  • an unfired (solidified) sealing portion is referred to as a second sealing portion.
  • the sealing material paste filled in the step (3) becomes the fired sealing portion 22b through the firing treatment in the step (4).
  • FIG. 1G is a partially enlarged cross-sectional view taken along the line AA in FIG.
  • the honeycomb fired body aggregate 110 is cut along the broken line in FIG. 1 (f) to form a honeycomb block using a diamond cutter, and a coating material paste is applied to the outer peripheral surface of the honeycomb block.
  • the honeycomb structure 10 is formed by solidifying the coating material paste to form the coating layer 12 (see FIG. 1 (h)).
  • the coating material paste for example, a paste-like composition having substantially the same composition as the adhesive paste is used.
  • FIG. 2 is a perspective view schematically showing an example of the honeycomb structure of the first embodiment
  • FIG. 3A is a schematic example of the honeycomb fired body constituting the honeycomb structure of the first embodiment
  • 3 (b) is a cross-sectional view taken along the line BB of FIG. 3 (a).
  • a plurality of honeycomb fired bodies 20 are bundled through an adhesive layer 11 to form a honeycomb block 15, and the outer periphery of the honeycomb block 15 is coated. Layer 12 is formed. Further, as shown in FIGS. 3A and 3B, the honeycomb fired body 20 has a large number of cells 21 arranged in parallel in the longitudinal direction (the direction of arrow a in FIG. 3A). A cell wall 23 that separates 21 from each other functions as a filter.
  • the cells 21 formed in the honeycomb fired body 20 are sealed with a sealing portion 22a formed using a sealing material paste at the end portion on the inlet side of the exhaust gas as shown in FIG. 3 (b).
  • the exhaust gas outlet side end portion is sealed with a sealing portion 22b formed using a sealing material paste, and the exhaust gas outlet side end portion flows into the sealed cell 21.
  • the sealing part 22b for sealing the end part on the outlet side of the exhaust gas is a fired sealing part (first sealing part) formed by subjecting the sealing material paste to a firing process.
  • the sealing portion 22a that seals the end portion on the inlet side of the exhaust gas is an unfired sealing portion (second sealing portion) formed by solidifying the sealing material paste without performing a baking treatment. is there.
  • the coat layer 12 and the sealing portion 22 a are formed using a paste that is substantially the same as the paste that forms the adhesive layer 11.
  • the arrow shows the flow of exhaust gas.
  • the sealing portion 22b is a sealing portion formed through a firing process as described above, and the sealing portion 22a is a sealing portion formed without a firing process.
  • the stop portion 22b and the sealing portion 22a are mechanical such as hardness (eg, Vickers hardness, Rockwell hardness, etc.), strength (bending strength, compressive strength, fracture strength, etc.), Young's modulus, elastic modulus, thermal conductivity, etc. The characteristics will be different.
  • a sealing portion having low strength and low thermal conductivity is formed at one end of the honeycomb structure, and a sealing portion having high strength and high thermal conductivity is formed at the other end. It will be formed.
  • the end portion where the honeycomb structure has a low strength and a sealing portion having a small thermal conductivity is formed on the inlet side of the exhaust gas purification apparatus, and the end portion where the sealing portion having a high strength and a high thermal conductivity is formed.
  • firing means decomposing and removing unstable components (moisture, binder, etc.) in the molded body, and forming a stable compound by advancing reactions (including recrystallization) between the components.
  • the strength is further improved.
  • solidification means that the reaction between each component in the composition does not occur, and by removing moisture and the like in the composition, the state of the composition is changed due to physical action to develop adhesive properties (composition To improve the hardness of an object).
  • FIG. 4 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present embodiment in which a honeycomb structure is installed.
  • the exhaust gas purification device 40 is mainly arranged between the honeycomb structure 10, a casing (metal container) 41 that covers the outside of the honeycomb structure 10, and between the honeycomb structure 10 and the casing 41.
  • a holding seal material 42 made of alumina is provided, and an introduction pipe 43 connected to an internal combustion engine such as an engine is connected to an end of the casing 41 on the side where the exhaust gas is introduced.
  • a discharge pipe 44 connected to the outside is connected to the other end.
  • the side where the sealing part 22a (unfired sealing part) is formed becomes the exhaust gas inflow side
  • the side where the sealing part 22b (fired sealing part) is formed is the exhaust gas outflow. It arrange
  • arrows indicate the flow of exhaust gas.
  • exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 41 through the introduction pipe 43 and flows into the honeycomb structure 10 from the inlet side cell. Then, after passing through the cell wall, PM is collected and purified by the cell wall, and then discharged from the outlet side cell to the outside of the honeycomb structure and discharged to the outside through the discharge pipe 44.
  • the regeneration process of the honeycomb structure 10 is performed.
  • the honeycomb structure 10 is heated by flowing gas heated using a heating means (not shown) into the through holes of the honeycomb structure, and PM deposited on the cell walls is burned and removed. Further, PM may be burned and removed using a post-injection method.
  • the exhaust gas outflow side of the honeycomb structure tends to have a larger amount of accumulated PM than the exhaust gas inflow side, and when the PM is burned and removed, the exhaust gas outflow side of the honeycomb structure is larger than the exhaust gas inflow side. Tend to be hot. Therefore, in this embodiment, the exhaust gas outflow side, which is likely to become higher in temperature, is set as a sealing portion with high mechanical characteristics, and the exhaust gas outflow side is set as a sealing portion with low mechanical characteristics.
  • the honeycomb formed body is fired to produce a honeycomb fired body, and then the obtained honeycomb fired body is cut.
  • the dimensional accuracy in the longitudinal direction of each honeycomb fired body to be manufactured is excellent, and the variation in the size of each honeycomb fired body can be reduced. Therefore, it is suitable for manufacturing a honeycomb structure with less unevenness on the end face without performing a polishing process.
  • a fired body having a size larger than the design value is prepared, and cutting is performed from the both end surface sides with the design value, thereby producing two honeycomb fired bodies.
  • the central portion may not be cut or may be discarded as a cutting allowance.
  • the honeycomb fired body at the central portion is not discarded, it can be used for manufacturing another honeycomb structure.
  • the manufactured fired body is cut at a design value dimension, it is not necessary to polish the end face of the honeycomb fired body, and no abrasive powder remains in the pores of the cell wall of the honeycomb fired body. Therefore, it is not necessary to perform a cleaning process accompanying the end face polishing process.
  • honeycomb fired body is cut after the honeycomb fired body is produced, two honeycomb fired bodies are produced from one honeycomb molded body, and the honeycomb fired body can be efficiently produced. it can. As a result, the production efficiency of the honeycomb structure is improved and the number of honeycomb structures produced per unit time can be increased, leading to a reduction in manufacturing cost.
  • the sealing portion for sealing the end portion of the cell is filled with the sealing material paste and then subjected to a baking treatment or solidified by heating. The end portion of this is surely sealed.
  • the unfired sealing portion constituting the honeycomb structure, the adhesive layer, and the coat layer are formed using substantially the same material, Internal stress due to the difference in thermal expansion coefficient is unlikely to occur and the reliability is further improved.
  • the fired sealing portion constituting the honeycomb structure is formed with substantially the same composition as the honeycomb fired body, even if there is a thermal shock during the regeneration process, the space between the cell wall and the sealing portion is Therefore, cracks, peeling, etc. are hardly generated, the reliability is excellent, and soot leakage can be surely prevented.
  • the sealing part (first sealing part) formed through the firing process is located on the exhaust gas outflow side, and the sealing part (without the firing process) ( Since the second sealing part) is located on the exhaust gas inflow side, the effect described in (4) above is most effective, and on the exhaust gas inflow side, internal stress due to the temperature of the exhaust gas is easily relaxed, and the exhaust gas outflow On the side, the accumulated amount of PM tends to increase and tends to become high temperature when the regeneration process is performed. However, cracks are hardly generated between the cell walls because of the fired sealing portion, and the PM is surely secured. Can be collected.
  • Example 1 Wet-mixing silicon carbide coarse powder 52.8% by weight with an average particle size of 22 ⁇ m and silicon carbide fine powder 22.6% by weight of an average particle size of 0.5 ⁇ m with respect to the resulting mixture 2.1% by weight of acrylic resin, 4.6% by weight of organic binder (methyl cellulose), 2.8% by weight of lubricant (Unilube manufactured by NOF Corporation), 1.3% by weight of glycerin, and 13.8% by weight of water % And kneading to obtain a wet mixture, followed by an extrusion molding step of extrusion molding.
  • the shape is substantially the same as the shape shown in FIG. 2 (a), and the cells are not sealed.
  • a honeycomb formed body was prepared.
  • the raw honeycomb formed body was dried using a microwave dryer to prepare a dried honeycomb formed body. Thereafter, a predetermined cell of the dried honeycomb molded body was filled with a paste having the same composition as the wet mixture. Specifically, in each cell, a paste having the same composition as that of the wet mixture was filled as a sealing material paste so that either one end was sealed. Then, it dried again using the dryer.
  • the honeycomb fired body is divided into two equal parts using a peripheral diamond grindstone having a plate thickness of 0.5 mm, and the size of only one end face side of a predetermined cell is 34.3 mm ⁇ 34.
  • a honeycomb fired body of 3 mm ⁇ 150 mm was produced.
  • the cutting position was set so as to cut at the design value from both ends, and the central portion was set as a cutting allowance.
  • a sealing material paste is applied to the end portions of the cells that have not been sealed so that any one end portion of each cell is sealed. Filled.
  • the sealing material paste from 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water.
  • An encapsulant paste was used. Then, the sealing material paste filled in this step was solidified by heating with hot air at 180 ° C. for 15 minutes to obtain a sealing portion.
  • an adhesive paste is applied to the side surface of the honeycomb fired body manufactured through the steps (1) to (5), and the 16 honeycomb fired bodies are bonded via the adhesive paste. Further, the adhesive paste was solidified by heating at 180 ° C. for 20 minutes to produce a quadrangular prism honeycomb fired body aggregate. Subsequently, a cylindrical honeycomb block having an adhesive layer thickness of 1 mm was manufactured by cutting the outer periphery of the aggregate of honeycomb fired bodies using a diamond cutter. Here, a paste having the same composition as the sealing material paste used in the step (5) was used as the adhesive paste.
  • a coating material paste was applied to the outer peripheral portion of the honeycomb block to form a coating material paste layer. Then, this coating material paste layer was solidified at 120 ° C. to produce a cylindrical honeycomb structure having a diameter of 143.8 mm and a length of 150 mm, on which the coating layer was formed on the outer periphery.
  • the coating material paste a paste having the same composition as that of the sealing material paste used in the step (5) was used.
  • the raw honeycomb molded body was dried using a microwave dryer to prepare a dried honeycomb molded body. Thereafter, the end portion of a predetermined cell was filled with a sealing material paste so that either one end portion of each cell was sealed.
  • a sealing material paste a composition having the same composition as that of the wet mixture was used.
  • the honeycomb molded body filled with the sealing material paste was subjected to a degreasing process and a firing process under the same conditions as in the step (3) of Example 1 to produce a honeycomb fired body.
  • the manufactured honeycomb fired body has a porosity of 45%, an average pore diameter of 15 ⁇ m, a size of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm, a number of cells (cell density) of 300 / inch 2 , cells
  • the pressure loss of the honeycomb structure of Example 1 was 2.3 KPa, and the pressure loss of the honeycomb structure of Comparative Example 1 was 2.4 KPa.
  • the pressure loss of the honeycomb structure manufactured in Example 1 was almost the same as that of the honeycomb structure manufactured in Comparative Example 1 (conventional method).
  • the collection limit of the honeycomb structure of Example 1 was 7.9 g / l
  • the collection limit of the honeycomb structure of Comparative Example 1 was 7.7 g / l.
  • the collection limit of the honeycomb structure manufactured in Example 1 was almost the same as that of the honeycomb structure manufactured in Comparative Example 1 (conventional method).
  • the process sequence of the honeycomb structure manufacturing method is different from the process sequence of the honeycomb structure manufacturing method in the first embodiment.
  • FIG. 5A to FIG. 5F are explanatory diagrams for explaining the manufacturing process of the second embodiment.
  • the honeycomb fired body 120 is manufactured using the same method as the method (1) to (4) of the method for manufacturing the honeycomb structure of the first embodiment. (See FIG. 5A).
  • an adhesive paste serving as an adhesive layer is applied to the side surface of the manufactured honeycomb fired body 120 to form an adhesive paste layer, and another honeycomb fired layer is sequentially formed on the adhesive paste layer.
  • the process of laminating the bodies is repeated to produce a honeycomb fired body aggregate 110 ′ in which a predetermined number of honeycomb fired bodies 120 are bundled.
  • the adhesive paste a paste having substantially the same composition as the sealing material paste used in the step (4) below is used.
  • the aggregate of the honeycomb fired bodies is heated to solidify the adhesive paste layer to form the adhesive layer 11 (see FIG. 5B). .
  • the honeycomb fired body aggregate 110 ′ produced in the step (2) is cut into two equal parts in the longitudinal direction to form the honeycomb fired body aggregate 110 (see FIG. 5C). ).
  • the honeycomb fired body is cut using a diamond cutter, an outer peripheral diamond grindstone, an inner peripheral diamond grindstone, a multi-wire, a multi-blade or the like. By performing such a cutting process, a honeycomb fired body aggregate 110 having the same length in the longitudinal direction as the design value of the honeycomb structure to be manufactured can be manufactured.
  • FIG. 5E is a partially enlarged sectional view taken along the line CC of FIG. 5D.
  • a sealing material paste what consists of an inorganic binder, an organic binder, and an inorganic particle is used, for example.
  • This sealing material paste may further contain inorganic fibers and / or whiskers.
  • the honeycomb fired body aggregate 110 is subjected to cutting along the broken line in FIG. 5D to form a honeycomb block using a diamond cutter, and a coating material paste is applied to the outer peripheral surface of the honeycomb block. Then, the coating material paste is solidified by heating to form the coating layer 12 to obtain the honeycomb structure 10 (see FIG. 5F).
  • the coating material paste for example, a coating material paste having substantially the same composition as that of the sealing material paste used in the step (4) is used.
  • a honeycomb structure can be manufactured through such steps.
  • the configuration of the honeycomb structure manufactured by the manufacturing method of the present embodiment is the same as the configuration of the honeycomb structure of the first embodiment.
  • the configuration of the exhaust gas purification apparatus using the honeycomb structure manufactured by the manufacturing method of the present embodiment is the same as the configuration of the exhaust gas purification apparatus of the first embodiment.
  • the honeycomb structure In the honeycomb structure, the exhaust gas purification device, and the method for manufacturing the honeycomb structure according to the second embodiment, the same operational effects as those of the first embodiment can be obtained.
  • Example 2 (1) In the same manner as in the steps (1) to (3) of Example 1, the porosity is 45%, the average pore diameter is 15 ⁇ m, the size is 34.3 mm ⁇ 34.3 mm ⁇ 300.5 mm, A honeycomb fired body made of a silicon carbide sintered body having a number (cell density) of 300 / inch 2 and a cell wall thickness of 0.25 mm (10 mil) was manufactured.
  • an adhesive paste is applied to the side surface of the honeycomb fired body manufactured in the step (1), and the 16 honeycomb fired bodies are bonded through the adhesive paste, and further, 180 ° C.,
  • the adhesive paste was solidified by heat treatment for 20 minutes to produce a quadrangular columnar honeycomb fired body aggregate.
  • the aggregate of the honeycomb fired bodies was divided into two equal parts using a peripheral diamond grindstone having a plate thickness of 0.5 mm, and the length in the longitudinal direction was 150 mm, and only one end face side of a predetermined cell was sealed. An aggregate of honeycomb fired bodies was obtained.
  • the adhesive paste includes 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water. An adhesive paste consisting of was used.
  • the end portions of the cells that have not been sealed so that any one end portion of each cell is sealed was filled with a sealing material paste. Thereafter, the filled sealing material paste was solidified by heating with hot air at 180 ° C. for 15 minutes to obtain a sealing portion.
  • the sealing material paste a paste having the same composition as that of the adhesive paste used in the step (2) was used.
  • the outer periphery of the aggregate was cut using a diamond cutter to produce a cylindrical honeycomb block with an adhesive layer thickness of 1 mm.
  • a coating material paste was applied to the outer periphery of the honeycomb block to form a coating material paste layer.
  • this coating material paste layer was dried at 180 ° C. for 20 minutes to produce a cylindrical honeycomb structure having a diameter of 143.8 mm and a length of 150 mm with a coating layer formed on the outer periphery.
  • a paste having the same composition as the adhesive paste used in the step (2) was used as the coating material paste.
  • the sealing portion on one end face side is formed through a firing process, and the sealing portion on the other end face side is formed without undergoing a firing process.
  • the pressure loss and the regeneration limit of the honeycomb structure manufactured in this example were measured by the same method as in Example 1, they were 2.3 KPa and 7.9 g / l, respectively.
  • the pressure loss and the collection limit of the honeycomb structure manufactured in Example 2 were comparable to those of the honeycomb structure manufactured in Comparative Example 1 (conventional method).
  • FIG. 6A to FIG. 6G are explanatory diagrams for explaining the manufacturing process of the third embodiment.
  • the length in the longitudinal direction is set using the same method as the method (1) to (5) of the method for manufacturing the honeycomb structure of the first embodiment.
  • a honeycomb fired body 20 having the same length in the longitudinal direction as the design value of the honeycomb structure to be manufactured is manufactured (see FIGS. 6A and 6B).
  • an adhesive paste is applied to the side surface of the honeycomb fired body 20 produced in the above step (1) to form an adhesive paste layer.
  • the process of laminating the honeycomb fired bodies is repeated to produce a honeycomb fired body aggregate 110 in which a predetermined number of honeycomb fired bodies are bundled.
  • the aggregate of the honeycomb fired bodies is heated to solidify the adhesive paste layer to form the adhesive layer 11 (FIG. 6 (c), FIG. 6 (d)).
  • FIG. 6D is a partially enlarged cross-sectional view taken along the line DD in FIG. 6C.
  • the sealing material paste a paste having substantially the same composition as the sealing material paste used in the following step (3) is used.
  • FIG. 6F is a partially enlarged cross-sectional view taken along the line EE of FIG.
  • a sealing material paste what consists of an inorganic binder, an organic binder, and an inorganic particle is used, for example.
  • This sealing material paste may further contain inorganic fibers and / or whiskers.
  • the honeycomb fired body aggregate 110 is cut along the broken line in FIG. 6 (e) to form a honeycomb block using a diamond cutter, and a coating material paste is applied to the outer peripheral surface of the honeycomb block. Then, the coating material paste is solidified by heat treatment to form the coating layer 12 to obtain the honeycomb structure 10 (see FIG. 6G).
  • the coating material paste for example, a coating material paste having substantially the same composition as the sealing material paste filled in the step (3) is used.
  • a honeycomb structure can be manufactured through such steps.
  • the configuration of the honeycomb structure manufactured by the manufacturing method of the present embodiment is the same as the configuration of the honeycomb structure of the first embodiment.
  • the configuration of the exhaust gas purification apparatus using the honeycomb structure manufactured by the manufacturing method of the present embodiment is the same as the configuration of the exhaust gas purification apparatus of the first embodiment.
  • the same functions and effects as those of the first embodiment can be enjoyed.
  • Example 3 (1) First, in the same manner as in the steps (1) to (5) of Example 1, a honeycomb having a size of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm sealed only on one end face side of a predetermined cell A fired body was produced.
  • an adhesive paste was applied to the side surface of the honeycomb fired body produced in the step (1), and the adhesive paste was passed through the adhesive paste.
  • the 16 honeycomb fired bodies were bonded, and the adhesive paste was solidified by a heat treatment at 180 ° C. for 20 minutes to produce a quadrangular prism-shaped honeycomb fired body aggregate.
  • the adhesive paste is composed of 30.0% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol, 8.0% by weight of carboxymethylcellulose, and 40.6% by weight of water.
  • An encapsulant paste was used.
  • a sealing portion was formed so that either one end of each cell was sealed.
  • the sealing material paste for forming the sealing portion a paste having the same composition as that of the adhesive paste used in the step (2) was used.
  • the sealing portion on one end face side is formed through a firing process, and the sealing portion on the other end face side is formed without undergoing a firing process.
  • the pressure loss and the regeneration limit of the honeycomb structure manufactured in this example were measured by the same method as in Example 1, they were 2.5 KPa and 7.9 g / l, respectively.
  • the pressure loss and the collection limit of the honeycomb structure manufactured in Example 3 were approximately the same as those of the honeycomb structure manufactured in Comparative Example 1 (conventional method).
  • FIG. 7 is a process diagram in the method for manufacturing a honeycomb structure according to the first to third embodiments. As shown in FIG. 7, in the honeycomb structure according to the first to third embodiments, the timing for cutting the honeycomb fired body, the timing for binding a plurality of honeycomb fired bodies, and the honeycomb fired body obtained by cutting The timing at which the cells are filled with the sealing material paste is different.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body of each cell is the same and is a quadrangle.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body of each cell may be, for example, an octagon and a quadrangle.
  • Fig. 8 (a) is a perspective view schematically showing another example of the honeycomb fired body constituting the honeycomb structure of the embodiment of the present invention
  • Fig. 8 (b) is a diagram B of Fig. 8 (a).
  • a large number of cells 71a and 71b are arranged in parallel in the longitudinal direction (in the direction of arrow b in FIG. 8A) with the cell wall 73 therebetween.
  • One end of each of the cells 71a and 71b is sealed with a sealing portion.
  • the end portion on the inflow side of the exhaust gas is sealed with an unfired sealing portion (second sealing portion) 72a, and the end portion on the outflow side of the exhaust gas is formed in the cell 71b.
  • the fired sealing part first sealing part
  • the shape of the cross section perpendicular to the longitudinal direction of the cell 71a is a tetragon
  • the shape of the cross section perpendicular to the longitudinal direction of the cell 71b is an octagon.
  • the plurality of cells formed in the honeycomb fired body 70 are composed of a large volume cell and a relatively small small volume cell in which the cross section of the cell perpendicular to the longitudinal direction is relatively large.
  • the first sealing portion is formed, and the second sealing portion is formed in the small volume cell.
  • the exhaust gas flowing into the cell 71b always passes through the cell wall 73 and then flows out of the cell 71a. Therefore, also in the honeycomb fired body 70, the cell wall 73 functions as a filter for collecting PM and the like.
  • the volume of the cell opened on the exhaust gas inflow side (cell 71b having an octagonal cross section) is larger than the volume of the cell opened on the exhaust gas outflow side (cell 71a having a quadrangular cross section). Therefore, it is suitable for collecting a large amount of PM while suppressing an increase in pressure loss.
  • the combination of the cross-sectional shapes of the large volume cell and the small volume cell is limited to an octagon and a quadrangle. However, it may be a combination of arbitrary shapes such as a combination of two types of quadrangles having different cross-sectional areas.
  • a plurality of rectangular pillar-shaped honeycomb structures are bundled to produce an aggregate of honeycomb fired bodies, and then a cutting process is performed to produce a honeycomb block.
  • a plurality of honeycomb fired bodies manufactured in advance with a predetermined shape may be bundled to form a honeycomb block.
  • FIGS. 9A to 9C are perspective views schematically showing another example of the honeycomb fired body manufactured by the method for manufacturing a honeycomb structure according to the embodiment of the present invention. That is, as shown in FIGS. 9A to 9C, honeycomb fired bodies 220, 230, and 240 in which a plurality of cells 221, 231, and 241 are formed with cell walls 223, 233, and 243 separated from each other. The ceramic blocks may be bundled one by one. When the honeycomb block 15 shown in FIG. 2 is manufactured, four honeycomb fired bodies 220, 230, and 240 may be used.
  • the catalyst is supported on the honeycomb structure.
  • the catalyst may be supported on the honeycomb structure. Then, by supporting the catalyst on the honeycomb structure, the honeycomb structure on which the catalyst is supported and the exhaust gas purification apparatus using the honeycomb structure purifies harmful components such as CO, HC and NOx contained in the exhaust gas. can do. Moreover, the combustion temperature of PM can also be lowered by the supported catalyst.
  • the catalyst examples include catalysts containing noble metals, alkali metals, alkaline earth metals, oxides, and the like. These catalysts are desirably applied to the surface of an oxide film made of alumina or the like having a high specific surface area and supported on the honeycomb structure.
  • the sealing material paste used in the embodiment of the present invention is a paste containing at least inorganic particles and an inorganic binder
  • examples of the inorganic particles include carbide, nitride, and the like.
  • examples thereof include inorganic powders composed of silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more.
  • silicon carbide having excellent thermal conductivity is desirable.
  • the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more.
  • silica sol is desirable.
  • the sealing material paste may further contain inorganic fibers and / or whiskers.
  • the inorganic fibers and / or whiskers include ceramic fibers such as silica-alumina, mullite, alumina, and silica. Etc. These may be used alone or in combination of two or more. Among inorganic fibers and / or whiskers, alumina fibers are desirable.
  • the sealing material paste may have substantially the same composition as the wet mixture used when the honeycomb fired body is produced by extrusion molding.
  • the sealing material paste used for forming the sealing part formed without undergoing the firing treatment is desirably the former (a sealing material paste containing at least inorganic particles and an inorganic binder), and the sealing paste formed through the firing treatment.
  • the latter (paste having substantially the same composition as the wet mixture) is desirable for the sealing material paste used for forming the stopper.
  • the former sealing material paste may be used as a material for a sealing part formed through a baking process, or the latter sealing material paste may be used as a material for a sealing part formed without undergoing a baking process. Also good.
  • the sealing portion, the adhesive layer, and the coating layer formed without undergoing the firing treatment are all formed using pastes having substantially the same composition. Are not necessarily substantially the same.
  • the shape of the honeycomb structure of the embodiment of the present invention is not limited to the columnar shape shown in FIG. 2, and may be any columnar shape such as an elliptical columnar shape or a polygonal columnar shape.
  • the porosity of the honeycomb fired body according to the embodiment of the present invention is not particularly limited, but is desirably 35 to 60%.
  • the average pore size of the honeycomb fired body is desirably 5 to 30 ⁇ m.
  • the porosity and pore diameter can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the main component of the constituent material of the honeycomb structure of the embodiment of the present invention is not limited to silicon carbide, and examples of the main component of other constituent materials include aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • silicon-containing ceramics in which metallic silicon is blended with the above-mentioned ceramics, ceramics bonded with silicon or a silicate compound, and the like are also cited as the main components of the constituent materials, and among these, silicon carbide is blended with silicon carbide.
  • silicon carbide is blended with silicon carbide.
  • Silicon-containing silicon carbide is desirable.
  • a silicon-containing silicon carbide ceramic containing 60 wt% or more of silicon carbide is desirable.
  • the particle size of the ceramic powder contained in the wet mixture to be extruded is not particularly limited, but the size of the honeycomb fired body produced through the subsequent firing step is Those that are less likely to be smaller than the size of the defatted honeycomb molded body are preferred.
  • a combination of 100 parts by weight of a powder having an average particle diameter of 1.0 to 50 ⁇ m and 5 to 65 parts by weight of a powder having an average particle diameter of 0.1 to 1.0 ⁇ m is preferable.
  • the organic binder contained in the wet mixture to be extruded is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and polyethylene glycol. Of these, methylcellulose is desirable. Moreover, it does not specifically limit as a plasticizer contained in the said wet mixture, For example, glycerol etc. are mentioned. Further, the lubricant contained in the wet mixture is not particularly limited, and examples thereof include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the wet mixture.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, an organic solvent such as benzene, and an alcohol such as methanol.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the honeycomb fired bodies when a plurality of honeycomb fired bodies are bundled, an adhesive paste is applied to the side surface of each honeycomb fired body, and the honeycomb fired bodies are sequentially stacked. Yes.
  • a gap holding material is attached to the surface of the honeycomb fired bodies, and the plurality After the honeycomb fired bodies are combined, the honeycomb fired bodies may be bound using a method of injecting an adhesive paste into the gaps between the honeycomb fired bodies.
  • a plurality of honeycomb fired bodies are bundled in the honeycomb block.
  • the honeycomb block does not necessarily include a plurality of honeycomb blocks.
  • the honeycomb fired body need not be constituted, and the honeycomb block may be constituted by one honeycomb fired body.
  • the shape of the cross section perpendicular to the longitudinal direction is What is necessary is just to produce the honeycomb molded body substantially the same as the cross section perpendicular to the longitudinal direction.
  • FIG. 1A to FIG. 1H are explanatory diagrams for explaining the manufacturing process of the first embodiment.
  • FIG. 2 is a perspective view schematically showing an example of the honeycomb structure of the first embodiment.
  • Fig. 3 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb structure of the first embodiment, and
  • Fig. 3 (b) is a BB line in Fig. 3 (a). It is sectional drawing.
  • FIG. 4 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present embodiment in which a honeycomb structure is installed.
  • FIG. 5A to FIG. 5F are explanatory diagrams for explaining the manufacturing process of the second embodiment.
  • FIGS. 9A to 9C are perspective views schematically showing another example of the honeycomb fired body manufactured by the method for manufacturing a honeycomb structure according to the embodiment of the present invention.

Abstract

本発明は、効率よく生産するのに適したハニカム構造体に関し、本発明のハニカム構造体は、複数のセルがセル壁を隔てて長手方向に並設され、上記セルのいずれか一方の端部が封止材ペーストにより形成された封止部により封止された柱状のハニカム焼成体からなるハニカムブロックを備えたハニカム構造体であって、上記封止部のうち、上記ハニカム焼成体の一方の端面側の封止部は、焼成された第一の封止部であり、上記ハニカム焼成体の他方の端面側の封止部は未焼成の第二の封止部であることを特徴とする。

Description

ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
本発明は、ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法に関する。
従来、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化するフィルタとして、例えば、多孔質セラミックを用いたハニカム構造体からなるハニカムフィルタが種々提案されている。
このようなハニカム構造体として、特許文献1には、多孔質セラミック焼結体からなる複数のフィルタの外周面同士をシール材層を介して接着することにより、各フィルタを一体化したハニカム構造体が開示されている(例えば、特許文献1参照)。
このようなハニカム構造体は、下記のような方法により製造することができる。
まず、セラミック粉末とバインダと分散媒液等とを混合して湿潤混合物を調製する。
次に、この湿潤混合物を押出成形し、押し出された成形体を所定の長さに切断することにより、柱状のハニカム成形体を作製する。
その後、ハニカム成形体の各セルのいずれか一方の端部が封止されるように各セルの所定の端部に封止材ペーストを充填する。次に、封止材ペーストが充填されたハニカム成形体に、脱脂処理及び焼成処理を施し、フィルタとして機能するハニカム焼成体を作製する。
次に、複数のハニカム焼成体をシール材層を介して結束させてハニカム焼成体の集合体を作製し、その後、必要に応じて、ハニカム焼成体の集合体の外周に切削加工を施したり、この集合体の外周にコート層を形成したりすることによりハニカム構造体を製造する。
特開2001-162121号公報
特許文献1に記載されたハニカム構造体の製造方法では、押出成形によりハニカム成形体を作製する時点で、作製するハニカム焼成体と略同形のハニカム成形体を作製し、このハニカム成形体に、封止、脱脂、焼成等の各種処理を施してハニカム焼成体を作製している。
このような製造方法において、ハニカム焼成体のサイズは、焼成処理を経ることにより、ハニカム成形体のサイズよりも若干小さくなる。そして、このようなサイズの縮小は避けることができない。
そのため、ハニカム成形体を作製する際には、サイズの縮小を見込んで、ハニカム焼成体のサイズよりも若干大きいハニカム成形体を作製する必要があった。
しかしながら、サイズの縮小量は予想値であり、焼成条件のバラツキ等により作製したハニカム焼成体のサイズにバラツキが生じることがあった。
そして、ハニカム焼成体のサイズにバラツキが生じると、複数個のハニカム焼成体を結束させてハニカム構造体を製造した場合に、ハニカム構造体の端面に凹凸が生じることとなり、場合によっては、端面研磨を行う必要があった。
しかしながら、端面研磨は、可能であれば省略が望まれる工程である。なぜなら、研磨処理を行うことにより、ハニカム構造体の端面に欠けが発生する、ハニカム構造体のセル壁の気孔に研磨粉が入り込む等の不都合が生じる場合があるからである。また、端面研磨、セル壁の気孔に入り込んだ研磨粉を除去するための洗浄等の工程の増加がそのままコストの増加に繋がるからである。
また、上述したハニカム構造体の製造方法のように、作製するハニカム焼成体と略同形のハニカム成形体を作製して各種処理を行う場合、生産性が低くなる場合があった。特に、長手方向の長さの短いハニカム構造体を製造する場合には、この傾向が顕著であった。
これについて、もう少し詳しく説明する。
上述したようなハニカム構造体の製造方法において、ハニカム成形体に焼成処理を施す際には、通常、複数個のハニカム成形体を1個の焼成用治具に収納した状態で行う。ここで、成形体の焼結を確実かつ均一に進行させるには、ハニカム成形体を焼成用治具内に収納する際に、ハニカム成形体同士をある程度離間させて収納する必要がある。
そのため、焼成用治具の大きさが同一である場合、ハニカム成形体の小さくなると、ハニカム成形体同士の間のスペース(空間)が占める割合が増加することとなり、その結果、ハニカム焼成体の生産性が低下することとなる。
別の言い方をすると、焼成用治具の大きさが同一である場合、例えば、ハニカム成形体のサイズが1/2になっても、焼成用治具内に収納することできるハニカム成形体の数が2倍になるわけではなく、収納することできるハニカム成形体の数は2倍以下となる。
また、焼成用治具は、ハニカム成形体の大きさに合せて最適な大きさのものを用いることが望ましく、ハニカム成形体の大きさに合せて、大きさの異なる焼成用治具を準備することが望ましいが、このような大きさの異なる焼成用治具を準備することは、製造コストの増加に繋がる。
そこで、本発明者らは上記課題を解決するために鋭意検討を行い、本発明を完成した。
請求項1に記載のハニカム構造体は、
複数のセルがセル壁を隔てて長手方向に並設され、上記セルのいずれか一方の端部が封止材ペーストにより形成された封止部により封止された柱状のハニカム焼成体からなるハニカムブロックを備えたハニカム構造体であって、
上記封止部のうち、上記ハニカム焼成体の一方の端面側の封止部は焼成された第一の封止部であり、上記ハニカム焼成体の他方の端面側の封止部は未焼成の第二の封止部であることを特徴とするハニカム構造体である。
請求項1に記載のハニカム構造体は、後述する本発明のハニカム構造体の製造方法により、効率よく製造することができる。
また、請求項1に記載のハニカム構造体では、このハニカム構造体を構成するハニカム焼成体において、一方の端面側の封止部が焼成された封止部であり、他方の端面側の封止部が未焼成の封止部である。そのため、未焼成の封止部では、熱応力を緩和することができ、焼成された封止部では、高温下でもクラックや剥がれが発生しにくく、PMの漏れが発生にくい。
請求項2に記載のハニカム構造体は、請求項1に記載のハニカム構造体において、
上記未焼成の第二の封止部が、加熱処理により固化された封止部である。
このように、未焼成の封止部が固化された封止部である場合、上述した熱応力を緩和する効果を維持しつつ、セルの端部をより確実に封止することができる。
請求項3に記載のハニカム構造体は、請求項1又は2に記載のハニカム構造体において、
上記第二の封止部が、少なくとも無機粒子と無機バインダとを含む封止材ペーストを用いて形成されている。
このような封止材ペーストは、セル壁との密着性に優れるとともに、必要な強度を備え、未焼成の封止部を形成するのに特に適している。
請求項4に記載のハニカム構造体は、請求項1~3のいずれかに記載のハニカム構造体において、
上記ハニカムブロックが、複数個のハニカム焼成体が接着材層を介して結束されてなる。
また、請求項5に記載のハニカム構造体は、請求項1~3のいずれに記載のハニカム構造体において、
上記ハニカムブロックが、1個のハニカム焼成体からなる。
請求項6に記載のハニカム構造体は、請求項1~5のいずれかに記載のハニカム構造体において、
上記ハニカムブロックの外周部にコート層が形成されている。
請求項6に記載のハニカム構造体では、外周側面からのPMの漏れがより発生しにくいため、より信頼性に優れることとなる。また、コート層を形成することにより、ハニカム構造体の外周精度(外周側面の寸法精度)を高めることができる。
請求項7に記載のハニカム構造体は、請求項4又は6に記載のハニカム構造体において、
上記第二の封止部の組成が、上記接着材層の組成と略同一である。
このように第二の封止部の組成と、接着材層の組成とが略同一であると、構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れる。
請求項8に記載のハニカム構造体は、請求項6又は7に記載のハニカム構造体において、
上記第二の封止部の組成が、上記コート層の組成と略同一である。
このように第二の封止部の組成と、コート層の組成とが略同一であると、構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れる。
請求項9に記載のハニカム構造体は、請求項1~8のいずれかに記載のハニカム構造体において、
上記第一の封止部の組成が、上記ハニカム焼成体の組成と略同一である。
このように第一の封止部の組成と、ハニカム焼成体の組成とが略同一であると、構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れる。特に、1000℃近くの高温になった場合にも劣化しにくく、強度を保つことができ、信頼性に優れる。
また、請求項7~9に記載のハニカム構造体では、封止部の組成が、接着材層、コート層、ハニカム焼成体のいずれかの組成と略同一である。そのため、ハニカム構造体を製造する際に、封止部を形成するための封止材ペーストを別途調製する必要がない。
請求項10に記載のハニカム構造体は、請求項1~9のいずれかに記載のハニカム構造体において、
上記ハニカム焼成体に形成された複数のセルは、上記長手方向に垂直なセルの断面が相対的に大きい大容積セルと相対的に小さい小容積セルとからなり、
上記大容積セルには、上記第一の封止部が形成され、
上記小容積セルには、上記第二の封止部が形成されている。
このようなセルを備えたハニカム構造体は、圧力損失を上昇を抑えつつ、多量のPMを捕集するのに適している。
請求項11に記載の排ガス浄化装置は、
請求項1~10のいずれかに記載のハニカム構造体が、保持シール材を介して金属容器内に配置された排ガス浄化装置であって、
上記ハニカム構造体が、上記第一の封止部が形成された端面側が排ガス流出側、上記第二の封止部が形成された側が排ガス流入側となるように配置されていることを特徴とする排ガス浄化装置である。
請求項11に記載の排ガス浄化装置は、ハニカム構造体として、請求項1~10のいずれに記載のハニカム構造体を備えており、第一の封止部(焼成された封止部)が排ガス流出側、第二の封止部(未焼成の封止部)が排ガス流入側に位置しているため、排ガス流入側に生じる高温の排ガスによる熱応力を緩和することができるとともに、再生処理を行った際に、さらに高温になる排ガス流出側での封止部のクラックや、ハニカム焼成体と封止部と剥離を防止することができる。
請求項12に記載のハニカム構造体の製造方法は、
セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、
上記ハニカム成形体の両端部の所定箇所のセルが封止されるように封止材ペーストを充填する工程と、
このハニカム成形体に焼成処理を施して、第一の封止部が形成されたハニカム焼成体を作製する工程と、
少なくとも1つの上記ハニカム焼成体からなるハニカムブロックを作製する工程と、
を含むハニカム構造体を製造する方法であって、
さらに、上記第一の封止部が所定箇所に形成されたハニカム焼成体を切断する工程と、
切断された上記ハニカム焼成体の上記第一の封止部が形成された側と反対側の端部の所定箇所のセルに封止材ペーストを充填し、加熱処理を施して上記封止材ペーストを固化して第二の封止部を形成する工程とを含むことを特徴とするハニカム構造体の製造方法である。
請求項12に記載のハニカム構造体の製造方法では、請求項1~10に記載のハニカム構造体を好適に製造することができる。
また、請求項12に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断している。
このように、焼成処理後に切断処理を行うことにより、作製する各ハニカム焼成体の長手方向の寸法精度が優れることとなり、各ハニカム焼成体の大きさのバラツキを小さくすることができる。
また、請求項12に記載のハニカム構造体の製造方法は、長手方向の長さが短いハニカム構造体を製造するのに特に適している。
ハニカム構造体の製造方法においては、焼成用治具にハニカム成形体を収納して焼成処理を行うが、同一サイズの焼成用治具を使用する場合、上述したように、ハニカム成形体のサイズが小さくなると生産性が低下していく傾向にある。
これに対して、請求項12に記載のハニカム構造体の製造方法では、ハニカム成形体に焼成処理を施した後、切断処理を行うことにより、所定の長さのハニカム焼成体を作製している。
そのため、長手方向の長さの短いハニカム構造体を製造する場合であっても、優れた生産性を備えることとなる。
また、例えば、長手方向の長さが、従来の長さの半分の長さのハニカム構造体を製造する場合にも、従来と同様の焼成用治具を用いて焼成を行うことができる。
従って、ハニカム焼成体を切断する際には、2等分することが望ましい。勿論、3つ以上に切断してもよい。また、3つ以上に切断した場合には、両端以外(中央にある)のハニカム焼成体を別のハニカム構造体の製造に使用することができる。
請求項13に記載のハニカム構造体の製造方法は、請求項12に記載のハニカム構造体の製造方法において、
上記第一の封止部が形成されたハニカム焼成体を作製する工程を行った後、上記ハニカム焼成体を切断する工程を行い、
上記第二の封止部を形成する工程を行った後、上記ハニカムブロックを作製する工程を行う。
請求項14に記載のハニカム構造体の製造方法は、請求項12又は13に記載のハニカム構造体の製造方法において、
上記ハニカムブロックを、1つのハニカム焼成体で作製する。
また、請求項15に記載のハニカム構造体の製造方法は、請求項12又は13に記載のハニカム構造体の製造方法において、
上記ハニカムブロックは、複数個のハニカム焼成体を接着材層を介して結束して作製する。
請求項16に記載のハニカム構造体の製造方法は、請求項12に記載のハニカム構造体の製造方法において、
上記第一の封止部が形成されたハニカム焼成体を作製した後、複数の上記ハニカム焼成体を接着材層を介して結束させて、両端部に上記第一封止部が形成されたハニカムブロックを作製し、
次に、この接着材層を介して結束されたハニカムブロックを切断した後、上記ハニカムブロックの上記第一の封止部が形成された側と反対側の端部に、上記第二の封止部を形成する工程を行う。
請求項17に記載のハニカム構造体の製造方法は、請求項12~16のいずれかに記載のハニカム構造体の製造方法において、
上記ハニカム焼成体は、複数のセルが、上記長手方向に垂直なセルの断面が相対的に大きい大容積セルと相対的に小さい小容積セルとからなるように形成し、
上記大容積セルには、上記第一の封止部を形成し、
上記小容積セルには、上記第二の封止部を形成する。
請求項17に記載のハニカム構造体の製造方法では、圧力損失を上昇を抑えつつ、多量のPMを捕集するのに適したハニカム構造体を製造することができる。
請求項18に記載のハニカム構造体の製造方法は、請求項12~17のいずれかに記載のハニカム構造体の製造方法において、
上記ハニカムブロックを形成する工程を行った後、さらに、上記ハニカムブロックの外周にコート材ペーストを塗布し、その後、上記コート材ペーストを固化させることによりコート層を形成する工程を行う。
このように、ハニカムブロックの外周にコート層を形成することにより、より信頼性に優れたハニカム構造体を製造することができる。また、コート層を形成することにより、外周精度(外周側面の寸法精度)の高いハニカム構造体を製造することができる。
請求項19に記載のハニカム構造体の製造方法は、請求項12~18のいずれかに記載のハニカム構造体の製造方法において、
上記第二の封止部を形成する封止材ペーストが、少なくとも無機粒子と無機バインダとを含む。
このような組成の封止材ペーストは、セル壁との密着性に優れるとともに、必要な強度を備え、第二の封止部(未焼成の封止部)を形成するのに、特に適している。
請求項20に記載のハニカム構造体の製造方法は、請求項15~19のいずれかに記載のハニカム構造体の製造方法において、
上記第二の封止部の組成が、上記接着材層の組成と略同一である。
また、請求項21に記載のハニカム構造体の製造方法は、請求項18又は19に記載のハニカム構造体の製造方法において、
上記第二の封止部の組成が、上記コート層の組成と略同一である。
このように、第二の封止部の組成が、ハニカム構造体の他の構成部材の組成と略同一であると、製造したハニカム構造体において、構成部材の熱膨張係数の差に起因した内部応力が発生しにくくなる。
請求項22に記載のハニカム構造体の製造方法は、請求項12~21のいずれかに記載のハニカム構造体の製造方法において、
上記第一の封止部の組成が、上記ハニカム焼成体の組成と略同一である。
このように、第一の封止部の組成が、ハニカム構造体の他の構成部材の組成と略同一であると、製造したハニカム構造体において、構成部材の熱膨張係数の差に起因した内部応力が発生しにくくなる。特に、1000℃近くの高温になった場合にも劣化しにくく、強度を保つことができ、信頼性に優れる。
また、請求項20~22に記載のハニカム構造体の製造方法では、封止部の組成が、接着材層、コート層、ハニカム焼成体のいずれかの組成と同一である。そのため、ハニカム構造体を製造する際に、封止材ペーストを別途調製する必要がなく、接着材ペーストやコート材ペースト、ハニカム成形体を作製するための湿潤混合物を封止材ペーストとして用いることができる。
以下、本発明の実施形態について説明する。
(第一実施形態)
まず、本実施形態におけるハニカム構造体の製造方法について工程順に説明する。
図1(a)~図1(h)は、第一実施形態の製造工程を説明するための説明図である。
(1)セラミック原料として平均粒子径の異なる炭化ケイ素粉末と有機バインダと可塑剤と潤滑剤と水とを混合して湿潤混合物を調製する。
(2)上記湿潤混合物を押出成形機に投入し、上記湿潤混合物を押出成形することにより所定の形状のハニカム成形体130を作製する(図1(a)参照)。ここでは、各セル121が所定の形状となるよう押出成形用金型を選定する。
なお、ここで作製するハニカム成形体130は、長手方向の長さが、製造するハニカム構造体の設計値の長手方向の長さの約2倍の長さを有する。このとき、ハニカム成形体の長さは、焼成時の収縮量と、切断される切り代とを考慮して決定する。
さらに、ハニカム成形体を乾燥機を用いて乾燥させる。
(3)次に、ハニカム成形体130の各セル121の所定の端部に、封止材ペースト122を所定量充填し、各セル121を封止する。セルを封止する際には、ハニカム成形体の端面に封止用のマスクを当てて、封止の必要なセルにのみ封止材ペーストを充填する(図1(b)参照)。
ここで、封止材ペーストは、最終的に出来上がるハニカム構造体において、各端面においてセルが市松模様に封止され、かつ、各セルはいずれか一方の端部のみが封止されるように充填されている。
ここで、封止材ペーストとしては、上記湿潤混合物と略同一の組成(ハニカム成形体と略同一の組成)の組成物を使用する。
ここで、上記封止材ペーストは、上記湿潤混合物と同一の組成であってもよいが、例えば、セルへの充填性を考慮して粘度を調製してもよい。粘度の調整は、有機溶媒や、水等の配合量を変更することにより行えばよい。
(4)各セルの所定の端部が封止されたハニカム成形体130を焼成用治具に載置した後、脱脂炉中で加熱し、ハニカム成形体中の有機物を除去する脱脂処理を行う。
続いて、上記脱脂処理を施したハニカム成形体を焼成用治具に載置したまま、焼成炉内に投入し、所定の温度(例えば、2200~2300℃)で焼成処理を行い、ハニカム焼成体120を作製する(図1(c)参照)。
なお、本発明において焼成処理を経て形成された封止部22bを第一封止部という。
また、本発明において、「ハニカム成形体」には、押出成形直後の生形成体は勿論のこと、乾燥処理や脱脂処理を施した後の成形体もハニカム成形体に含むこととする。
(5)次に、上記(4)の工程で作製したハニカム焼成体120を長手方向に2等分に切断し、ハニカム焼成体20とする(図1(d)参照)。
上記ハニカム焼成体の切断は、ダイヤモンドカッター、外周型ダイヤモンド砥石、内周型ダイヤモンド砥石、マルチワイヤ、マルチブレード等を用いて行う。
このような切断処理を行うことにより、長手方向の長さが製造するハニカム構造体の設計値と同一のハニカム焼成体20を作製することができる。
また、切断して得たハニカム焼成体20は、一方の端面側の所定のセルのみ封止されていることとなる。
(6)次に、上記(5)の工程で作製したハニカム焼成体について、各セルのいずれか一方の端部が封止されるように、ハニカム焼成体の未だ封止されていない側の端部の所定のセルに封止材ペーストを充填する。
なお、ここで充填する封止材ペーストは、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。この封止材ペーストはさらに無機繊維及び/又はウィスカを含んでいてもよい。
そして、この工程で充填した封止材ペーストを加熱して固化させることにより未焼成の封止部(固化された封止部)22aとする(図1(e)参照)。なお、本発明において未焼成(固化された)の封止部を第二封止部という。
なお、上記(3)の工程で充填した封止材ペーストは、上記(4)の工程の焼成処理を経ることにより焼成された封止部22bとなる。
(7)次に、各セルの所定の端部が封止された上記ハニカム焼成体20の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体20が結束されたハニカム焼成体の集合体110を作製する。この際、複数のハニカム焼成体は、第一封止部同士(及び第二封止部同士)が同一の端面側に位置するように積層する。
ここで、接着材ペーストとしては、上記(6)の工程で充填した封止材ペーストと略同一の組成を有するものを使用する。
続いて、上記ハニカム焼成体の集合体110を加熱して接着材ペースト層を固化させて接着材層11とする(図1(f)、図1(g)参照)。
なお、図1(g)は、図1(f)のA-A線断面における部分拡大断面図である。
(8)その後、ダイヤモンドカッターを用いてハニカム焼成体の集合体110に、図1(f)中の破線に沿って切削加工を施してハニカムブロックとし、ハニカムブロックの外周面にコート材ペーストを塗布し、コート材ペーストを固化させてコート層12を形成することによりハニカム構造体10とする(図1(h)参照)。
ここで、コート材ペーストとしては、例えば、上記接着材ペーストと略同一の組成をペースト状組成物を使用する。
次に、このような製造方法を経て製造されるハニカム構造体について、図面を参照しながら説明する。
図2は、第一実施形態のハニカム構造体の一例を模式的に示す斜視図であり、図3(a)は、第一実施形態のハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図であり、図3(b)は、図3(a)のB-B線断面図である。
本実施形態のハニカム構造体10は、図2に示すようにハニカム焼成体20が接着材層11を介して複数個結束されてハニカムブロック15を構成し、さらに、このハニカムブロック15の外周にコート層12が形成されている。
また、ハニカム焼成体20は、図3(a)及び図3(b)に示すように、長手方向(図3(a)中、矢印aの方向)に多数のセル21が並設され、セル21同士を隔てるセル壁23がフィルタとして機能するようになっている。
即ち、ハニカム焼成体20に形成されたセル21は、図3(b)に示すように、排ガスの入口側の端部が封止材ペーストを用いて形成された封止部22aで封止されるか、又は、排ガスの出口側の端部が封止材ペーストを用いて形成された封止部22bで封止され、排ガスの出口側の端部が封止されたセル21に流入した排ガスは、必ずセル21を隔てるセル壁23を通過した後、ガスの入口側の端部が封止されたセル21から流出するようになっており、排ガスがこのセル壁23を通過する際、PMがセル壁23部分で捕捉され、排ガスが浄化される。
ここで、排ガスの出口側の端部を封止する封止部22bは、封止材ペーストに焼成処理を施して形成した焼成された封止部(第一封止部)である。一方、排ガスの入口側の端部を封止する封止部22aは、焼成処理を施すことなく、封止材ペーストを固化させて形成した未焼成の封止部(第二封止部)である。
また、ハニカム構造体10では、コート層12と、封止部22aとが、接着材層11を形成するペーストと略同一のペーストを用いて形成されている。
なお、図3(b)中、矢印は排ガスの流れを示す。
ハニカム構造体10では、上述したように封止部22bが焼成処理を経て形成された封止部であり、封止部22aが焼成処理を経ずに形成された封止部であるため、封止部22bと封止部22aとは、硬度(例えば、ビッカーズ硬度、ロックウェル硬度等)、強度(曲げ強度、圧縮強度、破壊強度等)、ヤング率、弾性率、熱伝導率等の機械的特性が異なることとなる。
本発明の実施形態では、ハニカム構造体の一方の端部に強度が低く、熱伝導率の小さい封止部を形成し、他方の端部に強度が高く、熱伝導率の大きい封止部を形成していることとなる。そして、ハニカム構造体の強度が低く、熱伝導率の小さい封止部が形成された端部を排ガス浄化装置の入口側、強度が高く、熱伝導率の大きい封止部が形成された端部を排ガス浄化装置の出口側に配置することが望ましい。
なお、本明細書において、焼成とは、成形体中の不安定成分(水分、バインダ等)を分解、除去し、各成分間の反応(再結晶を含む)を進行させて安定な化合物を形成することをいい、強度が一段と向上する。一方、固化とは、組成物中の各成分間での反応は起こさず、組成物中の水分等を除去することにより、物理的作用によって組成物の状態が変化し接着特性を発現させる(組成物の硬さを向上させる)ことをいう。
次に、このようなハニカム構造体を用いた排ガス浄化装置について、図面を参照しながら説明する。
図4は、ハニカム構造体が設置された本実施形態の排ガス浄化装置の一例を模式的に示した断面図である。
図4に示したように、排ガス浄化装置40は、主に、ハニカム構造体10、ハニカム構造体10の外方を覆うケーシング(金属容器)41、ハニカム構造体10とケーシング41との間に配置されるアルミナ製の保持シール材42から構成されており、ケーシング41の排ガスが導入される側の端部には、エンジン等の内燃機関に連結された導入管43が接続されており、ケーシング41の他端部には、外部に連結された排出管44が接続されている。
ここで、ハニカム構造体10は、封止部22a(未焼成の封止部)が形成された側が排ガス流入側となり、封止部22b(焼成された封止部)が形成された側が排ガス流出側となるように、ケーシング41内に配置されている。従って、排ガス浄化装置40では、機械的特性の大きい封止部22bが排ガス流出側に位置することとなる。
なお、図4中、矢印は排ガスの流れを示している。
このような構成からなる排ガス浄化装置40では、エンジン等の内燃機関から排出された排ガスは、導入管43を通ってケーシング41内に導入され、入口側セルからハニカム構造体10の内部に流入し、セル壁を通過し、このセル壁でPMが捕集されて浄化された後、出口側セルからハニカム構造体外に排出され、排出管44を通って外部へ排出されることとなる。
また、排ガス浄化装置40では、ハニカム構造体10のセル壁に大量のPMが堆積し、圧力損失が高くなると、ハニカム構造体10の再生処理が行われる。
上記再生処理では、図示しない加熱手段を用いて加熱されたガスをハニカム構造体の貫通孔の内部へ流入させることで、ハニカム構造体10を加熱し、セル壁に堆積したPMを燃焼除去する。また、ポストインジェクション方式を用いてPMを燃焼除去してもよい。
特に、ハニカム構造体の排ガス流出側は、排ガス流入側に比べてPMの堆積量が多くなる傾向にあり、PMを燃焼除去した場合に、ハニカム構造体の排ガス流出側は、排ガス流入側に比べて高温になりやすい傾向にある。よって、本実施形態では、より高温になりやすい排ガス流出側を機械的特性が大きい封止部とし、排ガス流出側を機械的特性が小さい封止部としている。
以下、第一実施形態の作用効果について説明する。
(1)本実施形態では、ハニカム構造体を製造する際に、ハニカム成形体に焼成処理を施してハニカム焼成体を作製した後、得られたハニカム焼成体を切断している。
このように、焼成処理後に切断処理を行うことにより、作製する各ハニカム焼成体の長手方向の寸法精度が優れることとなり、各ハニカム焼成体の大きさのバラツキを小さくすることができる。従って、特に研磨処理を行うことなく、端面の凹凸の少ないハニカム構造体を製造するのに適している。
具体的には、設計値よりも大きな寸法で焼成体を作製しておき、両端面側から設計値の寸法で切断を行い、2つのハニカム焼成体を作製する。このとき、中央部は切断でなくなるようにしてもよいし、切り代として破棄してもよい。また、中央部のハニカム焼成体を破棄しない場合、これを他のハニカム構造体の作製に使用することもできる。
また、本実施形態では、作製した焼成体を設計値の寸法で切断するため、ハニカム焼成体の端面研磨を行う必要がなく、ハニカム焼成体のセル壁の気孔に研磨粉が残存することもないため、端面研磨工程にともなう洗浄工程も行う必要がない。
また、ハニカム焼成体を作製した後、得られたハニカム焼成体を切断しているため、1つのハニカム成形体から2つのハニカム焼成体を作製することとなり、ハニカム焼成体を効率良く作製することができる。その結果、ハニカム構造体の生産効率が向上し、単位時間あたりのハニカム構造体の生産個数を増やすことができるので、製造コストを低減させることにつながる。
(2)本実施形態では、セルの端部を封止する封止部について、封止材ペーストを充填した後、焼成処理を施すか、又は、加熱により固化させているため、各セルの所定の端部が確実に封止されることとなる。
(3)本実施形態では、ハニカム構造体の外周にコート層が形成されているため、ハニカム構造体を用いて、排ガスを浄化した際に、ハニカム構造体の外周側面からPMが漏れることがなく、信頼性に優れることとなる。また、コート層を形成することにより、ハニカム構造体の外周側面の寸法精度が向上する。
(4)本実施形態では、ハニカム構造体を構成する未焼成の封止部と、接着材層及びコート層とが略同一の材料を用いて形成されているため、ハニカム構造体において構成部材の熱膨張係数の差に起因した内部応力が発生しにくく、より信頼性に優れることとなる。
また、ハニカム構造体を構成する焼成された封止部は、ハニカム焼成体と略同一の組成で形成されているため、再生処理時に熱衝撃があっても、セル壁と封止部との間でクラック、剥がれ等が発生しにくく、信頼性に優れ、ススの漏れを確実に防止することができる。
(5)本実施形態の排ガス浄化装置では、焼成処理を経て形成された封止部(第一封止部)が排ガス流出側に位置し、焼成処理を経ずに形成された封止部(第二封止部)が排ガス流入側に位置しているため、上記(4)に記載した効果が最も効果的に現れ、排ガス流入側で、排ガスの温度による内部応力が緩和されやすく、排ガス流出側では、PMの堆積量が多くなり、再生処理を行った際に高温になりやすい傾向にあるが、焼成された封止部のためセル壁との間にクラックが発生しにくく、PMを確実に捕集することができる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例1)
(1)平均粒子径22μmを有する炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを湿式混合し、得られた混合物に対して、アクリル樹脂2.1重量%、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日本油脂社製 ユニルーブ)2.8重量%、グリセリン1.3重量%、及び、水13.8重量%を加えて混練して湿潤混合物を得た後、押出成形する押出成形工程を行い、図2(a)に示した形状と略同様の形状であって、セルの封止をしていない生のハニカム成形体を作製した。
(2)次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体を作製した。その後、上記ハニカム成形体の乾燥体の所定のセルに上記湿潤混合物と同一の組成のペーストに充填した。具体的には、各セルにおいて、いずれか一方の端部が封止されるように、上記湿潤混合物と同一の組成のペーストを封止材ペーストとして充填した。その後、再び乾燥機を用いて乾燥させた。
(3)次に、ハニカム成形体の乾燥体を焼成用治具に載置した後、400℃で脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行うことにより、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が300個/inch、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
(4)次に、上記ハニカム焼成体を板厚0.5mmの外周型ダイヤモンド砥石を用いて2等分し、所定のセルの一方の端面側のみ封止された大きさが34.3mm×34.3mm×150mmのハニカム焼成体を作製した。
この際、切断位置は、両端からの設計値で切断するように設定し、中央部は切り代となるようにした。
(5)上記(4)の工程で得たハニカム焼成体について、各セルのいずれか一方の端部が封止されるように、未だ封止されていないセルの端部に封止材ペーストを充填した。
ここで、封止材ペーストとしては、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる封止材ペーストを使用した。
その後、この工程で充填した封止材ペーストを180℃の熱風を用いた加熱を15分間行うことにより固化させて封止部とした。
(6)次に、上記(1)~(5)の工程を経て作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃で20分間の加熱で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製した。続いて、ダイヤモンドカッターを用いて、ハニカム焼成体の集合体の外周を切断することにより、接着材層の厚さ1mmの円柱状のハニカムブロックを作製した。
ここで、接着材ペーストとしては、上記(5)の工程で使用した封止材ペーストと同一の組成のペーストを使用した。
(7)次に、ハニカムブロックの外周部にコート材ペーストを塗布し、コート材ペースト層を形成した。そして、このコート材ペースト層を120℃で固化して、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
ここで、コート材ペーストとしては、上記(5)の工程で使用した封止材ペーストと同一の組成のペーストを使用した。
(比較例1)
(1)押出形成工程を経て作製する生のハニカム成形体の長手方向の長さを、焼成後に150mmになる寸法とした以外は、実施例1の(1)の工程と同様にして、図2(a)に示した形状と略同様の形状であって、セルの封止をしていない生のハニカム成形体を作製した。
(2)次に、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体を作製した。その後、各セルのいずれか一方の端部が封止されるように、所定のセルの端部に封止材ペーストを充填した。
ここで、封止材ペーストとしては、上記湿潤混合物と同一の組成の組成物を使用した。
(3) 次に、封止材ペーストを充填したハニカム成形体に、実施例1の(3)の工程と同様の条件で、脱脂処理及び焼成処理を行い、ハニカム焼成体を作製した。
ここで、作製したハニカム焼成体は、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×150mm、セルの数(セル密度)が300個/inch、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体である。
(4)次に、上記(3)の工程で作製したハニカム焼成体を用いて、実施例1の(6)及び(7)の工程と同様の方法を用いることにより、複数個のハニカム焼成体が接着材層を介して結束したハニカム構造体を作製した。
(ハニカム構造体の評価)
(1)圧力損失の測定
実施例1及び比較例1のそれぞれで製造したハニカム構造体を用いて、図4に示した排ガス浄化装置40を組み上げた。そして、排ガス浄化装置40の導入管43に2Lのコモンレール式ディーゼルエンジンを接続した。さらに、ハニカム構造体の前後に圧力計を取り付けた。
そして、エンジンを回転数1500min-1、トルク50Nmで運転し、運転開始から5分後の差圧を測定した。
その結果、実施例1のハニカム構造体の圧力損失は、2.3KPaであり、比較例1のハニカム構造体の圧力損失は、2.4KPaであった。
このように、実施例1で作製したハニカム構造体の圧力損失は、比較例1(従来の方法)で作製したハニカム構造体と同程度であった。
(2)捕集限界の測定
実施例1及び比較例1のそれぞれで製造したハニカム構造体を用いて、図4に示した排ガス浄化装置40を組み上げた。そして、排ガス浄化装置40の導入管43に2Lのコモンレール式ディーゼルエンジンを接続した。
そして、エンジンを回転数2000min-1、トルク50Nmで所定時間運転し、その後、再生処理を行う実験を、運転時間を増加させながら継続して行い、ハニカム構造体(特に封止部)にクラックが発生するか否かを観察した。
そして、クラックが発生した際に捕集していたPMの量を捕集限界とした。
その結果、実施例1のハニカム構造体の捕集限界は、7.9g/lであり、比較例1のハニカム構造体の捕集限界は、7.7g/lであった。
このように、実施例1で作製したハニカム構造体の捕集限界は、比較例1(従来の方法)で作製したハニカム構造体と同程度であった。
(第二実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第一実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図5(a)~図5(f)は、第二実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、第一実施形態のハニカム構造体の製造方法の(1)~(4)の方法と同様の方法を用いて、ハニカム焼成体120を作製する(図5(a)参照)。
(2)次に、作製したハニカム焼成体120の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体120が結束されたハニカム焼成体の集合体110′を作製する。
ここで、接着材ペーストとしては、下記(4)の工程で使用する封止材ペーストと略同一の組成を有するものを使用する。
また、この工程では、ハニカム焼成体を結束させた後、上記ハニカム焼成体の集合体を加熱することにより、接着材ペースト層を固化させて接着材層11とする(図5(b)参照)。
(3)次に、上記(2)の工程で作製したハニカム焼成体の集合体110′を長手方向に2等分に切断し、ハニカム焼成体の集合体110とする(図5(c)参照)。
上記ハニカム焼成体の切断は、ダイヤモンドカッター、外周型ダイヤモンド砥石、内周型ダイヤモンド砥石、マルチワイヤ、マルチブレード等を用いて行う。
このような切断処理を行うことにより、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一のハニカム焼成体の集合体110を作製することができる。
(4)次に、上記(3)の工程で切断したハニカム成形体の集合体110について、各セルのいずれか一方の端部が封止されるように、封止する必要のあるセルの端部のうち、未だ封止されていないセルの端部に封止材ペーストを充填する。
その後、充填した封止材ペーストを加熱により固化させて、封止部22aとする(図5(d)、図5(e)参照)。
なお、図5(e)は、図5(d)のC-C線断面における部分拡大断面図である。
ここで、封止材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。この封止材ペーストはさらに無機繊維及び/又はウィスカを含んでいてもよい。
(5)その後、ダイヤモンドカッターを用いてハニカム焼成体の集合体110に、図5(d)中の破線に沿った切削加工を施してハニカムブロックとし、ハニカムブロックの外周面にコート材ペーストを塗布し、コート材ペーストを加熱により固化させてコート層12を形成することによりハニカム構造体10とする(図5(f)参照)。
ここで、コート材ペーストとしては、例えば、上記(4)の工程で使用する封止材ペーストと略同一の組成を有するものを使用する。
本実施形態では、このような工程を経ることによりハニカム構造体を製造することができる。
また、本実施形態の製造方法により製造されるハニカム構造体の構成は、第一実施形態のハニカム構造体の構成と同様である。また、本実施形態の製造方法により製造されたハニカム構造体を用いた排ガス浄化装置の構成は、第一実施形態の排ガス浄化装置の構成と同様である。
第二実施形態に係るハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法では、第一実施形態と同様の作用効果を享受することができる。
以下、本発明の第二実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例2)
(1)実施例1の(1)~(3)の工程と同様にして、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×300.5mm、セルの数(セル密度)が300個/inch、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
(2)次に、上記(1)の工程で作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃、20分の加熱処理で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製した。
その後、上記ハニカム焼成体の集合体を、板厚0.5mmの外周型ダイヤモンド砥石を用いて2等分し、長手方向の長さが150mmで所定のセルの一方の端面側のみ封止されたハニカム焼成体の集合体とした。
この工程で、上記接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
(3)次に、上記(2)の工程で得たハニカム焼成体の集合体について、各セルのいずれか一方の端部が封止されるように、未だ封止されていないセルの端部に封止材ペーストを充填した。その後、充填した封止材ペーストを180℃の熱風を用いた加熱を15分間行うことにより固化させて封止部とした。
ここで、封止材ペーストとしては、上記(2)の工程で用いた接着材ペーストと同一の組成のペーストを使用した。
(4)次に、ダイヤモンドカッターを用いて集合体の外周を切断することにより、接着材層の厚さ1mmの円柱状のハニカムブロックを作製した。
その後、ハニカムブロックの外周部にコート材ペーストを塗布し、コート材ペースト層を形成した。そして、このコート材ペースト層を180℃で20分間乾燥して、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
ここで、コート材ペーストとしては、上記(2)の工程で使用した接着材ペーストと同一の組成のペーストを使用した。
このような実施例2で作製したハニカム構造体では、一方の端面側の封止部は焼成処理を経て形成されており、他方の端面側の封止部は焼成処理を経ずに形成されていることとなる。
また、本実施例で製造したハニカム構造体について、実施例1と同様の方法で、圧力損失、及び、再生限界を測定したところ、それぞれ、2.3KPa及び7.9g/lであった。
このように、実施例2で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1(従来の方法)で作製したハニカム構造体と同程度であった。
(第三実施形態)
本実施形態では、ハニカム構造体の製造方法の工程順序が第一実施形態におけるハニカム構造体の製造方法の工程順序と異なる。
図6(a)~図6(g)は、第三実施形態の製造工程を説明するための説明図である。
(1)本実施形態のハニカム構造体の製造方法では、第一実施形態のハニカム構造体の製造方法の(1)~(5)の方法と同様の方法を用いて、長手方向の長さが製造するハニカム構造体の設計値の長手方向の長さと同一のハニカム焼成体20を作製する(図6(a)、図6(b)参照)。
(2)次に、上記(1)の工程で作製したハニカム焼成体20の側面に、接着材ペーストを塗布して接着材ペースト層を形成し、この接着材ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返して所定数のハニカム焼成体が結束されたハニカム焼成体の集合体110を作製する。
また、この工程では、ハニカム焼成体を結束させた後、上記ハニカム焼成体の集合体を加熱することにより、接着材ペースト層を固化させて接着材層11とする(図6(c)、図6(d)参照)。
なお、図6(d)は、図6(c)のD-D線断面における部分拡大断面図である。
ここで、封止材ペーストとしては、下記(3)の工程で使用する封止材ペーストと略同一の組成のペーストを使用する。
(3)次に、上記(2)の工程で作製したハニカム焼成体の集合体110について、各セル21のいずれか一方の端部が封止されるように、封止する必要のあるセルの端部のうち、未だ封止されていないセルの端部に封止材ペーストを充填する。
その後、充填した封止材ペーストを加熱により固化させ、封止部22aとする(図6(e)、図6(f)参照)。
なお、図6(f)は、図6(e)のE-E線断面における部分拡大断面図である。
ここで、封止材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。この封止材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよい。
(4)その後、ダイヤモンドカッターを用いてハニカム焼成体の集合体110に、図6(e)中の破線に沿った切削加工を施してハニカムブロックとし、ハニカムブロックの外周面にコート材ペーストを塗布し、コート材ペーストを加熱処理により固化させてコート層12を形成することによりハニカム構造体10とする(図6(g)参照)。
ここで、コート材ペーストとしては、例えば、上記(3)の工程で充填した封止材ペーストと略同一の組成を有するものを使用する。
本実施形態では、このような工程を経ることによりハニカム構造体を製造することができる。
また、本実施形態の製造方法により製造されるハニカム構造体の構成は、第一実施形態のハニカム構造体の構成と同様である。また、本実施形態の製造方法により製造されたハニカム構造体を用いた排ガス浄化装置の構成は、第一実施形態の排ガス浄化装置の構成と同様である。
第三実施形態に係るハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法では、第一実施形態と同様の作用効果を享受することができる。
以下、本発明の第三実施形態をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
(実施例3)
(1)まず、実施例1の(1)~(5)の工程と同様にして、所定のセルの一方の端面側のみ封止された大きさが34.3mm×34.3mm×150mmのハニカム焼成体を作製
した。
(2)次に、実施例2の(2)の工程と同様にして、上記(1)の工程で作製したハニカム焼成体の側面に接着材ペーストを塗布し、この接着材ペーストを介して上記ハニカム焼成体16個を接着させ、さらに、180℃、20分間の加熱処理で接着材ペーストを固化させることにより、四角柱状のハニカム焼成体の集合体を作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素粒子30.0重量%、シリカゾル21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる封止材ペーストを使用した。
(3)次に、実施例2の(3)の工程と同様にして、各セルのいずれか一方の端部が封止されるように封止部を形成した。
ここで、封止部を形成するための封止材ペーストとしては、上記(2)の工程で用いた接着材ペーストと同一の組成のペーストを使用した。
(4)次に、実施例2の(4)の工程と同様にして、ハニカム焼成体の集合体の外周加工と、コート層の形成とを行い、外周にコート層が形成された直径143.8mm×長さ150mmの円柱状のハニカム構造体を製造した。
ここで、コート層を形成するためのコート材ペーストとしては、上記(2)の工程で使用した接着材ペーストと同一の組成のペーストを使用した。
このような実施例3で作製したハニカム構造体では、一方の端面側の封止部は焼成処理を経て形成されており、他方の端面側の封止部は焼成処理を経ずに形成されていることとなる。
また、本実施例で製造したハニカム構造体について、実施例1と同様の方法で、圧力損失、及び、再生限界を測定したところ、それぞれ、2.5KPa及び7.9g/lであった。
このように、実施例3で作製したハニカム構造体の圧力損失及び捕集限界は、比較例1(従来の方法)で作製したハニカム構造体と同程度であった。
ここまで説明した第一~第三の実施形態は、ハニカム構造体の製造方法が異なるものの、製造されるハニカム構造体、及び、このハニカム構造体を用いた排ガス浄化装置は、同様の構成を備えることとなる。
そして、各実施形態に係るハニカム構造体の製造方法の工程は、図7に示す通りである。
図7は、第一~第三の実施形態に係るハニカム構造体の製造方法における工程図である。
図7に示すように、第一~第三の実施形態に係るハニカム構造体では、ハニカム焼成体を切断するタイミング、ハニカム焼成体を複数個結束させるタイミング、及び、切断して得たハニカム焼成体のセルに封止材ペーストを充填するタイミングが異なることとなる。
(第四実施形態)
第一~第三の実施形態に係るハニカム構造体において、各セルのハニカム焼成体の長手方向に垂直な断面の形状は、全て同一で、かつ、4角形であるが、本発明の実施形態のハニカム構造体において、各セルのハニカム焼成体の長手方向に垂直な断面の形状は、例えば、8角形と4角形であってもよい。
図8(a)は、本発明の実施形態のハニカム構造体を構成するハニカム焼成体の別の一例を模式的に示す斜視図であり、図8(b)は、図8(a)のB-B線断面図である。
図8(a)、(b)に示したハニカム焼成体70は、多数のセル71a、71bがセル壁73を隔てて長手方向(図8(a)中、矢印bの方向)に並設されており、セル71a、71bはいずれか一方の端部が封止部により封止されている。具体的には、セル71aは、排ガスの流入側の端部が未焼成の封止部(第二の封止部)72aで封止されており、セル71bは、排ガスの流出側の端部が焼成された封止部(第一の封止部)により封止されている。
ここで、セル71aの上記長手方向に垂直な断面の形状は4角形であり、セル71bの上記長手方向に垂直な断面の形状は8角形である。
従って、ハニカム焼成体70に形成された複数のセルは、上記長手方向に垂直なセルの断面が相対的に大きい大容積セルと相対的に小さい小容積セルとからなり、上記大容積セルには、上記第一の封止部が形成され、上記小容積セルには、上記第二の封止部が形成されていることとなる。
ハニカム焼成体70においても、セル71bに流入した排ガスは、必ずセル壁73を通過した後、セル71aから流出するようになっている。
従って、ハニカム焼成体70でも、セル壁73がPM等を補集するためのフィルタとして機能する。
そして、ハニカム焼成体70は、排ガス流入側が開口したセル(断面の形状が8角形のセル71b)の容積が、排ガス流出側が開口したセル(断面の形状が4角形のセル71a)の容積に比べて大きいため、圧力損失を上昇を抑えつつ、多量のPMを捕集するのに適している。
また、ハニカム焼成体が、上記大容積セルと上記小容積セルとを備える場合、上記大容積セル及び上記小容積セルの上記断面の形状の組合せは、8角形と4角形とに限定されるわわけではなく、断面積が異なる2種類の4角形の組合せ等、任意の形状の組合せであればよい。
(その他の実施形態)
第一~第四の実施形態のハニカム構造体の製造方法では、四角柱状のハニカム構造体を複数個結束させて、ハニカム焼成体の集合体を作製した後、切削加工を施してハニカムブロックを作製しているが、本発明の実施形態のハニカム構造体の製造方法では、予め、所定の形状で作製したハニカム焼成体を複数個結束してハニカムブロックとしてもよい。
図9(a)~(c)は、本発明の実施形態のハニカム構造体の製造方法で作製するハニカム焼成体の別の一例を模式的に示す斜視図である。
即ち、図9(a)~(c)に示したような、複数のセル221、231、241がセル壁223、233、243を隔てて形成されたハニカム焼成体220、230、240を所定の個数ずつ結束させてセラミックブロックとしてもよい。
なお、図2に示したハニカムブロック15を作製する場合は、ハニカム焼成体220、230、240をそれぞれ4個ずつ使用すればよい。
ここまで説明した本発明の実施形態に係るハニカム構造体では、ハニカム構造体に触媒を担持させることは記載していないが、本発明の実施形態では、ハニカム構造体に触媒を担持させてもよい。
そして、ハニカム構造体に触媒を担持させることにより、触媒が担持されたハニカム構造体や、このハニカム構造体を用いた排ガス浄化装置では排ガスに含有されるCO、HC及びNOx等の有害成分を浄化することができる。また、担持させた触媒により、PMの燃焼温度を低下させることもできる。
上記触媒としては、貴金属、アルカリ金属、アルカリ土類金属、酸化物等を含む触媒が挙げられる。そして、これらの触媒は、比表面積の高いアルミナ等からなる酸化物膜の表面に付与されてハニカム構造体に担持されていることが望ましい。
本発明の実施形態で使用する封止材ペーストが少なくとも無機粒子と無機バインダとを含むペーストである場合、無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には、炭化ケイ素、窒化ケイ素、窒化ホウ素からなる無機粉末等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子のなかでは、熱伝導性に優れる炭化ケイ素が望ましい。
また、無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダのなかでは、シリカゾルが望ましい。
また、上記封止材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよく、この場合、無機繊維及び/又はウィスカとしては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維及び/又はウィスカのなかでは、アルミナファイバが望ましい。
また、上記封止材ペーストについては既に説明したように、ハニカム焼成体を押出成形にて作製する際に使用する湿潤混合物と略同一の組成を有するものであってもよい。
そして、焼成処理を経ることなく形成した封止部の形成に使用する封止材ペーストは、前者(少なくとも無機粒子と無機バインダとを含む封止材ペースト)が望ましく、焼成処理を経て形成した封止部の形成に使用する封止材ペーストは、後者(湿潤混合物と略同一の組成のペースト)が望ましい。
ただし、前者の封止材ペーストを焼成処理を経て形成する封止部の材料として用いてもよいし、後者の封止材ペーストを焼成処理を経ることなく形成する封止部の材料として用いてもよい。
また、第一~第四の実施形態では、焼成処理を経ることなく形成した封止部、接着材層及びコート層は全て略同一の組成のペーストを使用して形成することとしているが、これらは必ずしも略同一でなくてもよい。
本発明の実施形態のハニカム構造体の形状は、図2に示した円柱状に限定されるものではなく、楕円柱状、多角柱状等の任意の柱の形状であればよい。
本発明の実施形態に係るハニカム焼成体の気孔率は特に限定されないが、35~60%であることが望ましい。
上記ハニカム焼成体の平均気孔径は5~30μmであることが望ましい。
なお、上記気孔率及び気孔径は、例えば、水銀圧入法、アルキメデス法、走査型電子顕微鏡(SEM)による測定等の従来公知の方法により測定することができる。
本発明の実施形態のハニカム構造体の構成材料の主成分は、炭化ケイ素に限定されるわけではなく、他の構成材料の主成分として、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック等が挙げられる。
これらのなかでは、非酸化物セラミックが好ましく、炭化ケイ素が特に好ましい。耐熱性、機械強度、熱伝導率等に優れるからである。なお、上述したセラミックに金属ケイ素を配合したケイ素含有セラミック、ケイ素やケイ酸塩化合物で結合されたセラミック等も構成材料の主成分として挙げられ、これらのなかでは、炭化ケイ素に金属ケイ素が配合されたもの(ケイ素含有炭化ケイ素)が望ましい。
特に、炭化ケイ素を60wt%以上含むケイ素含有炭化ケイ素質セラミックが望ましい。
本発明の実施形態のハニカム構造体の製造方法において、押出成形する湿潤混合物に含まれるセラミック粉末の粒径は特に限定されないが、後の焼成工程を経て作製されたハニカム焼成体の大きさが、脱脂されたハニカム成形体の大きさに比べて小さくなる場合が少ないものが好ましい。
例えば、1.0~50μmの平均粒径を有する粉末100重量部と0.1~1.0μmの平均粒径を有する粉末5~65重量部とを組み合わせたものが好ましい。
本発明の実施形態のハニカム構造体の製造方法において、押出成形する湿潤混合物に含まれる有機バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。これらのなかでは、メチルセルロースが望ましい。
また、上記湿潤混合物に含まれる可塑剤としては特に限定されず、例えば、グリセリン等が挙げられる。
また、上記湿潤混合物に含まれる潤滑剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
上記潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、湿潤混合物に含まれていなくてもよい。
また、上記湿潤混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。
さらに、上記湿潤混合物中には、成形助剤が添加されていてもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
さらに、上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
また、第一~第四の実施形態では、複数個のハニカム焼成体を結束させる際に、各ハニカム焼成体の側面に接着材ペーストを塗布し、ハニカム焼成体を順次積層する方法を採用している。しかしながら、複数個のハニカム焼成体を結束させる際には、例えば、ハニカム焼成体間のスペースを確保するために、ハニカム焼成体の表面に空隙保持材を貼り付け、空隙保持材を介して複数個のハニカム焼成体を組み合わせた後、ハニカム焼成体間の空隙に接着材ペーストを注入する方法を用いて、ハニカム焼成体を結束させてもよい。
また、第一~第四の実施形態において、ハニカムブロックは複数個のハニカム焼成体が結束されているが、本発明の実施形態のハニカム構造体及び排ガス浄化装置では、必ずしもハニカムブロックが複数個のハニカム焼成体から構成されている必要はなく、ハニカムブロックが1個のハニカム焼成体から構成されていてもよい。
そして、このようなハニカムブロックが1個のハニカム焼成体から構成されたハニカム構造体を製造する際には、湿潤混合物を押出成形する工程において、長手方向に垂直な断面の形状が、ハニカムブロックの長手方向に垂直な断面と略同一のハニカム成形体を作製すればよい。
図1(a)~図1(h)は、第一実施形態の製造工程を説明するための説明図である。 図2は、第一実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図3(a)は、第一実施形態のハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図であり、図3(b)は、図3(a)のB-B線断面図である。 図4は、ハニカム構造体が設置された本実施形態の排ガス浄化装置の一例を模式的に示した断面図である。 図5(a)~図5(f)は、第二実施形態の製造工程を説明するための説明図である。 図6(a)~図6(g)は、第三実施形態の製造工程を説明するための説明図である。 図7は、第一~第三の実施形態に係るハニカム構造体の製造方法における工程図である。 図8(a)は、本発明の実施形態のハニカム構造体を構成するハニカム焼成体の別の一例を模式的に示す斜視図であり、図8(b)は、図8(a)のB-B線断面図である。 図9(a)~(c)は、本発明の実施形態のハニカム構造体の製造方法で作製するハニカム焼成体の別の一例を模式的に示す斜視図である。
符号の説明
10 ハニカム構造体
11 接着材層
12 コート層
15 ハニカムブロック
20 ハニカム焼成体
21 セル
22a 未焼成の封止部(第二の封止部)
22b 焼成された封止部(第一の封止部)
23 セル壁

Claims (22)

  1. 複数のセルがセル壁を隔てて長手方向に並設され、前記セルのいずれか一方の端部が封止材ペーストにより形成された封止部により封止された柱状のハニカム焼成体からなるハニカムブロックを備えたハニカム構造体であって、
    前記封止部のうち、前記ハニカム焼成体の一方の端面側の封止部は焼成された第一の封止部であり、前記ハニカム焼成体の他方の端面側の封止部は未焼成の第二の封止部であることを特徴とするハニカム構造体。
  2. 前記未焼成の第二の封止部は、加熱処理により固化された封止部である請求項1に記載のハニカム構造体。
  3. 前記第二の封止部は、少なくとも無機粒子と無機バインダとを含む封止材ペーストを用いて形成されている請求項1又は2に記載のハニカム構造体。
  4. 前記ハニカムブロックは、複数個のハニカム焼成体が接着材層を介して結束されてなる請求項1~3のいずれかに記載のハニカム構造体。
  5. 前記ハニカムブロックは、1個のハニカム焼成体からなる請求項1~3のいずれかに記載のハニカム構造体。
  6. 前記ハニカムブロックの外周部にコート層が形成されている請求項1~5のいずれかに記載のハニカム構造体。
  7. 前記第二の封止部の組成は、前記接着材層の組成と略同一である請求項4又は6に記載のハニカム構造体。
  8. 前記第二の封止部の組成は、前記コート層の組成と略同一である請求項6又は7に記載のハニカム構造体。
  9. 前記第一の封止部の組成は、前記ハニカム焼成体の組成と略同一である請求項1~8のいずれかに記載のハニカム構造体。
  10. 前記ハニカム焼成体に形成された複数のセルは、前記長手方向に垂直なセルの断面が相対的に大きい大容積セルと相対的に小さい小容積セルとからなり、
    前記大容積セルには、前記第一の封止部が形成され、
    前記小容積セルには、前記第二の封止部が形成されている請求項1~9のいずれかに記載のハニカム構造体。
  11. 請求項1~10のいずれかに記載のハニカム構造体が、保持シール材を介して金属容器内に配置された排ガス浄化装置であって、
    前記ハニカム構造体が、前記第一の封止部が形成された端面側が排ガス流出側、前記第二の封止部が形成された側が排ガス流入側となるように配置されていることを特徴とする排ガス浄化装置。
  12. セラミック原料を成形することにより、複数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム成形体を作製する工程と、
    前記ハニカム成形体の両端部の所定箇所のセルが封止されるように封止材ペーストを充填する工程と、
    このハニカム成形体に焼成処理を施して、第一の封止部が形成されたハニカム焼成体を作製する工程と、
    少なくとも1つの前記ハニカム焼成体からなるハニカムブロックを作製する工程と、
    を含むハニカム構造体を製造する方法であって、
    さらに、前記第一の封止部が所定箇所に形成されたハニカム焼成体を切断する工程と、
    切断された前記ハニカム焼成体の前記第一の封止部が形成された側と反対側の端部の所定箇所のセルに封止材ペーストを充填し、加熱処理を施して前記封止材ペーストを固化して第二の封止部を形成する工程とを含むことを特徴とするハニカム構造体の製造方法。
  13. 前記第一の封止部が形成されたハニカム焼成体を作製する工程を行った後、前記ハニカム焼成体を切断する工程を行い、
    前記第二の封止部を形成する工程を行った後、前記ハニカムブロックを作製する工程を行う請求項12に記載のハニカム構造体の製造方法。
  14. 前記ハニカムブロックは、1つのハニカム焼成体で作製する請求項12又は13に記載のハニカム構造体の製造方法。
  15. 前記ハニカムブロックは、複数個のハニカム焼成体を接着材層を介して結束して作製する請求項12又は13に記載のハニカム構造体の製造方法。
  16. 前記第一の封止部が形成されたハニカム焼成体を作製した後、複数の前記ハニカム焼成体を接着材層を介して結束させて、両端部に前記第一封止部が形成されたハニカムブロックを作製し、
    次に、この接着材層を介して結束されたハニカムブロックを切断した後、前記ハニカムブロックの前記第一の封止部が形成された側と反対側の端部に、前記第二の封止部を形成する工程を行う請求項12に記載のハニカム構造体の製造方法。
  17. 前記ハニカム焼成体は、複数のセルが、前記長手方向に垂直なセルの断面が相対的に大きい大容積セルと相対的に小さい小容積セルとからなるように形成し、
    前記大容積セルには、前記第一の封止部を形成し、
    前記小容積セルには、前記第二の封止部を形成する請求項12~16のいずれかに記載のハニカム構造体の製造方法。
  18. 前記ハニカムブロックを形成する工程を行った後、さらに、前記ハニカムブロックの外周にコート材ペーストを塗布し、その後、前記コート材ペーストを固化させることによりコート層を形成する工程を行う請求項12~17のいずれかに記載のハニカム構造体の製造方法。
  19. 前記第二の封止部を形成する封止材ペーストは、少なくとも無機粒子と無機バインダとを含む請求項12~18のいずれかに記載のハニカム構造体の製造方法。
  20. 前記第二の封止部の組成は、前記接着材層の組成と略同一である請求項15~19のいずれかに記載のハニカム構造体の製造方法。
  21. 前記第二の封止部の組成は、前記コート層の組成と略同一である請求項18又は19に記載のハニカム構造体の製造方法。
  22. 前記第一の封止部の組成は、前記ハニカム焼成体の組成と略同一である請求項12~21に記載のハニカム構造体の製造方法。
PCT/JP2008/052374 2008-02-13 2008-02-13 ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法 WO2009101682A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/052374 WO2009101682A1 (ja) 2008-02-13 2008-02-13 ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
PL08291144T PL2090351T3 (pl) 2008-02-13 2008-12-03 Korpus o strukturze ulowej, urządzenie do oczyszczania gazów spalinowych i sposób wytwarzania korpusu o strukturze ulowej
EP08291144A EP2090351B1 (en) 2008-02-13 2008-12-03 Honeycomb structured body, exhaust-gas-purifying apparatus and method for manufacturing honeycomb structured body
US12/363,396 US8168127B2 (en) 2008-02-13 2009-01-30 Honeycomb structure, exhaust gas purifying apparatus and method for manufacturing honeycomb structure
US13/419,467 US8323557B2 (en) 2008-02-13 2012-03-14 Method for manufacturing honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052374 WO2009101682A1 (ja) 2008-02-13 2008-02-13 ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2009101682A1 true WO2009101682A1 (ja) 2009-08-20

Family

ID=40473782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052374 WO2009101682A1 (ja) 2008-02-13 2008-02-13 ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法

Country Status (4)

Country Link
US (2) US8168127B2 (ja)
EP (1) EP2090351B1 (ja)
PL (1) PL2090351T3 (ja)
WO (1) WO2009101682A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214098A (ja) * 2008-02-13 2009-09-24 Ibiden Co Ltd ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP2012513555A (ja) * 2008-12-23 2012-06-14 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 異なる填塞材料を備える入口面および出口面を有する濾過構造

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686107A4 (en) 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
CN1723342B (zh) 2003-11-05 2011-05-11 揖斐电株式会社 蜂窝结构体的制造方法以及密封材料
DE602004014271D1 (de) * 2004-05-06 2008-07-17 Ibiden Co Ltd Wabenstruktur und herstellungsverfahren dafür
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
CN100453511C (zh) 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
KR100884518B1 (ko) * 2005-08-26 2009-02-18 이비덴 가부시키가이샤 허니컴 구조체 및 그 제조 방법
CN101146589B (zh) * 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
CN101309883B (zh) * 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
WO2009101683A1 (ja) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009101691A1 (ja) * 2008-02-14 2009-08-20 Ibiden Co., Ltd. ハニカム構造体
EP2261192A4 (en) * 2008-03-31 2011-08-31 Ibiden Co Ltd METHOD FOR PRODUCING A HONEYCOMB STRUCTURE
JP5916713B2 (ja) 2011-03-31 2016-05-11 日本碍子株式会社 目封止ハニカム構造体
WO2012133848A1 (ja) 2011-03-31 2012-10-04 日本碍子株式会社 目封止ハニカム構造体
EP2692406B1 (en) 2011-03-31 2020-06-03 NGK Insulators, Ltd. Sealed honeycomb structure, and exhaust gas purification device
US9205362B2 (en) * 2011-10-31 2015-12-08 Corning Incorporated Methods for manufacturing particulate filters
JP6251078B2 (ja) 2014-02-25 2017-12-20 日本碍子株式会社 ハニカム構造体
US11712648B2 (en) 2018-02-02 2023-08-01 Proterial, Ltd. Water-treating ceramic filter module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129113A (en) * 1980-03-14 1981-10-09 Matsushita Electric Ind Co Ltd Method of cutting porcelain sintered body
JPS5845715A (ja) * 1981-09-14 1983-03-17 Ngk Insulators Ltd セラミツクハニカムフイルタ
JP2000279729A (ja) * 1999-03-30 2000-10-10 Ibiden Co Ltd セラミックフィルタユニット及びその製造方法、セラミックフィルタ
WO2003093658A1 (fr) * 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
JP2004168030A (ja) * 2002-11-08 2004-06-17 Ngk Insulators Ltd ハニカム構造体のセルを封止する方法及びハニカム封止体の製造方法
JP2005046839A (ja) * 2003-07-14 2005-02-24 Hitachi Metals Ltd セラミックハニカムフィルタ及びその製造方法
JP2005154202A (ja) * 2003-11-26 2005-06-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法、並びに接合材
JP2005270755A (ja) * 2004-03-24 2005-10-06 Ngk Insulators Ltd ハニカム構造体及びその製造方法

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255671A (ja) * 1984-05-29 1985-12-17 イビデン株式会社 高強度多孔質炭化ケイ素焼結体とその製造方法
DK1306358T4 (da) * 1996-01-12 2012-10-22 Ibiden Co Ltd Tætningselement
EP1516659B1 (en) * 1999-09-29 2006-12-13 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP3803009B2 (ja) 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
US20040161596A1 (en) * 2001-05-31 2004-08-19 Noriyuki Taoka Porous ceramic sintered body and method of producing the same, and diesel particulate filter
ES2312794T5 (es) 2002-02-05 2012-12-18 Ibiden Co., Ltd. Filtro de tipo panal para purificar gases de escape
US8029737B2 (en) * 2002-02-05 2011-10-04 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
CN100365252C (zh) * 2002-03-04 2008-01-30 揖斐电株式会社 废气净化用蜂巢式过滤器以及废气净化装置
EP1604719B1 (en) * 2002-03-15 2008-07-16 Ibiden Co., Ltd. Ceramic filter for exhaust gas purification
US20050169819A1 (en) * 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
JPWO2003084640A1 (ja) * 2002-04-09 2005-08-11 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
EP1493904B1 (en) * 2002-04-10 2016-09-07 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
US7090714B2 (en) * 2002-06-17 2006-08-15 Hitachi Metals, Ltd. Ceramic honeycomb filter
EP1502640B1 (en) * 2002-09-13 2013-03-20 Ibiden Co., Ltd. Honeycomb structure
JP4369141B2 (ja) * 2003-02-18 2009-11-18 日本碍子株式会社 ハニカムフィルタ及び排ガス浄化システム
WO2004076027A1 (ja) * 2003-02-28 2004-09-10 Ibiden Co., Ltd. セラミックハニカム構造体
JPWO2004106702A1 (ja) * 2003-05-06 2006-07-20 イビデン株式会社 ハニカム構造体
US7578864B2 (en) * 2003-07-14 2009-08-25 Hitachi Metals, Ltd. Ceramic honeycomb filter and its production method
EP1686107A4 (en) * 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
CN1723342B (zh) * 2003-11-05 2011-05-11 揖斐电株式会社 蜂窝结构体的制造方法以及密封材料
WO2005047210A1 (ja) * 2003-11-12 2005-05-26 Ibiden Co., Ltd. セラミック構造体、セラミック構造体の製造装置、及び、セラミック構造体の製造方法
US20050103232A1 (en) * 2003-11-19 2005-05-19 Gadkaree Kishor P. Composition and method for making ceramic filters
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
CN100419230C (zh) * 2004-04-05 2008-09-17 揖斐电株式会社 蜂窝结构体、蜂窝结构体的制造方法以及废气净化装置
DE602004014271D1 (de) 2004-05-06 2008-07-17 Ibiden Co Ltd Wabenstruktur und herstellungsverfahren dafür
CN101249349B (zh) * 2004-05-18 2012-01-25 揖斐电株式会社 蜂窝结构体及废气净化装置
DE602005009099D1 (de) * 2004-07-01 2008-10-02 Ibiden Co Ltd Verfahren zur herstellung von porösen keramischen körpern
JPWO2006013931A1 (ja) * 2004-08-04 2008-05-01 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JPWO2006013652A1 (ja) * 2004-08-04 2008-05-01 イビデン株式会社 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
ATE408110T1 (de) * 2004-08-04 2008-09-15 Ibiden Co Ltd Brennofen und verfahren zur herstellung eines porösen keramikglieds damit
WO2006013932A1 (ja) * 2004-08-06 2006-02-09 Ibiden Co., Ltd. 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
KR100842594B1 (ko) * 2004-08-10 2008-07-01 이비덴 가부시키가이샤 소성로 및 상기 소성로를 이용한 세라믹 부재의 제조 방법
EP1677063A4 (en) * 2004-08-25 2007-05-30 Ibiden Co Ltd KILN and Method for Making a Porous Ceramic Cooked Product Using KILN
EP1795261A4 (en) 2004-09-30 2009-07-08 Ibiden Co Ltd ALVEOLAR STRUCTURE
DE602005019182D1 (de) * 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
DE602005015610D1 (de) * 2004-10-12 2009-09-03 Ibiden Co Ltd Keramische wabenstruktur
JP5142532B2 (ja) * 2004-11-26 2013-02-13 イビデン株式会社 ハニカム構造体
JP4513063B2 (ja) * 2004-11-30 2010-07-28 日立金属株式会社 ハニカムフィルタ
JP4874812B2 (ja) * 2004-12-28 2012-02-15 イビデン株式会社 フィルタ及びフィルタ集合体
EP1769837B1 (en) * 2005-02-04 2016-05-04 Ibiden Co., Ltd. Ceramic honeycomb structure and method for manufacture thereof
EP1767508B1 (en) 2005-02-04 2010-02-24 Ibiden Co., Ltd. Ceramic honeycomb structure
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) * 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
KR100810476B1 (ko) * 2005-03-28 2008-03-07 이비덴 가부시키가이샤 허니컴 구조체
CN100453511C (zh) * 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
CN101146742B (zh) * 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
JP4805823B2 (ja) * 2005-04-07 2011-11-02 イビデン株式会社 ハニカム構造体
JP2006289237A (ja) * 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
WO2006117899A1 (ja) * 2005-04-28 2006-11-09 Ibiden Co., Ltd. ハニカム構造体
WO2006126278A1 (ja) 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
WO2006132011A1 (ja) * 2005-06-06 2006-12-14 Ibiden Co., Ltd. 梱包材及びハニカム構造体の輸送方法
CN1954137B (zh) * 2005-07-21 2011-12-21 揖斐电株式会社 蜂窝结构体以及废气净化装置
WO2007015550A1 (ja) * 2005-08-03 2007-02-08 Ibiden Co., Ltd. 炭化珪素質焼成用治具及び多孔質炭化珪素体の製造方法
KR100884518B1 (ko) * 2005-08-26 2009-02-18 이비덴 가부시키가이샤 허니컴 구조체 및 그 제조 방법
CN101146589B (zh) * 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
WO2007039991A1 (ja) * 2005-10-05 2007-04-12 Ibiden Co., Ltd. 押出成形用金型及び多孔質セラミック部材の製造方法
CN100529341C (zh) 2005-10-12 2009-08-19 揖斐电株式会社 蜂窝单元及蜂窝结构体
CN101061293B (zh) * 2005-11-18 2011-12-21 揖斐电株式会社 蜂窝结构体
WO2007058007A1 (ja) * 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
WO2007074508A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
US20070187651A1 (en) * 2005-12-26 2007-08-16 Kazuya Naruse Method for mixing powder, agitation apparatus, and method for manufacturing honeycomb structured body
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007074523A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 搬送装置及びハニカム構造体の製造方法
CN101309883B (zh) * 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
WO2007086143A1 (ja) * 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) * 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007096986A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
EP1825979B1 (en) 2006-02-28 2012-03-28 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
PL1826517T3 (pl) * 2006-02-28 2009-01-30 Ibiden Co Ltd Suszący przyrząd obróbkowy, sposób suszenia wytłoczonego korpusu o strukturze plastra miodu oraz sposób wytwarzania formowanego korpusu o strukturze plastra miodu
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007102216A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) * 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) * 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122716A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007122715A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129390A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 脱脂用治具組立装置、脱脂用治具分解装置、脱脂用治具循環装置、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) * 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) * 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) * 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
ATE425852T1 (de) * 2006-07-07 2009-04-15 Ibiden Co Ltd Apparat und verfahren zur bearbeitung der endflache eines wabenkírpers und verfahren zur herstellung eines wabenkírpers
WO2008032390A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008032391A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
DE602006014830D1 (de) * 2006-09-14 2010-07-22 Ibiden Co Ltd Verfahren zur Herstellung eines Wabenkörpers und Zusammensetzung für Sinterwabenkörper
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
JP5084517B2 (ja) * 2007-01-26 2012-11-28 イビデン株式会社 外周層形成装置
WO2008099450A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008114335A1 (ja) * 2007-02-21 2008-09-25 Ibiden Co., Ltd. 加熱炉及びハニカム構造体の製造方法
WO2008120386A1 (ja) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体
WO2008120385A1 (ja) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
EP1982966B1 (en) * 2007-03-29 2011-11-09 Ibiden Co., Ltd. Honeycomb structure and method of producing honeycomb structure
WO2008126319A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2008129691A1 (ja) * 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126320A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008139581A1 (ja) 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009057213A1 (ja) * 2007-10-31 2009-05-07 Ibiden Co., Ltd. ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129113A (en) * 1980-03-14 1981-10-09 Matsushita Electric Ind Co Ltd Method of cutting porcelain sintered body
JPS5845715A (ja) * 1981-09-14 1983-03-17 Ngk Insulators Ltd セラミツクハニカムフイルタ
JP2000279729A (ja) * 1999-03-30 2000-10-10 Ibiden Co Ltd セラミックフィルタユニット及びその製造方法、セラミックフィルタ
WO2003093658A1 (fr) * 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
JP2004168030A (ja) * 2002-11-08 2004-06-17 Ngk Insulators Ltd ハニカム構造体のセルを封止する方法及びハニカム封止体の製造方法
JP2005046839A (ja) * 2003-07-14 2005-02-24 Hitachi Metals Ltd セラミックハニカムフィルタ及びその製造方法
JP2005154202A (ja) * 2003-11-26 2005-06-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法、並びに接合材
JP2005270755A (ja) * 2004-03-24 2005-10-06 Ngk Insulators Ltd ハニカム構造体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214098A (ja) * 2008-02-13 2009-09-24 Ibiden Co Ltd ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP2012513555A (ja) * 2008-12-23 2012-06-14 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 異なる填塞材料を備える入口面および出口面を有する濾過構造

Also Published As

Publication number Publication date
US20090202402A1 (en) 2009-08-13
EP2090351A3 (en) 2011-04-27
US8323557B2 (en) 2012-12-04
EP2090351B1 (en) 2012-07-11
PL2090351T3 (pl) 2012-12-31
EP2090351A2 (en) 2009-08-19
US8168127B2 (en) 2012-05-01
US20120168995A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2009101683A1 (ja) ハニカム構造体の製造方法
JP5042176B2 (ja) 排気ガス浄化用ハニカムフィルタ
JP5127450B2 (ja) ハニカム構造体
KR100953292B1 (ko) 허니콤 구조체 및 배기 가스 처리 장치
KR101108902B1 (ko) 허니컴 필터
JPWO2008126335A1 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP2006289237A (ja) ハニカム構造体
JPWO2003084640A1 (ja) 排気ガス浄化用ハニカムフィルタ
JPWO2005108328A1 (ja) ハニカム構造体及びその製造方法
JPWO2008105082A1 (ja) ハニカム構造体
JP5757880B2 (ja) ハニカム構造体
JPWO2008120291A1 (ja) ハニカム構造体の製造方法
JP2016168582A (ja) ハニカムフィルタ
JP2009255037A (ja) ハニカム構造体
JP2008212917A (ja) ハニカム構造体および排気ガス処理装置
KR101076641B1 (ko) 허니컴 구조체
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2009101691A1 (ja) ハニカム構造体
EP2221099B1 (en) Honeycomb structure
JP2010222150A (ja) ハニカム構造体
WO2009118808A1 (ja) ハニカム構造体
JP2009255045A (ja) ハニカムフィルタ
WO2011067823A1 (ja) ハニカムフィルタ及び排ガス浄化装置
JP2011224538A (ja) ハニカムフィルタ及び排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711220

Country of ref document: EP

Kind code of ref document: A1