WO2009081884A1 - エッチング剤、エッチング方法及びエッチング剤調製液 - Google Patents

エッチング剤、エッチング方法及びエッチング剤調製液 Download PDF

Info

Publication number
WO2009081884A1
WO2009081884A1 PCT/JP2008/073246 JP2008073246W WO2009081884A1 WO 2009081884 A1 WO2009081884 A1 WO 2009081884A1 JP 2008073246 W JP2008073246 W JP 2008073246W WO 2009081884 A1 WO2009081884 A1 WO 2009081884A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
weight
etching agent
hydrogen peroxide
agent
Prior art date
Application number
PCT/JP2008/073246
Other languages
English (en)
French (fr)
Inventor
Osamu Matsuda
Nobuyuki Kikuchi
Ichiro Hayashida
Satoshi Shirahata
Original Assignee
Wako Pure Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries, Ltd. filed Critical Wako Pure Chemical Industries, Ltd.
Priority to KR1020107016184A priority Critical patent/KR101533970B1/ko
Priority to US12/808,903 priority patent/US8513139B2/en
Priority to EP08864783A priority patent/EP2234145B1/en
Priority to JP2009547087A priority patent/JP5343858B2/ja
Priority to CN200880121508.XA priority patent/CN101903988B/zh
Publication of WO2009081884A1 publication Critical patent/WO2009081884A1/ja
Priority to HK11102026.1A priority patent/HK1148110A1/xx
Priority to US13/846,225 priority patent/US8871653B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/38Alkaline compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the present invention relates to processing of a semiconductor substrate on which a titanium (Ti) -based metal film is formed, and particularly to processing of a semiconductor substrate on which copper (Cu) wiring is applied, and mainly relates to a Ti film or a titanium-tungsten (TiW) alloy.
  • the present invention relates to an etching agent and etching method for a Ti-based metal film such as a film.
  • the present invention also relates to processing of a semiconductor substrate on which metal bumps or metal wirings having a lower ionization tendency than tungsten are formed, particularly processing of a semiconductor substrate on which a tungsten (W) -based metal film is applied.
  • the present invention relates to an etching agent and etching method for a W-based metal film such as a film or a TiW alloy film.
  • a hydrogen peroxide etchant for example, an acidic etchant such as hydrofluoric acid-hydrogen peroxide mixture, phosphoric acid-hydrogen peroxide mixture, etc. Etc. are known.
  • the inclusion of metals such as copper, silver, and gold accelerates the decomposition of hydrogen peroxide and shortens the lifetime of the etching solution, as well as controlling the concentration of hydrogen peroxide in the etching solution. It has a problem that it is difficult to do this, and the etching rate is slow.
  • a fluorine-hydrogen peroxide mixture has problems such as a low etching rate and a large amount of corrosion of the base metal and the metal on the substrate. There are problems such as large corrosion of the base metal and the metal on the substrate.
  • Patent Document 1 A method of etching a Ti metal film such as a Ti film or a TiW alloy film without generating an etching residue.
  • an etching solution containing, for example, hydrogen peroxide, a phosphonic acid compound or the like is disclosed (Patent Document 2).
  • Patent Document 2 an etching solution containing, for example, hydrogen peroxide, a phosphonic acid compound or the like is disclosed.
  • nitrogen-containing phosphonic acid compounds are disclosed as phosphonic acid-based compounds, but such phosphonic acid-based compounds, for example, have a strongly colored solution, and are not suitable for use as an etching agent for semiconductor substrates. Therefore, when added to a hydrogen peroxide-containing solution, there are problems such as concern about stability.
  • an etching method for improving the etching selectivity of a Ti-based metal film in the processing of a semiconductor substrate provided with Cu wiring or a semiconductor substrate useful for lead (Pb) -free solder bump formation, and Development of an etching solution used for selective etching of a Ti metal film is desired.
  • the problem to be solved by the present invention is a method of etching a Ti-based metal film on a semiconductor substrate, in particular, selective etching of a Ti-based metal film on a semiconductor substrate to which Cu wiring is applied. It is to provide a method of performing and an etchant used therefor.
  • the present inventors have developed a metal bump or metal wiring having a lower ionization tendency than tungsten such as a gold bump on the Ti substrate metal film etching agent on the semiconductor substrate on which the Cu wiring of the present invention completed previously is formed.
  • a metal bump or metal wiring having a lower ionization tendency than tungsten such as a gold bump on the Ti substrate metal film etching agent on the semiconductor substrate on which the Cu wiring of the present invention completed previously is formed.
  • side etching occurs in which the W-based metal film directly under the metal bump or metal wiring is etched. It has been found that this is caused by contact with different metals (galvanic corrosion) between tungsten and a metal having a lower ionization tendency than that of tungsten such as gold and silver (low ionization tendency metal).
  • the present inventors have continued to improve the etching agent for Ti-based metal films and developed an etching agent that can suppress dissimilar metal contact corrosion (Galvanic corrosion), such as metal bumps or metals having a low ionization tendency such as gold and silver.
  • An etching agent that can be applied to a W-based metal film-laid semiconductor substrate on which wiring is formed can be provided.
  • the present invention comprises (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group and (C) a basic compound, (D-1) a copper anticorrosive or / and (D-2) a hydroxyl group.
  • the invention relates to an etching agent for a semiconductor substrate comprising a solution containing 0.01% by weight to 3% by weight of two or more kinds of anionic species having no oxidizing power other than the phosphonic acid-based chelating agent having the above.
  • the present invention also relates to an etching method characterized by selectively etching a Ti metal film on a semiconductor substrate using the semiconductor substrate etching agent.
  • the present invention relates to an etching method characterized by etching a W-based metal film on a semiconductor substrate using the semiconductor substrate etching agent.
  • the present invention relates to (B) a phosphonic acid chelating agent having a hydroxyl group and (C) a basic compound, and (D-1) a copper anticorrosive or / and (D-2) a phosphonic acid having a hydroxyl group.
  • the etching agent preparation liquid for semiconductor substrates which consists of a solution containing 2 or more types of anionic species which does not have oxidizing power other than a system chelating agent.
  • etching agents of the present invention (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (C) among basic compounds, (c-1) inorganic alkali and (D-1) Using a semiconductor substrate etchant made of a solution containing a copper anticorrosive, selectively etching a Ti-based metal film on a semiconductor substrate, particularly a Ti-based metal film on a substrate having a Cu wiring formed thereon.
  • the etching can be performed without having a residue.
  • the etching solution for preparing a semiconductor substrate of the present invention and hydrogen peroxide are used.
  • the deterioration of the performance of the etching agent due to the decomposition of hydrogen peroxide can be further suppressed, and the instability of hydrogen peroxide due to the coexistence with alkali can be avoided.
  • the etching rate of the Ti-based metal film can be appropriately adjusted depending on the mixing ratio of the agent preparation liquid and hydrogen peroxide.
  • etching agents of the present invention other than (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (C) a basic compound and (D-2) a phosphonic acid chelating agent having a hydroxyl group
  • an etching agent for a semiconductor substrate comprising a solution containing 0.01% by weight to 3% by weight of two or more kinds of anionic species having no oxidizing power of, for example, gold, silver, palladium, tin, or alloys thereof
  • the W-based metal and the metal having a lower ionization tendency than tungsten are used. It is possible to suppress foreign metal contact corrosion (Galvanic corrosion) and, in turn, side etching caused by the corrosion. Achieve the results.
  • the Ti-based metal film refers to a Ti-based metal film formed on a substrate by a Ti alloy such as Ti or TiW. (Hereafter, it may be abbreviated as “Ti-based film”.)
  • the W-based metal film refers to a W-based metal film formed on a substrate by a W alloy such as W or TiW alloy. (Hereinafter, it may be abbreviated as “W-based film”.)
  • Hydrogen peroxide according to the etching agent of the present invention oxidizes Ti film, W film, TiW alloy film, etc., and facilitates dissolution reaction with basic compounds (alkali compounds) such as inorganic alkalis and organic amines. It is used for the purpose.
  • basic compounds alkali compounds
  • the Ti-based metal film etching agent on the semiconductor substrate on which the copper wiring is formed (hereinafter sometimes abbreviated as the etching agent according to the present invention ⁇ 1>).
  • the concentration of hydrogen peroxide used is usually 10 to 35% by weight, preferably 15 to 30% by weight, more preferably 15 to 26% by weight, and still more preferably 20 to 26% by weight in the same etching agent. It is.
  • an etching agent for a W-based metal film on a semiconductor substrate on which a metal bump or metal wiring having a lower ionization tendency than tungsten (hereinafter abbreviated as an etching agent according to the present invention ⁇ 2>).
  • the concentration of hydrogen peroxide used in (A) is usually 10 to 35% by weight, preferably 15 to 35% by weight, more preferably as the concentration in the same etching agent. It is 20% to 35% by weight, more preferably 24% to 32% by weight.
  • commercially available hydrogen peroxide (A) may be used as appropriate. Specifically, for example, commercially available hydrogen peroxide is diluted to an appropriate concentration with distilled water, purified water, ion exchange water, ultrapure water, or the like. Can be used.
  • the (B) hydroxyl group-containing phosphonic acid-based chelating agent according to the etching agent of the present invention prevents decomposition of hydrogen peroxide, maintains its oxidizing power, and coordinates with Ti or W together with hydrogen peroxide. What has the effect
  • Examples of the (B) phosphonic acid-based chelating agent having a hydroxyl group include 1-hydroxyethylidene-1,1′-diphosphonic acid (HEDPO), 1-hydroxypropylidene-1,1′-diphosphonic acid, 1-hydroxy Examples include alkane polyphosphonic acids having a hydroxyl group such as butylidene-1,1′-diphosphonic acid, and 1-hydroxyethylidene-1,1′-diphosphonic acid (HEDPO) is particularly preferable.
  • HEDPO 1-hydroxyethylidene-1,1′-diphosphonic acid
  • HEDPO 1-hydroxyethylidene-1,1′-diphosphonic acid
  • These phosphonic acid-based chelating agents have good solubility of chelates in the presence of hydrogen peroxide, Ti-based or W-based metal oxides, and Cu. The effect of suppressing the occurrence of the occurrence is shown.
  • the concentration of the (B) phosphonic acid chelating agent having a hydroxyl group in the etching agent according to the present invention ⁇ 1> is usually 0.1 to 3% by weight, preferably 0. It is 2 to 2% by weight, more preferably 0.3 to 1% by weight, still more preferably 0.4 to 0.8% by weight.
  • the concentration of the (B) hydroxyl group-containing phosphonic acid chelating agent used in the etching agent according to the present invention ⁇ 2> is usually 0.1 to 3% by weight, preferably as the concentration in the etching agent. It is 0.1 to 2% by weight, more preferably 0.15 to 1% by weight, still more preferably 0.2 to 0.6% by weight.
  • the basic compound (C) relating to the etching agent of the present invention means one selected from (c-1) inorganic alkali and (c-2) organic amine, but in the etching agent according to the present invention ⁇ 1>, In this case, the basic compound is required to be an inorganic alkali.
  • the inorganic alkali is used for the purpose of maintaining the pH of the solution in a predetermined range and dissolving oxides such as a Ti film, a W film and a TiW alloy film oxidized with hydrogen peroxide.
  • (c-1) inorganic alkali in the etching agent according to the present invention ⁇ 1> include, for example, ammonia, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, etc. Metal hydroxides are preferred, with potassium hydroxide being more preferred.
  • (c-1) inorganic alkali in the etching agent according to the present invention ⁇ 2> include, for example, ammonia, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and the like. Of these, alkali metal hydroxides are preferred, and sodium hydroxide is more preferred.
  • the (c-2) organic amine according to the etching agent of the present invention is used only for the etching agent according to the present invention ⁇ 2>, and the pH of the solution is maintained within a predetermined range as in the case of the (c-1) inorganic alkali. At the same time, it is used for the purpose of dissolving an oxide such as a W film or a TiW alloy film oxidized with hydrogen peroxide.
  • Specific examples of the organic amine include, for example, tetramethylammonium hydroxide (TMAH), choline hydroxide, etc. Among them, tetramethylammonium hydroxide (TMAH) is preferable.
  • the etching agent according to the present invention ⁇ 2> may be at least one basic compound selected from the above (c-1) inorganic alkalis and (c-2) organic amines. At least one basic compound selected from sodium and tetramethylammonium hydroxide (TMAH) is preferable, and among these, it is more preferable to use either sodium hydroxide or tetramethylammonium hydroxide (TMAH) alone.
  • TMAH sodium hydroxide and tetramethylammonium hydroxide (TMAH) generate ions with small molar conductivity (large hydration radius) such as sodium ion or quaternary ammonium ion in aqueous solution, and the ions are more than tungsten.
  • contact with a metal having a low ionization tendency suppresses the transfer of electrons to hydrogen ions on the metal surface, and thus makes it easier to suppress the dissolution of tungsten (Galvanic corrosion). preferable.
  • the concentration of (c-1) inorganic alkali used in the etching agent according to the present invention ⁇ 1> is the kind of inorganic alkali used, (B) a phosphonic acid-based chelating agent having a hydroxyl group, which will be described later (D-1 )
  • D-1 a phosphonic acid-based chelating agent having a hydroxyl group, which will be described later
  • the concentration in the same etching agent is usually 0.2 to 12% by weight, preferably 0.5 to 10% by weight, more preferably 0.8 to 4% by weight. It is.
  • the concentration of (c-1) inorganic alkali used is the kind of inorganic alkali used, (B) a phosphonic acid-based chelating agent having a hydroxyl group and a later-described (D-2 )
  • the concentration of the two or more kinds of anionic species having no oxidizing power other than the phosphonic acid-based chelating agent having a hydroxyl group varies depending on the addition amount, pH of the solution, etc. % By weight to 5% by weight, preferably 0.2% by weight to 4% by weight, more preferably 0.2% by weight to 2% by weight.
  • the (D-1) copper anticorrosive in the etching agent according to the present invention ⁇ 1> is preferably used in the etching agent according to the present invention ⁇ 1> among the etching agents of the present invention. Any of those generally used in this field may be used, and examples thereof include epihalohydrin-modified polyamides, benzotriazole compounds, hydroxycarboxylic acids, and nitrogen-containing ring compounds.
  • Epihalohydrin-modified polyamides exemplified as copper anticorrosives include, for example, —NH— group hydrogen present in the main chain in a polycondensate obtained by reacting diaminoalkylamine and dicarboxylic acid. A part or all of the atoms are represented by the following general formula [1]
  • X represents a halogen atom
  • R 1 represents an alkylene group having 1 to 6 carbon atoms, an arylene group, or a general formula [3]
  • R 2 represents an alkylene group having 1 to 6 carbon atoms
  • R 3 and R 4 each independently represents an alkylene group having 1 to 6 carbon atoms.
  • Etc. which have a repeating unit shown by these.
  • R 1 , R 3 , R 4 and X are the same as above, or any one or both of these repeating units, or a combination of these and the repeating unit represented by the general formula [2]. And the like.
  • the repeating unit represented by the general formula [4] is tautomerized by, for example, heat treatment, and the general formula [6]
  • R 1 , R 3 , R 4 and X may take the structure of the repeating unit represented by the general formula [4]. This includes the case where the repeating unit represented by the general formula [6] coexists.
  • examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is particularly preferable.
  • the alkylene group having 1 to 6 carbon atoms represented by R 1 , R 3 and R 4 may be any of linear, branched or cyclic Or a normal alkylene group having 1 to 6 carbon atoms, specifically, a linear alkylene group such as a methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc.
  • Branched alkylene groups such as propylene group, methylmethylene group, dimethylmethylene group, ethylmethylene group, methylethylene group, methyltetramethylene group, ethyltetramethylene group, for example, cyclopropylene group, cyclopentylene group, cyclohexylene group And the like, and a tetramethylene group is particularly preferable.
  • Examples of the arylene group represented by R 1 usually include those having 6 to 10 carbon atoms, such as a phenylene group and a naphthylene group.
  • the alkylene group having 1 to 6 carbon atoms represented by R 2 may be linear, branched or cyclic, and usually has 1 to 6 carbon atoms, preferably 1 to 1 carbon atoms.
  • linear alkylene groups such as methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, such as propylene group, methylmethylene group, dimethyl group, etc.
  • Branched alkylene groups such as methylene group, ethylmethylene group, methylethylene group, methyltetramethylene group, ethyltetramethylene group, for example, cyclic alkylene such as cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, etc. Groups such as methylene group, ethylene group, trimethylene group, propylene group, dimethylmethylene group, etc. And those having 1 to 3 carbon atoms are preferred.
  • the epihalohydrin-modified polyamide mentioned as a copper anticorrosive may be a commercially available product or may be appropriately synthesized by a conventional method. For example, it reacts with a corresponding dicarboxylic acid or a derivative thereof and diaminoalkylamine or a derivative thereof. For example, it can be produced by reacting a polymer polyamide having a repeating unit obtained by the reaction with an epihalohydrin such as epichlorohydrin.
  • Euramin P-5500 (trade name: manufactured by Mitsui Chemicals, Inc.) which is an aqueous solution containing an epihalohydrin-modified polyamide (molecular weight of 4,000 to 5,000 epihalohydrin-modified polyamide)
  • Euramin P-5600 (trade name: manufactured by Mitsui Chemicals, Inc.)
  • WS-4020 (trade name: manufactured by Seiko PMC Co., Ltd.)
  • the molecular weight of the epihalohydrin-modified polyamide mentioned as a copper anticorrosive is usually about 2,000 to 1,000,000, preferably 2,000 to 800,000, more preferably 3,000 to 600,000. It is.
  • examples of the benzotriazole compound include benzotriazole and its derivatives.
  • examples of the benzotriazole derivative include a benzotriazole ring having, for example, a carboxyl group, for example, an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group, such as a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples thereof include those having a substituent such as an atom, and specific examples include 4-carboxybenzotriazole, 5-carboxybenzotriazole, 5-methylbenzotriazole, 5-chlorobenzotriazole and the like.
  • Examples of the hydroxycarboxylic acid mentioned as (D-1) copper anticorrosive in the etching agent according to the present invention ⁇ 1> include hydroxytricarboxylic acids such as citric acid and isocitric acid, such as glycolic acid, lactic acid, glyceric acid, Examples thereof include hydroxycarboxylic acids such as tartronic acid, malic acid, tartaric acid, mevalonic acid and pantoic acid.
  • Examples of the nitrogen-containing ring compound (D-1) as a copper anticorrosive agent in the etching agent according to the present invention ⁇ 1> include nucleobases, and specific examples include adenine, guanine, 2-amino Purine derivatives such as purine and guanosine, for example pyrimidine derivatives such as cytosine, thymine, uracil, 6-methyluracil and 5-ethyluracil, heterocycle-containing carboxylic acids such as quinaldic acid, amino acids such as cysteamine hydrochloride, bipyridyl Etc. In addition, you may use these copper anticorrosives in mixture of 2 or more types suitably.
  • (D-1) copper anticorrosives for example, epihalohydrin-modified polyamide, benzotriazole (BTA), citric acid, adenine and the like are preferable.
  • the concentration of (D-1) copper anticorrosive used in the etching agent according to the present invention ⁇ 1> is higher than the concentration that can be used as a copper anticorrosive.
  • the concentration in the agent is usually 0.05 to 5% by weight, preferably 0.05 to 2% by weight, more preferably 0.08 to 1.5% by weight.
  • (D-2) 0.01% by weight to 3% by weight of two or more anionic species having no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group is Among the etching agents of the present invention, it is used as an etching agent for a W-based metal film on a semiconductor substrate on which metal bumps or metal wirings having a lower ionization tendency than tungsten are formed.
  • the anion species means an anion species derived from a compound capable of dissociating into a cation and an anion in an aqueous solution, and more specifically, an anion generated when an inorganic acid or an organic acid is dissociated in an aqueous solution, that is, an inorganic species.
  • the anion species here does not include hydroxide ions generated from at least one basic compound selected from (C) (c-1) inorganic alkalis and (c-2) organic amines. .
  • inorganic acid-derived anion species include sulfate ions, sulfite ions, chloride ions, phosphate ions, phosphite ions, hypophosphite ions, and the like. Product ions and phosphate ions are preferred.
  • anionic species derived from the organic acid include carbonate ions, monocarboxylic acid ions such as acetate ions, hydroxytricarboxylate ions such as citrate ions and isocitrate ions, such as glycolate ions, and lactic acid ions.
  • the concentration of the two or more anionic species having no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group is 0.01% as the concentration in the etching agent according to the present invention ⁇ 2>.
  • the content is required to be from 3% by weight to 3% by weight, of which 0.02% by weight to 1% by weight is preferable, among which 0.03% by weight to 0.5% by weight is more preferable.
  • a weight percent to 0.3 weight percent is particularly preferred. In particular, by suppressing the use concentration of the anionic species to 0.3% by weight or less, the intended effect of the present invention can be obtained more reliably.
  • (D-2) Among two or more kinds of anionic species having no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group, 0.01 wt% to 3 wt%, sulfate ion, sulfite ion, chloride ion, Selected from 0.0001% to 0.5% by weight of an anionic species derived from at least one inorganic acid selected from phosphate ion, phosphite ion and hypophosphite ion, and citrate ion and malate ion Any one or more organic acids selected from carbonate ions, acetate ions, citrate ions or malate ions in combination with 0.0099% to 2.5% by weight of anion species derived from at least one organic acid Anionic species derived from 0.0001% to 0.5% by weight, other than the anionic species derived from the organic acid selected above, and citrate ion or malate ion A combination of 0.0099 wt% to 2.5 wt% of
  • etching agent according to the present invention two or more different anionic species, at least one of which is an anionic species that has an action of inhibiting dissimilar metal contact corrosion (Galvanic corrosion), and at least one other species
  • the anionic species having the action of suppressing the contact with different metals is at least one selected from sulfate ion, sulfite ion, chloride ion, phosphate ion, phosphite ion and hypophosphite ion.
  • Preferred examples include anionic species derived from inorganic acids of at least one species, and anionic species derived from at least one organic acid selected from carbonate ion, acetate ion, citrate ion and malate ion, which act as a buffering agent.
  • the anionic species include at least one or more inorganic acid-derived anionic species selected from phosphate ions, phosphite ions and hypophosphite ions, and at least one or more types selected from citrate ions and malate ions.
  • Preferred examples include anionic species derived from organic acids.
  • a phosphate ion, a phosphite ion, a hypophosphite ion, a citrate ion, a malate ion can be mentioned preferably.
  • the anion species acting as an action to suppress the foreign metal contact corrosion needs to be a small amount, and the specific use concentration is usually set to 0. 0 as the concentration in the etching agent according to the present invention ⁇ 2>. It is 0001 wt% to 0.5 wt%, preferably 0.001 wt% to 0.2 wt%, more preferably 0.002 wt% to 0.2 wt%. If an amount exceeding 0.5% by weight is used, the electrolyte concentration in the etching agent becomes too high and an electron is likely to be delivered, and conversely, dissimilar metal contact corrosion (Galvanic corrosion) is promoted. It is not preferable.
  • Such anion species has an effect of dispersing an electrical influence over a wide range while maintaining an electric double layer formed on the surface of the W-based metal film by hydroxide ions.
  • the specific concentration of the anionic species acting as a buffering agent is usually 0.0099% to 2.5% by weight, preferably 0.019% by weight as the concentration in the etching agent according to the present invention ⁇ 2>. % To 0.8% by weight, more preferably 0.028% to 0.3% by weight, still more preferably 0.028% to 0.1% by weight.
  • the combined value of the anion species acting as a buffering agent and the anion species acting as an action to suppress the above-mentioned dissimilar metal contact corrosion (Galvanic corrosion) has no oxidizing power other than the phosphonic acid-based chelating agent having the hydroxyl group. It becomes the use concentration of the anionic species more than the species.
  • the concentration of the anion species that acts to suppress the contact corrosion of different metals is set to 0.002% to 0.2% by weight, and the concentration of the anion species that acts as a buffering effect is reduced. If it is suppressed as much as possible and is in the range of 0.028 wt% to 0.1 wt%, it is possible to more reliably suppress foreign metal contact corrosion (Galvanic corrosion) while maintaining a buffering effect.
  • the supply form of two or more kinds of anionic species having no oxidizing power other than these (D-2) phosphonic acid-based chelating agents having a hydroxyl group is particularly suitable as long as it is dissociated in an aqueous solution and becomes the anionic species.
  • anionic species having no oxidizing power other than these (D-2) phosphonic acid-based chelating agents having a hydroxyl group is particularly suitable as long as it is dissociated in an aqueous solution and becomes the anionic species.
  • sulfuric acid, sulfurous acid, hydrochloric acid, phosphoric acid, carbonic acid, acetic acid, citric acid, malic acid or other inorganic acid or organic acid may be supplied.
  • etching agents Sodium sulfate, sodium sulfite, sodium chloride, sodium phosphate , Sodium hydrogen phosphate, sodium carbonate, sodium hydrogen carbonate, sodium acetate, sodium citrate, sodium malate, and other inorganic or organic acid salts may be supplied, but according to the present invention ⁇ 2>
  • the type of cationic species in the etching agent may be important.
  • Citric acid, malic acid and the like which are “copper anticorrosive agents” added to the etching agent according to the present invention ⁇ 1>, are the “phosphonic acid-based chelate having a hydroxyl group” in the etching agent according to the present invention ⁇ 2>. It is included in two or more kinds of anionic species having no oxidizing power other than the agent, but when these are used as “copper anticorrosives”, they are added in a concentration range that can act as “copper anticorrosives”.
  • the etching agent according to the present invention in addition to the “copper anticorrosive”, among “two or more anionic species having no oxidizing power other than the phosphonic acid-based chelating agent having a hydroxyl group”
  • hydroxytricarboxylic acid such as citric acid and hydroxycarboxylic acid such as malic acid
  • the total use concentration of the “copper anticorrosive” and the hydroxytricarboxylic acid or hydroxycarboxylic acid is as described above. It is desirable to set the concentration range of such “copper anticorrosive”.
  • etching agent according to the present invention in addition to “two or more kinds of anionic species having no oxidizing power other than phosphonic acid-based chelating agent having a hydroxyl group”, “copper anticorrosive” is used in combination
  • copper anticorrosive it is desirable not to use a “compound that can be dissociated in an aqueous solution to generate the anion species” as a copper anticorrosive. It is necessary to set the concentration so that the total weight% of the amount falls within the above range.
  • the etching agent according to the present invention ⁇ 1> includes at least (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (c-1) an inorganic alkali, and (D -1)
  • An etching agent for a semiconductor substrate comprising a solution containing a copper anticorrosive while the etching agent according to the present invention ⁇ 2> includes (A) hydrogen peroxide and (B) a phosphonic acid chelate having a hydroxyl group And (C) at least one basic compound selected from (c-1) inorganic alkali and (c-2) organic amine, and (D) an oxidizing power other than a phosphonic acid chelating agent having a hydroxyl group.
  • a semiconductor substrate etching agent comprising a solution comprising 0.01% by weight to 3% by weight of two or more anionic species.
  • the etching agent according to the present invention ⁇ 1> includes at least (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (c-1) an inorganic alkali, and (D-1) a copper anticorrosive.
  • the solution is usually adjusted and maintained so that the pH is in the range of 7 to 10, preferably 8 to 9.5, more preferably 8.5 to 9.2.
  • a pH adjuster usually used in this field may be used for the purpose of maintaining the solution according to the present invention in the above pH range.
  • a pH adjuster may be used as necessary, for example, for the purpose of improving the stability of the solution.
  • pH adjuster examples include boric acid, nitric acid, hydrochloric acid, sulfuric acid, and hydrofluoric acid. In addition, you may use these pH adjusters in mixture of 2 or more types suitably.
  • concentration of the pH adjuster used is usually 0.05 to 4% by weight, preferably 0.2 to 3% by weight, more preferably 1 to 2 as the concentration in the etching agent according to the present invention ⁇ 1>. % By weight.
  • the etching agent according to the present invention ⁇ 2> includes at least (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (C) (c-1) an inorganic alkali, and (c-2) an organic amine. 0.01% by weight to 3% by weight of at least one basic compound selected from the above and (D-2) two or more anionic species having no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group
  • the solution is usually adjusted and maintained so that the pH is in the range of 6 to 10, preferably 6 to 9, more preferably 7 to 8.5.
  • pH of the solution is too high, problems such as reduced stability of hydrogen peroxide, increased corrosion of surrounding metals (Al, etc.) and semiconductor substrates (Si, etc.), and pH too low For example, a decrease in W etching rate, a decrease in complex formation ability of a phosphonic acid-based chelating agent having a hydroxyl group, a deterioration in the balance of etching rates of Ti and W in a TiW alloy, generation of etching residues, an increase in side etching, etc. In order to cause a problem, it is preferable to adjust and maintain the pH within the above range.
  • the etching agent according to the present invention since the total weight% of the anionic species in the solution is important, it is selected from the above (C) (c-1) inorganic alkali and (c-2) organic amine.
  • the concentration range of two or more anionic species having no oxidizing power other than (D-2) a phosphonic acid chelating agent having a hydroxyl group is 0.01% by weight to 3% by weight. It is preferable to adjust and maintain the pH within the above range within the range of%. That is, in the etching agent according to the present invention ⁇ 2>, since the concentration range of the anionic species is important, (D-2) has no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group. It is desirable not to use compounds that dissociate in an aqueous solution and generate the anionic species other than the anionic species of the species or more.
  • the etching agent according to the present invention comprises (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group and (C) a basic compound, (D-1) copper anticorrosive or / and (D- 2) Two or more kinds of anionic species having no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group are mixed and dissolved in water so that the concentration is as described above. Can be prepared. In addition, each component may be sequentially added and mixed in water in an appropriate order, or all components may be added and then dissolved in water.
  • the thus prepared etching agent of the present invention is preferably subjected to a filtration treatment or the like before use.
  • the water used here may be distilled water purified by distillation, ion exchange treatment, etc., purified water, ion exchange water, ultrapure water, or the like.
  • etching agent In the etching agent according to the present invention ⁇ 1>, (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (c-1) an inorganic alkali, and (D-1) a copper anticorrosive. Except for using reagents, reagents usually used in a known etching method can be used.
  • Nonionic surfactants such as NCW1002 (polyoxyethylene / polyoxypropylene alkyl ether, manufactured by Wako Pure Chemical Industries, Ltd.) are particularly preferable. These surfactants may be used in a concentration range usually used in this field, and the concentration in the etching agent according to the present invention ⁇ 1> is usually 0.001 to 1% by weight, preferably 0.01 to 0%. .5% by weight.
  • etching agent in the etching agent according to the present invention ⁇ 2>, (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (C) (c-1) an inorganic alkali, and (c- 2) at least one basic compound selected from organic amines and (D-2) two or more anionic species having no oxidizing power other than the phosphonic acid chelating agent having a hydroxyl group
  • a surfactant or the like it is also possible to use a surfactant or the like, but as mentioned above, the total weight% of anionic species in the solution in the etching agent is important. Therefore, it is desirable not to include other components that affect the weight percent.
  • the surfactant used in the etching agent according to the present invention ⁇ 2> for example, a nonionic interface used for the purpose of improving the wettability to the semiconductor surface by reducing the surface tension of the solution.
  • Surfactants such as surfactants, anionic surfactants, cationic surfactants, benign surfactants, etc., among these surfactants, compounds that do not dissociate in aqueous solution and do not generate anionic species Needless to say, it is preferable to use.
  • the amount of these surfactants used is usually 0.001% to 1% by weight, preferably 0.01% to 0.5% by weight, as the concentration in the etching agent according to the present invention ⁇ 2>. It is.
  • the etching agent of the present invention comprises (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group and (C) a basic compound, and (D-1) a copper anticorrosive or / And (D-2) prepared using 0.01 to 3% by weight of two or more anionic species having no oxidizing power other than a phosphonic acid-based chelating agent having a hydroxyl group as its main component It is supplied in various forms such as a one-component system or a multi-component system such as a two-component system.
  • the etching agent In the case of using the etching agent, it may be used as it is in the case of a one-liquid system, and in the case of a multi-liquid system such as a two-liquid system, all the solutions are appropriately mixed before use.
  • a solution containing all the components as described above may be prepared and used.
  • a multi-liquid system of two or more liquid systems is preferable from the viewpoint of stability and simplicity.
  • It contains hydrogen peroxide from the viewpoint of suppressing deterioration of the performance of the etching solution due to decomposition of hydrogen peroxide and avoiding instability of hydrogen peroxide due to coexistence with a basic compound (alkali compound).
  • a two-component system comprising an etchant preparation solution (hereinafter sometimes abbreviated as “etchant preparation solution according to the present invention”) comprising a solution comprising
  • the concentration of each component in each solution of a multi-liquid system such as the above-described two-component system is prepared by appropriately mixing all the solutions, and the concentration in the solution containing all the components, that is, the final concentration is These may be appropriately selected so as to be in the concentration range as described above and contained in each solution. That is, for example, when the etching agent according to the present invention ⁇ 1> is a two-component system, hydrogen peroxide is 10 to 50% by weight, preferably 15 to 30% by weight, more preferably 15 to 26% by weight, still more preferably.
  • Ratio (weight ratio) [first liquid: second liquid] is usually 1: 9 to 9 : 2, preferably 4: 6 to 9: 1, more preferably 6: 4 to 8: 2, and the concentration in the solution containing all the components prepared, that is, the final concentration is Hydrogen peroxide is usually 10 to 35% by weight, preferably 15 to 30% by weight, more preferably 15 to 26% by weight, still more preferably 20 to 26% by weight, and a phosphonic acid chelating agent having a hydroxyl group is usually used. 0.1 to 3% by weight, preferably 0.2 to 2% by weight, more preferably 0.3 to 1% by weight, still more preferably 0.4 to 0.8% by weight.
  • copper anticorrosive is usually 0.05 to 5 wt%, preferably 0.05 to 2 wt%, More preferably, it is 0.08 to 1.5% by weight.
  • the solution may be the respective preparation of.
  • hydrogen peroxide is 10% to 35% by weight, preferably 20% to 35% by weight, more preferably 24% to 35%.
  • a solution containing 1% by weight, more preferably 30% by weight to 35% by weight (first liquid), and 0.1% by weight to 30% by weight, preferably 0.1% by weight, of a phosphonic acid chelating agent having a hydroxyl group % To 20% by weight, more preferably 0.15% to 10% by weight, still more preferably 0.2% to 6% by weight, and at least one basic compound selected from inorganic alkalis and organic amines.
  • 1% by weight to 48% by weight preferably 0.1% by weight to 30% by weight, more preferably 0.1% by weight to 20% by weight, and an oxidizing power other than a phosphonic acid chelating agent having a hydroxyl group Not 2
  • a solution containing 0.01% to 6% by weight of the above anionic species preferably 0.02 to 2% by weight, more preferably 0.03 to 1% by weight, and still more preferably 0.03 to 0.6% by weight.
  • the etching agent preparation liquid (second liquid) comprising a mixing ratio (weight ratio) [first liquid: second liquid] is usually 30:70 to 99: 1, preferably 60:40 to 95: 5, more preferably Is appropriately mixed so that the ratio is 80:20 to 95: 5, and the concentration of the prepared solution containing all the components, that is, the final concentration of hydrogen peroxide is usually 10% to 35% by weight, preferably 15% to 35% by weight, more preferably 20% to 35% by weight, still more preferably 24% to 32% by weight, and the phosphonic acid chelating agent having a hydroxyl group is usually 0.1% to 3% by weight.
  • % By weight preferably 0.1% to 2% % By weight, more preferably 0.15% by weight to 1% by weight, and still more preferably 0.2 to 0.6% by weight, and at least one basic compound selected from inorganic alkalis and organic amines is usually at least 0.1%.
  • 1% by weight to 5% by weight preferably 0.2% by weight to 4% by weight, more preferably 0.2% by weight to 2% by weight, and an oxidizing power other than a phosphonic acid chelating agent having a hydroxyl group
  • Two or more kinds of anionic species are usually 0.01% to 3% by weight, preferably 0.02 to 1% by weight, more preferably 0.03 to 0.5% by weight, and still more preferably 0.03% by weight.
  • Two solutions may be prepared respectively so as to be in the range of% to 0.3% by weight.
  • the pH of each solution in the two-component system as described above is not particularly limited, and the pH of the solution containing all the above-described components prepared by appropriately mixing all the solutions, that is, the final pH is
  • the pH of each solution may be adjusted so as to be in the pH range as described above.
  • the final pH when the two components are mixed is usually pH 7 to 10, preferably pH 8 to 9, in the etching agent according to the present invention ⁇ 1>.
  • the pH of each solution may be adjusted so that the pH is 8.5 to 9.2, more preferably pH 6 to 10, preferably in the etching agent according to the present invention ⁇ 2>.
  • the pH of each solution may be adjusted so that the pH is 6 to 9, more preferably 7 to 8.5.
  • the etching method in the etching agent according to the present invention ⁇ 1> includes at least (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (c-1) an inorganic alkali, and (D-1) What is necessary is just to process the said board
  • the etching method in the etching agent according to the present invention ⁇ 2> includes at least (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (C) (c-1) an inorganic alkali, and (c -2) at least one basic compound selected from organic amines and (D-2) two or more anionic species having no oxidizing power other than the phosphonic acid-based chelating agent having a hydroxyl group 0.01% by weight
  • the substrate may be treated with the etching agent of the present invention, for example, by contacting an etching agent comprising a solution containing ⁇ 3 wt% with a W-based metal film on the semiconductor substrate.
  • the etching method of the present invention may be performed in accordance with a dip method or a spray etch method, which are known etching methods, except that the substrate is etched using the etching agent according to the present invention as described above. .
  • the etching agent preparation solution of the present invention (that is, a phosphonic acid chelating agent and a basic compound having a hydroxyl group and a copper anticorrosive or / and a phosphonic acid system having a hydroxyl group)
  • Etching agent preparation solution consisting of a solution containing two or more kinds of anionic species having no oxidizing power other than a chelating agent
  • this and a solution containing hydrogen peroxide are appropriately mixed at the time of use.
  • etching methods known per se include, for example, (1) a method in which a semiconductor substrate on which a Ti-based metal film or a W-based metal film is formed is immersed in an etching agent, and (2) a Ti-based metal film or a W-based metal film. (3) The semiconductor substrate on which the Ti-based metal film or the W-based metal film is formed is immersed in the etching agent while the solution is immersed in the etching agent in the state in which the semiconductor substrate on which the metal is formed is immersed in the etching agent. (4) A method in which an etching agent is sprayed onto a semiconductor substrate on which a Ti-based metal film or a W-based metal film is formed, or the like.
  • the semiconductor substrate on which the Ti-based metal film or the W-based metal film is formed may be swung as necessary.
  • the etching method is not particularly limited, and for example, a batch method, a single wafer method, or the like can be used.
  • the semiconductor substrate on which the Ti-based metal film to which the etching agent and the etching method according to the present invention ⁇ 1> are applied is, for example, a substrate in which Cu wiring is applied on the semiconductor substrate on which the Ti-based metal film is formed. Etc.
  • the metal constituting the Pb-free solder in the process using the etching agent according to the present invention ⁇ 1> is a Sn alloy mainly composed of tin (Sn), such as silver (Ag), bismuth (Bi), indium.
  • An alloy made of Sn and at least one metal selected from (In), copper (Cu), nickel (Ni), zinc (Zn), aluminum (Al), antimony (Sb), gold (Au), and the like can be given.
  • Specific examples of Pb-free solder include, for example, Sn—Ag, Sn—Ag—Bi—In, Sn—Ag—Bi, Sn—Cu, Sn—Cu—Ag, Sn—Ag—Bi—Cu.
  • the etching agent and the etching method according to the present invention ⁇ 1> include a semiconductor substrate according to the present invention, that is, a semiconductor substrate on which a Ti-based metal film is formed, particularly a semiconductor substrate in which Cu wiring is provided on the Ti-based film. Further, it is preferably used in a substrate process for producing Pb-free solder bumps.
  • a method for forming a Pb-free solder bump a method generally used in this field may be used. For example, on a semiconductor substrate according to the present invention, that is, a semiconductor substrate on which a Ti-based metal film is formed, as necessary. After a pattern is formed by applying a resist, etc., one or more metal films selected from the metals constituting the Pb-free solder are laminated, then the metal constituting the Pb-free solder is plated, and further subjected to heating, etc. What is necessary is just to process according to the conventional method in a field
  • a Ni film is formed on the Cu wiring in order to improve the adhesion between the Cu wiring and the Sn alloy constituting the Pb-free solder bump.
  • a Cr film or the like may be formed.
  • the semiconductor substrate on which the W-based metal film to which the etching agent and the etching method according to the present invention ⁇ 2> are applied is formed, for example, ionized more than tungsten on the semiconductor substrate on which the W-based metal film is formed.
  • the substrate include a metal bump or a metal wiring that has a low tendency.
  • Examples of the metal constituting the metal bump or metal wiring having a lower ionization tendency than tungsten according to the process using the etching agent according to the present invention ⁇ 2> include gold (Au), silver (Ag), palladium (Pd), tin ( Sn) or an alloy thereof or an alloy containing these metals as a main component, and has a lower ionization tendency than tungsten, and constitutes metal bumps or metal wirings that cause dissimilar metal contact corrosion (Galvanic corrosion) It is. Also, among these metal bumps or metal wirings, gold (Au) bumps or gold (Au) wirings are preferable.
  • a method usually performed in this field may be used.
  • a semiconductor substrate used in the present invention that is, a W-based metal film is formed.
  • a circuit may be formed on a semiconductor substrate with a resist or the like and then processed by plating, chemical vapor deposition, or the like.
  • nickel (Ni), palladium is interposed between the W-based metal film and the bump in order to improve the adhesiveness.
  • Conductors / adhesive sites such as (Pd) and copper (Cu) films may be present.
  • Examples of the semiconductor substrate used in the present invention include silicon materials such as silicon, amorphous silicon, polysilicon, silicon oxide film, and silicon nitride film, and compound semiconductors such as gallium arsenide, gallium phosphorus, and indium phosphorus. Things.
  • the etching agent and etching method of this invention are used suitably for the semiconductor substrate which consists of a silicon-type material.
  • Etching using a Ti-based metal film etchant on a semiconductor substrate on which a copper wiring is formed is completed in a shorter time when heated than at normal temperature. If the treatment temperature is high, the decomposition of hydrogen peroxide becomes severe and the life of the etching solution is shortened.
  • the lower limit is usually room temperature or higher, preferably 20 ° C. or higher, more preferably 25 ° C. or higher, and the upper limit is usually 60 ° C. or lower, preferably 50 ° C. or lower, more preferably 40 ° C. or lower. . That is, the temperature of the etching solution of the present invention is set to the temperature range as described above, and this may be brought into contact with the substrate.
  • Etching using a W-based metal film etching agent on a semiconductor substrate on which a metal bump or metal wiring having a lower ionization tendency than tungsten, that is, etching using the etching agent according to the present invention ⁇ 2> is performed at room temperature when heated.
  • the etching rate difference between the portion where etching with the same etching agent and the portion where etching due to dissimilar metal contact corrosion (Galvanic corrosion) occurs in parallel is relatively Since the processing time in which the etching agent and the metal come into contact with each other is reduced and side etching is suppressed, the processing temperature is preferably set higher than room temperature. Specifically, for example, a temperature range of 10 ° C. to 70 ° C., preferably 20 ° C. to 60 ° C., more preferably 30 ° C. to 60 ° C. may be set, and this may be brought into contact with the substrate.
  • the etching treatment time cannot be limited because the surface state and shape of the object to be treated are not constant, but is practically usually 1 minute to 1 hour, preferably 1 to 30 minutes, more preferably 1 to 15 minutes. .
  • Etching treatment of a Ti-based metal film on a semiconductor substrate on which a copper wiring according to the present invention is formed that is, a semiconductor substrate having a Ti-based metal film formed using the etchant according to the present invention ⁇ 1>. If done, the Ti-based film can be selectively etched. In particular, when the etching agent is used for a substrate having Cu wiring on the Ti-based film, the Ti etching selectivity with respect to Cu can be improved. In addition, by suppressing the amount of dissolved Cu, excessive side etching does not occur, and further, decomposition of hydrogen peroxide derived from Cu can be suppressed, so that the life of the etching agent is improved and the process margin is increased. Can do.
  • the etching agent for Ti-based metal film on the semiconductor substrate on which the copper wiring according to the present invention is formed that is, the etching agent according to the present invention ⁇ 1> can be suitably used for the Pb-free solder bump forming step. .
  • Etching agent for W-based metal film on semiconductor substrate on which metal bump or metal wiring having lower ionization tendency than tungsten according to the present invention that is, W-based metal film using the etching agent according to the present invention ⁇ 2>
  • Etching the semiconductor substrate on which the metal is formed not only enables the W-based metal film to be etched quickly, but also etches the W-based metal film immediately below the metal bump or metal wiring, so-called a metal having a lower ionization tendency than tungsten. Side etching caused by different metal contact corrosion (galvanic corrosion) due to bumps or metal wiring and tungsten can be suppressed.
  • the etching agent according to the present invention is particularly ( C)
  • sodium hydroxide or tetraammonium hydroxide as at least one basic compound selected from (c-1) inorganic alkali and (c-2) organic amine, sodium ions and 4
  • Electron transfer in which cation species such as quaternary ammonium ions cause dissimilar metal contact corrosion (Galvanic corrosion) is suppressed, and a small amount of specific anion species such as sulfate ions and citrate ions are present. It is possible to disperse electrical effects over a wide range while maintaining the electric double layer. Corrode (Galvanic corrosion) it has advantages such as can be suppressed.
  • the etching agent preparation liquid of the present invention can be mixed with a solution containing hydrogen peroxide as appropriate when used, and used as an etching agent. Since it is possible to prevent hydrogen peroxide instability due to coexistence with a basic compound (alkali compound), hydrogen peroxide and the etching preparation liquid can be mixed at an arbitrary ratio. There is an advantage that the etching rate of the film or the W-based metal film can be appropriately adjusted.
  • alkali hydroxide and ammonia especially alkali hydroxide is used for pH adjustment of the etchant preparation solution in the etchant according to the present invention ⁇ 1>
  • an etchant in which this and a solution containing hydrogen peroxide are mixed is used.
  • the Ti dissolution rate is improved, for example, the Ti / Cu selection ratio is improved as compared with the case where the pH is adjusted using an organic alkali such as tetramethylammonium hydroxide. High effects such as high throughput can be expected.
  • Examples 2-5 (1) Preparation of etching agent according to the present invention ⁇ 1> The etching agent was prepared in the same manner as in Example 1 except that each component in the etching agent was used in a predetermined amount shown in Table 1 below. (2) Etching Performed in the same manner as in Example 1. (3) Results In the same manner as in Example 1, the amount of metal on the etched Cu plate and Ti plate surfaces was measured. The results are also shown in Table 1. In Table 1, the water content of each etching solution is omitted.
  • EDTA ethylenediaminetetraacetic acid
  • DEPPO diethylenetriaminepentamethylenephosphonic acid
  • TMAH tetramethylammonium hydroxide
  • Example 1 As is clear from the results of Example 1 and Comparative Example 4, when organic amine (TMAH) was used as the alkali, Cu was not etched at all, and Ti was hardly etched.
  • TMAH organic amine
  • KOH inorganic alkali
  • Ti can be selectively etched, that is, Ti can be etched efficiently with almost no Cu being etched. I understood.
  • the Ti / Cu dissolution rate ratio is improved when potassium hydroxide is used as an alkali than when ammonia is used, that is, Ti is selected. It was found that it can be etched.
  • Example 6 Preparation of etching agent according to the present invention ⁇ 1> An etching agent having the following composition was prepared. Hydrogen peroxide 24.5% by weight Phosphonic acid chelating agent (60% HEDPO solution) 0.8% by weight [HEDPO content: about 0.5% by weight] Copper anticorrosive (benzotriazole) 0.1% by weight Inorganic alkali (potassium hydroxide) 2.0% by weight Water 72.6% by weight pH 9.0 * HEDPO: Trade name “DEQEST 2010” (manufactured by Solusia Japan Co., Ltd.) was used.
  • Hydrogen peroxide 24.5% by weight Phosphonic acid chelating agent (60% HEDPO solution) 0.8% by weight [HEDPO content: about 0.5% by weight] Copper anticorrosive (benzotriazole) 0.1% by weight Inorganic alkali (potassium hydroxide) 2.0% by weight Water 72.6% by weight pH 9.0 * HEDPO: Trade name “DEQEST 2010” (manufact
  • Example 8 (1) Preparation of etching agent according to the present invention ⁇ 1> An etching agent having the following composition was prepared. Hydrogen peroxide 25.0% by weight Phosphonic acid chelating agent (HEDPO) 0.5% by weight Copper anticorrosive (EPA) 1.0% by weight Inorganic alkali (ammonia) 0.9% by weight Water 72.6% by weight pH 8.5 (2) Etching Etching treatment was performed in the same manner as in Example 7. (3) Results The hydrogen peroxide concentration was measured in the same manner as in Example 7. The results are also shown in Table 4.
  • HEDPO Phosphonic acid chelating agent
  • EPA Copper anticorrosive
  • Inorganic alkali ammonia
  • Examples 15-21 (1) Preparation of etching agent according to the present invention ⁇ 2> An etching agent was prepared in the same manner as in Example 9 except that a predetermined amount of sodium chloride or sodium hydrogen phosphate was used instead of sodium sulfate. Tables 7 and 8 show components of anion 2 in the etching agent. (2) Etching Performed in the same manner as in Reference Example 1. (3) Results Relative length of the side length of the TiW alloy film remaining in the rectangle when the side length of the TiW alloy film in Reference Example 1 is set to 100 as measured in the same manner as in Reference Example 1. Side etching was compared by calculating (%). The results are shown in Table 7 and Table 8 together with the component of anion 2 in the etching agent.
  • Examples 22 to 25 and Comparative Example 7 (1) Preparation of Etching Agent Etching agent was prepared in the same manner as in Example 9 except that a predetermined amount of a salt serving as an anionic species derived from a specific inorganic acid or organic acid was used in an aqueous solution instead of sodium sulfate. . Table 9 shows components of anion 2 in the etchant. (2) Etching Performed in the same manner as in Reference Example 1. (3) Results Relative length of the side length of the TiW alloy film remaining in the rectangle when the side length of the TiW alloy film in Reference Example 1 is set to 100 as measured in the same manner as in Reference Example 1. Side etching was compared by calculating (%). The results are shown in Table 9 together with the anion 2 component in the etching agent.
  • Example 26 a predetermined amount of malic acid was used instead of citric acid, and the weight percent of sodium sulfate was changed.
  • Example 27 a predetermined amount of malic acid was used instead of citric acid.
  • an etching agent was prepared in the same manner as in Example 9 except that a predetermined amount of a salt that was an anionic species derived from a specific organic acid was used in an aqueous solution instead of sodium sulfate.
  • Comparative Example 8 an etching agent was prepared in the same manner as in Example 9 except that a predetermined amount of sodium citrate was used instead of sodium sulfate. Table 10 shows each component in these etching agents.
  • Reference Example 2 and Example 28 (1) Preparation of Etching Agent Reference Example 2 is the same as Reference Example 1 except that a predetermined amount of tetramethylammonium hydroxide (TMAH), which is an organic amine, is used instead of NaOH, which is an inorganic alkali, as a basic compound.
  • Etching agent was prepared in Example 28, except that a predetermined amount of tetramethylammonium hydroxide (TMAH), which is an organic amine, was used as a basic compound in place of NaOH, which was an inorganic alkali, as in Reference Example 2.
  • TMAH tetramethylammonium hydroxide
  • Table 11 shows each component in these etching agents.
  • TMAH tetramethylammonium hydroxide
  • Reference examples 3-5 (1) Preparation of etchant An etchant having the composition shown in Table 12 was prepared. (2) Etching Performed in the same manner as in Reference Example 1. (3) Results Relative length of the side length of the TiW alloy film remaining in the rectangle when the side length of the TiW alloy film in Reference Example 1 is set to 100 as measured in the same manner as in Reference Example 1. Side etching was compared by calculating (%). The results are shown in Table 12 together with each component in the etching agent.
  • the TiW alloy film masked with gold bumps, which has a high alkali concentration in the etching agent and cannot suppress side etching when two or more types of anion species are not used. It was found that all of the surface was removed and the bumps were peeled off.
  • anionic species that do not participate in dissolution other than hydroxide ions and hydroxyl group-containing phosphonic acid chelating agents that dissolve W-based metal films are placed in the etching agent.
  • the electric double layer formed on the surface of the W-based metal film by hydroxide ions due to the effect of different metal battery due to contact between tungsten and a metal that has a lower ionization tendency than tungsten (a metal with a lower ionization tendency) Is distributed so as not to be localized in the vicinity of the interface where tungsten, a metal having a lower ionization tendency than tungsten, and an etching agent (electrolytic solution) are in contact with each other, thereby reducing the contact corrosion of different metals.
  • the anionic species contained in the etching agent is capable of stably existing in an aqueous solution without oxidizing power.
  • the cation species contained in the basic compound are expected to be less susceptible to side etching due to different metal contact corrosion, so that the transfer of electrons on the metal surface having a lower ionization tendency than tungsten is less likely to occur. Further, as is clear from the results of Reference Examples 3 to 5, sodium ions having a lower molar conductivity than potassium ions and quaternary ammonium ions of TMAH, which is an organic amine, are used as the cation species contained in the basic compound.
  • an etching agent for a semiconductor substrate comprising a solution containing (A) hydrogen peroxide, (B) a phosphonic acid chelating agent, (c-1) an inorganic alkali and (D-1) a copper anticorrosive. That is, by using the etching agent according to the present invention ⁇ 1>, a Ti-based metal film on a semiconductor substrate, in particular, a Ti-based metal film on a substrate provided with Cu wiring, is selectively etched.
  • etching agents of the present invention other than (A) hydrogen peroxide, (B) a phosphonic acid chelating agent having a hydroxyl group, (C) a basic compound and (D-2) a phosphonic acid chelating agent having a hydroxyl group
  • An etching agent for a semiconductor substrate comprising a solution containing 0.01% by weight to 3% by weight of two or more kinds of anionic species having no oxidizing power, ie, an etching agent according to the present invention ⁇ 2>, for example, gold (Au), silver (Ag), palladium (Pd), tin (Sn), W or the like on a semiconductor substrate on which a metal (low ionization tendency metal) bump or wiring having a lower ionization tendency than tungsten is applied.
  • Etching of the metal-based metal film suppresses dissimilar metal contact corrosion (galvanic corrosion) due to the W-based metal and the metal having a lower ionization tendency than tungsten. And an effect such that it becomes possible to suppress the side etching by thus the corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明は、半導体基板上のチタン(Ti)系金属膜又はタングステン(W)系金属膜をエッチングし得る半導体基板用エッチング剤であって、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤及び(C)塩基性化合物と、(D−1)銅防食剤又は/及び(D−2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含む溶液からなるものに関する発明である。

Description

[規則37.2に基づきISAが決定した発明の名称] エッチング剤、エッチング方法及びエッチング剤調製液
 本発明は、チタン(Ti)系金属膜が形成された半導体基板の加工、特に銅(Cu)配線が施された半導体基板の加工に関するものであり、主としてTi膜やチタン-タングステン(TiW)合金膜などのTi系金属膜用のエッチング剤及びエッチング方法に関する。また、本発明は、タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板の加工、特にタングステン(W)系金属膜が施された半導体基板の加工に関するものであり、主としてW膜やTiW合金膜などのW系金属膜用のエッチング剤及びエッチング方法に関する。
 従来、Ti膜やTiW合金膜等のTi系金属膜のエッチング液としては、例えば過酸化水素エッチング液、例えばフッ酸-過酸化水素混合液、リン酸-過酸化水素混合液等の酸性エッチング液等が知られている。
 しかしながら、過酸化水素溶液では、例えば銅、銀、金等の金属を含有すると過酸化水素の分解が促進され、エッチング液の寿命が短くなるばかりでなく、エッチング液中の過酸化水素濃度をコントロールするのが困難である、エッチング速度が遅い等の問題を有している。
 また、例えばフッ素-過酸化水素混合液では、例えばエッチング速度が遅い、下地金属や基板上の金属の腐食が大きい等の問題を有し、リン酸-過酸化水素混合液では、例えばエッチング残渣が発生する、下地金属や基板上の金属の腐食が大きい等の問題を有している。
 このような状況下、エッチング残渣を発生せずにTi膜やTiW合金膜等のTi系金属膜をエッチングする方法として、過酸化水素とキレート剤を含有する溶液を用いて半導体基板上のTi系膜をエッチングする方法が提案されている(特許文献1)。
 しかしながら、下地金属や半導体基板上金属の種類によっては、例えば他の金属の腐食が生じるためエッチング選択比が悪い、例えば過酸化水素の分解が促進されるためエッチング液の寿命が短くなり、エッチング速度が遅くなる等の問題が生じる。
 また、はんだを変色させずにTi、TiW合金をエッチングすることを目的として、例えば過酸化水素、ホスホン酸系化合物等を含有するエッチング液が開示されている(特許文献2)。しかしながら、ホスホン酸系化合物としては窒素含有ホスホン酸しか開示されていないが、このようなホスホン酸系化合物は、例えばその溶液が強く着色しており、半導体基板用エッチング剤に使用するには金属不純物が多いため、過酸化水素含有溶液に添加した場合、安定性が懸念される等の問題を有していた。
 このような状況下、Cu配線が施された半導体基板、また鉛(Pb)フリーはんだバンプ形成に有用な半導体基板の加工に於いて、Ti系金属膜のエッチング選択比を向上させたエッチング方法及びTi系金属膜の選択的エッチングに使用されるエッチング液の開発が望まれている。
 一方、従来から金、銀等のイオン化傾向の低い金属を用いた被膜は電気伝導性が良好である、熱圧着性が良好である等の物理的特性ばかりでなく、耐酸化性、耐化学薬品性等の化学的特性にも優れているため、半導体基板上のバンプ形成や配線形成等に好適に用いられている(例えば特許文献3等)。
 また、他方ではこのような良導電性を有する金属の存在下、タングステン(W)及び/又はチタン-タングステン(TiW)合金をエッチングするための、例えば少なくとも過酸化水素水とアルカリ成分を含有し、pHが7以下であることを特徴とするエッチング液等が知られている(例えば特許文献4等)。しかしながら、配線等の精密性が求められている今般では、このようなエッチング液では、W、TiW合金等のサイドエッチングを抑制するには不十分であるという問題点を有していた。
特開2002-155382号公報 特開2003-328159号公報 特開2007-100130号公報 特開2004-31791号公報
 上記した如き状況に鑑み本発明が解決しようとする課題は、半導体基板上のTi系金属膜のエッチングを行う方法、特にCu配線が施された半導体基板上のTi系金属膜の選択的エッチングを行う方法並びにそれに用いられるエッチング液を提供することである。
 また、本発明者らは、先に完成した本発明のCu配線が形成された半導体基板上のTi系金属膜用エッチング剤を金バンプ等のタングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板上のW系金属膜用のエッチング剤として適用しようとしたところ、当該金属バンプ又は金属配線直下のW系金属膜がエッチングされるという、いわゆるサイドエッチングが起こり、このサイドエッチングはタングステンと金、銀等のタングステンよりもイオン化傾向の低い金属(低イオン化傾向金属)との異種金属接触腐食(Galvanic腐食)に起因することを見出した。そこで、本発明者らは、Ti系金属膜用エッチング剤に改良を重ね、異種金属接触腐食(Galvanic腐食)を抑制できるエッチング剤を開発し、金、銀等のイオン化傾向の低い金属バンプ又は金属配線が形成されている、W系金属膜敷設の半導体基板に適用できるエッチング剤を提供できるに至った。
 本発明は、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤及び(C)塩基性化合物と、(D-1)銅防食剤又は/及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含む溶液からなる半導体基板用エッチング剤に関する発明である。
 また、本発明は、当該半導体基板用エッチング剤を用いて半導体基板上のTi系金属膜の選択的なエッチングを行うことを特徴とする、エッチング方法に関する発明である。
 更に、本発明は、当該半導体基板用エッチング剤を用いて半導体基板上のW系金属膜をエッチングすることを特徴とする、エッチング方法に関する発明である。
 更にまた、本発明は、(B)ヒドロキシル基を有するホスホン酸系キレート剤及び(C)塩基性化合物と、(D-1)銅防食剤又は/及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種を含む溶液からなる半導体基板用エッチング剤調製液に関する発明である。
 本発明のエッチング剤のなかでも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)塩基性化合物のなかでも(c-1)無機アルカリ及び(D-1)銅防食剤を含む溶液からなる半導体基板用エッチング剤を用いて、半導体基板上のTi系金属膜、特にその上部にCu配線が施された基板上のTi系金属膜を選択的にエッチングすることにより、従来法に比べて、例えば下地金属や基板上金属の腐食を抑制する、エッチング剤への金属溶出量が減少してエッチング剤の寿命が増大する、Ti系金属膜のエッチング選択比の向上により残渣を有することなくエッチングが可能となる等の効果を奏する。
 また、半導体基板上のTi系金属膜、特にCu配線が施された基板上のTi系金属膜を選択的にエッチングする際に、本発明の半導体基板用エッチング剤調製液と過酸化水素とを使用時に混合したものを用いることにより、例えば過酸化水素の分解に起因するエッチング剤の性能の低下を更に抑制することができる、アルカリとの共存による過酸化水素の不安定性を回避できる、当該エッチング剤調製液と過酸化水素との混合比によりTi系金属膜のエッチング速度を適宜調整することが可能となる等の効果を奏する。
 本発明のエッチング剤のなかでも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)塩基性化合物及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含む溶液からなる半導体基板用エッチング剤を用いて、例えば金、銀、パラジウム、スズ又はこれらの合金等のタングステンよりもイオン化傾向の低い金属(低イオン化傾向金属)バンプ或いは配線が施された半導体基板上のW系金属膜をエッチングすることにより、W系金属と上記タングステンよりもイオン化傾向の低い金属とによる異種金属接触腐食(Galvanic腐食)を抑制し、ひいては当該腐食によるサイドエッチングを抑制することが可能となる等の効果を奏する。
 本発明に於いて、Ti系金属膜とは、Ti又はTiW等のTi合金により基板上に形成されたTi系金属の膜のことをいう。(以下、「Ti系膜」と略記する場合がある。)
 本発明に於いて、W系金属膜とは、W又はTiW合金等のW合金により基板上に形成されたW系金属の膜のことをいう。(以下、「W系膜」と略記する場合がある。)
 本発明のエッチング剤に係る(A)過酸化水素は、Ti膜、W膜やTiW合金膜などを酸化し、例えば無機アルカリ、有機アミン等の塩基性化合物(アルカリ化合物)による溶解反応を容易とする目的で用いられる。
 本発明のエッチング剤のなかでも、銅配線が形成された半導体基板上のTi系金属膜用エッチング剤(以下、本発明〈1〉に係るエッチング剤と略記する場合がある。)に於ける(A)過酸化水素の使用濃度は、同エッチング剤中の濃度として、通常10~35重量%、好ましくは15~30重量%、より好ましくは15~26重量%、更に好ましくは20~26重量%である。
 本発明のエッチング剤のなかでも、タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板上のW系金属膜用エッチング剤(以下、本発明〈2〉に係るエッチング剤と略記する場合がある。)に於ける(A)過酸化水素の使用濃度は、同エッチング剤中の濃度として、通常10重量%~35重量%、好ましくは15重量%~35重量%、より好ましくは20重量%~35重量%、更に好ましくは24重量%~32重量%である。
 上記(A)過酸化水素は市販のものを適宜用いればよく、具体的には、例えば市販の過酸化水素を蒸留水、精製水、イオン交換水、超純水等により適切な濃度に希釈して用いればよい。
 本発明のエッチング剤に係る(B)ヒドロキシル基を有するホスホン酸系キレート剤は、過酸化水素の分解を防止して酸化力の維持や過酸化水素とともにTi或いはWに配位して水溶性の錯体を形成し、Ti膜、W膜やTiW合金膜を溶解させる作用を有するものが用いられる。
 当該(B)ヒドロキシル基を有するホスホン酸系キレート剤としては、例えば1-ヒドロキシエチリデン-1,1'-ジホスホン酸(HEDPO)、1-ヒドロキシプロピリデン-1,1'-ジホスホン酸、1-ヒドロキシブチリデン-1,1'-ジホスホン酸等のヒドロキシル基を有するアルカンポリホスホン酸類等が挙げられ、中でも1-ヒドロキシエチリデン-1,1'-ジホスホン酸(HEDPO)が特に好ましい。これらホスホン酸系キレート剤は、過酸化水素、Ti系或いはW系金属の酸化物や、Cuの存在下に於けるキレートの溶解性が良好であるため、エッチング残渣やエッチング基板上の未溶解物の発生が抑えられる等の効果を示す。
 本発明〈1〉に係るエッチング剤に於ける(B)ヒドロキシル基を有するホスホン酸系キレート剤の使用濃度は、同エッチング剤中の濃度として、通常0.1~3重量%、好ましくは0.2~2重量%、より好ましくは0.3~1重量%、更に好ましくは0.4~0.8重量%である。
 本発明〈2〉に係るエッチング剤に於ける(B)ヒドロキシル基を有するホスホン酸系キレート剤の使用濃度は、同エッチング剤中の濃度として、通常0.1重量%~3重量%、好ましくは0.1重量%~2重量%、より好ましくは0.15重量%~1重量%、更に好ましくは0.2重量%~0.6重量%である。
 尚、これらの(B)ヒドロキシル基を有するホスホン酸系キレート剤は、市販のものを用いれば足りる。
 本発明のエッチング剤に係る(C)塩基性化合物は、(c-1)無機アルカリ及び(c-2)有機アミンから選ばれるものを意味するが、本発明〈1〉に係るエッチング剤に於いては、当該塩基性化合物は、無機アルカリであることが求められる。当該無機アルカリは、溶液のpHを所定の範囲に維持すると共に過酸化水素で酸化されたTi膜、W膜やTiW合金膜等の酸化物を溶解させる目的のために用いられるものである。本発明〈1〉に係るエッチング剤に於ける(c-1)無機アルカリの具体例としては、例えばアンモニア、例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物等が挙げられ、中でもアルカリ金属水酸化物が好ましく、就中水酸化カリウムがより好ましい。
 一方、本発明〈2〉に係るエッチング剤に於ける(c-1)無機アルカリの具体例としては、例えばアンモニア、例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物等が挙げられ、中でもアルカリ金属水酸化物が好ましく、その中でも水酸化ナトリウムがより好ましい。
 本発明のエッチング剤に係る(c-2)有機アミンは、本発明〈2〉に係るエッチング剤のみに用いられ、上記(c-1)無機アルカリと同様に溶液のpHを所定の範囲に維持すると共に過酸化水素で酸化されたW膜やTiW合金膜等の酸化物を溶解させる目的のために用いられるものである。当該有機アミンの具体例としては、例えばテトラメチルアンモニウムヒドロキシド(TMAH)、水酸化コリン等が挙げられ、中でもテトラメチルアンモニウムヒドロキシド(TMAH)が好ましい。
 本発明〈2〉に係るエッチング剤に於いては、上記(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物であればよいが、中でも水酸化ナトリウム及びテトラメチルアンモニウムヒドロキシド(TMAH)から選ばれる少なくとも1種以上の塩基性化合物が好ましく、その中でも水酸化ナトリウム又はテトラメチルアンモニウムヒドロキシド(TMAH)の何れかを単独で用いることがより好ましい。水酸化ナトリウムやテトラメチルアンモニウムヒドロキシド(TMAH)は、水溶液中でナトリウムイオン又は4級アンモニウムイオンのようなモル電気伝導度の小さい(水和半径の大きい)イオンが発生し、当該イオンがタングステンよりもイオン化傾向の低い金属(低イオン化傾向金属)に接触することにより、当該金属表面での水素イオンへの電子の受渡が抑制され、ひいてはタングステンの溶解(Galvanic腐食)が抑制され易くなるという点で好ましい。
 本発明〈1〉に係るエッチング剤に於ける(c-1)無機アルカリの使用濃度は、使用する無機アルカリの種類、(B)ヒドロキシル基を有するホスホン酸系キレート剤、後述する(D-1)銅防食剤の種類と添加量により異なるが、同エッチング剤中の濃度として、通常0.2~12重量%、好ましくは0.5~10重量%、より好ましくは0.8~4重量%である。
 本発明〈2〉に係るエッチング剤に於ける(c-1)無機アルカリの使用濃度は、使用する無機アルカリの種類、(B)ヒドロキシル基を有するホスホン酸系キレート剤及び後述する(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種の種類並びに添加量、溶液のpH等により異なるが、同エッチング剤中の濃度として、通常0.1重量%~5重量%、好ましくは0.2重量%~4重量%、より好ましくは0.2重量%~2重量%である。
 本発明〈1〉に係るエッチング剤に於ける(D-1)銅防食剤は、本発明のエッチング剤のなかでも、本発明〈1〉に係るエッチング剤に好ましく用いられ、当該銅防食剤としては、この分野で通常用いられるものであればよく、例えばエピハロヒドリン変性ポリアミド、ベンゾトリアゾール化合物、ヒドロキシカルボン酸、含窒素環化合物等が挙げられる。
 (D-1)銅防食剤として挙げられるエピハロヒドリン変性ポリアミドとしては、例えばジアミノアルキルアミンとジカルボン酸とを反応することにより得られる重縮合物に於ける主鎖中に存在する-NH-基の水素原子の一部又は全部が、下記一般式[1]
Figure JPOXMLDOC01-appb-I000001
(式中、Xはハロゲン原子を表す。)で示される基とグリシジル基の何れか一方又は両方で置換されたもの等が挙げられる。
 当該重縮合物としては、例えば一般式[2]
Figure JPOXMLDOC01-appb-I000002
{式中、Rは炭素数1~6のアルキレン基、アリーレン基又は一般式[3]
Figure JPOXMLDOC01-appb-I000003
(式中、Rは炭素数1~6のアルキレン基を表す。)で示される基を表し、R及びRは夫々独立して、炭素数1~6のアルキレン基を表す。}で示される繰り返し単位を有するもの等が挙げられる。
 (D-1)銅防食剤として挙げられるエピハロヒドリン変性ポリアミドの具体例としては、例えば一般式[4]
Figure JPOXMLDOC01-appb-I000004
(式中、R、R、R及びXは上記に同じ。)で示される繰り返し単位と一般式[5]
Figure JPOXMLDOC01-appb-I000005
(式中、R、R、R及びXは上記に同じ。)で示される繰り返し単位の何れか一方又は両方、或いはこれらと上記一般式[2]で示される繰り返し単位の組み合わせからなるもの等が挙げられる。尚、上記一般式[4]で示される繰り返し単位は、例えば加熱処理等により互変異性され、一般式[6]
Figure JPOXMLDOC01-appb-I000006
(式中、R、R、R及びXは上記に同じ。)で示される繰り返し単位の構造をとる場合もあるため、単に一般式[4]で示される繰り返し単位と記載した場合でも、これと一般式[6]で示される繰り返し単位が混在する場合を含んでいる。
 一般式[1]及び[4]に於いて、Xで示されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも塩素原子が好ましい。
 一般式[2]及び[4]~[5]に於いて、R、R及びRで示される炭素数1~6のアルキレン基としては、直鎖状、分枝状或いは環状の何れでもよく、通常炭素数1~6のものが挙げられ、具体的には、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖状アルキレン基、例えばプロピレン基、メチルメチレン基、ジメチルメチレン基、エチルメチレン基、メチルエチレン基、メチルテトラメチレン基、エチルテトラメチレン基等の分枝状アルキレン基、例えばシクロプロピレン基、シクロペンチレン基、シクロへキシレン基等の環状アルキレン基等が挙げられ、中でもテトラメチレン基が好ましい。
 Rで示されるアリーレン基としては、通常炭素数6~10のものが挙げられ、例えばフェニレン基、ナフチレン基等が挙げられる。
 一般式[3]に於いて、Rで示される炭素数1~6のアルキレン基としては、直鎖状、分枝状或いは環状の何れでもよく、通常炭素数1~6、好ましくは1~3のものが挙げられ、具体的には、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖状アルキレン基、例えばプロピレン基、メチルメチレン基、ジメチルメチレン基、エチルメチレン基、メチルエチレン基、メチルテトラメチレン基、エチルテトラメチレン基等の分枝状アルキレン基、例えばシクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等の環状アルキレン基等が挙げられ、中でも、例えばメチレン基、エチレン基、トリメチレン基、プロピレン基、ジメチルメチレン基等の炭素数1~3のものが好ましい。
 (D-1)銅防食剤として挙げられるエピハロヒドリン変性ポリアミドは、市販品を用いても常法により適宜合成してもよいが、例えば対応するジカルボン酸又はその誘導体とジアミノアルキルアミン又はその誘導体と反応させることにより得られる繰り返し単位を有する高分子ポリアミドに例えばエピクロロヒドリン等のエピハロヒドリンを反応させることによって製造することができる。
 当該エピハロヒドリン変性ポリアミドの市販品としては、例えばエピハロヒドリン変性ポリアミドを含有する水溶液である、ユーラミンP-5500〔商品名:三井化学(株)社製〕(分子量4,000~5,000のエピハロヒドリン変性ポリアミドを12.5重量%含有する水溶液)、ユーラミンP-5600〔商品名:三井化学(株)社製〕(分子量2,000~3,000のエピハロヒドリン変性ポリアミドを30.0重量%含有する水溶液)、WS-4020〔商品名:星光PMC(株)社製〕(分子量400,000~600,000のエピハロヒドリン変性ポリアミドを25重量%含有する水溶液)等が挙げられる。
 (D-1)銅防食剤として挙げられるエピハロヒドリン変性ポリアミドの分子量は、通常約2,000~1,000,000、好ましくは2,000~800,000、より好ましくは3,000~600,000である。
 本発明〈1〉に係るエッチング剤に於ける(D-1)銅防食剤として挙げられるベンゾトリアゾール化合物としては、ベンゾトリアゾール及びその誘導体が挙げられる。ベンゾトリアゾール誘導体としては、ベンゾトリアゾール環に、例えばカルボキシル基、例えばメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等の置換基を有するものが挙げられ、具体的には、例えば4-カルボキシベンゾトリアゾール、5-カルボキシベンゾトリアゾール、5-メチルベンゾトリアゾール、5-クロロベンゾトリアゾール等が挙げられる。
 本発明〈1〉に係るエッチング剤に於ける(D-1)銅防食剤として挙げられるヒドロキシカルボン酸としては、例えばクエン酸、イソクエン酸等のヒドロキシトリカルボン酸、例えばグリコール酸、乳酸、グリセリン酸、タルトロン酸、リンゴ酸、酒石酸、メバロン酸、パントイン酸等のヒドロキシカルボン酸等が挙げられる。
 本発明〈1〉に係るエッチング剤に於ける(D-1)銅防食剤として挙げられる含窒素環化合物としては、例えば核酸塩基が挙げられ、具体的には、例えばアデニン、グアニン、2-アミノプリン、グアノシン等のプリン誘導体、例えばシトシン、チミン、ウラシル、6-メチルウラシル、5-エチルウラシル等のピリミジン誘導体、例えばキナルジン酸等のヘテロ環含有カルボン酸類、例えばシステアミン塩酸塩等のアミノ酸類、ビピリジル等が挙げられる。尚、これらの銅防食剤は2種以上を適宜混合して用いてもよい。
 これら(D-1)銅防食剤の中でも、例えばエピハロヒドリン変性ポリアミド、ベンゾトリアゾール(BTA)、クエン酸、アデニン等が好ましい。
 本発明〈1〉に係るエッチング剤に於ける(D-1)銅防食剤の使用濃度は、銅防食剤として使用し得る濃度以上であれば特に問題はないが、具体的には、同エッチング剤中の濃度として、通常0.05~5重量%、好ましくは0.05~2重量%、より好ましくは0.08~1.5重量%である。
 本発明〈2〉に係るエッチング剤に於ける(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%は、本発明のエッチング剤のなかでも、タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板上のW系金属膜用エッチング剤に用いられる。当該アニオン種は、水溶液中でカチオンとアニオンとに解離し得る化合物に由来するアニオン種を意味し、より具体的には無機酸或いは有機酸が水溶液中で解離した際に生じるアニオン、すなわち、無機酸或いは有機酸由来のアニオン種を意味する。尚、ここでいうアニオン種には、(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物から発生する水酸化物イオンは含まれない。
 当該無機酸由来のアニオン種としては、具体的には、例えば硫酸イオン、亜硫酸イオン、塩化物イオン、リン酸イオン、亜リン酸イオン、次亜リン酸イオン等が挙げられ、中でも硫酸イオン、塩化物イオン、リン酸イオンが好ましい。
 当該有機酸由来のアニオン種としては、具体的には、例えば炭酸イオン、例えば酢酸イオン等のモノカルボン酸イオン、例えばクエン酸イオン、イソクエン酸イオン等のヒドロキシトリカルボン酸イオン、例えばグリコール酸イオン、乳酸イオン、グリセリン酸イオン、タルトロン酸イオン、リンゴ酸イオン、酒石酸イオン、メバロン酸イオン、パントイン酸イオン等のヒドロキシカルボン酸イオン等が挙げられ、中でも炭酸イオン、酢酸イオン、クエン酸イオン、リンゴ酸イオンが好ましく、その中でもクエン酸イオン、リンゴ酸イオンがより好ましい。
 (D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種の使用濃度は、本発明〈2〉に係るエッチング剤中の濃度として、0.01重量%~3重量%であることが求められるが、中でも0.02重量%~1重量%が好ましく、その中でも0.03重量%~0.5重量%がより好ましく、更にその中でも0.03重量%~0.3重量%が特に好ましい。特にアニオン種の使用濃度を0.3重量%以下に抑えることにより、本発明の目的とする効果がより確実に得られる。
 (D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種は、本発明〈2〉に係るエッチング剤に於ける溶液(水溶液)のpHを一定に保つ、いわゆる緩衝剤としての作用と本発明の目的とする効果の一つであるGalvanic腐食を抑制できるという2つの作用を有する。この緩衝剤としての作用とGalvanic腐食を抑制する作用を奏するには、本発明〈2〉に係るエッチング剤の水溶液中に於けるアニオン種の総重量%が重要となり、あまりに少なすぎると緩衝剤としての機能を奏さず、一方、あまりに多すぎると逆にGalvanic腐食を促進するので、上でも少し述べたように、当該アニオン種の使用濃度は、少なくとも0.01重量%~3重量%であることが求められる。
 (D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%の中でも、硫酸イオン、亜硫酸イオン、塩化物イオン、リン酸イオン、亜リン酸イオン及び次亜リン酸イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種0.0001重量%~0.5重量%と、クエン酸イオン及びリンゴ酸イオンから選ばれる少なくとも1種以上の有機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせ、炭酸イオン、酢酸イオン、クエン酸イオン又はリンゴ酸イオンから選ばれる何れか1種の有機酸由来のアニオン種0.0001重量%~0.5重量%と、上記選択の有機酸由来のアニオン種以外のものであって、かつクエン酸イオン又はリンゴ酸イオンから選ばれる有機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせや、硫酸イオン、亜硫酸イオン及び塩化物イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種0.0001重量%~0.5重量%と、リン酸イオン、亜リン酸イオン及び次亜リン酸イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせ等が好適に用いられる。
 本発明〈2〉に係るエッチング剤に於いては、異なる2種以上のアニオン種が、少なくとも1種は異種金属接触腐食(Galvanic腐食)を抑制する作用を有するアニオン種と、更に少なくとも1種は緩衝剤として作用するアニオン種とを組み合わせて用いることで本発明の目的とする効果の1つである異種金属接触腐食(Galvanic腐食)をより確実に抑制することができる。尚、異種金属接触腐食(Galvanic腐食)を抑制する作用を有するアニオン種としては、硫酸イオン、亜硫酸イオン、塩化物イオン、リン酸イオン、亜リン酸イオン及び次亜リン酸イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種、並びに炭酸イオン、酢酸イオン、クエン酸イオン及びリンゴ酸イオンから選ばれる少なくとも1種以上の有機酸由来のアニオン種を好ましく挙げることができ、緩衝剤として作用するアニオン種としては、リン酸イオン、亜リン酸イオン及び次亜リン酸イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種、並びにクエン酸イオン及びリンゴ酸イオンから選ばれる少なくとも1種以上の有機酸由来のアニオン種を好ましく挙げることができる。また、何れの目的にも使用可能なものとして、リン酸イオン、亜リン酸イオン、次亜リン酸イオン、クエン酸イオン、リンゴ酸イオンを好ましく挙げることができる。
 当該異種金属接触腐食(Galvanic腐食)を抑制する作用として働くアニオン種は、少量である必要があり、具体的な使用濃度は、本発明〈2〉に係るエッチング剤中の濃度として、通常0.0001重量%~0.5重量%、好ましくは0.001重量%~0.2重量%、より好ましくは0.002重量%~0.2重量%である。0.5重量%を超える量を用いると、エッチング剤中の電解質濃度が高くなりすぎて電子の受渡が起こり易くなる環境となり、逆に異種金属接触腐食(Galvanic腐食)を促進することになるので好ましくない。このようなアニオン種は、水酸化物イオンによるW系金属膜表面に形成される電気二重層を維持しつつ電気的な影響を広範囲に分散させることができる作用を奏する。
 一方、緩衝剤として作用するアニオン種の具体的な使用濃度は、本発明〈2〉に係るエッチング剤中の濃度として、通常0.0099重量%~2.5重量%、好ましくは0.019重量%~0.8重量%、より好ましくは0.028重量%~0.3重量%、更に好ましくは0.028重量%~0.1重量%である。これら緩衝剤として作用するアニオン種と上記異種金属接触腐食(Galvanic腐食)を抑制する作用として働くアニオン種の合算値が、上記ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種の使用濃度となる。上でも少し述べたように異種金属接触腐食(Galvanic腐食)を抑制する作用として働くアニオン種の使用濃度を0.002重量%~0.2重量%とし、緩衝作用として働くアニオン種を使用濃度を極力抑え、0.028重量%~0.1重量%の範囲内とすれば、緩衝作用を保たせつつ、より確実に異種金属接触腐食(Galvanic腐食)を抑制することができるのである。
 これらの(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種の供給形態は、水溶液中で解離し当該アニオン種となるものであれば特に限定されず、例えば硫酸、亜硫酸、塩酸、リン酸、炭酸、酢酸、クエン酸、リンゴ酸等の無機酸或いは有機酸として供給してもよいし、硫酸ナトリウム、亜硫酸ナトリウム、塩化ナトリウム、リン酸ナトリウム、リン酸水素ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、リンゴ酸ナトリウム等の無機酸或いは有機酸の塩の形態で供給しても差し支えないが、本発明〈2〉に係るエッチング剤に於いては、エッチング剤中のカチオン種の種類が重要となってくる場合があるため、塩で供給する場合には、ナトリウム塩又は4級アンモニウム塩の形態で供給するのが好ましい。
 本発明〈1〉に係るエッチング剤に添加される「銅防食剤」である、クエン酸やリンゴ酸等は、本発明〈2〉に係るエッチング剤に於ける「ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種」に含まれるが、これらを「銅防食剤」として用いる場合には「銅防食剤」として作用し得る濃度範囲で添加され、「ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種」として用いる場合には、「異種金属接触腐食(Galvanic腐食)抑制作用」と「緩衝剤」として作用し得る濃度範囲で添加されている。そのため、本発明〈1〉及び〈2〉に係るエッチング剤に於いては、クエン酸やリンゴ酸等は、その添加量によっては、「銅防食剤」と「ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種」としての作用を呈する場合もある。このように双方の目的のためにこれらクエン酸やリンゴ酸等を添加することは排除されるものではない。すなわち、本発明〈1〉に係るエッチング剤に於いて、「銅防食剤」に加えて「ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種」のうちのクエン酸等のヒドロキシトリカルボン酸やリンゴ酸等のヒドロキシカルボン酸を併用してもよいが、「銅防食剤」と当該ヒドロキシトリカルボン酸やヒドロキシカルボン酸との合計の使用濃度が、上で述べたような「銅防食剤」の濃度範囲に設定することが望ましい。一方、本発明〈2〉に係るエッチング剤に於いて、「ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種」に加えて「銅防食剤」を併用してもよいが、後述するように、銅防食剤としての「水溶液中で解離して当該アニオン種を発生するような化合物」は使用しないことが望ましく、使用する場合であっても、アニオン種の総重量%が上記範囲内となるような濃度に設定する必要がある。
 ここまで述べてきたように、本発明〈1〉に係るエッチング剤は、少なくとも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(c-1)無機アルカリ及び(D-1)銅防食剤を含む溶液からなる半導体基板用エッチング剤であり、一方、本発明〈2〉に係るエッチング剤は、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物並びに(D)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含んでなる溶液からなる半導体基板用エッチング剤である。
 本発明〈1〉に係るエッチング剤は、少なくとも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(c-1)無機アルカリ及び(D-1)銅防食剤を含むものであり、当該溶液は、通常pHが7~10、好ましくは8~9.5、より好ましくは8.5~9.2の範囲になるように調整・維持される。
 当該溶液のpHが高過ぎる場合には、例えば過酸化水素の安定性の低下、周辺金属(Al等)及び半導体基板(Si等)の腐食の増加等の問題を引き起こし、またpHが低過ぎる場合には、例えばTiエッチング速度の低下、キレート剤の錯形成能の低下、TiW合金のTi及びWのエッチング速度のバランス悪化、エッチング残渣の発生、サイドエッチの増加等の問題を引き起こすため、上記の如き範囲のpHに調整・維持するのが好ましい。
 必要に応じて、本発明に係る溶液を上記pHの範囲に維持する目的のために、通常この分野で用いられるpH調整剤を用いてもよい。上記無機アルカリの他に更に必要に応じて、例えば溶液の安定性を向上させる目的として、pH調整剤を用いてもよい。
 当該pH調整剤としては、例えばホウ酸、硝酸、塩酸、硫酸、フッ酸等が挙げられる。尚、これらのpH調整剤は2種以上を適宜混合して用いてもよい。また、当該pH調整剤の使用濃度は、本発明〈1〉に係るエッチング剤中の濃度として、通常0.05~4重量%、好ましくは0.2~3重量%、より好ましくは1~2重量%である。
 本発明〈2〉に係るエッチング剤は、少なくとも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物並びに(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含むものであり、当該溶液は、通常pHが6~10、好ましくは6~9、より好ましくは7~8.5の範囲になるように調整・維持される。
 当該溶液のpHが高過ぎる場合には、例えば過酸化水素の安定性の低下、周辺金属(Al等)及び半導体基板(Si等)の腐食の増加等の問題を引き起こし、またpHが低過ぎる場合には、例えばWエッチング速度の低下、ヒドロキシル基を有するホスホン酸系キレート剤の錯形成能の低下、TiW合金のTi及びWのエッチング速度のバランス悪化、エッチング残渣の発生、サイドエッチの増加等の問題を引き起こすため、上記の如き範囲のpHに調整・維持するのが好ましい。
 本発明〈2〉に係るエッチング剤に於いては、溶液中のアニオン種の総重量%が重要となるため、上記(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物や(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種の濃度範囲が0.01重量%~3重量%の範囲内でpHを上記の如き範囲に調整・維持するのが好ましい。すなわち、本発明〈2〉に係るエッチング剤に於いては、アニオン種の濃度範囲が重要となるので、(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種以外の、水溶液中で解離して当該アニオン種を発生するような化合物等は使用しないことが望ましい。
 本発明に係るエッチング剤は、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤及び(C)塩基性化合物と、(D-1)銅防食剤又は/及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を上記した如き濃度となるように、水に混合溶解することにより調製することができる。尚、各成分は適宜の順序で水に順次添加混合しても、全ての成分を添加した後、水に溶解させてもよい。このようにして調製した本発明のエッチング剤は使用前に濾過処理等を行うのが好ましい。また、ここで用いられる水は、蒸留、イオン交換処理等により精製された蒸留水、精製水、イオン交換水、超純水等であればよい。
 本発明〈1〉に係るエッチング剤に於いては、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(c-1)無機アルカリ及び(D-1)銅防食剤を用いる以外は、自体公知のエッチング方法で通常用いられる試薬類を使用することができる。
 このような試薬類としては、例えば、溶液の表面張力を低減させて半導体表面への濡れ性を改善する目的で用いられるノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、良性界面活性剤等の界面活性剤等が挙げられ、中でもNCW1002(ポリオキシエチレン・ポリオキシプロピレンアルキルエーテル、和光純薬工業(株)社製)等のノニオン性界面活性剤が特に好ましい。これら界面活性剤は、通常この分野で使用される濃度範囲で用いればよく、本発明〈1〉に係るエッチング剤中の濃度として、通常0.001~1重量%、好ましくは0.01~0.5重量%である。
 一方、本発明〈2〉に係るエッチング剤に於いては、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物並びに(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を用いる以外に、界面活性剤等を使用することも可能ではあるが、上でも少し述べたように、当該エッチング剤に於ける溶液中でのアニオン種の総重量%が重要となるため、この重量%に影響を及ぼすような他の成分を含有させない方が望ましい。
 本発明〈2〉に係るエッチング剤に於いて要すれば使用される界面活性剤としては、例えば、溶液の表面張力を低減させて半導体表面への濡れ性を改善する目的で用いられるノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、良性界面活性剤等の界面活性剤等が挙げられるが、これらの界面活性剤のうち、水溶液中で解離せずアニオン種を発生しない化合物を用いることが好ましいことは言うまでもない。また、これら界面活性剤の使用量としては、本発明〈2〉に係るエッチング剤中の濃度として、通常0.001重量%~1重量%、好ましくは0.01重量%~0.5重量%である。
 本発明のエッチング剤は、上記したように、(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤及び(C)塩基性化合物と、(D-1)銅防食剤又は/及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を、その主要成分として用いて調製されたものであり、1液系或いは2液系等の多液系等種々の形態で供給される。尚、当該エッチング剤を使用するに当たっては、1液系の場合には、そのまま用いればよく、また、2液系等の多液系の場合には、使用前に全ての溶液を適宜混合して上記した如き成分を全て含む溶液を調製し、これを用いればよい。
 なかでも、輸送中や保存中等に於ける安全性或いは溶液の安定性等の問題から、2液系以上の多液系、特に安定性・簡便性の点から2液系が好ましく、具体的には、例えば過酸化水素の分解によるエッチング液の性能低下の抑制、塩基性化合物(アルカリ化合物)と共存させることによる過酸化水素の不安定性を回避する観点から、(1)過酸化水素を含有する溶液と、(2)ヒドロキシル基を有するホスホン酸系キレート剤及び塩基性化合物と、銅防食剤又は/及びヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種を含む溶液からなるエッチング剤調製液(以下、「本発明に係るエッチング剤調製液」と略記する場合がある。)とからなる、2液系のものが好ましい。
 上記した如き2液系等の多液系の各溶液中の各成分の使用濃度は、全ての溶液を適宜混合して調製された、当該成分を全て含む溶液中の濃度、すなわち、最終濃度が、前述した如き濃度範囲となるように適宜選択して、各溶液中に含有させればよい。すなわち、例えば本発明〈1〉に係るエッチング剤を2液系とする場合には、過酸化水素10~50重量%、好ましくは15~30重量%、より好ましくは15~26重量%、更に好ましくは20~26重量%を含んでなる溶液(第1液)と、ヒドロキシル基を有するホスホン酸系キレート剤0.1~3重量%、好ましくは0.2~2重量%、より好ましくは0.3~1重量%、更に好ましくは0.4~0.8重量%、無機アルカリ0.2~12重量%、好ましくは0.5~10重量%、より好ましくは0.8~4重量%及び銅防食剤0.05~5重量%、好ましくは0.05~2重量%、より好ましくは0.08~1.5重量%を含む溶液からなるエッチング剤調製液(第2液)を、混合比(重量比)〔第1液:第2液〕が通常1:9~98:2、好ましくは4:6~9:1、より好ましくは6:4~8:2となるように適宜混合させ、調製された当該成分を全て含む溶液中の濃度、すなわち、最終濃度が、過酸化水素が、通常10~35重量%、好ましくは15~30重量%、より好ましくは15~26重量%、更に好ましくは20~26重量%、ヒドロキシル基を有するホスホン酸系キレート剤が、通常0.1~3重量%、好ましくは0.2~2重量%、より好ましくは0.3~1重量%、更に好ましくは0.4~0.8重量%、無機アルカリが、通常0.2~12重量%、好ましくは0.5~10重量%、より好ましくは0.8~4重量%、銅防食剤が、通常0.05~5重量%、好ましくは0.05~2重量%、より好ましくは0.08~1.5重量%となるように、2つの溶液を夫々調製すればよい。
 また、本発明〈2〉に係るエッチング剤を2液系とする場合には、過酸化水素10重量%~35重量%、好ましくは20重量%~35重量%、より好ましくは24重量%~35重量%、更に好ましくは30重量%~35重量%を含んでなる溶液(第1液)と、ヒドロキシル基を有するホスホン酸系キレート剤0.1重量%~30重量%、好ましくは0.1重量%~20重量%、より好ましくは0.15重量%~10重量%、更に好ましくは0.2重量%~6重量%、無機アルカリ及び有機アミンから選ばれる少なくとも1種以上の塩基性化合物0.1重量%~48重量%、好ましくは0.1重量%~30重量%、より好ましくは0.1重量%~20重量%、並びにヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~6重量%、好ましくは0.02~2重量%、より好ましくは0.03~1重量%、更に好ましくは0.03~0.6重量%を含む溶液からなるエッチング剤調製液(第2液)を、混合比(重量比)〔第1液:第2液〕が通常30:70~99:1、好ましくは60:40~95:5、より好ましくは80:20~95:5となるように適宜混合させ、調製された当該成分を全て含む溶液中の濃度、すなわち、最終濃度が、過酸化水素が、通常10重量%~35重量%、好ましくは15重量%~35重量%、より好ましくは20重量%~35重量%、更に好ましくは24重量%~32重量%、ヒドロキシル基を有するホスホン酸系キレート剤が、通常0.1重量%~3重量%、好ましくは0.1重量%~2重量%、より好ましくは0.15重量%~1重量%、更に好ましくは0.2~0.6重量%、無機アルカリ及び有機アミンから選ばれる少なくとも1種以上の塩基性化合物が、通常0.1重量%~5重量%、好ましくは0.2重量%~4重量%、より好ましくは0.2重量%~2重量%、並びにヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種が、通常0.01重量%~3重量%、好ましくは0.02~1重量%、より好ましくは0.03~0.5重量%、更に好ましくは0.03重量%~0.3重量%となるように、2つの溶液を夫々調製すればよい。
 また、同様に上記した如き2液系に於ける各溶液のpHも特に限定されず、全ての溶液を適宜混合して調製された上記した如き成分を全て含む溶液のpH、すなわち、最終pHが、前述した如きpH範囲となるように、各溶液のpHを調整すればよい。言い換えれば、例えば上記した如き2液系の場合には、2液を混合した際の最終pHが、本発明〈1〉に係るエッチング剤に於いては、通常pH7~10、好ましくはpH8~9.5、より好ましくはpH8.5~9.2となるように、夫々の溶液のpHを調整すればよく、本発明〈2〉に係るエッチング剤に於いては、通常pH6~10、好ましくはpH6~9、より好ましくはpH7~8.5となるように、夫々の溶液のpHを調整すればよい。
 本発明〈1〉に係るエッチング剤に於けるエッチング方法は、少なくとも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(c-1)無機アルカリ及び(D-1)銅防食剤を含む溶液からなるエッチング剤と半導体基板上のTi系金属膜を接触させる等により、当該基板を本発明のエッチング剤で処理すればよい。
 本発明〈2〉に係るエッチング剤に於けるエッチング方法は、少なくとも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物並びに(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含む溶液からなるエッチング剤と半導体基板上のW系金属膜を接触させる等により、当該基板を本発明のエッチング剤で処理すればよい。
 すなわち、本発明のエッチング方法は、上記した如き本発明に係るエッチング剤を用いて基板をエッチングする以外は、自体公知のエッチング方法であるディップ法やスプレーエッチ法等に準じてこれを行えばよい。
 また、本発明のエッチング方法に於いては、本発明のエッチング剤調製液(すなわち、ヒドロキシル基を有するホスホン酸系キレート剤及び塩基性化合物と、銅防食剤又は/及びヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種を含む溶液からなるエッチング剤調製液)を用いて、これと過酸化水素を含んでなる溶液とを、使用時に適宜混合して、上記した如き成分を全て含む溶液(エッチング剤)を調製して用いてもよい。
 自体公知のエッチング方法の具体例としては、例えば(1)Ti系金属膜或いはW系金属膜を形成させた半導体基板をエッチング剤に浸漬させる方法、(2)Ti系金属膜或いはW系金属膜を形成させた半導体基板をエッチング剤に浸漬させた状態で該溶液を機械的手段で攪拌する方法、(3)Ti系金属膜或いはW系金属膜を形成させた半導体基板をエッチング剤に浸漬させた状態で超音波等にて該溶液を振動させ攪拌する方法、(4)エッチング剤をTi系金属膜或いはW系金属膜を形成させた半導体基板に吹き付ける方法等が挙げられる。
 尚、本発明の方法に於いて、上記した如きエッチングを行う際には、必要に応じてTi系金属膜或いはW系金属膜を形成させた半導体基板を揺動させてもよい。
 また、本発明の方法に於いて、エッチング方式は特に限定されず、例えばバッチ式、枚葉式等が使用できる。
 本発明〈1〉に係るエッチング剤及びエッチング方法が適用されるTi系金属膜を形成させた半導体基板としては、例えば当該Ti系金属膜を形成させた半導体基板上にCu配線が施された基板等が挙げられる。
 本発明〈1〉に係るエッチング剤を用いる工程に係るPbフリーはんだを構成する金属としては、スズ(Sn)を主成分とするSn合金であり、例えば銀(Ag)、ビスマス(Bi)、インジウム(In)、銅(Cu)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、アンチモン(Sb)、金(Au)等から選ばれる1種以上の金属とSnからなる合金が挙げられる。Pbフリーはんだの具体例としては、例えばSn-Ag系、Sn-Ag-Bi-In系、Sn-Ag-Bi系、Sn-Cu系、Sn-Cu-Ag系、Sn-Ag-Bi-Cu系、Sn-Cu-Ni系、Sn-Zn系、Sn-Zn-Bi系、Sn-Zn-Al系、Sn-Zn-In系、Sn-Bi系、Sn-Bi-In系、Sn-Sb系、Sn-In系、Sn-Au系等が挙げられ、中でもSn-Cu系、Sn-Ag系、Sn-Cu-Ag系等が好ましく、就中Sn-Cu系がより好ましい。
 本発明〈1〉に係るエッチング剤及びエッチング方法は、本発明に係る半導体基板、すなわち、Ti系金属膜を形成させた半導体基板、特に当該Ti系膜上にCu配線が施された半導体基板上に、Pbフリーはんだバンプを製造させる基板の工程に好適に使用される。
 Pbフリーはんだバンプを形成する方法としては、通常この分野で用いられる方法により行えばよく、例えば本発明に係る半導体基板、すなわち、Ti系金属膜を形成させた半導体基板上に、必要に応じてレジストの塗布などによりパターンを形成させた後、Pbフリーはんだを構成する金属から選ばれる1種以上の金属膜を積層させ、その後Pbフリーはんだを構成する金属をめっき処理し、更に加熱等の当分野に於ける常法に従って処理すればよい。
 また、当該Ti系金属膜上に更にCu配線が施されている基板を用いる場合は、Cu配線とPbフリーはんだバンプを構成するSn合金との接着性を高めるためにCu配線上に例えばNi膜、Cr膜等が形成されていてもよい。
 一方、本発明〈2〉に係るエッチング剤及びエッチング方法が適用されるW系金属膜を形成させた半導体基板としては、例えば当該W系金属膜を形成させた半導体基板の上部にタングステンよりもイオン化傾向の低い金属バンプ又は金属配線が施された基板等が挙げられる。
 本発明〈2〉に係るエッチング剤を用いる工程に係るタングステンよりもイオン化傾向の低い金属バンプ又は金属配線を構成する金属としては、金(Au)、銀(Ag)、パラジウム(Pd)、スズ(Sn)又はこれらの合金或いは、これらの金属を主成分とする合金であり、タングステンよりもイオン化傾向が低いため、異種金属接触腐食(Galvanic腐食)の原因となる金属バンプ又は金属配線を構成するものである。また、これらの金属バンプ又は金属配線のなかでも、金(Au)バンプ又は金(Au)配線が好ましい。
 当該金属バンプ又は金属配線を形成する方法としては、通常この分野で実施される方法により行えばよく、具体的には、例えば本発明に用いられる半導体基板、すなわち、W系金属膜を形成させた半導体基板上に、レジスト等で回路を形成後、鍍金、化学気相蒸着等で処理すればよい。
 尚、当該W系金属膜上に、例えば金バンプが形成された基板を用いる場合には、W系金属膜と当該バンプとの接着性を高めるためにこれらの間に、ニッケル(Ni)、パラジウム(Pd)、銅(Cu)膜等の導体・接着部位が存在していてもよい。
 本発明に用いられる半導体基板としては、例えばシリコン、非晶性シリコン、ポリシリコン、シリコン酸化膜、シリコン窒化膜等のシリコン材料、ガリウムー砒素、ガリウム-リン、インジウム-リン等の化合物半導体等からなるものが挙げられる。中でも、本発明のエッチング剤及びエッチング方法は、シリコン系材料からなる半導体基板に好適に使用される。
 銅配線が形成された半導体基板上のTi系金属膜用エッチング剤、すなわち、本発明〈1〉に係るエッチング剤を用いたエッチングは、加温すると常温時に比較してより短時間で終了するが、処理温度が高いと過酸化水素の分解が激しくなり、エッチング液の寿命が短くなる。エッチング時の温度としては、下限が、通常室温以上、好ましくは20℃以上、より好ましくは25℃以上であり、上限は通常60℃以下、好ましくは50℃以下、より好ましくは40℃以下である。すなわち、本発明のエッチング液の温度を上記した如き温度範囲となるようにし、これと基板とを接触させればよい。
 タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板上のW系金属膜用エッチング剤、すなわち、本発明〈2〉に係るエッチング剤を用いたエッチングは、加温すると常温時に比較してより短時間で終了するばかりでなく、同エッチング剤によるエッチングが起こる部分と、異種金属接触腐食(Galvanic腐食)とによるエッチングが平行して起こる部分とのエッチング速度の差が相対的に少なくなり、エッチング剤と金属の接触する処理時間が短くなり、サイドエッチングが抑制されるため、処理温度を室温よりも高めに設定して行うことが好ましい。具体的には、例えば10℃~70℃、好ましくは20℃~60℃、より好ましくは30℃~60℃の温度範囲に設定し、これと基板とを接触させればよい。
 エッチング処理時間としては、被処理物の表面状態や形状が一定でないため制限できないが、実用的には、通常1分~1時間、好ましくは1~30分、より好ましくは1~15分である。
 本発明に係る銅配線が形成された半導体基板上のTi系金属膜用エッチング剤、すなわち、本発明〈1〉に係るエッチング剤を用いてTi系金属膜を形成させた半導体基板のエッチング処理を行えば、Ti系膜を選択的にエッチングすることができる。特に、当該エッチング剤を、当該Ti系膜上にCu配線が施された基板に用いる場合には、Cuに対するTiエッチング選択比を向上させることができる。また、Cuの溶解量を抑えることで、過剰なサイドエッチングが発生せず、更にはCuに由来する過酸化水素の分解も抑制できるため、エッチング剤の寿命が向上し、プロセスマージンを大きくすることができる。
 また、本発明に係る銅配線が形成された半導体基板上のTi系金属膜用エッチング剤、すなわち、本発明〈1〉に係るエッチング剤は、Pbフリーはんだバンプ形成工程に好適に用いることができる。
 本発明に係るタングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板上のW系金属膜用エッチング剤、すなわち、本発明〈2〉に係るエッチング剤を用いてW系金属膜を形成させた半導体基板のエッチング処理を行えば、W系金属膜を迅速にエッチングできるばかりでなく、当該金属バンプ又は金属配線直下のW系金属膜のエッチング、いわゆるタングステンよりもイオン化傾向の低い金属バンプ又は金属配線とタングステンとによる異種金属接触腐食(Galvanic腐食)に起因するサイドエッチングを抑制することができる。
 本発明に係るタングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板上のW系金属膜用エッチング剤、すなわち、本発明〈2〉に係るエッチング剤に於いては、特に(C)(c-1)無機アルカリ及び(c-2)有機アミンから選ばれる少なくとも1種以上の塩基性化合物として、水酸化ナトリウム又はテトラアンモニウムヒドロキシドを用いることにより、これらから生ずるナトリウムイオンや4級アンモニウムイオン等のカチオン種が異種金属接触腐食(Galvanic腐食)の原因の1つとなる電子移動が抑制され、また、硫酸イオン、クエン酸イオン等の少量の特定のアニオン種が存在することにより、電気二重層を維持しつつ電気的な影響を広範囲に分散させることができるので、異種金属接触腐食(Galvanic腐食)を抑制できる等の利点を有する。
 更に、本発明のエッチング剤調製液を用いれば、これと過酸化水素を含んでなる溶液とを使用時に適宜混合してエッチング剤として用いることができるため、例えば過酸化水素の分解によるエッチング剤性能の低下を抑制できる、塩基性化合物(アルカリ化合物)と共存させることによる過酸化水素の不安定性を回避できる、過酸化水素と当該エッチング調製液とを任意の割合で混合できるため、例えばTi系金属膜或いはW系金属膜のエッチング速度を適宜調整可能である等の利点を有する。
 本発明〈1〉に係るエッチング剤に於けるエッチング剤調製液のpH調整として水酸化アルカリ及びアンモニア、特に水酸化アルカリを用いれば、これと過酸化水素を含んでなる溶液を混合したエッチング剤でTi系金属膜のエッチング処理を行った場合には、例えば水酸化テトラメチルアンモニウム等の有機アルカリを用いてpH調整を行った場合よりも、例えばTi/Cuの選択比が向上する、Ti溶解速度が高く、高いスループットが期待できる等の効果を奏する。
 以下に実施例及び比較例等を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何ら限定されるものではない。
実施例1
(1)本発明〈1〉に係るエッチング剤の調製
 下記組成からなるエッチング剤を調製した。
過酸化水素                  24.5重量%
ホスホン酸系キレート剤(HEDPO)      0.5重量%
銅防食剤(ベンゾトリアゾール)         0.1重量%
無機アルカリ(水酸化カリウム)         2.0重量%
水                      72.9重量%
pH                      9.0
※HEDPO=1-ヒドロキシエチリデン-1,1'-ジホスホン酸
(2)エッチング
 上記(1)のエッチング剤に、表面積と重量を予め測定したTi板並びにCu板を、室温で10分間浸漬しエッチング処理を行った。
(3)結果
 上記(2)で得られたエッチング後のエッチング剤を適量取り、0.1mol/L硝酸溶液で希釈した後、誘導結合プラズマ発光分光分析装置(商品名「SPS3000 ICP発光分光分析装置」、エスアイアイナノテクノロジー(株)社製)を用いて、溶解したTi及びCu量を測定した。得られた金属量を単位面積当たりの溶解量に概算し、溶解速度(nm/min)を算出した。その結果及びTi/Cuの溶解速度比を併せて表1に示す。
実施例2~5
(1)本発明〈1〉に係るエッチング剤の調製
 エッチング剤中の各成分を下記表1に示す所定量用いた以外は、実施例1と同様に調製した。
(2)エッチング
 実施例1と同様に行った。
(3)結果
 実施例1と同様に、エッチングされたCu板及びTi板表面の金属量を測定した。結果を表1に併せて示す。尚、表1では各エッチング液の水分量は省略する。
Figure JPOXMLDOC01-appb-T000007
※BTA=ベンゾトリアゾール、EPA=エピクロロヒドリン変性ポリアミド樹脂
比較例1~4
(1)エッチング剤の調製
 エッチング剤の各成分を下記表2に示す所定量用いた以外は、実施例1と同様に調製した。
(2)エッチング
 実施例1と同様に行った。
(3)結果
 実施例1と同様に、エッチングされたCu板及びTi板表面の金属量を測定した。結果を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000008
※EDTA=エチレンジアミン四酢酸、DEPPO=ジエチレントリアミンペンタメチレンホスホン酸、TMAH=テトラメチルアンモニウムヒドロキシド
 実施例1~5の結果から明らかなように、本発明〈1〉に係るエッチング剤を用いると、Cuを殆どエッチングすることなく、Tiを効率よくエッチングすることができる。
 一方、比較例1~3の結果から明らかなように、銅防食剤を含有しないエッチング剤を用いた場合には、Cuがエッチングされやすくなり、Tiを効率よくエッチングすることができなかった。
 また、実施例1と比較例4の結果から明らかなように、アルカリとして有機アミン(TMAH)を用いた場合には、Cuは全くエッチングされず、更にTiも殆どエッチングされなかったが、アルカリとして本発明〈1〉に係るエッチング剤に於ける無機アルカリ(KOH)を用いた場合は、Tiを選択的にエッチングできること、すなわち、Cuが殆どエッチングされることなく、Tiを効率よくエッチングすることが分かった。
 更に、実施例2と5の結果から明らかなように、水酸化カリウムをアルカリとして用いた場合の方が、アンモニアを用いる場合よりも、Ti/Cu溶解速度比が向上する、すなわち、Tiを選択的にエッチングできることが分かった。
実施例6
(1)本発明〈1〉に係るエッチング剤の調製
 下記組成からなるエッチング剤を調製した。
過酸化水素                  24.5重量%
ホスホン酸系キレート剤(60%HEDPO溶液) 0.8重量%
             〔HEDPO含有量:約0.5重量%〕
銅防食剤(ベンゾトリアゾール)         0.1重量%
無機アルカリ(水酸化カリウム)         2.0重量%
水                      72.6重量%
pH                      9.0
※HEDPO:商品名「DEQEST2010」(ソルーシアジャパン(株)社製)を用いた。
(2)エッチング
 上記(1)に於けるエッチング剤に、Ti板並びにCu板を、室温で30分間、60分間、90分間それぞれ浸漬しエッチング処理を行った。
(3)結果
 エッチング前後のエッチング剤中の過酸化水素濃度を酸化還元滴定により測定し、エッチング前後の過酸化水素の分解率を下記式により概算した。その結果を表3に示す。
過酸化水素分解率(%)=(エッチング前過酸化水素濃度-エッチング後過酸化水素濃度)×100/(エッチング前過酸化水素濃度)
比較例5
(1)エッチング剤の調製
 下記組成からなるエッチング剤を調製した。
過酸化水素                  24.5重量%
窒素(N)含有ホスホン酸系キレート剤      2.0重量%
(25%DEPPO七ナトリウム塩水溶液)〔DEPPO含有量:0.5重量%〕
銅防食剤(ベンゾトリアゾール)         0.1重量%
無機アルカリ(水酸化カリウム)         1.7重量%
水                      71.7重量%
pH                      9.0
※DEPPO:商品名「DEQEST2066」(ソルーシアジャパン(株)社製)を用いた。
(2)エッチング
 実施例6と同様にエッチング処理を行った。
(3)結果
 実施例6と同様に過酸化水素濃度を測定した。結果を表3に併せて示す。
Figure JPOXMLDOC01-appb-T000009
 表3の結果から明らかなように、窒素(N)含有ホスホン酸系キレート剤を用いた場合には、過酸化水素の分解率が高く、エッチング剤の寿命が短くなってしまうのに対して、本発明に係るホスホン酸系キレート剤(HEDPO)を用いた場合は、過酸化水素の分解率が低いため、エッチング剤の寿命が長いことが分かった。
実施例7
(1)本発明〈1〉に係るエッチング剤の調製
 表1に記載の実施例2と同様の組成からなるエッチング剤を調製した。
(2)エッチング
 上記(1)に於けるエッチング剤に、Ti板並びにCu板を、40℃で10分間、20分間及び30分間それぞれ浸漬してエッチング処理を行った。
(3)結果
 エッチング前後のエッチング剤中の過酸化水素濃度を酸化還元滴定により測定し、エッチング前後の過酸化水素の分解率を下記式により概算した。その結果を表4に示す。
過酸化水素分解率(%)=(エッチング前過酸化水素濃度―エッチング後過酸化水素濃度)×100/(エッチング前過酸化水素濃度)
実施例8
(1)本発明〈1〉に係るエッチング剤の調製
 下記組成からなるエッチング剤を調製した。
過酸化水素                  25.0重量%
ホスホン酸系キレート剤(HEDPO)      0.5重量%
銅防食剤(EPA)               1.0重量%
無機アルカリ(アンモニア)           0.9重量%
水                      72.6重量%
pH                      8.5
(2)エッチング
 実施例7と同様にエッチング処理を行った。
(3)結果
 実施例7と同様に過酸化水素濃度を測定した。その結果を表4に併せて示す。
Figure JPOXMLDOC01-appb-T000010
 pHが高いと過酸化水素の安定性が低下することは知られているが、表4の結果から明らかなように、無機アルカリにアンモニアを用いた場合(実施例8、pH8.5)には、水酸化カリウムを用いた場合(実施例7、pH9.0)に比べて、pHが低いにもかかわらず過酸化水素分解率が高く、エッチング剤の寿命が短いことが分かった。以上の記載から、本発明に用いられる無機アルカリとしては、水酸化カリウム等のアルカリ金属水酸化物が好ましいことが分かる。
参考例1及び実施例9~実施例14
(1)エッチング剤の調製
 下記組成からなるエッチング剤を調製した(成分の詳細については表5に記載)。
過酸化水素                  28.0重量%
ホスホン酸系キレート剤(HEDPO)     0.34重量%
塩基性化合物(水酸化ナトリウム)       0.58重量%
クエン酸(緩衝剤)              0.07重量%
硫酸ナトリウム             0.0~0.2重量%
水                        残部
pH                      7.8
※HEDPO=1-ヒドロキシエチリデン-1,1’-ジホスホン酸
(2)エッチング
 上記(1)の参考例及び実施例各々に於けるエッチング剤に、金(Au)バンプをチタン-タングステン(TiW)合金膜上に有するシリコンウェハを室温で浸漬し、ウェハ表面のTiW合金膜がなくなった状態をエッチングの終了時とした。エッチング終了後にウェハを純水で洗浄し、金エッチング剤(商品名「Au-Etchant」、和光純薬工業(株)製)に浸漬させ、金バンプを溶解させた。
(3)結果
 上記(2)で得られたウェハ上にある、金バンプでマスクされ、矩形に残ったTiW合金膜の上面の辺の長さを走査型電子顕微鏡(商品名「S-4800」、日立ハイテクノロジーズ社製)で観察、測定した。硫酸ナトリウムを添加しないエッチング剤(参考例1)でのTiW合金膜の辺の長さを100とした場合に於ける、各実施例でエッチング後の矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000011
比較例6
(1)エッチング剤の調製
 下記組成からなるエッチング剤を調製した。
過酸化水素                  28.0重量%
ホスホン酸系キレート剤(HEDPO)     0.34重量%
無機アルカリ(水酸化ナトリウム)       0.58重量%
クエン酸(緩衝剤)              0.07重量%
硫酸ナトリウム                 1.0重量%
水                      70.0重量%
pH                      7.8
(2)エッチング
 参考例1と同様に行った。
(3)結果
 参考例1と同様に測定し、参考例1でのTiW合金膜の辺の長さを100とした場合に於ける、矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000012
 表5及び表6の結果から明らかなように、エッチング剤中に水溶液中で硫酸イオンとなる硫酸ナトリウムを適当量含有させることにより、無添加のエッチング剤(参考例1)と比較して、サイドエッチングを抑制できることが判った。また、逆に水溶液中で硫酸イオンとなる硫酸ナトリウムを過剰量用いるとサイドエッチングが促進されてしまうことから、本発明〈2〉に係るエッチング剤は、溶液中でのアニオン種の重量%が重要であることが判った。
実施例15~21
(1)本発明〈2〉に係るエッチング剤の調製
 硫酸ナトリウムの代わりに、塩化ナトリウム又はリン酸水素ナトリウムを所定量用いた以外は、実施例9と同様にしてエッチング剤を調製した。当該エッチング剤中のアニオン2の成分を表7及び表8に示す。
(2)エッチング
 参考例1と同様に行った。
(3)結果
 参考例1と同様に測定し、参考例1でのTiW合金膜の辺の長さを100とした場合に於ける、矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果をエッチング剤中のアニオン2の成分と併せて表7及び表8に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表7及び表8の結果から明らかなように、水溶液中で硫酸イオンとなる硫酸ナトリウムと同様に、水溶液中で塩化物イオンとなる塩化ナトリウムや同じく水溶液中でリン酸イオンとなるリン酸水素ナトリウムでも、エッチング剤中に適当量含有させることにより、サイドエッチングを抑制できることが判った。
実施例22~25及び比較例7
(1)エッチング剤の調製
 硫酸ナトリウムの代わりに、水溶液中で特定の無機酸又は有機酸由来のアニオン種となる塩を所定量用いた以外は、実施例9と同様にしてエッチング剤を調製した。当該エッチング剤中のアニオン2の成分を表9に示す。
(2)エッチング
 参考例1と同様に行った。
(3)結果
 参考例1と同様に測定し、参考例1でのTiW合金膜の辺の長さを100とした場合に於ける、矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果をエッチング剤中のアニオン2の成分と併せて表9に示す。
Figure JPOXMLDOC01-appb-T000015
 表9の結果から明らかなように、実施例22の亜硫酸イオンのような還元力を有するアニオン種、有機酸由来のアニオン種である酢酸イオン、更にキレート能を有するアニオン種であるリンゴ酸イオンでもサイドエッチングを抑制できることが判った。その一方で、硝酸ナトリウムのような水溶液中で硝酸イオンとなる酸化力を有するアニオン種の場合には、サイドエッチングが抑制できないことが判った。
実施例26~27及び比較例8
(1)エッチング剤の調製
 実施例26では、クエン酸の代わりにリンゴ酸を所定量用いて、更に硫酸ナトリウムの重量%を変え、実施例27では、クエン酸の代わりにリンゴ酸を所定量用いて、更に硫酸ナトリウムの代わりに、水溶液中で特定の有機酸由来のアニオン種となる塩を所定量用いた以外は、実施例9と同様にしてエッチング剤を調製した。また、比較例8では、硫酸ナトリウムの代わりに、クエン酸ナトリウムを所定量用いた以外は、実施例9と同様にしてエッチング剤を調製した。これらのエッチング剤中の各成分を表10に示す。
(2)エッチング
 参考例1と同様に行った。
(3)結果
 参考例1と同様に測定し、参考例1でのTiW合金膜の辺の長さを100とした場合に於ける、矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果をエッチング剤中の各成分と併せて表10に示す。
Figure JPOXMLDOC01-appb-T000016
 表10の結果から明らかなように、エッチング剤中に所定量の異なるアニオン種を2種以上含有させることにより、サイドエッチングの抑制効果が得られることが判った。また、アニオン種の一方は、クエン酸以外のアニオン種であってもよいことが判った。
参考例2及び実施例28
(1)エッチング剤の調製
 参考例2では、塩基性化合物として無機アルカリであるNaOHの代わりに、有機アミンであるテトラメチルアンモニウムヒドロキシド(TMAH)を所定量用いた以外は、参考例1と同様にしてエッチング剤を調製し、実施例28では、参考例2と同様に塩基性化合物として無機アルカリであるNaOHの代わりに、有機アミンであるテトラメチルアンモニウムヒドロキシド(TMAH)を所定量用いた以外は、実施例9と同様にしてエッチング剤を調製した。これらのエッチング剤中の各成分を表11に示す。
(2)エッチング
 参考例1と同様に行った。
(3)結果
 参考例1と同様に測定し、参考例2でのTiW合金膜の辺の長さを100とした場合に於ける、矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果をエッチング剤中の各成分と併せて表11に示す。
Figure JPOXMLDOC01-appb-T000017
※TMAH=テトラメチルアンモニウムヒドロキシド
 表11の結果から明らかなように、塩基性化合物を無機アルカリであるNaOHから有機アミンであるTMAHに代えても、サイドエッチングの抑制効果があることが判った。
参考例3~5
(1)エッチング剤の調製
 表12で示される組成からなるエッチング剤を調製した。
(2)エッチング
 参考例1と同様に行った。
(3)結果
 参考例1と同様に測定し、参考例1でのTiW合金膜の辺の長さを100とした場合に於ける、矩形に残ったTiW合金膜の辺の長さの相対長(%)を算出する事により、サイドエッチングを比較した。その結果をエッチング剤中の各成分と併せて表12に示す。
Figure JPOXMLDOC01-appb-T000018
 表12の結果から明らかなように、エッチング剤中のアルカリ濃度が高く、また、2種以上のアニオン種を用いない場合には、サイドエッチングが抑制できず、金バンプでマスクされたTiW合金膜がすべて削られてしまいバンプが剥離してしまうことが判った。
 本発明〈2〉に係るエッチング剤に於いては、W系金属膜を溶解させる水酸化物イオンおよびヒドロキシル基を有するホスホン酸系キレート剤以外の、溶解に関与しないアニオン種をエッチング剤中に所定量含有させることにより、タングステンとタングステンよりもイオン化傾向の低い金属(低イオン化傾向金属)との接触による異種金属電池効果のため、水酸化物イオンによりW系金属膜表面に形成される電気二重層を、タングステン、タングステンよりもイオン化傾向の低い金属及びエッチング剤(電解液)の3つが接触する界面近傍に局在しないよう分散させ、異種金属接触腐食を低減することを目的としている。実施例9~28の結果から明らかなように、エッチング剤中に含まれるアニオン種としては、酸化力を有さず水溶液中に安定して存在できるものが望ましく、アニオン種の濃度が、電気二重層を金属接触界面から分散させ、膜表面における電子の授受を強くなりすぎない範囲に調整する必要があることが明らかとなった。一方、塩基性化合物に含まれるカチオン種は、当該タングステンよりもイオン化傾向の低い金属表面上での電子の授受が起きにくいほど、異種金属接触腐食によるサイドエッチングが小さくなることが予想される。また、参考例3~5の結果から明らかなように、塩基性化合物に含まれるカチオン種として、カリウムイオンよりもモル伝導度が小さいナトリウムイオンや有機アミンであるTMAHの4級アンモニウムイオンの方がカリウムイオンと比較して電子の授受が起きにくいために、異種金属接触腐食によるサイドエッチングが抑制されることが明らかとなった。更にその濃度範囲も限定されることが示唆された。これらの結果から、本発明〈2〉に係るエッチング剤とエッチング方法を用いることにより、W系金属膜とタングステンよりもイオン化傾向の低い金属からなる積層膜を処理した際に生じる異種金属接触腐食によるサイドエッチングを低減或いは抑制できることが可能となる。
 本発明のエッチング剤のなかでも(A)過酸化水素、(B)ホスホン酸系キレート剤、(c-1)無機アルカリ及び(D-1)銅防食剤を含む溶液からなる半導体基板用エッチング剤、すなわち、本発明〈1〉に係るエッチング剤を用いて、半導体基板上のTi系金属膜、特にCu配線が施された基板上のTi系金属膜を選択的にエッチングすることにより、従来法に比べて、例えば下地金属や基板上金属の腐食を抑制する、エッチング剤への金属溶出量が減少し、エッチング剤の寿命が増大する、Ti系金属膜のエッチング選択比の向上により残渣を有することなくエッチングが可能となる等の効果を奏する。
 本発明のエッチング剤のなかでも(A)過酸化水素、(B)ヒドロキシル基を有するホスホン酸系キレート剤、(C)塩基性化合物及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含む溶液からなる半導体基板用エッチング剤、すなわち、本発明〈2〉に係るエッチング剤を用いて、例えば金(Au)、銀(Ag)、パラジウム(Pd)、スズ(Sn)又はこれらの合金等のタングステンよりもイオン化傾向の低い金属(低イオン化傾向金属)バンプ或いは配線が施された半導体基板上のW系金属膜をエッチングすることにより、W系金属と上記タングステンよりもイオン化傾向の低い金属とによる異種金属接触腐食(Galvanic腐食)を抑制し、ひいては当該腐食によるサイドエッチングを抑制することが可能となる等の効果を奏する。

Claims (49)

  1. 少なくとも以下の(A)、(B)及び(C)と、(D-1)又は/及び(D-2)を含む溶液からなる半導体基板用エッチング剤。
    (A)過酸化水素
    (B)ヒドロキシル基を有するホスホン酸系キレート剤
    (C)塩基性化合物
    (D-1)銅防食剤
    (D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%
  2. 前記半導体基板が、銅配線が形成された半導体基板であって、少なくとも前記(A)、(B)、(C)及び(D-1)を含むものである、請求項1に記載のエッチング剤。
  3. 前記銅配線が形成された半導体基板が、チタン(Ti)系金属膜上部に銅配線が形成された半導体基板である、請求項2に記載のエッチング剤。
  4. 前記銅配線が、鉛(Pb)フリーはんだバンプを形成するためのものである、請求項2に記載のエッチング剤。
  5. Pbフリーはんだバンプ形成工程に使用されるものである、請求項2に記載のエッチング剤。
  6. 前記溶液のpHが7~10である、請求項2に記載のエッチング剤。
  7. 前記(B)ヒドロキシル基を有するホスホン酸系キレート剤が、1-ヒドロキシエチリデン-1,1'-ジホスホン酸、1-ヒドロキシプロピリデン-1,1'-ジホスホン酸、1-ヒドロキシブチリデン-1,1'-ジホスホン酸からなる群より選ばれるものである、請求項2に記載のエッチング剤。
  8. 前記(C)塩基性化合物が、(c-1)無機アルカリである、請求項2に記載のエッチング剤。
  9. 前記(c-1)無機アルカリが、アルカリ金属水酸化物又はアンモニアである、請求項8に記載のエッチング剤。
  10. 前記(c-1)無機アルカリが、水酸化カリウム又は水酸化ナトリウムである、請求項8に記載のエッチング剤。
  11. 前記(D-1)銅防食剤が、エピハロヒドリン変性ポリアミド、ベンゾトリアゾール化合物、ヒドロキシカルボン酸又は含窒素環化合物である、請求項2に記載のエッチング剤。
  12. (A)過酸化水素10~35重量%、(B)ヒドロキシル基を有するホスホン酸系キレート剤0.1~3重量%、(c-1)無機アルカリ0.2~12重量%及び(D-1)銅防食剤0.05~5重量%を含むものである、請求項8に記載のエッチング剤。
  13. 過酸化水素を含んでなる溶液と、ヒドロキシル基を有するホスホン酸系キレート剤、無機アルカリ及び銅防食剤を含む溶液からなるエッチング剤調製液から調製される、請求項8に記載のエッチング剤。
  14. 過酸化水素を含んでなる溶液と前記エッチング剤調製液との混合比が1:9~98:2である、請求項13に記載のエッチング剤。
  15. 過酸化水素を含んでなる溶液のpHと前記エッチング剤調製液のpHを、これら溶液を混合したものに於ける最終pHが7~10の範囲となるように調整した、請求項13に記載のエッチング剤。
  16. 過酸化水素を含んでなる溶液と前記エッチング剤調製液とを混合したものに於ける最終濃度が、(A)過酸化水素10~35重量%、(B)ヒドロキシル基を有するホスホン酸系キレート剤0.1~3重量%、(c-1)無機アルカリ0.2~12重量%及び(D-1)銅防食剤0.05~5重量%である、請求項13に記載のエッチング剤。
  17. 過酸化水素15~30重量%を含んでなる溶液と、ヒドロキシル基を有するホスホン酸系キレート剤0.2~2重量%、無機アルカリ0.5~10重量%及び銅防食剤0.05~2重量%を含む溶液からなるエッチング剤調製液とを、混合比4:6~9:1で調製する、請求項13に記載のエッチング剤。
  18. 請求項2に記載のエッチング剤を用いて半導体基板上のTi系金属膜の選択的なエッチングを行うことを特徴とする、エッチング方法。
  19. エッチング剤が、過酸化水素を含んでなる溶液と、ヒドロキシル基を有するホスホン酸系キレート剤、塩基性化合物及び銅防食剤を含む溶液からなるエッチング剤調製液とを混合して調製される、請求項18に記載のエッチング方法。
  20. 過酸化水素を含んでなる溶液と前記エッチング剤調製液との混合比が1:9~98:2である、請求項19に記載のエッチング方法。
  21. 前記半導体基板が、タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板であって、少なくとも前記(A)、(B)、(C)及び(D-2)を含むものである、請求項1に記載のエッチング剤。
  22. 前記タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が、金、銀、パラジウム、スズ又はこれらの合金からなるものである、請求項21に記載のエッチング剤。
  23. 前記タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が形成された半導体基板が、タングステン(W)系金属膜上部に当該金属バンプ又は金属配線が形成された半導体基板である、請求項21に記載のエッチング剤。
  24. 前記タングステンよりもイオン化傾向の低い金属バンプ又は金属配線が、金属バンプであって、当該金属バンプと前記W系金属膜との間に銅配線が形成されているものである、請求項23に記載のエッチング剤。
  25. 前記W系金属膜が、チタン-タングステン(TiW)合金膜である、請求項23に記載のエッチング剤。
  26. 前記溶液のpHが6~10である、請求項21に記載のエッチング剤。
  27. 前記(B)ヒドロキシル基を有するホスホン酸系キレート剤が、1-ヒドロキシエチリデン-1,1'-ジホスホン酸、1-ヒドロキシプロピリデン-1,1'-ジホスホン酸及び1-ヒドロキシブチリデン-1,1'-ジホスホン酸から選ばれる少なくとも1種以上のものである、請求項21に記載のエッチング剤。
  28. 前記(C)塩基性化合物が、無機アルカリ及び有機アミンから選ばれる少なくとも1種以上のものである、請求項21に記載のエッチング剤。
  29. 前記(C)塩基性化合物が、水酸化ナトリウム又はテトラメチルアンモニウムヒドロキシドの何れかである、請求項21に記載のエッチング剤。
  30. 前記(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%が、硫酸イオン、亜硫酸イオン、塩化物イオン、リン酸イオン、亜リン酸イオン及び次亜リン酸イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種0.0001重量%~0.5重量%と、クエン酸イオン及びリンゴ酸イオンから選ばれる少なくとも1種以上の有機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせである、請求項21に記載のエッチング剤。
  31. 前記(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%が、硫酸イオン、亜硫酸イオン、塩化物イオン又はリン酸イオンから選ばれる何れか1種の無機酸由来のアニオン種0.0001重量%~0.5重量%と、クエン酸イオン又はリンゴ酸イオンから選ばれる何れか1種の有機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせである、請求項21に記載のエッチング剤。
  32. 前記(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%が、炭酸イオン、酢酸イオン、クエン酸イオン又はリンゴ酸イオンから選ばれる何れか1種の有機酸由来のアニオン種0.0001重量%~0.5重量%と、上記選択の有機酸由来のアニオン種以外のクエン酸イオン又はリンゴ酸イオンから選ばれる有機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせである、請求項21に記載のエッチング剤。
  33. 前記(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%が、硫酸イオン、亜硫酸イオン及び塩化物イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種0.0001重量%~0.5重量%と、リン酸イオン、亜リン酸イオン及び次亜リン酸イオンから選ばれる少なくとも1種以上の無機酸由来のアニオン種0.0099重量%~2.5重量%との組み合わせである、請求項21に記載のエッチング剤。
  34. (A)過酸化水素10重量%~35重量%、(B)ヒドロキシル基を有するホスホン酸系キレート剤0.1重量%~3重量%、(C)塩基性化合物0.1重量%~5重量%及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%を含むものである、請求項21に記載のエッチング剤。
  35. 過酸化水素を含んでなる溶液と、ヒドロキシル基を有するホスホン酸系キレート剤、塩基性化合物及びヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種を含む溶液からなるエッチング剤調製液から調製される、請求項21に記載のエッチング剤。
  36. 請求項21に記載のエッチング剤を用いて半導体基板上のW系金属膜をエッチングすることを特徴とする、エッチング方法。
  37. エッチング剤が、過酸化水素を含んでなる溶液と、ヒドロキシル基を有するホスホン酸系キレート剤、塩基性化合物及びヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種を含む溶液からなるエッチング剤調製液とを混合して調製される、請求項36に記載のエッチング方法。
  38. 過酸化水素を含んでなる溶液と前記エッチング剤調製液との混合比が30:70~99:1である、請求項37に記載のエッチング方法。
  39. 少なくとも以下の(B)及び(C)と、(D-1)又は/及び(D-2)を含む溶液からなる半導体基板用エッチング剤調製液。
    (B)ヒドロキシル基を有するホスホン酸系キレート剤
    (C)塩基性化合物
    (D-1)銅防食剤
    (D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種
  40. 前記(C)塩基性化合物が、(c-1)無機アルカリであって、少なくとも前記(B)、当該(c-1)及び前記(D-1)を含むものである、請求項39に記載のエッチング剤調製液。
  41. 過酸化水素を含んでなる溶液と混合してエッチング剤を調製するために用いられる、請求項40に記載のエッチング剤調製液。
  42. 過酸化水素を含んでなる溶液との混合比が1:9~98:2である、請求項41に記載のエッチング剤調製液。
  43. 過酸化水素を含んでなる溶液と混合したものに於ける最終pHが7~10の範囲となるように調整された、請求項41に記載のエッチング剤調製液。
  44. 過酸化水素を含んでなる溶液と混合したものに於ける最終濃度が、(A)過酸化水素10~35重量%、(B)ヒドロキシル基を有するホスホン酸系キレート剤0.1~3重量%、(c-1)無機アルカリ0.2~12重量%及び(D-1)銅防食剤0.05~5重量%となるエッチング剤を調製するために用いられる、請求項41に記載のエッチング剤調製液。
  45. 少なくとも前記(B)、(C)及び(D-2)を含むものである、請求項39に記載のエッチング剤調製液。
  46. 過酸化水素を含んでなる溶液と混合してエッチング剤を調製するために用いられる、請求項45に記載のエッチング剤調製液。
  47. 過酸化水素を含んでなる溶液との混合比が30:70~99:1である、請求項46に記載のエッチング剤調製液。
  48. 過酸化水素を含んでなる溶液と混合したものに於ける最終pHが6~10の範囲となるように調整された、請求項46に記載のエッチング剤調製液。
  49. 過酸化水素を含んでなる溶液と混合したものに於ける最終濃度が、(A)過酸化水素10重量%~35重量%、(B)ヒドロキシル基を有するホスホン酸系キレート剤0.1重量%~3重量%、(C)塩基性化合物0.1重量%~5重量%及び(D-2)ヒドロキシル基を有するホスホン酸系キレート剤以外の酸化力を有さない2種以上のアニオン種0.01重量%~3重量%となるエッチング剤を調製するために用いられる、請求項46に記載のエッチング剤調製液。
PCT/JP2008/073246 2007-12-21 2008-12-19 エッチング剤、エッチング方法及びエッチング剤調製液 WO2009081884A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020107016184A KR101533970B1 (ko) 2007-12-21 2008-12-19 에칭제, 에칭방법 및 에칭제 조제액
US12/808,903 US8513139B2 (en) 2007-12-21 2008-12-19 Etching agent, etching method and liquid for preparing etching agent
EP08864783A EP2234145B1 (en) 2007-12-21 2008-12-19 Etching agent, etching method and liquid for preparing etching agent
JP2009547087A JP5343858B2 (ja) 2007-12-21 2008-12-19 エッチング剤、エッチング方法及びエッチング剤調製液
CN200880121508.XA CN101903988B (zh) 2007-12-21 2008-12-19 蚀刻剂、蚀刻方法及蚀刻剂制备液
HK11102026.1A HK1148110A1 (en) 2007-12-21 2011-03-01 Etching agent, etching method and liquid for preparing etching agent
US13/846,225 US8871653B2 (en) 2007-12-21 2013-03-18 Etching agent, etching method and liquid for preparing etching agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-329530 2007-12-21
JP2007329530 2007-12-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/808,903 A-371-Of-International US8513139B2 (en) 2007-12-21 2008-12-19 Etching agent, etching method and liquid for preparing etching agent
US13/846,225 Division US8871653B2 (en) 2007-12-21 2013-03-18 Etching agent, etching method and liquid for preparing etching agent

Publications (1)

Publication Number Publication Date
WO2009081884A1 true WO2009081884A1 (ja) 2009-07-02

Family

ID=40801185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073246 WO2009081884A1 (ja) 2007-12-21 2008-12-19 エッチング剤、エッチング方法及びエッチング剤調製液

Country Status (10)

Country Link
US (2) US8513139B2 (ja)
EP (2) EP2234145B1 (ja)
JP (2) JP5343858B2 (ja)
KR (1) KR101533970B1 (ja)
CN (2) CN103258727B (ja)
HK (1) HK1148110A1 (ja)
MY (1) MY152247A (ja)
SG (1) SG186683A1 (ja)
TW (1) TWI467055B (ja)
WO (1) WO2009081884A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228618A (ja) * 2010-04-20 2011-11-10 Samsung Electronics Co Ltd 金属配線用エッチング液組成物、及びこれを利用した薄膜トランジスタ表示板の製造方法
CN102576170A (zh) * 2009-08-20 2012-07-11 东友Fine-Chem股份有限公司 制造用于液晶显示器的阵列基板的方法
JP2013033942A (ja) * 2011-06-30 2013-02-14 Fujifilm Corp エッチング方法及びこれに用いられるエッチング液、これを用いた半導体基板製品の製造方法
WO2013136555A1 (ja) * 2012-03-12 2013-09-19 株式会社Jcu 選択的エッチング方法
WO2014014124A1 (en) * 2012-07-20 2014-01-23 Fujifilm Corporation Etching method, and method of producing semiconductor substrate product and semiconductor device using the same, as well as kit for preparation of etching liquid
WO2015002272A1 (ja) * 2013-07-05 2015-01-08 和光純薬工業株式会社 エッチング剤、エッチング方法およびエッチング剤調製液
US20150014580A1 (en) * 2012-02-08 2015-01-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Etching liquid for forming texture
CN105369249A (zh) * 2014-08-25 2016-03-02 乐金显示有限公司 蚀刻剂组合物和制造薄膜晶体管阵列基板的方法
KR20160099918A (ko) * 2015-02-13 2016-08-23 한국항공대학교산학협력단 다중금속막 식각 방법 및 식각액
US9688912B2 (en) 2012-07-27 2017-06-27 Fujifilm Corporation Etching method, and etching liquid to be used therein and method of producing a semiconductor substrate product using the same
JP2018181984A (ja) * 2017-04-07 2018-11-15 東京エレクトロン株式会社 基板処理方法および基板処理装置
KR20190133749A (ko) 2017-03-31 2019-12-03 간또 가가꾸 가부시끼가이샤 티타늄층 또는 티타늄 함유층의 에칭액 조성물 및 에칭 방법
JP7575407B2 (ja) 2019-06-03 2024-10-29 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド エッチング組成物

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2234145B1 (en) * 2007-12-21 2013-02-20 Wako Pure Chemical Industries, Ltd. Etching agent, etching method and liquid for preparing etching agent
CN102696097B (zh) * 2009-12-25 2015-08-05 三菱瓦斯化学株式会社 蚀刻液及使用其的半导体装置的制造方法
JP5718449B2 (ja) * 2010-03-23 2015-05-13 カンブリオス テクノロジーズ コーポレイション 金属ナノワイヤを有する透明導体のエッチングパターン形成
EP2693460A4 (en) * 2011-03-30 2015-07-15 Fujimi Inc POLISHING COMPOSITION, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
US20140197356A1 (en) * 2011-12-21 2014-07-17 Cabot Microelectronics Corporation Cmp compositions and methods for suppressing polysilicon removal rates
SG11201403556WA (en) 2011-12-28 2014-07-30 Advanced Tech Materials Compositions and methods for selectively etching titanium nitride
CN102629591B (zh) * 2012-02-28 2015-10-21 京东方科技集团股份有限公司 一种阵列基板的制造方法及阵列基板、显示器
WO2014014125A1 (en) * 2012-07-20 2014-01-23 Fujifilm Corporation Etching method, and method of producing semiconductor substrate product and semiconductor device using the same
KR20140065616A (ko) * 2012-11-19 2014-05-30 동우 화인켐 주식회사 액정표시장치용 어레이 기판의 제조방법
EP2927937B1 (en) * 2012-12-03 2018-01-03 Mitsubishi Gas Chemical Company, Inc. Cleaning liquid for semiconductor elements and cleaning method using same
CN103046052B (zh) * 2012-12-27 2016-01-20 广东山之风环保科技有限公司 环保型含钛膜层的退除液及其使用方法
JP6044337B2 (ja) * 2012-12-28 2016-12-14 三菱瓦斯化学株式会社 インジウムとガリウムおよび酸素、またはインジウムとガリウムと亜鉛および酸素からなる酸化物のエッチング液およびエッチング方法
KR101517013B1 (ko) * 2013-10-02 2015-05-04 주식회사 이엔에프테크놀로지 구리 및 몰리브덴 함유 막의 식각액 조성물
US20150104952A1 (en) * 2013-10-11 2015-04-16 Ekc Technology, Inc. Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper
WO2015054460A1 (en) * 2013-10-11 2015-04-16 E. I. Du Pont De Nemours And Company Removal composition for selectively removing hard mask
KR102279498B1 (ko) * 2013-10-18 2021-07-21 주식회사 동진쎄미켐 금속 배선 식각액 조성물 및 이를 이용한 금속 배선 형성 방법
KR102160286B1 (ko) * 2013-11-04 2020-09-28 동우 화인켐 주식회사 액정표시장치용 어레이 기판의 제조방법
JP6164614B2 (ja) * 2013-12-06 2017-07-19 メック株式会社 エッチング液、補給液及び銅配線の形成方法
CN103695928B (zh) * 2014-01-08 2015-12-30 西南石油大学 油气田输油管道用氨基酸衍生物缓蚀剂及其制备方法
WO2015108842A1 (en) * 2014-01-14 2015-07-23 Sachem, Inc. Selective metal/metal oxide etch process
CN104498950B (zh) * 2014-12-02 2018-01-02 江阴润玛电子材料股份有限公司 一种高选择性钛层腐蚀液组合物
CN104911595B (zh) * 2015-06-23 2018-02-09 西安空间无线电技术研究所 一种TiW膜层腐蚀方法
CN105603425A (zh) * 2016-01-25 2016-05-25 熙腾电子科技(上海)有限公司 铜选择性蚀刻液和钛选择性蚀刻液
CN107541735B (zh) * 2016-06-24 2022-01-21 三星显示有限公司 用于去除氧化物的清洗组合物及使用该清洗组合物的清洗方法
CN106229263A (zh) * 2016-08-01 2016-12-14 江阴润玛电子材料股份有限公司 一种半导体凸块制程用钛钨腐蚀液组合物
CN108203829A (zh) * 2016-12-20 2018-06-26 群创光电股份有限公司 蚀刻液及显示器的制造方法
US10879087B2 (en) 2017-03-17 2020-12-29 Toshiba Memory Corporation Substrate treatment apparatus and manufacturing method of semiconductor device
CN107201519B (zh) * 2017-05-18 2019-07-02 苏州晶瑞化学股份有限公司 一种钛选择性双组份蚀刻液
CN107604362B (zh) * 2017-09-14 2019-07-26 江阴江化微电子材料股份有限公司 一种双组份选择性钛腐蚀液及钛腐蚀方法
US20190189631A1 (en) * 2017-12-15 2019-06-20 Soulbrain Co., Ltd. Composition for etching and manufacturing method of semiconductor device using the same
CN109972137B (zh) * 2017-12-27 2023-10-27 安集微电子科技(上海)股份有限公司 一种钛蚀刻液
WO2019150990A1 (ja) * 2018-02-05 2019-08-08 富士フイルム株式会社 薬液、薬液の製造方法、基板の処理方法
KR102333896B1 (ko) * 2018-03-26 2021-12-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 에칭액
IL308906B1 (en) * 2018-09-12 2024-08-01 Fujifilm Electronic Mat Usa Inc Etching mixes
CN109536965B (zh) * 2018-12-06 2021-03-26 江苏矽研半导体科技有限公司 用于去除半导体封装件不良镀锡层的剥锡剂及其制备方法
CN111640661B (zh) * 2019-03-01 2024-01-30 东京毅力科创株式会社 基板处理方法、基板处理装置以及存储介质
JP2020202320A (ja) 2019-06-12 2020-12-17 関東化学株式会社 過酸化水素分解抑制剤
KR20210045838A (ko) 2019-10-17 2021-04-27 삼성전자주식회사 금속 함유막 식각액 조성물 및 이를 이용한 집적회로 소자의 제조 방법
CN113004801B (zh) * 2019-12-20 2024-03-12 安集微电子(上海)有限公司 一种化学机械抛光液
KR20210100258A (ko) * 2020-02-05 2021-08-17 삼성전자주식회사 식각 조성물 및 이를 이용한 반도체 소자의 제조 방법
WO2021211708A1 (en) * 2020-04-14 2021-10-21 Entegris, Inc. Method and composition for etching molybdenum
CN111627822A (zh) * 2020-04-27 2020-09-04 江苏富乐德半导体科技有限公司 一种覆铜陶瓷基板的活性金属层的蚀刻液及其刻蚀方法
CN112030165B (zh) * 2020-08-28 2022-05-20 武汉迪赛新材料有限公司 Tft-lcd制程用铜钼合层蚀刻液
TWI824299B (zh) 2020-09-22 2023-12-01 美商恩特葛瑞斯股份有限公司 蝕刻劑組合物
CN112522707B (zh) * 2020-11-20 2021-12-03 湖北兴福电子材料有限公司 一种高选择比的钨蚀刻液
CN112725803B (zh) * 2020-12-22 2022-11-15 江苏奥首材料科技有限公司 一种晶圆级封装用钛蚀刻液
CN112981405B (zh) * 2021-02-23 2022-11-15 江苏艾森半导体材料股份有限公司 一种钛钨蚀刻液及其制备方法和应用
KR20220126436A (ko) * 2021-03-09 2022-09-16 주식회사 이엔에프테크놀로지 디스플레이 기판용 식각액
CN115161642B (zh) * 2022-08-11 2023-10-27 常州百事瑞机电设备有限公司 一种高比重钨基合金蚀刻剂及其配制和使用方法
CN116083910A (zh) * 2022-12-28 2023-05-09 湖北兴福电子材料股份有限公司 一种钛或钛合金的蚀刻液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155382A (ja) 2000-09-05 2002-05-31 Wako Pure Chem Ind Ltd Ti系膜用エッチング剤及びエッチング方法
JP2003328159A (ja) 2002-05-02 2003-11-19 Mitsubishi Gas Chem Co Inc 表面処理剤
JP2004031791A (ja) 2002-06-27 2004-01-29 Mitsubishi Chemicals Corp タングステン合金のエッチング液及びエッチング方法
JP2005146358A (ja) * 2003-11-17 2005-06-09 Mitsubishi Gas Chem Co Inc チタンまたはチタン合金のエッチング液
JP2005163108A (ja) * 2003-12-02 2005-06-23 Asahi Denka Kogyo Kk エッチング剤及びこれを用いたエッチング方法
JP2007100130A (ja) 2005-09-30 2007-04-19 Ne Chemcat Corp 金バンプ又は金配線の形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787958A (en) * 1987-08-28 1988-11-29 Motorola Inc. Method of chemically etching TiW and/or TiWN
JP3184180B2 (ja) * 1999-04-28 2001-07-09 セイコーインスツルメンツ株式会社 Ti−Wの選択的エッチング液及びそのエッチング方法
JP4821082B2 (ja) * 2000-03-21 2011-11-24 和光純薬工業株式会社 半導体基板洗浄剤及び洗浄方法
JP2003174021A (ja) * 2001-12-06 2003-06-20 Sharp Corp 半導体基板の選択的エッチング方法
WO2003065433A1 (fr) * 2002-01-28 2003-08-07 Mitsubishi Chemical Corporation Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage
KR100974034B1 (ko) * 2002-11-08 2010-08-04 와코 쥰야꾸 고교 가부시키가이샤 세정액 및 이것을 이용한 세정방법
CN1918698B (zh) * 2004-02-09 2010-04-07 三菱化学株式会社 半导体装置用基板的洗涤液及洗涤方法
JP4471094B2 (ja) * 2004-05-11 2010-06-02 三菱瓦斯化学株式会社 チタンまたはチタン合金のエッチング液
KR20070103855A (ko) * 2006-04-20 2007-10-25 동우 화인켐 주식회사 텅스텐 또는 티타늄-텅스텐 합금 식각용액
EP2234145B1 (en) * 2007-12-21 2013-02-20 Wako Pure Chemical Industries, Ltd. Etching agent, etching method and liquid for preparing etching agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155382A (ja) 2000-09-05 2002-05-31 Wako Pure Chem Ind Ltd Ti系膜用エッチング剤及びエッチング方法
JP2003328159A (ja) 2002-05-02 2003-11-19 Mitsubishi Gas Chem Co Inc 表面処理剤
JP2004031791A (ja) 2002-06-27 2004-01-29 Mitsubishi Chemicals Corp タングステン合金のエッチング液及びエッチング方法
JP2005146358A (ja) * 2003-11-17 2005-06-09 Mitsubishi Gas Chem Co Inc チタンまたはチタン合金のエッチング液
JP2005163108A (ja) * 2003-12-02 2005-06-23 Asahi Denka Kogyo Kk エッチング剤及びこれを用いたエッチング方法
JP2007100130A (ja) 2005-09-30 2007-04-19 Ne Chemcat Corp 金バンプ又は金配線の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2234145A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576170A (zh) * 2009-08-20 2012-07-11 东友Fine-Chem股份有限公司 制造用于液晶显示器的阵列基板的方法
US8894876B2 (en) 2010-04-20 2014-11-25 Samsung Display Co., Ltd. Etchant for electrode and method of fabricating thin film transistor array panel using the same
JP2011228618A (ja) * 2010-04-20 2011-11-10 Samsung Electronics Co Ltd 金属配線用エッチング液組成物、及びこれを利用した薄膜トランジスタ表示板の製造方法
JP2013033942A (ja) * 2011-06-30 2013-02-14 Fujifilm Corp エッチング方法及びこれに用いられるエッチング液、これを用いた半導体基板製品の製造方法
US20150014580A1 (en) * 2012-02-08 2015-01-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Etching liquid for forming texture
US9169437B2 (en) 2012-03-12 2015-10-27 Jcu Corporation Selective etching method
WO2013136555A1 (ja) * 2012-03-12 2013-09-19 株式会社Jcu 選択的エッチング方法
JPWO2013136555A1 (ja) * 2012-03-12 2015-08-03 株式会社Jcu 選択的エッチング方法
WO2014014124A1 (en) * 2012-07-20 2014-01-23 Fujifilm Corporation Etching method, and method of producing semiconductor substrate product and semiconductor device using the same, as well as kit for preparation of etching liquid
US9688912B2 (en) 2012-07-27 2017-06-27 Fujifilm Corporation Etching method, and etching liquid to be used therein and method of producing a semiconductor substrate product using the same
KR20160029094A (ko) 2013-07-05 2016-03-14 와코 쥰야꾸 고교 가부시키가이샤 에칭제, 에칭방법 및 에칭제 조제액
JPWO2015002272A1 (ja) * 2013-07-05 2017-02-23 和光純薬工業株式会社 エッチング剤、エッチング方法およびエッチング剤調製液
WO2015002272A1 (ja) * 2013-07-05 2015-01-08 和光純薬工業株式会社 エッチング剤、エッチング方法およびエッチング剤調製液
US9845538B2 (en) 2013-07-05 2017-12-19 Wako Pure Chemical Industries, Ltd. Etching agent, etching method and etching agent preparation liquid
CN105369249A (zh) * 2014-08-25 2016-03-02 乐金显示有限公司 蚀刻剂组合物和制造薄膜晶体管阵列基板的方法
KR20160099918A (ko) * 2015-02-13 2016-08-23 한국항공대학교산학협력단 다중금속막 식각 방법 및 식각액
KR101670421B1 (ko) 2015-02-13 2016-10-28 한국항공대학교산학협력단 다중금속막 식각 방법 및 식각액
KR20190133749A (ko) 2017-03-31 2019-12-03 간또 가가꾸 가부시끼가이샤 티타늄층 또는 티타늄 함유층의 에칭액 조성물 및 에칭 방법
JP2018181984A (ja) * 2017-04-07 2018-11-15 東京エレクトロン株式会社 基板処理方法および基板処理装置
JP7575407B2 (ja) 2019-06-03 2024-10-29 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド エッチング組成物

Also Published As

Publication number Publication date
JP2012080128A (ja) 2012-04-19
US8871653B2 (en) 2014-10-28
EP2234145A4 (en) 2011-12-07
TWI467055B (zh) 2015-01-01
CN101903988B (zh) 2013-07-31
CN103258727B (zh) 2016-08-03
US20130280916A1 (en) 2013-10-24
TW200936812A (en) 2009-09-01
EP2540870A1 (en) 2013-01-02
JPWO2009081884A1 (ja) 2011-05-06
JP5344051B2 (ja) 2013-11-20
KR101533970B1 (ko) 2015-07-06
EP2234145B1 (en) 2013-02-20
CN101903988A (zh) 2010-12-01
SG186683A1 (en) 2013-01-30
US8513139B2 (en) 2013-08-20
KR20100100983A (ko) 2010-09-15
EP2234145A1 (en) 2010-09-29
MY152247A (en) 2014-09-15
CN103258727A (zh) 2013-08-21
JP5343858B2 (ja) 2013-11-13
HK1148110A1 (en) 2011-08-26
US20110230053A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5343858B2 (ja) エッチング剤、エッチング方法及びエッチング剤調製液
JP6421751B2 (ja) エッチング剤、エッチング方法およびエッチング剤調製液
EP2922086B1 (en) Composition, system, and process for TiNxOy removal
JP4941650B2 (ja) 無電解金めっき浴のめっき能維持管理方法
KR101319745B1 (ko) 범프 형성용 비시안계 전해 금 도금욕
JP2008144188A (ja) 無電解金めっき浴、無電解金めっき方法及び電子部品
JP2006111953A (ja) 銅又は銅合金のエッチング剤、その製造法、補給液及び配線基板の製造法
JP2008144187A (ja) 無電解金めっき浴、無電解金めっき方法及び電子部品
JP2018537854A (ja) 銅エッチング用組成物及び過酸化水素系金属エッチング用組成物
TWI431150B (zh) 鋁或鋁合金之表面處理方法
CN114592191A (zh) 蚀刻液、蚀刻方法及铟镓锌氧化物半导体器件
TW202314042A (zh) 銅蝕刻液及使用該銅蝕刻液的基板處理方法
JP2002105672A (ja) 銅防食剤及び防食方法
KR20230014625A (ko) 티타늄계 금속막용 식각액 조성물
KR20210075151A (ko) 표면 처리액 및 니켈 함유 재료의 표면 처리 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121508.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547087

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12010501361

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 12808903

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008864783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107016184

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010002841

Country of ref document: MY