WO2013136555A1 - 選択的エッチング方法 - Google Patents

選択的エッチング方法 Download PDF

Info

Publication number
WO2013136555A1
WO2013136555A1 PCT/JP2012/072301 JP2012072301W WO2013136555A1 WO 2013136555 A1 WO2013136555 A1 WO 2013136555A1 JP 2012072301 W JP2012072301 W JP 2012072301W WO 2013136555 A1 WO2013136555 A1 WO 2013136555A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
etching
titanium
metal
etching solution
Prior art date
Application number
PCT/JP2012/072301
Other languages
English (en)
French (fr)
Inventor
クリストファー コルドニエ
三弘 鍋島
真吾 熊谷
直貴 高橋
Original Assignee
株式会社Jcu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jcu filed Critical 株式会社Jcu
Priority to US14/385,007 priority Critical patent/US9169437B2/en
Priority to JP2014504617A priority patent/JP6061915B2/ja
Priority to KR1020147024576A priority patent/KR20140134283A/ko
Publication of WO2013136555A1 publication Critical patent/WO2013136555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/38Alkaline compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/40Alkaline compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/258Ti, Zr, Hf
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/259V, Nb, Ta
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the present invention provides a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium provided on the base substrate preferentially to the base substrate selected from glass, silicon, copper and nickel. And a method of selectively etching a layer of the metal oxide, the metal nitride, silicon nitride, hafnium nitride, tantalum nitride or their alloys.
  • Patent Document 1 a method using EDTA as a complexing agent is known as a titanium etching solution, and specifically, a method using EDTA and hydrogen peroxide and using an alkaline etching solution is known (Patent Document 1).
  • this method can selectively etch titanium deposited on lithium niobate (LiNbO 3 ), it has a problem that the etching rate is slow. In addition, this method may cause a substance (metal) which can not be etched, or may affect the base depending on the type of base substrate. For example, since the etching rate of titanium is slower than the etching rate of nickel, the underlayer is dissolved first.
  • An object of the present invention is to provide a method of selectively etching not only titanium but also other metals at a practical speed and preferentially to a base substrate.
  • an etching solution containing a specific complexing agent and being alkaline is more than a base substrate selected from glass, silicon, copper and nickel.
  • a base substrate selected from glass, silicon, copper and nickel.
  • metals selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium, oxides of the metals, nitrides of the metals, silicon nitride, hafnium nitride, tantalum nitride or alloys thereof
  • selective etching can be performed and complete the present invention.
  • the present invention provides a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium provided on a base substrate selected from glass, silicon, copper and nickel, an oxide of the metal, Layers of the above metal nitrides, silicon nitrides, hafnium nitrides, tantalum nitrides, or alloys thereof, are represented by the following formulas (I) and (II), [In formula (I), R 1 to R 3 may be the same as or different from each other, and -R a , -OR b , -OOR c , -COOR d , -COOOR e , -CH 2 COOR f , -CH 2 COOOR g , -CR h O or -CH 2 CHCH 3 (R a to R h may be the same or different, and hydrogen, a saturated aliphatic group having 1
  • R 1 to R 3 may be the same as or different from each other, and -R a , -OR b , -OOR c , -COOR d , -COOOR e , -CH 2 COOR f , -CH 2 COOOR g , -CR h O or -CH 2 CHCH 3
  • R a to R h may be the same or different, and hydrogen, a saturated aliphatic group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms
  • Unsaturated aliphatic or aryl group of [In the formula (II), R 4 to R 7 may be the same as or different from each other, and -R i , -OR j , -OOR k , -COOR l , -COOOR m , -CH 2 COOR n , -CH 2 CO
  • the present invention is selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium at a practical speed and preferentially over the base substrate selected from glass, silicon, copper and nickel.
  • Metals, oxides of the metals, nitrides of the metals, silicon nitride, hafnium nitride, tantalum nitride or alloys thereof can be selectively etched.
  • the present invention is also capable of reusing the base substrate selected from glass, silicon, copper and nickel, the metal, the metal, the oxide of the metal, the nitride of the metal, silicon nitride, hafnium nitride It can also be used to recover tantalum nitride or alloys of these.
  • FIG. 1 is an external appearance photograph of the sample after etching on 80 degreeC and the etching conditions for 30 seconds using the etching liquid of Example 6.
  • FIG. SPM photographs and Ra values of samples after etching at 80 ° C. for 5 minutes using the etching solution of Example 6 in Test Example 4 ((A) in the figure is the surface of sample A, (B) is the surface of sample B, (C) is the surface after etching of sample B, and (D) is the surface after etching of sample A).
  • the SEM photograph (upper) and SPM photograph (lower) of the sample after etching on the etching conditions of 80 degreeC and 40 minutes using the etching liquid of Example 6 in Experiment 5 are (a sample in a figure is a sample.
  • (A), (B) is the surface of sample B
  • (C) is the surface after etching of sample B).
  • the SEM photograph (top) and the SPM photograph (bottom) of the sample after etching under the etching conditions of 80 ° C. and 25 seconds using the etching solution of Example 6 in Test Example 6 (in FIG. (A), (B) is the surface of sample B, (C) is the surface after etching of sample B).
  • the selective etching method (hereinafter simply referred to as “the method of the present invention”) is titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, provided on a base substrate selected from glass, silicon, copper and nickel.
  • a layer of a metal selected from aluminum and gallium, an oxide of the metal, a nitride of the metal, silicon nitride, hafnium nitride, tantalum nitride or an alloy thereof is represented by the following formulas (I) and (II), And one or more complexing agents selected from the compounds represented by the formula (1) and (2) by contacting with an etching solution which is alkaline.
  • “consisting essentially of” is a substance other than the substance described as essentially containing but does not include a substance that affects the effect (in other words, it does not include it) (A substance that does not affect the effect may be included), and preferably contains no substance other than the substance described as essentially containing (in other words, only the substance described as essentially containing) Means including).
  • R 1 to R 3 of the compound represented by the formula (I) may be the same or different, and -R a , -OR b , -OOR c , -COOR d , -COOOR e , -CH 2 COOR f , -CH 2 COOOR g , -CR h O or -CH 2 CHCH 3 (where R a to R h may be the same or different, respectively, hydrogen, carbon number It is a saturated aliphatic group of 1 to 10, an unsaturated aliphatic group having 1 to 10 carbon atoms, or an aryl group), preferably -H, -OH, -COOH or -CH 2 COOH.
  • the compound represented by the formula (I) include 3-hydroxypropionic acid, tartaric acid, citric acid, malic acid, malonic acid, galacturonic acid, galactaric acid, gluconic acid, hydroxybutyric acid, 2,2-bis (hydroxy) And methyl) butyric acid, hydroxypivalic acid, ⁇ -hydroxyisovaleric acid and the like, and among these, tartaric acid or citric acid is preferable.
  • the compounds represented by the formula (I) include those in the form of alkali metal salts such as lithium salts, sodium salts, potassium salts and the like and ammonium salts, which behave in the same manner as the above compounds in the etching solution. Be
  • R 4 to R 7 of the compound represented by the formula (II) may be the same or different, and -R i , -OR j , -OOR k , -COOR l, -COOOR m, -CH 2 COOR n, -CH 2 COOOR o, -CR p O, -CH 2 CHCH 3, -CN, -NC, -NO 2, -F, -Cl, -Br, -I and -SO 2 R q (R i to R q may be the same or different, and hydrogen, a saturated aliphatic group having 1 to 10 carbon atoms, an unsaturated aliphatic group having 1 to 10 carbon atoms Or an aryl group), preferably -H, -COOH, -CH 2 COOH.
  • X is -OH, -COOH or -COOOH, preferably -OH or -COOH.
  • Specific examples of the compound represented by the formula (II) include protocatechuic acid, ethyl protocatechuate, salicylic acid, 2,3-dihydroxybenzoic acid, 5-chlorosalicylic acid, cresotine acid, resorcylic acid, naphthoic acid, 3,5-dihydroxy acid -2-naphthoic acid, 1,4-dihydroxy-2-naphthoic acid, 1-hydroxy-2-naphthoic acid, 2,6-dihydroxy-4-methylbenzoic acid, 2,5-dihydroxyterephthalic acid, methylene disalicylic acid, Nitrosalicylic acid, 2,4,6-trihydroxybenzoic acid, 5-sulphosalicylic acid, modal blue 1, chromium yellow, 4-tert-butylcatechol, 4-methylcatechol, catechol, bromocatechol, chlorocatechol, iodocatechol, fluoro Catechol, nitrocatechol, cyanocatechol And al
  • the content of the complexing agent in the etching solution is 0.001 mol / L or more, preferably 0.1 to 1 mol / L.
  • the liquid property of the etching solution used in the method of the present invention is not particularly limited as long as it is alkaline, but the etching rate is improved as the pH of the etching solution is higher, preferably pH 9 or more, more preferably pH 10 to 14, particularly preferably The pH is adjusted to 11-14, more particularly to 12-14.
  • the method of making the etching solution alkaline is not particularly limited, and an alkaline substance such as sodium hydroxide or potassium hydroxide may be used.
  • the etchant used in the method of the present invention preferably further contains an oxidizing agent.
  • the etching rate is improved by containing the oxidizing agent in the etching solution.
  • the type of oxidizing agent is not particularly limited, but it is preferable that the oxidizing agent itself does not corrode the underlying substrate.
  • oxidizing agents that do not corrode such underlying substrates include, for example, oxygen, hydrogen peroxide, ozone, percarboxylic acids such as peracetic acid, peracetic acid and the like, and among these oxidizing agents by-products are included.
  • oxygen, hydrogen peroxide and ozone which are not generated.
  • the content of the oxidizing agent in the etching solution is 0.001 to 10% by mass (hereinafter simply referred to as "%"), preferably 0.1 to 3%.
  • the oxidizing agent is a gas such as oxygen or ozone, the gas may be introduced by bubbling or the like so that the concentration in the etching solution is in the above range.
  • a surfactant that is usually used in the etching solution may be added as long as the effects of the present invention are not impaired.
  • the addition of the surfactant improves the uniformity of etching.
  • Preferred surfactants include liquid polyethylene glycols such as PEG-200.
  • a preferred example of the etching solution used in the method of the present invention is one which essentially contains the above-mentioned complexing agent and is alkaline.
  • etching solution used in the method of the present invention one containing the above-mentioned complexing agent and oxidizing agent essentially and being alkaline can be mentioned.
  • etching solution used in the method of the present invention one containing the above-mentioned complexing agent, oxidizing agent and surfactant essentially and being alkaline can be mentioned.
  • 0.1 to 0.4 mol / L of salicylic acid or its alkali metal salt or ammonium salt and / or 0.1-0.4 mol / L of tartaric acid or its alkali metal salt or ammonium salt and / or 0.1 to 0.4 mol / L of citric acid or its alkali metal salt or ammonium salt Contains 0.3 to 3% hydrogen peroxide, pH 11 or more, preferably pH 12 to 14, more preferably pH 13 to 14,
  • Sodium salicylate 0.1 to 0.4 mol / L and potassium sodium tartrate (Rochelle salt) 0.1 to 0.4 mol / L and trisodium citrate 0.1 to 0.4 mol / L and sodium hydroxide 0.1 to 0.4 mol / L and 0.3 to 3% hydrogen peroxide, And those containing
  • specific examples of these alloys include titanium, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, niobium, niobium (II) oxide, niobium (III) oxide, niobium oxide IV) niobium oxide (V), niobium nitride, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum, aluminum oxide, aluminum nitride, gallium, gallium oxide, gallium nitride, silicon nitride, hafnium nit
  • examples of glass include silicate glass, quartz, pyrex, tempax, soda lime glass, borosilicate glass, etc.
  • silicon single crystal silicon, boron added silicon Phosphorus-added silicon, arsenic-added silicon, antimony-added silicon, polycrystalline silicon and the like can be mentioned, copper includes pure copper metal, copper-containing alloy and the like, and nickel includes pure nickel metal, nickel-containing alloy and the like.
  • the base substrate is a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium to be etched, an oxide of the metal, a nitride of the metal, silicon nitride, hafnium nitride , Tantalum nitride or those containing these alloys are excluded.
  • the shape of the said base material is not specifically limited, Any, such as plate shape, cyclic
  • a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium, an oxide of the metal, a nitride of the metal, silicon nitride, hafnium nitride, tantalum nitride or the like
  • the method for providing the layer of these alloys is not particularly limited, and may be provided by generally used sputtering, vapor deposition, plating or the like.
  • the method of bringing the etching solution into contact with the layer of these alloys is not particularly limited. For example, a method of immersing the base substrate provided with the layer in the etching solution, a method of spraying the etching solution onto the layer, The method etc. which apply
  • the etching conditions in the method of the present invention are not particularly limited.
  • the temperature of the etching solution is 20 to 100 ° C., preferably 40 to 80 ° C.
  • the treatment time is 0.1 to 200 minutes, preferably 1 to 20 minutes.
  • the person skilled in the art can appropriately determine the etching rate depending on the concentration of the compounds represented by the formulas (I) and (II) contained in the etching solution, the pH of the etching solution, and the solution temperature and processing time It can control.
  • etching solution it is preferable to stir the etching solution with a stirrer, bubbling or the like at the time of etching.
  • a stirrer By stirring, the uniformity of etching is improved, and reattachment to the underlying substrate such as the etched metal does not occur.
  • the above-mentioned method of the present invention is a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium from the base substrate selected from glass, silicon, copper and nickel as described above, the metal Layers of the above oxides, nitrides of the aforementioned metals, silicon nitride, hafnium nitride, tantalum nitride or their alloys are preferentially dissolved over the underlying substrate, and therefore can be selectively removed.
  • Base substrate Glass titanium and / or niobium and / or respective oxides and / or nitrides nickel titanium and / or titanium oxide and / or titanium nitride and / or silicon nitride silicon tantalum nitride and / or titanium and / or titanium nitride and And / or titanium oxide and / or aluminum and / or aluminum oxide and / or aluminum nitride and / or gallium and / or gallium oxide and / or gallium copper and aluminum nitride and / or aluminum nitride and / or gallium and / or gallium and / or Or gallium nitride
  • Example 1 Etching solution: In 100 ml of water, 1.54 g of protocatechuic acid and 1.2 g of sodium hydroxide were dissolved. The pH of this etching solution was 14.
  • Example 2 Etching solution: In 100 ml of water, 1.92 g of citric acid and 1.2 g of sodium hydroxide were dissolved. The pH of this etching solution was 14.
  • Example 3 Etching solution: In 100 ml of water were dissolved 1.38 g of salicylic acid, 1 ml of hydrogen peroxide (30%) and 0.8 g of sodium hydroxide. The pH of this etching solution was 14.
  • Example 4 Etching solution: In 100 ml of water were dissolved 1.50 g of tartaric acid, 1 ml of hydrogen peroxide (30%) and 1.2 g of sodium hydroxide. The pH of this etching solution was 14.
  • Example 5 Etching solution: In 100 ml of water, 1.92 g of citric acid, 1 ml of hydrogen peroxide (30%) and 1.6 g of sodium hydroxide were dissolved. The pH of this etching solution was 14.
  • Example 6 Etching solution: In 300 ml of water were dissolved 1.38 g of salicylic acid, 1.50 g of tartaric acid, 1.92 g of citric acid, 3 ml of hydrogen peroxide (30%) and 3.6 g of sodium hydroxide. The pH of this etching solution was 14.
  • Comparative example 1 Etching solution: In 100 ml of water, 1 ml of hydrogen peroxide (30%) and 1.2 g of sodium hydroxide were dissolved. The pH of this etching solution was 14.
  • Comparative example 2 Etching solution: In 100 ml of water, 4.16 g of EDTA ⁇ 4Na, 1 ml of hydrogen peroxide (30%) and 0.4 g of sodium hydroxide were dissolved. The pH of this etching solution was 14.
  • Comparative example 3 Etching solution: In 100 ml of water were dissolved 1.38 g of salicylic acid, 1 ml of hydrogen peroxide (30%) and 0.4 g of sodium hydroxide. The pH of this etching solution was 5.
  • Comparative example 4 Etching solution: In 100 ml of water were dissolved 1.4 g of ethyl maltol and 0.8 g of sodium hydroxide. The pH of this etching solution was 14.
  • Comparative example 7 Etching solution: In 100 ml of water were dissolved 1.76 g of ascorbic acid, 1 ml of hydrogen peroxide (30%) and 1.2 g of sodium hydroxide. The pH of this etching solution was 14.
  • Test example 1 Etching test: A sample in which titanium was deposited to a thickness of 100 nm by sputtering on the inner surface of a glass cylinder was used as a sample. While stirring the etching solutions prepared in Examples 1 to 6 and Comparative Examples 1 to 8 with a stirrer, the samples were immersed under the conditions described in Table 1 to conduct an etching test. The appearance of the sample after the etching test was evaluated by the following evaluation criteria. The results are also shown in Table 1. Moreover, the external appearance photograph of the sample after etching on 80 degreeC and the etching conditions for 30 seconds using the etching liquid of Example 6 was shown in FIG.
  • protocatechuic acid is the best when hydrogen peroxide is not added to the etching solution of the present invention only by the complexing agent. It was also found that when the complexing agent and hydrogen peroxide were combined, the etching rate was improved and was faster than when EDTA was used. Furthermore, it was found that high pH is required for etching. Furthermore, among the 1,2-diols, general ones are not etched at all or hardly etched, but 1,2-benzenediols contained in the formula (II) are It turned out to be effective. Furthermore, it has been found that etching is not performed at all with the general titanium complexing agents ⁇ -diketones and ⁇ -hydroxy ketones. Moreover, it turned out that etching is not performed at all with the reducing agent complexing agent.
  • Test example 2 Etching test: 10 nm titanium oxide, 70 nm titanium, 45 nm silicon nitride, 85 nm titanium nitride, 80 nm silicon nitride and 10 nm titanium nitride by sputtering with nickel plated on both sides of a hairlined brass ring What was deposited in this order was used as a sample. While stirring the etching solutions prepared in Examples 1 and 3 to 6 and Comparative Examples 1 to 3 and 6 to 8 with a stirrer, the samples were immersed under the conditions described in Table 2 to conduct an etching test. The appearance of the sample after the etching test was evaluated by the following evaluation criteria. The results are also shown in Table 2. Moreover, about the sample after etching on 80 degreeC and the etching condition for 5 minutes using the etching liquid of Example 6, it analyzed by the electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • the etching solution of the present invention dissolves titanium oxide, titanium, silicon nitride and titanium nitride preferentially over the underlying nickel, these can be selectively removed from the underlying nickel.
  • EPMA 64.0 mol% to 74.2 mol% of nickel, 6.0 mol% to 16.4 mol% of copper, 3.4 mol% to 9.4 mol% of zinc, and titanium before and after etching. It turned out that 11.6 mol% to 0 mol% and silicon became 15.0 mol% to 0 mol%, and all titanium and silicon were removed by etching.
  • Test example 3 Etching test: A sample was prepared by depositing 50 ⁇ m of tantalum nitride on one side of a silicon wafer by sputtering. While stirring the etching solutions prepared in Examples 1 and 3 to 6 and Comparative Examples 1 to 3 with a stirrer, the samples were immersed under the conditions described in Table 3 to conduct etching tests. The appearance of the sample after the etching test was evaluated by the following evaluation criteria. The results are also shown in Table 3.
  • the etching solution of the present invention dissolves tantalum nitride preferentially over the underlying silicon, it can be selectively removed from the underlying silicon.
  • Test example 4 Etching test Sample A coated with nickel on one side of a brass plate is sample A with 10 nm of titanium oxide, 70 nm of titanium, 45 nm of silicon nitride, 85 nm of titanium nitride, 80 nm of silicon nitride and 10 nm of titanium nitride.
  • Sample B was deposited in the following manner. Samples A and B were immersed in the etching solution prepared in Example 6 at 80 ° C. for 5 minutes while being stirred with a stirrer, and an etching test was performed. The surface shape and surface roughness (Ra value) of the sample before and after the etching test were observed by a scanning probe microscope (SPM). The results are shown in FIG.
  • the etching solution of the present invention dissolves titanium oxide, titanium, silicon nitride and titanium nitride preferentially over the underlying nickel, so that they can be selectively removed from the underlying nickel I understand.
  • Test example 5 Etching test A sample B was prepared by depositing 50 ⁇ m of tantalum nitride on one surface of a silicon wafer (sample A) by sputtering. The sample B was immersed under the conditions of 80 ° C. and 40 minutes while stirring the etching solution prepared in Example 6 with a stirrer, and the sample subjected to the etching test was designated as a sample C. These samples were observed by scanning electron microscopy (SEM) and SPM. The results are shown in FIG.
  • Test example 6 Etching test A sample B was prepared by depositing titanium nitride and titanium oxide by 50 ⁇ m in this order on one surface of a silicon wafer (sample A) by sputtering. The sample B was immersed under the conditions of 80 ° C. and 25 seconds while stirring the etching solution prepared in Example 6 with a stirrer, and the sample subjected to the etching test was designated as a sample C. These samples were observed by SEM and SPM. The results are shown in FIG.
  • Test example 7 Selection of etching conditions:
  • the etching solution contains 0.334 mol / L of salicylic acid, 0.333 mol / L of tartaric acid, 0.333 mol / L of citric acid and 1 mol / L of hydrogen peroxide, and the pH is adjusted to 11 or more with sodium hydroxide. As a composition, this was diluted as described in Table 4 below to prepare an etching solution.
  • the (ring) was etched.
  • the etching end time is the time until the sputtered film is removed visually.
  • Test example 8 Elemental analysis of the etching solution after use: Using the etching solution of Example 6, a sample (glass cylinder) similar to that used in Test Example 1 at 80 ° C. for 30 seconds, and a sample (ring) similar to that used in Test Example 2 at 80 ° C. The etching solution after etching for 25 seconds at 80 ° C. using ICP-AES for the same sample as that used in Test Example 6 (the titanium nitride and titanium oxide deposited on the silicon wafer (Sample B)). Analysis was carried out. Further, as a comparison, using the etching solution of Comparative Example 2, an elemental analysis was performed also on the etching solution after etching the same sample. The results of these analyzes are shown in Table 5.
  • titanium dissolves preferentially over nickel and silicon as compared with the conventional one.
  • titanium was 5 mg / L while silicon was 36.1 mg / L and nickel was not detected.
  • 23.5 mg / L of silicon and 8.5 mg / L of nickel have been conventionally used as compared with 1 mg / L of titanium.
  • Excess silicon is considered to be dissolved from the silicon wafer substrate and nickel from the nickel plated substrate, as compared to the amount of conventional titanium. It has been found that the complexing agent used in the present invention is selective for the dissolution of titanium and nitride.
  • Test example 9 Measurement of etching rate: (1) Measurement of etching rate of titanium The etching rate of titanium is as follows: 100 nm of titanium is deposited on a glass by sputtering, and the etching solution described in Table 6 is immersed in 80 ° C. while being stirred by a stirrer. The etching time was calculated from the amount of titanium dissolved and the contact area to the etching solution. The results are shown in Table 6.
  • the etching rate of titanium oxide / titanium nitride is such that titanium oxide and titanium nitride are respectively deposited in the order of 50 nm by sputtering on a silicon wafer, and etching shown in Table 7
  • the solution was immersed in the solution at 80 ° C. while being stirred with a stirrer, and the etching time was calculated from the amount of dissolved titanium oxide / titanium nitride and the contact area to the etching solution. The results are shown in Table 7.
  • etching rate of niobium is as follows: Niobium is deposited to 200 nm by sputtering on glass, and the etching solution described in Table 8 is immersed in 80 ° C. while being stirred by a stirrer. The etching time was calculated from the amount of niobium dissolved and the contact area with the etching solution. The results are shown in Table 8.
  • the etching rate of tantalum nitride was such that 50 nm of tantalum nitride was deposited on a silicon wafer by sputtering and the etchant described in Table 9 was stirred at 80 ° C. with a stirrer. And the amount of tantalum nitride dissolved, and the contact area to the etching solution. The results are shown in Table 9.
  • Test example 10 Measurement of etching rate: (1) Measurement of etching rate of glass The etching rate of glass is immersed in the one obtained at 80 ° C. while stirring the etching solution described in Table 10 with a stirrer, the etching time, the amount of dissolved glass, and the plate glass It was calculated from the weight difference before and after etching with respect to the contact area to the etching solution. The results are shown in Table 10.
  • the etching solution of the present invention had a lower etching rate of glass, silicon and nickel as an underlying substrate than that of titanium, titanium oxide, titanium nitride, niobium and tantalum nitride. .
  • the etching solution of the present invention dissolves titanium, titanium oxide, titanium nitride, niobium and tantalum nitride preferentially to the base substrate.
  • the etching solution using EDTA had an overwhelmingly higher etching rate of the underlying substrate than the etching solution of the present invention.
  • Test example 11 Etching test When a strip of the gallium arsenide wafer was immersed in the etching solution prepared in Example 6 at 80 ° C., the gallium arsenide pieces dissolved soon afterward. From this result, it was found that the etching solution of the present invention can selectively etch arsenic, gallium and gallium arsenide as well as titanium and the like.
  • Test example 12 Etching test: When a specimen of tungsten, molybdenum, ruthenium or rhodium is immersed in the one prepared at 80 ° C. as the etching solution prepared in Example 6, it dissolves soon. From this, the etching solution of the present invention can selectively etch tungsten, molybdenum, ruthenium or rhodium as well as titanium and the like.
  • Test example 13 Reuse test: 10 nm titanium oxide, 70 nm titanium, 45 nm silicon nitride, 85 nm titanium nitride, 80 nm silicon nitride and 10 nm titanium nitride by sputtering with nickel plated on both sides of a hairlined brass ring What was deposited in this order was used as a sample. The sample was immersed for 5 minutes in an etchant prepared in Example 6 at 80 ° C. to completely etch titanium oxide, titanium, silicon nitride and titanium nitride deposited by sputtering. Thereafter, the sample was dried, and the same sputtering as described above was repeated to obtain the same appearance as the sample before etching. This test showed that it is possible to reuse the sample.
  • Example 7 Etching solution: In 1000 ml of water, 23 g of salicylic acid, 47 g of Rochelle salt, 43 g of sodium citrate, PEG-200 1 ml, 50 ml of hydrogen peroxide (34%) and 10 g of sodium hydroxide were dissolved. The pH of this etching solution was 12.7.
  • Test example 14 Etching test The pH of the etching solution prepared in Example 7 was adjusted to the pH described in Table 13 using sodium hydroxide or sulfuric acid. A sample (glass cylinder) similar to that used in Test Example 1 and a sample (ring) similar to that used in Test Example 2 were immersed in the respective etching solutions at 50 ° C., and the sputtered film was visually observed. The time until complete removal was measured. The results are shown in Table 13.
  • Example 8 Etching solution: In 1000 ml of water were dissolved 129 g of sodium citrate, 0.10 ml of PEG-200, and 50 ml of hydrogen peroxide (34%). The pH of this etching solution was 13.
  • Test example 15 Etching test: The etching rate was measured in the same manner as in Test Example 10 by immersing a 5.times.5.times.0.1 cm aluminum plate or copper plate in an etching solution adjusted at 50.degree. C. prepared in the eighth example. It was found that the etching rate of the aluminum plate was 130 nm / s, and the etching rate of the copper plate was 0.142 nm / s.
  • Test example 16 Etching test: When a test piece of aluminum oxide was dipped in the etching solution prepared in Example 8 at 60 ° C., it was dissolved soon. From this result, it was found that the etching solution of the present invention can selectively etch aluminum oxide as well as titanium and the like.
  • Test example 17 Etching test: A specimen prepared by sputtering aluminum nitride and gallium nitride in this order and immersing them in a silicon wafer was immersed in the etching solution prepared in Example 8 at 60 ° C., and a layer of aluminum nitride and gallium nitride was nearly lost. It dissolved. From this result, it was found that the etching solution of the present invention can selectively etch aluminum nitride or gallium nitride as well as titanium and the like.
  • the principle of etching in the method of the present invention described above is presumed as follows.
  • Role of complexing agent The selected complexing agent chelates the metal on the surface to make the surface metal susceptible to (a) nucleophilic attack and (b) the formed metal complex to be easily dissolved in the etching solution. That is, the ligand of the selected complexing agent is selectively chelated to a metal (eg, titanium, niobium, etc.) compatible with the shape, orbital arrangement, and electronic properties of the metal atom to be etched, and thus only a specific metal is selected. It becomes possible to etch.
  • a metal eg, titanium, niobium, etc.
  • the complexing agent selected in the present invention is one factor that specifies the selectivity of the metal to be etched.
  • the complexing ability and selectivity of the complexing agent are determined by the coordination number of the complexing agent, coordination species (nitrogen (eg, nitrogen contained in amine, nitrile), oxygen (eg, hydroxy, carboxylic acid, carbonyl) And sulfur (eg, mercapto, sulfur contained in thiocarbonyl), coordination characteristics, electronic characteristics, ligand-ligand distance / arrangement in the case of multiple coordination numbers, and Ru.
  • molecules having two or three oxygen coordinations separated by three carbons one having hydroxy and one having carboxylic acid or benzenediol are considered optimal.
  • Other coordination species in the three cases is also preferably oxygen-based.
  • nitrogen is present as the coordination species
  • nickel is also etched where titanium and niobium are to be etched, which is compatible with the object of the present invention I will not do it.
  • Role of base Nucleophilic attack on the chelated metal (eg hydroxide).
  • the method of the present invention is a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium, an oxide of the metal, a nitride of the metal, silicon nitride, hafnium nitride, tantalum nitride or the like It can also be used for etching of alloys, recycling of base substrates and recovery of the above metals, oxides of the metals, nitrides of the metals, silicon nitride, hafnium nitride, tantalum nitride or alloys of these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Abstract

ガラス、シリコン、銅およびニッケルから選ばれる下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウム、およびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を、所定の錯化剤を含有するアルカリ性エッチング液を用いて選択的にエッチングする。

Description

選択的エッチング方法
 本発明は、ガラス、シリコン、銅およびニッケルから選ばれる下地基材よりも優先的に前記基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を選択的にエッチングする方法に関する。
 一般にチタンをエッチングする場合は、フッ酸系のエッチング液を利用する。しかし、フッ酸系のエッチング液を使用すると、下地がニッケルやガラスの場合には、下地も一緒にエッチングされてしまう。
 また、チタンをエッチングする場合には、水酸化ナトリウム溶液を使用することも考えられるが、このエッチング液単体ではチタンはほとんどエッチングされず、また、エッチング速度を向上させるために過酸化水素を併用してもエッチング速度は非常に遅く実用的ではない。
 近年、チタンのエッチング液としては、錯化剤としてEDTAを使用する方法が知られており、具体的には、EDTAと過酸化水素を含有し、アルカリ性のエッチング液を用いる方法が知られている(特許文献1)。
 しかしながら、この方法ではニオブ酸リチウム(LiNbO)上に析出されたチタンを選択的にエッチングできるものの、エッチング速度が遅いという問題があった。また、この方法は、エッチングできない物質(金属)があったり、下地基材の種類によっては下地に影響を及ぼすことがあった。例えば、チタンのエッチング速度がニッケルのエッチング速度より遅いため下地が先に溶解される。
米国特許第4,554,050号
 本発明は、実用的な速度で、かつ、下地基材よりも優先的にチタンだけでなく、他の金属も選択的にエッチングする方法を提供することをその課題とする。
 本発明者らは、上記課題を解決するために鋭意研究を行った結果、特定の錯化剤を含有し、アルカリ性であるエッチング液がガラス、シリコン、銅およびニッケルから選ばれる下地基材よりも優先的にチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金を選択的にエッチングできることを見出し、本発明を完成させた。
 すなわち、本発明はガラス、シリコン、銅およびニッケルから選ばれる下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を、下記式(I)および(II)、
Figure JPOXMLDOC01-appb-C000005
[式(I)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CROまたは-CHCHCHである(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)]
Figure JPOXMLDOC01-appb-C000006
[式(II)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CRO、-CHCHCH、-CN、-NC、-NO、-F、-Cl、-Br、-I、-SOであり(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)、Xは-OH、-COOHまたは-COOOHである]
で示される化合物から選ばれる錯化剤の1種以上を本質的に含有し、アルカリ性であるエッチング液に接触させ、チタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金を選択的にエッチングすることを特徴とするエッチング方法である。
 また、本発明は下記式(I)および(II)、
Figure JPOXMLDOC01-appb-C000007
[式(I)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CROまたは-CHCHCHである(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)]
Figure JPOXMLDOC01-appb-C000008
[式(II)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CRO、-CHCHCH、-CN、-NC、-NO、-F、-Cl、-Br、-I、-SOであり(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)、Xは-OH、-COOHまたは-COOOHである]
で示される化合物から選ばれる錯化剤の1種以上を本質的に含有し、アルカリ性であることを特徴とするガラス、シリコン、銅およびニッケルから選ばれる下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金用エッチング液である。
 本発明は、実用的な速度で、かつ、ガラス、シリコン、銅およびニッケルから選ばれる下地基材よりも優先的に、チタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金を選択的にエッチングできる。
 また、本発明は、上記エッチングの他にも、ガラス、シリコン、銅およびニッケルから選ばれる下地基材の再利用や前記金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の回収にも利用できる。
試験例1において、実施例6のエッチング液を用い、80℃、30秒のエッチング条件でエッチングした後の試料の外観写真である。 試験例4において、実施例6のエッチング液を用い、80℃、5分のエッチング条件でエッチングした後の試料のSPM写真およびRa値である(図中(A)は試料Aの表面であり、(B)は試料Bの表面であり、(C)は試料Bのエッチング後の表面であり、(D)は試料Aのエッチング後の表面である)。 試験例5において、実施例6のエッチング液を用い、80℃、40分のエッチング条件でエッチングした後の試料のSEM写真(上)およびSPM写真(下)である(図中(A)は試料Aの表面であり、(B)は試料Bの表面であり、(C)は試料Bのエッチング後の表面である)。 試験例6において、実施例6のエッチング液を用い、80℃、25秒のエッチング条件でエッチングした後の試料のSEM写真(上)およびSPM写真(下)である(図中(A)は試料Aの表面であり、(B)は試料Bの表面であり、(C)は試料Bのエッチング後の表面である)。
 本発明のチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金を選択的にエッチングする方法(以下、単に「本発明方法」という)は、ガラス、シリコン、銅およびニッケルから選ばれる下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を、下記式(I)および(II)、
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
で示される化合物から選ばれる錯化剤の1種以上を本質的に含有し、アルカリ性であるエッチング液に接触させることにより行われる。なお、本明細書において「本質的に含有する(consisting essentially of)」とは、本質的に含有すると記載した物質以外の物質であって、 効果に影響を及ぼすような物質は含まない(言い換えれば、効果に影響を及ぼさないような物質は含んでもよい)ことを意味し、好ましくは本質的に含有すると記載した物質以外の物質を全く含まない(言い換えれば、本質的に含有すると記載した物質のみを含む)ことを意味する。
 本発明方法に用いられる錯化剤のうち、式(I)で示される化合物のR~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CROまたは-CHCHCHであり(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)、好ましくは-H、-OH、-COOHまたは-CHCOOHである。
 式(I)で示される化合物の具体例としては、3-ヒドロキシプロピオン酸、酒石酸、クエン酸、りんご酸、マロン酸、ガラクツロン酸、ガラクタル酸、グルコン酸、ヒドロキシ酪酸、2,2-ビス(ヒドロキシメチル)酪酸、ヒドロキシピバル酸、β-ヒドロキシイソ吉草酸等が挙げられ、これらの中でも酒石酸またはクエン酸が好ましい。なお、式(I)で示される化合物には、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩の形態であって、エッチング液中で上記化合物と同様の挙動をするものも含まれる。
 また、本発明方法に用いられる錯化剤のうち、式(II)で示される化合物のR~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CRO、-CHCHCH、-CN、-NC、-NO、-F、-Cl、-Br、-I、-SOであり(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)、好ましくは-H、-COOH、-CHCOOHである。
 また、式(II)で示される化合物のXは-OH、-COOHまたは-COOOHであり、好ましくは-OHまたは-COOHである。
 式(II)で示される化合物の具体例としては、プロトカテク酸、プロトカテク酸エチル、サリチル酸、2,3-ジヒドロキシ安息香酸、5-クロロサリチル酸、クレソチン酸、レソルシル酸、ナフトエ酸、3,5-ジヒドロキシ-2-ナフトエ酸、1,4-ジヒドロキシ-2-ナフトエ酸、1-ヒドロキシ-2-ナフトエ酸、2,6-ジヒドロキシ-4-メチル安息香酸、2,5-ジヒドロキシテレフタル酸、メチレンジサリチル酸、ニトロサリチル酸、2,4,6-トリヒドロキシ安息香酸、5-スルホサリチル酸、モーダントブルー1、クロムエロー、4-tert-ブチルカテコール、4-メチルカテコール、カテコール、ブロモカテコール、クロロカテコール、ヨードカテコール、フロロカテコール、ニトロカテコール、シアノカテコール、アリザリン、エスクレチン、没食子酸、没食子酸エチル、3,4-ジヒドロキシベンゾアルデヒドが挙げられ、これらの中でもプロトカテク酸またはサリチル酸が好ましい。なお、式(II)で示される化合物には、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩の形態であって、エッチング液中で上記化合物と同様の挙動をするものも含まれる。
 上記錯化剤のエッチング液における含有量は、0.001mol/L以上、好ましくは0.1~1mol/Lである。
 本発明方法に用いられるエッチング液の液性はアルカリ性であれば特に限定されないが、エッチング液のpHが高いほどエッチング速度が向上するため、好ましくはpH9以上、より好ましくはpH10~14、特に好ましくはpH11~14、より特に好ましくはpH12~14にする。エッチング液をアルカリ性にする方法は特に限定されず、水酸化ナトリウム、水酸化カリウム等のアルカリ性物質を用いればよい。
 本発明方法に用いられるエッチング液には、更に酸化剤を含有させることが好ましい。この酸化剤をエッチング液に含有させることによりエッチング速度が向上する。酸化剤の種類は特に限定されないが、酸化剤自体が下地基材を腐食しないものが好ましい。このような下地基材を腐食しない酸化剤としては、例えば、酸素、過酸化水素、オゾン、過酢酸、過安息香酸等の過カルボン酸等が挙げられ、これらの酸化剤の中でも副生成物が発生しない酸素、過酸化水素、オゾンが好ましい。エッチング液における酸化剤の含有量は0.001~10質量%(以下、単に「%」という)、好ましくは0.1~3%である。また、酸化剤が酸素、オゾン等の気体の場合には、前記気体をエッチング液における濃度が上記範囲になるようバブリング等して導入すればよい。
 また、本発明方法に用いられるエッチング液には、本発明の効果を損なわない範囲で、通常エッチング液に用いられる界面活性剤を添加してもよい。界面活性剤を添加することにより、エッチングの均一性が向上する。好ましい界面活性剤としてはPEG-200等の液体のポリエチレングリコールが挙げられる。
 本発明方法に用いられるエッチング液の好ましい一例としては、上記錯化剤を本質的に含有し、アルカリ性であるものが挙げられる。
 また、本発明方法に用いられるエッチング液の好ましい別の例としては、上記錯化剤と酸化剤を本質的に含有し、アルカリ性であるものが挙げられる。
 更に、本発明方法に用いられるエッチング液の好ましい他の例としては、上記錯化剤と酸化剤と界面活性剤を本質的に含有し、アルカリ性であるものが挙げられる。
 本発明方法に用いられるエッチング液の好ましい組成としては、
  サリチル酸またはそのアルカリ金属塩やアンモニウム塩0.1~0.4mol/Lおよび/または、
  酒石酸またはそのアルカリ金属塩やアンモニウム塩0.1~0.4mol/Lおよび/または、
  クエン酸またはそのアルカリ金属塩やアンモニウム塩0.1~0.4mol/Lと、
  過酸化水素0.3~3%を含有し、
  pH11以上、好ましくはpH12~14、より好ましくはpH13~14、
のものが挙げられ、より具体的なエッチング液の組成としては、
  サリチル酸ナトリウム0.1~0.4mol/Lおよび
  酒石酸カリウムナトリウム(ロッシェル塩)0.1~0.4mol/Lおよび
  クエン酸トリナトリウム0.1~0.4mol/Lおよび
  水酸化ナトリウム0.1~0.4mol/Lおよび
  過酸化水素0.3~3%、
を含有するものが挙げられる。
 本発明方法でエッチング対象となるチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の具体例としては、チタン、酸化チタン(II)、酸化チタン(III)、酸化チタン(IV)、窒化チタン、ニオブ、酸化ニオブ(II)、酸化ニオブ(III)、酸化ニオブ(IV)、酸化ニオブ(V)、窒化ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウム、酸化アルミニウム、窒化アルミニウム、ガリウム、酸化ガリウム、窒化ガリウム、窒化シリコン、窒化ハフニウム、窒化タンタルやこれらの1種類以上を組み合わせたニオブチタン、砒化ガリウム等の合金が挙げられる。これらの中でもチタン、酸化チタン(II)、酸化チタン(III)、酸化チタン(IV)、窒化チタン、ニオブ、酸化ニオブ(II)、酸化ニオブ(III)、酸化ニオブ(IV)、酸化ニオブ(V)、窒化ニオブ、窒化タンタル、窒化シリコン、アルミニウム、酸化アルミニウム、窒化アルミニウム、ガリウム、酸化ガリウム、窒化ガリウム、窒化アルミニウム/アルミニウム合金が好ましい。
 本発明方法に用いられる下地基材のうち、ガラスとしてはケイ酸塩ガラス、石英、パイレクス、テンパクス、ソーダライムガラス、ほうケイ酸ガラス等が挙げられ、シリコンとしては、単結晶シリコン、ホウ素添加シリコン、燐添加シリコン、砒素添加シリコン、アンチモン添加シリコン、多結晶シリコン等が挙げられ、銅としては純銅金属、銅含有合金等が挙げられ、ニッケルとしては純ニッケル金属、ニッケル含有合金等が挙げられる。なお、下地基材としてはエッチング対象となるチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金を含むものは除かれる。また、上記下地基材の形状は特に限定されず、板状、環状、球状やそれらの組み合わせ等の何れであってもよい。
 また、上記下地基材にチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を設ける方法は特に限定されず、一般的に行われるスパッタ、蒸着、めっき等で設ければよい。
 上記下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層に、エッチング液を接触させる方法は特に限定されず、例えば、エッチング液中に前記層を設けた下地基材を浸漬する方法や、エッチング液を前記層に噴霧する方法、エッチング液を前記層に塗布する方法等が挙げられる。
 また、本発明方法におけるエッチングの条件は特に限定されないが、例えば、エッチング液の液温は20~100℃、好ましくは40~80℃であり、処理する時間は0.1~200分、好ましくは1~20分である。なお、本発明方法においてエッチングの速度は、エッチング液に含まれる式(I)および式(II)で示される化合物の濃度、エッチング液のpH、エッチング液の液温と処理時間で当業者は適宜制御できる。
 更に、本発明方法においては、エッチングの際に撹拌子やバブリング等によりエッチング液の撹拌を行うことが好ましい。撹拌を行うことにより、エッチングの均一性が向上したり、エッチングした金属等の下地基材への再付着が起こらない。
 上記した本発明方法は、上記のようにしてガラス、シリコン、銅およびニッケルから選ばれる下地基材からチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を下地基材よりも優先的に溶解するので、選択的に除去することができる。
 本発明方法で選択的に除去できる金属等と下地基材との組み合わせの好ましい例としては、以下のものが挙げられる。
(下地基材) (金属等)
 ガラス    チタンおよび/またはニオブおよび/またはそれぞれの酸
        化物および/または窒化物
 ニッケル   チタンおよび/または酸化チタンおよび/または窒化チタ
        ンおよび/または窒化シリコン
 シリコン   窒化タンタルおよび/またはチタンおよび/または窒化チ
        タンおよび/または酸化チタンおよび/またはアルミニウ
        ムおよび/または酸化アルミニウムおよび/または窒化ア
        ルミニウムおよび/またはガリウムおよび/または酸化ガ
        リウムおよび/または窒化ガリウム
 銅      アルミニウムおよび/または窒化アルミニウムおよび/ま
        たはガリウムおよび/または窒化ガリウム
 以下、本発明を実施例等を挙げて詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
実 施 例 1
   エッチング液:
 水100mlに、プロトカテク酸1.54gおよび水酸化ナトリウム1.2gを溶解させた。このエッチング液のpHは14であった。
実 施 例 2
   エッチング液:
 水100mlに、クエン酸1.92gおよび水酸化ナトリウム1.2gを溶解させた。このエッチング液のpHは14であった。
実 施 例 3
   エッチング液:
 水100mlに、サリチル酸1.38g、過酸化水素(30%)1mlおよび水酸化ナトリウム0.8gを溶解させた。このエッチング液のpHは14であった。
実 施 例 4
   エッチング液:
 水100mlに、酒石酸1.50g、過酸化水素(30%)1mlおよび水酸化ナトリウム1.2gを溶解させた。このエッチング液のpHは14あった。
実 施 例 5
   エッチング液:
 水100mlに、クエン酸1.92g、過酸化水素(30%)1mlおよび水酸化ナトリウム1.6gを溶解させた。このエッチング液のpH14であった。
実 施 例 6
   エッチング液:
 水300mlに、サリチル酸1.38g、酒石酸1.50g、クエン酸1.92g、過酸化水素(30%)3mlおよび水酸化ナトリウム3.6gを溶解させた。このエッチング液のpH14であった。
比 較 例 1
   エッチング液:
 水100mlに、過酸化水素(30%)1mlおよび水酸化ナトリウム1.2gを溶解させた。このエッチング液のpHは14であった。
比 較 例 2
   エッチング液:
 水100mlに、EDTA・4Na4.16g、過酸化水素(30%)1mlおよび水酸化ナトリウム0.4gを溶解させた。このエッチング液のpHは14であった。
比 較 例 3
   エッチング液:
 水100mlにサリチル酸1.38g、過酸化水素(30%)1mlおよび水酸化ナトリウム0.4gを溶解させた。このエッチング液のpHは5であった。
比 較 例 4
   エッチング液:
 水100mlにエチルマルトール1.4gおよび水酸化ナトリウム0.8gを溶解させた。このエッチング液のpHは14であった。
比 較 例 5
   エッチング液:
 水100mlにアセチルアセトン1.0gおよび水酸化ナトリウム0.8gを溶解させた。このエッチング液のpHは14であった。
比 較 例 6
   エッチング液:
 水100mlにグリコール0.6gおよび水酸化ナトリウム0.8gを溶解させた。このエッチング液のpHは14であった。
比 較 例 7
   エッチング液:
 水100mlにアスコルビン酸1.76g、過酸化水素(30%)1mlおよび水酸化ナトリウム1.2gを溶解させた。このエッチング液のpHは14であった。
比 較 例 8
   エッチング液
 水100mlにプロトカテク酸1.54gを溶解させた。このエッチング液のpHは5であった。
試 験 例 1
   エッチング試験:
 ガラスの円筒の内面にスパッタリングでチタンを100nmの厚さで析出させたものを試料とした。実施例1~6および比較例1~8で調製したエッチング液を撹拌子で撹拌しつつ、これに表1に記載の条件で試料を浸漬し、エッチング試験を行った。エッチング試験後の試料の外観を以下の評価基準で評価した。この結果も表1に示した。また、実施例6のエッチング液を用い、80℃、30秒のエッチング条件でエッチングした後の試料の外観写真を図1に示した。
<チタンの溶解評価基準>
(評価)   (内容)
  ◎  :  チタンが完全に溶解した。
  ○  :  チタンがほとんど溶解した。
  △  :  チタンがほとんど溶解しなかった。
  ×  :  チタンが全く溶解しなかった。
<ガラスの溶解評価基準>
(評価)   (内容)
  +  :  ガラスは溶解しなかった。
  -  :  ガラスは溶解した。
Figure JPOXMLDOC01-appb-T000011
 以上の結果より、本発明のエッチング液に錯化剤だけで過酸化水素を入れない場合には、プロトカテク酸が最も良いことが分かった。また、錯化剤と過酸化水素を組み合わせた場合には、エッチング速度が向上し、EDTAを用いた場合よりも早くなることが分かった。更に、エッチングには高いpHが必要であることが分かった。また更に、1,2-ジオール類のうち、一般的なものはエッチングが全く行われないか、ほとんど行われないものであったが、式(II)に含まれる1,2-ベンゼンジオール類は有効であることが分かった。更にまた、一般的なチタンの錯化剤のβ-ジケトン類とα-ヒドロキシケトン類ではエッチングが全く行われないことが分かった。また、還元力ある錯化剤ではエッチングが全く行われないことが分かった。
試 験 例 2
   エッチング試験:
 ヘアライン加工された真鍮製のリングの両面にニッケルめっきを施したものに、スパッタで10nmの酸化チタン、70nmのチタン、45nmの窒化シリコン、85nmの窒化チタン、80nmの窒化シリコンおよび10nmの窒化チタンをこの順で析出させたものを試料とした。実施例1、3~6および比較例1~3、6~8で調製したエッチング液を撹拌子で撹拌しつつ、これに表2に記載の条件で試料を浸漬し、エッチング試験を行った。エッチング試験後の試料の外観を以下の評価基準で評価した。この結果も表2に示した。また、実施例6のエッチング液を用い、80℃、5分のエッチング条件でエッチングした後の試料については、電子線マイクロアナライザ(EPMA)による分析をした。
<酸化チタン、チタン、窒化シリコン、窒化チタンの溶解評価基準>
(評価)   (内容)
  ◎  :  酸化チタン、チタン、窒化シリコン、窒化チタンが完全に
        溶解した。
  ○  :  酸化チタン、チタン、窒化シリコン、窒化チタンがほとん
        ど溶解した。
  △  :  酸化チタン、チタン、窒化シリコン、窒化チタンがほとん
        ど溶解しなかった。
  ×  :  酸化チタン、チタン、窒化シリコン、窒化チタンが全く溶
        解しなかった。
<ニッケルの溶解評価基準>
(評価)   (内容)
  +  :  ニッケルは溶解しなかった。
  -  :  ニッケルは溶解した。
Figure JPOXMLDOC01-appb-T000012
 以上の結果より、本発明のエッチング液は下地のニッケルよりも優先的に酸化チタン、チタン、窒化シリコン、窒化チタンを溶解するので、下地のニッケルからこれらを選択的に除去できることがわかった。また、EPMAによる分析の結果、エッチング前後で、ニッケルが64.0mol%から74.2mol%、銅が6.0mol%から16.4mol%、亜鉛が3.4mol%から9.4mol%、チタンが11.6mol%から0mol%、シリコンが15.0mol%から0mol%となり、エッチングによりチタンとシリコンが全て除去されていたことが分かった。
試 験 例 3
   エッチング試験:
 シリコンウエハーの片面にスパッタで窒化タンタルを50μm析出させたものを試料とした。実施例1、3~6および比較例1~3で調製したエッチング液を撹拌子で撹拌しつつ、これに表3に記載の条件で試料を浸漬し、エッチング試験を行った。エッチング試験後の試料の外観を以下の評価基準で評価した。この結果も表3に示した。
<窒化タンタルの溶解評価基準>
(評価)   (内容)
  ◎  :  窒化タンタルが完全に溶解した。
  ○  :  窒化タンタルがほとんど溶解した。
  △  :  窒化タンタルがほとんど溶解しなかった。
  ×  :  窒化タンタルが全く溶解しなかった。
<シリコンの溶解評価基準>
(評価)   (内容)
  +  :  シリコンは溶解しなかった。
  -  :  シリコンは溶解した。
Figure JPOXMLDOC01-appb-T000013
 以上の結果より、本発明のエッチング液は、下地のシリコンよりも優先的に窒化タンタルを溶解するので、下地のシリコンからこれらを選択的に除去できることがわかった。
試 験 例 4
   エッチング試験:
 真鍮板の片面にニッケルめっきを施したものを試料A、これにスパッタリングで10nmの酸化チタン、70nmのチタン、45nmの窒化シリコン、85nmの窒化チタン、80nmの窒化シリコンおよび10nmの窒化チタンをこの順で析出させたものを試料Bとした。試料Aおよび試料Bを、実施例6で調製したエッチング液を撹拌子で撹拌しつつ、80℃、5分の条件で浸漬し、エッチング試験を行った。エッチング試験前後の試料について走査型プローブ顕微鏡(SPM)による表面形状および表面荒さ(Ra値)の観察をした。その結果を図2に示した。
 SPM観察およびRa測定の結果から、本発明のエッチング液は、下地のニッケルよりも優先的に酸化チタン、チタン、窒化シリコン、窒化チタンを溶解するので、下地のニッケルからこれらを選択的に除去できることが分かった。
試 験 例 5
  エッチング試験:
 シリコンウエハ(試料A)の片面にスパッタで窒化タンタルを50μm析出させたものを試料Bとした。試料Bを、実施例6で調製したエッチング液を撹拌子で撹拌しつつ、80℃、40分の条件で浸漬し、エッチング試験を行ったものを試料Cとした。これらの試料について走査型電子顕微鏡(SEM)およびSPMによる観察をした。その結果を図3に示した。
 SEM観察およびSPM観察の結果から、本発明のエッチング液は、下地のシリコンよりも優先的に窒化タンタルを溶解するので、下地のシリコンからこれらを選択的に除去できることが分かった。
試 験 例 6
  エッチング試験:
 シリコンウエハ(試料A)の片面にスパッタで窒化チタンおよび酸化チタンをこの順でそれぞれ50μm析出させたものを試料Bとした。試料Bを、実施例6で調製したエッチング液を撹拌子で撹拌しつつ、80℃、25秒の条件で浸漬し、エッチング試験を行ったものを試料Cとした。これらの試料についてSEMおよびSPMによる観察をした。その結果を図4に示した。
 SEM観察およびSPM観察の結果から、本発明のエッチング液は、下地のシリコンよりも優先的に窒化チタンおよび酸化チタンを溶解するので、下地のシリコンからこれらを選択的に除去できることが分かった。
試 験 例 7
  エッチング条件の選定:
 エッチング液は、サリチル酸0.334mol/L、酒石酸0.333mol/L、クエン酸0.333mol/Lおよび過酸化水素1mol/Lを含み、pHを水酸化ナトリウムにより11以上に調整したエッチング液を基本組成として、これを以下の表4に記載の通りに薄めてエッチング液を調製した。これらのエッチング液を撹拌子で撹拌しつつ、これを用いて表4に記載の条件で試験例1で用いたのと同様の試料(ガラス円筒)および試験例2で用いたのと同様の試料(リング)をエッチングした。なお、エッチング終了時間は、目視によりスパッタ膜が除去されるまでの時間である。
Figure JPOXMLDOC01-appb-T000014
 以上の結果より、エッチング速度に対する錯化剤の濃度と浴温度の関連を確認した。錯化剤の濃度と浴温度が高くなるとエッチング速度が高くなることが分かった。
試 験 例 8
   使用後のエッチング液の元素分析:
 実施例6のエッチング液を用い、試験例1で用いたのと同様の試料(ガラス円筒)を80℃で30秒、試験例2で用いたのと同様の試料(リング)を80℃で5分、試験例6で用いたのと同様の試料(シリコンウエハに窒化チタンおよび酸化チタンを析出させたもの(試料B))を80℃で25秒のエッチング後のエッチング液についてICP―AESで元素分析を行った。また、比較として比較例2のエッチング液を用い、同様の試料をエッチング後のエッチング液についても元素分析を行った。これらの分析の結果を表5に示した。
Figure JPOXMLDOC01-appb-T000015
 以上の結果より、本発明のエッチング液は、従来のものに比べ、チタンがニッケルおよびシリコンより優先的に溶解することがわかった。本発明のエッチング液はチタンが5mg/Lであるのに対してシリコンが36.1mg/Lおよびニッケルが検出せずであった。一方、従来のものではチタンが1mg/Lであるのに対してシリコンが23.5mg/Lおよびニッケルが8.5mg/Lであった。従来のもののチタンの量と比較し、過剰なシリコンはシリコンウエハ基板およびニッケルはニッケルめっき基板から溶解したものと考えられる。本発明で使用する錯化剤はチタンおよび窒化物の溶解に選択性を示すことがわかった。
試 験 例 9
   エッチング速度の測定:
(1)チタンのエッチング速度の測定
 チタンのエッチング速度は、ガラス上にスパッタでチタンを100nm析出させ、表6に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解したチタンの量、エッチング液への接触面積から算出した。その結果を表6に示した。
Figure JPOXMLDOC01-appb-T000016
(2)酸化チタン/窒化チタンのエッチング速度の測定
 酸化チタン/窒化チタンのエッチング速度は、シリコンウエハ上にスパッタで酸化チタンおよび窒化チタンをこの順でそれぞれ50nmずつ析出させ、表7に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解した酸化チタン/窒化チタンの量、エッチング液への接触面積から算出した。その結果を表7に示した。
Figure JPOXMLDOC01-appb-T000017
(3)ニオブのエッチング速度の測定
 ニオブのエッチング速度は、ガラス上にスパッタでニオブを200nm析出させ、表8に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解したニオブの量、エッチング液への接触面積から算出した。その結果を表8に示した。
Figure JPOXMLDOC01-appb-T000018
(4)窒化タンタルのエッチング速度の測定
 窒化タンタルのエッチング速度は、シリコンウエハ上にスパッタで窒化タンタルを50nm析出させ、表9に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解した窒化タンタルの量、エッチング液への接触面積から算出した。その結果を表9に示した。
Figure JPOXMLDOC01-appb-T000019
試 験 例 10
   エッチング速度の測定:
(1)ガラスのエッチング速度の測定
 ガラスのエッチング速度は、表10に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解したガラスの量、板ガラスのエッチング液への接触面積に対してエッチング前後の重量差から算出した。その結果を表10に示した。
Figure JPOXMLDOC01-appb-T000020
(2)シリコンのエッチング速度の測定
 シリコンのエッチング速度は、表11に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解したシリコンの量、シリコンウエハのエッチング液への接触面積に対してエッチング前後の重量差から算出した。その結果を表11に示した。
Figure JPOXMLDOC01-appb-T000021
(3)ニッケルのエッチング速度の測定
 ニッケルのエッチング速度は、表12に記載のエッチング液を撹拌子で撹拌しつつ、80℃にしたものに浸漬し、エッチング時間、溶解したニッケルの量、真鍮製板の前面にニッケルめっきを施したもののエッチング液への接触面積に対してエッチング前後の重量差から算出した。その結果を表12に示した。
Figure JPOXMLDOC01-appb-T000022
 以上の結果より、本発明のエッチング液は、下地基材となるガラス、シリコンおよびニッケルのエッチング速度が、チタン、酸化チタン、窒化チタン、ニオブ、窒化タンタルのエッチング速度よりも遅いことが示された。これにより、本発明のエッチング液はチタン、酸化チタン、窒化チタン、ニオブ、窒化タンタルを下地基材よりも優先的に溶解することが示された。一方、EDTAを用いたエッチング液は、本発明のエッチング液よりも下地基材のエッチング速度が圧倒的に速いことが示された。
試 験 例 11
   エッチング試験:
 実施例6で調製したエッチング液を80℃にしたものに、砒化ガリウムウエハの細片を浸漬したところ、ほどなく砒化ガリウム片が溶解した。この結果から、本発明のエッチング液はチタン等と同様に砒素、ガリウムおよび砒化ガリウムも選択的にエッチングできることが分かった。
試 験 例 12
   エッチング試験:
 実施例6で調製したエッチング液を80℃にしたものに、タングステン、モリブデン、ルテニウムまたはロジウムの試験片を浸漬すると、ほどなく溶解する。これから、本発明のエッチング液はチタン等と同様にタングステン、モリブデン、ルテニウムまたはロジウムも選択的にエッチングし得る。
試 験 例 13
   再利用試験:
 ヘアライン加工された真鍮製のリングの両面にニッケルめっきを施したものに、スパッタで10nmの酸化チタン、70nmのチタン、45nmの窒化シリコン、85nmの窒化チタン、80nmの窒化シリコンおよび10nmの窒化チタンをこの順で析出させたものを試料とした。実施例6で調製したエッチング液を80℃にしたものに試料を5分間浸漬し、スパッタで析出させた酸化チタン、チタン、窒化シリコンおよび窒化チタンを完全にエッチングした。その後、この試料を乾燥させ、更に上記と同様のスパッタを再度行ったところ、エッチング前の試料と同様の外観が得られた。この試験により、試料の再利用が可能なことが示された。
実 施 例 7
   エッチング液:
 水1000mlに、サリチル酸23g、ロッシェル塩47g、クエン酸ナトリウム43g、PEG-200
1ml、過酸化水素(34%)50mlおよび水酸化ナトリウム10gを溶解させた。このエッチング液のpHは12.7であった。
試 験 例 14
   エッチング試験:
 実施例7で調製したエッチング液のpHを水酸化ナトリウムまたは硫酸を用いて表13に記載のpHに調整した。試験例1で用いたのと同様の試料(ガラス円筒)および試験例2で用いたのと同様の試料(リング)を、それぞれのエッチング液を50℃にしたものに浸漬し、目視によりスパッタ膜が完全に除去されるまでの時間を測定した。それらの結果を表13に示した。
Figure JPOXMLDOC01-appb-T000023
 この試験によりエッチング液のpHが高いほどエッチング速度が向上することが分かった。特に、pH11以上、pH12以上、pH13~14ではそれぞれのpH未満の場合と比べてエッチング速度がおおむね2倍以上向上することがわかった。
実 施 例 8
   エッチング液:
 水1000mlに、クエン酸ナトリウム129g、PEG-2000.1ml、過酸化水素(34%)50mlを溶解させた。このエッチング液のpHは13であった。
試 験 例 15
   エッチング試験:
 実施例8で調整したエッチング液を50℃にしたものに、5×5×0.1cmのアルミ板または銅板を浸漬し、試験例10と同様にしてエッチング速度を測定した。アルミ板のエッチング速度は130nm/s、銅板のエッチング速度は0.142nm/sであることがわかった。
試 験 例 16
   エッチング試験:
 実施例8で調製したエッチング液を60℃にしたものに、酸化アルミニウムの試験片を浸漬したところ、ほどなく溶解した。この結果から、本発明のエッチング液はチタン等と同様に酸化アルミニウムも選択的にエッチングできることがわかった。
試 験 例 17
   エッチング試験:
 実施例8で調製したエッチング液を60℃にしたものに、シリコンウエハに窒化アルミニウムと窒化ガリウムをこの順でスパッタして積層した試験片を浸漬したところ、窒化アルミニウムと窒化ガリウムの層がほどなく溶解した。この結果から、本発明のエッチング液はチタン等と同様に窒化アルミニウムまたは窒化ガリウムも選択的にエッチングできることがわかった。
 以上説明した本発明方法におけるエッチングの原理は以下のように推定される。
(1)錯化剤の役割:
 選択された錯化剤は表面の金属にキレートすることにより、表面の金属を(a)求核攻撃されやすくし、(b)生成された金属錯体をエッチング液に溶解されやすくしている。即ち、選定された錯化剤の配位子が被エッチング金属原子の形状、軌道配列、電子特性と適合した金属(例:チタン、ニオブ等)に選択的にキレートすることで特定の金属のみがエッチング可能となる。しかし、一般的に使用される錯化剤であるEDTA等を使用すると、その錯化剤は多数の金属と強くキレートするため選択性が低い。即ち、本発明で選択された錯化剤は、被エッチング金属の選択性を特定している一つの要因となる。
 錯化剤の錯化能力や選択性は、その錯化剤の配位数、配位種(窒素(例:アミン、ニトリルに含まれる窒素)、酸素(例:ヒドロキシ、カルボン酸、カルボニルに含まれる酸素)、燐、硫黄(例:メルカプト、チオカルボニルに含まれる硫黄))、配位特性、電子特性、多配位数の場合の配位子-配位子間の距離/配列により決定される。本発明では三つの炭素で隔離されている2つか3つの酸素配位を持つ分子で、1つはヒドロキシ、1つはカルボン酸またはベンゼンジオールを有するものが最適と考えられる。(3つの場合のもう一つの配位種も酸素系のものが良い。)例えば配位種に窒素が存在すると、チタンやニオブをエッチングすべきところがニッケルもエッチングされてしまい本発明の目的と合致しなくなる。
(2)塩基の役割:
 キレートされた金属に求核攻撃する(例:ヒドロキシド)。
(3)酸化剤の役割:
 金属酸化物、金属窒化物、金属錯体内の各々の金属(M)との結合の場合、金属との結合を酸化分解し、格子状・非格子上の結合を破壊させる。
 (例:M-O-M→M-O-O-M→2M=O)
 金属エッチングの場合、金属または金属錯体を酸化させる。
 (例:M→Mnまたは配位子-Mn→配位子-M)
 本発明方法は、チタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金のエッチング、下地基材の再利用や上記金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の回収にも利用できる。

Claims (6)

  1.  ガラス、シリコン、銅およびニッケルから選ばれる下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金の層を、下記式(I)および(II)、
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CROまたは-CHCHCHである(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CRO、-CHCHCH、-CN、-NC、-NO、-F、-Cl、-Br、-I、-SOであり(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)、Xは-OH、-COOHまたは-COOOHである]
    で示される化合物から選ばれる錯化剤の1種以上を本質的に含有し、アルカリ性であるエッチング液に接触させ、チタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金を選択的にエッチングすることを特徴とするエッチング方法。
  2.  更に、エッチング液に酸化剤を含有させるものである請求項1記載のエッチング方法。
  3.  エッチング液のpHが11以上である請求項1または2に記載のエッチング方法。
  4.  下記式(I)および(II)、
    Figure JPOXMLDOC01-appb-C000003
    [式(I)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CROまたは-CHCHCHである(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)]
    Figure JPOXMLDOC01-appb-C000004
    [式(II)中、R~Rは、それぞれ同一でも異なってもよく、-R、-OR、-OOR、-COOR、-COOOR、-CHCOOR、-CHCOOOR、-CRO、-CHCHCH、-CN、-NC、-NO、-F、-Cl、-Br、-I、-SOであり(R~Rは、それぞれ同一でも異なってもよく、水素、炭素数1~10の飽和脂肪族基、炭素数1~10の不飽和脂肪族基、またはアリール基である)、Xは-OH、-COOHまたは-COOOHである]
    で示される化合物から選ばれる錯化剤の1種以上を本質的に含有し、アルカリ性であることを特徴とするガラス、シリコン、銅およびニッケルから選ばれる下地基材に設けられたチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金用エッチング液。
  5.  更に、酸化剤を含有する請求項4記載のチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金用エッチング液。
  6.  pHが11以上である請求項4または5に記載のチタン、ニオブ、タングステン、モリブデン、ルテニウム、ロジウム、砒素、アルミニウムおよびガリウムから選ばれる金属、前記金属の酸化物、前記金属の窒化物、窒化シリコン、窒化ハフニウム、窒化タンタルまたはこれらの合金用エッチング液。
PCT/JP2012/072301 2012-03-12 2012-09-03 選択的エッチング方法 WO2013136555A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/385,007 US9169437B2 (en) 2012-03-12 2012-09-03 Selective etching method
JP2014504617A JP6061915B2 (ja) 2012-03-12 2012-09-03 選択的エッチング方法
KR1020147024576A KR20140134283A (ko) 2012-03-12 2012-09-03 선택적 에칭방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/056315 2012-03-12
JP2012056315 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013136555A1 true WO2013136555A1 (ja) 2013-09-19

Family

ID=48752668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072301 WO2013136555A1 (ja) 2012-03-12 2012-09-03 選択的エッチング方法

Country Status (5)

Country Link
US (1) US9169437B2 (ja)
JP (1) JP6061915B2 (ja)
KR (1) KR20140134283A (ja)
CN (1) CN103205259A (ja)
WO (1) WO2013136555A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162967A (ja) * 2016-03-09 2017-09-14 株式会社Adeka タンタル含有層用エッチング液組成物及びエッチング方法
JP2018121056A (ja) * 2017-01-23 2018-08-02 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー タングステン及びgst膜のためのエッチング溶液
WO2021201094A1 (ja) * 2020-03-31 2021-10-07 株式会社トクヤマ 半導体用処理液及びその製造方法
WO2023228774A1 (ja) * 2022-05-27 2023-11-30 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP7466372B2 (ja) 2020-05-13 2024-04-12 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP7478371B2 (ja) 2020-04-03 2024-05-07 株式会社Flosfia 結晶膜の製造方法
JP7478372B2 (ja) 2020-04-03 2024-05-07 株式会社Flosfia 結晶膜の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494254B2 (ja) * 2014-11-18 2019-04-03 関東化學株式会社 銅、モリブデン金属積層膜エッチング液組成物、該組成物を用いたエッチング方法および該組成物の寿命を延ばす方法
US9797048B2 (en) * 2015-03-31 2017-10-24 The Boeing Company Stripping solution for zinc/nickel alloy plating from metal substrate
JP6761166B2 (ja) * 2015-07-23 2020-09-23 セントラル硝子株式会社 ウェットエッチング方法及びエッチング液
CN106186714A (zh) * 2016-07-15 2016-12-07 天津美泰真空技术有限公司 一种抑制tft液晶显示屏减薄后凹点的蚀刻液
EP3959291A4 (en) * 2019-03-11 2023-07-19 Versum Materials US, LLC ETCHING SOLUTION AND PROCESS FOR ALUMINUM NITRIDE
KR20210034905A (ko) 2019-09-23 2021-03-31 동우 화인켐 주식회사 루테늄 금속막 식각액 조성물, 이를 이용한 패턴의 형성 방법 및 어레이 기판의 제조방법, 및 이에 따라 제조된 어레이 기판
KR20220166348A (ko) 2020-04-14 2022-12-16 엔테그리스, 아이엔씨. 몰리브데넘을 에칭하기 위한 방법 및 조성물
US20220049160A1 (en) * 2020-08-13 2022-02-17 Entegris, Inc. Nitride etchant composition and method
CN112362437B (zh) * 2020-10-30 2023-12-19 万华化学集团股份有限公司 一种金相侵蚀剂以及金相组织显示方法
CN112522707B (zh) * 2020-11-20 2021-12-03 湖北兴福电子材料有限公司 一种高选择比的钨蚀刻液
DE102020133278A1 (de) * 2020-12-14 2022-06-15 Schott Ag Verfahren zur Herstellung strukturierter Glasartikel durch alkalische Ätzung
KR20230032470A (ko) 2021-08-31 2023-03-07 동우 화인켐 주식회사 루테늄 함유막 식각액 조성물 및 이를 사용한 도전 패턴 형성 방법
CN114369461B (zh) * 2021-12-09 2023-02-24 湖北兴福电子材料股份有限公司 一种氮化铝和硅的高选择性蚀刻液
CN115011348B (zh) * 2022-06-30 2023-12-29 湖北兴福电子材料股份有限公司 一种氮化铝蚀刻液及其应用
CN115044376B (zh) * 2022-06-30 2023-12-29 湖北兴福电子材料股份有限公司 一种掺钪氮化铝蚀刻液及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536312A (ja) * 2005-04-08 2008-09-04 サッチェム, インコーポレイテッド 金属窒化物の選択的なウェットエッチング
WO2009081884A1 (ja) * 2007-12-21 2009-07-02 Wako Pure Chemical Industries, Ltd. エッチング剤、エッチング方法及びエッチング剤調製液
JP2010165732A (ja) * 2009-01-13 2010-07-29 Hitachi Displays Ltd エッチング液及びこれを用いたパターン形成方法並びに液晶表示装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554050A (en) 1984-07-16 1985-11-19 At&T Bell Laboratories Etching of titanium
US6630433B2 (en) * 1999-07-19 2003-10-07 Honeywell International Inc. Composition for chemical mechanical planarization of copper, tantalum and tantalum nitride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536312A (ja) * 2005-04-08 2008-09-04 サッチェム, インコーポレイテッド 金属窒化物の選択的なウェットエッチング
WO2009081884A1 (ja) * 2007-12-21 2009-07-02 Wako Pure Chemical Industries, Ltd. エッチング剤、エッチング方法及びエッチング剤調製液
JP2010165732A (ja) * 2009-01-13 2010-07-29 Hitachi Displays Ltd エッチング液及びこれを用いたパターン形成方法並びに液晶表示装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162967A (ja) * 2016-03-09 2017-09-14 株式会社Adeka タンタル含有層用エッチング液組成物及びエッチング方法
JP2018121056A (ja) * 2017-01-23 2018-08-02 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー タングステン及びgst膜のためのエッチング溶液
WO2021201094A1 (ja) * 2020-03-31 2021-10-07 株式会社トクヤマ 半導体用処理液及びその製造方法
JP7478371B2 (ja) 2020-04-03 2024-05-07 株式会社Flosfia 結晶膜の製造方法
JP7478372B2 (ja) 2020-04-03 2024-05-07 株式会社Flosfia 結晶膜の製造方法
JP7466372B2 (ja) 2020-05-13 2024-04-12 東京エレクトロン株式会社 基板処理装置および基板処理方法
WO2023228774A1 (ja) * 2022-05-27 2023-11-30 東京エレクトロン株式会社 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
JP6061915B2 (ja) 2017-01-18
CN103205259A (zh) 2013-07-17
US9169437B2 (en) 2015-10-27
JPWO2013136555A1 (ja) 2015-08-03
KR20140134283A (ko) 2014-11-21
US20150048053A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
WO2013136555A1 (ja) 選択的エッチング方法
JP4605409B2 (ja) アルミニウム又はアルミニウム合金の表面処理方法
JP5699794B2 (ja) アルミニウム酸化皮膜用除去液及びアルミニウム又はアルミニウム合金の表面処理方法
TWI419995B (zh) 鋁或鋁合金之表面處理方法
TW201105780A (en) Etchant composition and method
KR20100123652A (ko) 구리 함유 적층 막용 에칭액
JP2008169446A (ja) アルミニウム酸化皮膜用除去液及びアルミニウム又はアルミニウム合金の表面処理方法
JP2005097715A (ja) チタン含有層用エッチング液及びチタン含有層のエッチング方法
KR20150067385A (ko) 에칭액 및 그것을 이용한 에칭 방법
TWI545228B (zh) 銅或以銅為主成分之化合物之蝕刻液
JP5304637B2 (ja) エッチング液及びエッチング方法
JP2006229196A (ja) エッチング液と補給液及びこれを用いた導体パターンの形成方法
JP2009007634A (ja) 銀合金膜のエッチング方法およびエッチング溶液
JP2009074142A (ja) チタン含有層用エッチング液及びチタン含有層のエッチング方法
KR102008689B1 (ko) 구리 및 몰리브덴을 포함하는 다층막의 에칭에 사용되는 액체 조성물, 및 그 액체 조성물을 이용한 기판의 제조방법, 그리고 그 제조방법에 의해 제조되는 기판
KR20210153221A (ko) 선택적 에칭방법
TW200909610A (en) Etching solution composition
JP2008166600A (ja) 異方性エッチング液およびそれを用いたエッチング方法
JP5874308B2 (ja) 銅及びモリブデンを含む多層膜用エッチング液
WO2000011107A1 (en) Ito etching composition
JP4838578B2 (ja) 微細加工処理剤、及びそれを用いた微細加工処理方法
WO2013047156A1 (ja) 洗浄剤組成物およびその製造方法
JPS5830738B2 (ja) エツチングエキ
JP2008144205A (ja) チタンまたはチタン合金用酸洗液、およびこれを用いた酸洗方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147024576

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014504617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14385007

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12870982

Country of ref document: EP

Kind code of ref document: A1