WO2009054076A1 - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法 Download PDF

Info

Publication number
WO2009054076A1
WO2009054076A1 PCT/JP2007/071172 JP2007071172W WO2009054076A1 WO 2009054076 A1 WO2009054076 A1 WO 2009054076A1 JP 2007071172 W JP2007071172 W JP 2007071172W WO 2009054076 A1 WO2009054076 A1 WO 2009054076A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
etching
acid
silicon substrate
wafer
Prior art date
Application number
PCT/JP2007/071172
Other languages
English (en)
French (fr)
Inventor
Yoichiro Nishimoto
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2009506461A priority Critical patent/JP4610669B2/ja
Priority to KR1020097013864A priority patent/KR101088280B1/ko
Priority to EP07830906A priority patent/EP2182556B1/en
Priority to PCT/JP2007/071172 priority patent/WO2009054076A1/ja
Priority to US12/519,406 priority patent/US8119438B2/en
Priority to CN2007800493952A priority patent/CN101573801B/zh
Publication of WO2009054076A1 publication Critical patent/WO2009054076A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/96Porous semiconductor

Definitions

  • the present invention relates to a method for manufacturing a silicon solar cell, and more particularly to a method for forming minute unevenness (texture) on the surface of a silicon substrate.
  • minute irregularities are formed on the surface of a solar cell in order to suppress surface reflection.
  • the incident light is multiple-reflected by these minute irregularities and efficiently absorbed into the solar cell.
  • This minute fold convexity is called texture one.
  • a texture is formed by wet etching using an alkaline aqueous solution such as NaOH or KOH and IPA (isopropyl alcohol). Because this technology uses the difference in the etching rate of the crystal plane, the wafer is composed of one crystal plane like single crystal silicon! However, when various crystal planes exist in the plane like polycrystalline silicon, the reflectivity cannot be lowered sufficiently.
  • Patent Document 3 D
  • Patent Document 4 shows a mechanism for forming pits in silicon with metal attached.
  • Patent Document 1 Japanese Patent No. 3189201
  • Patent Document 2 JP 09-102625 A
  • Patent Document 3 Japanese Patent No. 3925867
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-71626
  • the present invention has been made in view of the above, and after forming a porous silicon layer using an ionic agent containing metal ions and hydrofluoric acid, a clean surface of silicon is obtained.
  • the objective is to obtain a method for manufacturing a high-performance solar cell by exposing the metal and removing the remaining metal.
  • the present invention provides a method for manufacturing a solar cell having a texture on the surface of a silicon substrate, comprising an oxidizing agent containing metal ions and hydrogen fluoride.
  • a second process that forms a texture by dipping in And a step.
  • the porous layer formed using metal ions is etched to such an extent that the effect of reducing the reflectance is not lost by a mixed acid mainly composed of hydrofluoric acid and nitric acid.
  • a clean silicon surface can be obtained while maintaining the effect of reducing reflectivity, and the metal at the bottom of the hole can also be removed. /, Has an effect.
  • etching and metal removal are performed simultaneously, the manufacturing process can be simplified.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a solar cell according to Embodiments 1 and 2 of the present invention.
  • FIG. 2 is an electron micrograph of a porous layer of Ueno etched with a mixed solution of hydrogen peroxide containing Ag ions and hydrofluoric acid.
  • FIG. 3 is a schematic view of a texture formed by etching a porous layer with a mixed acid mainly composed of hydrofluoric acid in the method for manufacturing a solar cell according to the first embodiment of the present invention. It is the electron micrograph which image
  • FIG. 4 is a graph plotting the reflectance of the texture and alkali texture produced by the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 5 is a photograph of the appearance of Ueno etched with a mixed solution of hydrogen peroxide containing Ag ions and hydrofluoric acid according to the example of Patent Document 3.
  • FIG. 6 is a graph plotting the results of measuring the reflectance of a wafer formed with a porous layer and the wafer of an alkaline texture according to the example of Patent Document 3.
  • FIG. 7 is a flowchart for explaining an operation for producing solar cells from a wafer.
  • FIG. 8 is a graph plotting the internal quantum efficiency of a solar cell manufactured using a wafer manufactured according to the example of Patent Document 3 and a wafer to which an alkali texture is applied.
  • Figure 9 shows a mixed solution of hydrogen peroxide and hydrofluoric acid containing 2E-4M Ag ions. It is the photograph which image
  • FIG. 12 is a photograph of the stin film formed at the end of the Ueno ridge shown in FIG.
  • FIG. 15 is a diagram for explaining a comparison of internal quantum efficiencies when the concentration of Ag ions in the mixed solution of hydrogen peroxide containing hydrogen ions and hydrofluoric acid is changed.
  • FIG. 16 is a graph plotting the normalized short-circuit photocurrent density when the Ag ion concentration is changed.
  • FIG. 17 is a photograph of the appearance of a wafer etched for 3 minutes with a mixed solution of hydrogen peroxide and hydrofluoric acid containing 4E-4M Ag ions.
  • FIG. 18 is a photograph of the appearance of Ueno etched for 3 minutes with a mixed solution of hydrogen peroxide and hydrofluoric acid containing 8E-4M Ag ions.
  • FIG. 19 is a diagram for explaining a comparison of short-circuit photocurrent densities of a solar battery cell produced using a texture produced by applying the example of Patent Document 3 and an alkali texture cell. .
  • FIG. 20 is a diagram for explaining a comparison of short-circuit photocurrent densities of a solar cell senore produced by applying the production method according to the first embodiment of the present work and an alkaline textured cell.
  • FIG. 21 shows a solar cell senor produced by forming a porous layer using a mixed solution of hydrogen peroxide and hydrofluoric acid containing different concentrations of Ag, and an alkali texture cell. It is a figure explaining the comparison of the short circuit photocurrent density.
  • Figure 5 is a photograph of the appearance of the sample etched in the lower half of the woofer.
  • Figure 6 shows the measurement results of the reflectance. As shown in FIG. 6, the portion where the porous layer is formed by this etching shows a low reflectance and value compared to the wafer with the alkali texture, but the wafer surface is discolored as shown in FIG. Hydrophobicity, a characteristic of the clean surface of silicon, was not shown.
  • etching with a 1% aqueous sodium hydroxide solution was performed for 10 minutes, and the wafer surface did not show a hydrophobic surface even after the HF cleaning step for removing the natural oxide film. Since a hydrophobic surface cannot be obtained on the surface of the wafer after the formation of the porous layer, the silicon is not simply formed with pores, but the surface silicon is also altered, and the altered silicon is subjected to alkali etching. It can be removed even if it is done.
  • the present inventor has soaked this Ueno in 60% nitric acid for 1 hour for the purpose of removing attached silver, and then performed the process shown in FIG. : 2 X 2cm).
  • a thermal diffusion process is performed to form a pn junction (step Sll).
  • a silicon nitride silicon film as an antireflection film was deposited on the wafer surface using a plasma vapor phase growth apparatus (step S12).
  • the electrode was printed (Step S13) and baked to attach the electrode (Step S14), thereby producing a solar cell.
  • FIG. 8 is a diagram for explaining the short-circuit photocurrent density Jsc of the solar cell fabricated as described above.
  • Fig. 8 shows the characteristics of a solar cell to which an alkali texture is applied as a comparison target.
  • the solar cell produced by the present inventor as described above has greatly deteriorated characteristics as compared with the Al force retextured cell. You can see that it is messenger and Oberare.
  • a high-quality solar cell cannot be produced unless a clean surface that exhibits at least hydrophobicity, which is a characteristic of the clean surface of silicon, is obtained.
  • the wafer is not hydrophobic.
  • the 1 ⁇ m porous layer of the wafer is etched with 5 ⁇ with alkali, it is natural that the ice-sophisticated surface can be obtained.
  • the porous layer is completely removed and is equivalent to the alkali texture.
  • the effect of reducing the reflectance is lost.
  • Patent Document 3 it is simply described that "metal is deposited on the surface of the silicon substrate” and “silver remaining on the surface is removed”. However, it describes the etching of silicon with metal hydrofluoric acid! / Patent Document 4 describes that the portion where metal is attached and the periphery thereof are etched, that is, the metal is etched by a mechanism of making a hole in a silicon substrate like a drill. Therefore, according to the technique of Patent Document 3, the deposited metal remains at the bottom of the hole, and this metal diffuses in the solar cell manufacturing process and lowers the crystal quality. Therefore, it can be said that the characteristics of the solar cell are greatly deteriorated. . The decrease in sensitivity at 800-12 ⁇ 0 ⁇ , which reflects the crystal quality in the internal quantum efficiency shown in Fig. 8, also suggests this.
  • the etching rate differs depending on the crystal plane, the characteristics of alkaline etching become remarkable, and the effect of reducing the reflectance is lost when compared with the alkali texture. Furthermore, even if the porous material is removed with alkali to the extent that the effect of reducing the reflectance is not lost, and the metal at the bottom of the pores can be removed by subsequent acid treatment, the porous layer removal and the metal removal 2 One process is required and the manufacturing process becomes complicated.
  • FIG. 1 is a flowchart for explaining the manufacturing method of the present embodiment.
  • a method for manufacturing the solar cell of the present embodiment will be described according to the one chart of FIG.
  • a p-type polycrystalline silicon wafer (polon doped, 1 to 3 ⁇ ⁇ , 15 X 15 cm square, thickness 280 w m) is prepared.
  • Polycrystalline silicon wafers are manufactured by slicing an ingot made by cooling and solidifying molten silicon with a wire saw, so that the slicing damage remains on the surface. First, this damage layer is removed with an alkali. After that, the surface of the surface was soaked in a chemical solution containing silver nitrate aqueous solution (0.1M) so that the Ag ion concentration (hereinafter referred to as [Ag +]) was reached in a mixed chemical solution of hydrofluoric acid, hydrogen peroxide, and water. A porous layer is formed on (step S1).
  • the porous layer was formed with the wafer stored in a cassette, but no.
  • a porous layer can also be formed by performing etching with a well plate placed horizontally in a flat container such as a lid.
  • the hydrogen generated by etching is confined under the wafer and the uniformity of etching on the lower surface is inferior. It is better to make it.
  • step S2 After performing step S1, the wafer surface is washed and dried (step S2), and the wafer surface is etched with a mixed acid mainly composed of hydrofluoric acid. (Step S3).
  • step S3 the substrate is washed with water (step S4) and etched for 10 seconds with a 1% sodium hydroxide aqueous solution (step S5).
  • a 1% sodium hydroxide aqueous solution etching the silicon with hydrofluoric acid may cause the wafer surface to change color.
  • the film that causes this discoloration is called the “stain film”.
  • the porous layer is etched with a mixed acid mainly composed of hydrofluoric acid as in step S3, this stin film is formed on the surface of the weno.
  • step S5 etching is performed with a 1% sodium hydroxide aqueous solution in order to remove the stin film.
  • a 1% aqueous solution of sodium hydride hydroxide is used at room temperature.
  • the concentration of the alkaline aqueous solution may be about 5% at the maximum, and the chemical temperature may be about room temperature.
  • step S5 the wafer is washed with water (step S6) and removed with a natural acid film and hydrofluoric acid on the wafer surface (step S7), and a hydrophobic surface appears on the surface of the wafer. Finally, it is washed with water (step S8), and the resulting wafer is a wafer to which this embodiment is applied.
  • FIG. 4 is a diagram showing a comparison of reflectance between a wafer to which the present embodiment is applied and a wafer to which an alkali texture is applied.
  • this alkaline texture was sliced from the same ingot as the wafer to which this embodiment was applied, and the damaged layer was removed, and then the aqueous solution of sodium hydroxide (6.3 ° 80 ° C) was treated with IPA60. It was prepared by etching for 9 minutes in a solution containing Oml. According to Fig.
  • FIG. 20 shows a short-circuit photocurrent density J Jsc of a solar cell (senor size: 15 X 15 cm) manufactured by performing the process shown in FIG. As shown in FIG. 20, it can be understood that the short-circuit photocurrent density of the solar cell is improved in the wafers to which the present embodiment is applied as compared with the wafer to which the alkali texture is applied.
  • step S1! In addition to the force described as using Ag as the metal ion, in addition to silver, copper and nickel force S can be used.
  • metal ions silver, copper, nickel, platinum, palladium, gold
  • platinum and gold other than the above metals, cannot be removed by the process of step S3.
  • the etching in step S3 occurs by a mechanism of oxidizing silicon with nitric acid and removing it with hydrofluoric acid. Therefore, the etching rate is determined by the chemical ratio of hydrofluoric acid and nitric acid, such that if the volume ratio of nitric acid increases, the speed of silicon acid is greater than the speed of removal, and silicon etching becomes slower. The Furthermore, the etching rate is adjusted by adding water.
  • the mixed acid used is a mixed acid with a capacity of nitric acid (60%) of 6 or more when the capacity of hydrofluoric acid (50%) is 1.
  • a solar cell was fabricated by using a polycrystalline silicon wafer as a substrate and forming a pn junction by a thermal diffusion method. It is also possible to produce solar cells by depositing amorphous silicon or the like by CVD or the like to form a pn junction.
  • the porous layer formed using metal ions is not mixed with hydrofluoric acid and nitric acid as a main component and has no effect of reducing the reflectance. Nana!
  • etching to a certain extent a clean silicon surface can be obtained while maintaining the effect of reducing the reflectivity, and the metal at the bottom of the hole can be removed, so that a highly efficient solar cell can be manufactured. There is an effect.
  • the etching and the metal removal are performed at the same time, the manufacturing process can be simplified.
  • the mixed acid mainly composed of hydrofluoric acid and nitric acid can be obtained by using a mixed acid in which the capacity of 60 ° / 0 nitric acid is mixed at 6 or more when the capacity of 50% hydrofluoric acid is 1.
  • a mixed acid mainly composed of hydrofluoric acid and nitric acid using an apparatus dedicated to etching, the etching is performed while stirring the mixed acid, so that the concentration of the mixed acid solution on the wafer surface is reduced due to the progress of etching. If it becomes uniform, it has the effect of preventing this.
  • the silicon substrate is installed horizontally or horizontally.
  • the upper surface is used as the light-receiving surface of the solar cell. Therefore, if the etching is prevented from being uneven due to the hydrogen generated on the light-receiving surface, the effect is achieved.
  • the present inventor uses a silicon substrate having a porous layer formed by changing the metal ion concentration to manufacture a solar cell! / ⁇
  • the effect of the metal ion concentration on the solar cell characteristics is investigated. Therefore, the second embodiment will be described in detail below.
  • a solar cell (cell size: 2 ⁇ 2 cm) was fabricated according to the process shown in FIG.
  • FIG. 21 is a diagram showing the short-circuit photocurrent density gjsc of these two solar cells together with the short-circuit photocurrent density 30 of the alkali texture Senole produced by cutting out from the same ingot.
  • wafers cut from different ingots In order to compare the characteristics of the solar cells produced by using the above, an alkaline textured cell was produced from the same ingot as that of each solar cell, and the short-circuit photocurrent density value of the alkaline textured cell was used. Use the standardized values and plot them.
  • the metal ion concentration of the mixed solution used in step S1 must be at least 1 E-4M.
  • the porous layer is removed with a mixed acid mainly composed of hydrofluoric acid so that the effect of reducing the reflectivity is not lost. Etch to the remaining extent.
  • the metal forming the deep hole cannot be completely removed, which adversely affects the characteristics of the solar cell. Therefore, the size of the metal to be deposited should be small. In other words, it is higher than etching for a long time with a mixed solution of low metal ion concentration! / Easy to make highly efficient solar cells by etching with a mixed solution of metal ion concentration in a short time.
  • the metal concentration in the mixed solution containing metal is preferably 1E-4M or more and less than SEAM.
  • the mixed solution containing metal ions used when forming the porous layer on the silicon substrate includes: By using a metal ion concentration of 1E-4M or more and less than 8E-4M, a high-efficiency solar cell can be produced, and a chemical solution cost can be reduced.
  • the method for manufacturing a solar cell according to the present invention is useful for a method for manufacturing a silicon solar cell, and is particularly suitable for forming minute unevenness (texture) on the surface of a silicon substrate. Yes.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

特性の高い太陽電池を簡単な製造工程で製造することができる太陽電池の製造方法を得るために、本太陽電池の製造方法は、シリコン基板の表面にテクスチャーを有する太陽電池の製造方法であって、金属イオンを含有する酸化剤とフッ化水素酸の混合水溶液にシリコン基板を浸漬して当該シリコン基板の表面に多孔質シリコン層を形成する第一工程と、前記第一工程を経たシリコン基板表面をフッ化水素酸及び硝酸を主とした混酸に浸漬してエッチングしてテクスチャーを形成する第二工程と、を備えることを特徴とする。

Description

明 細 書
太陽電池の製造方法
技術分野
[0001] 本発明はシリコン太陽電池の製造方法に関し、特にシリコン基板の表面に微小な 凹凸 (テクスチャ一)を形成するための方法に関する。
背景技術
[0002] 従来、太陽電池の表面には表面反射を抑えるために微小な凹凸が形成される。こ の微小凹凸により入射光は多重反射され、太陽電池内部に効率よく吸収される。こ の微小回凸はテクスチャ一と呼ばれる。
[0003] 一般に単結晶シリコン太陽電池では、 NaOH、 KOH等のアルカリ水溶液と IPA (ィ ソプロピルアルコール)を用レ、たウエットエッチングによってテクスチャーが形成されて いる。この技術は結晶面のエッチング速度の差を利用しているため、単結晶シリコン のようにウェハが一つの結晶面で構成されて!/、る場合には有効であるが、多結晶シリ コンのように面内に様々な結晶面が存在する場合には、十分に反射率を下げること ができない。
[0004] このため、機械的加工法(例えば特許文献 1)や反応性イオンエッチング法(例えば 特許文献 2)など、結晶面方位に依存しなレ、テクスチャ一形成方法が検討されて!/、る 。機械的加工法では枚葉処理のため、また反応性イオンエッチング法はある程度の 枚数を一括処理できるものの真空装置を用!/ヽるため、処理コストがかかると ヽぅ問題 点がある。
[0005] そこで金属イオンを含有する酸化剤とフツイ匕水素酸の混合水溶液にシリコン基板を 浸漬することにより基板表面に多孔質シリコン層を形成し、その後、アルカリに浸漬し てテクスチャーを形成する方法が出願されている (特許文献 3) Dこれに関違して、金 属が付着したシリコンにピットができるメカニズムが特許文献 4に示されている。
[0006] 特許文献 1 :特許第 3189201号公報
特許文献 2:特開平 09— 102625号公報
特許文献 3:特許第 3925867号公報 特許文献 4:特開 2004— 71626号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、特許文献 3に提案されている方法に従って製作した多孔質シリコン層 を持つシリコン基板は、反射率は低い値を示すものの、ウェハ表面は変色し、シリコン の清浄面の特性である疎水性を示さない。この理由としては、単にシリコン表面に孔 が形成されるのではなく表面のシリコンをも変質させているためと考えられる。
[0008] さらにこのウエノ、を、付着した銀の除去を目的として 60%硝酸に 1時間浸潰した後、 このウエノ、を用いて太陽電池セルを作成して特性を評価したところ、アルカリ水溶液 と IPAとを用いて形成したテクスチャ一 (以下、単にアルカリテクスチャーと記述)を適 用した太陽電池に比べて大幅に特性が劣ィヒすることがわ力 た。この理由としては、 60%硝酸に一時間浸漬するプロセスを経ても金属を完全に除去することができず、 この金属が太陽電池作製プロセスで拡散して結晶品質を低下させたため、太陽電池 の特性が大幅に劣化したと考えられる。
[0009] 従って、金属イオンを含有する酸ィ匕剤とフッ化水素酸を用いて多孔質シリコン層を 作成する手法を用レヽて効率のよ!/、太陽電池を得るためには、多孔質シリコン層形成 後にシリコンの清浄面を露出させるとともに残留する金属を除去するプロセスが必要 であることが課題であった。
[0010] 本発明は、上記に鑑みてなされたものであって、金属イオンを含有する酸ィヒ剤とフ ツイ匕水素酸を用レヽて多孔質シリコン層を作成した後、シリコンの清浄面を露出させる とともに残留する金属を除去することで、特性の高 ヽ太陽電池の製造方法を得ること を目的とする。
課題を解決するための手段
[0011] 上述した課題を解決し、目的を達成するために、本発明は、シリコン基板の表面に テクスチャ一を有する太陽電池の製造方法であって、金属イオンを含有する酸化剤 とフッ化水素酸の混合水溶液にシリコン基板を浸漬して当該シリコン基板表面に多 孔質層を形成する第一工程と、前記第一工程を経たシリコン基板表面をフッ化水素 酸及ぴ硝酸を主とした混酸に浸漬してエッチングしてテクスチャーを形成する第二ェ 程と、を備えることを特徴とする。
発明の効果
[0012] この発明によれば、金属イオンを用いて形成した多孔質層を、フッ化水素酸及ぴ硝 酸を主体とした混酸で反射率の低減効果がなくならない程度にエッチングすることに より、反射率の低減効果を残したまま清浄なシリコン面が得られるとともに、孔の底の 金属をも除去できるので、特' !■生の高!、太陽電池を製造することができると!/、う効果を 奏する。また、エッチングと金属の除去を同時に実施するので製造プロセスを簡略化 できるという効果を奏する。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の実施の形態 1および 2にかかる太陽電池の製造方法を説明す るフローチャートである。
[図 2]図 2は、 Agイオンを含んだ過酸化水素水とフッ化水素酸の混合溶液でエツチン グを行ったウエノ、の多孔質層を撮影した電子顕微鏡写真である。
[図 3]図 3は、本発明の実施の形態 1にかかる太陽電池の製造方法において、フッ硝 . 酸を主体とした混酸で多孔質層をエッチングしてシリコン基板表面に形成したテクス チヤ一を撮影した電子顕微鏡写真である。
[図 4]図 4は、本発明の実施の形態 1にかかる太陽電池の製造方法によって作製した テクスチャーおよびアルカリテクスチャ一の反射率をプロットしたグラフである。
[図 5]図 5は、特許文献 3の実施例に従って Agイオンを含んだ過酸化水素水とフッ化 水素酸の混合溶液でエッチングを行ったウエノ、の外観を撮影した写真である。
[図 6]図 6は、特許文献 3の実施例に従って多孔質層を形成したウェハとアルカリテク スチヤ一のウェハの反射率を測定した結果をプロットしたグラフである。
[図 7]図 7は、ウェハから太陽電池セルを作製する作業を説明するフローチャートであ る。
[図 8]図 8は、特許文献 3の実施例に従って作製したウェハとアルカリテクスチャーを 適用したウェハを用いて作製した太陽電池の内部量子効率をプロットしたグラフであ る。
[図 9]図 9は、 2E— 4Mの Agイオンを含む過酸化水素水とフッ化水素酸の混合溶液 でエッチングしたウェハの外観を撮影した写真である。
[図 10]図 10は、図9に示す多孔質層を^^(50%):«^03(69°/。) 20=1:4:15 の混酸で 3分間エッチングしたウェハの外観を撮影した写真である。
[図 11]図 11は、図9に示す多孔質層を1^(50%):¾^03(69%) 20=1:5:15 の混酸で 3分間エッチングしたウェハの外観を撮影した写真である。
[図 12]図 12は、図 11に示すウエノヽの端部に生成したスティン膜を撮影した写真であ る。
[図 13]図 13は、図 9に示す多孔質層を HF(50%):HNO3(69%〉:H2O= :6:15 の混酸で 3分間エッチングしたウエノヽの外観を撮影した写真である。
[図 14]図 14は、図 9に示す多孔質層を HF (50%): HN03(69%): H20=l:9:15 の溶液で 3分間エッチングしたウェハの外観を撮影した写真である。
[図 15]図 15は、 Agイオンを含んだ過酸化水素水とフツイ匕水素酸の混合溶液中の Ag イオン濃度を変えた場合の内部量子効率の比較を説明する図である。
[図 16]図 16は、 Agイオン濃度を変えた場合の規格化短絡光電流密度をプロットした グラフである。
[図 17]図 17は、 4E—4Mの Agイオンを含んだ過酸化水素水とフッ化水素酸の混合 溶液で 3分エッチングしたウェハの外観を撮影した写真である。
[図 18]図 18は、 8E— 4Mの Agイオンを含んだ過酸ィヒ水素水とフッ化水素酸の混合 溶液で 3分エッチングしたウエノ、の外観を撮影した写真である。
[図 19]図 19は、特許文献 3の実施例を適用して作製したテクスチャ一を使用して作 製した太陽電池セルと、アルカリテクスチャーセルの短絡光電流密度の比較を説明 する図である。
[図 20]図 20は、本努明の実施の形態 1にかかる製造方法を適用して作製した太陽電 池セノレと、アルカリテクスチャ一セルの短絡光電流密度の比較を説明する図である。
[図 21]図 21は、異なる濃度の Agを含有する過酸化水素水とフッ化水素酸の混合溶 液を使用して多孔質層を形成して作製した太陽電池セノレと、アルカリテクスチャーセ ルの短絡光電流密度の比較を説明する図である。
符号の説明 [0014] S1—S8, S11—S14 ステップ
発明を実施するための最良の形態
[0015] 本発明者は、特許文献 3に記述される実施例に従ってテクスチャーを作成して特性 評価を行い、特許文献 3の手法の問題点を洗い出した。まず、特許文献 3の実施例 に従って実施した作業の詳細と問題点とを述べる。
[0016] まず、本発明者は、ノ ルク材力 切り出された際に受けたダメージ層を除去した多 結晶シリコン基板を用意し、銀イオンを 1E— 4M (M=mol/L)含有した過酸化水素 とフッ化水素酸の混合水溶液でエッチングを行った。図 5は、ゥヱハの下半分をエツ チングしたサンプルの外観を撮影した写真である。また図 6は反射率の測定結果を 示す図である。図 6に示すように、このエッチングにより多孔質層が形成された部分は アルカリテクスチャーによるウェハに比べて反射率は低レ、値を示すものの、図 5に示さ れるようにウェハ表面は変色し、シリコンの清浄面の特性である疎水性は示さなかつ た。また、その後 1%の水酸化ナトリウム水溶液によるエッチングが 10分間行われた 、ウェハ表面は自然酸化膜除去の HF洗浄工程を経ても疎水面を示すことは無か つた。多孔質層形成後にウエノヽ表面に疎水面が得られない事から、単にシリコンに孔 が形成されてレ、るのではなく表面のシリコンをも変質させており、変質したシリコンが アルカリエッチングを施されても除去できてレ、なレ、と考えられる。
[0017] さらに、本発明者は、付着した銀の除去を目的としてこのウエノ、を 60%硝酸に 1時 間浸漬した後、図 7に示す工程を実施してこのウェハから太陽電池 (セルサイズ: 2 X 2cm)を作製した。図 7において、 pn接合を形成するために熱拡散処理を行う (ステツ プ Sll)。次にプラズマ気相成長装置を用いてウェハ表面に反射防止膜である窒ィ匕 シリコン膜を蒸着した (ステップ S 12)。次に電極を印刷し(ステップ S 13)、焼成して電 極を付着させ (ステップ S 14)、太陽電池セルを作製した。
[0018] 図 8は、このようにして作製された太陽電池の短絡光電流密^ Jscを説明する図で ある。また、図 8には、比較対象としてアルカリテクスチャーを適用した太陽電池の特 性も示されている。この結果、本発明者が上述のように作製した太陽電池は、アル力 リテクスチャーセルと比較して特性が大幅に劣化しており、特許文献 3に記述されて レ、る技術そのままでは太陽電池には使レ、づらレ、ことがわかる。 [0019] 半導体デバイスの製造において、少なくともシリコンの清浄面の特性である疎水性 を示す程度の清浄面が得られないと、高品質の太陽電池は製造できない。特許文献 3に記述される手法では、特許文献 3の請求項 3に提案されるアルカリエッチングが 施されても、ウェハに疎水性は得られない。例えば、ウェハの 1 / mの多孔質層に対 してアルカリで 5 μ ΐηエッチングすれば、当然のことながら疎氷面は得られる力 多孔 質層は完全に除去されてしまい、アルカリテクスチャーと同等の反射率が得られるに すぎなく、反射率の低減効果は失われてしまう。
[0020] また、特許文献 3では単に「金属がシリコン基板表面に析出」「表面に残留している 銀を取り除いた」と記述されている。しかしながら、金属が付着したシリコンのフッ酸に よるエッチングが記述されて!/、る特許文献 4では、金属が付着した部分とその周辺が エッチングされる、つまり金属があたかもドリルのようにシリコン基板に孔を開けていく メカニズムによってエッチングされると記述されている。従って、特許文献 3の手法に よれば、孔の底には析出した金属が残り、この金属が太陽電池作製プロセスで拡散 し結晶品質を低下させるため、太陽電池の特性が大幅に劣化したと言える。図 8に示 す内部量子効率において結晶品質が反映される 800〜12Ο0ηπιでの感度低下も、 この事を示唆している。
[0021] このように、特許文献 3の実施例に記載される方法に従って孔の底に析出した金属 が存在して V、るウエノヽを反射率の低減効果が無くならなレ、程度にアルカリで多孔質 を除去し、なおかつ、酸で孔の底の金属を除去するのは極めて困難である。何故な らば、アルカリでのエッチングが足りなければ、孔の底まで薬液 (酸)が届きにくくなる ので金属は除去しにくく、また金属が除去しやすレヽようアルカリでのエッチング量を増 やせば、結晶面によりエッチング速度が異なると 、うアルカリエッチングの特性が顕 著になり、アルカリテクスチャ一と比較した時、反射率の低減効果がなくなってしまう 力 である。さらに、仮に反射率の低減効果が無くならない程度にアルカリで多孔質 を除去し、かつ、その後の酸処理で孔の底の金属が除去できたとしても、多孔質層除 去と金属除去の 2つのプロセスが必要となり、製造プロセスは煩雑になる。
[0022] そこで、多孔質除去と金属除去を 1つのプロセスで行!/、、低反射率で、かつ、清浄 なウェハ表面を得ることができる太陽電池の製造方法を本発明の実施の形態として 提案する。以下、本発明による太陽電池の製造方法の実施の形態を具体的に説明 する。なお、これらの実施の形態によりこの発明が限定されるものではない。
[0023] 実施の形態 1.
本発明にかかる実施の形態 1の太陽電池の製造方法を説明する。図 1は、本実施 の形態の製造方法を説明するフローチャートである。以下に、図 1のフ口一チャートに 従って本実施の形態の太陽電池の製造方法を説明する。
[0024] p型多結晶シリコンウェハ(ポロンドープ、 1〜3 Ω αη、 15 X 15cm角、厚さ 280 w m )を用意する。多結晶シリコンウェハは溶融したシリコンを冷却固化してできたインゴッ トをワイヤーソ一でスライスして製造するため、表面にスライス時のダメージが残って いる。まず、このダメ一ジ層をアルカリで除去する。その後、フッ酸、過酸化水素、水 の混合薬液に所定の Agイオン濃度 (以下、 [Ag+]と記述)になるよう硝酸銀水溶液 (0. 1M)を添加した薬液にウエノヽを浸漬して表面に多孔質層を形成する (ステップ S 1)。実際には、 HF(50%) :H2O2 (60%): H2〇: AgN〇3 (0. 1M) =400ml: 20 Oml: 1600ml : 4. 4naU[Ag+] =2E— 4M)の薬液が入った槽に、ウェハを立てた 状態で、 3分間エッチングを行った。この時、形成された多孔質層を図 2に示す。
[0025] 今回はウェハをカセットに収納し立てた状態で多孔質層を形成したが、ノ、。ッドのよう な平たレヽ容器にウエノヽを水平にしてエッチングを行つても多孔質層を形成できる。但 し、このようにして多孔質層を形成する場合、エッチングで発生する水素がウエノヽ下 に閉じ込められ下面のエッチングの均一性が劣るため、エッチング時に上になる面を 受光面として太陽電池を作製する方が好まし 、。
[0026] ステップ S1の実施の後、前記ウェハの水洗、乾燥を経て (ステップ S2)、反射率の 低減効果が無くならな)/ヽ程度に、フッ硝酸を主体とした混酸でウェハ表面のエツチン グを行う(ステップ S3)。実際には、 HF(50%): HN03 (69%): Η2〇: = 1 : 9 : 15と レ、う容量比の混酸で 3分間エッチングを行つてレ、る。
[0027] 今回はパッドに薬液を入れ、ウェハを水平にして処理したが、ゥヱハを薬液中で摇 らし、エッチング最中の薬液濃度にムラが起こらなレ、ようにした。ここでもエッチングで 発生する水素がウェハ下で閉じ込められ、下面のエッチングの均一性が劣るので、こ こでもエッチング時に上になる面を受光面として太陽電池を作製する方が好ましい。 もちろんウェハをカセットに入れ、立てた状態でエッチングする事も可能である。
[0028] 最近ではウェハを薬液中に水平に搬送してエッチングする装置が販売されて!/、る 力 このような装置を用いて本技術を実施する場合にはエッチング時の上面を太陽 電池の受光面とする事は重要であるし、また薬液の攪拌、循環等でエッチングが均 一に行われるようにする事はエッチングの様式(ウェハをカセットに入れてエッチング を行う、またはカセットに入れず薬液中を水平搬送してエッチングを行う)によらず、重 要な点と言える。
[0029] ステップ S3の後、水洗し (ステップ S4)、 1%の水酸ィ匕ナトリウム水溶液で 10秒エツ チングする(ステップ S5)。使用するフッ硝酸の薬液比にもよるが、フッ硝酸でシリコン をエッチングするとウェハ表面が変色する事がある。この変色の原因となる膜は「ステ イン膜」などと呼ばれたりする力 ステップ S3のようにフッ硝酸を主体とした混酸により 多孔質層をエッチングする場合、ウエノヽ表面にこのスティン膜が形成される事がある 。ステップ S5では、このスティン膜を除去する目的で 1%の水酸化ナトリウム水溶液で のエッチングを行う。ここでは 1%の水酸ィヒナトリウム水溶液を室温にて使用している 力 アルカリの水溶液であれば薬液の種類は問わない。アルカリ水溶液の濃度は最 大で 5%程度、薬液温度は室温程度でよい。
[0030] ステップ S5の後、ウェハを水洗し (ステップ S6)、ウェハ表面の自然酸ィ匕膜とフッ酸 によって除去する(ステップ S 7)と、ウエノヽ表面に疎水面が現れる。最後に水洗され( ステップ S8)、得られるウェハをもって本実施の形態を適用したウェハとする。
[0031] 以上のプロセスにより形成したテクスチャーを図 3に示す。図 2と比較すると、図 3に 示す本実施の形態を適用したウェハの表面は孔の径が大きぐ底の金属の除去には 好ましい状態となっている事がわかる。図 4は、本実施の形態を適用したゥヱハとアル カリテクスチャーを適用したウェハとの反射率の比較を示す図である。このアルカリテ クスチヤ一は、比較のために、本実施の形態を適用したウェハと同 1 ンゴットからス ライスしダメージ層を除去した後、水酸化ナトリウム水溶液(6. 3°ん 80°C)に IPA60 Omlを加えた溶液にて 9分間エッチングして作製したものである。図 2によると、本実 施の形態を適用したウエノヽの表面は比較対象のアルカリテクスチャーよりも低い反射 率が得られたことがわかる。 [0032] 次に、本実施の形態を適用したゥヱハとァノレカリテクスチャーを適用したウェハとの それぞれにつ!/、て図 7に示したプロセスを実施して作製した太陽電池 (セノレサイズ: 1 5 X 15cm)の短絡光電流密 J Jscを図 20に示す。図 20に示すとおり、本実施の形態 を適用したウエノ、はアルカリテクスチャーを適用したウェハに比べて太陽電池の短絡 光電流密度が向上して 、ることがわかる。
[0033] ここで、ステップ S1にお!/、ては金属イオンとして Agを使用すると説明した力 他に は銀のほかには銅おょぴニッケル力 S使用可能である。特許文献 3で挙げられて!/、る 金属イオン (銀、銅、ニッケル、白金、パラジウム、金)のうち、上記以外の金属である 白金およぴ金はステップ S3のプロセスで除去できない。
[0034] ステップ S3におけるエッチングは、硝酸によりシリコンを酸ィ匕し、それをフッ酸にて 除去するというメカニズムによって起こる。従って、硝酸の容量比が多くなればシリコ ンの酸ィ匕のスピードが除去のスピードよりも大きいためシリコンのエッチングは遅くな るというように、フッ酸、硝酸の薬液比でエッチング速度が決定される。さらに、水を加 える事でエッチング速度が調整される。
[0035] ここでは HF(50%): HN03 (69%): H20 = l : 9 : 15という容量比の薬液を用い ているが、添加する水の量や、エッチング時間を調整すればいいので、フッ酸の容量 1に対して硝酸の容量が 6以上であれば当該薬液中の硝酸の割合を変えても力 わ ない。フッ酸 1に対する硝酸の容量比が 6未満になると様子が異なってくる。図 10、図 11、図 13およぴ図 14は、 HF(50%): H2O2 (60%): H2O :AgNO3 (0. 1M) =4 OOml: 200ml: 1600ml: 4. 4ml([Ag+] = 2E-4M)の薬液で 3分間エッチングを して多孔質層を形成したゥヱハを、それぞれ HF (50%): HN03 (69%): H20 : = l :x: 15の硝酸の量である Xを 4、 5、 6、 9と変化させた薬液にて 3分間エッチングしたゥ ェハの外観を撮影した写真である。(共に、スティン膜除去のために、 1%の NaOH にて 10秒のエッチングを実施している)。比較対象として図 9に HF (50%): H202 ( 60%): H2O:AgNO3 (0. 1M) =400ml: 200ml: 1600ml: 4. 4ml([Ag+] =2 E— 4M)の薬液で 3分間エッチングをして多孔質層を形成したウエノ、の外観を撮影 した写真を示す。
[0036] フッ酸 1に対し硝酸が 4の場合は、硝酸が少なすぎるため、多孔質層のエッチング が極めて遅い。硝酸を 5まで増やすと多孔質層は除去できるものの、形成されるステ イン膜がアルカリで除去できず、図 12に示すようにウエノヽ端部にスティン膜が残る。 図 12は、図 9に示す多孔質層を HF(50%) :HNO3 (69%) :H2O = l : 5: 15の混 酸で 3分間エッチングしたウエノ、の端部に生成したスティン膜を撮影した写真である 。それに対し、硝酸が 6以上になるとスティン膜が残ることなく綺麗に除去できる。従 つて、使用する混酸はフッ酸 (50%)の容量を 1とした場合、硝酸 (60%)の容量が 6 以上で混合した混酸が適してレ、る。
[0037] また、図 7に示すプロセスでは、多結晶シリコンウエノ、を基板とし、熱拡散法により p n接合を形成して太陽電池を作製したが、もちろん単結晶シリコン基板を用いても可 能であるし、 CVD等でアモルファスシリコン等を堆積して pn接合を形成して太陽電 池を作製する事も可能である。
[0038] このように、本発明の実施の形態 1によれば、金属イオンを用いて形成した多孔質 層を、フッ化水素酸及ぴ硝酸を主体とした混酸で反射率の低減効果がなくならな!/、 程度にエッチングすることにより、反射率の低減効果を残したまま清浄なシリコン面が 得られるとともに、孔の底の金属をも除去できるので、高効率の太陽電池を製造する ことができるという効果を奏する。また、エッチングと金属の除去を同時に実施するの で製造プロセスを簡略化できるという効果を奏する。また、フッ化水素酸および硝酸 を主体とした混酸には、 50%フツイ匕水素酸の容量を 1とした場合、 60°/0硝酸の容量 を 6以上で混合された混酸を使用することにより、迅速なエッチング速度とエッチング 後の表面処理の容易さとを両立するエッチングを行うことができるという効果を奏する 。また、エッチング専用の装置を用いてフッ化水素酸および硝酸を主体とした混酸に てエッチングを行う場合、混酸を攪拌させながらエッチングを行うため、エッチングの 進行によりウェハ表面における混酸溶液の濃度が不均一になるとこを防ぐことができ るという効果を奏する。また、金属イオンを用いて多孔質層を形成するプロセスおよ ぴフッ化水素酸及ぴ硝酸を主体とした混酸にてエッチングするプロセスにおレ、て、シ リコン基板を水平に設置、もしくは水平に搬送しながら浸漬する場合、上になった面 を太陽電池の受光面とするため、受光面が発生する水素の影響でエッチングが不均 一になることを防ぐとレ、う効果を奏する。 P T/JP2007/071172
11
[0039] 実施の形態 2.
次に、本発明者は、金属イオン濃度を変えて多孔質層を形成したシリコン基板を用 V、て太陽電池の作製を行!/ \金属イオン濃度が太陽電池の特性に与える影響を調 ベたので、実施の形態 2として以下に詳細に説明する。
[0040] 本実施の形態における製造方法は、実施の形態 1と同様に図 1に従って実施され る。図 1におけるステップ S1において、ひとつのインゴットから切り出してダメージ層を 除去した 2枚のゥヱハについて、 HF(50%): H2O2 (60%): H20 = 400ml: 200m 1: 1600mlの薬液に 0· 1Μ硝酸銀水溶液をそれぞれ 2. 2ml([Ag+] =1E-4M) · 、 1. lml([Ag+] = 5E— 5M)添加した薬液で 3分間のエッチングを行った。ステツ プ S3においては、 HF(50%): HN03 (69%): H20: = 1 : 9 : 15の混酸で、 3分間 のエッチングを行った。ステップ S8までのプロセスを実施した後、図 7に示すプロセス に従って太陽電池 (セルサイズ: 2 X 2cm)を作製した。
[0041] 図 21は、これらの 2つの太陽電池の短絡光電流密 gjscを、同じインゴットから切り 出して作製したアルカリテクスチャーセノレの短絡光電流密 30とともに示す図である
。 [Ag+] = 1E— 4Mではァノレカリテクスチャ一と同程度の Jscだ力 [Ag+] =5E- 5Mになると明らかな Jscの低下が見え、同じエッチング時間にも力、かわらず、 [Ag+] が低レ、方が太陽電池の特性が低!/ヽ結果となった。
[0042] 図 15は、 [Ag+] = 1E— 4M、5E— 5Mで作製したセルとアルカリテクスチャーセ ルの内部量子効率の比較を示す図である。図 15によれば、アルカリテクスチャ一セ ルに比較して [Ag+] =1E— 4M、 5E— 5Mで作製したセルは 800nm以上の波長 域で感度が低下してレヽた。これは多孔質層形成の際に析出した金属が除去し切れ て!/、な!/、ことが原因であり、金属イオン濃度が低 、方がその傾向が高い事を示唆し ている。 '
[0043] 図 16は、ステップ S1において [Ag+] =2E— 4Mの混合溶液を用いて同様に作 製した太陽電池も合わせた短絡光電流密度の比較を示す図である。ただしこの [Ag +] =2E— 4Mの混合溶液を用いて作製した太陽電池のウェハを切り出したインゴッ トは、実施の形態 1の説明に使用したものおょぴ本実施例の前記する 2枚のウェハの インゴットと同じインゴットではない。図 16では、異なるインゴットから切り出したウェハ を用 、て作製した太陽電池の特性を比較するために、それぞれの太陽電池のウエノヽ と同じインゴットからそれぞれアルカリテクスチャ一セルを作製し、そのアルカリテクス チヤ一セルの短絡光電流密度の値で規格ィ匕した値を用 、てプロットしてレ、る。図 16 にお 、て、 Agの濃度が 1E— 4M以上になると、太陽電池の特性がアルカリテクスチ ヤーセルと同等以上に向上している。従って、高効率の太陽電池を得るためには、ス テツプ S 1に使用する混合溶液の金属イオン濃度は少なくとも 1 E— 4M以上である必 要があることがわ力 た。
[0044] また、金属イオン濃度が低くなると金属の析出速度は遅くなり、析出した金属の大き さにバラツキが生じやすくなる。一方、特許文献 4によれば、金属の触媒作用により孔 力 S開くため、孔の深さは析出した金属の大きさに影響を受ける。そのため、早く析出し た金属粒はシリコンに孔を形成するに十分な大きさに早く達し、形成する孔も深レヽが 、遅く析出した金属粒では孔を形成するに十分な大きさに達するのが遅いため、形 成する孔も浅く、結果として孔の深さがばらついた多孔質層が形成される。その後、 反射率の低減効果が無くならない程度にフッ硝酸を主体とした混酸で多孔質層の除 去を行うが、ここで、できるだけ広い割合の領域にわたって凹凸があるのが望ましい ので、浅い孔が残る程度にエッチングする。このとき深い孔があるど深い孔を形成し た金属が除去しきれないため、太陽電池の特性に悪影響を与えてしまう。従って、析 出する金属の大きさはパラツキの程度が小さいほうがよい。つまり、低い金属イオン濃 度の混合溶液で長時間エッチングを行うより、高!/、金属イオン濃度の混合溶液で短 時間にエッチングする方が、高効率の太陽電池を作製しやす 、。
[0045] しかしながら、金属イオン濃度が高すぎると、ウェハに析出する金属が多すぎて、使 用した金属の色を帯ぴるようになる。図 17、 18は HF (50%) :H2O2 (60%) :H2O =400ml :200ml : 1600mlの薬 ί夜に 0· 1Μ硝酸銀水溶液をそれぞれ 8. 8ml ([Ag +] = 4E— 4M)、 17. 6ml([Ag+] =8E— 4M)添加した薬液で 3分間エッチング したウエノヽの外観を撮影した写真である。これらの写真を比較すると、 [Ag+] = 8E _4Mの薬液を使用すると、析出した Agによりウェハが Ag色(白色)を帯びていること がわかる。
[0046] このようなウェハでもフッ硝酸を主体とした混酸でエッチングを行えば、太陽電池の 特性上、何ら問題はないが、多孔質層形成時に大量の金属イオンが必要となったり 、また、大量の金属を除去するために混酸の薬液寿命が短くなる、などコストの面で のデメリットが生じる。
[0047] 以上より、金属を含有する混合溶液における金属濃度は、 1E—4M以上かつ SEAM未満であることが好ましいということが明らかになった。
[0048] このように、本発明に力かる実施の形態 2の太陽電池の製造方法によれば、シリコ ン基板に多孔質層を形成する際に使用する金属イオンを含有する混合溶液には、 金属イオン濃度が 1E— 4M以上かつ 8E—4M未満のものを使用することで、'高効率 の太陽電池が製造できるとともに、薬液コストを低減することができると Vヽぅ効果を奏 する。
産業上の利用可能性
[0049] 以上のように、本発明にかかる太陽電池の製造方法は、シリコン太陽電池の製造方 法に有用であり、特に、シリコン基板の表面に微小な凹凸(テクスチャー)の形成に適 している。

Claims

請求の範囲
[1] シリコン基板の表面にテクスチャーを有する太陽電池の製造方法であって、
金属イオンを含有する酸化剤とフッ化水素酸の混合水溶液にシリコン基板を浸漬し て当該シリコン基板表面に多孔質層を形成する第一工程と、
前記第一工程を経たシリコン基板表面をフツイ匕水素酸及び硝酸を主とした混酸に 浸漬してエッチングしてテクスチャーを形成する第二工程と、
を備えることを特徴とした太陽電池の製造方法。
[2] 前記第二工程において使用される前記混酸は、 50%フッ化水素酸の容量を 1とし た場合、 60%硝酸の容量を 6以上で混合された混酸である、
ことを特徴とする請求項 1に記載の太陽電池の製造方法。
[3] 前記第二工程を経たシリコン基板をアルカリ薬液にてエッチングする第三工程をさ らに備えることを特徴とする請求項 1に記載の太陽電池の製造方法。
[4] 前記第二工程は、前記混酸を循環または攪拌させながら前記第一工程を経たシリ コン基板のエッチングを行う、
ことを特徴とする請求項 1に記載の太陽電池の製造方法。
[5] 前記第一工程おょひンまたは前記第二工程において、前記シリコン基板を水平に 設置、もしくは水平に搬送しながら浸漬する場合、上になった面を太陽電池の受光 面とする、
ことを特徴とする請求項 1に記載の太陽電池の製造方法。
[6] 前記第一工程に使用される金属イオンを含有する酸化剤とフッ化水素酸の前記混 合水溶液における金属イオン濃度は、 IE— 4M以上かつ 8E— 4M未満である、 ことを特徴とする請求項 1に記載の太陽電池の製造方法。
PCT/JP2007/071172 2007-10-24 2007-10-24 太陽電池の製造方法 WO2009054076A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009506461A JP4610669B2 (ja) 2007-10-24 2007-10-24 太陽電池の製造方法
KR1020097013864A KR101088280B1 (ko) 2007-10-24 2007-10-24 태양전지의 제조 방법
EP07830906A EP2182556B1 (en) 2007-10-24 2007-10-24 Process for manufacturing solar cell
PCT/JP2007/071172 WO2009054076A1 (ja) 2007-10-24 2007-10-24 太陽電池の製造方法
US12/519,406 US8119438B2 (en) 2007-10-24 2007-10-24 Method of manufacturing solar cell
CN2007800493952A CN101573801B (zh) 2007-10-24 2007-10-24 太阳能电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/071172 WO2009054076A1 (ja) 2007-10-24 2007-10-24 太陽電池の製造方法

Publications (1)

Publication Number Publication Date
WO2009054076A1 true WO2009054076A1 (ja) 2009-04-30

Family

ID=40579186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071172 WO2009054076A1 (ja) 2007-10-24 2007-10-24 太陽電池の製造方法

Country Status (6)

Country Link
US (1) US8119438B2 (ja)
EP (1) EP2182556B1 (ja)
JP (1) JP4610669B2 (ja)
KR (1) KR101088280B1 (ja)
CN (1) CN101573801B (ja)
WO (1) WO2009054076A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102280A1 (ja) * 2011-01-26 2012-08-02 株式会社Sumco 太陽電池用ウェーハおよびその製造方法
JP2012156331A (ja) * 2011-01-26 2012-08-16 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
CN102656250A (zh) * 2009-09-21 2012-09-05 巴斯夫欧洲公司 含水酸性蚀刻溶液和使单晶和多晶硅衬底的表面纹理化的方法
WO2012150669A1 (ja) 2011-05-02 2012-11-08 三菱電機株式会社 シリコン基板の洗浄方法および太陽電池の製造方法
WO2012157179A1 (ja) * 2011-05-17 2012-11-22 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2012243851A (ja) * 2011-05-17 2012-12-10 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2013012705A (ja) * 2011-06-01 2013-01-17 Sumco Corp 太陽電池用ウェーハ、太陽電池セルおよび太陽電池モジュール
JP2013026571A (ja) * 2011-07-25 2013-02-04 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2013143531A (ja) * 2012-01-12 2013-07-22 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5295437B2 (ja) * 2011-05-02 2013-09-18 三菱電機株式会社 シリコン基板の洗浄方法および太陽電池の製造方法
JP2014512673A (ja) * 2011-03-08 2014-05-22 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー 向上された青色感度を有する効率的なブラックシリコン光起電装置
CN104576830A (zh) * 2014-12-30 2015-04-29 江西赛维Ldk太阳能高科技有限公司 一种金刚线切割多晶硅片的制绒预处理液、制绒预处理方法和制绒预处理硅片及其应用
CN105576080A (zh) * 2016-01-29 2016-05-11 江西赛维Ldk太阳能高科技有限公司 一种金刚线切割多晶硅片的单面制绒方法及单面制绒的金刚线切割多晶硅片
JP2018006744A (ja) * 2016-06-27 2018-01-11 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 結晶シリコン太陽電池のテクスチャー構造およびその調製方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729798B2 (en) 2008-03-21 2014-05-20 Alliance For Sustainable Energy, Llc Anti-reflective nanoporous silicon for efficient hydrogen production
US8815104B2 (en) * 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
WO2011060193A1 (en) 2009-11-11 2011-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
US8349626B2 (en) * 2010-03-23 2013-01-08 Gtat Corporation Creation of low-relief texture for a photovoltaic cell
CN102222722B (zh) * 2010-04-14 2014-06-18 圆益Ips股份有限公司 太阳能电池元件的制备方法及利用该方法制备的太阳能电池元件
TWI451586B (zh) * 2010-04-14 2014-09-01 Wonik Ips Co Ltd 太陽能電池之矽基板表面處理方法及太陽能電池之製造方法
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
WO2012023445A1 (ja) * 2010-08-20 2012-02-23 株式会社 村田製作所 紫外線センサ、及び紫外線センサの製造方法
WO2012029000A1 (en) * 2010-09-01 2012-03-08 Basf Se Aqueous acidic solution and etching solution and method for texturizing surface of single crystal and polycrystal silicon substrates
TWI447925B (zh) * 2010-09-14 2014-08-01 Wakom Semiconductor Corp 單晶矽太陽能電池製造方法以及適用於單晶矽太陽能電池製造方法的蝕刻方法
CN102157608A (zh) * 2010-12-30 2011-08-17 中国科学院物理研究所 一种降低硅片表面光反射率的方法
CN102732969B (zh) * 2011-04-11 2015-07-08 昆山中辰矽晶有限公司 晶棒表面纳米化制程及其晶圆制造方法
DE102011115532A1 (de) * 2011-04-18 2012-10-18 Sovello Gmbh Verfahren zur Herstellung eines texturierten Siliziumsubstrats
JP5957835B2 (ja) 2011-09-28 2016-07-27 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
CN102544199A (zh) * 2011-12-15 2012-07-04 浙江鸿禧光伏科技股份有限公司 一种晶体硅电池酸制绒蜂窝结构的方法
TWI474392B (zh) * 2012-03-03 2015-02-21 Production method of silicon solar cell substrate
CN102637774A (zh) * 2012-04-01 2012-08-15 吉阳设备(海安)有限公司 一种全自动化se电池量产腐蚀装置及加工方法
CN103390688A (zh) * 2012-05-11 2013-11-13 华中科技大学 一种太阳能电池表面覆膜结构的制备方法
DE102012213793B3 (de) * 2012-08-03 2013-10-24 Solarworld Innovations Gmbh Untersuchung eines Siliziumsubstrats für eine Solarzelle
CN105917625B (zh) * 2013-10-18 2020-03-27 瑞典爱立信有限公司 使用附加数据的检测到的网络异常的分类
CN104962998A (zh) * 2015-07-08 2015-10-07 中国科学院宁波材料技术与工程研究所 基于金刚线切割的硅片的制绒预处理方法及硅片制绒方法
CN104966762B (zh) * 2015-07-09 2018-03-09 苏州阿特斯阳光电力科技有限公司 晶体硅太阳能电池绒面结构的制备方法
CN104993019A (zh) * 2015-07-09 2015-10-21 苏州阿特斯阳光电力科技有限公司 一种局部背接触太阳能电池的制备方法
CN105220235B (zh) * 2015-10-12 2017-12-08 常州捷佳创精密机械有限公司 一种单多晶制绒方法
CN105405755B (zh) * 2015-10-30 2018-11-06 深圳市石金科技股份有限公司 用于硅片金字塔制绒的酸性制绒液、制绒方法以及采用该制绒方法制绒而成的硅片
WO2017078164A1 (ja) * 2015-11-04 2017-05-11 株式会社カネカ 結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
CN105810761B (zh) * 2016-04-29 2018-07-27 南京工业大学 一种金刚线切割多晶硅片的制绒方法
CN106098810B (zh) * 2016-06-27 2018-11-13 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池绒面结构的制备方法
CN106057972A (zh) * 2016-06-27 2016-10-26 苏州阿特斯阳光电力科技有限公司 晶体硅太阳能电池绒面结构的制备方法
CN106206381A (zh) * 2016-08-30 2016-12-07 苏州聚晶科技有限公司 一种单晶制绒清洗机及其工艺方法
TWI596637B (zh) * 2016-12-02 2017-08-21 致伸科技股份有限公司 組裝鍵盤之方法
CN107177889A (zh) * 2017-05-22 2017-09-19 嘉兴尚能光伏材料科技有限公司 一种单晶硅太阳能电池的表面绒面制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102625A (ja) 1995-07-28 1997-04-15 Kyocera Corp 太陽電池素子の製造方法
JPH1079524A (ja) * 1996-09-04 1998-03-24 Sony Corp 薄膜太陽電池の製造方法
JP3189201B2 (ja) 1995-11-21 2001-07-16 シャープ株式会社 太陽電池製造装置およびそれを用いた太陽電池の製造方法
JP2002184751A (ja) * 2000-12-14 2002-06-28 Ebara Corp エッチング方法およびその装置
JP2002252202A (ja) * 2001-02-27 2002-09-06 Takashi Matsuura 半導体基材表面への微細構造形成方法およびその方法により微細構造を形成した半導体基材ならびにそれを用いたデバイス
WO2003105209A1 (ja) * 2002-06-06 2003-12-18 関西ティー・エル・オー株式会社 太陽電池用多結晶シリコン基板の製造方法
JP2004071626A (ja) 2002-08-01 2004-03-04 Komatsu Electronic Metals Co Ltd シリコンウェーハのhf洗浄方法及びhf洗浄装置
JP2005183505A (ja) * 2003-12-17 2005-07-07 Kansai Tlo Kk 多孔質層付きシリコン基板を製造する方法
JP2005268285A (ja) * 2004-03-16 2005-09-29 Sharp Corp 半導体のエッチング方法およびエッチング液
JP2005277208A (ja) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd 半導体素子の製造方法
JP2005311060A (ja) * 2004-04-21 2005-11-04 Sharp Corp 太陽電池の製造方法、太陽電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267270A (ja) 1992-03-18 1993-10-15 Takashi Katoda 多孔質半導体の作成方法及び多孔質半導体基板
JP3271990B2 (ja) 1997-03-21 2002-04-08 三洋電機株式会社 光起電力素子及びその製造方法
CN1288763C (zh) * 2002-12-30 2006-12-06 中国电子科技集团公司第十八研究所 太阳能电池中的双层减反射膜氧化钛/氧化钇退膜方法
DE20321702U1 (de) * 2003-05-07 2008-12-24 Universität Konstanz Vorrichtung zum Texturieren von Oberflächen von Silizium-Scheiben
JP2005142457A (ja) 2003-11-10 2005-06-02 Kansai Tlo Kk 太陽電池を製造する方法
JP2005150614A (ja) * 2003-11-19 2005-06-09 Sharp Corp 太陽電池及びその製造方法
JP2005217193A (ja) * 2004-01-29 2005-08-11 Shinryo Corp シリコン基板のエッチング方法
JP4553597B2 (ja) 2004-01-30 2010-09-29 シャープ株式会社 シリコン基板の製造方法および太陽電池セルの製造方法
EP1753032A1 (en) * 2004-05-28 2007-02-14 Sharp Kabushiki Kaisha Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
JP4495572B2 (ja) 2004-11-15 2010-07-07 シャープ株式会社 ステイン膜除去方法
TWI244135B (en) * 2004-12-31 2005-11-21 Ind Tech Res Inst Method of making solar cell
CN100490187C (zh) * 2005-09-12 2009-05-20 中芯国际集成电路制造(上海)有限公司 太阳能电池基片绒面结构的形成方法
JP2007194485A (ja) 2006-01-20 2007-08-02 Osaka Univ 太陽電池用シリコン基板の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102625A (ja) 1995-07-28 1997-04-15 Kyocera Corp 太陽電池素子の製造方法
JP3189201B2 (ja) 1995-11-21 2001-07-16 シャープ株式会社 太陽電池製造装置およびそれを用いた太陽電池の製造方法
JPH1079524A (ja) * 1996-09-04 1998-03-24 Sony Corp 薄膜太陽電池の製造方法
JP2002184751A (ja) * 2000-12-14 2002-06-28 Ebara Corp エッチング方法およびその装置
JP2002252202A (ja) * 2001-02-27 2002-09-06 Takashi Matsuura 半導体基材表面への微細構造形成方法およびその方法により微細構造を形成した半導体基材ならびにそれを用いたデバイス
WO2003105209A1 (ja) * 2002-06-06 2003-12-18 関西ティー・エル・オー株式会社 太陽電池用多結晶シリコン基板の製造方法
JP2004071626A (ja) 2002-08-01 2004-03-04 Komatsu Electronic Metals Co Ltd シリコンウェーハのhf洗浄方法及びhf洗浄装置
JP2005183505A (ja) * 2003-12-17 2005-07-07 Kansai Tlo Kk 多孔質層付きシリコン基板を製造する方法
JP3925867B2 (ja) 2003-12-17 2007-06-06 関西ティー・エル・オー株式会社 多孔質層付きシリコン基板を製造する方法
JP2005268285A (ja) * 2004-03-16 2005-09-29 Sharp Corp 半導体のエッチング方法およびエッチング液
JP2005277208A (ja) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd 半導体素子の製造方法
JP2005311060A (ja) * 2004-04-21 2005-11-04 Sharp Corp 太陽電池の製造方法、太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2182556A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656250A (zh) * 2009-09-21 2012-09-05 巴斯夫欧洲公司 含水酸性蚀刻溶液和使单晶和多晶硅衬底的表面纹理化的方法
CN102656250B (zh) * 2009-09-21 2015-02-25 巴斯夫欧洲公司 含水酸性蚀刻溶液和使单晶和多晶硅衬底的表面纹理化的方法
WO2012102280A1 (ja) * 2011-01-26 2012-08-02 株式会社Sumco 太陽電池用ウェーハおよびその製造方法
JP2012156331A (ja) * 2011-01-26 2012-08-16 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
US9276153B2 (en) 2011-01-26 2016-03-01 Sumco Corporation Solar cell wafer and method of producing the same
KR101528864B1 (ko) * 2011-01-26 2015-06-15 가부시키가이샤 사무코 태양전지용 웨이퍼 및 그 제조 방법
US11251318B2 (en) 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
JP2014512673A (ja) * 2011-03-08 2014-05-22 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー 向上された青色感度を有する効率的なブラックシリコン光起電装置
JP5295437B2 (ja) * 2011-05-02 2013-09-18 三菱電機株式会社 シリコン基板の洗浄方法および太陽電池の製造方法
TWI467648B (zh) * 2011-05-02 2015-01-01 Mitsubishi Electric Corp A cleaning method of a silicon substrate, and a method for manufacturing a solar cell
WO2012150669A1 (ja) 2011-05-02 2012-11-08 三菱電機株式会社 シリコン基板の洗浄方法および太陽電池の製造方法
WO2012150627A1 (ja) * 2011-05-02 2012-11-08 三菱電機株式会社 シリコン基板の洗浄方法および太陽電池の製造方法
US8865509B2 (en) 2011-05-02 2014-10-21 Mitsubishi Electric Corporation Cleaning method of silicon substrate and manufacturing method of solar battery
JP2012243851A (ja) * 2011-05-17 2012-12-10 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
US8883543B2 (en) 2011-05-17 2014-11-11 Sumco Corporation Method of producing wafer for solar cell, method of producing solar cell, and method of producing solar cell module
KR101513911B1 (ko) 2011-05-17 2015-04-21 가부시키가이샤 사무코 태양 전지용 웨이퍼의 제조방법, 태양 전지 셀의 제조방법, 및 태양 전지 모듈의 제조방법
WO2012157179A1 (ja) * 2011-05-17 2012-11-22 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2013012705A (ja) * 2011-06-01 2013-01-17 Sumco Corp 太陽電池用ウェーハ、太陽電池セルおよび太陽電池モジュール
JP2013026571A (ja) * 2011-07-25 2013-02-04 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2013143531A (ja) * 2012-01-12 2013-07-22 Sumco Corp 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
CN104576830A (zh) * 2014-12-30 2015-04-29 江西赛维Ldk太阳能高科技有限公司 一种金刚线切割多晶硅片的制绒预处理液、制绒预处理方法和制绒预处理硅片及其应用
CN105576080A (zh) * 2016-01-29 2016-05-11 江西赛维Ldk太阳能高科技有限公司 一种金刚线切割多晶硅片的单面制绒方法及单面制绒的金刚线切割多晶硅片
JP2018006744A (ja) * 2016-06-27 2018-01-11 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 結晶シリコン太陽電池のテクスチャー構造およびその調製方法

Also Published As

Publication number Publication date
KR101088280B1 (ko) 2011-11-30
EP2182556A1 (en) 2010-05-05
US20100029034A1 (en) 2010-02-04
US8119438B2 (en) 2012-02-21
KR20090087113A (ko) 2009-08-14
JPWO2009054076A1 (ja) 2011-03-03
CN101573801A (zh) 2009-11-04
JP4610669B2 (ja) 2011-01-12
EP2182556A4 (en) 2011-05-18
EP2182556B1 (en) 2013-01-16
CN101573801B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4610669B2 (ja) 太陽電池の製造方法
TWI475712B (zh) 太陽電池用晶圓的製造方法、太陽電池單元的製造方法以及太陽電池模組的製造方法
JP2005150614A (ja) 太陽電池及びその製造方法
JP2010245568A (ja) 太陽電池の製造方法
CN105967139A (zh) 在硅基体上刻蚀孔洞的方法、含孔洞硅基体和半导体器件
JP5509410B2 (ja) 太陽電池用シリコン基板の製造方法
TWI489646B (zh) Method for manufacturing solar cells
KR101528864B1 (ko) 태양전지용 웨이퍼 및 그 제조 방법
TWI385813B (zh) Method for manufacturing solar cells
JP2005311060A (ja) 太陽電池の製造方法、太陽電池
JP5724718B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2013225552A (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5724614B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
CN111864013A (zh) 一种单晶硅基倒金字塔绒面的干湿混合制备方法
Ahmad Morphological and Optical Properties of Silicon Nanostructure, Obtained by One Step Ag-assisted Chemical Etching
JP5703780B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5880055B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP6359519B2 (ja) シリコン基板の表面処理方法、半導体装置の製造方法、半導体の製造装置、転写用部材およびその製造方法、太陽電池および太陽電池の製造方法
JP2012169420A (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法および太陽電池モジュールの製造方法
JP2013012705A (ja) 太陽電池用ウェーハ、太陽電池セルおよび太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780049395.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009506461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12519406

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097013864

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007830906

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE