WO2012157179A1 - 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法 - Google Patents

太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2012157179A1
WO2012157179A1 PCT/JP2012/002398 JP2012002398W WO2012157179A1 WO 2012157179 A1 WO2012157179 A1 WO 2012157179A1 JP 2012002398 W JP2012002398 W JP 2012002398W WO 2012157179 A1 WO2012157179 A1 WO 2012157179A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
solar cell
treatment
mass
solution
Prior art date
Application number
PCT/JP2012/002398
Other languages
English (en)
French (fr)
Inventor
奥内 茂
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011110400A external-priority patent/JP5724614B2/ja
Priority claimed from JP2011162424A external-priority patent/JP5724718B2/ja
Priority claimed from JP2012004034A external-priority patent/JP5880055B2/ja
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020137030156A priority Critical patent/KR101513911B1/ko
Priority to CN201280023391.8A priority patent/CN103563097B/zh
Priority to US14/006,563 priority patent/US8883543B2/en
Priority to DE112012002092.8T priority patent/DE112012002092T5/de
Publication of WO2012157179A1 publication Critical patent/WO2012157179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a method for manufacturing a solar cell wafer, a method for manufacturing a solar cell, and a method for manufacturing a solar cell module.
  • the present invention particularly relates to a method for producing a solar cell wafer for making a surface of a semiconductor wafer porous for the purpose of producing a solar cell with high conversion efficiency.
  • a solar battery cell is formed using a semiconductor wafer including a silicon wafer.
  • the silicon wafer has a low transmittance of visible light that contributes to photoelectric conversion. The reflection loss of visible light on the surface should be kept low, and the incident light can be effectively confined in the solar cell.
  • Technologies for reducing the reflection loss of incident light on the surface of a silicon wafer include a technology for forming an antireflection film on the surface and a technology for forming a concavo-convex structure such as a micro pyramid type concavo-convex called a texture structure on the surface. is there.
  • a method of forming a texture structure on the surface is a method suitable for single crystal silicon, and a method of (100) etching a single crystal silicon surface with an alkaline solution is representative. This utilizes the fact that the etching rate of the (111) plane is slower than the etching rates of the (100) plane and the (110) plane in the etching using alkali.
  • a technique has been proposed in which the silicon surface is made porous so that a concavo-convex structure is formed on the surface and the reflection loss of incident light is reduced.
  • Patent Document 1 describes a method of forming a large number of micropores on the surface by anodizing treatment in which a single crystal silicon substrate is used as an anode and Pt is used as a cathode and current is passed in hydrofluoric acid.
  • Patent Document 2 in order to form finer submicron-order irregularities on the surface of a silicon substrate on which a micron-sized texture structure is formed, the substrate is oxidized after electroless plating with metal particles.
  • a technique for etching with a mixed aqueous solution of an agent and hydrofluoric acid is described. Specifically, a p-type single crystal silicon substrate subjected to alkali texture treatment is immersed in an aqueous solution containing silver perchlorate and sodium hydroxide to form silver fine particles on the surface. Thereafter, the substrate is immersed in a mixed solution of hydrogen peroxide, hydrofluoric acid and water to form submicron-order irregularities.
  • Patent Document 2 many of the known porosification techniques have been studied mainly from the viewpoint of reducing the reflectance of incident light on the silicon wafer surface as much as possible. In fact, the actual conversion efficiency of the solar cell has not been studied.
  • the present invention makes the surface of a semiconductor wafer including a silicon wafer porous so that the reflectance of incident light on the wafer surface is sufficiently reduced, and the solar with higher conversion efficiency. It is an object of the present invention to provide a method for manufacturing a solar cell wafer capable of producing a battery, a method for manufacturing a solar cell including the method, and a method for manufacturing a solar cell module.
  • the present inventor has intensively studied and repeated trial and error with various porosification treatment methods.
  • various porosification treatment methods As a result, according to the following method, submicron-order irregularities are formed on the semiconductor wafer surface. And it discovered that the conversion efficiency of the solar cell manufactured from this wafer can be made high, reducing the reflection loss of the light in the surface effectively, and came to complete this invention.
  • This invention is based on said knowledge and examination,
  • the summary structure is as follows.
  • the method for producing a solar cell wafer according to the present invention includes a first step of bringing a lower alcohol into contact with at least one surface of a semiconductor wafer, and hydrogen fluoride containing metal ions on at least one surface of the semiconductor wafer after the first step.
  • a step of bringing an acid into contact with each other, and making at least one side of the semiconductor wafer porous by a treatment comprising: contacting an alkali solution with at least the one side of the semiconductor wafer after the second step; It has the 3rd process which is the process of making the acid solution containing hydrofluoric acid and nitric acid contact, or the process of performing an oxidation process, It is set as the wafer for solar cells, It is characterized by the above-mentioned.
  • the semiconductor wafer is a silicon wafer and the metal ions are ions of a metal nobler than Si.
  • this invention has the process of making the solution which removes the metal which precipitated from the said metal ion from the said single side at least said one side of the said semiconductor wafer after the said 2nd process and before the said 3rd process. preferable.
  • the thickness of the porous layer formed on the one side is preferably 50 to 400 nm.
  • the pH of the alkaline solution in the third step is preferably 9.0 to 14.0.
  • the time for contacting the alkaline solution in the third step is 600 seconds or less.
  • the concentration of the hydrofluoric acid in the acid solution is 0.1 to 5.0% by mass and the concentration of the nitric acid is 20 to 50% by mass.
  • the time for contacting the acid solution in the third step is 10 minutes or less.
  • the oxidation treatment is a treatment in which a liquid containing an oxidant is brought into contact with at least one surface of the semiconductor wafer.
  • the oxidation treatment is a heat treatment in an atmosphere containing oxygen on at least one surface of the semiconductor wafer.
  • the oxidation treatment is a treatment for forming an oxide film on at least one surface of the semiconductor wafer by a liquid phase growth method.
  • the method for manufacturing a solar cell according to the present invention further includes a step of producing a solar cell with the solar cell wafer in addition to the step in the method for manufacturing a solar cell wafer.
  • the method for producing a solar cell module of the present invention further includes a step of producing a solar cell module from the solar cell in addition to the steps in the method for producing a solar cell.
  • the surface of the wafer is finely made porous, the reflectance of incident light on the wafer surface is sufficiently reduced, and a solar cell with higher conversion efficiency is produced using the obtained solar cell wafer. can do.
  • FIG. 1 is a flowchart of a method for manufacturing a typical solar cell wafer according to the present invention.
  • the semiconductor wafer used in the present invention is not particularly limited.
  • a single crystal or polycrystalline silicon wafer (hereinafter, also simply referred to as “wafer”) is used.
  • Wafer a single crystal or polycrystalline silicon wafer
  • a method for producing a single crystal or polycrystalline silicon solar cell wafer by subjecting it to a porous treatment will be described.
  • the single crystal silicon wafer a single crystal silicon ingot grown by the Czochralski method (CZ method) or the like and sliced with a wire saw or the like can be used. Also, the plane orientation of the wafer surface can be selected as required, such as (100), (001) and (111).
  • a polycrystalline silicon wafer can be obtained from a polycrystalline silicon ingot by slicing.
  • the surface of the wafer cut out from the ingot is damaged by cracks and crystal distortion introduced into the silicon layer by slicing. For this reason, after slicing, it is preferable to clean the wafer, and to etch the surface of the wafer with acid or alkali to remove the damaged surface.
  • the penetration depth of the damage derived from the slicing process is a factor determined by the slicing process conditions, but is approximately 10 ⁇ m or less. Therefore, it is possible to cope with an etching process that is generally performed with an alkali such as KOH or a hydrofluoric acid (HF) / nitric acid (HNO 3 ) mixed acid.
  • the present invention is a method for making a wafer for solar cells by making at least one surface of a wafer porous. That is, in this specification, the “solar cell wafer” means a wafer in which at least one surface of the wafer is subjected to the treatment specified in the present invention and the one surface is made porous. This one surface is a surface that serves as a light receiving surface in the solar battery cell.
  • the characteristic process of the present invention includes a first process (step S1) in which a lower alcohol solution is brought into contact with at least one surface of a wafer, and a fluoride containing metal ions on at least one surface of the wafer after the first process.
  • step S2 in which hydroacid is brought into contact, and a step in which an alkaline solution is brought into contact with at least one surface of the semiconductor wafer after the second step, an acid solution containing hydrofluoric acid and nitric acid
  • step S5 which is a step of bringing the step into contact with each other, or a step of performing an oxidation treatment.
  • the air-dried p-type (100) single crystal silicon wafer is placed in a lower alcohol such as 2-propanol (isopropyl alcohol; IPA) for a predetermined time. It was found that when immersed for a predetermined time in hydrofluoric acid in which copper (Cu) was dissolved, the surface of the wafer became black in appearance, and the reflectance decreased at wavelengths in the entire visible light range. Further, when a scanning electron microscope (SEM) image of the wafer surface was confirmed, many finer irregularities were formed on the irregular surface of about several ⁇ m.
  • SEM scanning electron microscope
  • the reason why the high conversion efficiency as expected from the low reflectance cannot be obtained is that the surface recombination phenomenon in which electrons are trapped in the fine porous structure on the surface of the solar cell wafer occurs frequently and can be taken out to the outside. It is conceivable that there is a phenomenon in which electrons decrease. That is, Si atoms present on the wafer surface have a dangling bond (unsaturated bond) at a certain ratio, and this dangling bond acts as a trapping site for electrons or holes obtained by light incidence. (Carrier component surface recombination phenomenon). As the porous structure becomes finer, the surface area of the wafer surface increases, resulting in an increase in the number of dangling bonds, and surface recombination phenomenon occurs more frequently. For this reason, it is considered that the high conversion efficiency was not obtained as expected.
  • an alkali solution treatment step or a predetermined acid solution treatment step is added to the porous step including the first and second steps described above, and the porous structure is slightly etched to slightly increase the porous layer on the wafer surface. I sharpened it. Then, it turned out that conversion efficiency improves.
  • the conversion efficiency of the solar cell manufactured from this wafer is improved. all right. This is presumably because the recombination centers can be eliminated by subjecting the dangling bond portion to oxidation treatment. Note that this oxidation treatment has no or no etching effect on the wafer surface, and even if it has a slight etching treatment, the uneven shape of the wafer surface is hardly or not changed at all. Therefore, the reflectance of the wafer surface is also preferable in that the low state before the oxidation treatment can be maintained.
  • the present inventor presumes that the wafer surface has been made porous by the following reaction mechanism.
  • the second step when the wafer is immersed in hydrofluoric acid in which Cu is dissolved, a large amount of Cu is precipitated as fine particles starting from some nucleus on the wafer surface.
  • This reaction is a reduction reaction of Cu 2+ + 2e ⁇ ⁇ Cu. With the charge transfer at this time, electrons are deprived from Si on the wafer surface, and dissolution of Si occurs at the Cu fine particle deposition site.
  • the surface potential of the wafer surface is controlled by treating with a lower alcohol, which is a non-polar solvent, in the first step, so that metal deposition is likely to proceed during immersion in hydrofluoric acid. It is considered that the Si dissolution reaction in the second step can be promoted uniformly. Further, it is considered that the treatment with a lower alcohol has an effect of removing organic substances on the wafer surface so that the reaction proceeds.
  • a lower alcohol which is a non-polar solvent
  • a step of contacting an alkaline solution or a step of contacting an acid solution containing hydrofluoric acid and nitric acid is selected as the third step, a large-scale device such as a DC power source or an ion implantation device is not required.
  • a large-scale device such as a DC power source or an ion implantation device is not required.
  • the degree of porosity is somewhat suppressed by the third step, it is possible to suppress surface recombination and manufacture a solar cell with high conversion efficiency.
  • the obtained solar cell wafer It became possible to produce a solar cell with higher conversion efficiency using
  • step S3 it is preferable to further perform a step (step S3) of bringing hydrofluoric acid not containing metal ions into contact with at least one surface of the wafer after the second step and before the third step.
  • the wafer after the second step can be immersed in hydrofluoric acid not containing metal ions for a predetermined time.
  • the depth of the surface irregularities formed in the second step can be controlled to some extent.
  • the second step and / or step S3 it is preferable to perform the second step and / or step S3 in a light irradiation environment. This is because, by performing the second step in a light irradiation environment, the surface becomes porous due to the above reaction mechanism. Further, it is because the wafer surface can be brought into a desired surface state by performing step S3 in a light irradiation environment and controlling the irradiation conditions. Specifically, the light irradiation environment is created by irradiating the reaction surface with fluorescent light or halogen light.
  • a step of bringing a solution for removing metal (fine particles) precipitated from the metal ions from at least one side of the wafer into contact with the at least one side of the wafer ( It is preferable to further perform step S4).
  • a nitric acid solution is brought into contact with the one surface in order to remove Cu fine particles remaining on the one surface.
  • a step of bringing an alkaline solution into contact with at least one surface of the wafer, a step of bringing an acid solution containing hydrofluoric acid and nitric acid into contact, or a step of performing an oxidation treatment (step S5) Do more.
  • a solar cell wafer having a porous wafer surface is obtained through such steps.
  • the lower alcohol treatment in the first step and the metal ion-containing hydrofluoric acid treatment in the second step, preferably the metal ion-free hydrofluoric acid treatment in Step 3 This is referred to as “process”.
  • the “lower alcohol” means any linear or branched alcohol having 10 or less carbon atoms. If the carbon number exceeds 10, the viscosity of the alcohol becomes high, and the wafer surface is coated with alcohol. If the number of carbon atoms is 10 or less, the wafer surface can be made nonpolar as a nonpolar solvent having low viscosity.
  • methanol, ethanol, 2-propanol, N-methylpyrrolidone, ethylene glycol, glycerin, benzyl alcohol, phenyl alcohol and the like can be mentioned, but in view of toxicity and price, ethanol and 2-propanol (isopropyl Alcohol; IPA) is preferably used.
  • the processing time that is, the time during which the lower alcohol liquid is brought into contact with the wafer (hereinafter referred to as the “processing time” in each process is referred to as “processing time”) is not particularly limited, but should be 0.5 minutes to 10 minutes. Is preferable, and it is more preferable to set it to 3 minutes or less. This is because the effect of reducing the reflectivity of the present invention can be sufficiently obtained if the time is 0.5 minutes or more, and the effect of reducing the reflectivity is saturated even if the treatment is performed for more than 10 minutes.
  • the temperature of the lower alcohol solution may be room temperature without any problem as long as the alcohol does not evaporate or solidify.
  • the metal ion is preferably a metal nobler than Si, for example, an ion such as Cu, Ag, Pt, or Au.
  • the metal concentration is preferably 10 ppm or more and 1000 ppm or less, and more preferably 100 ppm or more and 400 ppm or less.
  • the concentration of hydrofluoric acid is preferably 2% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 40% by mass or less, and further preferably 20% by mass or more and 30% by mass or less. Furthermore, processing time becomes like this. Preferably it is 0.5 minute or more and 30 minutes or less, More preferably, it is 1 minute or more and 10 minutes or less, More preferably, it is 3 minutes or less.
  • the temperature of the metal-containing hydrofluoric acid may be appropriately selected in consideration of the processing time and evaporation loss, and is preferably room temperature to 100 ° C.
  • the concentration of hydrofluoric acid is preferably 2% by mass or more and 50% by mass or less, more preferably 20% by mass. % To 30% by mass.
  • hydrofluoric acid not containing metal ions includes not only the case where the content of metal ions is strictly zero but also the case where metals less than 10 ppm are contained as impurities. Shall be.
  • the number of ions of a metal nobler than Si such as Cu, Ag, Pt, or Au
  • the metal fine particles are newly precipitated and the second unevenness is formed on the wafer surface.
  • the reaction of deepening the unevenness already formed in the process becomes dominant. What is necessary is just to set processing time according to process tact time, Preferably it is 0.5 to 60 minutes.
  • the temperature of the metal-free hydrofluoric acid may be appropriately selected in consideration of processing time, evaporation loss, etc., and is preferably room temperature to 100 ° C.
  • the Cu fine particles can be removed with a nitric acid (HNO 3 ) solution.
  • the nitric acid concentration is preferably in the range of 0.001 to 70% by mass, and more preferably in the range of 0.01 to 0.1% by mass. What is necessary is just to set processing time according to process tact time, Preferably it is 0.5 to 10 minutes, More preferably, it is 1 to 3 minutes.
  • the temperature of the nitric acid solution may be appropriately selected in consideration of the processing time and evaporation loss, and is preferably room temperature to 100 ° C.
  • the treatment liquid used in this step is not limited to nitric acid, and a solution capable of dissolving it may be selected according to the metal to be removed.
  • a solution capable of dissolving it may be selected according to the metal to be removed.
  • a solution capable of dissolving it may be selected according to the metal to be removed.
  • a solution capable of dissolving it may be selected according to the metal to be removed.
  • a solution capable of dissolving it may be selected according to the metal to be removed.
  • a solution capable of dissolving it may be selected according to the metal to be removed.
  • a solution capable of dissolving it may be selected according to the metal to be removed.
  • aqua regia HCl / HNO 3
  • potassium iodide solution KI
  • Suitable concentrations and processing times are the same as for Cu.
  • the type of alkali used when the alkaline solution treatment is selected as the third step is not particularly limited.
  • the inorganic alkali may be lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonium hydroxide, hydrazine
  • the organic alkali may be a solution containing one or more alkalis such as tetramethylammonium hydroxide and choline.
  • the pH of the alkaline solution is preferably in the range of 9.0 to 14.0, more preferably in the range of 10.0 to 12.0.
  • the time for which the alkaline solution is contacted is preferably 600 seconds or shorter, more preferably 120 seconds or shorter.
  • a porous treatment is performed for 3 minutes using a solution having a Cu concentration of 170 ppm and an HF concentration of 25%, a porous layer is formed by performing a treatment for about 30 seconds using a 1% KOH solution.
  • the thickness can be set to 150 to 200 nm. However, in addition to these pH conditions and contact time conditions, any pH conditions and contact time conditions may be used as long as the thickness of the porous layer formed on the one surface can be 50 to 400 nm.
  • the conditions for the porous treatment process and the conditions for the alkali treatment in the third process may be arbitrarily set so that the thickness of the porous layer falls within the range.
  • the thickness of the porous layer By setting the thickness of the porous layer to 50 to 400 nm, it is possible to achieve both the effect of improving the conversion efficiency and the effect of reducing the surface reflectance.
  • an oxidizing agent hydrogen peroxide, ozone, etc.
  • a surfactant anionic surfactant, neutral surfactant, etc.
  • the etching rate can be reduced to 1/10 or less by adding an amino alcohol-based surfactant to 1% KOH.
  • the acid solution used when the acid solution treatment is selected as the third step may contain hydrofluoric acid and nitric acid.
  • Concentrations in the acid solution are preferably 0.1 to 5.0% by mass for hydrofluoric acid, 20 to 50% by mass for nitric acid, and the rest water. If hydrofluoric acid is 0.1% by mass or more, a sufficient reaction rate can be obtained, and if it is 5.0% by mass or less, the etching rate can be easily controlled so that the reaction rate can be easily controlled.
  • Nitric acid is preferably 20% by mass or more because it can be controlled to a reaction rate that allows easy adjustment of the etching amount, and is preferably 50% by mass or less from the viewpoint of reducing the chemical cost.
  • the temperature of the acid solution is preferably 10 to 40 ° C., more preferably 15 to 30 ° C.
  • a temperature of 10 ° C. or higher is preferable because a sufficient reaction rate can be obtained, and a temperature of 40 ° C. or lower is preferable because the etching rate can be easily controlled.
  • the time for contacting the acid solution is preferably 10 minutes or less, more preferably 3 minutes or less.
  • a porous treatment is performed for 3 minutes using a solution having a Cu concentration of 170 ppm and a hydrofluoric acid concentration of 25 mass%
  • an acid solution containing 1 mass% hydrofluoric acid and 35 mass% nitric acid is used.
  • the thickness of the porous layer can be about 202 nm.
  • the mixing conditions and the contact time conditions of hydrofluoric acid and nitric acid may be any conditions as long as the thickness of the porous layer formed on one side can be 50 to 400 nm. That is, the conditions for the porous treatment step and the acid treatment for the third step may be arbitrarily set so that the thickness of the porous layer falls within the range.
  • the thickness of the porous layer By setting the thickness of the porous layer to 50 to 400 nm, it is possible to sufficiently achieve both the conversion efficiency improvement effect and the surface reflectance reduction effect.
  • the porous treatment a porous layer having a thickness exceeding 400 nm is formed under the normal conditions as described above, and it is difficult to control the thickness to 50 to 400 nm. Therefore, the third step is necessary.
  • the acid solution containing hydrofluoric acid and nitric acid greatly hinders the etching action of the porous layer such as acetic acid, phosphoric acid, sulfuric acid, and surfactants (anionic surfactants, neutral surfactants, etc.) Ingredients may be added.
  • the oxidation process is not particularly limited as long as it can reduce the recombination centers on the wafer surface.
  • the oxidation process is performed as follows. Can do.
  • the thickness of a preferable oxide film formed on the wafer surface by this oxidation treatment is 1 to 100 nm. If the thickness is less than 1 nm, the effect of reducing the recombination center may not be sufficiently obtained. If the thickness exceeds 100 nm, the contact resistance becomes high during electrode formation in the solar cell manufacturing process. This is because the conversion efficiency may be reduced.
  • oxidation can be performed by a process in which a liquid containing an oxidizing agent is brought into contact with at least one surface of a semiconductor wafer.
  • the liquid containing the oxidizing agent include ozone water in which ozone gas is dissolved in water.
  • the ozone concentration is preferably 0.1 to 20 ppm. If the concentration is less than 0.1 ppm, the wafer surface may not be oxidized sufficiently, and even if treatment exceeding 20 ppm is performed, an effect commensurate with the concentration cannot be obtained and the oxidation ability is saturated.
  • the treatment time is preferably 1 to 10 minutes, more preferably 5 to 10 minutes. If it is less than 1 minute, there is a possibility that the wafer surface cannot be oxidized sufficiently. If it exceeds 10 minutes, even if treatment is performed, the effect corresponding to the time cannot be obtained, and the oxidation ability is saturated. It is.
  • the treatment temperature may be room temperature.
  • hydrogen peroxide water may be used.
  • the concentration of hydrogen peroxide is preferably 0.1 to 30% by mass, more preferably 0.3 to 30% by mass. If the amount is less than 0.1% by mass, the wafer surface may not be sufficiently oxidized. Even if the treatment exceeds 30% by mass, the effect corresponding to the concentration cannot be obtained, and the oxidation ability is saturated. Because it ends up.
  • the treatment time is preferably 1 to 30 minutes, more preferably 5 to 30 minutes. If it is less than 1 minute, there is a possibility that the wafer surface cannot be oxidized sufficiently, and even if a treatment exceeding 30 minutes is performed, an effect commensurate with the time cannot be obtained and the oxidation ability is saturated. .
  • the treatment temperature may be 20 to 80 ° C.
  • a mixed aqueous solution of ammonia / hydrogen peroxide (so-called SC-1 cleaning solution) or a mixed aqueous solution of hydrochloric acid / hydrogen peroxide (so-called SC-2 cleaning solution) may be used.
  • SC-1 cleaning liquid the concentration of ammonia is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass.
  • SC-2 cleaning liquid the concentration of hydrochloric acid is preferably 0.1%. To 5% by mass, more preferably 1 to 3% by mass.
  • the concentration of hydrogen peroxide is preferably 0.1 to 30% by mass, more preferably 0.3 to 10% by mass. If any value is below the lower limit value, the wafer surface may not be sufficiently oxidized.
  • an inorganic alkali such as NaOH or KOH, or an organic alkali such as TMAH (tetramethylammonium hydroxide) or choline may be used.
  • the treatment time is preferably 1 to 20 minutes, more preferably 5 to 20 minutes. If it is less than 1 minute, there is a possibility that the wafer surface cannot be oxidized sufficiently, and even if a treatment exceeding 20 minutes is performed, an effect corresponding to the concentration cannot be obtained and the oxidation ability is saturated. .
  • the treatment temperature may be 20 to 80 ° C.
  • heat treatment in an atmosphere containing oxygen may be performed on at least one surface of the semiconductor wafer.
  • the heat treatment is not limited as long as it is a technique generally used for thermal oxidation of a semiconductor wafer, and examples thereof include dry oxidation and pyrogenic oxidation.
  • the heat treatment temperature is preferably 600 to 1200 ° C., more preferably 800 to 1000 ° C.
  • the treatment time is preferably 1 to 30 minutes, more preferably 5 to 20 minutes. If both the heat treatment temperature and the treatment time are below the lower limit, the oxidation ability may be insufficient, and a desired effect may not be obtained. Even if treatment exceeding the upper limit is performed, the oxidation ability is saturated. Because.
  • an oxide film may be formed on at least one surface of the semiconductor wafer by a liquid phase growth method.
  • the “liquid phase growth method” is a method of forming a SiO 2 film on a wafer surface by immersing the wafer in a solution in which H 3 BO 3 is added to a H 2 SiF 6 solution saturated with Si. is there. Also by this method, the dangling bond portion can be oxidized and the recombination center can be eliminated.
  • the treatment liquid is prepared, for example, as follows. First, silica gel particles are added to a H 2 SiF 6 solution having a concentration of 4 mol / L, and the mixture is stirred for 24 hours at room temperature, and then the undissolved silica gel is removed by filtration.
  • H 3 BO 3 is added to this solution so that the concentration becomes 0.01 to 1 mol / L, preferably 0.05 to 0.15 mol / L.
  • the treatment time is 1 minute or more, preferably 10 to 30 minutes, and the treatment temperature is 20 ° C. or more, preferably 30 to 40 ° C.
  • examples of the method for bringing the treatment liquid into contact with the wafer surface include an immersion method and a spray method. Moreover, you may use the casting method which dripping a process liquid to the single side
  • a washing step with water may be performed after at least one of steps S1 to S5.
  • the method for producing a solar cell wafer of the present invention can be applied not only to a single crystal silicon wafer but also to a polycrystalline silicon wafer.
  • the method for forming a texture structure is a method suitable for single crystal silicon, and for polycrystalline silicon in which various plane orientations appear on the surface, a uniform texture structure is formed on the entire wafer surface. It was difficult.
  • the porous treatment according to the present invention can form irregularities finer than the conventional texture structure on the wafer surface, so that the reflectance of the surface of the polycrystalline silicon wafer can be sufficiently suppressed.
  • the third step of the present invention is an alkali solution treatment or an acid solution treatment, it can be produced more safely and cheaply than before, and it is not necessary to use an oxidizing agent such as hydrogen peroxide as a treating agent. Therefore, the complexity of wastewater treatment can be avoided.
  • a solar cell wafer for use in a crystalline silicon solar cell from a single crystal or polycrystalline silicon wafer has been described so far, but the present invention is not limited to crystalline silicon, and amorphous silicon. Of course, it is applicable also to the wafer for solar cells for using for a solar cell and a thin film type solar cell.
  • the method for manufacturing a solar cell according to the present invention further includes a step of manufacturing a solar cell with this solar cell wafer, in addition to the steps in the method for manufacturing a solar cell wafer according to the present invention described so far.
  • the cell manufacturing step includes at least a step of forming a pn junction by a dopant diffusion heat treatment and a step of forming an electrode. In the dopant diffusion heat treatment, phosphorus is thermally diffused in the p substrate.
  • the method for manufacturing a solar cell according to the present invention it is possible to obtain a solar cell with high conversion efficiency with little reflection loss of incident light on the light receiving surface of the cell.
  • the manufacturing method of the solar cell module according to the present invention further includes a step of producing a solar cell module from the solar cell in addition to the steps in the solar cell manufacturing method.
  • the module manufacturing process includes arranging a plurality of solar cells, wiring the electrodes, arranging the solar cells wired on the tempered glass substrate, sealing with a resin and a protective film, and an aluminum frame. Assembling and electrically connecting the terminal cable with the wiring.
  • a reflection loss of incident light on the light receiving surface of the solar cell can be suppressed, and a solar cell module with high conversion efficiency can be obtained.
  • this wafer was immersed in a mixed solution of 5 mL of a copper nitrate solution containing 1000 ppm of Cu, 15 mL of 50% by mass hydrofluoric acid, and 10 mL of water for 3 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1% by mass nitric acid for 5 minutes and dried in a nitrogen atmosphere. And it immersed in 1 mass% KOH for 10 second as an alkaline solution process, and it was made to dry in nitrogen atmosphere after that, and the wafer for solar cells was manufactured.
  • Example 2 As Example 2, a solar cell wafer was produced in the same manner as in Example 1 except that it was immersed in 1% by mass KOH for 30 seconds in the alkaline solution treatment.
  • Example 3 As Example 3, a solar cell wafer was produced in the same manner as in Example 1 except that it was immersed in 1% by mass KOH for 60 seconds in the alkaline solution treatment.
  • Example 4 As Example 4, a solar cell wafer was produced in the same manner as in Example 1 except that it was immersed in 1% by mass of tetramethylammonium hydroxide (TMAH) for 30 seconds in the alkaline solution treatment.
  • TMAH tetramethylammonium hydroxide
  • Example 5 As Example 5, a solar cell wafer was produced in the same manner as in Example 1 except that it was immersed in 1% by mass of hydrazine in an alkaline solution treatment for 30 seconds.
  • Example 6 As Example 6, a solar cell wafer was produced in the same manner as in Example 1 except that it was immersed in 1% by mass KOH for 100 seconds in the alkaline solution treatment.
  • Example 7 As Example 7, a solar cell wafer was produced in the same manner as in Example 1 except that it was immersed in 1% by mass KOH for 5 seconds in the alkaline solution treatment.
  • Comparative Example 1 Of the manufacturing steps of Example 1, Comparative Example 1 was performed by immersing in 0.1% by mass nitric acid for 5 minutes and drying in a nitrogen atmosphere. That is, Comparative Example 1 does not perform only the alkaline solution treatment in the present invention (treatment time 0 minutes).
  • ⁇ Evaluation 2 Conversion efficiency measurement> P-OCD (Model No. P-1102111 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the wafers of the examples and comparative examples by spin coating, and diffusion heat treatment was performed to form a pn junction. The surface phosphorus glass was removed. Thereafter, an ITO film was formed by sputtering as an antireflection film on the phosphorus diffusion surface of the wafer surface. Also, an Ag paste for Ag electrode was applied to the front surface, an Al paste for Al electrode was applied to the back surface, and then heat treatment was performed to form electrodes on the front and back surfaces of the wafer, thereby producing solar cells.
  • P-OCD Model No. P-1102111 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • Table 2 shows the results of measuring the energy conversion efficiency using a conversion efficiency measuring instrument (YQ-250BX, manufactured by Izumi Tech Co., Ltd.). Each example had higher conversion efficiency than each comparative example. In particular, when Examples 1 to 7 and Comparative Example 1 were compared, Comparative Example 1 was inferior in conversion efficiency although it had a lower reflectance than Examples 1 to 7. Thus, it has been found that by performing the porous treatment and alkali treatment of the present invention, higher conversion efficiency can be obtained by an action other than the action of reducing the reflection loss of the surface. Further, it was found that Examples 1 to 5 in which the thickness of the porous layer was 50 to 400 nm had a higher conversion efficiency than Examples 6 and 7. In this example, since an experiment was performed using a test piece having a thickness of 425 ⁇ m, the numerical value was lower than that obtained under the general test conditions. The conversion efficiency when applied to this wafer is expected to increase several percent over the results in Table 2.
  • this wafer was immersed in a mixed solution of 5 mL of a copper nitrate solution containing 1000 ppm of Cu, 15 mL of 50% by mass hydrofluoric acid, and 10 mL of water for 3 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1% by mass nitric acid for 5 minutes and dried in a nitrogen atmosphere.
  • hydrofluoric acid and nitric acid are contained at the concentrations shown in Table 3, and the remainder is immersed in an acid solution that is water for the treatment time shown in Table 3, and then dried in a nitrogen atmosphere for solar cells A wafer was manufactured.
  • Comparative Example 1 Of the manufacturing steps of Example 1, Comparative Example 1 was performed by immersing in 0.1% by mass nitric acid for 5 minutes and drying in a nitrogen atmosphere. That is, Comparative Example 1 does not perform only the acid solution treatment in the present invention (treatment time 0 minutes).
  • the wafer is dried, and then immersed in an acid solution containing 1% by mass hydrofluoric acid and 35% by mass nitric acid as the acid solution treatment, and the rest being water for 1 minute, and in a nitrogen atmosphere.
  • a drying process was performed to obtain Comparative Example 3. That is, Comparative Example 3 does not perform only the porous treatment in the present invention.
  • this wafer was immersed in a mixed solution of 5 mL of a copper nitrate solution containing 1000 ppm of Cu, 15 mL of 50% by mass hydrofluoric acid, and 10 mL of water for 3 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • the process up to this step corresponds to the porous treatment process.
  • this wafer was immersed in 0.1% by mass nitric acid for 5 minutes and dried in a nitrogen atmosphere. And about each Example, the oxidation process shown below was performed, respectively, and the wafer surface was dried with air blow after that, and the wafer for solar cells concerning this invention was manufactured.
  • Oxidation treatment was performed in which the wafer was immersed in ozone water.
  • the treatment time was 10 minutes and the ozone concentration is shown in Table 5.
  • Example 5 Oxidation treatment was performed in which the wafer was immersed in hydrogen peroxide water. The treatment time was 10 minutes and the concentration of hydrogen peroxide is shown in Table 5.
  • Oxidation treatment was performed in which the wafer was immersed in a mixed aqueous solution of an alkali component / hydrogen peroxide.
  • the treatment time was 10 minutes, and the types of alkali used and the concentrations of alkali and hydrogen peroxide are shown in Table 5.
  • Example 23 to 27 The wafer was oxidized by a liquid phase growth method (LPD). Specifically, first, a 4 mol / L H 2 SiF 6 solution was prepared, silica gel particles (manufactured by Kanto Chemical Co., Ltd., special grade reagent: white) were added to the solution, and the mixture was stirred at room temperature for 24 hours. Then, to this solution, the H 3 BO 3 was added to a concentration of 1 mol / L, and the treatment solution. The wafer was immersed in this processing solution. The treatment temperature and treatment time are shown in Table 5.
  • LPD liquid phase growth method
  • Example 28 to 33 The wafer was subjected to a heat treatment of dry oxidation or pyrogenic oxidation.
  • the temperature of the heat treatment was 800 ° C.
  • the processing time is shown in Table 5.
  • Comparative Example 2 A solar cell wafer according to a comparative example was manufactured in the same manner as in the example except that the oxidation treatment was not performed.
  • ⁇ Evaluation 1 Lifetime measurement> The lifetime was measured for each of the wafers of Examples and Comparative Examples as follows.
  • the lifetime is an index representing the lifetime of electrons and holes generated by light reception in the solar cell substrate, and the larger the value, the higher the conversion efficiency as a solar cell. Therefore, in this experiment, the size of the conversion efficiency was evaluated by measuring the lifetime instead of manufacturing the solar battery cell and measuring the conversion efficiency.
  • WT-2100 manufactured by Semilab was used. In the measurement, surface passivation treatment such as iodine pack treatment was not performed, and the created sample was measured as it was to grasp the influence of the surface state.
  • 2-propanol isopropyl alcohol
  • this wafer was immersed in a mixed solution of 10 mL of a copper nitrate solution containing 1000 ppm of Cu, 10 mL of 50% by mass hydrofluoric acid, and 10 mL of water for 10 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1 mass% nitric acid for 5 minutes, and the wafer for solar cells was manufactured.
  • Reference example 2 A solar cell wafer was produced in the same manner as in Example 1, except that 99% by mass ethanol (ETOH), which is also a lower alcohol, was used instead of 100% by mass 2-propanol.
  • EOH mass ethanol
  • Reference Comparative Example 2 A solar cell wafer was produced in the same manner as in Reference Example 1 except that the step of immersing in 100% by mass of 2-propanol for 10 minutes was not performed (the first step in the present invention was not treated).
  • Reference Comparative Example 3 A solar cell wafer was produced in the same manner as in Reference Example 1, except that 100% by mass of 2-propanol was used instead of 30% by mass of hydrogen peroxide which is not a lower alcohol.
  • this wafer was immersed in a mixed solution of 10 mL of a copper nitrate solution containing 1000 ppm of Cu, 10 mL of 50% by mass hydrofluoric acid, and 10 mL of water for 10 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1 mass% nitric acid for 5 minutes, and the wafer for solar cells was manufactured.
  • Five types of samples were prepared by setting the predetermined time to 0 minutes, 1 minute, 3 minutes, 5 minutes, and 10 minutes. In addition, 0 minutes means that the said process is not performed.
  • this wafer was immersed in a mixed solution of 10 mL of a copper nitrate solution in which Cu was dissolved at a predetermined concentration, 10 mL of 50 mass% hydrofluoric acid, and 10 mL of water for 3 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1 mass% nitric acid for 5 minutes, and the wafer for solar cells was manufactured. Seven types of samples were prepared with the predetermined concentration (ppm) of 33.3, 83.3, 166.7, 250.0, 333.3, 500.0, and 666.7.
  • this wafer was immersed in a mixed solution of 25 mL of a mixed solution of 5 mL of a copper nitrate solution in which 1000 ppm of Cu was dissolved, hydrofluoric acid prepared to have a predetermined concentration, and water for 3 minutes.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1% nitric acid for 5 minutes to produce a solar cell wafer.
  • Five types of samples were prepared with the predetermined concentration (mass%) set to 1.7, 8.3, 16.7, 25.0, and 33.3.
  • the wafer was immersed in a mixed solution of 10 mL of a copper nitrate solution in which 1000 ppm of Cu was dissolved, 10 mL of 50% by mass hydrofluoric acid, and 10 mL of water for a predetermined time.
  • this process was performed in a normal indoor environment, that is, a light irradiation environment.
  • this wafer was immersed in 0.1 mass% nitric acid for 5 minutes, and the wafer for solar cells was manufactured. Seven types of samples were prepared with the predetermined time being 0 minutes, 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes. In addition, 0 minutes means that the said process is not performed.
  • Reflectance measurement> The reflection spectra of seven types of samples were measured by the above-described method, and the relative reflectances at wavelengths of 600 nm and 700 nm are shown in FIGS. 4 (a) and 4 (b), respectively. 4 (a) and 4 (b), a reflectance lower than 0 minutes can be obtained when the processing time is in the range of 1 to 30 minutes, and a high reflectance reduction effect is obtained particularly in the range of the processing time of 1 to 10 minutes. Was found to be obtained.
  • the surface of the wafer is finely made porous, the reflectance of incident light on the wafer surface is sufficiently reduced, and a solar cell with higher conversion efficiency is produced using the obtained solar cell wafer. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

 シリコンウェーハをはじめとする半導体ウェーハの表面を多孔質化し、変換効率の高い太陽電池を作製できる太陽電池用ウェーハの製造方法を提供する。 本発明の太陽電池用ウェーハの製造方法は、半導体ウェーハの少なくとも片面に低級アルコールを接触させる第1工程と、該第1工程の後に、前記半導体ウェーハの少なくとも前記片面に金属イオンを含むフッ化水素酸を接触させる第2工程と、を有する処理により前記半導体ウェーハの少なくとも前記片面を多孔質化し、前記第2工程の後に、前記半導体ウェーハの少なくとも前記片面に対して、アルカリ溶液を接触させる工程、フッ化水素酸および硝酸を含有する酸溶液を接触させる工程、または酸化処理を施す工程である第3工程を有し、太陽電池用ウェーハとすることを特徴とする。

Description

太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
 本発明は、太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法に関する。本発明は、特に、変換効率の高い太陽電池の製造を目的とした、半導体ウェーハの表面を多孔質化する太陽電池用ウェーハの製造方法に関する。
 一般に、太陽電池セルは、シリコンウェーハをはじめとする半導体ウェーハを用いて形成される。太陽電池セルの変換効率を高めるためには、太陽電池セルの受光面で反射してしまう光および太陽電池セルを透過してしまう光を低減する必要がある。ここで例えば、シリコンウェーハを用いて結晶系太陽電池を作製する場合、シリコンウェーハは光電変換に寄与する可視光の透過率が低いため、変換効率を向上させるためには、受光面となるシリコンウェーハ表面における可視光の反射ロスを低く抑え、入射する光を有効に太陽電池の中に閉じ込めることを考慮すればよい。
 シリコンウェーハ表面における入射光の反射ロスを低減する技術としては、表面に反射防止膜を形成する技術と、表面にテクスチャ構造とよばれるミクロなピラミッド型の凹凸などの凹凸構造を形成する技術とがある。後者の技術のうち、表面にテクスチャ構造を形成する方法は、単結晶シリコンに適した方法であり、(100)単結晶シリコン表面をアルカリ液でエッチングする方法が代表的である。これは、アルカリを用いたエッチングでは、(111)面のエッチング速度が(100)面、(110)面のエッチング速度よりも遅いことを利用するものである。さらに、後者の技術として近年はシリコン表面を多孔質化することによって、表面に凹凸構造を形成し、入射光の反射ロスを低減する手法が提案されている。
 例えば、特許文献1には、単結晶シリコン基板を陽極、Ptを陰極としてフッ化水素酸中で電流を流す陽極化成処理により、表面に多数の微細孔を形成する方法が記載されている。
 さらに、特許文献2には、ミクロンサイズのテクスチャ構造が形成されたシリコン基板表面にさらに微細なサブミクロンオーダーの凹凸を形成するために、この表面に金属粒子を無電解メッキした後、基板を酸化剤およびフッ化水素酸の混合水溶液でエッチングする技術が記載されている。具体的には、アルカリテクスチャー処理を施したp型の単結晶シリコン基板を過塩素酸銀と水酸化ナトリウムを含む水溶液に浸漬させ、表面に銀微粒子を形成する。その後、過酸化水素水、フッ化水素酸および水の混合溶液に浸漬させ、サブミクロンオーダーの凹凸を形成する。
特開平6-169097号公報 特開2007-194485号公報
 しかしながら、特許文献1の陽極化成処理による方法では、その実施例において多孔質層の厚さが50μmまたは25μmと記載されているとおり、基板表面には相当に大きな孔の多孔質層が形成されるため、入射光の反射ロスの低減効果が不十分である。より高い変換効率の太陽電池を得るためには、基板表面により微細な孔を形成して、入射光の反射率をより低減することが必要である。
 また、特許文献2に記載された方法によれば、比較的微細な多孔質層が形成される。しかしながら、この特許文献では、シリコンウェーハ表面での入射光の反射率を下げることのみを考慮しており、このウェーハから製造した太陽電池の実際の変換効率については何ら検討されていない。
 この特許文献2のように、これまでに知られる多孔質化技術の多くは、シリコンウェーハ表面での入射光の反射率を極力下げるとの観点で主に検討されており、これらのウェーハから製造した太陽電池の実際の変換効率まで検討されていないのが実状である。
 しかしながら、本発明者の検討によれば、ウェーハ表面に対する多孔質化の程度がより大きいほど、すなわちより微細な多孔質層を形成するほど、太陽電池表面の反射率低減により優れる一方、太陽電池としての変換効率がさほど上昇しない場合もあることが判明した。
 そこで本発明は、上記課題に鑑み、シリコンウェーハをはじめとする半導体ウェーハの表面を多孔質化することで、ウェーハ表面における入射光の反射率を十分に低減し、なおかつ、より変換効率の高い太陽電池を作製できる太陽電池用ウェーハを製造する方法、ならびに、この方法を含む太陽電池セルの製造方法および太陽電池モジュールの製造方法を提供することを目的とする。
 上記の目的を達成するべく、本発明者が鋭意検討し、様々な多孔質化処理方法で試行錯誤をくり返した結果、以下に示す方法によれば、半導体ウェーハ表面にサブミクロンオーダーの凹凸を形成し、効果的に表面における光の反射ロスを低減しつつ、このウェーハから製造した太陽電池の変換効率を高くすることができることを見出し、本発明を完成するに至った。本発明は、上記の知見および検討に基づくものであり、その要旨構成は以下のとおりである。
 本発明の太陽電池用ウェーハの製造方法は、半導体ウェーハの少なくとも片面に低級アルコールを接触させる第1工程と、該第1工程の後に、前記半導体ウェーハの少なくとも前記片面に金属イオンを含むフッ化水素酸を接触させる第2工程と、を有する処理により前記半導体ウェーハの少なくとも前記片面を多孔質化し、前記第2工程の後に、前記半導体ウェーハの少なくとも前記片面に対して、アルカリ溶液を接触させる工程、フッ化水素酸および硝酸を含有する酸溶液を接触させる工程、または酸化処理を施す工程である第3工程を有し、太陽電池用ウェーハとすることを特徴とする。
 この発明では、前記半導体ウェーハがシリコンウェーハであり、前記金属イオンがSiより貴な金属のイオンであることが好ましい。
 この発明では、前記第2工程の後かつ前記第3工程の前に、前記半導体ウェーハの少なくとも前記片面に、前記金属イオンから析出した金属を前記片面から除去する溶液を接触させる工程を有することが好ましい。
 この発明では、前記第3工程において前記アルカリ溶液または前記酸溶液を接触させる場合、前記片面に作製された多孔質化された層の厚さが50~400nmとなることが好ましい。
 この発明では、前記第3工程の前記アルカリ溶液のpHが9.0~14.0であることが好ましい。
 この発明では、前記第3工程の前記アルカリ溶液を接触させる時間が600秒以下であることが好ましい。
 この発明では、前記酸溶液中の前記フッ化水素酸の濃度が0.1~5.0質量%、前記硝酸の濃度が20~50質量%であることが好ましい。
 この発明では、前記第3工程の前記酸溶液を接触させる時間が10分以下であることが好ましい。
 この発明では、前記酸化処理が、前記半導体ウェーハの少なくとも前記片面に酸化剤を含む液体を接触させる処理であることが好ましい。
 この発明では、前記酸化処理が、前記半導体ウェーハの少なくとも前記片面に対する、酸素を含む雰囲気下での熱処理であることが好ましい。
 この発明では、前記酸化処理が、前記半導体ウェーハの少なくとも前記片面上に液相成長法により酸化膜を形成する処理であることが好ましい。
 本発明の太陽電池セルの製造方法は、上記の太陽電池用ウェーハの製造方法における工程に加えて、該太陽電池用ウェーハで太陽電池セルを作製する工程をさらに有する。
 本発明の太陽電池モジュールの製造方法は、上記の太陽電池セルの製造方法における工程に加えて、該太陽電池セルから太陽電池モジュールを作製する工程をさらに有する。
 本発明によれば、ウェーハ表面を微細に多孔質化し、ウェーハ表面における入射光の反射率を十分に低減し、なおかつ、得られた太陽電池用ウェーハを用いてより変換効率の高い太陽電池を作製することができる。
本発明に従う代表的な太陽電池用ウェーハの製造方法のフロー図である。 本発明の参考実験例3において、第2工程におけるCu濃度とシリコンウェーハ表面の相対反射率との関係を示すグラフであり、(a)は波長600nmにおける相対反射率を、(b)は波長700nmにおける相対反射率を、縦軸としたものである。 本発明の参考実験例4において、第2工程におけるフッ化水素酸の濃度とシリコンウェーハ表面の相対反射率との関係を示すグラフであり、(a)は波長600nmにおける相対反射率を、(b)は波長700nmにおける相対反射率を、縦軸としたものである。 本発明の参考実験例5において、第2工程における処理時間とシリコンウェーハ表面の相対反射率との関係を示すグラフであり、(a)は波長600nmにおける相対反射率を、(b)は波長700nmにおける相対反射率を、縦軸としたものである。
 以下、図面を参照しつつ本発明をより詳細に説明する。図1は、本発明に従う代表的な太陽電池用ウェーハの製造方法のフロー図である。まず、本発明に用いる半導体ウェーハは特に限定されないが、以下では、本発明の一実施形態として、単結晶または多結晶シリコンウェーハ(以下、まとめて単に「ウェーハ」ともいう。)を用いて、これらに多孔質化処理を施し、単結晶または多結晶シリコン太陽電池用ウェーハを製造する方法を説明する。
 単結晶シリコンウェーハは、チョクラルスキー法(CZ法)などにより育成された単結晶シリコンインゴットをワイヤーソー等でスライスしたものを使用することができる。また、ウェーハ表面の面方位についても、(100),(001)および(111)など、必要に応じて選択することができる。多結晶シリコンウェーハは、多結晶シリコンインゴットからスライス加工により得ることができる。
 単結晶シリコンウェーハ、多結晶シリコンウェーハいずれの場合も、インゴットから切り出したウェーハ表面にはスライス加工によりシリコン層へ導入されたクラックや結晶歪などのダメージが生じている。このため、スライス加工後、ウェーハを洗浄し、酸またはアルカリでウェーハ表面にエッチング処理を施し、ダメージが生じている表面を除去することが好ましい。スライス加工由来の上記ダメージの侵入深さは、スライス加工条件により決定される因子であるが、概ね10μm以下の深さである。よって、KOHなどのアルカリもしくはフッ化水素酸(HF)/硝酸(HNO)混合酸により一般的に実施されているエッチング処理で対応可能である。
 本発明は、ウェーハの少なくとも片面を多孔質化して太陽電池用ウェーハとする方法である。すなわち、本明細書において「太陽電池用ウェーハ」とは、ウェーハの少なくとも片面に対して本発明に規定する処理を施し、該片面を多孔質化した状態のウェーハを意味するものである。この片面は、太陽電池セルにおいて受光面となる面である。そして、本発明の特徴的工程は、ウェーハの少なくとも片面に低級アルコール液を接触させる第1工程(ステップS1)と、この第1工程の後に、このウェーハの少なくとも前記片面に金属イオンを含むフッ化水素酸を接触させる第2工程(ステップS2)と、この第2工程の後に、この半導体ウェーハの少なくとも前記片面に対して、アルカリ溶液を接触させる工程、フッ化水素酸および硝酸を含有する酸溶液を接触させる工程、または酸化処理を施す工程である第3工程(ステップS5)と、を有することである。
 以下、本発明の上記特徴的工程を採用したことの技術的意義を、作用効果とともに具体例で説明する。詳細な工程は実施例で後述するが、本発明者は、酸エッチング処理後、風乾したp型(100)単結晶シリコンウェーハを2-プロパノール(イソプロピルアルコール;IPA)などの低級アルコール中に所定時間浸漬させ、その後銅(Cu)を溶解させたフッ化水素酸中に所定時間浸漬させたところ、外観上ウェーハ表面が黒くなり、可視光全域の波長において反射率が低くなることを見出した。また、ウェーハ表面の走査型電子顕微鏡(SEM)像を確認したところ、数μm程度の凹凸表面上にさらに微細な多数の凹凸が形成されていた。
 さらに、これまでの多孔質化技術では、反射率を低減させることを主眼とした検討がされており、低反射率にするほど当然に太陽電池の変換効率は高くなると考えられていた。しかしながら、本発明者の検討によると、ウェーハ表面に対する多孔質化の程度がより大きいほど太陽電池表面の反射率低減により優れる一方、本発明の上記のような処理により多孔質化がある程度進んでも、反射率は低いものの太陽電池としての変換効率はさほど上昇しないことを見出した。
 低反射率から期待されるほどの高変換効率が得られない理由として、太陽電池用ウェーハ表面上の微細な多孔質化構造に電子がトラップされる表面再結合現象が多発して、外部に取り出せる電子が減少する現象がおきていることが考えられる。すなわち、ウェーハ表面に存在するSi原子は、一定の割合でダングリングボンド(不飽和結合部)を有しており、このダングリングボンドは、光入射により得られた電子またはホールに対する捕獲箇所として作用する(キャリア成分の表面再結合現象)。多孔質化構造を微細にするほど、ウェーハ表面の表面積は増大し、結果としてダングリングボンドの数も増加することになり、表面再結合現象がより頻繁に発生することになる。このため、期待されるほどに高変換効率が得られなかったと考えられる。
 そこで上記の第1および第2工程を含む多孔質化工程にアルカリ溶液処理工程または所定の酸溶液処理工程を加え、多孔質化構造に軽度のエッチングを施してウェーハ表面の多孔質化層をわずかに削った。すると、変換効率が向上することがわかった。
 また、上記の第1および第2工程を含む多孔質化工程の後、多孔質化したウェーハ表面に対して酸化処理を行ったところ、このウェーハから製造した太陽電池の変換効率が向上することがわかった。これは、ダングリングボンド部に対し酸化処理を施すことで、再結合中心を消滅させることができるためと考えられる。なお、この酸化処理は、ウェーハ表面に対して何らかのエッチング作用を全く有しないか、有する場合でもごくわずかの処理であるため、ウェーハ表面の凹凸形状をほとんどあるいは全く変化させることはない。そのため、ウェーハ表面の反射率は、酸化処理前の低い状態を維持したままとすることができる点でも好ましい。
 本発明者は以上の知見に基づき、本発明を完成するに至った。
 第1および第2工程の表面処理によってウェーハ表面を多孔質化できる理由は必ずしも明らかではないが、本発明者は以下のような反応メカニズムで多孔質化されたと推定している。第2工程で、Cuを溶解させたフッ化水素酸にウェーハを浸漬させると、ウェーハ表面の何らかの核を基点として、Cuが微粒子として多数析出する。この反応は、Cu2++2e→Cuの還元反応であり、この際の電荷移動に伴い、ウェーハ表面のSiから電子が奪われ、Cu微粒子の析出箇所ではSiの溶解が発生する。ここで、フッ化水素酸の役割については、Siの溶解箇所でSiが水と反応して生成したSiOをその都度瞬間的に溶解して、多孔質構造を作るとのモデル(大見モデル)と、フッ素イオンがSiを直接酸化するとのモデル(Chemlaモデル)が考えられる。このような反応の詳細は、J. Electrochem. Soc. 144, 3275 (1997)“The Role of Metal Induced Oxidation for Copper Deposition on Silicon Surface”およびJ. Electrochem. Soc. 144, 4175 (1997)“Electrochemical and radiochemical study of copper contamination mechanism from HF solution onto silicon substrates”に詳細に記載されている。そして、本発明においては、第1工程で無極性溶媒である低級アルコールで処理することにより、ウェーハ表面の表面電位を制御し、フッ化水素酸浸漬時に金属析出が進行しやすい状態にすることができ、第2工程におけるSi溶解反応を均一に促進させることができるものと考えられる。さらに、低級アルコールで処理することにより、ウェーハ表面の有機物を除去して、上記反応が進行するようにする作用もあると考えられる。
 本発明では、第3工程としてアルカリ溶液を接触させる工程またはフッ化水素酸および硝酸を含有する酸溶液を接触させる工程を選択すれば、直流電源やイオン注入装置といった大掛かりな装置を必要とせず、かつ、フッ化水素酸を有機溶媒と混合させたり、フッ化水素酸ともに酸化剤を用いる必要がない。よって、従来技術に比べて安全かつ安価に、シリコンウェーハをはじめとする半導体ウェーハの表面を多孔質化して、表面における光の反射ロスを低減した太陽電池用ウェーハを得ることが可能となった。また、第3工程により、多孔質化の程度を多少抑えたので、表面再結合を抑制し、変換効率の高い太陽電池を作製することが可能となった。
 また、第3工程として半導体ウェーハに対して酸化処理を施す工程を選択すれば、ウェーハ表面の凹凸形状を変化させることなく表面再結合現象を抑制することができるため、得られた太陽電池用ウェーハを用いてより変換効率の高い太陽電池を作製することが可能となった。
 本実施形態では、第2工程の後かつ第3工程の前に、このウェーハの少なくとも前記片面に金属イオンを含まないフッ化水素酸を接触させる工程(ステップS3)をさらに行うことが好ましい。具体的には、第2工程後のウェーハを、金属イオンを含まないフッ化水素酸に所定時間浸漬させることができる。この工程により、第2工程で形成された表面凹凸の深さをある程度制御することができる。
 また、第2工程および/またはステップS3は、光照射環境下にて行うことが好ましい。第2工程を光照射環境下にて行うことにより、上記の反応メカニズムによる表面の多孔質化がより促進されるためである。また、ステップS3を光照射環境下にて行い、この照射条件を制御することによりウェーハ表面を所望の表面状態とすることができるためである。光照射環境は、具体的には蛍光灯光、ハロゲン光などを反応表面に照射することにより作り出す。
 さらに、少なくとも第2工程の後、本実施形態では第3工程の前に、このウェーハの少なくとも前記片面に、前記金属イオンから析出した金属(微粒子)をこの片面から除去する溶液を接触させる工程(ステップS4)をさらに行うことが好ましい。例えば、第2工程でCuを溶解させたフッ化水素酸を用いる場合、前記片面に残留したCu微粒子を除去するべく、前記片面に硝酸溶液を接触させる。この工程により、ウェーハ表面に残存して付着している金属粒子を除去することができる。
 そして、以上の工程の後に、このウェーハの少なくとも前記片面に、アルカリ溶液を接触させる工程、フッ化水素酸および硝酸を含有する酸溶液を接触させる工程、または酸化処理を施す工程(ステップS5)をさらに行う。
 本実施形態では、このような工程を経て、ウェーハ表面が多孔質化された太陽電池用ウェーハとなる。以下、各工程の好ましい態様について説明する。なお、第1工程の低級アルコール処理、および第2工程の金属イオン含有フッ化水素酸処理、好ましくはステップ3の金属イオン非含有フッ酸処理を合わせて、本明細書においては「多孔質化処理工程」と称する。
 (第1工程:低級アルコール処理)
 本明細書において「低級アルコール」とは、炭素数10以下の直鎖または分岐の任意のアルコールを意味する。炭素数が10を超えるとアルコールの粘性が高くなり、ウェーハ表面をアルコールでコーティングすることになってしまう。炭素数が10以下であれば、粘性が低い無極性溶媒としてウェーハ表面を無極性状態にすることができる。典型的には、メタノール、エタノール、2-プロパノール、N-メチルピロリドン、エチレングリコール、グリセリン、ベンジルアルコール、フェニルアルコールなどが挙げられるが、毒性面、価格面を考慮すると、エタノールおよび2-プロパノール(イソプロピルアルコール;IPA)を用いることが好ましい。処理時間、すなわちウェーハに低級アルコール液を接触させる時間(以下、各工程において処理液との接触時間を「処理時間」という)は、特に制限されないが、0.5分以上10分以下とすることが好ましく、3分以下とすることがより好ましい。0.5分以上であれば本発明の反射率の低減効果を十分に得ることができ、10分を超えて処理しても反射率の低減効果は飽和するためである。低級アルコール液の温度は、アルコールが蒸発または凝固しない温度であれば問題なく、常温とすればよい。
 (第2工程:金属イオン含有フッ化水素酸処理)
 本実施形態において、金属イオンはSiより貴な金属、例えばCu,Ag,Pt,Auなどのイオンであることが好ましい。これにより、第2工程において、ウェーハ表面への金属の微粒子の析出およびSiの溶出が効率的に起こるからである。価格面を考慮すれば、Cuのイオンとすることが好ましい。本発明の反射率の低減効果を十分に得る観点から好ましい条件を以下に挙げる。金属を溶解させたフッ化水素酸において、金属濃度は、10ppm以上1000ppm以下とすることが好ましく、100ppm以上400ppm以下とすることがより好ましい。また、フッ化水素酸の濃度は、好ましくは2質量%以上50質量%以下、より好ましくは10質量%以上40質量%以下、さらに好ましくは20質量%以上30%質量以下である。さらに、処理時間は、好ましくは0.5分以上30分以下、より好ましくは1分以上10分以下、さらに好ましくは3分以下である。金属含有フッ化水素酸の温度は、処理時間や蒸発損失などを考慮して適宜選択すればよく、常温~100℃とすることが好ましい。
 (金属イオン非含有フッ化水素酸処理)
 本実施形態において、ウェーハ表面に形成された多孔質層深さを適切な深さまで拡張するために、フッ化水素酸の濃度は、好ましくは2質量%以上50質量%以下、より好ましくは20質量%以上30質量%以下である。また、本明細書において「金属イオンを含まないフッ化水素酸」とは、厳密に金属イオンの含有量がゼロの場合のみならず、不純物として10ppm未満の金属が含まれている場合をも含むものとする。例えばCu,Ag,Pt,AuなどのSiより貴な金属のイオンが10ppm未満であれば、これらの金属微粒子が新たに析出して、ウェーハ表面に新たな凹凸が形成されるよりも、第2工程ですでに形成された凹凸をより深くする反応が支配的になる。処理時間は、プロセスタクトタイムに合わせて設定すればよく、好ましくは0.5分以上60分以下である。金属非含有フッ化水素酸の温度は、処理時間や蒸発損失などを考慮して適宜選択すればよく、常温~100℃とすることが好ましい。
 (金属除去溶液処理)
 本実施形態において、第2工程において金属としてCuを用いる場合、Cu微粒子の除去を硝酸(HNO)溶液で行うことができる。このとき、硝酸濃度は、好ましくは0.001~70質量%の範囲であり、より好ましくは0.01~0.1質量%の範囲内である。処理時間は、プロセスタクトタイムに合わせて設定すればよく、好ましくは0.5分以上10分以下であり、より好ましくは1分以上3分未満である。硝酸溶液の温度は、処理時間や蒸発損失などを考慮して適宜選択すればよく、常温~100℃とすることが好ましい。この工程で用いる処理液は硝酸に限定されず、除去する対象の金属に合わせて、これを溶解可能な溶液を選択すればよい。例えば、Ag,Pt,Auの場合は、王水(HCl/HNO)やヨウ化カリウム溶液(KI)などを用いることができる。好適な濃度および処理時間は、Cuの場合と同様である。
 (第3工程:アルカリ溶液処理)
 本実施形態において、第3工程としてアルカリ溶液処理を選択する場合に使用するアルカリの種類は特に限定されない。例えば、無機アルカリとしては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、ヒドラジン、有機アルカリとしては、水酸化テトラメチルアンモニウム、コリンなどのアルカリを1種以上含む溶液であればよい。また、このアルカリ溶液のpHは、好ましくは9.0~14.0の範囲であり、より好ましくは10.0~12.0の範囲内である。pH下限を下回る場合には反応が進行しにくく、pH上限を超える場合は反応速度低下が発生し、かつ試薬コストの増大を招くため好ましくない。このアルカリ溶液を接触させる時間は、好ましくは600秒以下、より好ましくは120秒以下である。例えば、Cu濃度170ppm、HF濃度25%の溶液を用いて、3分の多孔質化処理を行った場合は、1%KOH溶液を用いて30秒程度の処理を行うことで、多孔質化層の厚みを150~200nmとすることができる。ただし、これらのpH条件および接触時間条件の他、前記片面に作製された多孔質化層の厚さを50~400nmとすることができるpH条件および接触時間条件であればよい。すなわち、多孔質化処理工程の条件および第3工程のアルカリ処理の条件は多孔質化層の厚さを当該範囲とするように任意に設定すればよい。多孔質化層の厚さを50~400nmとすることで、変換効率の向上効果と、表面反射率低減効果を両立させることが可能となる。
 反応速度を調節するために、このアルカリ溶液中に酸化剤(過酸化水素、オゾンなど)や、界面活性剤(アニオン系界面活性剤、中性界面活性剤など)を添加してもよい。例えば、1%KOHにアミノアルコール系界面活性剤を添加することにより、エッチング速度を1/10以下にすることができる。
 (第3工程:酸溶液処理)
 他の実施形態において、第3工程として酸溶液処理を選択する場合に使用する酸溶液はフッ化水素酸および硝酸を含有すればよい。酸溶液中の濃度としては、フッ化水素酸は0.1~5.0質量%、硝酸は20~50質量%、残りを水とすることが好ましい。フッ化水素酸は0.1質量%以上であれば反応速度が十分に得られ、5.0質量%以下であればエッチング量の調節が容易な反応速度に抑えることができるため好ましい。硝酸は20質量%以上であればエッチング量の調節が容易な反応速度に抑えることができるため好ましく、薬液コストを抑える観点から50質量%以下が好ましい。この酸溶液の温度は、好ましくは10~40℃、より好ましくは15~30℃である。温度が10℃以上であれば反応速度が十分に得られ、40℃以下であればエッチング量の調節が容易な反応速度に抑えることができるため好ましい。また、この酸溶液を接触させる時間は、好ましくは10分以下、より好ましくは3分以下である。例えば、Cu濃度170ppm、フッ化水素酸濃度25質量%の溶液を用いて、3分の多孔質化処理を行った場合は、1質量%フッ化水素酸および35質量%硝酸を含む酸溶液を用いて1分の処理を行うことで、多孔質化層の厚みを202nm程度とすることができる。ただし、フッ化水素酸および硝酸の混合条件および接触時間条件については、この他、前記片面に作製された多孔質化層の厚さを50~400nmとすることができる条件であればよい。すなわち、多孔質化処理工程の条件および第3工程の酸処理の条件は多孔質化層の厚さを当該範囲とするように任意に設定すればよい。多孔質化層の厚さを50~400nmとすることで、変換効率の向上効果と、表面反射率低減効果を十分に両立させることが可能となる。多孔質化処理については、既述のような通常の条件では、400nm超えの厚みの多孔質層ができてしまい、厚みを50~400nmに制御することは困難である。よって第3工程が必要となる。
 フッ化水素酸および硝酸を含有する酸溶液中に酢酸、リン酸、硫酸、界面活性剤(アニオン系界面活性剤、中性界面活性剤など)などの、多孔質化層のエッチング作用を大きく妨げることのない成分を添加してもよい。
 (第3工程:酸化処理)
 他の実施形態において、第3工程として酸化処理を選択する場合、この酸化処理はウェーハ表面の再結合中心を減少させることができるものであれば特に限定されないが、例えば以下のようにして行うことができる。この酸化処理により、ウェーハ表面に形成される好ましい酸化膜の厚みは、1~100nmである。1nm未満の場合、再結合中心を減少させる効果が十分に得られない可能性があり、100nmを超えると、太陽電池製造プロセスにおける電極形成時に、接触抵抗が高くなり、結果として、太陽電池としての変換効率が低下する可能性があるからである。
 第1に、半導体ウェーハの少なくとも片面に、酸化剤を含む液体を接触させる処理で酸化を行うことができる。酸化剤を含む液体として、例えば、オゾンガスを水に溶解させたオゾン水を挙げることができる。この場合、オゾン濃度は、好ましくは0.1~20ppmである。0.1ppm未満の場合、ウェーハ表面の酸化を十分に行えない可能性があり、20ppmを超える処置を施しても、濃度に見合った効果が得られず、酸化能力は飽和してしまうからである。また、処理時間は、好ましくは1~10分、より好ましくは5~10分である。1分未満の場合、ウェーハ表面の酸化を十分に行えない可能性があり、10分を超える場合、処置を施しても、時間に見合った効果が得られず、酸化能力は飽和してしまうからである。処理温度は常温とすればよい。
 また、過酸化水素水を用いてもよい。この場合、過酸化水素の濃度は、好ましくは0.1~30質量%、より好ましくは0.3~30質量%である。0.1質量%未満の場合、ウェーハ表面の酸化を十分に行えない可能性があり、30質量%を超える処置を施しても、濃度に見合った効果が得られず、酸化能力は飽和してしまうからである。また、処理時間は、好ましくは1~30分、より好ましくは5~30分である。1分未満の場合、ウェーハ表面の酸化を十分に行えない可能性があり、30分を超える処置を施しても、時間に見合った効果が得られず、酸化能力は飽和してしまうからである。処理温度は20~80℃とすればよい。
 また、アンモニア/過酸化水素の混合水溶液(いわゆるSC-1洗浄液)または塩酸/過酸化水素の混合水溶液(いわゆるSC-2洗浄液)を用いてもよい。SC-1洗浄液の場合、アンモニアの濃度は、好ましくは0.1~5質量%、より好ましくは1~3質量%であり、SC-2洗浄液の場合、塩酸の濃度は、好ましくは0.1~5質量%、より好ましくは1~3質量%である。また、過酸化水素の濃度は、好ましくは0.1~30質量%、より好ましくは0.3~10質量%である。いずれの値も下限値を下回ると、ウェーハ表面の酸化を十分に行えない可能性があり、上限値を超えると、後のリンス工程で十分な洗浄が行いにくいからである。なお、SC-1洗浄液については、アンモニアに替えて、NaOH,KOHなどの無機アルカリや、TMAH(水酸化テトラメチルアンモニウム)、コリンなどの有機アルカリを用いてもよい。また、処理時間は、好ましくは1~20分、より好ましくは5~20分である。1分未満の場合、ウェーハ表面の酸化を十分に行えない可能性があり、20分を超える処置を施しても、濃度に見合った効果が得られず、酸化能力は飽和してしまうからである。処理温度は20~80℃とすればよい。
 第2に、半導体ウェーハの少なくとも片面に対して、酸素を含む雰囲気下での熱処理を施してもよい。熱処理は一般に半導体ウェーハの熱酸化として使用されている技術であれば限定されることはなく、例えばドライ酸化またはパイロジェニック酸化を挙げることができる。熱処理の温度は、好ましくは600~1200℃、より好ましくは800~1000℃であり、処理時間は、好ましくは1~30分、より好ましくは5~20分である。熱処理温度および処理時間のいずれも、下限値を下回ると酸化能力が不足して、所望の効果が得られない可能性があり、上限値を超える処理を施しても、酸化能力が飽和してしまうからである。
 第3に、半導体ウェーハの少なくとも片面上に液相成長法により酸化膜を形成してもよい。ここで、「液相成長法」とは、Siが飽和したHSiF溶液にHBOを添加した溶液に、ウェーハを浸漬させることにより、ウェーハ表面にSiO膜を形成する方法である。この方法によっても、ダングリングボンド部に対して酸化処理を施すことができ、再結合中心を消滅させることができる。処理液の調合は、例えば以下のようにして行う。まず、濃度4mol/LのHSiF溶液にシリカゲル粒子を加え、24時間常温にて撹拌した後、解け残ったシリカゲルをろ過で除去する。その後、この溶液に、HBOを濃度が0.01~1mol/L、好ましくは濃度0.05~0.15mol/Lとなるように添加する。処理時間は1分以上、好ましくは10~30分とし、処理温度は20℃以上、好ましくは30~40℃とする。
 図1に示す各工程において、ウェーハ表面に処理液を接触させる方法としては、例えば浸漬法、スプレー法が挙げられる。また、受光面となるウェーハの片面に処理液を滴下させるキャスト法を用いてもよい。
 また、ステップS1~ステップS5の少なくとも1工程の後に、水による洗浄工程を行ってもよい。
 以上、本発明の太陽電池用ウェーハの製造方法は、単結晶シリコンウェーハのみならず、多結晶シリコンウェーハにも適用可能である。既述のとおり、テクスチャ構造を形成する方法は、単結晶シリコンに適した方法であり、表面に様々な面方位が出現している多結晶シリコンについては、ウェーハ全面に均一なテクスチャ構造を形成することが困難であった。しかし、本発明の多孔質化処理によって、これまでのテクスチャ構造よりも微細な凹凸をウェーハ表面に形成できるため、多結晶シリコンウェーハの表面の反射率も十分に抑制することができる。また、本発明の第3工程をアルカリ溶液処理または酸溶液処理とすれば、従来よりも安全かつ安価に製造することができ、また、処理剤として過酸化水素などの酸化剤を用いる必要がないため、排水処理の複雑さを回避することができる。
 また、これまで単結晶または多結晶シリコンウェーハから結晶系シリコン太陽電池に用いるための太陽電池用ウェーハを製造することについて述べてきたが、本発明は結晶系シリコンに限られることはなく、アモルファスシリコン太陽電池や薄膜系太陽電池に用いるための太陽電池用ウェーハにも適用可能であることは勿論である。
 (太陽電池セルの製造方法)
 本発明に従う太陽電池セルの製造方法は、これまで説明した本発明に従う太陽電池用ウェーハの製造方法における工程に加えて、この太陽電池用ウェーハで太陽電池セルを作製する工程をさらに有する。セル作製工程は、ドーパント拡散熱処理でpn接合を形成する工程と、電極を形成する工程とを少なくとも含む。ドーパント拡散熱処理は、p基板に対してはリンを熱拡散させる。
 なお、pn接合形成工程は本発明における多孔質化処理工程の前に行ってもよい。すなわち、スライス加工によるダメージ除去のためのエッチング処理後、ドーパント拡散熱処理でpn接合を形成したウェーハの状態で、本発明における多孔質化処理を行う。こうして得た太陽電池用ウェーハに対して電極を形成して、太陽電池セルとすることもできる。
 本発明に従う太陽電池セルの製造方法によれば、セルの受光面における入射光の反射ロスの少ない、高い変換効率の太陽電池セルを得ることができる。
 (太陽電池モジュールの製造方法)
 本発明に従う太陽電池モジュールの製造方法は、上記太陽電池セルの製造方法における工程に加えて、この太陽電池セルから太陽電池モジュールを作製する工程をさらに有する。モジュール作製工程は、複数の太陽電池セルを配列し、電極を配線する工程と、強化ガラス基板上に配線された太陽電池セルを配置し、樹脂と保護フィルムで封止する工程と、アルミフレームを組み立てて、端子ケーブルを配線と電気的に接続する工程とを含む。
 本発明に従う太陽電池モジュールの製造方法によれば、太陽電池セルの受光面における入射光の反射ロスを抑制し、高い変換効率の太陽電池モジュールを得ることができる。
 以上、本発明を説明したが、これらは代表的な実施形態の例を示したものであって、本発明はこれらの実施形態に限定されるものではなく、発明の要旨の範囲内で種々の変更が可能である。
本発明の効果をさらに明確にするため、以下に説明する実施例・比較例の実験を行った比較評価について説明する。
 (実験例1:アルカリ溶液処理を第3工程とする場合)
 <試料の作製>
 (実施例1)
 まず、20mm角のp型(100)単結晶シリコンウェーハ(厚さ:4.25mm)を用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99質量%のエタノール溶液に1分間浸漬させた。その後、このウェーハを、Cuを1000ppm含む硝酸銅溶液5mLと、50質量%フッ化水素酸15mLと、水10mLとの混合液に3分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、窒素雰囲気にて乾燥させた。そして、アルカリ溶液処理として1質量%KOHに10秒浸漬し、その後窒素雰囲気にて乾燥させ、太陽電池用ウェーハを製造した。
 (実施例2)
 実施例2として、アルカリ溶液処理において1質量%KOHに30秒浸漬すること以外は実施例1と同様にして太陽電池用ウェーハを製造した。
 (実施例3)
 実施例3として、アルカリ溶液処理において1質量%KOHに60秒浸漬すること以外は実施例1と同様にして太陽電池用ウェーハを製造した。
 (実施例4)
 実施例4として、アルカリ溶液処理において1質量%水酸化テトラメチルアンモニウム(TMAH)に30秒浸漬すること以外は実施例1と同様にして太陽電池用ウェーハを製造した。
 (実施例5)
 実施例5として、アルカリ溶液処理において1質量%ヒドラジンに30秒浸漬すること以外は実施例1と同様にして太陽電池用ウェーハを製造した。
 (実施例6)
 実施例6として、アルカリ溶液処理において1質量%KOHに100秒浸漬すること以外は実施例1と同様にして太陽電池用ウェーハを製造した。
 (実施例7)
 実施例7として、アルカリ溶液処理において1質量%KOHに5秒浸漬すること以外は実施例1と同様にして太陽電池用ウェーハを製造した。
 (比較例1)
 実施例1の製造工程のうち、0.1質量%硝酸に5分間浸漬させ、窒素雰囲気にて乾燥させる工程まで行い、比較例1とした。すなわち、比較例1は本発明におけるアルカリ溶液処理のみを行わない(処理時間0分)ものである。
 (比較例2)
 実施例1の製造工程のうち、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施す工程までを行い、ウェーハを乾燥させ、比較例2とした。すなわち、比較例2は本発明における多孔質化処理およびアルカリ溶液処理を行わないものである。
 (比較例3)
 実施例1の製造工程のうち、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施す工程までを行い、その後、ウェーハを乾燥させ、アルカリ溶液処理として1質量%KOHに30秒浸漬し、および窒素雰囲気にて乾燥させる工程を行い、比較例3とした。すなわち、比較例3は本発明における多孔質化処理のみを行わないものである。
 <評価1:反射率測定>
 反射率測定器(島津製作所社製:SolidSpec3700)により、ウェーハの被処理面における反射スペクトルを300~1200nmの範囲で測定した。太陽光には波長500~700nmの光が多く含まれるため、この波長領域で反射率が低いことが望ましい。そこで、波長600nmと700nmの相対反射率を表1に示す。実施例1~7と比較例2,3とを比較すると、本発明の多孔質化処理を行うことで、ウェーハの被処理面における反射率が低下することがわかった。また、実施例1~7より、本発明のアルカリ処理を施すと反射率は多少上昇することがわかった。
Figure JPOXMLDOC01-appb-T000001
 <評価2:変換効率測定>
 実施例および比較例のウェーハに対して、P―OCD(東京応化工業株式会社製 型番P-110211)をスピンコート法にて塗布し、拡散熱処理を施してpn接合を形成し、フッ化水素にて表面のリンガラスを除去した。その後、ウェーハ表面のリン拡散面に反射防止膜としてITO膜をスパッタリング法にて形成した。また、表面にAg電極用のAgペーストを、裏面にAl電極用のAlペーストを塗布し、その後熱処理を施すことでウェーハ表裏面に電極を形成し、太陽電池セルを作製した。そして、変換効率測定器(和泉テック社製:YQ-250BX)によりエネルギー変換効率を測定した結果を表2に示す。各実施例は各比較例よりも高い変換効率となった。特に、実施例1~7と比較例1とを比較すると、比較例1では実施例1~7よりも反射率が低いにもかかわらず、変換効率では劣っていた。このように、本発明の多孔質化処理およびアルカリ処理を行うことにより、表面の反射ロスを低減する作用以外の作用によって、より高い変換効率を得ることができることがわかった。更に、多孔質化層の厚さが50~400nmとなる実施例1~5では、実施例6および7に比べて更に高い変換効率となることがわかった。なお、本実施例では厚さ425μmとかなり厚いテストピースを用いて実験を行ったため、一般的な試験条件で行う場合よりも数値としては低い値が出ているが、当業界の太陽電池製品用のウェーハに適用した場合の変換効率は表2の結果よりも数パーセント増加すると予測される。
Figure JPOXMLDOC01-appb-T000002
 (実験例2:酸溶液処理を第3工程とする場合)
 <試料の作製>
 (実施例1~15)
 まず、20mm角のp型(100)単結晶シリコンウェーハ(厚さ:4.25mm)を用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99質量%のエタノール溶液に1分間浸漬させた。その後、このウェーハを、Cuを1000ppm含む硝酸銅溶液5mLと、50質量%フッ化水素酸15mLと、水10mLとの混合液に3分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、窒素雰囲気にて乾燥させた。そして、酸溶液処理として、フッ化水素酸と硝酸とを表3に示す濃度で含み、残りは水である酸溶液に表3の処理時間浸漬し、その後窒素雰囲気にて乾燥させ、太陽電池用ウェーハを製造した。
 (比較例1)
 実施例1の製造工程のうち、0.1質量%硝酸に5分間浸漬させ、窒素雰囲気にて乾燥させる工程まで行い、比較例1とした。すなわち、比較例1は本発明における酸溶液処理のみを行わない(処理時間0分)ものである。
 (比較例2)
 実施例1の製造工程のうち、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施す工程までを行い、ウェーハを乾燥させ、比較例2とした。すなわち、比較例2は本発明における多孔質化処理および酸溶液処理を行わないものである。
 (比較例3)
 実施例1の製造工程のうち、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施す工程までを行い、その後、ウェーハを乾燥させ、酸溶液処理として1質量%フッ化水素酸と35質量%硝酸とを含み残りは水である酸溶液に1分浸漬し、および窒素雰囲気にて乾燥させる工程を行い、比較例3とした。すなわち、比較例3は本発明における多孔質化処理のみを行わないものである。
 <評価1:反射率測定>
 実験例1と同じ方法でスペクトル反射測定を行った。波長600nmと700nmの相対反射率を表3に示す。実施例1~15と比較例2,3とを比較すると、本発明の多孔質化処理を行うことで、ウェーハの被処理面における反射率が低下することがわかった。また、実施例1~15と比較例1との比較により、本発明の酸溶液処理を施すと反射率は多少上昇することがわかった。
Figure JPOXMLDOC01-appb-T000003
 <評価2:変換効率測定>
 実験例1と同じ方法でエネルギー変換効率を測定した結果を表4に示す。各実施例は各比較例よりも高い変換効率となった。特に、実施例1~15と比較例1とを比較すると、比較例1では実施例1~15よりも反射率が低いにもかかわらず、変換効率では劣っていた。このように、本発明の多孔質化処理および酸溶液処理を行うことにより、表面の反射ロスを低減する作用以外の作用によって、より高い変換効率を得ることができることがわかった。更に、多孔質化層の厚さが50~400nmとなる実施例1、2、5~15では、実施例3および4に比べて更に高い変換効率となることがわかった。なお、本実施例では厚さ425μmとかなり厚いテストピースを用いて実験を行ったため、一般的な試験条件で行う場合よりも数値としては低い値が出ているが、当業界の太陽電池製品用のウェーハに適用した場合の変換効率は表4の結果よりも数パーセント増加すると予測される。
Figure JPOXMLDOC01-appb-T000004
 (実験例3:酸化処理を第3工程とする場合)
 (実験例3-1)
 <試料の作製>
 まず、20mm角のp型(100)単結晶シリコンウェーハを用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99質量%のエタノール溶液に1分間浸漬させた。その後、このウェーハを、Cuを1000ppm含む硝酸銅溶液5mLと、50質量%フッ化水素酸15mLと、水10mLとの混合液に3分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。この工程までが多孔質化処理工程に該当する。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、窒素雰囲気にて乾燥させた。そして、各実施例について、それぞれ以下に示す酸化処理を行い、その後エアブローでウェーハ表面を乾燥させ、本発明にかかる太陽電池用ウェーハを製造した。
 (実施例1~4)
 ウェーハをオゾン水に浸漬させる酸化処理を行った。処理時間は10分とし、オゾン濃度は表5に示した。
 (実施例5~7)
 ウェーハを過酸化水素水に浸漬させる酸化処理を行った。処理時間は10分とし、過酸化水素の濃度は表5に示した。
 (実施例8~16)
 ウェーハを、アルカリ成分/過酸化水素の混合水溶液に浸漬させる酸化処理を行った。処理時間は10分とし、用いたアルカリの種類と、アルカリおよび過酸化水素の濃度は表5に示した。
 (実施例17~22)
 ウェーハを塩酸/過酸化水素の混合水溶液に浸漬させる酸化処理を行った。処理時間は10分とし、塩酸および過酸化水素の濃度は表5に示した。
 (実施例23~27)
 ウェーハに液相成長法(LPD:Liquid Phase Deposition)による酸化処理を行った。具体的には、まず、濃度4mol/LのHSiF溶液を調製し、この溶液にシリカゲル粒子(関東化学社製、特級試薬:白色)を加え、24時間常温にて撹拌した。その後、この溶液に、HBOを濃度が1mol/Lとなるように添加して、処理溶液とした。ウェーハをこの処理溶液に浸漬させた。処理温度および処理時間は表5に示した。
 (実施例28~33)
 ウェーハにドライ酸化またはパイロジェニック酸化の熱処理を施した。熱処理の温度は800℃とした。処理時間は表5に示した。
 (比較例1)
 実施例1の製造工程のうち、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施す工程までを行い、ウェーハを乾燥させ、比較例にかかる太陽電池用ウェーハを製造した。すなわち、比較例1は本発明における多孔質化処理および酸化処理を行わないものである。
 (比較例2)
 酸化処理を行わないこと以外は実施例と同じ方法で、比較例にかかる太陽電池用ウェーハを製造した。
 <評価1:ライフタイム測定>
 以下のようにして、実施例・比較例の各ウェーハについてライフタイムを測定した。ライフタイムは、太陽電池基板における、受光により発生した電子およびホールの寿命を表す指標であり、この値が大きいほど太陽電池としての変換効率は大きくなるものである。よって、本実験では太陽電池セルを作製し、変換効率を測定するのに替えて、ライフタイムを測定することで変換効率の大小を評価した。測定には、セミラボ製WT-2100を使用した。なお、測定に際しては、ヨウ素パック処理等の表面パシベーション処置は施さず、作成したサンプルを、そのまま測定することで、表面状態の影響を把握することとした。
 <評価2:反射率測定>
 実験例1と同じ方法で反射スペクトル測定を行った。波長600nmの相対反射率を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 <評価結果>
 表5より、比較例1と比較例2とを比べると、比較例2は、比較例1よりも反射率を大きく減少させることができたものの、変換効率を評価する指標であるライフタイムはさほど上昇しなかった。このことから、本発明に規定する多孔質化処理をウェーハ表面に施すことにより、反射率を十分に低減することができたものの、多孔質化処理のみでは変換効率の上昇に上手く結びつけることができていないことがわかった。次に、各実施例は、比較例2と同レベルの低い反射率を維持したまま、比較例1および比較例2よりもライフタイムを上昇させることができた。このことから、本発明に規定する酸化処理を施すことにより、より高い変換効率を有する太陽電池セルを製造可能な太陽電池用ウェーハが得られることがわかった。しかも、酸化処理によって反射率が大きく上昇することもないことから、表面の凹凸形状をさほど変化させない処理であるといえる。
 (実験例3-2)
 次に、多孔質化処理の条件を変更しても、酸化処理によりライフタイムが向上するという本発明の効果が得られることを、以下の実験例により示す。
 (多孔質化処理条件2)
 Cuを含むフッ化水素酸で処理する工程を以下のように変更した以外は、実験例3-1と同様にして、太陽電池用ウェーハを製造した。すなわち、ウェーハを、Cuを1000ppm含む硝酸銅溶液5mLと、50質量%フッ化水素酸15mLと、水10mLとの混合液に5分間浸漬させた。ウェーハをオゾン濃度が5.0ppmのオゾン水に15分間浸漬させる酸化処理を行った場合を実施例34、酸化処理を行わない場合を比較例3とした。
 (多孔質化処理条件3)
 Cuを含むフッ化水素酸で処理する工程を以下のように変更した以外は、実験例3-1と同様にして、太陽電池用ウェーハを製造した。すなわち、ウェーハを、Cuを1000ppm含む硝酸銅溶液5mLと、50質量%フッ化水素酸6mLと、水19mLとの混合液に3分間浸漬させた。ウェーハをオゾン濃度が5.0ppmのオゾン水に10分間浸漬させる酸化処理を行った場合を実施例35、酸化処理を行わない場合を比較例4とした。
 実験例3-1と同様にして各ウェーハについてライフタイム測定および反射率測定を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6より、いずれの多孔質化処理条件の場合にも、多孔質化により反射率が減少し、さらに酸化処理を行うことによって、酸化処理しない場合に比べてライフタイムを上昇させることができた。
 以下に、本発明における酸化処理を行わず、多孔質化処理の条件を様々に変更して行った参考実験例をさらに示す。
 (参考実験例1:低級アルコール処理)
 <試料の作製>
 参考例1
 まず、20mm角のp型(100)単結晶シリコンウェーハを用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを100質量%の2-プロパノール(イソプロピルアルコール;IPA)に10分間浸漬させた。その後、このウェーハを、Cuを1000ppm含む硝酸銅溶液10mLと、50質量%フッ化水素酸10mLと、水10mLとの混合液に10分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、太陽電池用ウェーハを製造した。
 参考例2
 100質量%の2-プロパノールに替えて、同じく低級アルコールである99質量%エタノール(ETOH)とした点以外は、実施例1と同じ方法で太陽電池用ウェーハを製造した。
 参考比較例1
 参考例1の製造工程のうち、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施す工程までを行い、ウェーハを乾燥させ、太陽電池用ウェーハを製造した。
 参考比較例2
 100質量%の2-プロパノールに10分間浸漬させる工程を行わなかった(本発明における第1工程を無処理とした)以外は、参考例1と同じ方法で太陽電池用ウェーハを製造した。
 参考比較例3
 100質量%の2-プロパノールに替えて、低級アルコールではない30質量%過酸化水素水とした点以外は、参考例1と同じ方法で太陽電池用ウェーハを製造した。
 <評価:反射率測定>
 既述の方法で各試料の反射率を測定し、波長600nmおよび700nmの相対反射率を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 表7より、参考比較例2,3は参考比較例1に比べて反射率がわずかに増加した。一方、参考例1,2では参考比較例1に比べて顕著に反射率を低減することができた。この結果から、本発明における多孔質化処理を行うと、反射率を低減できることがわかった。
 (参考実験例2:低級アルコール処理時間と反射率との関係)
 <試料の作製>
 まず、20mm角のp型(100)単結晶シリコンウェーハを用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99質量%エタノール(ETOH)に所定時間浸漬させた。その後、このウェーハを、Cuを1000ppm含む硝酸銅溶液10mLと、50質量%フッ化水素酸10mLと、水10mLとの混合液に10分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、太陽電池用ウェーハを製造した。上記所定時間を0分、1分、3分、5分、10分として5種類の試料を作製した。なお、0分は当該工程を行わないことを意味する。
 <評価:反射率測定>
 既述の方法で5種類の試料の反射スペクトルを測定し、波長600nmおよび700nmの相対反射率を表8に示した。
Figure JPOXMLDOC01-appb-T000008
 表8より、エタノール処理時間は1分で十分であり、10分以下の範囲で反射率低減効果は持続することがわかった。
 (参考実験例3:Cu濃度と反射率との関係)
 <試料作製>
 まず、20mm角のp型(100)単結晶シリコンウェーハを用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99質量%エタノール(ETOH)に1分間浸漬させた。その後、このウェーハを、Cuを所定濃度溶解させた硝酸銅溶液10mLと、50質量%フッ化水素酸10mLと、水10mLとの混合液に3分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、太陽電池用ウェーハを製造した。上記所定濃度(ppm)を33.3,83.3,166.7,250.0,333.3,500.0,666.7として7種類の試料を作製した。
 <評価:反射率測定>
 既述の方法で7種類の試料の反射スペクトルを測定し、波長600nmおよび700nmの相対反射率をそれぞれ図2(a)および図2(b)に示した。図2(a),(b)ともに、Cu濃度が100~400ppmの範囲で反射率が最小となり、400ppmを超えると多少反射率低減効果が小さくなることがわかった。このことから、Cu濃度が100~400ppmの範囲で高い反射率低減効果が得られることがわかった。
 (参考実験例4:フッ化水素酸の濃度と反射率との関係)
 <試料作製>
 まず、20mm角のp型(100)単結晶シリコンウェーハを用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99質量%エタノール(ETOH)に1分間浸漬させた。その後、このウェーハを、Cuを1000ppm溶解させた硝酸銅溶液5mLと、所定濃度になるように調合されたフッ化水素酸と、水との混合液25mLの混合溶液に3分間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1%硝酸に5分間浸漬させ、太陽電池用ウェーハを製造した。上記所定濃度(質量%)を1.7,8.3,16.7,25.0,33.3として5種類の試料を作製した。
 <評価:反射率測定>
 既述の方法で5種類の試料の反射スペクトルを測定し、波長600nmおよび700nmの相対反射率をそれぞれ図3(a)および図3(b)に示した。図3(a),(b)ともに、フッ化水素酸の濃度が10%以上の場合に、高い反射率低減効果が得られることがわかった。
 (参考実験例5:第2工程処理時間と反射率との関係)
 <試料作製>
 まず、20mm角のp型(100)単結晶シリコンウェーハを用意し、50質量%フッ化水素酸/70質量%硝酸/水=1:4:5(体積比)にて調合した酸性溶液を用いて、室温で3分間エッチング処理を施し、その後ウェーハを乾燥させた。以降の工程は全て室温で行った。このウェーハを99%エタノール(ETOH)に1分間浸漬させた。その後、このウェーハを、Cuを1000ppm溶解させた硝酸銅溶液10mLと、50質量%フッ化水素酸10mLと、水10mLとの混合液に所定時間浸漬させた。なお、この工程は、通常の室内環境すなわち光照射環境下にておこなった。その後、このウェーハを0.1質量%硝酸に5分間浸漬させ、太陽電池用ウェーハを製造した。上記所定時間を0分、1分、3分、5分、10分、20分、30分として7種類の試料を作製した。なお、0分は当該工程を行わないことを意味する。
 <評価:反射率測定>
 既述の方法で7種類の試料の反射スペクトルを測定し、波長600nmおよび700nmの相対反射率をそれぞれ図4(a)および図4(b)に示した。図4(a),(b)ともに、処理時間が1~30分の範囲で0分よりも低い反射率を得ることができ、特に処理時間が1~10分の範囲で高い反射率低減効果が得られることがわかった。
 <参考実験例のまとめ>
 以上、本発明における酸化処理を行わず、多孔質化処理の条件を様々に変更して行った参考実験例を示したが、本発明における酸化処理は既述のとおり反射率をほとんど変化させることがないことから、上記参考実験例の試料に対して酸化処理を行っても、ほぼ同じ程度の反射率が得られるものと思われ、かつ、酸化処理によって、ライフタイムが向上するものと思われる。
 本発明によれば、ウェーハ表面を微細に多孔質化し、ウェーハ表面における入射光の反射率を十分に低減し、なおかつ、得られた太陽電池用ウェーハを用いてより変換効率の高い太陽電池を作製することができる。

Claims (13)

  1.  半導体ウェーハの少なくとも片面に低級アルコールを接触させる第1工程と、
     該第1工程の後に、前記半導体ウェーハの少なくとも前記片面に金属イオンを含むフッ化水素酸を接触させる第2工程と、
    を有する処理により前記半導体ウェーハの少なくとも前記片面を多孔質化し、
     前記第2工程の後に、前記半導体ウェーハの少なくとも前記片面に対して、アルカリ溶液を接触させる工程、フッ化水素酸および硝酸を含有する酸溶液を接触させる工程、または酸化処理を施す工程である第3工程を有し、太陽電池用ウェーハとすることを特徴とする太陽電池用ウェーハの製造方法。
  2.  前記半導体ウェーハがシリコンウェーハであり、
     前記金属イオンがSiより貴な金属のイオンである請求項1に記載の太陽電池用ウェーハの製造方法。
  3.  前記第2工程の後かつ前記第3工程の前に、前記半導体ウェーハの少なくとも前記片面に、前記金属イオンから析出した金属を前記片面から除去する溶液を接触させる工程を有する請求項1または2に記載の太陽電池用ウェーハの製造方法。
  4.  前記第3工程において前記アルカリ溶液または前記酸溶液を接触させる場合、前記片面に作製された多孔質化された層の厚さが50~400nmとなる、請求項1~3のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  5.  前記第3工程の前記アルカリ溶液のpHが9.0~14.0である、請求項1~4のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  6.  前記第3工程の前記アルカリ溶液を接触させる時間が600秒以下である、請求項1~5のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  7.  前記酸溶液中の前記フッ化水素酸の濃度が0.1~5.0質量%、前記硝酸の濃度が20~50質量%である、請求項1~4のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  8.  前記第3工程の前記酸溶液を接触させる時間が10分以下である、請求項1~4および7のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  9.  前記酸化処理が、前記半導体ウェーハの少なくとも前記片面に酸化剤を含む液体を接触させる処理である請求項1~3のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  10.  前記酸化処理が、前記半導体ウェーハの少なくとも前記片面に対する、酸素を含む雰囲気下での熱処理である請求項1~3のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  11.  前記酸化処理が、前記半導体ウェーハの少なくとも前記片面上に液相成長法により酸化膜を形成する処理である請求項1~3のいずれか1項に記載の太陽電池用ウェーハの製造方法。
  12.  請求項1~11のいずれか1項に記載の太陽電池用ウェーハの製造方法における工程に加えて、該太陽電池用ウェーハで太陽電池セルを作製する工程をさらに有する太陽電池セルの製造方法。
  13.  請求項12に記載の太陽電池セルの製造方法における工程に加えて、該太陽電池セルから太陽電池モジュールを作製する工程をさらに有する太陽電池モジュールの製造方法。
     
     
PCT/JP2012/002398 2011-05-17 2012-04-05 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法 WO2012157179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137030156A KR101513911B1 (ko) 2011-05-17 2012-04-05 태양 전지용 웨이퍼의 제조방법, 태양 전지 셀의 제조방법, 및 태양 전지 모듈의 제조방법
CN201280023391.8A CN103563097B (zh) 2011-05-17 2012-04-05 太阳能电池用晶片的制造方法、太阳能电池单元的制造方法以及太阳能电池组件的制造方法
US14/006,563 US8883543B2 (en) 2011-05-17 2012-04-05 Method of producing wafer for solar cell, method of producing solar cell, and method of producing solar cell module
DE112012002092.8T DE112012002092T5 (de) 2011-05-17 2012-04-05 Verfahren zur Herstellung von Wafern für Solarzellen, Verfahren zur Herstellung von Solarzellen und Verfahren zur Herstellung von Solarzellenmodulen

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-110400 2011-05-17
JP2011110400A JP5724614B2 (ja) 2011-05-17 2011-05-17 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2011162424A JP5724718B2 (ja) 2011-07-25 2011-07-25 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2011-162424 2011-07-25
JP2012-004034 2012-01-12
JP2012004034A JP5880055B2 (ja) 2012-01-12 2012-01-12 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2012157179A1 true WO2012157179A1 (ja) 2012-11-22

Family

ID=47176534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002398 WO2012157179A1 (ja) 2011-05-17 2012-04-05 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法

Country Status (6)

Country Link
US (1) US8883543B2 (ja)
KR (1) KR101513911B1 (ja)
CN (1) CN103563097B (ja)
DE (1) DE112012002092T5 (ja)
TW (1) TWI475712B (ja)
WO (1) WO2012157179A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504179A (ja) * 2013-04-12 2017-02-02 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法
JP2018006744A (ja) * 2016-06-27 2018-01-11 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 結晶シリコン太陽電池のテクスチャー構造およびその調製方法
CN109686818A (zh) * 2018-12-25 2019-04-26 浙江晶科能源有限公司 一种制备单晶硅倒金字塔绒面的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493214B (zh) * 2011-01-26 2016-01-20 胜高股份有限公司 太阳能电池用晶片及其制备方法
US9490133B2 (en) 2013-01-24 2016-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Etching apparatus
US9484211B2 (en) 2013-01-24 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Etchant and etching process
CN103151423B (zh) * 2013-02-28 2015-09-16 常州捷佳创精密机械有限公司 一种多晶硅片制绒清洗工艺方法
US9217206B2 (en) * 2013-09-27 2015-12-22 Sunpower Corporation Enhanced porosification
TWI528877B (zh) * 2013-11-08 2016-04-01 長興材料工業股份有限公司 鈍化組合物及其應用
CN105047763A (zh) * 2015-08-28 2015-11-11 中国科学院物理研究所 晶硅制绒槽
CN105047767A (zh) * 2015-09-10 2015-11-11 浙江晶科能源有限公司 一种硅片的制绒方法
CN105220235B (zh) * 2015-10-12 2017-12-08 常州捷佳创精密机械有限公司 一种单多晶制绒方法
CN105810761B (zh) * 2016-04-29 2018-07-27 南京工业大学 一种金刚线切割多晶硅片的制绒方法
DE102017206432A1 (de) * 2017-04-13 2018-10-18 Rct Solutions Gmbh Vorrichtung und Verfahren zur chemischen Behandlung eines Halbleiter-Substrats mit einer gesägten Oberflächenstruktur
CN110828584A (zh) * 2019-11-14 2020-02-21 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池及其制备工艺
CN111092137A (zh) * 2019-12-26 2020-05-01 晋能清洁能源科技股份公司 一种多晶硅片制绒的制绒液及使用其制绒的方法
US10975482B1 (en) * 2020-02-27 2021-04-13 Haiming Li Self-derivative iron-containing nickel anode for water electrolysis
CN115332371B (zh) * 2022-07-27 2024-06-14 西安隆基乐叶光伏科技有限公司 硅片的制绒方法及太阳能电池的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183505A (ja) * 2003-12-17 2005-07-07 Kansai Tlo Kk 多孔質層付きシリコン基板を製造する方法
JP2005277208A (ja) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd 半導体素子の製造方法
WO2009054076A1 (ja) * 2007-10-24 2009-04-30 Mitsubishi Electric Corporation 太陽電池の製造方法
JP2009524264A (ja) * 2006-01-23 2009-06-25 ネクソン・リミテッド シリコン系材料のエッチング方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169097A (ja) 1992-11-30 1994-06-14 Shin Etsu Chem Co Ltd 太陽電池
JP2007194485A (ja) 2006-01-20 2007-08-02 Osaka Univ 太陽電池用シリコン基板の製造方法
US7500397B2 (en) * 2007-02-15 2009-03-10 Air Products And Chemicals, Inc. Activated chemical process for enhancing material properties of dielectric films
TWI385813B (zh) 2009-02-09 2013-02-11 Mitsubishi Electric Corp Method for manufacturing solar cells
JP2010283339A (ja) * 2009-05-02 2010-12-16 Semiconductor Energy Lab Co Ltd 光電変換装置及びその作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183505A (ja) * 2003-12-17 2005-07-07 Kansai Tlo Kk 多孔質層付きシリコン基板を製造する方法
JP2005277208A (ja) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd 半導体素子の製造方法
JP2009524264A (ja) * 2006-01-23 2009-06-25 ネクソン・リミテッド シリコン系材料のエッチング方法
WO2009054076A1 (ja) * 2007-10-24 2009-04-30 Mitsubishi Electric Corporation 太陽電池の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504179A (ja) * 2013-04-12 2017-02-02 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法
JP2018006744A (ja) * 2016-06-27 2018-01-11 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 結晶シリコン太陽電池のテクスチャー構造およびその調製方法
CN109686818A (zh) * 2018-12-25 2019-04-26 浙江晶科能源有限公司 一种制备单晶硅倒金字塔绒面的方法

Also Published As

Publication number Publication date
DE112012002092T5 (de) 2014-07-10
US20140057383A1 (en) 2014-02-27
CN103563097A (zh) 2014-02-05
TW201248905A (en) 2012-12-01
CN103563097B (zh) 2016-01-20
KR20140010155A (ko) 2014-01-23
TWI475712B (zh) 2015-03-01
US8883543B2 (en) 2014-11-11
KR101513911B1 (ko) 2015-04-21

Similar Documents

Publication Publication Date Title
WO2012157179A1 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP4610669B2 (ja) 太陽電池の製造方法
US9583652B2 (en) Method for the wet-chemical etching back of a solar cell emitter
EP2697820B1 (en) Wet-chemical method for producing a black silicon substrate
KR20090077274A (ko) 나노 텍스쳐링 구조를 갖는 반도체 웨이퍼 기판을 포함하는벌크형 태양전지의 제조방법
US9324899B2 (en) Emitter diffusion conditions for black silicon
Sreejith et al. An additive-free non-metallic energy efficient industrial texturization process for diamond wire sawn multicrystalline silicon wafers
KR101212896B1 (ko) 태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제 및 처리방법
KR20140105437A (ko) 태양 전지의 제조 방법
KR101528864B1 (ko) 태양전지용 웨이퍼 및 그 제조 방법
JP2010245568A (ja) 太陽電池の製造方法
JP5724718B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP4553597B2 (ja) シリコン基板の製造方法および太陽電池セルの製造方法
JP2013225552A (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5724614B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5880055B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5703780B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP2013012705A (ja) 太陽電池用ウェーハ、太陽電池セルおよび太陽電池モジュール
JP2012169420A (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法および太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12784992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14006563

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137030156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012002092

Country of ref document: DE

Ref document number: 1120120020928

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12784992

Country of ref document: EP

Kind code of ref document: A1