WO2009036686A1 - Procédé de fabrication de silicium polycristallin pour une pile solaire - Google Patents

Procédé de fabrication de silicium polycristallin pour une pile solaire Download PDF

Info

Publication number
WO2009036686A1
WO2009036686A1 PCT/CN2008/072312 CN2008072312W WO2009036686A1 WO 2009036686 A1 WO2009036686 A1 WO 2009036686A1 CN 2008072312 W CN2008072312 W CN 2008072312W WO 2009036686 A1 WO2009036686 A1 WO 2009036686A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
furnace
solar cell
purity
smelting
Prior art date
Application number
PCT/CN2008/072312
Other languages
English (en)
French (fr)
Inventor
Shaoguang Li
Original Assignee
Shaoguang Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoguang Li filed Critical Shaoguang Li
Publication of WO2009036686A1 publication Critical patent/WO2009036686A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of purification of silicon, and particularly relates to a method for producing polycrystalline silicon for solar cells by using an electron beam furnace and a plasma furnace to smelt to remove impurities in industrial silicon.
  • Solar cells can directly convert solar energy into DC power by using the photoelectric voltaic effect, which provides humans with inexhaustible clean and renewable energy, and has excellent development prospects.
  • silicon cells the most widely used is silicon cells.
  • the silicon material that can be used to make solar silicon cells must have a silicon content of 6N (ie, 99.9999%) or more, wherein the carbon and oxygen contents must be below 0.5 ⁇ 1ppmw, and other impurities such as boron, phosphorus, iron, aluminum and titanium are contained. It must be reduced to below O.Olppmw to ensure the required photoelectric conversion efficiency.
  • the methods for producing solar grade high-purity silicon in various countries all use the Siemens method or the modified Siemens method, that is, chemical vapor deposition (CVD).
  • This type of method is to treat industrial silicon with hydrochloric acid into trichlorosilane (or silicon tetrachloride), purify the above trichlorosilane (or silicon tetrachloride), and then in the Siemens reactor (or fluid bed).
  • High-purity polycrystalline silicon is obtained by reduction vapor deposition using high-purity hydrogen.
  • This type of method uses a thermal chemical vapor deposition process, which has many process steps and long time, which increases energy consumption, material consumption and cost. And trichlorosilane and silicon tetrachloride are highly toxic.
  • the technology disclosed in the above patent documents has the following problems: (1) The content of impurities in the product, especially the main impurities B and P, cannot meet the solar level standard; (2) the technical parameters of the process, especially its important technical parameters. It is uncertain, at least that its technology is not fully disclosed; (3) The scale of the examples is very small, indicating that its technology has not yet reached the level of industrial production.
  • the object of the present invention is to provide a method for manufacturing polycrystalline silicon for solar cells by physical metallurgy technology, which can control the content of impurities in silicon, especially the main impurities such as B and P, to below O.Olppmw;
  • the environment does not produce chemical pollution, is safe and reliable, and is particularly suitable for large-scale application in China.
  • step (1) The solid silicon monoxide obtained in step (1) is placed in a high vacuum furnace and heated to a temperature above 1400 ° C to cause the following reaction:
  • step (3) After grinding the silicon powder obtained in step (2), immerse it in concentrated nitric acid and stir for more than 1 hour to dissolve the impurities such as boron and phosphorus, filter the acid solution, rinse with water for more than 1 hour, and then heat. drying;
  • step (3) placing the silicon powder obtained in step (3) in a high-vacuum electron beam furnace, and melting at a pressure lower than 10 - 5 Torr to further remove the remaining impurity phosphorus. And solidifying the molten silicon into an ingot;
  • step (6) Cut off the concentrated portion of the directional solidified ingot obtained in step (5) to obtain solar grade polycrystalline silicon with a purity of 6N or more.
  • the pressure in the vacuum chamber of the heating furnace is lower than 10 - 4 Torr, preferably at a heating temperature of 1250 to 1300 ° C, and after the reaction, it is rapidly cooled to room temperature at 1180 to 1200 ° C.
  • the pressure in the vacuum chamber of the heating furnace is lower than 10 - 5 Torr, and the heating temperature is preferably 1450 to 1500 ° C.
  • the acid immersion time is 1 to 4 hours
  • the water rinsing time after acid immersion is 2 to 6 hours
  • the mixture is stirred, preferably in the vacuum chamber during drying.
  • the pressure in the vacuum chamber is 10 _ 2 Torr
  • the baking temperature is 100 to 200 ° C
  • the holding time is 1 hour or more.
  • the crucible used in the electron beam furnace is a water-cooled copper crystallizer, and a coil for electromagnetic stirring is attached to the outside of the crucible wall.
  • the method for producing polycrystalline silicon for solar cells according to the present invention is as follows (5) In the middle ion furnace melting, the furnace is filled with nitrogen gas or filled with nitrogen and hydrogen gas, and the crucible is a water-cooled copper crystallizer, and an electromagnetic stirring coil is installed outside the crucible. .
  • the technical point of the present invention is to completely abandon the "current route” of the existing Siemens method (ie, chemical vapor deposition method), "an alternative route”, and skillfully adopt a combination of disproportionation reaction of silicon monoxide, acid leaching separation and vacuum smelting. , removing metal impurities, phosphorus and boron in stages to obtain solar grade polycrystalline silicon with a purity of more than 6N. Since the invention eliminates the Siemens method, it is no longer necessary to use highly toxic SiCl 4 , SiHCl 3 and flammable and explosive SiH 4 , 3 ⁇ 4 in the entire process, which makes environmental protection problems and production safety problems available. A good solution is greatly beneficial to the promotion and application in China to meet the growing demand for polysilicon in China's photovoltaic industry.
  • Step 1 Using chemically pure industrial silicon with a purity of more than 99.68% and high-purity quartz powder with a SiO 2 content of 99.98% as raw materials, the two are ground into fine powder and placed in a vacuum furnace with a pressure lower than 10 _ 4 Torr. The temperature is raised to 1250 ° C, and kept for 1 to 3 hours to obtain gaseous silicon monoxide, the temperature is slowly lowered to 1180 ° C, and then quenched to room temperature to obtain a solid silicon monoxide;
  • a silicon oxide solid placed in a vacuum furnace pressure is below 10_ 5 torr and heated to 1450 ° C, incubated 1 ⁇ 3 hours at which time the furnace silicon monoxide disproportionation reaction occurs molten silicon And solid silica. After separating the silicon melt from the solid silica, the temperature is slowly lowered to obtain a silicon powder;
  • Step 3 Grind the silicon powder, sieve it, pour it into concentrated nitric acid solution, sieve 100 mesh, and put silicon powder in Stir in concentrated nitric acid for 1 ⁇ 2 hours, filter off the acid solution, rinse the mixture in a running water tank and stir it for 3 ⁇ 4 hours. After draining, put it in a low vacuum furnace (pressure is 10 _ 2 Torr) Heating and baking, the holding time is 1 ⁇ 2 hours, and the temperature is 100 ⁇ 150 °C;
  • Ho step four the silicon powder after drying in a vacuum oven electron beam in a water-cooled copper crucible, at a pressure lower than the melting 10_ 5 torr vacuum condition, is disposed outside the crucible electromagnetic coil, while smelting, while the silicon was subjected to Stirring, electron beam furnace smelting time is 15 ⁇ 30 minutes, casting into ingot and cooling to room temperature;
  • Ho step five the impurity rich fraction after the ingot is removed, placed in a plasma furnace, evacuated until the furnace pressure is lower than the width of the door after closing diffusion pump 10_ 5 Torr, again charged into the furnace of high purity Nitrogen is smelted, and the smelting time is 1 to 2 hours. While smelting, electromagnetic stirring is performed, and finally directional solidification is performed to obtain a high-purity silicon ingot;
  • Step 6 The silicon ingot obtained by directional solidification is removed from the surface layer and the upper impurity concentration portion to obtain solar grade high-purity silicon having a purity of 6N.
  • Step 1 Using chemically pure industrial silicon with a purity of more than 99.68% and high-purity quartz powder with a SiO 2 content of 99.98% as raw materials, the two are ground into fine powder and placed in a vacuum furnace with a pressure lower than 10 _ 4 Torr. The temperature is raised to 1300 ° C, and the temperature is maintained for 2 to 4 hours to obtain gaseous silicon monoxide, the temperature is slowly lowered to 1180 ° C, and then quenched to room temperature to obtain a solid silicon monoxide;
  • Step 2 The solid silicon monoxide is placed in a vacuum furnace with a pressure lower than 10 -6 Torr, heated to 1500 ° C, and kept for 2 to 4 hours. At this time, the silicon monoxide in the furnace undergoes a bismuth reaction to form molten silicon. And solid state Silica.
  • Step 3 grinding the silicon powder, sieving it, pouring it into concentrated nitric acid solution, meshing 150 mesh, and silicon powder in concentrated nitric acid 2 ⁇ 4 hours stirring, the acid was filtered off, the filtrate after rinsing was placed in water bath and stirring time is 4 ⁇ 6 hours, drained and placed in a low vacuum oven (10_ pressure of 2 torr) was heated drying Bake, holding time is 2 ⁇ 4 hours, temperature is 150 ⁇ 200 °C;
  • Step 4 The dried silicon powder is placed in a water-cooled copper crucible of a vacuum electron beam furnace, and smelted under a vacuum of less than 10 -6 Torr, and an electromagnetic coil is placed outside the crucible, while smelting and silicon liquid are performed.
  • Stirring, electron beam furnace smelting time is 20 ⁇ 30 minutes, casting into ingot and cooling to room temperature;
  • Ho step five the impurity rich fraction after the ingot is removed, placed in a plasma furnace, evacuated until the furnace pressure is below 10_ 6 Torr wide diffusion pump door closed, again charged into the furnace 50%
  • the high-purity nitrogen gas and the 50% high-purity hydrogen gas are smelted, and the smelting time is 1 hour, while smelting, electromagnetic stirring is performed, and finally directional solidification is performed to obtain a high-purity silicon ingot;
  • Step 6 The silicon ingot obtained by directional solidification is removed from the surface layer and the upper impurity concentration portion to obtain solar grade high-purity silicon having a purity of 6N.
  • Step 1 Using chemically pure industrial silicon with a purity of more than 99.68% and high-purity quartz powder with a SiO 2 content of 99.98% as raw materials, the two are ground into fine powder and placed in a vacuum furnace with a pressure lower than 10 _ 4 Torr. The temperature is raised to 1250 ⁇ 1300 ° C, and the temperature is kept for 2 to 4 hours to obtain gaseous silicon monoxide, the temperature is slowly lowered to 1180 to 1200 ° C, and then quenched to room temperature to obtain a solid silicon monoxide;
  • a silicon oxide solid placed in a vacuum oven 10_ pressure is below 5 torr and heated to 1450 ⁇ 1500 ° C, incubated 2 to 3 hours at which time the furnace silicon monoxide disproportionation reaction occurs Molten silicon and solid silica. After separating the silicon melt from the solid silica, slowly lowering the temperature to obtain silicon Powder
  • Step 3 Grind the silicon powder, sieve it, pour it into concentrated nitric acid solution, sieve 200 mesh, stir the silicon powder in concentrated nitric acid for 1 ⁇ 2 hours, filter off the acid solution, and place the filtered material in the flow tank. rinsed and stirring time is 4 ⁇ 6 hours, drained and placed in a low vacuum oven (10_ pressure of 2 torr) heating and baking, holding time of 3 to 4 hours at a temperature of 150 ⁇ 200 ° C;
  • Step 4 The dried silicon powder is placed in a water-cooled copper crucible of a vacuum electron beam furnace, and smelted under a vacuum of less than 10 -6 Torr, and an electromagnetic coil is placed outside the crucible, while smelting and silicon liquid are performed.
  • Stirring, electron beam furnace smelting time is 30 ⁇ 60 minutes, casting into ingot and cooling to room temperature;
  • Ho step five the impurity rich fraction after the ingot is removed, placed in a plasma furnace, evacuated until the furnace pressure is below 10_ 6 Torr wide diffusion pump door closed, the furnace is charged again 60%
  • the high-purity nitrogen gas and the 40% high-purity hydrogen gas are smelted, and the smelting time is 1 to 2 hours, while smelting, electromagnetic stirring is performed, and finally directional solidification is performed to obtain a high-purity silicon ingot;
  • Step 6 The silicon ingot obtained by directional solidification is removed from the surface layer and the upper impurity concentration portion to obtain solar grade high-purity silicon having a purity of 6N.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)

Description

一种太阳能电池用多晶硅制造方法 技术领域
本发明属于硅的纯化的技术领域, 具体涉及到一种利用电子束炉和等离 子体炉熔炼以去除工业硅中的杂质制造太阳能电池用多晶硅的方法。
背景技术
太阳能电池可利用光电伏打效应将太阳能直接转换为直流电能, 这可为 人类提供取之不尽的清洁的、 可再生的能源, 具有极为美好的发展前景。 在 太阳能电池中, 目前应用最广的是硅电池。 而能用于制造太阳能硅电池的硅 材料, 其硅含量必须在 6N (即 99.9999%) 以上, 其中碳、 氧含量必须在 0.5〜lppmw 以下, 其它杂质硼、 磷、 铁、 铝、 钛含量都必须降至 O.Olppmw 以下, 这样才能确保所需的光电转换效率。
目前, 世界各国生产太阳能级高纯硅的方法多采用西门子法或改良西门 子法, 即化学气相沉积 (CVD) 法。 这类方法是将工业硅用盐酸处理成三氯 氢硅(或四氯化硅), 提纯上述三氯氢硅(或四氯化硅)后, 再在西门子反应 器 (或流态床) 中用高纯氢还原气相沉积得到高纯多晶硅。 这类方法采用的 是热化学气相沉积工艺, 工艺流程环节多、 时间长, 增加了能耗、 物耗和成 本。 且三氯氢硅和四氯化硅均有剧毒, 一旦泄漏, 对环境会产生严重污染; 这一工艺对操作、 管理人员素质要求很高, 稍有失误, 无论是盐酸、 三氯氢 硅、 四氯化硅或氢气泄漏, 都会酿成重大事故, 故在我国推广有相当大的难 近年来, 日本的川崎制铁株式会社、 昭和电工株式会社和美国的陶氏康 宁公司提出了用冶金法生产太阳能级高纯硅的构想, 如 ZL96198989.0; ZL98105942.2; ZL98109239.3; ZL95197920.5; CN87104483 和 CN1890177A。 但上述专利文件中所公开的技术存在如下问题: (1 ) 产品中的杂质含量, 特 别是主要杂质 B、 P还不能达到太阳能级标准; (2) 工艺的技术参数, 特别 是其重要技术参数尚不确定, 至少是其技术未予以充分公开; (3 ) 实施例的 规模都很小, 这表明其技术仍未达到工业化生产的水平。
发明内容
本发明的目的是提供一种用物理冶金技术实现工业化生产的太阳能电池 用多晶硅制造方法, 它可以使硅中的杂质含量, 特别是 B、 P等主要杂质含 量控制在 O.Olppmw以下; 并且对环境不产生化学污染, 安全、 可靠, 特别 适合于在我国大规模地推广应用。
本发明所提出的太阳能电池用多晶硅制造方法, 其特征在于它由如下六 个歩骤组成:
(一)将二氧化硅和工业硅置于真空炉中, 加热到温度 1100°C以上, 使 两者发生如下反应:
Si02 + Si = 2SiO
生成气态一氧化硅, 再快速冷凝后得到固体一氧化硅;
(二) 将歩骤 (一) 所得到的固体一氧化硅置于高真空炉中, 加热到温 度 1400°C以上, 使其发生如下反应:
2SiO =Si + Si02
生成硅熔液和二氧化硅, 保温 1小时以上, 将生成的硅熔液和二氧化硅分离 后, 再缓慢降温得到硅粉; (三) 将歩骤 (二)所得到的硅粉磨细后, 用浓硝酸浸泡并进行搅拌 1 小时以上, 溶解其中的杂质硼和磷, 滤去酸液后用水冲洗 1小时以上, 再加 热烘干;
(四) 将歩骤 (三) 所得到的硅粉置于高真空电子束炉中, 在低于 10—5 托 (Torr) 的压强下进行熔炼, 以进一歩的除去其中剩余的杂质磷, 并将熔 融硅定向凝固成锭;
(五) 将歩骤 (四) 得到的铸锭中杂质浓集的部分去掉, 剩余的铸锭再 在等离子炉中熔炼, 并施加交变电磁场对硅熔液进行搅拌以进一歩的除去剩 余的杂质硼和铁, 然后进行定向凝固;
(六) 将歩骤 (五) 得到的定向凝固铸锭中杂质浓集的部分切掉, 即可 得到纯度达 6N以上的太阳能级多晶硅。
本发明的太阳能电池用多晶硅制造方法歩骤 (一) 中加热炉真空室压强 低于 10—4托,优选加热温度为 1250〜1300°C,反应后在 1180〜1200°C下急冷至 室温。
本发明的太阳能电池用多晶硅制造方法歩骤 (二) 中加热炉真空室压强 低于 10—5托, 优选加热温度为 1450〜1500°C。
本发明的太阳能电池用多晶硅制造方法歩骤 (三) 中, 酸浸时间为 1〜4 小时, 酸浸后用水冲洗时间为 2〜6小时, 并加以搅拌, 烘干时最好在真空室 里进行, 真空室压强为 10_2托,烘烤温度为 100〜200°C, 保温时间为 1小时以 上。
本发明的太阳能电池用多晶硅制造方法歩骤 (四) 中电子束炉所使用的 坩埚为水冷铜结晶器坩埚, 坩埚壁外安装有电磁搅拌用线圈。 本发明的太阳能电池用多晶硅制造方法歩骤 (五) 中等离子炉熔炼时, 炉内充入氮气, 或者充入氮气加氢气, 其坩埚为水冷铜结晶器坩埚, 坩埚外 安装有电磁搅拌用线圈。
本发明的技术要点是完全摈弃了现有西门子法 (即化学气相沉积法:)的 "现行路线", "另辟蹊径", 巧妙地采用一氧化硅歧化反应、酸浸分离和真空 熔炼相结合的手段, 分阶段地去除金属杂质、 磷和硼, 以制取纯度达到 6N 以上的太阳能级多晶硅。 由于本发明摈弃了西门子法, 在整个工艺流程中, 不再需要使用剧毒的 SiCl4、 SiHCl3和易燃、 易爆的 SiH4 、 ¾, 这就使环 保问题和生产安全问题都能得到很好的解决, 大大有利于在我国推广应用, 以满足我国光伏产业对多晶硅日益增长的需求。
具体实施方式
下面结合实施例对本发明的太阳能电池用多晶硅的制造方法作进一歩的 说明与补充。
实施例 1
歩骤一: 采用纯度达 99.68%以上的化学纯工业硅和 Si02含量达 99.98% 的高纯石英粉作原料, 将两者磨成细粉放进压强低于 10_4托的真空炉内, 升 温到 1250°C, 保温 1〜3小时, 得到气态的一氧化硅, 将温度缓慢地降到 1180 °C, 然后急冷至室温, 得到固体的一氧化硅;
歩骤二:将固体的一氧化硅置于压强低于 10_5托的真空炉内,加热到 1450 °C, 保温 1〜3小时, 此时, 炉内一氧化硅发生岐化反应生成熔融硅和固态的 二氧化硅。 将硅熔液与固体二氧化硅分离后, 再缓慢降温得到硅粉;
歩骤三: 将硅粉磨细、 过筛后倒入浓硝酸液中, 筛孔 100目, 将硅粉在 浓硝酸中搅拌 1〜2小时,滤去酸液,把滤后物置于流水槽中冲洗并进行搅拌, 时间为 3〜4小时, 沥干后, 置于低真空炉 (压强为 10_2托) 加热烘烤, 保温 时间为 1〜2小时, 温度为 100〜150°C ;
歩骤四: 将烘干后的硅粉置于真空电子束炉的水冷铜坩埚中, 在压强低 于 10_5托真空条件下熔炼, 坩埚外安置有电磁线圈, 边冶炼、 边对硅液进行 搅拌, 电子束炉熔炼时间为 15〜30分钟, 浇铸成锭并冷却至室温;
歩骤五: 将铸锭中杂质富集的部分去掉后, 置于等离子炉中, 先抽真空, 待炉内压强低于 10_5托后关闭扩散泵阔门,再向炉内充入高纯氮气进行熔炼, 熔炼时间 1〜2小时, 边冶炼、 边进行电磁搅拌, 最后定向凝固得到高纯硅铸 锭;
歩骤六: 将定向凝固得到的硅锭, 车去其表面层和上层杂质浓集部位, 便得到纯度达到 6N的太阳能级高纯硅。
由于我国目前尚无冶金法太阳能级多晶硅的技术标准, 上述高纯硅只好 参照国家标准 GB /T12963— 1996所规定的方法进行检验, 其结果符合该标 准的技术要求。
实施例 2
歩骤一: 采用纯度达 99.68%以上的化学纯工业硅和 Si02含量达 99.98% 的高纯石英粉作原料, 将两者磨成细粉放进压强低于 10_4托的真空炉内, 升 温到 1300°C, 保温 2〜4小时, 得到气态的一氧化硅, 将温度缓慢地降到 1180 °C, 然后急冷至室温, 得到固体的一氧化硅;
歩骤二:将固体的一氧化硅置于压强低于 10_6托的真空炉内,加热到 1500 °C, 保温 2〜4小时, 此时, 炉内一氧化硅发生岐化反应生成熔融硅和固态的 二氧化硅。 将硅熔液与固体二氧化硅分离后, 再缓慢降温得到硅粉; 歩骤三: 将硅粉磨细、 过筛后倒入浓硝酸液中, 筛孔 150目, 将硅粉在 浓硝酸中搅拌 2〜4小时,滤去酸液,把滤后物置于流水槽中冲洗并进行搅拌, 时间为 4〜6小时, 沥干后, 置于低真空炉 (压强为 10_2托) 加热烘烤, 保温 时间为 2〜4小时, 温度为 150〜200°C ;
歩骤四: 将烘干后的硅粉置于真空电子束炉的水冷铜坩埚中, 在压强低 于 10_6托真空条件下熔炼, 坩埚外安置有电磁线圈, 边冶炼、 边对硅液进行 搅拌, 电子束炉熔炼时间为 20〜30分钟, 浇铸成锭并冷却至室温;
歩骤五: 将铸锭中杂质富集的部分去掉后, 置于等离子炉中, 先抽真空, 待炉内压强低于 10_6托后关闭扩散泵阔门, 再向炉内充入 50%的高纯氮气和 50%的高纯氢气进行熔炼, 熔炼时间 1小时, 边冶炼、 边进行电磁搅拌, 最 后定向凝固得到高纯硅铸锭;
歩骤六: 将定向凝固得到的硅锭, 车去其表面层和上层杂质浓集部位, 便得到纯度达到 6N的太阳能级高纯硅。
实施例 3
歩骤一: 采用纯度达 99.68%以上的化学纯工业硅和 Si02含量达 99.98% 的高纯石英粉作原料, 将两者磨成细粉放进压强低于 10_4托的真空炉内, 升 温到 1250〜1300°C, 保温 2〜4小时, 得到气态的一氧化硅, 将温度缓慢地降 到 1180〜1200°C, 然后急冷至室温, 得到固体的一氧化硅;
歩骤二: 将固体的一氧化硅置于压强低于 10_5托的真空炉内, 加热到 1450〜1500°C, 保温 2〜3 小时, 此时, 炉内一氧化硅发生岐化反应生成熔融 硅和固态的二氧化硅。 将硅熔液与固体二氧化硅分离后, 再缓慢降温得到硅 粉;
歩骤三: 将硅粉磨细、 过筛后倒入浓硝酸液中, 筛孔 200目, 将硅粉在 浓硝酸中搅拌 1〜2小时,滤去酸液,把滤后物置于流水槽中冲洗并进行搅拌, 时间为 4〜6小时, 沥干后, 置于低真空炉 (压强为 10_2托) 加热烘烤, 保温 时间为 3〜4小时, 温度为 150〜200°C ;
歩骤四: 将烘干后的硅粉置于真空电子束炉的水冷铜坩埚中, 在压强低 于 10_6托真空条件下熔炼, 坩埚外安置有电磁线圈, 边冶炼、 边对硅液进行 搅拌, 电子束炉熔炼时间为 30〜60分钟, 浇铸成锭并冷却至室温;
歩骤五: 将铸锭中杂质富集的部分去掉后, 置于等离子炉中, 先抽真空, 待炉内压强低于 10_6托后关闭扩散泵阔门, 再向炉内充入 60%的高纯氮气和 40%的高纯氢气进行熔炼, 熔炼时间 1〜2小时, 边冶炼、 边进行电磁搅拌, 最后定向凝固得到高纯硅铸锭;
歩骤六: 将定向凝固得到的硅锭, 车去其表面层和上层杂质浓集部位, 便得到纯度达到 6N的太阳能级高纯硅。

Claims

权利 要 求
1、一种太阳能电池用多晶硅制造方法,其特征在于它由如下六个歩骤组 成:
(一) 将二氧化硅和工业硅置于真空炉中, 加热到温度 1100°C以上, 使两者发生如下反应:
Si02 + Si = 2SiO
生成气态一氧化硅, 再快速冷凝后得到固体一氧化硅;
(二) 将歩骤 (一) 所得到的固体一氧化硅置于高真空炉中, 加热到 温度 1400°C以上, 使其发生如下反应:
2SiO =Si + Si02
生成硅熔液和二氧化硅, 保温 1小时以上, 将生成的硅熔液和二氧化硅分离 后, 再缓慢降温得到硅粉;
(三)将歩骤 (二)所得到的硅粉磨细后, 用浓硝酸浸泡并进行搅拌 1小时以上, 滤去酸液后用水冲洗 1小时以上, 再加热烘干;
(四)将歩骤(三)所得到的硅粉置于高真空电子束炉中,在低于 10—5 托的压强下进行熔炼, 并将熔融硅定向冷却成锭;
(五) 将歩骤 (四) 得到的铸锭中杂质浓集的部分去掉, 剩余的铸锭 再在等离子炉中熔炼, 并施加交变电磁场对硅熔液进行搅拌, 然后进行定向 凝固;
(六) 将歩骤 (五) 定向凝固铸锭中杂质浓集的部分切掉, 即可得到
2、按权利要求 1所述的太阳能电池用多晶硅制造方法,其特征在于所说 的歩骤(一)中加热炉真空室压强应低于 10_4托,优选加热温度为 1250〜1300 °C, 反应后在 1180〜1200°C下急冷至室温。
3、按权利要求 1所述的太阳能电池用多晶硅制造方法,其特征在于所说 的歩骤(二)中加热炉真空室压强应低于 10_5托,优选加热温度为 1450〜1500 °C。
4、按权利要求 1所述的太阳能电池用多晶硅制造方法,其特征在于所说 的歩骤 (三) 中酸浸时间为 1〜4小时, 酸浸后用水冲洗的时间为 2〜6小时, 冲洗时, 硅粉要加以搅拌, 烘干时最好在真空室中进行, 真空室压强为 10_3 托, 烘烤温度为 100〜200°C, 保温时间为 1小时以上。
5、按权利要求 1所述的太阳能电池用多晶硅制造方法, 其特征在于所说 的歩骤 (四) 中电子束炉使用的坩埚为水冷铜结晶器坩埚, 坩埚壁外安装有 电磁搅拌用线圈。
6、按权利要求 1所述的太阳能电池用多晶硅制造方法,其特征在于所说 的歩骤 (五) 中等离子炉熔炼时, 炉内充入氮气, 或者氮气加氢气, 其坩埚 为水冷铜结晶器坩埚, 坩埚壁外安装有电磁搅拌用线圈。
PCT/CN2008/072312 2007-09-14 2008-09-10 Procédé de fabrication de silicium polycristallin pour une pile solaire WO2009036686A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100128255A CN101122047B (zh) 2007-09-14 2007-09-14 一种太阳能电池用多晶硅制造方法
CN200710012825.5 2007-09-14

Publications (1)

Publication Number Publication Date
WO2009036686A1 true WO2009036686A1 (fr) 2009-03-26

Family

ID=39084542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072312 WO2009036686A1 (fr) 2007-09-14 2008-09-10 Procédé de fabrication de silicium polycristallin pour une pile solaire

Country Status (2)

Country Link
CN (1) CN101122047B (zh)
WO (1) WO2009036686A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448881A (zh) * 2009-04-27 2012-05-09 优慕科技术股份有限公司 硅的精制方法以及精制装置
CN114045554A (zh) * 2021-11-12 2022-02-15 陕西宝德赛肯光电材料有限公司 晶硅切割废料一步法连续制备多晶硅的方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122047B (zh) * 2007-09-14 2011-02-16 李绍光 一种太阳能电池用多晶硅制造方法
EP2567939A3 (en) 2008-09-30 2014-07-09 Hemlock Semiconductor Corporation Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon
CN101462723B (zh) * 2009-01-05 2011-01-05 昆明理工大学 真空碳热还原制备高纯硅及铝硅合金的方法
CN101891200B (zh) * 2009-05-21 2012-12-05 江西赛维Ldk太阳能高科技有限公司 一种利用自由基的强氧化作用对硅粉中残留杂质进行处理的方法
CN101787562A (zh) * 2010-02-10 2010-07-28 李绍光 一种联体式真空高温歧化反应装置
CN102844846B (zh) * 2010-02-16 2015-07-01 小林光 一种太阳能电池及太阳能电池的制造方法、以及太阳能电池的制造装置
CN102220606B (zh) * 2010-04-16 2012-07-04 中南大学 一种惰性阳极熔盐电解制备硅颗粒的方法
CN101864594A (zh) * 2010-06-10 2010-10-20 晶海洋半导体材料(东海)有限公司 一种准单晶硅的铸锭方法
CN101974780A (zh) * 2010-07-28 2011-02-16 常州天合光能有限公司 多晶铸锭晶体生长工艺
JP2012041230A (ja) * 2010-08-19 2012-03-01 Bridgestone Corp 珪素微粒子の製造方法
CN102452652B (zh) * 2010-11-02 2013-03-20 上海普罗新能源有限公司 太阳能级多晶硅制备中的真空固态挥发除磷的方法
WO2012068717A1 (zh) * 2010-11-22 2012-05-31 矽明科技股份有限公司 一种用于制造太阳能级硅的生产工艺
CN102110740B (zh) * 2010-11-23 2012-09-05 上海交通大学 定向凝固多晶硅太阳电池的两次热处理方法
CN102152411A (zh) * 2010-12-31 2011-08-17 常州天合光能有限公司 降低多晶锭杂质比例的方法
CN102249243B (zh) * 2011-06-08 2012-12-26 大连理工大学 一种冶金法去除工业硅中杂质硼的方法
CN102432020B (zh) * 2011-09-13 2013-02-27 山西纳克太阳能科技有限公司 一种太阳能级多晶硅的制造方法
CN102373351B (zh) * 2011-10-26 2014-04-02 昆明理工大学 电磁法制备高纯硅及铝硅合金的方法
KR101539856B1 (ko) * 2012-10-16 2015-07-27 주식회사 엘지화학 규소 산화물의 제조방법
CN103014839B (zh) * 2013-01-09 2016-07-27 英利集团有限公司 一种p型掺杂剂及其制备方法
CN103952753B (zh) * 2014-04-16 2017-02-15 江苏盎华光伏工程技术研究中心有限公司 一种用于太阳能电池的多晶硅制作方法
CN103952755B (zh) * 2014-05-06 2016-08-24 王进 高纯硅中不溶物的去除工艺
CN105712349A (zh) * 2014-12-02 2016-06-29 李绍光 用二氧化硅制取太阳能级硅的方法
CN108128779B (zh) * 2018-01-30 2020-05-19 青岛蓝光晶科新材料有限公司 一种去除多晶硅中碳、氮杂质的方法
CN108821340B (zh) * 2018-09-17 2024-05-14 大冶市都鑫摩擦粉体有限公司 一种硫化锑提纯装置
CN109371255B (zh) * 2018-10-30 2020-05-05 金川集团股份有限公司 一种6n高纯钴锭熔铸方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717704A (ja) * 1993-06-24 1995-01-20 Kawasaki Steel Corp 電子ビーム溶解によるシリコンの精錬方法
JPH11209195A (ja) * 1998-01-21 1999-08-03 Kawasaki Steel Corp シリコンの精製方法
JP2000327488A (ja) * 1999-05-25 2000-11-28 Shin Etsu Chem Co Ltd 太陽電池用シリコン基板の製造方法
CN1284046A (zh) * 1997-12-25 2001-02-14 新日本制铁株式会社 高纯硅的制造方法及装置
CN1803598A (zh) * 2006-01-25 2006-07-19 昆明理工大学 一种制备太阳能级多晶硅的方法
CN101007633A (zh) * 2006-12-15 2007-08-01 佟新廷 光伏产业用硅制备方法
CN101122047A (zh) * 2007-09-14 2008-02-13 李绍光 一种太阳能电池用多晶硅制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717704A (ja) * 1993-06-24 1995-01-20 Kawasaki Steel Corp 電子ビーム溶解によるシリコンの精錬方法
CN1284046A (zh) * 1997-12-25 2001-02-14 新日本制铁株式会社 高纯硅的制造方法及装置
JPH11209195A (ja) * 1998-01-21 1999-08-03 Kawasaki Steel Corp シリコンの精製方法
JP2000327488A (ja) * 1999-05-25 2000-11-28 Shin Etsu Chem Co Ltd 太陽電池用シリコン基板の製造方法
CN1803598A (zh) * 2006-01-25 2006-07-19 昆明理工大学 一种制备太阳能级多晶硅的方法
CN101007633A (zh) * 2006-12-15 2007-08-01 佟新廷 光伏产业用硅制备方法
CN101122047A (zh) * 2007-09-14 2008-02-13 李绍光 一种太阳能电池用多晶硅制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448881A (zh) * 2009-04-27 2012-05-09 优慕科技术股份有限公司 硅的精制方法以及精制装置
CN114045554A (zh) * 2021-11-12 2022-02-15 陕西宝德赛肯光电材料有限公司 晶硅切割废料一步法连续制备多晶硅的方法

Also Published As

Publication number Publication date
CN101122047B (zh) 2011-02-16
CN101122047A (zh) 2008-02-13

Similar Documents

Publication Publication Date Title
WO2009036686A1 (fr) Procédé de fabrication de silicium polycristallin pour une pile solaire
US7858063B2 (en) High purity metallurgical silicon and method for preparing same
CN102173424B (zh) 真空感应熔炼去除硅粉中磷及金属杂质的方法及设备
CN101585536B (zh) 一种提纯太阳能级多晶硅的装置与方法
WO2012100485A1 (zh) 一种电子束浅熔池熔炼提纯多晶硅的方法及设备
CN102659110B (zh) 一种采用硅铁合金定向凝固提纯多晶硅的方法
JP2010538952A (ja) 冶金グレードシリコンから中純度および高純度シリコンを製造するためのプロセス
CN101774584B (zh) 太阳能级硅的提纯方法
CN101319367B (zh) 高温真空预处理制备太阳能级多晶硅的方法
CN102229430A (zh) 一种冶金法制备太阳能多晶硅的技术方法
CN101698481B (zh) 太阳能级多晶硅提纯装置与提纯方法
CN101628719B (zh) 真空感应熔炼去除硅中磷杂质的方法
CN114540951B (zh) 一种回收利用硅泥制备多晶硅锭的方法
CN1313368C (zh) 一种太阳能电池用硅的生产设备及方法
CN101775650B (zh) 一种太阳能多晶硅铸锭的制备方法
CN106449873B (zh) 一种铸锭多晶硅片铝吸杂的方法
CN112441588A (zh) 一种金刚石线切割硅废料的脱氧方法
CN106555224A (zh) 一种单晶硅的生产方法和生产设备
CN112110450A (zh) 一种冶金级硅中杂质硼去除的方法
CN111056556A (zh) 一种以二氧化硅和氢气为原料制备多晶硅的方法
CN101928983B (zh) 触媒法生产多晶硅和多晶硅薄膜的方法
CN107857272A (zh) 一种硅铁或者冶金硅脱磷的方法
CN102001664A (zh) 双室双联真空循环脱气炉及太阳能级多晶硅的制备
CN109319788B (zh) 一种采用硅铝钙合金精炼及定向凝固制备多晶硅的方法
CN102774840A (zh) 一种冶金法提纯工业硅的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800824

Country of ref document: EP

Kind code of ref document: A1