WO2008020545A1 - Batterie à combustible - Google Patents

Batterie à combustible Download PDF

Info

Publication number
WO2008020545A1
WO2008020545A1 PCT/JP2007/065034 JP2007065034W WO2008020545A1 WO 2008020545 A1 WO2008020545 A1 WO 2008020545A1 JP 2007065034 W JP2007065034 W JP 2007065034W WO 2008020545 A1 WO2008020545 A1 WO 2008020545A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fuel cell
anode
power generation
anode electrode
Prior art date
Application number
PCT/JP2007/065034
Other languages
English (en)
French (fr)
Inventor
Koichiro Yamashita
Junichi Shirahama
Katsuya Matsuoka
Ikuyasu Kato
Kazuo Horibe
Osamu Hamanoi
Takuya Hashimoto
Hideki Kubo
Masahiro Shiozawa
Ryo Akagawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Nippon Soken, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Nippon Soken, Inc. filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/374,935 priority Critical patent/US8603692B2/en
Priority to CA2659043A priority patent/CA2659043C/en
Priority to DE112007001742.2T priority patent/DE112007001742B4/de
Priority to CN200780028115XA priority patent/CN101496215B/zh
Publication of WO2008020545A1 publication Critical patent/WO2008020545A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell including a stacked body in which power generation cells are stacked.
  • a stacked body is formed by stacking a plurality of power generation cells including As s emb ly, ME A).
  • fuel gas and oxidant gas are supplied to the anode electrode and the power sword electrode, respectively, and an electrochemical reaction takes place to generate power.
  • electrochemical reaction not only electrical energy is generated, but also heat energy is generated. Therefore, each cooling cell is made to flow by passing cooling water through cooling water passages formed between adjacent power generation cells. The cooling is done.
  • this heat insulating layer and t-even are used to suppress a decrease in the temperature of the power generation cell located near the end of the laminate in the stacking direction.
  • simply suppressing the temperature drop of the power generation cell makes it difficult to sufficiently suppress water vapor condensation in the power generation cell, and it is difficult to sufficiently suppress the decrease in power generation performance of the power generation cell. is there.
  • An object of the present invention is to provide a fuel cell capable of sufficiently suppressing a decrease in power generation performance of a power generation cell.
  • a fuel cell according to the present invention is a fuel cell including a laminate in which three or more power generation cells are stacked, and each power generation cell has an anode electrode and a cathode electrode on one side and the other side of an electrolyte membrane.
  • the anode electrode is disposed on one end side in the stacking direction of the power generation cells with respect to the cathode electrode, and includes one anode electrode and the other cathode electrode adjacent to each other.
  • the temperature adjusting portions for adjusting the temperature of the node electrode and the force sword electrode are arranged at a plurality of locations in the stacking direction, and the temperature adjusting portions arranged at the plurality of locations are anode electrodes It is intended to adjust the temperature so that the difference in heat dissipation capability between the cathode electrode and the cathode electrode differs depending on the stacking direction.
  • the fuel cell according to the present invention is a fuel cell comprising a laminate in which three or more power generation cells are stacked.
  • Each power generation cell has an anode electrode and a cathode on one side and the other side of the electrolyte membrane.
  • Each of the electrodes includes a joined body, and the anode electrode is disposed on one end side in the stacking direction of the power generation cell with respect to the cathode electrode, and one anode electrode and the other cathode of the power generation cell adjacent to each other.
  • Temperature adjusting parts for adjusting the temperature of the anode electrode and the force sword electrode with respect to the stack electrode are provided at a plurality of locations in the stacking direction, and the temperature adjusting unit provided at the plurality of locations. Part of this is to adjust the temperature so that the heat dissipation capability of the anode electrode is different from that of the cathode electrode.
  • the fuel cell according to the present invention is a fuel cell comprising a laminate in which three or more power generation cells are stacked.
  • Each power generation cell has an anode electrode and a cathode on one side and the other side of the electrolyte membrane.
  • the electrode includes a joined body, and the anode electrode is disposed on one end side in the stacking direction of the power generation cell with respect to the cathode electrode, and one anode electrode and the other of the power generation cell adjacent to each other
  • the gist of the invention is that a temperature adjustment unit is provided for varying the amount of heat exchange with the force sword electrode in accordance with the stacking direction.
  • the temperature adjustment of each power generation cell is performed at the position of the power generation cell so as to suppress the temperature difference between the force sword electrode and the anode electrode. Can be done appropriately. As a result, a decrease in power generation performance of the power generation cell can be sufficiently suppressed.
  • FIG. 1 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing another schematic configuration of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing another schematic configuration of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 4 is a view showing another schematic configuration of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing another schematic configuration of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 2 of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing another schematic configuration of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing another schematic configuration of the fuel cell according
  • FIG. 7 is a view showing another schematic configuration of the fuel cell according to Embodiment 2 of the present invention.
  • FIG. 8 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 3 of the present invention.
  • FIG. 9 is a view showing another schematic configuration of the fuel cell according to Embodiment 3 of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 1 of the present invention.
  • the fuel cell according to this embodiment includes a stacked body 12 in which n (n is an integer of 3 or more) power generation cells 14_1 to 14-n are stacked.
  • the number of power generation cells 14-1 to 14 to be laminated n can be arbitrarily set within a range of 3 or more (n ⁇ 3).
  • the power generation cell 14-m (m is an integer greater than or equal to 1 and less than or equal to n) is a membrane electrode junction in which the anode electrode 18_m is joined to one side of the electrolyte membrane 16-m and the force sword electrode 20-m is joined to the other side.
  • the MEA 2 2 ⁇ m is sandwiched between the anode side separator overnight 28 ⁇ m and the cathode side separator overnight 30 ⁇ m.
  • anode electrode 18-m is the cathode electrode 20-m.
  • One end side of stacking direction of power generation cells 14-1-4-14-1 (hereinafter abbreviated as stacking direction) Is arranged.
  • Fig. 1 shows an example in which the main separator is used for the anode side separator 28-m and the power sword side separator 30-m.
  • carbon separators can be used for the anode side separators 28-m and the cathode side separators 30-m.
  • an uneven portion is formed on the anode side separator 28-m, so that the gap between the anode electrode 18m and the anode side separator 28-m is shown.
  • An anode gas flow path 38-m is formed in communication with the anode gas supply port and the anode gas discharge port, through which fuel gas (anode gas) flows.
  • an uneven portion is formed on the force side separator 30-m, so that a cathode (not shown) is formed between the force electrode 20-m and the cathode side 30-m.
  • a force sword gas passage 40-m is formed which communicates with the degas supply port and the force sword gas discharge port and through which the oxidant gas (power sword gas) flows.
  • the fuel gas flowing into the anode gas flow path 38-m from the anode gas supply port is supplied to the anode electrode 18-m, and the power sword gas flow path from the force sword gas supply port.
  • the oxidant gas that flows into 40-m is supplied to the force sword electrode 20-m, an electrochemical reaction takes place and electricity is generated.
  • an electrochemical reaction not only is electrical energy generated, but also thermal energy is generated.
  • the fuel gas after being subjected to the electrochemical reaction is discharged from the anode gas discharge port, and the oxidant gas after being subjected to the electrochemical reaction is discharged from the cathode gas discharge port.
  • the fuel gas here, for example, hydrogen (H can be used, and as the oxidant gas, for example, air can be used.
  • the configuration of the power generation cell 14-m described above is as follows. 1 to 14—n (in FIG. 1, the power generation cells 14-1 to 14 to 10) are common to each of the stacked bodies 12 in the stacking direction. (Current collector plate) 23 is provided, and a force sword-side evening electrode (current collector plate) 24 is provided at the other end of the laminate 12 in the stacking direction.
  • one of the power generation cells 14 — j, 14-(j + 1) (j is an integer not less than 1 and not more than (n — 1)) 14 — (j + 1) anode electrodes 1 8- (j + 1) and the other 14—j force sword electrode 20—j sandwiches the anode side separator 28 _ (j 1) and the force sword side separator 30—j with respect to the stacking direction. They are placed opposite each other.
  • the coolant flowing into the refrigerant flow path 42-3 from the refrigerant supply port exchanges heat with the anode electrode 18- (j + 1) and gasode electrode 20-j, so that the anode electrode 18- (j + 1) and force Heat can be released from the sword electrode 20-j and carried away, and the temperatures of the anode electrode 18- (j + 1) and the force sword electrode 20-j can be adjusted (cooled).
  • the coolant after heat exchange is discharged from the refrigerant outlet.
  • the cathode electrode 18- (j + 1) is provided between the anode electrode 18- (j + 1) of the power generation cell 14- (j + 1) and the force sword electrode 20-j of the power generation cell 14-j.
  • FIG. 1 shows an example in which the refrigerant flow paths 42 1 to 42-9 are respectively formed between the power generation cells 14-1 and 14-2 to the power generation cells 14-9 and 14-10.
  • a heat insulating layer 32-1 having conductivity and heat insulating properties is provided.
  • the thermal insulation layer 32-1 is the power generation cell 14-1 closest to the anode side terminal electrode 23 30-1 and the power generation cell adjacent to the power generation cell 14-1. It is located between the anode side separator 14-2 and 22-2.
  • the space formed between the heat insulating layer 32-1 and the cathode side separator 30-1 functions as the refrigerant flow path 42-1 through which the coolant flows, and the heat insulating layer 32-1
  • the space 34-1 formed between the anode and the anode separator 28-2 is configured so that no coolant is supplied (it does not function as a refrigerant flow path). That is, for the space 34-1, the communication with the refrigerant supply port and the refrigerant discharge port is cut off to form an air layer.
  • the heat insulating layer 32-1 is disposed between the refrigerant flow path 42-1 and the anode side separator 28-2 (anode electrode 18-2) of the power generation cell 14-2.
  • the amount of heat released (heat exchange amount) from the power sword electrode 20-1 of the power generation cell 14-1 to the coolant flowing through the refrigerant flow path 42-1 is cooled from the anode electrode 18-2 of the power generation cell 14-2.
  • Temperature adjustment (heat dissipation) of the anode electrode 18-2 and the force sword electrode 20-1 is performed so as to be larger than the heat dissipation amount (heat exchange amount) to the liquid.
  • the heat dissipation capability from the cathode electrode 20-1 to the coolant flowing through the refrigerant flow path 42-1 is higher than the heat dissipation capability from the anode electrode 18-2 to the coolant.
  • the amount of heat released from the power sword electrode 20-j of the power generation cell 14-j to the coolant flowing through the refrigerant flow path 4 2-j is the anode electrode 18- (j + 1) of the power generation cell 14- (j + 1)
  • the condition that is equal to (or almost equal to) the amount of heat released from to the coolant is satisfied for all integers j that are greater than or equal to 2 and less than or equal to (n-1). Therefore, in the example shown in FIG.
  • refrigerant flow path 42-1 a part of the refrigerant flow paths 42-1 to 42-9 (refrigerant flow path 42-1) formed at a plurality of locations is released from the anode electrode 18-2. Adjust the temperature so that the heat dissipation of cathode electrode 20-1 is greater than the amount of heat, and the amount of heat dissipation (heat dissipation capacity) between force sword electrode 20-j and anode electrode 18- (j + 1) The difference changes depending on the stacking direction (value of j).
  • the anode side separation night 28— (j + 1) and the force sword side separation night 30-j are in contact. Therefore, heat exchange is performed between the anode electrode 18- (j + 1) and the cathode electrode 20-j.
  • a heat insulating layer 32-1 is placed between the anode side separator 28-2 and the cathode side separator 30-1 so that the anode electrode 18-2 and the force sword electrode 20— The amount of heat exchange with 1 is smaller than the amount of heat exchange between the other anode electrode 18- (j + 1) and the force sword electrode 20-j.
  • a heat insulating layer 33 having conductivity and heat insulating properties is provided on one end side in the stacking direction with respect to the anode electrode 18-1 of the power generation cell 14-1 adjacent to the anode side terminal electrode 23.
  • the heat insulating layer 33 is disposed between the anode side terminal electrode 23 and the anode side separator 28-1 of the power generation cell 14-1.
  • the space 35-1 formed between the heat insulating layer 33 and the anode side terminal electrode 23, and the space 35-2 formed between the heat insulating layer 33 and the anode side separator 28-1 are as follows: In either case, the coolant is not supplied (does not function as a coolant channel).
  • the spaces 35-1 and 35-2 are also connected to the refrigerant supply port and the refrigerant discharge port to form an air layer. Further, in the present embodiment, as described above, the heat insulating layer 32-1 is also provided between the power generation cells 14 1 and 14-2 in the vicinity of the end of the laminated body 12.
  • the reason why the heat insulating layer is provided not only at the end of the laminated body 12 but also between the power generation cells 14-1 and 14-2 in the laminated body 12 will be described. If there is no thermal insulation layer 32-1 between the power generation cells 14-1 and 14-2, the power sword electrode 20-1 on the power generation cell 14-2 side of the power generation cell 14-1 is from the power generation cell 14-1. However, the temperature rise becomes remarkable as a result of smooth heat exchange with the power generation cell 14-2 on the high temperature side. On the other hand, among the power generation cells 14-2, the anode electrode 18-2 on the power generation cell 14-1 side smoothly exchanges heat with the power generation cell 14-1 on the lower temperature side than the power generation cell 14-2. The temperature drop becomes remarkable.
  • a large temperature difference occurs between the anode electrode 18-1 and the force sword electrode 20-1 in the power generation cell 14-1, and the anode electrode 18-2 and force sword electrode 2 in the power generation cell 14-2.
  • a large temperature difference occurs between 0 and 2.
  • temperature distribution occurs in the laminate 12 This is a case where there is a difference between the temperature of the laminated body 12 (for example, the average temperature of the power generation cells 14-1 to 14-1n) and the air temperature. For example, when the temperature is lower than the temperature of the laminate 12, the temperature decreases as it approaches the power generation cell at the end from the central power generation cell. Conversely, when the air temperature is higher than the temperature of the laminated body 12, the temperature rises from the central power generation cell to the power generation cell at the end.
  • the temperature distribution occurs not only between the power generation cells 14-1 to 14-n but also between the poles in the single power generation cell 14-m.
  • the temperature distribution in the power generation cell 14-m becomes more prominent as the difference between the temperature of the laminated body 12 and the air temperature increases.
  • the cathode electrode 20-m when a temperature difference occurs between the cathode electrode 20-m and the anode electrode 18-m, water vapor passes through the electrolyte membrane 16-m from the higher temperature electrode. And move to the electrode with the lower temperature.
  • the temperature of the anode electrode 18-1 outside the stacking direction is lower than the temperature of the force sword electrode 20-1 inside the stacking direction. Therefore, water vapor easily passes from the force sword electrode 20-1 through the electrolyte membrane 16-1, and moves to the anode electrode 18-1.
  • the temperature of the anode electrode 1 8-2 tends to be lower than the temperature of the cathode electrode 2 0-2, and From the sword electrode 2 0 ⁇ 2, it easily passes through the electrolyte membrane 1 6 ⁇ 2 and moves to the anode electrode 1 8 ⁇ 2.
  • the temperature difference between the force sword electrode 20—m and the anode electrode 18—m varies depending on the position (stacking direction) of the power generation cell 14—m, so that it passes through the electrolyte membrane 16—m. The amount of water vapor that moves is also dependent on the position of the power generation cell 14-m.
  • the power sword is compared with the power generation cells 14-1, 1, 14-12 near the anode terminal electrode 23. Since a temperature difference is unlikely to occur between the electrode 20-m and the anode electrode 18-m, the amount of water vapor that moves through the electrolyte membrane 16-m also decreases. When the water vapor that has moved to the anode electrodes 18-1, 18 2-2, which tends to decrease in temperature, condenses and stays, the power generation performance of the power generation cells 14-1 and 14-2 tends to be reduced.
  • the supply flow rate of the fuel gas (hydrogen gas) is smaller than that of the oxidant gas (air), so that the condensed water tends to stay. Therefore, the power generation cell 14 4-m It is required to adjust the temperature of each of the power generation cells 14-1 to 14-n so as to suppress the temperature difference between the force sword electrode 20—m and the anode electrode 18—m.
  • the heat insulating layer 3 2-1 is disposed between the refrigerant flow path 4 2-1 and the anode electrode 1 8-2 of the power generation cell 1 4 1 2.
  • the amount of heat released from the anode electrode 1 8-2 of the cell 14-2 to the coolant flowing through the refrigerant flow path 42-1 is reduced by the power sword electrode 20-0-1 of the power generation cell 14-1. Less than the amount of heat. Furthermore, heat exchange between the anode electrode 18-2 and the force sword electrode 20-1 is suppressed.
  • the cooling efficiency of the force sword electrode 2 0-1 by the coolant flowing through the refrigerant flow path 4 2-1 can be improved, and the amount of heat released from the force sword electrode 2 0-1 can be increased so that the cathode electrode 2 Since the temperature of 0-1 can be lowered, the temperature difference between the force sword electrode 20-1 and the anode electrode 18-1 in the power generation cell 14-1 can be reduced. Therefore, in the power generation cell 14-1, it is possible to suppress the movement of water vapor from the force sword electrode 20-1 through the electrolyte membrane 16-1 to the anode electrode 18-1.
  • the heat insulating layer 33 on the one end side in the stacking direction from the anode electrode 18-1 of the power generation cell 14_1, the amount of heat dissipated by the anode electrode 18-1 is reduced, and the anode electrode 18 — Since the temperature of 1 can be raised, the temperature difference between the force sword electrode 2 0-1 and the anode electrode 1 8-1 in the power generation cell 1 4-1 can be further reduced.
  • a power generation cell for example, a laminated body
  • the heat dissipation of the anode electrode 18-m is almost equal to the heat dissipation of the force sword electrode 20-m. Therefore, the temperature can be kept almost equal between the anode electrode 18-m and the force electrode 20-m. The movement of water vapor through the membrane 16-m can be suppressed.
  • a part of the refrigerant flow paths 4 2-1 to 4 2-9 (refrigerant flow path 4 2-1) is used as the heat dissipation amount of the anode electrode 18-2. Adjust the temperature so that the heat dissipation amount of the cathode electrode 20-1 is larger than that of the cathode electrode 20-1 and the difference in heat dissipation amount between the force sword electrode 20-0-j and the anode electrode 18- (j + 1).
  • Adjusting the temperature of each of the power generation cells 14-1 to 14-n so as to suppress the temperature difference between the force sword electrode 20-m and the anode electrode 18-m Can be appropriately performed according to the position (stacking direction) of the power generation cells 14-1 to 14-n. Furthermore, the heat exchange between the anode electrode 1 8-2 and the cathode electrode 2 0-1 is suppressed by the heat insulating layer 3 2-1, and the force sword electrode 2 0-j and the anode electrode 1 8-(j + 1 The temperature difference between the cathode electrode 20-m and the anode electrode 18-m can also be suppressed by varying the amount of heat exchange between the cathode electrode 20-m and the anode electrode 18-m.
  • the movement of water vapor through the electrolyte membranes 16-1-1-16-n can be suppressed, and the moisture content distribution in the stacking direction of the laminate 12 Can be improved. As a result, it is possible to stably prevent a decrease in the power generation performance of the power generation cells 14-1 to 14-n due to condensate water retention.
  • the anode side separator 2 8-2 and the anode gas flow path 3 8 — It can be arranged between 2 and between the anode gas flow path 3 8-2 and the anode electrode 1 8-2.
  • the heat insulation layer 3 2— 1 is placed between the anode gas flow path 3 8— 2 and the anode electrode 1 8— 2, the heat insulation layer 3 2— 1 is permeable to the fuel gas (hydrogen gas). Determine the material and structure.
  • the heat insulating layer 3 3 between the anode side separator 2 8-1 and the anode gas flow path 3 8-1, or the anode gas flow path 3 8-1 and the anode electrode 1 8-1 It can also be arranged between. Even when the heat insulating layer 3 3 is disposed between the anode gas flow path 3 8-1 and the anode electrode 1 8-1, the material and structure of the heat insulating layer 3 3 are determined so that the fuel gas can permeate. Furthermore, the heat insulating layer 33 can be disposed outside the anode side terminal electrode 23 in the stacking direction. In this case, the heat insulating layer 3 3 does not necessarily have conductivity. It is not necessary to use an insulator, and an insulator can be used.
  • the thermal conductivity of the material of the anode side separator 2 8-2 is changed to the cathode side separator 2. It can also be lower than the thermal conductivity of the 30-1 material.
  • the thickness of the anode side separator 2 8-2 is changed to the force sword side separator 3 0 — Thickness greater than 1 (thickness in the stacking direction).
  • the amount of heat released from the anode electrode 18-2 of the power generation cell 14-2 can be made smaller than the amount of heat released from the power sword electrode 20-1 of the power generation cell 14-1. Heat exchange between the anode electrode 1 8-2 and the force sword electrode 2 0-1 can be suppressed.
  • the anode electrode 18-2 is also designed so that the amount of heat released from the anode electrode 18-2 is less than the amount of heat released from the force sword electrode 20-1 by using a Peltier element. 2 and force sword electrode 2 0-1 can be adjusted.
  • the separator evening 29-1 is arranged between the anode side evening electrode 23 and the heat insulating layer 33.
  • a separator evening 3 1-1 is arranged between the thermal insulation layer 3 3 and the anode side separator night 28-1 of the power generation cell 14-1.
  • the heat insulating layer 3 3 is sandwiched between separate layers 29-1 and 3 1-1 in the stacking direction.
  • the separator night 2 9-2 is placed between the cathode side separator 30 0-1 of the power generation cell 1 4-1 and the heat insulation layer 3 2-1, and the heat insulation layer 3 2-1
  • the separator evening 3 1-2 is arranged between the anode side separator 2 8-2 of the power generation cell 14-2.
  • the heat insulating layer 3 2 _ 1 is sandwiched between the separate layers 29-2 and 31-2 in the stacking direction.
  • the space formed between Separete 2 9-2 and the power sword side Separete 3 0-1 functions as a refrigerant flow path 4 2-1 through which the coolant flows, and separate evening 3 1- 2 and the anode side separation 2 8 ⁇ 2
  • the space formed between 3 4-1 and the separation side 2 9-1 and the anode side separation electrode 2 3 The space 3 5 -1, and Separation Night 3 1-1 and Anode Side Separation Night 2 8-1, neither of the spaces 3 5-2 supply coolant (function as refrigerant flow path) (Do not let it happen)
  • an anode gas bypass passage 3 9-1 through which fuel gas flows is formed between the heat insulating layer 3 3 and the separator overnight 29-1 and communicated with an anode gas supply port and an anode gas discharge port (not shown).
  • the anode gas bypass passage 3 9-2 is connected between the heat insulating layer 3 2-1 and the separator 2 9 2-2, and communicates with the anode gas supply port and the anode gas discharge port, and the fuel gas flows. Is formed.
  • a force sword gas bypass passage 4 1 is connected between the heat insulating layer 3 3 and the separator 3 1-1 and communicates with a force sword gas supply port and a force sword gas discharge port (not shown) through which the acid additive gas flows.
  • — 1 is formed, and the cathode gas in which the oxidant gas flows between the heat insulation layer 3 2— 1 and the separator 3 1— 2 is also connected to the power sword gas supply port and the cathode gas discharge port.
  • Bypass channel 4 1-2 is formed.
  • the laminated body 12 is supplied with a reaction gas (fuel gas and oxidant gas) containing moisture through a pipe.
  • a reaction gas fuel gas and oxidant gas
  • the condensed water on the inner wall surface of the pipe is supplied to the laminate 12 together with the reaction gas.
  • the supply amount of this condensed water to the power generation cells 14-1 to 14-n is increased, the power generation performance of the power generation cells 14-1 to 14-n is likely to be lowered.
  • the condensed water supplied to the anode gas supply port can be discharged to the anode gas discharge port via the anode gas bypass passages 3 9-1 and 3 9-2. Therefore, it can suppress that condensed water is supplied with the fuel gas to the power generation cells 14-1 to 14-n.
  • the condensed water supplied to the cathode gas supply port can be discharged to the cathode gas discharge port via the force sword gas bypass passages 4 1-1 and 4 1-2. Supplying to the power generation cells 14-1 to 14-n together with the oxidant gas can be suppressed. Therefore, it is possible to more stably suppress the decrease in power generation performance of the power generation cells 14-1 to 14-n.
  • the laminated body 12 can be easily formed.
  • one or more of the anode gas bypass channel 3 9-1 and the force sword gas bypass channel 4 1-1 may be formed inside the heat insulating layer 3 3. it can.
  • anode gas bypass channel 3 9-2 and force sword One or more of the gas bypass channels 4 1-2 may be formed inside the heat insulating layer 32-1.
  • the condensed water is not necessarily bypassed via the anode gas bypass passages 39-1, 39-2 and the force sword gas bypass passages 411-1, 41-2. May be.
  • the separation evening 29 1 1 is provided with a protruding portion (convex portion) 59 protruding toward the separation evening 3 1-1 side.
  • the Layu 3 1-1 is provided with a protruding part (projecting part) 61 that protrudes toward the Separete 29-1 side.
  • the protrusion 59 is disposed opposite to the protrusion 61 in the stacking direction.
  • the heat insulating layer 33 sandwiched between the separate layers 29—1, 3 1—1 in the stacking direction is composed of the heat insulating materials 33 a, 33 and the heat insulating material 33 c, which is more rigid than the heat insulating materials 33 a, 33 b. , including.
  • the heat insulating materials 33 a and 33 b are sandwiched between the portion other than the protruding portion 59 in the separate evening 29-1 and the portion other than the protruding portion 61 in the separate evening 3 1-1. It is sandwiched between the projection 59 of Separat evening 29-1 and the projection 61 of Separation evening 3 1-1. That is, the portion sandwiched between the protrusions 59 and 61 in the heat insulating layer 33 (the heat insulating material 33 c) has a higher rigidity and is laminated than the other portions in the heat insulating layer 33 (the heat insulating materials 33 a and 33 b). The direction thickness is thin.
  • the heat insulating material 33a projects outward from the outer periphery of the ME A22-1.
  • the anode gas flow paths 38-1, 38-2 and the force sword gas flow paths 40-1, 40-2 are not shown.
  • Separat 29-2 has a protruding part (convex part) 69 that protrudes to Separation 31-2, and Separation 31-2 projects to Separation 29-2.
  • Protruding part (convex part) 71 is provided.
  • the protrusion 69 is disposed opposite to the protrusion 71 in the stacking direction.
  • the heat insulation layer 32-1 sandwiched between the separate layers 29-2, 31-2 in the stacking direction is more than the heat insulation materials 32-1a, 32-1b, and heat insulation materials 32-1a, 32-lb. Insulating material with high rigidity 32-1 c.
  • Insulation 32 — la, 32 — lb is sandwiched between the parts other than the protrusion 69 in Severe Ichiba 29-2 and the parts other than the protrusion 7 1 in the separator 3 1-2.
  • 32-1 c is sandwiched between the protrusion 69 of Separat 29-2 and the protrusion 7 1 of Separation 3 1 1-2.
  • the part sandwiched between the two parts (insulation material 32-1 c) is higher in rigidity and thinner in the stacking direction than the other parts (insulation materials 32-la, 32-lb) in the heat insulation layer 32-1 .
  • the heat insulating material 32-1a protrudes outward from the outer periphery of MEA 22-1, 22-2. Then, a heat insulating material 45 is provided around the MEA 22-1.
  • Insulating materials 32-1 a, 32- lb, 33 a, 33 b here are made of conductive materials, while insulating materials 32-1 c, 33 c are not necessarily conductive. There is no need, and an insulator can be used.
  • As the heat insulating materials 32-1c and 33c materials giving priority to heat insulating performance and strength are used. For example, epoxy resin, phenol resin, glass fiber, ceramic, or the like can be used.
  • the cooling liquid for cooling the anode electrode 18-2 is formed in the space formed between the separator overnight 31-2 and the anode side separator 28-2.
  • the refrigerant flow path (anode-side refrigerant flow path) 34-1 functions as well, and the space formed between the separator 29-2 and the power sword-side separator 30-1 Refrigerant flow path (force source side refrigerant flow path) 42-1 through which coolant for cooling the electrode 20-1 flows.
  • the heat insulating layer 32-1 is disposed between the refrigerant flow paths 34-1, 1 and 42-1, with respect to the stacking direction, and the separator overnight 31-2 faces the refrigerant flow path 34-1, and the heat insulating layer 32-1, Overnight 29_2 faces the refrigerant flow path 42-1 and the heat insulating layer 32-1.
  • the space formed between the separator overnight 3 1-1 and the anode side separator 28-1 is used as a refrigerant flow path 35-2 through which a coolant for cooling the anode electrode 18-1 flows. Make it work. That is, the separator evening 3 1-1 faces the refrigerant flow path 35-2 and the heat insulating layer 33.
  • the refrigerant flow path in the separator 29-2 is made so that the cross-sectional area of the refrigerant flow path 42-1 is different from the cross-sectional area of the refrigerant flow path 34-1 and the cross-sectional area of the refrigerant flow path 35-2.
  • the shape of the part facing the refrigerant flow path 34-1 in the Separator overnight 31-2 and the shape of the part facing the refrigerant flow path 35-2 in the separator night 31-1 Make it.
  • a depression (concave portion) 63 is formed in the portion facing the refrigerant flow path 42-1 in the separator 29-2.
  • Separe Ichiba 3 1—2 facing the refrigerant flow path 34-1 There are no depressions (recesses) in the part facing the refrigerant flow path 35-2 in the separate part 3 1-1, and the shape is flat. Therefore, the cross-sectional area of the refrigerant flow path 42 1 is larger than the cross-sectional area of the refrigerant flow path 34-1 and the cross-sectional area of the refrigerant flow path 35-2, and the flow rate of the coolant flowing through the refrigerant flow path 42-1 is It is possible to increase the flow rate of the coolant flowing through the path 34-1 and the flow rate of the coolant flowing through the refrigerant flow path 35-2.
  • indentations concave portions are formed in the portion facing the refrigerant flow path 34-1 in the Separation 3 1-2 and the portion facing the refrigerant flow path 35-2 in the Separation 3 1-1. You can also.
  • the depth of the depression facing the refrigerant flow path 34-1 in Separation 3 1-2 and the depression facing the refrigerant flow path 35-2 in Separation 31-1 By setting one or more of the length and width to be smaller than the depression 63 facing the refrigerant flow path 42-1 in the separate night 29-2, the cross-sectional area of the refrigerant flow paths 34-1 and 35-2
  • an external force in the stacking direction acts on the separate layer 29-2, 3 1-2, and the heat insulating layer 32-1 is separated into the separate layer 29-2, 31-2. Even if it is pinched by the protrusions 29-2, 31-2, the protrusions 69, 71 provided in the separators 29-2, 31-2, the insulation layer 32-1 (insulation material 32-1a, 32-lb) in the stacking direction Deformation
  • the heat insulating layer 32-1 (the heat insulating material 32-l a, 32-l b).
  • the heat insulating material 32-1b can be positioned by the protrusions 69 and 71.
  • heat insulating material 32-1 c sandwiched between the protrusions 69 and 71 heat insulating material 3
  • the heat insulation layer 33 (heat insulation layer) in the stacking direction is formed by the protrusions 59 and 61 provided on the separate night 29-1 and 3 1-1. Deformation of material 33a, 33b). (Crushing due to compression) can be limited. Therefore, the heat insulation performance of the heat insulation layer 33 (heat insulation materials 33a and 33b) can be stably maintained. Furthermore, the heat insulating material 33 b can be positioned by the protrusions 59 and 61.
  • the heat insulating material 33 c sandwiched between the protrusions 59 and 61 is less likely to deform in the stacking direction than the heat insulating materials 33 a and 33 b, that is, a material having higher rigidity than the heat insulating materials 33 a and 33 b ( (The amount of deformation in the stacking direction is small compared to the external force in the stacking direction of the same size) Because the material is used, it is possible to further suppress the compressive deformation of the heat insulating materials 33a and 33b in the stacking direction.
  • the structure of the power generation cell 14-1 is not changed from that of the power generation cells 14-2 to 14-n (the shape of the force source side separator 30-1). If the cross-sectional area of the cooling medium flow path 42-1 is different from the cross-sectional area of the refrigerant flow path 34-1, 35-2 The heat dissipation amount of the force sword electrode 20-1 can be made different from the heat dissipation amount of the anode electrodes 18-1 and 18-2. Therefore, the laminate 12 can be easily formed.
  • one of the projecting portions 69 and 71 can be omitted.
  • the compressive deformation of the heat insulating materials 32 — la, 32-1 b in the stacking direction can be restricted by the projecting portion 69.
  • the rigidity of the part (insulation material 32-1 c) sandwiched between the protrusion 69 in the heat insulation layer 32-1 and the separate part 3 1-2 is inferior to the other part in the heat insulation layer 32-1 ( Since it is higher than the rigidity of the heat insulating materials 32-la and 32-lb), it is possible to further suppress the compressive deformation of the heat insulating materials 32-la and 32-1b in the stacking direction.
  • one of the projecting portions 59 and 61 can be omitted.
  • the protruding portion 61 when the protruding portion 61 is omitted, the compressive deformation of the heat insulating materials 33 a and 33 b in the stacking direction can be restricted by the protruding portion 59.
  • the rigidity of the part (insulating material 33 c) sandwiched between the protrusion 59 in the heat insulating layer 33 and the separator 3 1-1 is different from that of the other part of the heat insulating layer 33 (heat insulating materials 33 a, 33 b). ) By being higher than that, it is possible to further suppress the compressive deformation of the heat insulating materials 3 3 a and 3 3 b in the stacking direction.
  • the space 3 5-2 formed between the separators 2 8-1 can be configured so as not to supply any cooling liquid (do not function as a refrigerant flow path).
  • the heat insulating layer near one end of the laminated body 12 in the stacking direction near the anode-side evening minor electrode 23
  • FIG. As shown in Fig. 3, the power generation cell 3 2— 2 with conductivity and heat insulation is adjacent to each other in one of the power generation cells 14-2 and 14-3.
  • the space formed between the heat insulating layer 32-2 and the power sword side separator 30-2 is functioned as a refrigerant flow path 42-2 through which the coolant flows.
  • the space 3 4-2 formed between the heat insulating layer 3 2-2 and the anode side separator 2 8-3 is configured not to supply the cooling liquid (do not function as a refrigerant flow path).
  • the heat insulating layer 3 2-2 is disposed between the refrigerant flow path 4 2-2 and the anode side separator 2 8-3 (anode electrode 1 8-3) of the power generation cell 1 4-3.
  • the temperature of the anode electrode 18-3 and cathode electrode 20-2 is adjusted so that the heat dissipation amount (heat exchange amount) to the coolant is greater than three. Therefore, in the configuration example shown in FIG.
  • the power sword electrode is more than the heat dissipation of 2 — 3 Adjust the temperature so that the amount of heat released becomes larger. In addition, the amount of heat exchange between the anode electrode 1 8-3 and the force sword electrode 2 0-2 is also suppressed by the heat insulating layer 3 2-2 o
  • the difference in the amount of heat dissipation (heat dissipation capability) between the force sword electrode 20—j and the anode electrode 18— (j + 1) varies depending on the stacking direction (value of j). Therefore, the thermal insulation performance of the thermal insulation layer 3 2-2 is different from that of the thermal insulation layer 3 2-1. For example, by making the thickness of the heat insulating layer 3 2-2 in the stacking direction thinner than the thickness of the heat insulating layer 3 2-1 in the stacking direction, the heat insulating performance of the heat insulating layer 3 2-2 is increased. Decrease more.
  • the difference in heat dissipation between the force sword electrode 2 0-2 and the anode electrode 1 8-3 is smaller than the difference in heat dissipation between the force sword electrode 2 0-1 and the anode electrode 1 8-2. . Therefore, in the vicinity of the anode-side terminal electrode 23, the difference in heat dissipation between the force sword electrode 20-j and the anode electrode 18- (j + 1) is reduced to the anode-side evening electrode 23. Increases as you get closer.
  • the force electrode 2 0-j and the anode electrode 1 8-(j + 1) The amount of heat exchange between the anode electrode 18-3 and the force sword electrode 20-2 is different from the amount of heat exchange between the anode electrode 18-2 and the force sword. More than the amount of heat exchange between electrodes 2 0-1.
  • the temperature of the anode electrode 1 8-3 by decreasing the heat radiation of the anode electrode 1 8-3 of the power generation cell 1 4-3, and to increase the temperature of the power generation cell 1 4-3.
  • the power sword electrode 2 0-2 can be decreased in temperature by increasing the heat radiation amount of the force sword electrode 2 0-2.
  • the temperature rise width of the anode electrode 1 8-3 is smaller than the temperature rise width of the anode electrode 1 8-2, and the temperature drop width of the force electrode 2 0-2 is less than the force rise electrode 2 It becomes smaller than the temperature drop of 0-1.
  • the temperature difference between the force sword electrode 20-m and the anode electrode 18-m in the power generation cell 14-m can be more appropriately suppressed.
  • the configuration for limiting the compressive deformation of the heat insulating layer 3 2-1 shown in Fig. 3 is used as the heat insulating layer 3 2-1 and 3 2.
  • FIG. Power generation cells adjacent to each other in the vicinity (near the other end of the laminated body 12 in the stacking direction) 14-9, 14-10 14-10 anode electrode 18-10 and the other 14-9 cathode electrode
  • a heat insulating layer 32-9 having electrical conductivity and heat insulating property can be provided between 20-9 and 20-9.
  • the heat insulating layer 32-9 is adjacent to the power cell 14-10 and the power cell 14-10, which is the closest to the power electrode 14-10. It is placed between the power generation cell 14-9 and the cathode side separator 30-9.
  • the space formed between the heat insulating layer 32-9 and the anode side separator 28-10 functions as a refrigerant flow path 42-9 through which the coolant flows
  • the space 34-9 formed between the sword side separators 30-9 is constructed so that no coolant is supplied (it does not function as a refrigerant flow path). Accordingly, the heat insulation layer 32-9 is arranged between the cold channel 42-9 and the power sword side separator 30-9 of the power generation cell 14-9 (force sword electrode 20-9). . Therefore, the amount of heat released from the anode electrode 18-10 of the power generation cell 14-10 to the coolant flowing through the refrigerant flow path 42-9 is greater than the amount of heat released from the cathode electrode 20-9 of the power generation cell 14-9 to the coolant.
  • the temperature of the anode electrode 18-10 and the force sword electrode 20-9 is adjusted so as to be larger. That is, the heat dissipating ability from the anode electrode 18-10 to the coolant flowing through the refrigerant flow path 42-9 is higher than the heat dissipating ability from the force sword electrode 20-9 to the coolant. Therefore, in the configuration example shown in FIG. 5, a part (refrigerant flow paths 42-1, 42 -9) of the refrigerant flow paths 42-1 to 42-9 formed at a plurality of locations is the anode 18-2.
  • heat dissipation capacity varies depending on the stacking direction (value of j). Further, the amount of heat exchange between the anode electrode 18-10 and the cathode electrode 20-9 is suppressed by the heat insulating layer 32-9, so that the cathode electrode 20-j and the anode electrode 18- (j + 1 The amount of heat exchange with) also changes according to the stacking direction.
  • heat insulation having electrical conductivity and heat insulation is provided on the other end side in the stacking direction of the power cell 14-10 of the power generation cell 14-10 adjacent to the force-sword-side terminal electrode 24.
  • Layer 44 is provided.
  • the heat insulation layer 44 here is It is arranged between the terminal electrode 24 on the cathode side and the cathode side separator 30-30 of the power generation cell 14-10.
  • no coolant is supplied (it does not function as a refrigerant flow path).
  • the heat insulating layer 44 can also be disposed outside the cathode terminal electrode 24 in the stacking direction. In this case, the heat insulating layer 44 does not necessarily have conductivity, and an insulator can be used.
  • the temperature of the force sword electrode 20-10 outside the stacking direction is lower than the temperature of the anode electrode 18-10 inside the stacking direction.
  • the temperature of the force sword electrode 20-9 tends to be lower than the temperature J3 ⁇ 4 of the anode electrode 18-9.
  • the heat insulation layer 32-9 is arranged between the refrigerant flow path 42-9 and the cathode electrode 20-9 of the power generation cell 14-9, thereby generating the power generation cell 14—
  • the amount of heat radiated from the 9 force sword electrodes 20-9 to the coolant flowing through the refrigerant flow path 42-9 is made smaller than the amount of heat radiated from the anode electrodes 18-10 of the power generation cell 14-10 to the coolant.
  • heat exchange between the anode electrode 18_10 and the cathode electrode 20-9 is suppressed.
  • the amount of heat dissipated by the cathode electrode 20-9 of the power generation cell 14-9 can be reduced and the temperature of the cathode electrode 20-9 can be raised, so that the anode electrode 18- in the power generation cell 14-9 The temperature difference between 9 and the force sword electrode 20-9 can be reduced.
  • the heat insulation layer 44 can reduce the heat dissipation of the cathode electrode 20-10 and raise the temperature of the cathode electrode 20-10, so that the anode electrode 18 in the power generation cell 14-10 — The temperature difference between 10 and the cathode electrode 20-10 can be further reduced. Therefore, in the power generation cells 14-9, 14-10, the electrolyte membranes 16-9, 16- The movement of water vapor through 10 can be suppressed.
  • a heat insulating layer can be further disposed between the refrigerant flow paths 4 2-8 and the cathode electrodes 20-8 of the power generation cells 14-8.
  • the heat insulating layer it is preferable that the heat insulating performance is lower than that of the heat insulating layer 3 2-9, so that the anode electrode 18-(j + 1) The difference in the amount of heat radiation from the force sword electrode 2 0-j increases as the force sword side terminal electrode 2 4 approaches.
  • the configuration (protrusion 6 9, 7 1) for limiting the compressive deformation of the heat insulation layer 3 2-1 shown in FIG. 3 may be applied to the heat insulation layer 3 2 1 9.
  • the configuration (protruding portions 59, 61) for limiting the compressive deformation of the heat insulating layer 33 shown in Fig. 3 can also be applied to the heat insulating layer 44.
  • a heat insulating layer can be disposed between one anode electrode and the other force sword electrode of the power generation cell.
  • the heat insulating layers 3 3 and 4 4 at the end of the laminate 12 can be omitted.
  • the refrigerant flow paths 4 2-1 to 4 2-9 are provided.
  • the heat insulating layer 3 2 between the anode electrode 1 8-2 and the force sword electrode 2 0-1 — 1 is installed to suppress heat exchange between anode electrode 1 8-2 and force sword electrode 2 0-1, or between anode electrode 1 8-1 0 and force sword electrode 2 0-9
  • the cathode electrode 2 0-j and anode The amount of heat exchange with the electrode 18— (j + 1) can be varied depending on the stacking direction.
  • FIG. 6 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 2 of the present invention.
  • the depth (in the stacking direction) of the concave protrusion formed in the cathode side separator 30 of the power generation cell 14-1 is related to the anode side separator of the power generation cell 14 1-2. It is set deeper than the depth of the irregularities formed on 2 8-2.
  • the contact area between the coolant flowing through the refrigerant flow path 4 2-1 and the power sword side separator 3 0-1 is equal to the contact area between the coolant flowing through the coolant path 4 2 1 and the anode side separator 2 8-2. Is set larger than the contact area.
  • the amount of heat released from the power sword electrode 2 0-1 of the power generation cell 14-1 to the coolant flowing through the refrigerant flow path 42-1 (heat exchange amount) is the anode electrode of the power generation cell 14-2
  • the temperature of the anode electrode 18-2 and the force sword electrode 20-1 can be adjusted to be greater than the amount of heat released from the 18-2 to the coolant (heat exchange amount).
  • the depth of the uneven portion of the force side separator 30 0-1 is set deeper than the depth of the uneven portion of the cathode side separator 30 0-2 to 30-10.
  • the depth of the concavo-convex portion of the anode side separator 2 8-2 is set to be shallower than the depth of the concavo-convex portion of the anode side separator 2 8-2 to 2 8-10.
  • the contact area between the coolant and the cathode side separator 30 0-1 is greater than the contact area between the coolant and the cathode side separator 30 0-2 to 30-0-10.
  • the contact area between the coolant and the anode side separator 2 8—2 is the contact area between the coolant and the anode side separator 2 8—3 to 2 8—1 0. It is set smaller than the area.
  • Other configurations are the same as those of the first embodiment (configuration example shown in FIG. 1).
  • the temperature of the anode electrode 18-2 by reducing the heat dissipation amount of the anode electrode 18-2, so that the power sword in the power generation cell 14-2 can be increased.
  • the temperature difference between the electrode 20-2 and the anode electrode 18-2 can be reduced.
  • the heat dissipation amount of the force sword electrode 2 0-1 can be increased to lower the temperature of the force sword electrode 2 0-1, so that the power sword electrode 2 0-1 and the anode in the power generation cell 14-1
  • the temperature difference from the electrode 1 8-1 can be reduced.
  • the uneven pitch formed on the force sword side separator 30-1 is larger than the pitch of the uneven formed on the anode side separator 28-2. It can be shortened. Also according to this, the contact area between the coolant flowing through the refrigerant flow path 4 2-1 and the force sword side separator 30-1 is equal to the contact area between the coolant flowing through the refrigerant flow path 4 2-1 and the anode side separator. 2 8—Can be set larger than the contact area with 2.
  • the contact area between the coolant flowing through the refrigerant flow path 4 2-9 and the anode side separator of the power generation cell 14-1-10 is determined as the refrigerant flow path 4 2-9. It can be set larger than the contact area between the coolant flowing through the cathode and the cathode side separator of the power generation cell 14-9. As a result, the amount of heat released from the anode electrode 1 8-10 of the power generation cell 14-1 0 to the coolant flowing through the refrigerant flow path 4 2-9 is reduced by the force sword electrode 20-0 of the power generation cell 14-9.
  • the temperature of the anode electrodes 18-10 and the force sword electrodes 20-9 can be adjusted so as to be larger than the heat radiation amount from 9 to the coolant.
  • FIG. 8 is a diagram showing a schematic configuration of a fuel cell according to Embodiment 3 of the present invention.
  • the partition wall 5 4-1 between the cathode side separator 30 of the power generation cell 14-1 and the anode side separator 2 8-2 of the power generation cell 14-2. Is arranged.
  • the partition wall 5 4-1 here preferably has conductivity and heat insulation. Then, the space formed between the partition wall 5 4-1 and the power sword side separator 3 0-1 is used to cool the power sword electrode 2 0-1 of the power generation cell 14 _ 1 It functions as the refrigerant flow path 4 2-1 through which the coolant flows.
  • the cooling liquid for cooling the anode electrode 1 8-2 of the power generation cell 1 4-2 Function as refrigerant flow path 5 2-1 through which the gas flows.
  • the heat sword electrode 20-1 and the anode electrode 18-2 are radiated by flowing the coolant through the refrigerant flow paths 42-1, 52-1, As shown by the arrows, the cathode electrode 20-1 is radiated (heat exchange with the force sword electrode 20-1) first by flowing the coolant through the refrigerant flow path 42-1. .
  • the coolant after heat exchange with the force sword electrode 2 0-1 is allowed to flow through the refrigerant flow path 5 2-1, thereby radiating heat from the anode electrode 1 8-2 (anode electrode 1 8-2 Heat exchange).
  • This also shows that the amount of heat released from the sword electrode 20-1 to the coolant flowing through the refrigerant flow path 42-1 (heat exchange amount) is from the anode electrode 18-2 to the refrigerant flow path 52-1.
  • Anode electrode so that it is larger than the amount of heat released to the coolant flowing through
  • cathode electrode 2 0-1 can be adjusted in temperature.
  • Other configurations are the same as those of the first embodiment (configuration example shown in FIG. 1).
  • the cooling efficiency of the cathode electrode 20 0-1 by the coolant flowing through the refrigerant flow path 4 2-1 is improved, and the anode electrode by the coolant flowing through the refrigerant flow path 5 2-1 is improved.
  • 1 8-2 Cooling efficiency decreases. Therefore, similarly to Embodiments 1 and 2, the heat radiation of the anode electrode 18-2 can be reduced and the temperature of the anode electrode 18-2 can be raised, so that the power sword electrode in the power generation cell 14-2 The temperature difference between 2 0 ⁇ 2 and the anode electrode 1 8 ⁇ 2 can be reduced. At the same time, the heat dissipation of the cathode electrode 20-1 can be increased to lower the temperature of the force sword electrode 20-1. Therefore, the force sword electrode 20-1 in the power generation cell 14-1. The temperature difference from the anode electrode 1 8-1 can be reduced.
  • the refrigerant flow channel 4 2-1 and the refrigerant flow channel 5 2-1 are shifted from each other in the stacking direction and the S-straight direction. You can also. According to this, as shown by the arrow in FIG. 9, the cooling liquid is allowed to flow through the refrigerant flow path 4 2-1 and the power sword electrode 2 0-1 is radiated first, and then the cooling liquid is supplied to the refrigerant flow path. 5 2 to 1 can be used to release heat from the anode electrode 1 8-2 later.
  • the refrigerant flow path 4 2-1 for radiating heat of the force sword electrode 20-1 and the refrigerant flow path 5 2-1 for radiating heat of the anode electrode 18-2 is performed. It is also possible to block the refrigerant and make the refrigerant flow paths 4 2-1 and 5 2-1 as separate cooling lines (cooling systems). Then, the cooling liquid supplied to the refrigerant flow path 4 2-1 is set so that the flow rate of the cooling liquid supplied to the refrigerant flow path 4 2-1 is larger than the flow rate of the cooling liquid supplied to the refrigerant flow path 5 2-1. The coolant supply flow rate and the coolant flow rate to the refrigerant flow path 5 2-1 are controlled separately.
  • the amount of heat released from the force sword electrode 20-1 to the coolant flowing through the refrigerant flow path 42-1 is reduced from the anode electrode 18-2 to the coolant flowing through the refrigerant flow path 5 2_1.
  • the temperature of the anode electrode 18-2 and the force sword electrode 20-1 can be adjusted so as to be larger than the heat dissipation amount.
  • the conductivity between the power sword side separator 30 0-9 of the power generation cell 14 1 9 and the anode side separator 2 8-10 0 of the power generation cell 14 4-1 0 is electrically conductive.
  • a partition wall having thermal properties can also be provided.
  • the cooling liquid is flowed first into the refrigerant flow path (hereinafter referred to as the anode-side refrigerant flow path) formed between the partition wall and the anode side separate 2 8-1 0 to generate the power generation cell 1 4-1
  • the refrigerant channel formed between the partition wall and the cathode side separator 3 0-9 (hereinafter referred to as the force sword side refrigerant channel)
  • the heat sword electrode 2 0-9 of the power generation cell 14-9 can be radiated later by flowing the coolant later.
  • the amount of heat released from the anode electrode 18-10 to the coolant flowing through the anode-side refrigerant flow path is increased.
  • the amount of heat released from the anode electrode 20-9 to the coolant flowing through the cathode-side refrigerant flow path is increased.
  • the temperature of the anode electrode 18-10 and the force sword electrode 20-9 can be adjusted so as to be larger.
  • the anode side refrigerant flow is blocked by disconnecting the anode side refrigerant flow path for radiating heat from the anode electrodes 18-10 and the cathode side refrigerant flow path for radiating the cathode electrodes 20-9. It is also possible to use separate cooling lines (cooling systems) for the passage and the power sword side refrigerant passage. Then, the flow rate of the coolant supplied to the anode side refrigerant flow path and the force sword side so that the flow rate of the coolant supplied to the anode side refrigerant flow path is larger than the flow rate of the coolant supplied to the cathode side refrigerant flow path. The coolant flow rate to the refrigerant flow path is controlled separately.
  • the anode electrode 1 8-1 0 and the force sword electrode 2 0-9 are arranged so that the heat radiation amount of the anode electrode 1 8-1 0 is larger than that of the cathode electrode 2 0-9. Temperature adjustment can be performed.
  • Embodiments 1 to 3 mainly, the anode side separator of the power generation cell 14-m (m is an integer not less than 1 and not more than n) 28-m and the cathode side separator: 30— The case where a metal separate evening was used for m was described. However, in the first to third embodiments, it is also possible to use a single power separator for the anode side separator “28-m” and the cathode side separator 30—m.
  • a heat insulating layer is provided between adjacent power generation cells, or the amount of heat taken away by the refrigerant on the power generation cell side closer to the end is larger than the power generation cell closer to the center between adjacent power generation cells.
  • the reason why the refrigerant flow path is provided is to suppress the temperature rise of the pole on the center side of the power generation cell on the end side of the adjacent power generation cells compared to the pole on the end side. In other words, in each embodiment, the first and first adjacent to each other.
  • the first power generation cell side pole is the first power generation cell side
  • a suppression unit heat insulation layer or refrigerant flow path
  • the suppression unit may be provided between all the power generation cells, but from the viewpoints of quick warm-up of the entire laminate at low temperatures, miniaturization, internal resistance, etc. If this is the case, it is not preferable to provide it between all the power generation cells.
  • the suppression portion (the heat insulating layer or the refrigerant flow path) so as to suppress the heat absorption relatively between the power generation cells on the side of the stacked body than between the power generation cells on the center side, The temperature difference in one power generation cell is reduced.
  • the suppression portion the heat insulating layer or the refrigerant flow path

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

燃料電池
「技術分野」
本発明は、 発電セルが積層された積層体を備える燃料電池に関する。
「背景技術」 - 燃料電池においては、 電解質膜の片面及び他面にアノード電極及びカソード電 極がそれそれ接合された膜電極接合体 (Membrane E l e c t r ode
As s emb l y, ME A) を含む発電セルを複数積層することで積層体を構' 成している。 各発電セルにおいては、 燃料ガス及び酸化剤ガスがアノード電極及 び力ソード電極にそれぞれ供給されることで、 電気化学反応が行われ、 発電が行 われる。 電気化学反応の際には、 電気エネルギーが生成されるだけでなく熱エネ ルギーも発生するため、 互いに隣接する発電セル間に形成された冷却水流路に冷 却水を流すことで、 各発電セルの冷却を行っている。
ただし、 各発電セルの冷却の際には、 外部への放熱により他の発電セルに比べ て温度低下が惹起されやすい発電セルが存在する。 例えば、 積層体の積層方向端 部付近に位置する発電セルについては、 電力取り出し用のターミナル電極 (集電 板) や、 積層された発電セルを保持するために設けられたエンドプレート等から の放熱が多いため、 温度低下が生じやすくなる。 温度低下が生じた発電セルは、 水蒸気の凝縮による結露が発生しやすいため、 発電性能の低下を招きやすくなる。 特開平 8— 306380号公報には、 積層体の積層方向端部に断熱層やヒー夕 を設ける構成が開示されている。 特開平 8— 306380号公報においては、 こ の断熱層や t—夕によって、 積層体の積層方向端部付近に位置する発電セルの温 度低下の抑制を図っている。 しかし、 単に発電セルの温度低下を抑制するだけで は、 発電セルにおいて水蒸気が凝縮するのを十分に抑制することが困難であり、 発電セルの発電性能の低下を十分に抑制することが困難である。 「発明の開示」
本発明は、 発電セルの発電性能の低下を十分に抑制することができる燃料電池 を提供することを目的とする。
本発明に係る燃料電池は、 3以上の発電セルが積層された積層体を備える燃料 電池であって、 各発電セルは、 電解質膜の片面及び他面にアノード電極及びカソ 一ド電極がそれそれ接合された接合体を含み、 アノード電極がカソ一ド電極より も発電セルの積層方向の一端側に配置されており、 互いに隣接する発電セルの一 方のアノード電極と他方のカソ一ド電極との間にて当該 ノード電極及び当該力 ソード電極の温度調整を行うための温度調整部が前記積層方向に関して複数箇所 に配設されており、 複数箇所に配設された温度調整部は、 アノード電極とカソー ド電極との放熱能力差が前記積層方向に応じて異なるように温度調整を行うため のものであることを要旨とする。
また、 本発明に係る燃料電池は、 3以上の発電セルが積層された積層体を備え る燃料電池であって、 各発電セルは、 電解質膜の片面及び他面にアノード電極及 びカソ一ド電極がそれそれ接合された接合体を含み、 アノード電極がカソード電 極よりも発電セルの積層方向の一端側に配置されており、 互いに隣接する発電セ ルの一方のアノード電極と他方のカソ一ド電極との間にて当該アノード電極及び 当該力ソード電極の温度調整を行うための温度調整部が前記積層方向に関して複 数箇所に配設されており、 複数箇所に配設された温度調整部の一部は、 アノード 電極の放熱能力がカソード電極の放熱能力と異なるように温度調整を行うための ものであることを要旨とする。
また、 本発明に係る燃料電池は、 3以上の発電セルが積層された積層体を備え る燃料電池であって、 各発電セルは、 電解質膜の片面及び他面にアノード電極及 びカソ一ド電極がそれそれ接合された接合体を含み、 アノード電極がカソ一ド電 極よりも発電セルの積層方向の一端側に配置されており、 互いに隣接する発電セ ルの一方のアノード電極と他方の力ソード電極との間の熱交換量を前記積層方向 に応じて異ならせるための温度調整部が配設されていることを要旨とする。 本発明によれば、 発電セルが積層された燃料電池において、 力ソード電極とァ ノ一ド電極との温度差を抑えるように各発電セルの温度調整を発電セルの位置に 応じて適切に行うことができる。 その結果、 発電セルの発電性能の低下を十分に 抑制することができる。
「図面の簡単な説明」
図 1は、 本発明の実施形態 1に係る燃料電池の概略構成を示す図である。 図 2は、 本発明の実施形態 1に係る燃料電池の他の概略構成を示す図である。 図 3は、 本発明の実施形態 1に係る燃料電池の他の概略構成を示す図である。 図 4は、 本発明の実施形態 1に係る燃料電池の他の概略構成を示す図である。 図 5は、 本発明の実施形態 1に係る燃料電池の他の概略構成を示す図である。 図 6は、 本発明の実施形態 2に係る燃料電池の概略構成を示す図である。 図 7は、 本発明の実施形態 2に係る燃料電池の他の概略構成を示す図である。 図 8は、 本発明の実施形態 3に係る燃料電池の概略構成を示す図である。 図 9は、 本発明の実施形態 3に係る燃料電池の他の概略構成を示す図である。
「発明を実施するための最良の形態」
以下、 本発明の好適な実施形態を図面に従って説明する。
「実施形態 1」
図 1は、 本発明の実施形態 1に係る燃料電池の概略構成を示す図である。 本実 施形態に係る燃料電池は、 n個 (nは 3以上の整数) の発電セル 14_1〜14 —nが積層された積層体 12を備える。 なお、 図 1は、 一例として、 10個の発 電セル 14— 1〜 14— 10がその積層方向の一端側から他端側へ発電セル 14 — 1〜14— 10の順に積層された場合 (n= 10の場合) を示している。 ただ し、 積層体 12において、 積層する発電セル 14— 1〜14一 nの個数について は、 3以上 (n≥3) の範囲で任意に設定することができる。
発電セル 14—m (mは 1以上且つ n以下の整数) は、 電解質膜 16— mの片 面にアノード電極 18_mが、 他面に力ソード電極 20—mがそれそれ接合され た膜電極接合体 (M e mb r a n e El ect rode As sembly、 以下 ME Aと略す) 22— mと、 アノード電極 18—mと対向配置されたァノ一 ド側セパレ一夕 28— mと、 カソ一ド電極 20—mと対向配置されたカソ一ド側 セパレ一夕 3 0 _ mと、 を含む。 M E A 2 2— mは、 アノード側セパレ一夕 2 8 — mとカソ一ド側セパレ一夕 3 0—mとの間に挟持されている。 発電セル 1 4— mにおいては、 アノード電極 1 8— mがカソ一ド電極 2 0—m りも発電セル 1 4— 1〜1 4一 nの積層方向 (以下積層方向と略す) の一端側に配置されている。 なお、 図 1は、 アノード側セパレー夕 2 8—m及び力ソード側セパレ一夕 3 0— mにメ夕ルセパレ一夕を用いた例を示している。 ただし、 本実施形態では、 ァノ ―ド側セパレ一夕 2 8— m及びカソ一ド側セパレ一夕 3 0—mにカーボンセパレ 一夕を用いることもできる。
発電セル 1 4—mにおいては、 アノード側セパレー夕 2 8—mに凹凸部が形成 されていることで、 アノード電極 1 8一 mとアノード側セパレ一夕 2 8— mとの 間に、 図示しないアノードガス供給口及びアノードガス排出口と連通し、 燃料ガ ス (アノードガス) が流れるアノードガス流路 3 8— mが形成されている。 一方、 力ソード側セパレ一夕 3 0—mに凹凸部が形成されていることで、 力ソード電極 2 0— mとカソ一ド側セパレー夕 3 0— mとの間に、 図示しないカソ一ドガス供 給口及び力ソードガス排出口と連通し、 酸化剤ガス (力ソードガス) が流れる力 ソードガス流路 4 0—mが形成されている。 発電セル 1 4— mにおいては、 ァノ ―ドガス供給口からアノードガス流路 3 8—mに流入した燃料ガスがアノード電 極 1 8— mに供給され、 力ソードガス供給口から力ソードガス流路 4 0—mに流 入した酸化剤ガスが力ソード電極 2 0—mに供給されることで、 電気化学反応が 行われ、 発電が行われる。 電気化学反応の際には、 電気エネルギーが生成される だけでなく熱エネルギーも発生する。 電気化学反応に供された後の燃料ガスはァ ノードガス排出口から排出され、 電気化学反応に供された後の酸化剤ガスはカソ —ドガス排出口から排出される。 ここでの燃料ガスとしては、 例えば水素 (H を用いることができ、 酸化剤ガスとしては、 例えば空気を用いることができ る。 以上の発電セル 1 4—mの構成は、 発電セル 1 4— 1〜 1 4— n (図 1では 発電セル 1 4— 1〜 1 4ー 1 0 ) の各々に関して共通するものである。 そして、 積層方向に関する積層体 1 2の一端部にはアノード側ターミナル電極 (集電板) 2 3が配設されており、 積層方向に関する積層体 1 2の他端部には力ソード側夕 —ミナル電極 (集電板) 2 4が配設されている。 積層体 12においては、 互いに隣接する発電セル 14— j, 14-( j + 1 ) ( jは 1以上且つ( n— 1 )以下の整数) の一方 14— ( j + 1 )のアノード電極 1 8-( j + 1)及び他方 14— jの力ソード電極 20— jが積層方向に関してァノ ―ド側セパレー夕 28 _( j斗 1 )及び力ソード側セパレ一夕 30— jを挟んで互 いに対向配置されている。 そして、 互いに隣接する発電セル 14— j, 14— ( j + 1 )間、 より具体的には発電セル 14— ( j + 1 )のアノード側セパレ一夕 2 8 -( j + 1 ) (アノード電極 18-( j + 1)) と発電セル 14— jの力ソード側 セパレ一夕 30— j (力ソード電極 20— j) との間には、 図示しない冷媒供給 口及び冷媒排出口と連通し、 冷媒としての冷却液 (冷却水) が流れる冷媒流路 4 2 - jが形成されている。 冷媒供給口から冷媒流路 42-3に流入した冷却液が アノード電極 18-( j + 1 )及びガソード電極 20— jと熱交換を行うことで、 アノード電極 18-( j + 1 )及び力ソード電極 20- jから熱を放出させて運び 去ることができ、 アノード電極 18-( j + 1 )及び力ソード電極 20— jの温度 を調整する (冷却を行う) ことができる。 熱交換に供された後の冷却液は冷媒排 出口から排出される。 本実施形態では、 発電セル 14ー( j + 1 )のアノード電極 18-( j + 1 )と発電セル 14— jの力ソード電極 20— jとの間にてァソード 電極 18— ( j + 1 )及びカソ一ド電極 20— jの冷却を行うための冷媒流路 42 - jが、 積層方向に関する位置がそれそれ異なる複数の箇所に形成されている。 図 1は、 冷媒流路 42 1〜42— 9が発電セル 14— 1, 14-2間〜発電セ ル 14— 9, 14- 10間にそれそれ形成された例を示している。
そして、 本実施形態では、 アノード側ターミナル電極 23付近 (積層方向に関 する積層体 12の一端部付近) にて互いに隣接する発電セル 14— 1, 14-2 の一方 14— 2のアノード電極 18— 2と他方 14— 1の力ソード電極 20- 1 との間に、 導電性及び断熱性を有する断熱層 32— 1が設けられている。 図 1に 示す例では、 断熱層 32— 1は、 アノード側ターミナル電極 23に最も近い発電 セル 14— 1のカソ一ド側セパレ一夕 30— 1と、 発電セル 14— 1に隣接する 発電セル 14— 2のアノード側セパレー夕 28— 2との間に配置されている。 そ して、 断熱層 32— 1とカソ一ド側セパレ一夕 30— 1との間に形成された空間 を冷却液が流れる冷媒流路 42 - 1として機能させるとともに、 断熱層 32- 1 とアノード側セパレ一夕 28— 2との間に形成された空間 34— 1については、 冷却液を供給しない (冷媒流路として機能させない) ように構成する。 つまり、 空間 34—1については、 冷媒供給口及び冷媒排出口との連通を断ち、 空気層と する。 これによつて、 断熱層 32— 1が冷媒流路 42— 1と発電セル 14— 2の アノード側セパレー夕 28— 2 (アノード電極 18— 2) との間に配置される。 そのため、 発電セル 14— 1の力ソード電極 20- 1から冷媒流路 42— 1を流 れる冷却液への放熱量 (熱交換量) が発電セル 14— 2のアノード電極、 18— 2 から冷却液への放熱量 (熱交換量) よりも大きくなるように、 アノード電極 18 —2及び力ソード電極 20— 1の温度調整 (放熱) が行われる。 つまり、 カソ一 ド電極 20- 1から冷媒流路 42— 1を流れる冷却液への放熱能力が、 アノード 電極 18— 2から冷却液への放熱能力よりも高くなる。
図 1に示す例では、 MEA22— 1, 22— 2間以外の互いに隣接する ME A 22 - 2, 22— 3間〜 MEA22— 9, 22— 10間には、 断熱層が設けられ ていない。 そのため、 発電セル 14— jの力ソード電極 20— jから冷媒流路 4 2— jを流れる冷却液への放熱量が発電セル 14— ( j + 1)のアノード電極 18 -( j + 1 )から冷却液への放熱量と等しくなる (あるいはほぼ等しくなる) 条件 が、 2以上且つ(n— 1 )以下のすべての整数 jに関して成立している。 したがつ て、 図 1に示す例では、 複数箇所に形成された冷媒流路 42—1〜42— 9のう ちの一部 (冷媒流路 42- 1) が、 アノード電極 18— 2の放熱量よりもカソ一 ド電極 20— 1の放熱量の方が大きくなるように温度調整を行い、 力ソード電極 20- jとアノード電極 18-( j + 1)との放熱量 (放熱能力) の差が積層方向 (jの値) に応じて変化する。
本実施形態では、 2以上且つ(n— 1)以下のすべての整数」に関して、 ァノー ド側セパレ一夕 28— ( j + 1)と力ソード側セパレ一夕 30- jとが接触してい るため、 アノード電極 18-( j + 1 )とカソ一ド電極 20- jとの間で熱交換が 行われる。 一方、 アノード側セパレ一夕 28— 2とカソ一ド側セパレ一夕 30— 1との間には断熱層 32— 1が配設されているため、 アノード電極 18— 2と力 ソード電極 20— 1との間の熱交換量は、 それ以外のアノード電極 18-( j + 1)と力ソード電極 20- jとの間の熱交換量よりも少なくなる。 このように、 互いに隣接する発電セルの組み合わせ (発電セル 14— 1, 14— 2、 発電セル 14-2, 14— 3〜発電セル 14— (n— 1 ), 14 -n) の一部 (発電セル 1 4— 1, 14— 2) における一方 14— 2のアノード電極 18— 2と他方 14— 1の力ソード電極 20- 1との間に断熱層 32— 1を配設することで、 互いに隣 接する発電セル 14— j, 14-( j + 1 ) ( jは 1以上且つ(n— 1 )以下の整 数) の一方 14— ( j + 1 )のアノード電極 18-( j + 1 )と他方 14— jのカソ —ド電極 20— jとの間の熱交換量が積層方向 (jの値) に応じて異なる。 さらに、 本実施形態では、 アノード側ターミナル電極 23に隣接する発電セル 14- 1のアノード電極 18— 1よりも積層方向の一端側に、 導電性及び断熱性 を有する断熱層 33が設けられている。 図 1に示す例では、 断熱層 33は、 ァノ —ド側ターミナル電極 23と発電セル 14— 1のアノード側セパレー夕 28- 1 との間に配置されている。 そして、 断熱層 33とアノード側ターミナル電極 23 との間に形成された空間 35— 1、 及び断熱層 33とアノード側セパレ一夕 28 - 1との間に形成された空間 35— 2については、 いずれも冷却液を供給しない (冷媒流路として機能させない) ように構成する。 つまり、 空間 35— 1, 35 —2についても、 冷媒供給口及び冷媒排出口との連通を断ち、 空気層とする。 さ らに、 本実施形態では、 前述のように、 断熱層 32- 1が積層体 12の端部近傍 の発電セル 14一 1, 14— 2間にも設けられている。
ここで、 本実施形態において、 断熱層を積層体 12の端部のみにならず積層体 12内の発電セル 14— 1 , 14— 2間にも設けている理由について説明する。 もし仮に発電セル 14— 1 , 14— 2間に断熱層 32— 1がなければ、 発電セル 14 - 1のうち発電セル 14— 2側の力ソード電極 20— 1は、 発電セル 14— 1よりも高温側の発電セル 14— 2との熱交換がスムーズに行われる結果、 温度 上昇が顕著になる。 一方、 発電セル 14— 2のうち発電セル 14— 1側のァノー ド電極 18 - 2は、 発電セル 14— 2よりも低温側の発電セル 14— 1との熱交 換がスムーズに行われる結果、 温度低下が顕著になる。 これによつて、 発電セル 14- 1内でアノード電極 18- 1と力ソード電極 20- 1とで大きな温度差が 生じるとともに、 発電セル 14— 2内でアノード電極 18— 2と力ソード電極 2 0— 2とで大きな温度差が生じる。 なお、 積層体 12において温度分布が生じる のは、 積層体 1 2の温度 (例えば発電セル 1 4— 1〜 1 4一 nの平均温度) と気 温との間に差が生じている場合である。 例えば、 気温が積層体 1 2の温度に比べ て低い場合には、 中央の発電セルから端部の発電セルに近づくにつれて温度が低 下する。 逆に、 気温が積層体 1 2の温度に比べて高い場合には、 中央の発電セル から端部の発電セルに近づくにつれて温度が上昇する。 いずれの場合においても、 温度分布は、 発電セル 1 4— 1〜1 4— n間のみならず、 単一の発電セル 1 4— m内の極間においても生じる。 この発電セル 1 4— m内の温度分布は、 積層体 1 2の温度と気温との差が大きなほど顕著になる。
発電セル 1 4— mにおいて、 カソ一ド電極 2 0—mとアノード電極 1 8— mと の間に温度差が発生すると、 水蒸気が温度の高い方の電極から電解質膜 1 6— m を透過して温度の低い方の電極へ移動する。 例えば、 アノード側夕一ミナル電極 2 3付近の発電セル 1 4— 1においては、 積層方向外側のアノード電極 1 8 - 1 の温度が積層方向内側の力ソード電極 2 0— 1の温度よりも低くなりやすいため、 水蒸気が力ソード電極 2 0— 1から電解質膜 1 6— 1を透過してアノード電極 1 8— 1へ移動しやすくなる。 同様に、 アノード側夕一ミナル電極 2 3付近の発電 セル 1 4一 2においても、 アノード電極 1 8— 2の温度がカソ一ド電極 2 0 - 2 の温度よりも低くなりやすく、 水蒸気が力ソード電極 2 0— 2から電解質膜 1 6 —2を透過してアノード電極 1 8— 2へ移動しやすくなる。 さらに、 力ソード電 極 2 0— mとアノード電極 1 8—mとの間に生じる温度差は発電セル 1 4— の 位置 (積層方向) に応じて異なるため、 電解質膜 1 6— mを透過して移動する水 蒸気量も発電セル 1 4— mの位置に応じて変化する。 例えば積層体 1 2の積層方 向に関する中央部付近の発電セル 1 4— mにおいては、 アノード側ターミナル電 極 2 3付近の発電セル 1 4— 1, 1 4一 2と比較して、 力ソード電極 2 0— mと アノード電極 1 8— mとの間に温度差が生じにくいため、 電解質膜 1 6— mを透 過して移動する水蒸気量も少なくなる。 温度の低下しやすいアノード電極 1 8 - 1 , 1 8— 2に移動した水蒸気が凝縮して滞留すると、 発電セル 1 4— 1, 1 4 —2の発電性能の低下を招きやすくなる。 特に、 アノード電極 1 8— 1, 1 8— 2においては、 燃料ガス (水素ガス) の供給流量が酸化剤ガス (空気) と比較し て少なくなるため、 凝縮水が滞留しやすくなる。 そのため、 発電セル 1 4— mの 位置に応じて異なる力ソード電極 2 0— mとアノード電極 1 8— mとの温度差を 抑えるように、 発電セル 1 4— 1〜1 4— nの各々の温度調整を行うことが要求 される。
これに対して本実施形態では、 冷媒流路 4 2— 1と発電セル 1 4一 2のァノ一 ド電極 1 8— 2との間に断熱層 3 2 - 1を配置することで、 発電セル 1 4— 2の アノード電極 1 8— 2から冷媒流路 4 2— 1を流れる冷却液への放熱量を発電セ ル 1 4— 1の力ソード電極 2 0 - 1から冷却液への放熱量よりも少なくしている。 さらに、 アノード電極 1 8— 2と力ソード電極 2 0— 1との間の熱交換を抑制し ている。 これによつて、 アノード電極 1 8— 2の放熱量を減少させてアノード電 極 1 8— 2の温度を上昇させることができるので、 発電セル 1 4— 2における力 ソード電極 2 0— 2とアノード電極 1 8— 2との温度差を低減することができる。 そのため、 発電セル 1 4— 2において、 力ソード電極 2 0— 2から電解質膜 1 6 —2を透過してアノード電極 1 8— 2へ水蒸気が移動するのを抑えることができ る。 それとともに、 冷媒流路 4 2— 1を流れる冷却液による力ソード電極 2 0— 1の冷却効率を向上させることができ、 力ソード電極 2 0— 1の放熱量を増大さ せてカソード電極 2 0 - 1の温度を低下させることができるので、 発電セル 1 4 - 1における力ソード電極 2 0— 1とアノード電極 1 8 - 1との温度差を低減す ることができる。 そのため、 発電セル 1 4一 1において、 力ソード電極 2 0— 1 から電解質膜 1 6 - 1を透過してアノード電極 1 8— 1へ水蒸気が移動するのを 抑えることができる。 さらに、 発電セル 1 4 _ 1のアノード電極 1 8— 1よりも 積層方向の一端側に断熱層 3 3を配置することで、 アノード電極 1 8— 1の放熱 量を減少させてアノード電極 1 8— 1の温度を上昇させることができるので、 発 電セル 1 4— 1における力ソード電極 2 0 - 1とアノード電極 1 8 - 1との温度 差をさらに低減することができる。
一方、 発電セル 1 4— 1, 1 4— 2と比較して、 力ソード電極 2 0—mとァノ —ド電極 1 8— mとの間に温度差が生じにくい発電セル (例えば積層体 1 2の中 央部付近の発電セル) 1 4— mにおいては、 アノード電極 1 8— mの放熱量が力 ソード電極 2 0—mの放熱量とほぼ等しくなる。 そのため、 アノード電極 1 8— mと力ソ^ "ド電極 2 0—mとで温度をほぼ等しく保つことができるので、 電解質 膜 1 6—mを介した水蒸気の移動を抑えることができる。
以上説明したように、 本実施形態によれば、 冷媒流路 4 2— 1〜4 2— 9のう ちの一部 (冷媒流路 4 2— 1 ) が、 アノード電極 1 8— 2の放熱量よりもカソ一 ド電極 2 0 - 1の放熱量の方が大きくなるように温度調整を行い、 力ソード電極 2 0 - jとアノード電極 1 8 - ( j + 1 )との放熱量の差を積層方向に応じて異な らせることで、 力ソード電極 2 0— mとアノード電極 1 8— mとの温度差を抑え るように発電セル 1 4— 1〜 1 4— nの各々の温度調整を発電セル 1 4— 1〜 1 4— nの位置 (積層方向) に応じて適切に行うことができる。 さらに、 アノード 電極 1 8— 2とカソード電極 2 0 - 1との間の熱交換を断熱層 3 2— 1により抑 制し、 力ソード電極 2 0 - jとアノード電極 1 8 - ( j + 1 )との間の熱交換量を 積層方向に応じて異ならせることによつても、 カソ一ド電極 2 0—mとアノード 電極 1 8— mとの温度差を抑えることができる。 したがって、 発電セル 1 4— 1 〜 1 4— nにおいて、 電解質膜 1 6— 1〜 1 6— nを介した水蒸気の移動を抑え ることができ、 積層体 1 2の積層方向に関する含水量分布を改善することができ る。 その結果、 凝縮水の滞留による発電セル 1 4— 1〜 1 4— nの発電性能の低 下を安定して抑止することができる。
次に、 本実施形態の他の構成例について説明する。
本実施形態において、 冷媒流路 4 2— 1とアノード電極 1 8— 2との間に設け る断熱層 3 2— 1については、 アノード側セパレ一夕 2 8— 2とアノードガス流 路 3 8— 2との間や、 アノードガス流路 3 8— 2とアノード電極 1 8— 2との間 に配置することもできる。 断熱層 3 2— 1をアノードガス流路 3 8— 2とァノー ド電極 1 8— 2との間に配置する場合は、 燃料ガス (水素ガス) を透過可能なよ うに断熱層 3 2— 1の材料や構造を決定する。 また、 断熱層 3 3については、 ァ ノード側セパレー夕 2 8— 1とアノードガス流路 3 8 - 1との間や、 ァノ一ドガ ス流路 3 8 - 1とアノード電極 1 8 - 1との間に配置することもできる。 断熱層 3 3をアノードガス流路 3 8 - 1とアノード電極 1 8 - 1との間に配置する場合 も、 燃料ガスを透過可能なように断熱層 3 3の材料や構造を決定する。 さらに、 断熱層 3 3については、 アノード側ターミナル電極 2 3よりも積層方向の外側に 配置することもできる。 この場合の断熱層 3 3については、 必ずしも導電性を有 する必要はなく、 絶縁体を用いることもできる。
また、 本実施形態では、 断熱層 3 2— 1に代えて、 または断熱層 3 2— 1に加 えて、 アノード側セパレ一夕 2 8— 2の材料の熱伝導率をカソ一ド側セパレー夕 3 0— 1の材料の熱伝導率よりも低くすることもできる。 また、 断熱層 3 2— 1 に代えて、 または断熱層 3 2— 1に加えて、 アノード側セパレ一夕 2 8— 2の板 厚 (積層方向に関する厚さ) を力ソード側セパレー夕 3 0— 1の板厚 (積層方向 に関する厚さ) よりも厚くすることもできる。 これらの構成によっても、 発電セ ル 1 4— 2のアノード電極 1 8— 2の放熱量を発電セル 1 4— 1の力ソード電極 2 0 - 1の放熱量よりも少なくすることができるとともに、 アノード電極 1 8 - 2と力ソード電極 2 0— 1との間の熱交換を抑制することができる。 また、 本実 施形態では、 ペルチェ素子を用いることによつても、 アノード電極 1 8— 2の放 熱量が力ソード電極 2 0 - 1の放熱量よりも少なくなるように、 アノード電極 1 8— 2及び力ソード電極 2 0— 1の温度調整を行うことができる。
また、 図 2に示す構成例では、 図 1に示す構成例と比較して、 アノード側夕一 ミナル電極 2 3と断熱層 3 3との間にセパレ一夕 2 9— 1が配置されており、 断 熱層 3 3と発電セル 1 4— 1のアノード側セパレ一夕 2 8— 1との間にセパレー 夕 3 1— 1が配置されている。 つまり、 断熱層 3 3は、 積層方向に関してセパレ —夕 2 9— 1, 3 1 - 1間に挟持されている。 そして、 発電セル 1 4— 1のカソ —ド側セパレ一夕 3 0 - 1と断熱層 3 2 - 1との間にセパレ一夕 2 9— 2が配置 されており、 断熱層 3 2 - 1と発電セル 1 4— 2のアノード側セパレ一夕 2 8— 2との間にセパレー夕 3 1—2が配置されている。 つまり、 断熱層 3 2 _ 1は、 積層方向に関してセパレ一夕 2 9— 2, 3 1—2間に挟持されている。 さらに、 セパレ一夕 2 9— 2と力ソード側セパレ一夕 3 0 - 1との間に形成された空間を 冷却液が流れる冷媒流路 4 2 - 1として機能させるとともに、 セパレー夕 3 1 - 2とアノード側セパレ一夕 2 8— 2との間に形成された空間 3 4— 1、 セパレ一 夕 2 9— 1とアノード側夕一ミナル電極 2 3との間に形成された空間 3 5 - 1、 及びセパレ一夕 3 1— 1とアノード側セパレ一夕 2 8— 1との間に形成された空 間 3 5— 2については、 いずれも冷却液を供給しない (冷媒流路として機能させ ない) ように構成する。 さらに、 断熱層 3 3とセパレ一夕 2 9— 1との間に、 図示しないアノードガス 供給口及びアノードガス排出口と連通し、 燃料ガスが流れるアノードガスバイパ ス流路 3 9 - 1が形成されており、 断熱層 3 2— 1とセパレー夕 2 9— 2との間 にも、 アノードガス供給口及びアノードガス排出口と連通し、 燃料ガスが流れる アノードガスバイパス流路 3 9— 2が形成されている。 そして、 断熱層 3 3とセ パレ一夕 3 1— 1との間に、 図示しない力ソードガス供給口及び力ソードガス排 出口と連通し、 酸ィ匕剤ガスが流れる力ソードガスバイパス流路 4 1— 1が形成さ れており、 断熱層 3 2— 1とセパレ一夕 3 1— 2との間にも、 力ソードガス供給 口及びカソ一ドガス排出口と連通し、 酸化剤ガスが流れるカソードガスバイパス 流路 4 1—2が形成されている。
積層体 1 2には、 配管を介して水分を含む反応ガス (燃料ガス及び酸化剤ガ ス) が供給される。 例えば外気温が低い場合や、 反応ガスの湿度が高い場合には、 配管の内壁面の凝縮水が反応ガスとともに積層体 1 2に供給される。 この凝縮水 の発電セル 1 4— 1〜 1 4— nへの供給量が増大すると、 発電セル 1 4— 1〜 1 4— nの発電性能の低下を招きやすくなる。
これに対して図 2に示す構成例では、 アノードガス供給口に供給された凝縮水 をアノードガスバイパス流路 3 9 - 1 , 3 9— 2を介してアノードガス排出口へ 排出することができるので、 凝縮水が燃料ガスとともに発電セル 1 4ー 1〜1 4 - nに供給されるのを抑制することができる。 同様に、 カソ一ドガス供給口に供 給された凝縮水を力ソードガスバイパス流路 4 1— 1 , 4 1—2を介してカソ一 ドガス排出口へ排出することができるので、 凝縮水が酸化剤ガスとともに発電セ ル 1 4— 1〜1 4— nに供給されるのを抑制することができる。 したがって、 発 電セル 1 4— 1〜1 4一 nの発電性能の低下をさらに安定して抑止することがで ぎる。
さらに、 図 2に示す構成例については、 ME Aを断熱層 3 2— 1, 3 3に置き 換えるだけで実現可能なため、 積層体 1 2の形成を容易に行うことができる。 なお、 図 1に示す構成例においても、 アノードガスバイパス流路 3 9— 1及び 力ソードガスバイパス流路 4 1— 1のいずれか 1つ以上を断熱層 3 3の内部に形 成することもできる。 同様に、 アノードガスバイパス流路 3 9— 2及び力ソード ガスバイパス流路 4 1 - 2のいずれか 1つ以上を断熱層 32- 1の内部に形成ず ることもできる。 ただし、 図 1, 2に示す構成例においては、 必ずしもアノード ガスバイパス流路 39— 1, 39— 2や力ソードガスバイパス流路 41一 1, 4 1—2を介して凝縮水をバイパスさせなくてもよい。
また、 図 3に示す構成例では、 図 2に示す構成例と比較して、 セパレー夕 29 一 1にはセパレー夕 3 1— 1側へ突出する突出部 (凸部) 59が設けられ、 セパ レー夕 3 1— 1にはセパレ一夕 29— 1側へ突出する突出部 (凸部) 61が設け られている。 突出部 59は、 積層方向に関して突出部 6 1と対向配置されている。 積層方向に関してセパレ一夕 29— 1, 3 1— 1間に挟持された断熱層 33は、 断熱材 33 a, 33わと、 断熱材 33 a, 33 bよりも剛性の高い断熱材 33 c と、 を含む。 断熱材 33 a, 33 bは、 セパレー夕 29— 1における突出部 59 以外の部分とセパレ一夕 3 1- 1における突出部 6 1以外の部分との間に挟持さ れ、 断熱材 33 cは、 セパレー夕 29 - 1の突出部 59とセパレー夕 3 1— 1の 突出部 6 1との間に挟持されている。 つまり、 断熱層 33における突出部 59, 6 1間に挟持された部分 (断熱材 33 c) は、 断熱層 33における他の部分 (断 熱材 33 a, 33b) に比べて剛性が高く且つ積層方向の厚さが薄い。 また、 断 熱材 33 aは、 ME A22— 1の外周よりも外方へ張り出している。 なお、 図 3 では、 説明の便宜上、 アノードガス流路 38— 1, 38— 2及び力ソードガス流 路 40— 1, 40— 2の図示を省略している。
同様に、 セパレー夕 29— 2にはセパレ一夕 3 1— 2側へ突出する突出部 (凸 部) 69が設けられ、 セパレ一夕 3 1— 2にはセパレ一夕 29— 2側へ突出する 突出部 (凸部) 71が設けられている。 突出部 69は、 積層方向に関して突出部 71と対向配置されている。 積層方向に関してセパレ一夕 29— 2, 31—2間 に挟持された断熱層 32— 1は、 断熱材 32— 1 a, 32— 1 bと、 断熱材 32 — 1 a, 32- l bよりも剛性の高い断熱材 32— 1 cと、 を含む。 断熱材 32 — l a, 32— l bは、 セバレ一夕 29— 2における突出部 69以外の部分とセ パレ一夕 3 1—2における突出部 7 1以外の部分との間に挟持され、 断熱材 32 - 1 cは、 セパレ一夕 29— 2の突出部 69とセパレ一夕 3 1一 2の突出部 7 1 との間に挟持されている。 つまり、 断熱層 32— 1における突出部 69, 71間 に挟持された部分 (断熱材 32- 1 c) は、 断熱層 32— 1における他の部分 (断熱材 32— l a, 32— l b) に比べて剛性が高く且つ積層方向の厚さが薄 い。 また、 断熱材 32— 1 aは、 MEA22— 1, 22— 2の外周よりも外方へ 張り出している。 そして、 MEA22- 1の周囲には、 断熱材 45が設けられて レヽる。
ここでの断熱材 32— 1 a, 32— l b, 33 a, 33 bとしては、 導電性を 有する材料が用いられ、 一方、 断熱材 32— 1 c, 33 cについては、 必ずしも 導電性を有する必要はなく、 絶縁体を用いることもできる。 断熱材 32— 1 c, 33 cとしては、 断熱性能と強度を優先した材料が用いられ、 例えばエポキシ樹 脂ゃフエノ一ル樹脂やガラス繊維ゃセラミック等を用いることができる。
そして、 図 3に示す構成例では、 セパレ一夕 3 1— 2とアノード側セパレ一夕 28-2との間に形成された空間を、 アノード電極 18-2を冷却するための冷 却液が流れる冷媒流路 (アノード側冷媒流路) 34— 1として機能させるととも に、 セパレ一夕 29— 2と力ソード側セパレ一夕 30- 1との間に形成された空 間を、 力ソード電極 20— 1を冷却するための冷却液が流れる冷媒流路 (力ソ一 ド側冷媒流路) 42— 1として機能させる。 つまり、 断熱層 32— 1は積層方向 に関して冷媒流路 34— 1, 42— 1間に配置され、 セパレ一夕 31—2は冷媒 流路 34— 1及び断熱層 32— 1に面し、 セパレ一夕 29 _ 2は冷媒流路 42- 1及び断熱層 32— 1に面する。 そして、 セパレ一夕 3 1 - 1とアノード側セパ レー夕 28- 1との間に形成された空間を、 アノード電極 18— 1を冷却するた めの冷却液が流れる冷媒流路 35— 2として機能させる。 つまり、 セパレー夕 3 1— 1は、 冷媒流路 35— 2及び断熱層 33に面する。
さらに、 冷媒流路 42— 1の断面積を冷媒流路 34— 1の断面積及び冷媒流路 35— 2の断面積と異ならせるように、 セパレー夕 29— 2における冷媒流路 4 2 - 1に面する部分の形状を、 セパレ一夕 31— 2における冷媒流路 34— 1に 面する部分の形状、 及びセパレ一夕 31- 1における冷媒流路 35— 2に面する 部分の形状と異ならせる。 より具体的な例としては、 図 3に示すように、 セパレ —夕 29— 2における冷媒流路 42— 1に面する部分に窪み部 (凹部) 63が形 成されているのに対して、 セパレ一夕 3 1— 2における冷媒流路 34 - 1に面す る部分、 及びセパレ一夕 3 1— 1における冷媒流路 35— 2に面する部分には窪 み部 (凹部) が形成されておらず、 平坦な形状である。 そのため、 冷媒流路 42 一 1の断面積が冷媒流路 34— 1の断面積及び冷媒流路 35-2の断面積よりも 大きく、 冷媒流路 42 - 1を流れる冷却液の流量を冷媒流路 34 - 1を流れる冷 却液の流量及び冷媒流路 35— 2を流れる冷却液の流量よりも増大させることが できる。 これによつて、 力ソード電極 20— 1から冷媒流路 42— 1を流れる冷 却液への放熱量が、 アノード電極 18— 2から冷媒流路 34— 1を流れる冷却液 への放熱量、 及びアノード電極 18- 1から冷媒流路 35— 2を流れる冷却液へ の放熱量よりも大きくなる。 ただし、 セパレ一夕 3 1—2における冷媒流路 34 - 1に面する部分、 及びセパレ一夕 3 1— 1における冷媒流路 35— 2に面する 部分に、 窪み部 (凹部) を形成することもできる。 その場合は、 セパレ一夕 3 1 ― 2における冷媒流路 34 - 1に面する窪み部、 及びセパレ一夕 31— 1におけ る冷媒流路 35-2に面する窪み部については、 その深さ及び幅のいずれか 1つ 以上をセパレ一夕 29— 2における冷媒流路 42- 1に面する窪み部 63よりも 小さく設定することで、 冷媒流路 34— 1, 35— 2の断面積を冷媒流路 42—
1の断面積よりも小さく設定する。
以上説明した図 3に示す構成例によれば、 セパレ一夕 29— 2, 3 1— 2に積 層方向の外力が作用して断熱層 32— 1がセパレ一夕 29— 2, 31—2により 挟圧されても、 セパレ一夕 29— 2 , 3 1— 2に設けられた突出部 69 , 71に より積層方向に関する断熱層 32— 1 (断熱材 32— 1 a, 32— l b) の変形
(圧縮によるつぶれ) を制限することができる。.そのため、 断熱層 32— 1 (断 熱材 32— l a, 32— l b) の断熱性能を安定して維持することができる。 さ らに、 突出部 69, 71により断熱材 32— 1 bの位置決めを行うこともできる。 そして、 突出部 69, 71間に挟まれた断熱材 32— 1 cについては、 断熱材 3
2 - 1 a, 32— 1 bよりも剛性の高い材料、 つまり断熱材 32— 1 a, 32-
1 bよりも積層方向に変形しにくい (同じ大きさの積層方向の外力に対して積層 方向の変形量が少ない) 材料を用いているため、 積層方向に関する断熱材 32-
1 a, 32— 1 bの圧縮変形をさらに抑制することができる。
同様に、 セパレ一夕 29— 1, 3 1— 1に積層方向の外力が作用して断熱層 3 3がセパレ一夕 29— 1, 31— 1により挟圧されても、 セパレ一夕 29— 1, 3 1— 1に設けられた突出部 59, 61により積廇方向に関する断熱層 33 (断 熱材 33 a, 33 b) の変形. (圧縮によるつぶれ) を制限することができる。 そ のため、 断熱層 33 (断熱材 33 a, 33 b) の断熱性能を安定して維持するこ とができる。 さらに、 突出部 59, 61により断熱材 33 bの位置決めを行うこ ともできる。 そして、 突出部 59, 61間に挟まれた断熱材 33 cについては、 断熱材 33 a, 33 bよりも剛性の高い材料、 つまり断熱材 33 a, 33 bより も積層方向に変形しにくい (同じ大きさの積層方向の外力に対して積層方向の変 形量が少ない) 材料を用いているため、 積層方向に関する断熱材 33 a, 33 b の圧縮変形をさらに抑制することができる。
さらに、 図 3に示す構成例によれば、 発電セル 14— 1の構造を発電セル 14 — 2~ 14— nに対して変更することなく (力ソ一ド側セパレ一夕 30— 1の形 状を力ソード側セパレ一夕 30— 2〜30— nに対して変更することなく) 、 冷 媒流路 42- 1の断面積を冷媒流路 34— 1, 35— 2の断面積と異ならせるこ とができ、 力ソード電極 20— 1の放熱量をアノード電極 18— 1, 18— 2の 放熱量と異ならせることができる。 したがって、 積層体 12の形成を容易に行う ことができる。
なお、 図 3に示す構成例では、 突出部 69, 71のいずれか一方を省略するこ ともできる。 例えば突出部 71を省略した場合は、 積層方向に関する断熱材 32 — l a, 32— 1 bの圧縮変形を突出部 69により制限することができる。 さら に、 断熱層 32 - 1における突出部 69とセパレ一夕 3 1— 2との間に挟持され た部分 (断熱材 32— 1 c) の剛性が、 断熱層 32 - 1における他の部分 (断熱 材 32— l a, 32— l b) の剛性に比べて高いことで、 積層方向に関する断熱 材 32— l a, 32— 1 bの圧縮変形をさらに抑制することができる。 同様に、 図 3に示す構成例では、 突出部 59, 6 1のいずれか一方を省略することもでき る。 例えば突出部 6 1を省略した場合は、 積層方向に関する断熱材 33 a, 33 bの圧縮変形を突出部 59により制限することができる。 さらに、 断熱層 33に おける突出部 59とセパレー夕 3 1— 1との間に挟持された部分 (断熱材 33 c) の剛性が、 断熱層 33における他の部分 (断熱材 33 a, 33 b) の剛性に 比べて高いことで、 積層方向に関する断熱材 3 3 a , 3 3 bの圧縮変形をさらに 抑制することができる。
また、 図 3に示す構成例では、 断熱材 3 2— 1 cを省略した場合でも、 積層方 向に関する断熱材 3 2— 1 a, 3 2— 1 bの圧縮変形を突出部 6 9, 7 1により 制限することができる。 同様に、 断熱材 3 3 cを省略した場合でも、 積層方向に 関する断熱材 3 3 a , 3 3 bの圧縮変形を突出部 5 9, 6 1により制限すること ができる。
また、 図 3に示す構成例では、 セパレ一夕 3 1— 2とアノード側セパレー夕 2 8— 2との間に形成された空間 3 4— 1、 及びセパレ一夕 3 1— 1とアノード側 セパレ一夕 2 8— 1との間に形成された空間 3 5— 2については、 いずれも冷却 液を供給しない (冷媒流路として機能させない) ように構成することもできる。 また、 本実施形態では、 積層方向に関する積層体 1 2の一端部付近 (アノード 側夕一ミナル電極 2 3付近) における断熱層として、 断熱層 3 2— 1, 3 3の他 に、 例えば図 4に示すように、 導電性及び断熱性を有する断熱層 3 2— 2を互い に隣接する発電セル 1 4— 2, 1 4— 3の一方 1 4— 3のアノード側セパレ一夕 2 8 - 3 (アノード電極 1 8— 3 ) と他方 1 4— 2の力ソード側セパレ一夕 3 0 —2 (力ソード電極 2 0— 2 ) との間に設けることもできる。 図 4'に示す構成例 では、 断熱層 3 2— 2と力ソード側セパレ一夕 3 0— 2との間に形成された空間 を冷却液が流れる冷媒流路 4 2— 2として機能させるとともに、 断熱層 3 2— 2 とアノード側セパレ一夕 2 8— 3との間に形成された空間 3 4— 2については、 冷却液を供給しない (冷媒流路として機能させない) ように構成する。 これによ つて、 断熱層 3 2— 2が冷媒流路 4 2 - 2と発電セル 1 4— 3のアノード側セパ レー夕 2 8— 3 (アノード電極 1 8— 3 ) との間に配置される。 そのため、 発電 セル 1 4— 1の力ソード電極 2 0— 2から冷媒流路 4 2— 2を流れる冷却液への 放熱量 (熱交換量) が発電セル 1 4— 3のアノード電極 1 8— 3かち冷却液への 放熱量 (熱交換量) よりも大きくなるように、 アノード電極 1 8— 3及びカソ一 ド電極 2 0— 2の温度調整が行われる。 したがって、 図 4に示す構成例では、 冷 媒流路 4 2— 1〜4 2— 9のうちの一部 (冷媒流路 4 2— 1, 4 2 - 2 ) が、 ァ ノード電極 1 8— 2 , 1 8— 3の放熱量よりも力ソード電極 2 0— 1, 2 0— 2 の放熱量の方がそれそれ大きくなるように温度調整を行う。 さらに、 アノード電 極 1 8— 3と力ソード電極 2 0— 2との間の熱交換量も断熱層 3 2— 2により抑 制 eれる o
さらに、 図 4に示す構成例では、 力ソード電極 2 0— jとアノード電極 1 8— ( j + 1 )との放熱量 (放熱能力) の差を積層方向 (jの値) に応じて異ならせる ために、 断熱層 3 2— 2の断熱性能を断熱層 3 2 - 1の断熱性能と異ならせる。 例えば断熱層 3 2— 2の積層方向に関する厚さを断熱層 3 2 - 1の積層方向に関 する厚さよりも薄くすることで、 断熱層 3 2 - 2の断熱性能を断熱層 3 2— 1よ りも低下させる。 これによつて、 力ソード電極 2 0— 2とアノード電極 1 8— 3 との放熱量の差が力ソード電極 2 0 - 1とアノード電極 1 8— 2との放熱量の差 よりも小さくなる。 そのため、 アノード側ターミナル電極 2 3付近においては、 力ソード電極 2 0 - jとアノード電極 1 8 - ( j + 1 )との放熱量の差が、 ァノ一 ド側夕一ミナル電極 2 3に近づくにつれて増大する。 さらに、 断熱層 3 2— 2の 断熱性能を断熱層 3 2— 1の断熱性能よりも低下させることで、 力ソ一ド電極 2 0 - jとアノード電極 1 8 - ( j + 1 )との間の熱交換量が積層方向 ( jの値) に 応じて異なり、 アノード電極 1 8— 3と力ソード電極 2 0— 2との間の熱交換量 が、 アノード電極 1 8— 2と力ソード電極 2 0 - 1との間の熱交換量よりも多く なる。
図 4に示す構成例によれば、 発電セル 1 4— 3のアノード電極 1 8— 3の放熱 量を減少させてアノード電極 1 8— 3の温度を上昇させることができるとともに、 発電セル 1 4— 2の力ソード電極 2 0— 2の放熱量を増大させて力ソード電極 2 0— 2の温度を低下させることができる。 その際には、 アノード電極 1 8— 3の 温度上昇幅がァノード電極 1 8— 2の温度上昇幅よりも小さくなるとともに、 力 ソ一ド電極 2 0 - 2の温度低下幅が力ソード電極 2 0 - 1の温度低下幅よりも小 さくなる。 したがって、 発電セル 1 4—mにおける力ソード電極 2 0—mとァノ —ド電極 1 8— mとの温度差をより適切に抑えることができる。 なお、 図 4に示 す構成例では、 図 3に示す断熱層 3 2— 1の圧縮変形を制限するための構成 (突 出部 6 9, 7 1 ) を断熱層 3 2— 1, 3 2— 2に適用することもできる。
また、 本実施形態では、 図 5に示すように、 力ソード側ターミナル電極 2 4付 近 (積層方向に関する積層体 12の他端部付近) にて互いに隣接する発電セル 1 4— 9, 14- 10の一方 14— 10のアノード電極 18 - 10と他方 14— 9 のカソ一ド電極 20-9との間に、 導電性及び断熱性を有する断熱層 32— 9を 設けることもできる。 図 5に示す構成例では、 断熱層 32— 9は、 力ソード側夕 —ミナル電極 24に最も近い発電セル 14— 10のアノード側セパレ一夕 28— 1ひと、 発電セル 14— 10に隣接する発電セル 14一 9のカソ一ド側セパレ一 夕 30— 9との間に配置されている。 そして、 断熱層 32-9とアノード側セパ レ一夕 28— 10との間に形成された空間を冷却液が流れる冷媒流路 42— 9と して機能させるとともに、 断熱層 32— 9と力ソード側セパレ一夕 30— 9との 間に形成された空間 34— 9については、 冷却液を供給しない (冷媒流路として 機能させない) ように構成する。 これによづて、 断熱層 32— 9が冷 ^流路 42 —9と発電セル 14— 9の力ソード側セパレ一夕 30-9 (力ソード電極 20— 9) との間に配置される。 そのため、 発電セル 14— 10のアノード電極 18— 10から冷媒流路 42— 9を流れる冷却液への放熱量が発電セル 14— 9のカソ —ド電極 20— 9から冷却液への放熱量よりも大きくなるように、 アノード電極 18— 10及び力ソード電極 20— 9の温度調整が行われる。 つまり、 アノード 電極 18— 10から冷媒流路 42-9を流れる冷却液への放熱能力が、 力ソード 電極 20— 9から冷却液への放熱能力よりも高くなる。 したがって、 図 5に示す 構成例では、 複数箇所に形成された冷媒流路 42 - 1-42— 9のうちの一部 (冷媒流路 42 - 1 , 42 -9) が、 アノード電極 18-2, 18- 10の放熱 量が力ソード電極 20— 1 , 20— 9の放熱量とそれそれ異なるように温度調整 を行い、 アノード電極 18—( j + 1 )と力ソード電極 20- jとの放熱量 (放熱 能力) の差が積層方向 (jの値) に応じて変化する。 さらに、 アノード電極 18 — 10とカソ一ド電極 20— 9との間の熱交換量が断熱層.32— 9により抑えら れることで、 カソード電極 20- jとアノード電極 18-( j + 1 )との間の熱交 換量も積層方向に応じて変化する。
さらに、 図 5に示す構成例では、 力ソード側ターミナル電極 24に隣接する発 電セル 14— 10の力ソード電極 20— 1よりも積層方向の他端側に、 導電 及 び断熱性を有する断熱層 44が設けられている。 ここでの断熱層 44は、 カソ一 ド側ターミナル電極 24と発電セル 14— 10のカソ一ド側セパレ一夕 30— 1 0との間に配置されている。 そして、 断熱層 44と力ソード側ターミナル電極 2 4との間に形成された空間 35— 3、 及び断熱層 44と力ソード側セパレー夕 3 0- 10との間に形成された空間 35— 4については、 いずれも冷却液を供給し ない (冷媒流路として機能させない) ように構成する。 なお、 断熱層 44につい ては、 カソ一ド側ターミナル電極 24よりも積層方向の外側に配置することもで きる。 この場合の断熱層 44については、 必ずしも導電性を有する必要はなく、 絶縁体を用いることもできる。
力ソード側夕一ミナル電極 24付近の発電セル 14一 9, 14- 10において は、 積層方向外側の力ソード電極 20— 10の温度が積層方向内側のアノード電 極 18— 10の温度よりも低くなりやすく、 力ソード電極 20— 9の温度がァノ 一ド電極 18-9の温 J¾よりも低くなりやすい。 これに対して図 5に示す構成例 では、 冷媒流路 42— 9と発電セル 14— 9のカソード電極 20-9との間に断 熱層 32— 9を配置することで、 発電セル 14— 9の力ソード電極 20— 9から 冷媒流路 42— 9を流れる冷却液への放熱量を発電セル 14— 10のアノード電 極 18— 10から冷却液への放熱量よりも少なくしている。 さらに、 アノード電 極 18_ 10とカソ一ド電極 20-9との間の熱交換を抑制している。 これによ つて、 発電セル 14— 9のカソ一ド電極 20— 9の放熱量を減少させてカソード 電極 20— 9の温度を上昇させることができるので、 発電セル 14— 9における アノード電極 18— 9と力ソード電極 20— 9との温度差を低減することができ る。 それとともに、 冷媒流路 42— 9を流れる冷却液による発電セル 14— 10 のアノード電極 18- 10の冷却効率を向上させることができ、 アノード電極 1 8- 10の放熱量を増大させてアノード電極 18— 1.0の温度を低下させること ができるので、 発電セル 14— 10におけるアノード電極 18- 10と力ソード 電極 20— 10との温度差を低減することができる。 さらに、 断熱層 44によつ てカソ一ド電極 20 - 10の放熱量を減少させてカソ一ド電極 20— 10の温度 を上昇させることができるので、 発電セル 14— 10におけるアノード電極 18 — 10とカソ一ド電極 20- 10との温度差をさらに低減することができる。 し たがって、 発電セル 14— 9, 14— 10において、 電解質膜 16— 9, 16— 1 0を介した水蒸気の移動を抑えることができる。
なお、 図 5に示す構成例では、 冷媒流路 4 2— 8と発電セル 1 4— 8のカソー ド電極 2 0— 8との間に断熱層をさらに配置することもできる。 ここでの断熱層 については、 断熱層 3 2— 9よりも断熱性能を低下させることが好ましく、 これ によって、 力ソード側ターミナル電極 2 4付近においては、 アノード電極 1 8— ( j + 1 )と力ソード電極 2 0 - jとの放熱量の差が、 力ソード側ターミナル電極 2 4に近づくにつれて増大する。 また、 図 5に示す構成例では、 図 3に示す断熱 層 3 2— 1の圧縮変形を制限するための構成 (突出部 6 9 , 7 1 ) を断熱層 3 2 一 9に適用することもでき、 図 3に示す断熱層 3 3の圧縮変形を制限するための 構成 (突出部 5 9 , 6 1 ) を断熱層 4 4に適用することもできる。
また、 例えば積層体 1 2の中央部付近の発電セルにおいて力ソード電極とァノ ード電極との間に温度差が生じやすい場合は、 積層体 1 2の中央部付近にて互い に隣接する発電セルの一方のアノード電極と他方の力ソード電極との間に断熱層 を配置することもできる。 また、 本実施形態では、 積層体 1 2の端部の断熱層 3 3 , 4 4を省略することもできる。
以上の実施形態の説明では、 冷媒流路 4 2 - 1〜4 2— 9が設けられているも のとした。 ただし、 本実施形態では、 冷媒流路 4 2— 1〜4 2— 9が設けられて いない場合でも、 例えばアノード電極 1 8— 2と力ソード電極 2 0 - 1との間に 断熱層 3 2— 1を配設してアノード電極 1 8— 2と力ソード電極 2 0— 1との間 の熱交換を抑制することや、 アノード電極 1 8 - 1 0と力ソード電極 2 0— 9と の間に断熱層 3 2— 9を配設してアノード電極 1 8— 1 0と力ソード電極 2 0 - 9との間の熱交換を抑制することによって、 カソ一ド電極 2 0 - jとアノード電 極 1 8— ( j + 1 )との間の熱交換量を積層方向に応じて異ならせることもできる。 これによつても、 カソ一ド電極 2 0—mとアノード電極 1 8一 mとの温度差を抑 えるように発電セル 1 4一:!〜 1 4—nの各々の温度調整を発電セル 1 4— 1〜 1 4— nの位置 (積層方向) に応じて適切に行うことができる。 なお、 本実施形 態では、 アノード電極 1 8— 2に面するアノード側セパレ一夕 2 8— 2とカソー ド電極 2 0 - 1に面する力ソード側セパレー夕 3 0 - 1とが別体であるものとし たが、 これらのセパレ一夕は一体であってもよい。 「実施形態 2」
図 6は、 本発明の実施形態 2に係る燃料電池の概略構成を示す図である。 本実 施形態では、 発電セル 1 4— 1のカソード側セパレー夕 3 0— 1に形成された凹 凸部の (積層方向に関する) 深さが、 発電セル 1 4一 2のアノード側セパレ一夕 2 8— 2に形成された凹凸部の深さよりも深く設定されている。 つまり、 冷媒流 路 4 2— 1を流れる冷却液と力ソード側セパレー夕 3 0— 1との接触面積が、 冷 媒流路 4 2一 1を流れる冷却液とアノード側セパレー夕 2 8— 2との接触面積よ りも大きく設定されている。 これによつて、 発電セル 1 4— 1の力ソード電極 2 0— 1から冷媒流路 4 2— 1を流れる冷却液への放熱量 (熱交換量) が発電セル 1 4— 2のアノード電極 1 8— 2から冷却液への放熱量 (熱交換量) よりも大き くなるように、 アノード電極 1 8— 2及び力ソード電極 2 0— 1の温度調整を行 うことができる。 そして、 力ソード側セパレ一夕 3 0— 1の凹凸部の深さがカソ ―ド側セパレ一夕 3 0— 2 ~ 3 0— 1 0の凹凸部の深さよりも深く設定され、 ァ ノ一ド側セパレー夕 2 8— 2の凹凸部の深さがアノード側セパレー夕 2 8— 3〜 2 8— 1 0の凹凸部の深さよりも浅く設定されている。 つまり、 冷却液とカソ一 ド側セパレ一夕 3 0— 1との接触面積が冷却液とカソ一ド側セパレ一夕 3 0— 2 〜3 0— 1 0のいずれか 1つとの接触面積よりも大きく設定され、 冷却液とァノ 一ド側セパレ一夕 2 8— 2との接触面積が冷却液とアノード側セパレ一夕 2 8— 3〜2 8— 1 0のいずれか 1つとの接触面積よりも小さく設定されている。 他の 構成については、 実施形態 1 (図 1に示す構成例) と同様である。
本実施形態でも、 実施形態 1と同様に、 アノード電極 1 8— 2の放熱量を減少 させてアノード電極 1 8— 2の温度を上昇させることができるので、 発電セル 1 4— 2における力ソード電極 2 0— 2とアノード電極 1 8— 2との温度差を低減 することができる。 それとともに、 力ソード電極 2 0— 1の放熱量を増大させて 力ソード電極 2 0 - 1の温度を低下させることができるので、 発電セル 1 4— 1 における力ソード電極 2 0— 1とアノード電極 1 8 - 1との温度差を低減するこ とができる。
本実施形態では、 図 7に示すように、 力ソード側セパレー夕 3 0— 1に形成す る凹凸のピヅチをアノード側セパレ一夕 2 8— 2に形成する凹凸のピッチよりも 短くすることもできる。 これによつても、 冷媒流路 4 2— 1を流れる冷却液と力 ソード側セパレ一夕 3 0— 1との接触面積を、 冷媒流路 4 2 - 1を流れる冷却液 とアノード側セパレー夕 2 8— 2との接触面積よりも大きく設定することができ ο
また、 本実施形態では、 冷媒流路 4 2 - 9を流れる冷却液と発電セル 1 4— 1 0のアノード側セパレ一夕 2 8— 1 0との接触面積を、 冷媒流路 4 2— 9を流れ る冷却液と発電セル 1 4— 9のカソ一ド側セパレ一夕 3 0— 9との接触面積より も大きく設定することもできる。 これによつて、 発電セル 1 4— 1 0のアノード 電極 1 8— 1 0から冷媒流路 4 2— 9を流れる冷却液への放熱量が発電セル 1 4 —9の力ソード電極 2 0— 9から冷却液への放熱量よりも大きくなるように、 ァ ノード電極 1 8 - 1 0及び力ソード電極 2 0— 9の温度調整を行うことができる。
「実施形態 3」
図 8は、 本発明の実施形態 3に係る燃料電池の概略構成を示す図である。 本実 施形態では、 発電セル 1 4— 1のカソ一ド側セパレー夕 3 0— 1と発電セル 1 4 —2のアノード側セパレ一夕 2 8— 2との間に仕切壁 5 4— 1が配設されている。 ここでの仕切壁 5 4— 1については、 導電性及び断熱性を有することが好ましい。 そして、 仕切壁 5 4 - 1と力ソード側セパレ一夕 3 0— 1との間に形成された空 間を、 発電セル 1 4 _ 1の力ソード電極 2 0 - 1の冷却を行うための冷却液が流 れる冷媒流路 4 2— 1として機能させる。 さらに、 仕切壁 5 4— 1とアノード側 セパレー夕 2 8— 2との間に形成された空間についても、 発電セル 1 4— 2のァ ノード電極 1 8— 2の冷却を行うための冷却液が流れる冷媒流路 5 2 - 1として 機能させる。 ただし、 本実施形態では、 冷媒流路 4 2— 1 , 5 2— 1に冷却液を 流すことで力ソード電極 2 0— 1及びアノード電極 1 8— 2の放熱を行うときは、 図 8の矢印に示すように、 冷却液を先に冷媒流路 4 2— 1に流すことで、 カソ一 ド電極 2 0— 1の放熱 (力ソード電極 2 0— 1との熱交換) を先に行う。 そして、 力ソード電極 2 0 - 1との熱交換が行われた後の冷却液を冷媒流路 5 2— 1に流 すことで、 アノード電極 1 8— 2の放熱 (アノード電極 1 8— 2との熱交換) を 後に行う。 これによつても、 力ソード電極 2 0— 1から冷媒流路 4 2— 1を流れ る冷却液への放熱量 (熱交換量) がアノード電極 1 8— 2から冷媒流路 5 2— 1 を流れる冷却液への放熱量 (熱交換量) よりも大きくなるように、 アノード電極
1 8— 2及びカソード電極 2 0 - 1の温度調整を行うことができる。 他の構成に ついては、 実施形態 1 (図 1に示す構成例) と同様である。
本実施形態では、 冷媒流路 4 2 - 1を流れる冷却液によるカソ一ド電極 2 0 - 1の冷却効率が向上するとともに、 冷媒流路 5 2 - 1を流れる冷却液によるァノ —ド電極 1 8— 2の冷却効率が低下する。 したがって、 実施形態 1, 2と同様に、 アノード電極 1 8— 2の放熱量を減少させてアノード電極 1 8— 2の温度を上昇 させることができるので、 発電セル 1 4— 2における力ソード電極 2 0— 2とァ ノード電極 1 8— 2との温度差を低減することができる。 それとともに、 カソ一 ド電極 2 0— 1の放熱量を増大させて力ソード電極 2 0 - 1の温度を低下させる ことができるので、 発電セル 1 4— 1における力ソード電極 2 0— 1とアノード 電極 1 8— 1との温度差を低減することができる。
本実施形態では、 仕切壁 5 4— 1を設ける代わりに、 図 9に示すように、 冷媒 流路 4 2— 1と冷媒流路 5 2 - 1とを互いに積層方向と S直方向にずらすことも できる。 これによつても、 図 9の矢印に示すように、 冷却液を冷媒流路 4 2— 1 に流して力ソード電極 2 0— 1の放熱を先に行ってから、 冷却液を冷媒流路 5 2 一 1に流してアノード電極 1 8— 2の放熱を後に行うことができる。
また、 本実施形態では、 力ソード電極 2 0— 1の放熱を行うための冷媒流路 4 2— 1とアノード電極 1 8— 2の放熱を行うための冷媒流路 5 2 - 1との連通を 遮断して、 冷媒流路 4 2— 1 , 5 2— 1を別々の冷却ライン (冷却系統) にする こともできる。 そして、 冷媒流路 4 2— 1に供給する冷却液の流量が冷媒流路 5 2— 1に供給する冷却液の流量よりも多くなるように、 冷媒流路 4 2 - 1への冷 却液の供給流量及び冷媒流路 5 2— 1への冷却液の供給流量を別々に制御する。 これによつても、 力ソード電極 2 0 - 1から冷媒流路 4 2— 1を流れる冷却液へ の放熱量がアノード電極 1 8— 2から冷媒流路 5 2 _ 1を流れる冷却液への放熱 量よりも大きくなるように、 アノード電極 1 8— 2及び力ソード電極 2 0— 1の 温度調整を行うことができる。
また、 本実施形態では、 発電セル 1 4一 9の力ソード側セパレ一夕 3 0— 9と 発電セル 1 4— 1 0のアノード側セパレ一夕 2 8— 1 0との間に、 導電性及び断 熱性を有する仕切壁を設けることもできる。 そして、 仕切壁とアノード側セパレ 一夕 2 8— 1 0との間に形成された冷媒流路 (以下アノード側冷媒流路とする) に冷却液を先に流すことで発電セル 1 4— 1 0のアノード電極 1 8 - 1 0の放熱 を先に行ってから、 仕切壁とカソ一ド側セパレー夕 3 0— 9との間に形成された 冷媒流路 (以下力ソード側冷媒流路とする) に冷却液を後に流すことで発電セル 1 4— 9の力ソード電極 2 0— 9の放熱を後に行うこともできる。 これによつて、 アノード電極 1 8— 1 0からアノード側冷媒流路を流れる冷却液への放熱量が力 ソ一ド電極 2 0— 9からカソード側冷媒流路を流れる冷却液への放熱量よりも大 きくなるように、 アノード電極 1 8— 1 0及び力ソード電極 2 0— 9の温度調整 を行うことができる。
あるいは、 アノード電極 1 8— 1 0の放熱を行うためのアノード側冷媒流路と カソード電極 2 0 - 9の放熱を行うためのカソード側冷媒流路との連通を遮断し て、 アノード側冷媒流路と力ソード側冷媒流路とを別々の冷却ライン (冷却系 統) にすることもできる。 そして、 アノード側冷媒流路に供給する冷却液の流量 がカソード側冷媒流路に供給する冷却液の流量よりも多くなるように、 アノード 側冷媒流路への冷却液の供給流量及び力ソード側冷媒流路への冷却液の供給流量 を別々に制御する。 これによつても、 アノード電極 1 8— 1 0の放熱量がカソー ド電極 2 0— 9の放熱量よりも大きくなるように、 アノード電極 1 8— 1 0及び 力ソード電極 2 0—9の温度調整を行うことができる。
以上の実施形態 1〜3の説明では、 主に、 発電セル 1 4— m ( mは 1以上且つ n以下の整数) のアノード側セパレ一夕 2 8— m及びカソード側セパレ一夕 3 0 —mにメタルセパレ一夕を用いた場合について説明した。 ただし、 実施形態 1〜 3では、 アノード側セパレ "^夕 2 8— m及びカソ一ド側セパレー夕 3 0— mに力 一ポンセパレ一夕を用いることもできる。
以上説明した各実施形態において、 隣接する発電セル間に断熱層を設けたり、 隣接する発電セル間で中央寄りの発電セルよりも端部寄りの発電セル側の冷媒に よる持ち去り熱量を多くする冷媒流路を設けたりしているのは、 隣接する発電セ ルのうち端部側の発電セルの中央側の極が、 端部側の極に比べて温度上昇するの を抑えるためである。 換言すれば、 各実施形態では、 互いに隣接する第 1及び第 2の発電セルであって、 第 1の発電セルよりも端部側に位置する第 2の発電セル に含まれる二極のうち、 第 1の発電セル側の極が、 第 1の発電セル側から吸熱す るのを抑制する抑制部 (断熱層ゃ冷媒流路) を新たに設けている。 これによつて、 第 2の発電セル内の極間の温度差が低減し、 ひいては凝縮水が生じるのを抑制す る。 ここでの抑制部としては、 全ての発電セル間に同程度の性能の抑制部を設け てもよいが、 低温時における積層体全体の速やかな暖機や、 小型化、 内部抵抗等 の観点からすれば、 全ての発電セル間に設けることは好ましくない。 このため、 各実施形態では、 積層体端部側の発電セル間ほど中央側の発電セル間よりも相対 的に吸熱を抑えるよう抑制部 (断熱層ゃ冷媒流路) を構成することにより、 一つ の発電セル内での温度差の低減を実現している。 なお、 抑制部として発電セル間 の断熱層と冷媒流路との少なくとも一方を設けることで、 一つの発電セル内での 温度差の低減を実現することができる。
以上、 本発明を実施するための形態について説明したが、 本発明はこうした実 施形態に何等限定されるものではなく、 本発明の要旨を逸脱しない範囲内におい て、 種々なる形態で実施し得ることは勿論である。

Claims

請 求 の 範 囲
1 . 3以上の発電セルが積層された積層体を備える燃料電池であって、
各発電セルは、 電解質膜の片面及び他面にアノード電極及びカソ一ド電極がそ れそれ接合された接合体を含み、 アノード電極がカソ一ド電極よりも発電セルの 積層方向の一端側に配置されており、
互いに隣接する発電セルの一方のアノード電極と他方のカソ一ド電極との間に て当該アノード電極及び当該カソ一ド電極の温度調整を行うための温度調整部が 前記積層方向に関して複数箇所に配設されており、
複数箇所に配設された温度調整部は、 アノード電極と力ソード電極との放熱能 力差が前記積層方向に応じて異なるように温度調整を行うためのものである、 燃 料電池。
2 . 請求の範囲 1に記載の燃料電池であって、
複数箇所に配設された温度調整部の一部は、 アノード電極の放熱能力がカソー ド電極の放熱能力と異なるように温度調整を行うためのものである、 燃料電池。
3 . 3以上の発電セルが積層された積層体を備える燃料電池であって、
各発電セルは、 電解質膜の片面及び他面にアノード電極及びカソード電極がそ れぞれ接合された接合体を含み、 アノード電極がカソ一ド電極よりも発電セルの 積層方向の一端側に配置されており、
互いに隣接する発電セルの一方のアノード電極と他方の力ソード電極との間に て当該アノード電極及び当該カソ一ド電極の温度調整を行うための温度調整部が 前記積層方向に関して複数箇所に配設されており、
複数箇所に配設された温度調整部の一部は、 アノード電極の放熱能力がカソー ド電極の放熱能力と異なるように温度調整を行うためのものである、 燃料電池。
4 . 請求の範囲 2に記載の燃料電池であって、
ァノード電極の放熱能力が力ソ一ド電極の放熱能力と異なるように温度調整を 行うための温度調整部は、 前記積層方向に関する積層体の端部付近にて互いに隣 接する発電セルの一方のアノード電極と他方のカソード電極との間に配設されて いる、 燃料電池。
5 . 請求の範囲 2に記載の燃料電池であって、
アノード電極の放熱能力が力ソード電極の放熱能力と異なるように温度調整を 行うための温度調整部は、
互いに隣接する発電セルの一方のアノード電極と他方のカソ一ド電極との間に 配設され、 冷媒が流れる冷媒流路を含み、
当該アノード電極から冷媒流路を流れる冷媒への放熱能力が、 当該力ソード電 極から冷媒流路を流れる冷媒への放熱能力と異なる、 燃料電池。
6 . 請求の範囲 5に記載の燃料電池であって、
ァノード電極の放熱能力が力ソ一ド電極の放熱能力と異なるように温度調整を 行うための温度調整部は、 冷媒流路とアノード電極との間、 または冷媒流路と力 ソ一ド電極との間に配設された断熱層をさらに含む、 燃料電池。
7 . 請求の範囲 6に記載の燃料電池であって、
前記積層方向に関する断熱層の変形を制限するための変形制限部が設けられて いる、 燃料電池。
8 . 請求の範囲 7に記載の燃料電池であって、
前記積層方向に関して断熱層を挟持する第 1及び第 2セパレー夕が配設されて おり、
変形制限部は、 第 1及び第 2セパレー夕の少なくとも一方に設けられている、 燃料電池。
9 . 請求の範囲 8に記載の燃料電池であって、
変形制限部は、 第 1セパレー夕に設けられ且つ第 2セパレ一夕側へ突出する突 出部を含む、 燃料電池
1 0 . 請求の範囲 9に記載の燃料電池であって、
断熱層における突出部と第 2セパレー夕との間に挟持された部分は、 断熱層に おける他の部分に比べて剛性が高い、 燃料電池。
1 1 . 請求の範囲 8に記載の燃料電池であって、
変形制限部は、 第 1セパレ一夕に設けられ且つ第 2セパレ一夕側へ突出する第 1突出部と、 第 2セパレ一夕に設けられ且つ前記積層方向に関して第 1突出部と 対向して第 1セパレー夕側へ突出する第 2突出部と、 を含む、 燃料電池。
1 2 . 請求の範囲 1 1に記載の燃料電池であって、
断熱層における第 1突出部と第 2突出部との間に挟持された部分は、 断熱層に おける他の部分に比べて剛性が高い、 燃料電池。
1 3 . 請求の範囲 2 (こ記載の燃料電池であって、
アノード電極の放熱能力が力ソード電極の放熱能力と異なるように温度調整を 行うための温度調整部は、
互いに隣接する発電セルの一方のアノード電極を冷却するための冷媒が流れる アノード側冷媒流路と、 他方の力ソード電極を冷却するための冷媒が流れるカソ 一ド側冷媒流路と、 を含み、
カソ一ド側冷媒流路の断面積がアノード側冷媒流路の断面積と異なる、 燃料電 池。
1 4 . 請求の範囲 1 3に記載の燃料電池であって、
ァノ一ド電極の放熱能力が力ソ一ド電極の放熱能力と異なるように温度調整を 行うための温度調整部は、 アノード側冷媒流路とカソード側冷媒流路との間に配 設された断熱層をさらに含む、 燃料電池。
1 5 . 請求の範囲 1 4に記載の燃料電池であって、
アノード側冷媒流路及び断熱層に面する第 1セパレ一夕と、 カソ一ド側冷媒流 路及び断熱層に面する第 2セパレー夕と、 が配設されており、
カソード側冷媒流路の断面積がァノ一ド側冷媒流路の断面積と異なるように、 第 2セパレ一夕における力ソード側冷媒流路に面する部分の形状が第 1セパレ一 夕におけるアノード側冷媒流路に面する部分の形状と異なる、 燃料電池。
1 6 . 請求の範囲 2に記載の燃料電池であって、
アノード電極の放熱能力がカソ一ド電極の放熱能力と異なるように温度調整を 行うための温度調整部は、 アノード電極及びカソード電極の一方の放熱を行って から、 アノード電極及び力ソード電極の他方の放熱を^1うためのものである、 燃 料電池。
1 7 . 請求の範囲 2に記載の燃料電池であって、
各発電セルは、 アノード電極と対向配置されたアノード側セパレー夕と、 カソ —ド電極と対向配置された力ソード側セパレー夕と、 をさらに含み、
アノード電極の放熱能力が力ソード電極の放熱能力と異なるように温度調整を 行うための温度調整部は、
互いに隣接する発 セルの一方のアノード側セパレ一夕と他方のカソード側セ パレー夕との間に配設され、 冷媒が流れる冷媒流路を含み、
冷媒流路を流れる冷媒とアノード側セパレー夕の接触面積が、 冷媒流路を流れ る冷媒とカソード側セパレ一夕の接触面積と異なる、 燃料電池。
1 8 . 請求の範囲 2に記載の燃料電池であって、
アノード電極の放熱能力がカソ一ド電極の放熱能力と異なるように温度調整を 行うための温度調整部は、
アノード電極の放熱を行うための第 1の放熱部と、
第 1の放熱部と別に設けられ、 カソ一ド電極の放熱を行うための第 2の放熱部 と、 を含む、 燃料電池
1 9 . 請求の範囲 2に記載の燃料電池であって、
前記積層方向に関する積層体の一端部及び他端部に、 アノード側ターミナル電 極及び力ソード側ダ一ミナル電極がそれそれ配設されている、 燃料電池。
2 0 . 請求の範囲 1 9に記載の燃料電池であって、
アノード側ターミナル電極付近にて互いに隣接する発電セルの一方のアノード 電極と他方のカソ一ド電極との間に配設された温度調整部は、 カソ一ド電極の放 熱能力がアノード電極の放熱能力よりも高くなるように温度調整を行うためのも のである、 燃料電池。
2 1 . 請求の範囲 2 0に記載の燃料電池であって、
力ソード電極の放熱能力がアノード電極の放熱能力よりも高くなるように温度 調整を行うための温度調整部は、
アノード側夕一ミナル電極付近にて互いに隣接する発電セルの一方のアノード 電極と他方のカソ一ド電極との間に配設され、 冷媒が流れる冷媒流路と、 冷媒流路と当該アノード電極との間に配設された第 1の断熱層と、
を含む、 燃料電池。
2 2 . 請求の範囲 2 1に記載の燃料電池であって、
アノード側ターミナル電極に隣接する発電セルのアノード電極よりも前記積層 方向の一端側に、 第 2の断熱層が配設されている、 燃料電池。
2 3 . 請求の範囲 1 9に記載の燃料電池であって、
カソ一ド側夕一ミナル電極付近にて互いに隣接する発電セルの一方のアノード 電極と他方のカソ一ド電極との間に配設された温度調整部は、 アノード電極の放 熱能力がカソ一ド電極の放熱能力よりも高くなるように温度調整を行うためのも のである、 燃料電池。
2 4 . 3以上の発電セルが積層された積層体を備える燃料電池であって、 各発電セルは、 電解質膜の片面及び他面にアノード電極及びカソード電極がそ れそれ接合された接合体を含み、 アノード電極がカソ一ド電極よりも発電セルの 積層方向の一端側に配置されており、
互いに隣接する発電セルの一方のアノード電極と他方のカソ一ド電極との間の 熱交換量を前記積層方向に応じて異ならせるための温度調整部が配設されている、 燃料電池。
2 5 . 請求の範囲 2 4に記載の燃料電池であって、
互いに隣接する発電セルの組み合わせの一部における一方のアノード電極と他 方の力ソード電極との間に、 温度調整部として断熱層が配設さ ている、 燃料電 池。
2 6 . 請求の範囲 2 4に記載の燃料電池であって、
前記積層方向に関する積層体の端部付近にて互いに隣接する発電セルの一方の ァノ一ド電極と他方のカソ一ド電極との間に、 温度調整部として断熱層が配設さ れている、 燃料電池。
2 7 . 請求の範囲 2 5に記載の燃料電池であって、
前記積層方向に関する断熱層の変形を制限するための変形制限部が設けられて いる、 燃料電池。
2 8 . 請求の範囲 2 7に記載の燃料電池であって、
前記積層方向に関して断熱層を挟持する第 1及び第 2セパレー夕が配設されて おり、
変形制限部は、 第 1及び第 2セパレー夕の少なくとも一方に設けられている、 燃料電池。
2 9 . 請求の範囲 2 8に記載の燃料電池であって 変形制限部は、 第 1セパレー夕に設けられ且つ第 2セパレー夕側へ突出する突 出部を含む、 燃料電池。
3 0 . 請求の範囲 2 9に記載の燃料電池であって、
断熱層における突出部と第 2セパレ一夕との間に挟持された部分は、 断熱層に おける他の部分に比べて剛性が高い、 燃料電池。
3 1 . 請求の範囲 2 8に記載の燃料電池であって、
変形制限部は、 第 1セパレー夕に設けられ且つ第 2セパレー夕側へ突出する第 1突出部と、 第 2セパレー夕に設けられ且つ前記積層方向に関して第 1突出部と 対向して第 1セパレー夕側へ突出する第 2突出部と、 を含む、 燃料電池。
3 2 . 請求の範囲 3 1に記載の燃料電池であって、
断熱層における第 1突出部と第 2突出部との間に挟持された部分は、 断熱層に おける他の部分に比べて剛性が高い、 燃料電池。
PCT/JP2007/065034 2006-07-26 2007-07-25 Batterie à combustible WO2008020545A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/374,935 US8603692B2 (en) 2006-07-26 2007-07-25 Fuel cell stack
CA2659043A CA2659043C (en) 2006-07-26 2007-07-25 Fuel cell stack
DE112007001742.2T DE112007001742B4 (de) 2006-07-26 2007-07-25 Brennstoffbatterie
CN200780028115XA CN101496215B (zh) 2006-07-26 2007-07-25 燃料电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006203759 2006-07-26
JP2006-203759 2006-07-26
JP2006-287955 2006-10-23
JP2006287955A JP5189269B2 (ja) 2006-07-26 2006-10-23 燃料電池

Publications (1)

Publication Number Publication Date
WO2008020545A1 true WO2008020545A1 (fr) 2008-02-21

Family

ID=39082071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065034 WO2008020545A1 (fr) 2006-07-26 2007-07-25 Batterie à combustible

Country Status (6)

Country Link
US (1) US8603692B2 (ja)
JP (1) JP5189269B2 (ja)
CN (1) CN101496215B (ja)
CA (1) CA2659043C (ja)
DE (1) DE112007001742B4 (ja)
WO (1) WO2008020545A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062981A (ja) * 2015-09-25 2017-03-30 本田技研工業株式会社 燃料電池スタック

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180484B2 (ja) * 2007-02-01 2013-04-10 本田技研工業株式会社 燃料電池スタック
JP5336221B2 (ja) * 2009-02-10 2013-11-06 本田技研工業株式会社 燃料電池スタック
JP5378329B2 (ja) * 2010-09-02 2013-12-25 本田技研工業株式会社 燃料電池スタック
KR101596178B1 (ko) * 2011-10-04 2016-02-19 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 질소 첨가리스·오존 발생 유닛
CN102374508A (zh) * 2011-10-10 2012-03-14 魏青 一种led散热器及装有该散热器的led灯具
JP6120078B2 (ja) * 2013-08-22 2017-04-26 株式会社デンソー 電流測定装置
JP6160982B2 (ja) 2014-11-10 2017-07-12 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP6224051B2 (ja) * 2015-10-15 2017-11-01 本田技研工業株式会社 燃料電池スタック
JP6663553B2 (ja) 2016-11-22 2020-03-13 トヨタ車体株式会社 燃料電池
JP6756294B2 (ja) * 2017-04-10 2020-09-16 トヨタ自動車株式会社 燃料電池スタックおよび燃料電池スタックの製造方法
US20200014079A1 (en) * 2018-07-06 2020-01-09 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Battery internal short circuit trigger and improved performance method
CN114420967B (zh) * 2022-03-29 2022-08-05 潍柴动力股份有限公司 氢燃料电池电堆及解决端部单体寿命快速衰减的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937663A (ja) * 1982-07-09 1984-03-01 ユナイテッド・テクノロジ−ズ・コ−ポレ−ション 酸化体ガスと生成水との分離器を内部に具備した燃料電池
JP2001015138A (ja) * 1999-06-30 2001-01-19 Fuji Electric Co Ltd 固体高分子型燃料電池
JP2002260709A (ja) * 2001-03-06 2002-09-13 Honda Motor Co Ltd 固体高分子型セルアセンブリ、燃料電池スタックおよび燃料電池の運転方法
WO2002082573A1 (en) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co. Ltd. Polymer electrolyte fuel cell and its operating method
JP2004311279A (ja) * 2003-04-09 2004-11-04 Sony Corp 燃料電池、セパレータ、燃料電池の製造方法及び酸化剤の供給方法
JP2006179381A (ja) * 2004-12-24 2006-07-06 Toyota Motor Corp 燃料電池システム
JP2006210351A (ja) * 2005-01-28 2006-08-10 Samsung Sdi Co Ltd 燃料電池用スタックおよび燃料電池システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068562A (ja) * 1983-09-22 1985-04-19 Mitsubishi Electric Corp 積層形燃料電池
JPH05190193A (ja) 1992-01-17 1993-07-30 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH08306380A (ja) 1995-05-09 1996-11-22 Fuji Electric Co Ltd 積層型燃料電池
JPH08321314A (ja) 1995-05-25 1996-12-03 Honda Motor Co Ltd 燃料電池
JPH0992322A (ja) 1995-09-27 1997-04-04 Aqueous Res:Kk 燃料電池スタック
JP4528386B2 (ja) 1999-08-18 2010-08-18 株式会社東芝 固体高分子型燃料電池およびその製造方法
JP3448550B2 (ja) 2000-06-14 2003-09-22 三洋電機株式会社 固体高分子型燃料電池スタック
JP2002313386A (ja) 2001-04-06 2002-10-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP4000248B2 (ja) 2001-06-08 2007-10-31 本田技研工業株式会社 燃料電池スタックおよびその加圧保持方法
JP2003045451A (ja) 2001-07-31 2003-02-14 Toyota Motor Corp 燃料電池
JP3801096B2 (ja) 2002-05-20 2006-07-26 トヨタ自動車株式会社 スタック構造を有する燃料電池
DE10236998B4 (de) 2002-08-13 2008-01-31 Daimler Ag Elektrochemische Zelle
JP4572062B2 (ja) 2003-06-26 2010-10-27 本田技研工業株式会社 燃料電池スタック
CA2547141C (en) 2003-11-28 2009-06-30 Toyota Jidosha Kabushiki Kaisha Fuel cell having coolant channel for cooling the fuel cell
JP2005166304A (ja) 2003-11-28 2005-06-23 Toyota Motor Corp 燃料電池
JP2005174859A (ja) 2003-12-15 2005-06-30 Nisshin Steel Co Ltd 固体高分子型燃料電池
JP2005197150A (ja) 2004-01-09 2005-07-21 Toyota Motor Corp 燃料電池
JP4385773B2 (ja) 2004-01-19 2009-12-16 株式会社日本自動車部品総合研究所 燃料電池システム
JP2007250353A (ja) 2006-03-16 2007-09-27 Toyota Motor Corp 燃料電池
JP5231763B2 (ja) 2006-07-05 2013-07-10 株式会社日本自動車部品総合研究所 燃料電池
JP2008021533A (ja) 2006-07-13 2008-01-31 Toyota Motor Corp 燃料電池スタック
JP2008041505A (ja) 2006-08-08 2008-02-21 Toyota Motor Corp 燃料電池システム、燃料電池の水分量推定装置及び方法
JP5024863B2 (ja) 2006-10-24 2012-09-12 株式会社日本自動車部品総合研究所 燃料電池
JP5155549B2 (ja) 2006-10-26 2013-03-06 株式会社日本自動車部品総合研究所 燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937663A (ja) * 1982-07-09 1984-03-01 ユナイテッド・テクノロジ−ズ・コ−ポレ−ション 酸化体ガスと生成水との分離器を内部に具備した燃料電池
JP2001015138A (ja) * 1999-06-30 2001-01-19 Fuji Electric Co Ltd 固体高分子型燃料電池
JP2002260709A (ja) * 2001-03-06 2002-09-13 Honda Motor Co Ltd 固体高分子型セルアセンブリ、燃料電池スタックおよび燃料電池の運転方法
WO2002082573A1 (en) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co. Ltd. Polymer electrolyte fuel cell and its operating method
JP2004311279A (ja) * 2003-04-09 2004-11-04 Sony Corp 燃料電池、セパレータ、燃料電池の製造方法及び酸化剤の供給方法
JP2006179381A (ja) * 2004-12-24 2006-07-06 Toyota Motor Corp 燃料電池システム
JP2006210351A (ja) * 2005-01-28 2006-08-10 Samsung Sdi Co Ltd 燃料電池用スタックおよび燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062981A (ja) * 2015-09-25 2017-03-30 本田技研工業株式会社 燃料電池スタック

Also Published As

Publication number Publication date
DE112007001742T5 (de) 2009-06-10
JP5189269B2 (ja) 2013-04-24
DE112007001742B4 (de) 2020-07-30
CN101496215B (zh) 2011-06-15
US8603692B2 (en) 2013-12-10
CA2659043C (en) 2013-04-16
CN101496215A (zh) 2009-07-29
CA2659043A1 (en) 2008-02-21
US20090325016A1 (en) 2009-12-31
JP2008053197A (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2008020545A1 (fr) Batterie à combustible
JP4572062B2 (ja) 燃料電池スタック
US8574778B2 (en) Fuel cell stack
JP2008053197A5 (ja)
JP6477681B2 (ja) 燃料電池モジュールおよび燃料電池スタック
JP3149716B2 (ja) 固体高分子電解質型燃料電池
JP2009099480A (ja) 燃料電池
KR20090097812A (ko) 연료전지스택
JPH05251097A (ja) 固体高分子電解質型燃料電池
JP4739880B2 (ja) 固体高分子形燃料電池
JPH05190193A (ja) 固体高分子電解質型燃料電池
JPH07122280A (ja) 固体高分子電解質型燃料電池
JP2003151594A (ja) 燃料電池スタック
JPH0963623A (ja) 固体高分子電解質型燃料電池
JP5231763B2 (ja) 燃料電池
JP2008186783A (ja) 燃料電池スタック
JP2019033000A (ja) 燃料電池
JP2004111118A (ja) 燃料電池スタック
JP4788113B2 (ja) 燃料電池
JP2008186782A (ja) 燃料電池の運転方法
JP2002216806A (ja) 固体高分子型燃料電池スタック
JP2008153130A (ja) 燃料電池用単セル及びこれを備えた燃料電池
US20090068518A1 (en) Passive fuel cell system
JP2016119243A (ja) 燃料電池スタック
JP2018186052A (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028115.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791718

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2659043

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1120070017422

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12374935

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112007001742

Country of ref document: DE

Date of ref document: 20090610

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07791718

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)