WO2008015952A1 - Feuille de démoulage - Google Patents

Feuille de démoulage Download PDF

Info

Publication number
WO2008015952A1
WO2008015952A1 PCT/JP2007/064649 JP2007064649W WO2008015952A1 WO 2008015952 A1 WO2008015952 A1 WO 2008015952A1 JP 2007064649 W JP2007064649 W JP 2007064649W WO 2008015952 A1 WO2008015952 A1 WO 2008015952A1
Authority
WO
WIPO (PCT)
Prior art keywords
release sheet
thickness
mold
less
product
Prior art date
Application number
PCT/JP2007/064649
Other languages
English (en)
French (fr)
Inventor
Tetsuya Yuki
Yoshiaki Hirose
Original Assignee
Toyo Tanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co., Ltd. filed Critical Toyo Tanso Co., Ltd.
Priority to KR1020087028847A priority Critical patent/KR101331647B1/ko
Priority to US12/375,822 priority patent/US8097331B2/en
Priority to EP20070791349 priority patent/EP2055681A4/en
Publication of WO2008015952A1 publication Critical patent/WO2008015952A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/063Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction by hot-pressing powders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a release sheet, and more particularly to a release sheet used to improve mold separation when a molded product is removed from a mold to be molded.
  • a material such as silicon carbide is heated and pressurized in a state where the raw material such as silicon carbide is housed in a graphite mold or a graphite molding container or the like. Mold into the shape of the mold. During such molding, if the raw material is directly heated into a mold or the like and heated, both the raw material and the mold become very hot. Therefore, damage to the mold due to the reaction between the two and the raw material due to impurities contained in the mold or the like. Contamination occurs. In addition, if molding is performed in a state where the raw material evaporative gas or the like is in contact with the raw material, bubbles will be generated in the manufactured product, causing problems when the quality deteriorates.
  • a release sheet is interposed between a mold for molding a substance and a raw material.
  • a mold for molding a substance for example, silica powder and graphite
  • a felt material made of graphitic carbon fiber is interposed between the mold and the graphite sheet (see, for example, the following patent documents;! To 3).
  • Patent Document 3 discloses that a force and density of a graphitized force-bonded fiber at the contact portion between the filled silica powder and the cylindrically configured graphitic carbon is 0 .;! To 0.5 g / It is stated that a bon felt with a force of cm 3 is interposed. And, Kiichi Bonfelt has a function of discharging the evaporated silica gas and the gas generated by the reaction of Kiichi Bonfelt and silica. In addition, since it absorbs the difference in thermal expansion between the produced glass and the cylindrically-structured graphite graphite, there is a description that it also has a role of preventing both of them from being destroyed during cooling after glass production.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 228166
  • Patent Document 2 JP-A-11 278857
  • Patent Document 3 Japanese Patent Laid-Open No. 10-167742
  • Patent Documents 1 to 3 do not describe any method for solving such a problem.
  • the present invention can keep product quality high when manufactured by compressing and compressing silicon carbide, aluminum nitride, and the like, and dramatically improve working efficiency and yield. It is an object to provide a release sheet made of expanded graphite
  • the present invention provides a release sheet that is disposed between a mold and a forming raw material and is made of expanded black lead, and has a gas permeability represented by the following formula (1). 1. equal to or less than 0 X 10- 4 cm 2 / s .
  • Q is the gas flow rate (Pa 'cm 3 / s)
  • ⁇ ⁇ is the pressure difference (Pa) between the two chambers
  • A is the gas permeation area of the release sheet, that is, The area of the passage connecting the two chambers (cm 2 )
  • L is the thickness (cm) of the release sheet.
  • the release sheet is placed between the raw material and the mold.
  • the gasified raw material or the gas generated by the reaction between the release sheet and the raw material can pass through the release sheet. Accordingly, the reaction between the gas and the mold can be suppressed, so that the mold can be prevented from deteriorating.
  • Gas permeability represented by formula is desirably 1. is 0 X 10- 9 cm 2 / s or more.
  • gas permeability is low! /.
  • gas permeability 1 is 0 X 10- 9 cm 2 / s or more.
  • the peel strength shown in the following formula (2) is preferably 50 kPa or less.
  • LD is the load
  • t is the thickness of the release sheet
  • W is the width of the bonded portion.
  • the peel strength is low as in the above configuration, it can be manufactured from a mold.
  • a product is taken out, it is possible to remove the sheet adhering to the product easily and quickly. Therefore, the manufacturing cost of the product can be reduced.
  • the arithmetic average roughness of the surface is desirably 10 in or less.
  • the arithmetic average roughness of the surface of the release sheet as described above is 10 m or less (that is, if the release sheet surface is smooth), the smoothness of the product surface after removal of the sheet is increased. Therefore, the force that does not require processing after removing the sheet is possible, and the working time for processing can be greatly shortened when necessary. Therefore, the production efficiency is greatly improved. In addition, it is possible to prevent the product thickness from becoming thinner than the specified value due to the reduction in the amount of product removed, and the product yield is improved. Furthermore, if the unevenness on the surface of the release sheet is reduced, the variation in thermal conductivity in the surface direction of the sheet is reduced, so that heat can be supplied uniformly to the raw material.
  • the thermal conductivity in the plane direction is desirably 100 W bar m'K) or more.
  • the thermal conductivity in the surface direction of the release sheet as described above is high, the temperature of the raw material can be raised quickly, so that the molding time can be shortened. As a result, the production efficiency of the product can be reduced. Further improvement.
  • Compression rate (%) [(t-t) / t] ⁇ 100 ⁇ ⁇ ⁇ (3)
  • t is the thickness after applying preload (0.686 MPa ⁇ l%) for 15 seconds.
  • t is the thickness (mm) after applying total pressure (34.3 MPa ⁇ 1%) for 60 seconds.
  • the gas permeability tends to increase as the compression rate increases. If the force compression rate is 80% or less, the gas permeability falls within the above range.
  • the force and the density are preferably 0.5 Mg / m 3 or more and 1.5 Mg / m 3 or less.
  • the compression rate may decrease, causing damage to the product or mold, or cracking when the release sheet is bent.
  • Density is 0.5Mg If it is less than / m 3 , the gas permeability may increase and the mold may deteriorate.
  • the thickness of the release sheet as described above is 1.5 mm or less, the sheet can be easily bent, so attach the release sheet to the mold easily and in close contact. Power S can be. Therefore, the sheet attaching operation can be performed in a short time, and the working time of the entire molding operation can be shortened, so that the manufacturing cost of the product can be reduced.
  • the thickness is desirably 0.2 mm or more.
  • the release sheet can be prevented from cracking even when the release sheet is bent. This is because the amount of deformation in the thickness direction increases, so that damage to the product or the like can be suppressed.
  • the ash content is 30 massppm or less! /.
  • the raw material to be molded can be prevented from being contaminated, so that the product quality can be improved.
  • the mold release sheet of the present invention is obtained when a raw material such as silicon carbide and aluminum nitride is molded by heating and pressing in a state where the raw material is accommodated in a graphite mold, a graphite molding container or the like. It is a sheet
  • the product manufactured using the release sheet of the present invention is, for example, synthetic quartz or SiC, but is not particularly limited.
  • reference numeral 1 denotes a mold in which silica powder M, which is a raw material of quartz glass, is accommodated, and is made of, for example, graphite.
  • the mold 1 is composed of a cylindrical inner member la, a cylindrical outer member lb, and a plate-shaped bottom member lc, and silica powder M is accommodated in a space surrounded by these members.
  • Reference numeral 2 denotes a pressurizing member for pressurizing the silica powder M.
  • the release sheet 4 of the present invention is disposed on the inner surface of the outer member lb in the mold 1 so that the silica powder M and the mold 1 are not in direct contact with each other.
  • the release sheet 4 of the present invention is also disposed on the inner surface of the inner member la, the upper surface of the bottom member lc, and the lower surface of the pressure member 2 (all surfaces in contact with the silica powder M). Then, if the silica powder M accommodated in the mold 1 is heated while being pressurized by the pressure member 2, a cylindrical synthetic quartz can be formed.
  • the release sheet of the present invention is formed by molding expanded graphite into a sheet shape.
  • the expanded graphite is formed by immersing natural graphite or quiche graphite in a liquid such as sulfuric acid or nitric acid, and then heat-treating at 400 ° C or higher, and has a cotton-like or fibrous shape. That is, its axial length is greater than its radial length.
  • expanded graphite has an axial length of about 1 to 3 mm and a radial length of about 00 to 600 111.
  • the expanded graphite is entangled as described above.
  • the release sheet of the present invention may be formed only from expanded graphite as described above, but a binder such as phenol resin or rubber component is mixed slightly (for example, about 5%)! / Good.
  • the (1) at the indicated gas permeability is adjusted to be 1. 0 X 10- 4 cm 2 / s or less under.
  • the raw material is gasified
  • the problem is that graphite molds are deteriorated by the gas permeating through the release sheet if the gas permeability of the release sheet is too large. To do.
  • the gas permeability of the release sheet is regulated as described above, it is possible to suppress the generated gas from permeating the release sheet, so that the graphite mold is deteriorated (SiC conversion). ) Can be prevented and the life of molds can be extended.
  • gas permeability 1. is 0 X 10- 9 cm 2 / s or more preferable.
  • the gas permeability of the release sheet is 1. 0 X 10- 9 cm 2 / s or more 1. 0 X 10- 4 cm 2 / s that preferably tool especially following is under 1 .
  • 0 is preferably X 10- 9 cm 2 / s or more 1. or less 0 X 10- 6 cm 2 / s .
  • the release sheet of the present invention is adjusted so that the peel strength is 50 kPa or less. With such a configuration, when the product is taken out of the mold, the release sheet adhering to the product can be easily removed, so that the post-processing work after product molding can be completed in a short time. Touch with S.
  • the unevenness of the release sheet surface is transferred to the product surface.
  • high smoothness is required as the surface property.
  • the smoothness of the surface of the release sheet is low, it is necessary to process the product surface to have a predetermined smoothness after removing the release sheet.
  • the release sheet of the present invention is adjusted so that the arithmetic average roughness of the surface thereof is 10 m or less, the shape of the release sheet surface on the molded product, that is, Even if the unevenness is transferred, the smoothness of the product surface after removing the release sheet can be increased.
  • the smoothness of the surface is high as in the release sheet of the present invention and the smoothness is higher than the smoothness required for the product surface, processing after removing the release sheet becomes unnecessary.
  • the amount removed from the product by processing can be reduced. Therefore, it is possible to shorten the processing time for achieving the predetermined smoothness, and as a result, the production efficiency of the product is improved.
  • the unevenness on the surface of the release sheet is reduced, variation in thermal conductivity in the surface direction of the sheet is reduced, so that heat can be supplied uniformly to the raw material.
  • the release sheet of the present invention as described above can be produced so that the arithmetic average roughness of the surface thereof is 10 m or less.
  • the expanded graphite has a thickness of 1.0 to 30.0 mm and a bulk density of 0;; to 0.5 Mg / m 3.
  • the expanded graphite has a thickness of 0.2 to 0.6 mm and a bulk density of 0. 5 ⁇ ; 1. Compress to 5Mg / m 3 to form a release sheet.
  • the expanded graphite is compressed by roll rolling at a feed rate of 20. Om / min or less, it is possible to prevent wrinkles and the like from being generated on the surface of the release sheet. It is possible to produce a release sheet having an arithmetic average roughness of the surface of 10 m or less.
  • the feed speed is preferably 0.1-20.Om/min. In particular, it is preferable that the feed rate is regulated to 0.5 to 15. Om / min.
  • the release sheet of the present invention is adjusted so that the thermal conductivity in the surface direction is 100 W / (m′K) or more. With such a configuration, the temperature of the raw material rises quickly and the molding time can be shortened, so that the production efficiency is dramatically improved.
  • the thermal conductivity in the surface direction becomes uniform.
  • a part of the release sheet is cut out to form a square test piece having a side of 200 mm, and in this test piece, the heat in a plurality of square test areas having a side of 25 mm is formed.
  • the conductivity is measured, the difference between the thermal conductivity value in the test region where the thermal conductivity is maximum and the thermal conductivity value in the test region where the thermal conductivity is minimum is calculated as the thermal conductivity in all test regions.
  • the release sheet can be manufactured so that the value divided by the average value of the ratio is 0.1 or less. Then, the formation of heat spots on the release sheet can be prevented, so that the product can be heated uniformly and a more homogeneous product can be produced.
  • the release sheet of the present invention is adjusted so that the compression ratio represented by the formula (3) is 30% or more.
  • the release sheet of the present invention has the above-described compression rate, if the thickness is too thin, it is not possible to take a sufficient cushioning. In other words, there is a possibility that the difference between the expansion and shrinkage of the raw material and the mold cannot be absorbed! /.
  • the release sheet of the present invention When the release sheet of the present invention is attached between the raw material and the mold, the release sheet is bent and deformed so as to be in close contact with the raw material and the mold. At this time, if the strength of the release sheet itself is weak or its flexibility is low, even if the release sheet has the compression ratio as described above, the release sheet is bent and deformed. It can crack, chip or tear itself. However, if the release sheet of the present invention has a thickness of 0.2 mm or more and 1.5 mm or less, and a force and a bulk density of 0.5 Mg / m 3 or more and 1.5 Mg / m 3 or less, Since the release sheet has a certain degree of strength, even if the release sheet is deformed, it can be prevented from cracking.
  • the release sheet since the release sheet is not too thick, the release sheet can be easily bent and can be prevented from cracking even if it is bent. For this reason, it is possible to easily attach the release sheet to a mold or the like, and it is possible to attach the release sheet in a state of being in close contact with the mold or the like.
  • the release sheet the thickness of 0. 3 mm or more 1. 5 mm or less, moreover, if the bulk density 0. 5 Mg / m 3 or more 1. and 5 mg / m 3 or less, the bending of the release sheet Since the strength is high while maintaining the properties, cracking of the release sheet can be prevented more reliably, which is preferable.
  • the release sheet is processed by adjusting the release sheet so that the ash content in the release sheet is 30 ppm or less by treating with release gas, rogen gas, or the like. Since the content of ash in the inside is small, it is possible to prevent the molding material from being contaminated and to improve the quality of the molded product.
  • the measurement was performed on a release sheet having a thickness of 0.5 mm and an arithmetic average roughness of the surface of 10 m or less, and the force and the density were 0.1, 0.3, 0.5, 0.7, 1.
  • the gas permeability was confirmed at 0, 1.5, and 1.7 Mg / m 3 .
  • the release sheet is adjusted with halogen gas so that the ash content is 30 ppm or less.
  • Gas permeability was measured by the following method. (1) In a pair of sealed chambers CA and CB communicated with each other, the passage (diameter 10 mm) communicating both chambers CA and CB is closed with the release sheet (diameter 30 mm) of the present invention. To do. In other words, air does not flow between the pair of sealed chambers CA and CB unless they pass through the release sheet of the present invention.
  • Q is the gas flow rate (Pa 'cm 3 / s)
  • ⁇ ⁇ is the pressure difference (Pa) between the two chambers
  • A is the gas permeation area of the release sheet, that is, The area of the passage connecting the two chambers (cm 2 )
  • L is the thickness (cm) of the release sheet.
  • the gas flow rate Q is calculated from the pressure increase rate in one chamber CA and the volume of one chamber CA for about 100 seconds after the evacuation in one chamber CA is stopped.
  • the measurement was performed on a release sheet having a thickness of 0.5 mm and an arithmetic average roughness of the surface of 10 m or less.
  • the force and the density were 0.3, 0.6, 0.8, 1.0, 1. 2, 1.4, 1. 6, 1.8, 2. OMg / m 3
  • the peel strength was checked.
  • the release sheet is adjusted with halogen gas so that the ash content is 30 ppm or less.
  • 5 to 7 are diagrams illustrating a method for measuring the peel strength.
  • reference numeral 4 denotes a release sheet of the present invention.
  • the peel strength was measured by attaching one end of tape 5 having an adhesive layer such as damplon tape to the surface of one end of release sheet 4 This is done by pulling the end part and the other end part of the tape 5 and measuring the load when they are separated.
  • one end of the release sheet 4 of the present invention and one end of the tape 5 are pasted so that the bonded portion has a width W25 mm ⁇ a length OL10 mm (width W, length OL).
  • a crimping tool such as a roller (crimping speed approx. 5mm / s, 1 reciprocation).
  • release sheet 4 and the tape 5 were cut and adjusted so that the entire length L of the test piece 10 was 100 mm.
  • t is the thickness of the release sheet 4 and W is the width of the bonded portion.
  • Dumplon Tape No. 3505 manufactured by Nitto Denko Corporation
  • a tester Instron 4301 is used as a measuring machine, and the release sheet 4 of the present invention is attached to the upper chuck of the tester, the tape 5 is attached to the lower chuck, and the test piece is mounted horizontally.
  • 20 Apply a load at a uniform speed of (mmZmin), record the maximum value at which peeling occurs between the two, and based on this load! The peel strength was determined.
  • the peel strength increases as the force and bulk density increase, and the bulk strength increases rapidly between 1 ⁇ 4 and 1; 6 Mg / m 3. It can be confirmed that it is connected.
  • the variation in thermal conductivity was determined by cutting nine 25 x 25 mm test pieces from the release sheet of the present invention of 200 x 200 mm, and the maximum value of the thermal conductivity in the surface direction of each test piece (Max) And the difference between the minimum value (Min) and average heat conductivity (Ave.).
  • the unit of the surface orientation is WZ (m ⁇ K).
  • the release sheet of the present invention is suitable for a sheet used to prevent damage to the mold or contamination of raw materials in the production of silicon carbide (SiC), aluminum nitride, synthetic quartz, or the like.
  • FIG. 1 is a schematic explanatory diagram of equipment for producing synthetic quartz and the like.
  • FIG. 2 is an enlarged cross-sectional view of part A in FIG.
  • FIG. 3 is a graph for explaining surface roughness.
  • FIG. 4 is a graph showing the relationship between force, bulk density and gas permeability in a release sheet.
  • FIG. 5 is an explanatory view showing a method for producing a test piece used for peel strength measurement.
  • FIG. 6 is an explanatory view showing a method for producing a test piece used for peel strength measurement.
  • FIG. 7 is an explanatory diagram showing a method for measuring peel strength.
  • FIG. 8 is a graph showing the relationship between force, density, and peel strength in a release sheet.
  • FIG. 9 is a graph showing the relationship between force, bulk density and compressibility in a release sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Ceramic Products (AREA)

Description

明 細 書
離型用シート
技術分野
[0001] 本発明は離型用シートに関し、詳しくは、成型する型から成型後の製品を取り外す ときに、型離れを良くするために用いられる離型用シートに関する。
背景技術
[0002] 炭化珪素ゃ窒化アルミニウム等を素材とする部材を製造する場合、炭化珪素等の 原料を黒鉛質モールドやグラフアイト製成型容器等に収容した状態で加熱、加圧し て、モールド等の型の形状に成型する。かかる成型の際に、原料をモールド等に直 接入れて加熱すると、原料、モールド等がともに非常に高温になるため、両者の反応 によるモールド等の損傷や、モールド等に含まれる不純物による原料の汚染が発生 する。また、原料の蒸発ガス等が原料に接触した状態で成型が行われると、製造され た製品に気泡が発生し品質が低下するといつた問題が発生する。
[0003] このようなことを考慮して、従来から、物質を成型する型と原料との間に離型用シー トを介在させており、例えば、石英ガラスの製造では、シリカ粉末と黒鉛質モールドと の間に、黒鉛質カーボン繊維からなるフェルト材ゃ黒鉛シートが介在されている(例 えば、下記特許文献;!〜 3参照)。
[0004] 具体的には、上記特許文献 1 , 2においては、力、さ密度が 0. ;!〜 1. 5g/cm3であ つて、かつ Na, K, Fe及び Tiの各不純物が lppm以下となるように高純度化された 黒鉛フェルトや黒鉛シートを使用する旨が記載されて!/、る。黒鉛フェルトおよび黒鉛 シートは、いずれも伸縮性と通気性を有しており、しかも、黒鉛シートは、シリカ粉末と の反応による消失量が少なぐ更に、面が平滑であるためガラス面の平坦度を出すの に適してレ、るとの記載がある。
[0005] また、特許文献 3には、充填シリカ粉末と円筒形状構成黒鉛質カーボンとの接触部 分に、黒鉛質力一ボン繊維からなる力、さ密度が 0. ;!〜 0. 5g/cm3の力一ボンフェル トを介在させる旨が記載されている。そして、力一ボンフェルトは、蒸発シリカガスや、 力一ボンフェルトとシリカとの反応によって発生するガスを排出する機能を有し、しか も、製造されたガラスと円筒形状構成黒鉛質力一ボンとの熱膨張差を吸収するので、 ガラス製造後冷却時に両者が破壊することを防ぐ役割も有するとの記載がある。
[0006] 特許文献 1 :特開平 11 228166号
特許文献 2 :特開平 11 278857号
特許文献 3:特開平 10— 167742号
発明の開示
発明が解決しょうとする課題
[0007] しかるに、特許文献;!〜 3では、黒鉛フェルトおよび黒鉛シート、カーボンフェルト(こ れらを総称して、以下、単にシートと称する場合がある)がある程度の伸縮性と通気性 を有しているものの、これらの特性が十分ではないため、モールドとガラス等との熱膨 張差に起因する破損や、製品に気泡が発生するといつた問題を解消するにはいたら ない。
[0008] また、製造された製品をモールドから取り出した際には、製品にシートが付着してい るという現象が生じるため、製品からシートを除去する必要が生じる。かかるシート除 去には長時間を要するため、製品の生産効率が低下するという問題が存在する。し 力、しながら、上記特許文献 1〜3にはかかる問題を解決する方法についてはなにも記 載されていない。
[0009] 更に、製造された製品にシートが付着したときには、製品からシートを除去してもシ ート表面の凹凸が製品表面に転写される。この場合、転写された凹凸が大きければ、 製品から除去する部分が多くなるので、凹凸除去のための作業時間が長くなつて、 更なる生産効率の低下を招来する。加えて、シート除去時には製品も削られることが あるが、その除去量が多くなると、製品の肉厚が規定値より薄くなつて、製品の歩留り が低下するという問題も生じる。この点について、従来は、特許文献 1において、黒鉛 シートはその表面が平滑でありガラス面の平坦度を出すに適しているとの記載がある 程度であり、シート表面をどの程度の面精度とすれば凹凸除去作業の短縮化したり 歩留りを向上できるかにつ!/、ては、具体的な示唆はなレ、。
[0010] 一方で、伸縮性と通気性を有する材料として膨張黒鉛シートがあり、力、かる膨張黒 鉛シートは柔軟性や圧縮性、通気性を有しており、離型用シートとして好ましい性質 を有しているが、離型用シートとして適用する上で好ましい性質を、具体的に考慮、 検討した例は見当たらな!/、。
[0011] 本発明は上記事情に鑑み、炭化珪素ゃ窒化アルミニウム等を加圧圧縮させて製造 したときに、製品品質を高く保つことができ、しかも、作業効率や歩留りを飛躍的に向 上させることができる膨張黒鉛を素材とする離型用シートを提供することを目的とする
課題を解決するための手段
[0012] 上記目的を達成するために、本発明は、型と成型原料との間に配置され、膨張黒 鉛から成る離型用シートであって、下記(1)式で示すガス透過率が 1. 0 X 10— 4cm2/ s以下であることを特徴とする。
ガス透過率 = Q 'L/ ( A P 'A) ' ' ' (1)
尚、上記(1)式において、 Qはガス流量(Pa 'cm3/s)、 Δ Ρは 2つのチャンバ一間 の圧力差 (Pa)、 Aは離型用シートのガス透過面積、つまり、 2つのチャンバ一を連通 する通路の面積 (cm2)、 Lは離型用シートの厚さ(cm)である。
上記構成の如ぐ離型用シートのガス透過率を極めて低くなるように規制しておけ ば、炭化珪素ゃ窒化アルミニウム等の製造において、原料とモールド等の型との間 に離型用シートを配置した場合に、ガス化した原料や、離型用シートと原料とが反応 して発生するガスが離型用シートを透過するのを抑えることができる。したがって、ガ スと型とが反応するのを抑制ことができるので、型の劣化を防ぐことができる。
[0013] 上記(1)式で示すガス透過率が 1. 0 X 10— 9cm2/s以上であることが望ましい。
ガスと型とが反応するのを抑制すると!/、う観点からは、ガス透過率が低!/、程好まし いが、余りガス透過率を低くし過ぎると、成型された製品に気泡が発生する等の問題 力 S生じる。したがって、ガス透過率は 1. 0 X 10— 9cm2/s以上であることが好ましい。
[0014] 下記(2)式に示す剥離強度が 50kPa以下であることが望ましい。
剥離強度 = LD/ (W't) ' " (2)
尚、上記(2)式において、 LDは荷重、 tは離型用シートの厚さ、 Wは接着部分の幅 である。
上記構成の如ぐ剥離強度が低くなるように規制しておけば、型から製造された製 品を取り出したときに、当該製品に付着しているシートの除去作業を簡単かつ短時間 で行うこと力 Sできる。したがって、製品の製造コストを低減することができる。
[0015] 表面の算術平均粗さが 10 in以下であることが望ましい。
上記構成の如ぐ離型用シートの表面の算術平均粗さが 10 m以下であれば (即 ち、離型用シート表面が平滑であれば)、シート除去後における製品表面の平滑度を 高くすることができるので、シート除去後の加工が不要となる力、、必要である場合にも 加工のための作業時間を大幅に短縮することができる。したがって、生産効率が格段 に向上する。また、製品の除去量が少なくなることに起因して、製品の肉厚が規定値 より薄くなることを抑制できるので、製品の歩留が向上する。更に、離型用シート表面 の凹凸が少なくなれば、シートの表面方向における熱伝導率のばらつきが少なくなる ので、原料に対して均一に熱を供給することができる。
[0016] 面方向の熱伝導率が 100Wバ m'K)以上であることが望ましい。
上記構成の如ぐ離型用シートの面方向の熱伝導率が高ければ、原料の温度を素 早く上昇させることができるので、成型時間を短縮することができ、この結果、製品の 生産効率が一層向上する。
[0017] 下記(3)式で示す圧縮率が 30%以上であることが望まし!/、。
圧縮率(%) =〔(t— t ) /t ] Χ 100 · · · (3)
1 2 1
尚、上記(3)式において、 tは予圧(0. 686MPa ± l %)を 15秒間加えた後の厚さ
1
(mm)であり、 tは全圧(34· 3MPa ± 1 %)を 60秒間加えた後の厚さ(mm)である。 上記構成の如ぐ離型用シートの圧縮率を規制すれば、原料と型の熱膨張率の相 違に起因して、原料と型の膨張収縮量に差が生じても、離型用シートの変形によりそ の差を吸収できるので、製品や型が破損するのを防ぐことができる。
[0018] 上記(3)式に示す圧縮率が 80%以下であることが望まし!/、。
一般的に、圧縮率が高くなるとガス透過率が大きくなる傾向にある力 圧縮率が 80 %以下であれば、ガス透過率は上述の範囲内に収まるからである。
[0019] 力、さ密度が 0. 5Mg/m3以上 1. 5Mg/m3以下であることが望ましい。
力、さ密度が 1. 5Mg/m3を超えると、圧縮率が低下して製品や型が破損したり、離 型用シートを湾曲させた場合に割れたりするおそれがある一方、力、さ密度が 0. 5Mg /m3未満になると、ガス透過率が大きくなつて型の劣化等を生じることがあるからであ
[0020] 厚さが 1. 5mm以下である、請求項;!〜 9のいずれか 1項に記載の離型用シート。
上記構成の如ぐ離型用シートの厚さが 1. 5mm以下であれば、シートを容易に湾 曲させることができるので、離型用シートを型に容易かつ密着させた状態で取り付け ること力 Sできる。したがって、シートの取り付け作業を短時間で行うことができ、これに よって、成型作業全体としての作業時間の短縮することができるので、製品の製造コ ストを低減することができる。
[0021] 厚さが 0. 2mm以上であることが望ましい。
上記構成の如ぐ離型用シートの厚さが 0. 2mm以上であれば、離型用シートを湾 曲させた場合であっても、離型用シートが割れたりするのを抑制でき、しかも、厚み方 向の変形量が多くなるので製品等が損傷するのを抑制できるからである。
[0022] 灰分が 30massppm以下であることが望まし!/、。
上記構成の如ぐ離型用シート中の灰分が少なければ、成型する原料が汚染され ることを防ぐことができるので、製品品質を向上させることができる。
発明の効果
[0023] 以上説明したように、本発明によれば、炭化珪素ゃ窒化アルミニウム等を加圧圧縮 させて製造したときに、製品品質を高く保つことができ、しかも、作業効率および歩留 りを向上させることができるといった優れた効果を奏する。
発明を実施するための最良の形態
[0024] つぎに、本発明の実施形態を図面に基づき説明する。
本発明の離型用シートは、炭化珪素ゃ窒化アルミニウム等の原材料を、黒鉛質モ 一ルドやグラフアイト製成型容器等に収容した状態で加熱加圧して成型する際に、原 料とモールド等との間に配置して使用されるシートである。
尚、本発明の離型用シートを使用して製造される製品は、例えば、合成石英や SiC 等であるが、とくに限定されるものではない。
[0025] まず、本発明の離型用シートを説明する前に、本発明の離型用シートの使用状況 を説明する。以下では、円筒状の石英ガラスを製造する場合を代表として説明する。 図 1にお!/、て、符号 1は石英ガラスの原材料となるシリカ粉末 Mが収容されるモー ルドであり、例えば黒鉛から構成される。このモールド 1は、円筒状の内側部材 la、 円筒状の外側部材 lb、及び板状の底部材 lcから構成されており、これらの部材に 囲まれた空間にシリカ粉末 Mが収容されるのである。また、符号 2は上記シリカ粉末 Mを加圧するための加圧部材である。
[0026] 図 2に示すように、上記モールド 1における外側部材 lbの内面には、シリカ粉末 M とモールド 1とが直接接触しないように、本発明の離型用シート 4が配置されており、 また、図示はしないが、内側部材 laの内面、底部材 lcの上面、および加圧部材 2の 下面(全てシリカ粉末 Mと接している面)にも本発明の離型用シート 4が配置されてい そして、モールド 1内に収容されたシリカ粉末 Mを、加圧部材 2によって加圧しなが ら加熱すれば、円筒状の合成石英を形成することができるのである。
[0027] つぎに、本発明の離型用シートについて説明する。
(離型用シートの全体構成)
本発明の離型用シートは、膨張黒鉛をシート状に成型して形成されたものである。 上記膨張黒鉛は、天然黒鉛やキッシュ黒鉛等を硫酸や硝酸等の液体に浸潰させ た後、 400°C以上で熱処理を行うことによって形成されたものであり、綿状または繊 維状をしたもの、つまり、その軸方向の長さが半径方向の長さよりも大きいものである 。例えば、膨張黒鉛は、その軸方向の長さが l〜3mm程度、かつ、半径方向の長さ 力 00〜600 111程度のものである。そして、本発明の離型用シートの内部では、上 記のごとき膨張黒鉛同士が絡みあっているのである。
尚、本発明の離型用シートは、上記のごとき膨張黒鉛のみで形成してもよいが、フ ェノール樹脂やゴム成分等のバインダーが若干 (例えば 5%程度)混合されて!/、ても よい。
[0028] (離型用シートのガス透過率)
本発明の離型用シートは、前記(1)式で示したガス透過率が 1. 0 X 10— 4cm2/s以 下となるように調整されている。
炭化珪素ゃ窒化アルミニウム等の金属の製造では原料がガス化したり離型用シー トと原料とが反応してガスが発生するのである力、離型用シートのガス透過率が大き 過ぎると、離型用シートを透過したガスによって黒鉛製のモールド等が劣化するという 問題が発生する。しかし、離型用シートのガス透過率が上記の如きに規制されてい れば、発生ガスが離型用シートを透過するのを抑制することができるので、黒鉛製モ 一ルドの劣化(SiC化)を防ぐことができ、モールド等の寿命を延長させることができる
[0029] 但し、ガス透過率を小さくしすぎると、成型された製品に気泡が発生する等の問題 が生じるので、ガス透過率は 1. 0 X 10— 9cm2/s以上であることが好ましい。以上のこ とから、離型用シートのガス透過率は 1. 0 X 10— 9cm2/s以上 1. 0 X 10— 4cm2/s以 下であることが好ましぐ特に、 1. 0 X 10— 9cm2/s以上 1. 0 X 10— 6cm2/s以下である ことが好ましい。
[0030] (離型用シートの剥離強度)
本発明の離型用シートは、剥離強度が 50kPa以下となるように調整されている。こ のような構成であれば、製品をモールドから取り出したときに、製品に付着している離 型用シートを簡単に除去できるから、製品成型後の後処理作業を短時間で終了する こと力 Sでさる。
[0031] (離型用シートの平滑度)
離型用シートを使用すると、製品表面には離型用シート表面の凹凸が転写されるの であるが、製造される製品によっては、その表面の性状として高い平滑性が求められ るものもあり、かかる製品の場合、離型用シート表面の平滑性が低ければ離型用シー ト除去後に製品表面が所定の平滑度となるように加工する必要が生じる。
[0032] ここで、本発明の離型用シートは、その表面の算術平均粗さが 10 m以下となるよ うに調整されているから、成型された製品に離型用シート表面の形状、つまり、凹凸 が転写されても、離型用シートを除去後における製品表面の平滑度を高くすることが できる。
よって、本発明の離型用シートのようにその表面の平滑度が高ぐその平滑度が製 品表面に要求される平滑度よりも高ければ、離型用シート除去後の加工が不要とな る。一方、離型用シート表面の平滑度よりも高い平滑度が求められる製品であっても 、加工によって製品から除去する量を少なくすることができる。したがって、所定の平 滑度とするための加工時間を短縮することができ、この結果、製品の生産効率が向 上する。しかも、製品の除去量が少なくなることに起因して、製品の肉厚が規定値より 薄くなることが抑制できるので、製品の歩留りが向上する。更に、離型用シート表面の 凹凸が少なくなれば、シートの表面方向における熱伝導率のばらつきが少なくなるの で、原料に対して均一に熱を供給することができる。
[0033] そして、以下の方法を採用すれば、上記のごとぐ本発明の離型用シートをその表 面の算術平均粗さが 10 m以下となるように製造することができる。
まず、天然黒鉛やキッシュ黒鉛等を硫酸や硝酸等の液体に浸漬させた後、 400°C 以上で熱処理を行うことによって綿状の黒鉛 (膨張黒鉛)を形成する。この膨張黒鉛 は、厚さが 1. 0—30. 0mm、かさ密度が 0. ;!〜 0. 5Mg/m3であり、この膨張黒鉛を 厚さ 0. 2〜0. 6mm、かさ密度 0. 5〜; 1. 5Mg/m3まで圧縮して離型用シートを形成 する。
[0034] このとき、膨張黒鉛を、送り速度 20. Om/min以下とした状態でロール圧延によって 圧縮すれば、離型用シートの表面に皺等が発生することを防ぐことができるから、表 面の算術平均粗さが 10 m以下である離型用シートを製造できるのである。但し、送 り速度が 0. lm/min未満になると膨張黒鉛の生産性が低下する。したがって、送り 速度は、 0. 1— 20. Om/minであることカ好ましく、特に、 0. 5〜; 15. Om/minに 規制するのがー層好適である。
[0035] また、上記算術平均粗さは、 JIS B0601で定義されている。具体的には、算術平 均粗さ(Ra)は、図 3に示すように、粗さ曲線からその平均線の方向に基準長さ Lだけ 抜き取り、この抜き取り部分の平均線の方向に X軸を取る一方、縦倍率の方向に y軸 を取り、粗さ曲線を y= f (X)で表した時に、下記数 1によって求められる値をマイクロメ ートノレ( m)で表したものを!/、う。
[0036] [数 1]
Figure imgf000010_0001
[0037] (離型用シートの熱伝導率) 本発明の離型用シートは、その面方向の熱伝導率が 100W/ (m'K)以上となるよ うに調整されている。このような構成であれば、原料の温度が素早く上昇し、成型時 間を短縮することができるので、生産効率が飛躍的に向上する。
[0038] 特に、本発明の離型用シートを上記 (離型用シートの平滑度)の項で示した方法に より製造すれば、その面方向の熱伝導率も均一になる。具体的には、離型用シート の一部を切り取って一辺が 200mmである正方形状の試験片を形成し、この試験片 において、その一辺が 25mmである正方形状をした複数の試験領域における熱伝 導率を測定すると、熱伝導率が最大となる試験領域における熱伝導率の値と熱伝導 率が最小となる試験領域における熱伝導率の値との差を、全ての試験領域における 熱伝導率の平均値で除した値が、 0. 1以下となるように、離型用シートを製造するこ とができるのである。すると、離型用シートにヒートスポットが形成されることを防ぐこと ができるので、製品を均一に加熱することができ、より均質な製品を製造することがで きる。
[0039] (離型用シートの圧縮率)
また、本発明の離型用シートは、前記(3)式で示す圧縮率が 30%以上となるように 調整されている。
このような構成であれば、原料とモールド等との間の熱膨張率の相違に起因して加 熱開始時や冷却時に原料とモールド等の膨張収縮量に差が生じても、その差を離型 用シートが変形して吸収できるので、製品やモールド等の破損を防ぐことができる。
[0040] (離型用シートの厚さ及びかさ密度)
本発明の離型用シートが上記圧縮率を有していても、その厚さが薄すぎれば、十 分な緩衝シロを取ることができない。言い換えれば、原料とモールド等の膨張収縮量 の差を吸収できな!/、可能性がある。
また、本発明の離型用シートを原料とモールドとの間に取り付けると、離型用シート は原料とモールドに密着するように屈曲変形される。このとき、離型用シート自体の強 度が弱かったり柔軟性が小さかったりすれば、離型用シートが上記のごとき圧縮率を 有していても、屈曲変形されたときに、離型用シート自体が割れたり欠けたり破れたり する可能性がある。 しかし、本発明の離型用シートが、厚さが 0. 2mm以上 1. 5mm以下であり、かつ、 力、さ密度が 0. 5Mg/m3以上 1. 5Mg/m3以下であれば、ある程度の強度を離型用 シートが有するので、離型用シートが変形してもその割れ等などを防ぐことができる。 しかも、離型用シートが厚すぎないので、離型用シートを容易に湾曲させることができ 、湾曲させても割れたりすることを防ぐことができる。このため、離型用シートをモール ド等に容易に取り付けることができるし、モールド等に密着させた状態で離型用シー トを取り付けることができる。
[0041] よって、離型用シートの取り付け作業などを短時間で行うことができるから、離型用 シートの取り付け作業だけでなぐ成型作業全体としての作業時間の短縮に寄与す ること力 Sでさる。
とくに、離型用シートを、厚さを 0. 3mm以上 1. 5mm以下、しかも、かさ密度を 0. 5 Mg/m3以上 1. 5Mg/m3以下としておけば、離型用シートの屈曲性を維持しつつ その強度も高レ、ので、離型用シートの割れ等などをより確実に防ぐことができるので、 好適である。
[0042] (離型用シートの灰分)
さらに、本発明の離型用シートの製造工程において、ノ、ロゲンガスなどによって離 型用シートを処理し、離型用シートの灰分が 30ppm以下となるように調整しておけば 、離型用シート中の灰分が少ないので、成型する材料が汚染されることを防ぐことが でき、成型品をより高品質にすることができる。
実施例
[0043] (第 1実施例)
本発明の離型用シートにおける、ガス透過性とかさ密度との関係を調べたので、そ の結果を図 4に示す。
測定は、厚さ 0. 5mm、表面の算術平均粗さが 10 m以下の離型用シートにおい て、力、さ密度を 0. 1、 0. 3、 0. 5、 0. 7、 1. 0、 1. 5、 1. 7Mg/m3としたときにおける ガス透過性を確認した。
尚、離型用シートはハロゲンガスで灰分が 30ppm以下となるように調整している。
[0044] また、ガス透過率は以下の方法で測定した。 (1)互いに連通された一対の密閉されたチャンバ一 CA, CBにおいて、両チャンバ 一 CA, CBを連通する通路(直径 10mm)を本発明の離型用シート(直径 30mm)で 塞ぐように配置する。言い換えれば、本発明の離型用シートを通過しなければ一対の 密閉されたチャンバ一 CA, CB間を空気が流れられない状態とする。
[0045] (2)この状態から、両チャンバ一 CA, CB内の気圧が 1 · 0 X 10— 4Paとなるまで両チヤ ンバー CA, CBを真空引きする。そして、一方のチャンバ一 CA内の真空引きを継続 しながら、他方のチャンバ一 CB内が所定の圧力(1. 0 X 105Pa)となるまで Nガスを 供給する。
[0046] (3)他方のチャンバ一 CB内が所定の圧力(1 · 0 X 105Pa)となると、一方のチャンバ 一 CA内の真空引きを停止する。すると、両チャンバ一 CA, CB間の圧力差と離型用 シートのガス透過性応じて、徐々に応じて他方のチャンバ一 CBから一方のチャンバ 一 CAに Nガスが流れるので、一方のチャンバ一 CA内の圧力が上昇する。
[0047] (4)そして、一方のチャンバ一 CA内の真空引きを停止してから約 100秒間における 一方のチャンバ一 CA内の圧力上昇速度を測定し、以下の(1)式に基づいて、ガス 透過率 K (cm2/s)を算出した。
[0048] ガス透過率 K = Q 'L/ ( A P 'A) · · · (1)
尚、上記(1)式において、 Qはガス流量(Pa 'cm3/s)、 Δ Ρは 2つのチャンバ一間 の圧力差 (Pa)、 Aは離型用シートのガス透過面積、つまり、 2つのチャンバ一を連通 する通路の面積 (cm2)、 Lは離型用シートの厚さ(cm)である。また、ガス流量 Qは、 一方のチャンバ一 CA内の真空引きを停止してから約 100秒間における一方のチヤ ンバー CA内の圧力上昇速度と、一方のチャンバ一 CAの容積から算出される。
[0049] 図 4に示すように、ガス透過性は力、さ密度が大きくなると低くなること、言い換えれば 、力、さ密度が大きくなるとガス遮蔽性が高くなることが確認できる。
[0050] (第 2実施例)
本発明の離型用シートにおける、剥離強度とかさ密度の関係を調べたので、その結 果を図 8に示す。
測定は、厚さ 0. 5mm、表面の算術平均粗さが 10 m以下の離型用シートにおい て、力、さ密度を 0. 3、 0. 6、 0. 8、 1. 0、 1. 2、 1. 4、 1. 6、 1. 8、 2. OMg/m3としたと きにおける剥離強度を確認した。尚、離型用シートはハロゲンガスで灰分が 30ppm 以下となるように調整している。
[0051] ここで、本発明の離型用シートの剥離強度の測定方法を説明する。
図 5〜図 7は剥離強度の測定方法を説明した図である。図 5〜図 7において、符号 4は本発明の離型用シートを示している。図 7に示すように、剥離強度の測定は、離 型用シート 4の一端部の表面にダンプロンテープなどの粘着層を有するテープ 5の一 端部を貼り付け、離型用シート 4の他端部およびテープ 5の他端部をそれぞれ引っ張 り、両者が剥離したときにおける荷重を測定することによって行われる。
[0052] (1)試験片の作製方法
まず、図 5に示すように、本発明の離型用シート 4の一端部とテープ 5の一端部を、 接着部分が幅 W25mmX長さ OLlOmmとなるように貼り付け(幅 W、長さ OLについ ては図 6及び図 7参照)、ローラ等の圧着工具 (圧着速さ約 5mm/s, 1往復)によつ て両者を圧着した。
[0053] このように離型用シート 4とテープ 5とを圧着した後、図 6に示すように、テープ 5の一 端部を貼り付けたままテープ 5を折り返した。このとき、折り返したテープ 5の表面が、 貼り付けた面、つまり、離型用シート 4の表面と平行となる様に注意する。
最後に、離型用シート 4やテープ 5を切断して、試験片 10の全体の長さ Lが 100m mとなるように、調整した。
[0054] (2)試験片 10を使用した剥離強度の測定方法
まず、図 7に示すように、試験片の両端をチャック Cに取り付け、試験片が水平とな るように保持する。そして、均一な速度 V〔20 (mm/min)〕で試験片の両端が離間 する方向に荷重をかける。つまり、試験片 10の両端を、互いに離間する方向に引つ 張るのである。
[0055] そして、試験片 10に加わる負荷荷重を大きくしていくと、やがて、試験片 10のテー プ 5が離型用シート 4から剥離する。この剥離が開始したときの荷重 LDから以下の(2 )式に基づ!/、て離型用シート 4の剥離強度 Tを求めるのである。
T = LD/ (W-t) · · · (2)
尚、(2)式において、 tは離型用シート 4の厚さであり、 Wは接着部分の幅である。 [0056] また、テープ 5には、ダンプロンテープ No. 3505 (日東電工社製)を使用した。 更に、測定機としては試験機インストロン 4301を使用し、この試験機の上部チヤッ クに本発明の離型用シート 4、下部チャックにテープ 5を、試験片が水平となるように 取り付け、 20 (mmZmin)の均一な速度で荷重を加え、両者の間で剥離が発生する 荷重の最大値を記録し、この荷重に基づ!/、て剥離強度を求めた。
加えて、剥離開始は、装置に力、かるトルクによって判断した。
[0057] 図 8に示すように、力、さ密度が大きくなるにつれ剥離強度が大きくなつており、かさ 密度が 1 · 4〜; 1. 6Mg/m3の間で、剥離強度が急激に大きくなつていることが確認で きる。
[0058] (第 3実施例)
本発明の離型用シートを、厚さ方向から 34. 3MPaの加圧力で加圧圧縮したときに おける圧縮率を調べ、力、さ密度と圧縮率の関係を確認したので、その結果を図 9に 示す。
測定は、厚さ 0. 5mmの離型用シートにおいて、力、さ密度を 0. 1、 0. 5、 0. 8、 1. 0 、 1. 2、 1 · 5、 1. 8Mg/m3としたときにおける圧縮率を測定した。
図 9に示すように、力さ密度が大きくなるにつれ、圧縮率が低下していることが確認 できる。
[0059] (第 4実施例)
厚さ 0· 2〜0. 6mm,力さ密度 0. 5〜: 1. 5Mg/m3の本発明の離型用シートの熱伝 導率のバラツキを比較したので、その結果を表 1に示す。
尚、熱伝導率のバラツキは、 200 X 200mmの本発明の離型用シートから、 25 X 2 5mmの試験片を 9つ切り取り、各試験片の面方向の熱伝導率の最大値 (Max)と最 小値 (Min)の差を平均熱伝導率 (Ave. )で除した値を比較した。
[0060] [表 1]
Figure imgf000015_0001
尚、 面方向の謝云^^の単位は WZ (m · K) である。 [0061] 表 1に示すように、本発明の離型用シートの熱伝導率のバラツキは 0. 1以下であり 、均熱性に優れていることが認められた。
産業上の利用可能性
[0062] 本発明の離型用シートは、炭化珪素(SiC)ゃ窒化アルミニウム、合成石英等の製 造において、モールドの損傷や原料の汚染を防ぐために使用するシートに適してい 図面の簡単な説明
[0063] [図 1]合成石英等を製造する設備の概略説明図である。
[図 2]図 1の A部拡大断面図である。
[図 3]表面粗さを説明するためのグラフである。
[図 4]離型用シートにおける力、さ密度とガス透過性との関係を示すグラフである。
[図 5]剥離強度測定に使用する試験片の作製方法を示す説明図である。
[図 6]剥離強度測定に使用する試験片の作製方法を示す説明図である。
[図 7]剥離強度の測定方法を示す説明図である。
[図 8]離型用シートにおける力、さ密度と剥離強度との関係を示すグラフである。
[図 9]離型用シートにおける力、さ密度と圧縮率との関係を示すグラフである。
符号の説明
[0064] 1 モーノレド
4 離型用シート
M シリカ粉末

Claims

請求の範囲
[1] 型と成型原料との間に配置され、膨張黒鉛力 成る離型用シートであって、
下記( 1 )式で示すガス透過率が 1.0X10— 4cm2/s以下である、
ことを特徴とする離型用シート。
ガス透過率 = Q'L/(AP'A)'''(1)
尚、上記(1)式において、 Qはガス流量(Pa'cm3/s)、 ΔΡは 2つのチャンバ一間 の圧力差 (Pa)、 Aは離型用シートのガス透過面積、つまり、 2つのチャンバ一を連通 する通路の面積 (cm2)、 Lは離型用シートの厚さ(cm)である。
[2] 上記(1)式で示すガス透過率が 1.0X 10— 9cm2/s以上である、請求項 1記載の離 型用シート。
[3] 下記(2)式に示す剥離強度が 50kPa以下である、請求項 1又は 2に記載の離型用 シート。
剥離強度 = LD/(W't)'"(2)
尚、上記(2)式において、 LDは荷重、 tは離型用シートの厚さ、 Wは接着部分の幅 である。
[4] 表面の算術平均粗さが 10 m以下である、請求項 1〜3のいずれか 1項に記載の 離型用シート。
[5] 面方向の熱伝導率が 100Wバ m'K)以上である、請求項;!〜 4のいずれか 1項に 記載の離型用シート。
[6] 下記(3)式で示す圧縮率が 30%以上である、請求項;!〜 5のいずれか 1項に記載 の離型用シート。
圧縮率(%) =〔(t— t )/t ] Χ100···(3)
1 2 1
尚、上記(3)式において、 tは予圧(0.686MPa±l%)を 15秒間加えた後の厚さ
1
(mm)であり、 tは全圧(34· 3MPa± 1%)を 60秒間加えた後の厚さ(mm)である。
[7] 上記(3)式に示す圧縮率が 80%以下である、請求項 6に記載の離型用シート。
[8] 力、さ密度が 0· 5Mg/m3以上 1· 5Mg/m3以下である、請求項;!〜 7のいずれか 1 項に記載の離型用シート。
[9] 厚さが 1.5mm以下である、請求項;!〜 8のいずれか 1項に記載の離型用シート。
[10] 厚さが 0. 2mm以上である、請求項 9に記載の離型用シート。
[11] 灰分が 30massppm以下である、請求項 1〜; 10のいずれか 1項に記載の離型用 ート。
PCT/JP2007/064649 2006-07-31 2007-07-26 Feuille de démoulage WO2008015952A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087028847A KR101331647B1 (ko) 2006-07-31 2007-07-26 이형용 시트
US12/375,822 US8097331B2 (en) 2006-07-31 2007-07-26 Mold release sheet
EP20070791349 EP2055681A4 (en) 2006-07-31 2007-07-26 FORM SEPARATION FABRIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006208774A JP4388041B2 (ja) 2006-07-31 2006-07-31 離型用シートおよび離型用シートの使用方法
JP2006-208774 2006-07-31

Publications (1)

Publication Number Publication Date
WO2008015952A1 true WO2008015952A1 (fr) 2008-02-07

Family

ID=38997131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064649 WO2008015952A1 (fr) 2006-07-31 2007-07-26 Feuille de démoulage

Country Status (7)

Country Link
US (1) US8097331B2 (ja)
EP (1) EP2055681A4 (ja)
JP (1) JP4388041B2 (ja)
KR (1) KR101331647B1 (ja)
CN (1) CN101489943A (ja)
TW (1) TWI391352B (ja)
WO (1) WO2008015952A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108572A1 (ja) * 2012-01-18 2013-07-25 旭硝子株式会社 離型シート及びガラス成形品の成形方法
JP6490881B1 (ja) * 2017-10-27 2019-03-27 日本碍子株式会社 配向セラミック焼結体の製法及びフラットシート
WO2019082916A1 (ja) * 2017-10-27 2019-05-02 日本碍子株式会社 配向セラミック焼結体の製法及びフラットシート

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533817B2 (ja) * 2011-08-09 2014-06-25 株式会社デンソー 金属炭化物構造体または表面に金属炭化物層を形成した部材の製造方法
JP6793296B2 (ja) * 2015-07-16 2020-12-02 パナソニックIpマネジメント株式会社 グラファイトプレート及びその製造方法
WO2021106533A1 (ja) * 2019-11-28 2021-06-03 日本碍子株式会社 酸化物含有セラミック焼結体の製法及び離型シート

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167742A (ja) 1996-12-17 1998-06-23 Tosoh Corp 不透明石英ガラス円筒の製造方法
JPH11228166A (ja) 1997-12-03 1999-08-24 Tosoh Corp 高純度透明石英ガラスおよびその製造方法
JPH11278857A (ja) 1998-03-30 1999-10-12 Tosoh Corp シリカガラスの製造方法
JP2003252615A (ja) * 2002-03-01 2003-09-10 Toyo Tanso Kk 膨張黒鉛シートの製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492197A (en) 1965-03-22 1970-01-27 Dow Chemical Co Novel compressed cohered graphite structures and method of preparing same
US3492191A (en) * 1966-07-25 1970-01-27 James Paul Van Horn Functional decorative unit
JPS51140904A (en) 1975-05-30 1976-12-04 Nippon Carbon Co Ltd Carbon material manufacturing apparatus
JP2528285B2 (ja) 1986-05-27 1996-08-28 東洋炭素株式会社 黒鉛ルツボの保護方法
JPH0818803B2 (ja) 1986-08-08 1996-02-28 東洋炭素株式会社 耐火断熱黒鉛シ−ト材料
US4888242A (en) 1986-05-27 1989-12-19 Toyo Tanson Co., Ltd. Graphite sheet material
JPS63149142A (ja) 1986-12-12 1988-06-21 東洋炭素株式会社 多層成形断熱体並びにその製造方法
JP2566244B2 (ja) 1987-07-07 1996-12-25 日本化成株式会社 可撓性黒鉛シ−ト材料
JPH062637B2 (ja) 1987-07-13 1994-01-12 東洋炭素株式会社 単結晶引上装置
JP2591967B2 (ja) 1987-12-24 1997-03-19 東洋炭素株式会社 炭素質フェルト加工品並びにその製造方法
JP2805160B2 (ja) 1989-06-21 1998-09-30 東洋炭素株式会社 炭素質成形断熱体
JP2919901B2 (ja) 1989-12-28 1999-07-19 東芝セラミックス株式会社 溶融るつぼ装置
JP2620606B2 (ja) 1990-05-16 1997-06-18 東洋炭素株式会社 高純度可撓性膨張黒鉛シート及びその製造方法
JPH0739614Y2 (ja) 1993-04-12 1995-09-13 日本ピラー工業株式会社 クッション材
JPH07118067A (ja) 1993-10-22 1995-05-09 Toyo Tanso Kk 膨張黒鉛成形体の製造方法
JPH08333171A (ja) 1995-05-31 1996-12-17 Toyo Tanso Kk 離型シート及びこれを用いたセラミックス焼結法
JP2923260B2 (ja) 1997-03-19 1999-07-26 東洋炭素株式会社 単結晶引上装置、高純度黒鉛材料及びその製造方法
GB2331985B (en) 1997-12-03 2001-11-21 Tosoh Corp High purity transparent silica glass and process for producing same
JP3410380B2 (ja) 1999-03-05 2003-05-26 東洋炭素株式会社 単結晶引上装置及び高純度黒鉛材料
JP2001261481A (ja) 2000-01-11 2001-09-26 Toyo Tanso Kk 炭素質ルツボの内面保護シート
FR2818666B1 (fr) 2000-12-27 2004-02-06 Snecma Moteurs Protection d'un bol en materiau carbone, notamment en composite c/c, destine a recevoir un creuset, tel qu'un creuset en silice pour le tirage de silicium
JP2003127267A (ja) 2001-10-29 2003-05-08 Fukui Prefecture 耐熱離型シートおよびその製造方法
DE10204468C1 (de) 2002-02-05 2003-06-18 Sgl Carbon Ag Verfahren zur Herstellung von hochreinen Verschleißeinlagen, nach dem Verfahren erhältliche Verschleißeinlage und deren Verwendung
JP2004075521A (ja) 2002-06-18 2004-03-11 Toyo Tanso Kk 可撓性を有する高純度膨張黒鉛シート及びその製造方法並びに該シートを用いたカーボンルツボの中敷
KR100642923B1 (ko) 2002-06-18 2006-11-03 도요탄소 가부시키가이샤 가요성을 갖는 고순도 팽창 흑연시트와 그 제조방법, 및상기 시트를 이용한 카본 도가니의 내층
JP3691836B1 (ja) 2004-08-27 2005-09-07 東洋炭素株式会社 膨張黒鉛シート
JP4565159B2 (ja) 2005-10-14 2010-10-20 独立行政法人産業技術総合研究所 温度定点セル、温度定点装置および温度計校正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167742A (ja) 1996-12-17 1998-06-23 Tosoh Corp 不透明石英ガラス円筒の製造方法
JPH11228166A (ja) 1997-12-03 1999-08-24 Tosoh Corp 高純度透明石英ガラスおよびその製造方法
JPH11278857A (ja) 1998-03-30 1999-10-12 Tosoh Corp シリカガラスの製造方法
JP2003252615A (ja) * 2002-03-01 2003-09-10 Toyo Tanso Kk 膨張黒鉛シートの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108572A1 (ja) * 2012-01-18 2013-07-25 旭硝子株式会社 離型シート及びガラス成形品の成形方法
JP6490881B1 (ja) * 2017-10-27 2019-03-27 日本碍子株式会社 配向セラミック焼結体の製法及びフラットシート
WO2019082916A1 (ja) * 2017-10-27 2019-05-02 日本碍子株式会社 配向セラミック焼結体の製法及びフラットシート
JP2019081704A (ja) * 2017-10-27 2019-05-30 日本碍子株式会社 配向セラミック焼結体の製法及びフラットシート

Also Published As

Publication number Publication date
US8097331B2 (en) 2012-01-17
US20090324886A1 (en) 2009-12-31
TW200806598A (en) 2008-02-01
CN101489943A (zh) 2009-07-22
KR101331647B1 (ko) 2013-11-20
KR20090046748A (ko) 2009-05-11
TWI391352B (zh) 2013-04-01
EP2055681A1 (en) 2009-05-06
JP2008031020A (ja) 2008-02-14
JP4388041B2 (ja) 2009-12-24
EP2055681A4 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5586469B2 (ja) 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法
WO2008015952A1 (fr) Feuille de démoulage
TWI410533B (zh) A protective sheet for crucible and a crucible device for protecting the sheet with the crucible
KR100257657B1 (ko) 팽창흑연제 밀봉소재 및 그 제조방법
JP2009522808A (ja) 黒鉛材料から製造されたマイクロチャネルヒートシンク
JP2008031020A5 (ja)
TW201523717A (zh) 金屬製硏磨墊及其製造方法、以及觸媒支援型之化學加工方法
JP2006062922A (ja) 膨張黒鉛シート
JPWO2012132390A1 (ja) 炭素質フィルムの製造方法、およびグラファイトフィルムの製造方法、並びにロール状高分子フィルムおよびロール状炭素質フィルム
TW201410601A (zh) 軟性石墨紙及其製造方法及其增厚結構
JP2008019137A (ja) るつぼ用保護シート
CN108291290B (zh) 金属与碳纤维的复合材料的制造方法
JP4402149B2 (ja) 加圧方法
JP5271795B2 (ja) 膨張黒鉛シートの使用方法及びシリコンの製造方法
WO2016148276A1 (ja) ホットプレス装置、及び焼結体の製造方法
JP2012106929A (ja) 多孔質体の製造方法
JP2008162893A5 (ja)
JP2001048659A (ja) ホットプレス装置、及びこれを用いた炭化ケイ素焼結体の製造方法
JP2021091564A (ja) 膨張黒鉛シート用材料、膨張黒鉛シート、膨張黒鉛シート用材料の製造方法及び膨張黒鉛シートの製造方法
JP2008266061A (ja) 膨張黒鉛シート及びこの膨張黒鉛シートを用いた炭素質ルツボの保護方法並びに単結晶引き上げ装置
JP2012091974A (ja) セラミックス材と金属材との接合体およびその製造方法
JP5782343B2 (ja) 炭素質フィルムの製造方法、及びグラファイトフィルムの製造方法
JP2008019138A (ja) るつぼ用保護シート
JP5237189B2 (ja) 膨張黒鉛シートの使用方法及びシリコンの製造方法
JP3157809U6 (ja) 黒鉛材料から製造されたマイクロチャネルヒートシンク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027632.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087028847

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12375822

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007791349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007791349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU