WO2007119755A1 - モータ制御装置及びこれを使用した電動パワーステアリング装置 - Google Patents

モータ制御装置及びこれを使用した電動パワーステアリング装置 Download PDF

Info

Publication number
WO2007119755A1
WO2007119755A1 PCT/JP2007/058005 JP2007058005W WO2007119755A1 WO 2007119755 A1 WO2007119755 A1 WO 2007119755A1 JP 2007058005 W JP2007058005 W JP 2007058005W WO 2007119755 A1 WO2007119755 A1 WO 2007119755A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
current
motor
phase
command value
Prior art date
Application number
PCT/JP2007/058005
Other languages
English (en)
French (fr)
Inventor
Tomohiro Miura
Masahiro Maeda
Yousuke Imamura
Lilit Kovudhikulrungsri
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to EP07741441A priority Critical patent/EP2012424A1/en
Priority to US12/296,661 priority patent/US8080957B2/en
Priority to JP2008510970A priority patent/JP4894856B2/ja
Publication of WO2007119755A1 publication Critical patent/WO2007119755A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor

Definitions

  • the present invention relates to a motor control device that controls a so-called harmonic motor, which is a three-phase brushless motor in which a harmonic component is superimposed on an induced voltage, and an electric power steering device using the same.
  • phase current command value of each phase of the motor using vector control previously proposed by the present applicant is proposed.
  • Dq voltage calculation unit for calculating voltage ed and eq as axis components
  • q-axis target current calculation unit for calculating current command value Iqref as voltage ed and eq force q-axis component
  • current command as d-axis component
  • Idref current command
  • Motor drive control device and a phase current command calculation unit that calculates the phase current command value of each phase from Iqref and Idref is known (for example, see JP 2004- 201487).
  • the motor drive voltage waveform necessary for energizing the current is greatly distorted according to the harmonic of the induced voltage, and the power supply voltage Have
  • the motor drive voltage waveform that effectively uses the power supply voltage means that the voltage synthesis vector of the three-phase drive voltage is constant.
  • the three-phase motor induced voltage waveform is converted into two-axis rotation coordinates, so that the fifth and seventh harmonic components related to the motor torque are contained in FIG.
  • the induced voltages EMFu, EMFv and EMFw are converted to the induced voltages e and d on the dq axis of the rotor rotating coordinate system, the induced voltages e and e are 6 times the electrical angular velocity as shown in Fig. 19, and qdq
  • the sine waveform is 90 degrees out of phase.
  • the induced voltages e and e on the dq axis are constant values.
  • q-axis current I is calculated according to the following formula (2), q-axis current I is 6 q q as shown in Fig. 20.
  • T is the motor torque
  • is the motor mechanical angular velocity
  • is the motor torque constant
  • i is the motor mt ref motor torque command current
  • i is the U phase current
  • i is the V phase current
  • i is the W phase current
  • e is U phase induced voltage (E MF)
  • EMF V phase induced voltage
  • EMF W phase induced voltage
  • I is q-axis current
  • I d
  • V w q d axis current e is q axis induced voltage (EMF)
  • e is d axis induced voltage (EMF).
  • the motor drive voltage at this time is as shown in FIG. 21 when calculated from the motor characteristic equation (3) below.
  • the present applicant firstly used a conversion table based on the rotation angle ⁇ e of the rotor and the electrical angular speed co e, and the back electromotive force ea, eb, ec is calculated, and these counter electromotive voltages ea, eb, ec are made to be a high torque torque by making the square wave or pseudo-rectangular wave of the nth harmonic, and the counter electromotive voltages ea, eb, ec are converted into three-phase Z2-phase.
  • D-axis counter electromotive voltage ed and q-axis counter electromotive voltage eq are calculated, d-axis command value current Idref is calculated based on torque command value Tref and electrical angular velocity ⁇ e, and torque ripple is suppressed.
  • the q-axis command value current Iqref is calculated based on the following equation (1) by applying the motor energy balance equation, and these d-axis
  • the command value current Idref and q-axis command value current Iqref are converted into 2-phase and Z3-phase to calculate a to c-phase current command values, and feedback control is performed based on these a to c-phase current command values to A motor driving device and an electric power steering device that drive a motor are proposed (see Japanese Patent Application Laid-Open No. 2006-158198).
  • Qd dref qref is calculated to determine the motor torque from the pressures e and e and the d-axis current command value I, so that the induced voltages e and e are a function of the motor electrical angle ⁇ e.
  • the present invention has been made by paying attention to the unsolved problems of the conventional example described above, and actively controls the d-axis current Id without involving the generated torque, thereby driving the motor.
  • the first object of the present invention is to provide a motor control device and an electric power steering device using the motor control device that can shape the voltage waveform, thereby suppressing the fluctuation of the voltage synthesis vector and improving the motor output.
  • the voltage that can be applied to the U, V, and W phases of a three-phase brushless motor is 0 to VR.
  • the phase voltages Vu, Vv, and Vw are It becomes a three-phase vector representation shifted by 120 degrees.
  • the range of the voltage vector that can be taken by the combined vector of the phase voltages Vu, Vv, and Vw is the hatched region in FIG. 23, and the region in which the absolute value of the combined vector can be constant is the power supply voltage X Up to 3Z2 range. For this reason, by setting the absolute value of the combined vector to a neighborhood value including 3Z2 times the power supply voltage, the power supply voltage can be used effectively with the absolute value of the combined vector being constant.
  • the command value calculation unit calculates a d-q axis induced voltage calculation unit that calculates a d-axis induced voltage and a q-axis induced voltage, which are d-axis component and q-axis component of the induced voltage, from each phase induced voltage of the electric motor,
  • a d-q-axis current command value calculator that calculates a d-axis current command value and a q-axis current command value based on the d-axis induced voltage, the q-axis induced voltage, and the current command value;
  • Q-axis induced voltage calculator is motor electrical angle, d-axis electrical
  • the d-axis induced voltage and the q-axis induced voltage are calculated using the current value and the q-axis current value.
  • the dq-axis induced voltage calculation unit includes the d-axis current command value and the q-axis current command value or Based on the command value information corresponding to the d-axis current command value and q-axis current command value and the motor electrical angle, it is configured to calculate the d-axis induced voltage and q-axis induced voltage! It is characterized by that.
  • the motor drive control device is characterized in that, in the invention according to any one of claims 9 to 12, the electric motor is a brushless motor.
  • the motor drive control device is the invention according to any one of claims 9 to 13, wherein the induced voltage of the electric motor includes a harmonic wave component in a rectangular wave induced voltage and a sine wave.
  • the electric motor since the electric motor is a brushless motor, the induced voltage of the brushless motor is set to a rectangular wave or a sine wave.
  • the harmonic component is included so as to increase the primary component (fundamental wave component) of the induced voltage between the coil phases by using a pseudo-rectangular wave that contains a harmonic component
  • the magnitude of the induced voltage constant Since the primary component (fundamental wave component) is dominant, the induced voltage constant increases as the primary component (fundamental wave component) of the interphase induced voltage increases.
  • the torque relational expression of the brushless motor is expressed by the following formula (2).
  • the induced voltage constant K and the torque constant K of the motor are the same value. In addition to the effect of improving the torque performance of the motor, it is possible to suppress torque ripple even when harmonics are contained by using the above drive control.
  • the electric power steering apparatus controls the drive of the electric motor that generates a steering assist force for the steering system by the motor drive control apparatus according to any one of claims 9 to 14. It is characterized by having made it.
  • An induced voltage calculation unit that calculates an induced voltage for compensation based on at least one of a shaft current and a q-axis current value, and the motor angular velocity and the motor angle, and the induced voltage of the electric motor is calculated as the induced voltage calculation unit. It is characterized by feedforward compensation using the compensation induced voltage calculated in (1).
  • At least the d-axis current value and the q-axis current value calculated along the d-q coordinate rotating at the frequency corresponding to the motor angular velocity are reduced in the induced voltage calculation unit.
  • an induced voltage for compensation is generated based on the motor angular speed and the motor angle, and feedforward control is performed using the generated induced voltage for compensation. Therefore, induced voltage compensation due to induced voltage distortion at high rotation speed and high current. The error can be reduced, the actual current follows the current command value, the expected torque can be obtained, and the harmonic vibration due to the compensation error can be reduced.
  • the motor drive control device is the invention according to any one of claims 16 to 18, wherein at least one of a d-axis current and a q-axis current input to the induced voltage calculation unit. Is at least one of a d-axis current value and a q-axis current value obtained by rotating the detected phase current detected by the current detection unit at a frequency corresponding to the motor angular velocity by the d-q coordinate and the n-phase Z2-phase conversion.
  • the induced voltage waveform is either a rectangular wave or a pseudo-induced voltage including a harmonic component in a sine wave, compared with the case of controlling with a sine wave current or a sine wave voltage. If the current peak value or voltage peak value is the same, the square wave current or rectangle has a larger effective value for the voltage, so that a larger output (power) can be obtained.
  • the electric power steering device is the motor drive control device according to any one of claims 16 to 21, wherein the electric motor that generates a steering assist force to the rudder system is used.
  • the feature is that the drive is controlled.
  • the target current setting means does not cause torque fluctuation, and the absolute value of the combined vector of each phase drive voltage is substantially constant, and includes a proximity value including a value 3Z2 times the power supply voltage. Therefore, the power supply voltage can be effectively used while the torque is kept constant.
  • the vector control current command value calculation unit is based on the motor electrical angle, d-axis current value, and q-axis current value! Since the d-axis induced voltage and the q-axis induced voltage are calculated, it can be calculated including distortion of the induced voltage with respect to the motor phase current, and the calculated d-axis induced voltage and q-axis induced voltage can be By using it when calculating the shaft current command value, the effect of being able to effectively suppress the torque ripple against the distortion of the induced voltage can be obtained.
  • the induced voltage compensation error which is the disturbance of the current control system, can be reduced, and the actual current can be reduced to the current command value. In this way, the expected torque can be obtained and the harmonic vibration caused by the compensation error can be reduced.
  • FIG. 2 is a block diagram showing an example of a motor control device.
  • FIG. 6 is a characteristic diagram showing a d-axis current DC component calculation map.
  • FIG. 8 is a waveform diagram for explaining the basic principle of the present invention.
  • FIG. 10 is a waveform diagram showing voltage waveforms of a d-axis voltage and a q-axis voltage according to the present invention.
  • FIG. 11 is a waveform diagram showing an absolute value waveform of a voltage vector according to the present invention.
  • FIG. 12 is an explanatory diagram showing a voltage vector locus during ⁇ - ⁇ conversion.
  • FIG. 15 is a waveform diagram showing waveforms of d, q-axis current and d, q-axis voltage of a conventional example.
  • FIG. 16 is a waveform diagram showing motor terminal voltage waveforms when the lead angle control of the conventional example is not performed and when it is performed.
  • FIG. 17 is a characteristic diagram comparing the characteristics of the present invention and the conventional example.
  • FIG. 18 is a waveform diagram showing an induced voltage waveform of a conventional harmonic motor.
  • FIG. 19 is a waveform diagram showing a dq conversion waveform of a conventional harmonic motor.
  • FIG. 20 is a waveform diagram showing current waveforms on the d-axis and q-axis of a conventional harmonic motor.
  • FIG. 21 is a waveform diagram showing voltage waveforms of a d-axis voltage and a q-axis voltage of a conventional harmonic motor.
  • FIG. 22 is a waveform diagram showing an absolute value waveform of a voltage synthesis vector of a conventional harmonic motor. ⁇ 23] An explanatory diagram for explaining the basic principle of the present invention.
  • FIG. 24 is a block diagram showing a specific configuration of the control device according to the second embodiment of the present invention.
  • FIG. 25 is a block diagram showing a specific configuration of a vector control current command value calculation unit in the second embodiment.
  • FIG. 27 is a characteristic diagram showing an actual measurement result of the second embodiment.
  • ⁇ 28] A block diagram showing a specific configuration of the control device according to the third embodiment of the present invention.
  • FIG. 29 is a block diagram similar to FIG. 28, showing a modification of the third embodiment.
  • FIG. 30 is a block diagram showing a specific configuration of a control device representing another modification example of the third embodiment.
  • FIG. 31 is a block diagram showing a specific configuration of a control device representing still another modification example of the third embodiment.
  • FIG. 1 is an overall configuration diagram showing a first embodiment when the present invention is applied to an electric power steering apparatus.
  • 1 is a steering wheel, and a driver force also acts on the steering wheel 1.
  • the steering force is transmitted to the steering shaft 2 having the input shaft 2a and the output shaft 2b.
  • the steering shaft 2 has one end of the input shaft 2a connected to the steering wheel 1 and the other end connected to one end of the output shaft 2b via a steering torque sensor 3 as steering torque detecting means.
  • the steering force transmitted to the output shaft 2b is transmitted to the lower shaft 5 via the universal joint 4, and further transmitted to the pion shaft 7 via the universal joint 6.
  • the steering force transmitted to the pinion shaft 7 is transmitted to the tie rod 9 through the steering gear 8 to steer a steered wheel (not shown).
  • the steering gear 8 is configured in a rack and pion type having a pinion 8a connected to the pinion shaft 7 and a rack 8b meshed with the pinion 8a.
  • the transmitted rotary motion is converted into straight motion in rack 8b.
  • a steering assist mechanism 10 for transmitting a steering assist force to the output shaft 2b is connected to the output shaft 2b of the steering shaft 2.
  • the steering assist mechanism 10 includes a reduction gear 11 connected to the output shaft 2b and a three-phase brushless motor 12 that generates a steering assist force connected to the reduction gear 11.
  • the steering torque sensor 3 detects the steering torque applied to the steering wheel 1 and transmitted to the input shaft 2a.
  • the torsion bar (not shown) in which the steering torque is inserted between the input shaft 2a and the output shaft 2b is used. It converts to angular displacement, and this torsional angular displacement is converted to resistance change or magnetic change and detected.
  • the three-phase brushless motor 12 includes a U-phase coil Lu, a V-phase coil Lv, and one end of a W-phase coil Lw that are connected to each other to form a star connection. And the other end of Lw are connected to the steering assist control device 20, and the motor drive currents Iu, lv and Iw are individually supplied.
  • the three-phase brushless motor 12 includes a rotor position detection circuit 13 including a resolver, a rotary encoder, and the like that detect the rotational position of the rotor.
  • the steering assist control device 20 includes a steering torque T and a vehicle speed sensor detected by the steering torque sensor 3.
  • the vehicle speed Vs detected by the sensor 21 is input, the rotor rotation angle ⁇ detected by the rotor position detection circuit 13 is input, and further supplied to each phase coil Lu, Lv and Lw of the three-phase brushless motor 12.
  • Motor drive current detection values Iud, Ivd, and Iwd output from a motor current detection circuit 22 that detects motor drive currents Iu, Iv, and Iw are input.
  • the steering assist control device 20 calculates a steering assist target current value based on the steering torque T, the vehicle speed V, the motor current detection values Iud, Iv d, Iwd, and the rotor rotation angle ⁇ , and outputs a motor voltage command.
  • the control arithmetic unit 23 that outputs the values Vu, Vv, and Vw, the motor drive circuit 24 that includes a field effect transistor (FET) that drives the three-phase brushless motor 12, and the phase that is output from the control arithmetic unit 23
  • a FET gate drive circuit 25 for controlling the gate current of the field effect transistor of the motor drive circuit 24 based on the voltage command values Vu, Vv and Vw.
  • the control arithmetic unit 23 uses the excellent characteristics of vector control to generate torque fluctuations in the three-phase brushless motor 12, and the absolute value of the combined vector of each phase drive voltage is After performing weak disclosure control to determine the target current values I ( ⁇ ) and ⁇ ( ⁇ ) of vector control d and q components that are approximately constant and match the neighborhood value including 3Z2 times the power supply voltage ,
  • target current values I ( ⁇ ), ⁇ ) are the target current values I d q for each phase corresponding to the excitation coils Lu to Lw.
  • Target current setting unit 30 as target current setting means for performing vector control that is converted into u *, Iv * and Iw * and output, and each phase current command value Iu, Iv output from this target current setting unit 30
  • a drive voltage control unit 40 as a drive voltage control means for controlling the drive voltage by performing current feedback processing with the motor current detection values Iud, Ivd and Iwd detected by the motor current detection circuit 22 with * and Iw *. Speak.
  • the torque of the three-phase brushless motor 12 does not cause torque fluctuation, and the absolute value of the combined vector of each phase drive voltage is substantially constant and coincides with a neighboring value including a value 3Z2 times the power supply voltage d Basics of field-weakening control to determine the axis target current i ( ⁇ ) and q-axis target current i ( ⁇ )
  • the first condition that does not cause torque fluctuation is that the excitation balance of the three-phase brushless motor 12 is set so that the left side ⁇ of the energy balance equation (1) is constant.
  • the q-axis current i can be obtained from the constant torque condition of the equation (1) according to the following equation (5).
  • the d-axis EMF component e e Z ⁇
  • the q-axis EMF component e e
  • the condition that the absolute value of the combined vector of each phase drive voltage, which is the second condition, is substantially constant and matches the neighborhood value including the power supply voltage X3 ⁇ 2 times is obtained by using a motor drive circuit 24 described later. This is a condition for effectively using the power supply voltage (battery voltage VR) supplied from the configured inverter.
  • the voltage that can be applied to each phase U, V, W phase of the 3-phase brushless motor 12 is 0 to VR, and when each phase is expressed as a voltage vector, the vectors V, V, As shown in Fig. 23, V is a three-phase vector representation shifted by 120 degrees from each other.
  • the range of voltage vectors that can be taken by the combined vectors of these vectors V, V, and V is the hatched range in Fig. 23.
  • the range in which the absolute value of the combined vector can be constant is ⁇ power supply voltage X 3Z2 Therefore, in order to make effective use of the maximum voltage while satisfying the absolute value of the combined vector to be almost constant, set the absolute value to the power supply voltage X 3Z2 times.
  • It is desirable that the vector locus drawn by the absolute value
  • the vector locus is the circle closest to the circle condition. It is set to change on the tangential line (on the normal line of the DC component of d-axis voltage Vd and q-axis voltage Vq).
  • the hatched triangle T2 consisting of the amplitude of the AC component V of the pressure Vq is similar to the qAC
  • Equation 6 [0061] Since the constant force q-axis current i ( ⁇ ) is uniquely determined by Equation (6) as described above, the d-axis current i ( ⁇ ) is satisfied so as to satisfy the second condition. ) Must be set.
  • the d-axis voltage V and q-axis voltage V are the d-axis current i and q-axis current i d q d in the above-mentioned equation (3).
  • the flow i ( ⁇ ) can be approximated by the following equations (8) and (9).
  • equation (8) if defined in the form of the following equation (10), it can be expressed as a d-axis current i ( ⁇ ) having an antiphase component of the q-axis current i ( ⁇ ).
  • I is the DC component of the d-axis current
  • I is the amplitude coefficient that determines the amplitude of the d-axis current.
  • phase and amplitude terms which are the parameters of the decision, on the Iq model is after the 12th order component and is ignored on the Iq model. Therefore, the d-axis current information input to the Iq model is only the DC value I, and the Iq model in Eq. (9) can be calculated.
  • the d-axis EMF component e and the q-axis EMF component e are also expressed as d0 q0 as shown in the following equations (11) and (12).
  • Vd ( ⁇ ) V dDC + v dc cos (6 ⁇ ) + v ds sin (66)
  • Vq (9) V qDC + v qc cos (6 ⁇ ) + v qs sin (6 ⁇ )
  • the target current setting unit 30 is configured as shown in FIG. That is, the target current setting unit 30 receives the steering torque T detected by the steering torque sensor 3 and the vehicle speed Vs detected by the vehicle speed sensor 21, and calculates the steering assist current command value I based on these inputs.
  • the electrical angle conversion unit 32 that converts the rotor rotation angle ⁇ detected by the rotation angle detection circuit 13 into an electrical angle ⁇ e and the electrical angle ⁇ e output from the electrical angle conversion unit 32 are differentiated to obtain the electrical angular velocity co e. Based on the differentiation circuit 33 to be calculated, the steering auxiliary current command value I, and the electrical angular velocity co e, d ref
  • d-axis target current calculation unit 34 d-axis target current i ( ⁇ ) and q-axis target current calculation
  • a q-axis target current i (0) output from the output unit 36 is provided with a two-phase Z3-phase conversion unit 37 that converts the three-phase current command values Iu, Iv *, and Iw *.
  • the steering assist current command value calculation unit 31 described above refers to the steering assist current command value calculation map shown in FIG. 4 based on the steering torque T and the vehicle speed Vs, and the steering assist current command value I
  • the steering assist current command value calculation map takes the steering torque T on the horizontal axis, the steering assist current command value I on the vertical axis, and the vehicle speed detection value V as a parameter.
  • ref is set to increase steeply, and multiple characteristic curves are set so that the slope becomes smaller as the vehicle speed increases.
  • the d-axis target current calculation unit 34 calculates the steering assist current command value as shown in FIG. Steering assist current command value I output from section 31 and port ref output from electrical angle conversion section 32
  • This d-axis target current calculation unit 34 is configured based on the input steering assist current command value I.
  • D-axis amplitude coefficient calculation unit 34b for calculating the determined amplitude coefficient I, and steering assist current command value aAmp
  • pseudo-q-axis current calculation unit 34c that calculates pseudo-q-axis current i ( ⁇ is ref q based on rotor electrical angle ⁇ e and induced voltage model EMF, and pseudo-q-axis calculated by pseudo-q-axis current calculation unit 34c Based on the current i ( ⁇ ) '! / D d-axis anti-phase current component I (d-axis current amplitude component calculation unit 34d for calculating ⁇ Y d-axis dAmp ad Calculates d-axis target current ⁇ (0) based on d-axis DC component I, d-axis vibration d dDC width coefficient I, and d-axis antiphase component
  • the d-axis DC component calculation map referred to by the d-axis DC component calculation unit 34a shows that the steering assist current command value I is between "0" and a predetermined value I as shown in FIG.
  • a characteristic line is set as shown in FIG.
  • This d-axis amplitude coefficient calculation map is based on the variables in equation (14) described above, and the steering assist current command value I and amplitude coefficient I when simulation is performed to maximize the motor output at each rotation speed.
  • the d-axis current calculation unit 34e includes a d-axis DC component I, a d-axis amplitude coefficient I, and a d-axis dDC dAmp amplitude component anti-phase component i (
  • the d-axis current command value ⁇ ( ⁇ ) is calculated by performing the calculation of the equation (10) based on d ⁇ y.
  • the q-axis target current calculation unit 36 calculates the d-axis current command value i ( ⁇ ) and the electrical angular velocity ⁇ de of the rotor.
  • the voltage control unit 40 detects the motor phase current detection value I flowing in each phase coil Lu, Lv, Lw detected by the current detection circuit 22 from the current command values Iu *, Iv *, Iw * supplied from the target current setting unit 30.
  • a PI control unit 42 that performs integration control and calculates command voltages Vu, Vv, and Vw.
  • the motor drive circuit 24 includes switching elements Qua, Qub, Qva, Qvb and Qwa, which are composed of N-channel MOSFETs connected in series corresponding to the phase coils Lu, Lv and Lw. It has an inverter configuration in which Qwb is connected in parallel, and the connection point of switching elements Qua and Qub, the connection point of Qva and Qvb, and the connection point of Qwa and Qwb are the neutral points of Lu, Lv and Lw, respectively. Connected to the opposite side of Pn!
  • the PWM (pulse width modulation) signal output from the FET gate drive circuit 25 is supplied to the gates of the switching elements Qua, Qub, Qva, Qvb and Qwa, Qwb that constitute the motor drive circuit 24. .
  • the steering wheel 1 when the steering wheel 1 is steered, the steering torque T at that time is detected by the steering torque sensor 3 and the vehicle speed V is detected by the vehicle speed sensor 21.
  • the detected steering torque T and vehicle speed V are input to the steering auxiliary current command value calculation unit 31 in the target current setting unit 30 of the control calculation device 23, so that the steering auxiliary current command value calculation unit 31 Referring to the steering assist current command value calculation map in Fig. 4, calculate the steering assist current command value I ref.
  • the rotor position signal detected by the rotor position detection circuit 13 is supplied to the electrical angle conversion unit 32 and the electrical angle ⁇ 3
  • the differentiation circuit 3 is differentiated by the differentiation circuit 3 to calculate the electrical angular velocity ⁇ , and the electrical angle ⁇ and the electrical angular velocity ⁇ are determined by the induced voltage model e e e
  • D-axis EMF component e ( ⁇ ) and q-axis EMF component e ( ⁇ ) are calculated and supplied to d0 q0
  • the d-axis current calculation unit 34 refers to the d-axis DC component calculation map of FIG. 6 based on the steering auxiliary current command value I in the d-axis DC component calculation unit 34a.
  • the d-axis amplitude coefficient calculator 34b calculates the q-axis amplitude ref in Fig. 7 based on the steering assist current command value I.
  • the d-axis amplitude coefficient I that satisfies the above equation (7), which is the relational expression of the amplitudes of the d-axis voltage Vd and the q-axis voltage Vq, is calculated.
  • the pseudo q-axis current calculation unit 34c calculates the pseudo q-axis current i based on the equation (15), and then the d-axis current amplitude component calculation unit 34d calculates the inverse of the d axis based on the equation (16).
  • the phase component i ( ⁇ ) ′ is calculated.
  • the d-axis target current calculation unit 34e calculates the d-axis target current i (d ⁇ ) by performing the calculation of the equation (10), and the calculated d-axis target current i ( ⁇ ) is calculated as the q-axis.
  • the q-axis current calculation unit 36 calculates the q-axis target current i ( ⁇ ) that does not cause torque fluctuation by performing the calculation of the equation (6), and calculates the q-axis target current i ( ⁇ ) to 2 Supply to phase Z3 phase conversion section 37.
  • the q-axis target current i (0) calculated by the unit 36 has an opposite phase that is approximately 180 degrees out of phase, and the d-axis voltage Vd and the q-axis voltage Vq are as shown in FIG. Similarly, the phase is approximately 180 degrees out of phase.
  • of the voltage synthesis vector of the d-axis voltage Vd and q-axis voltage Vq is in the vicinity of the power supply voltage X 3Z2 [V] as shown in Fig. 11 with respect to the electrical angle ⁇ .
  • the voltage synthesis vector I V I can be suppressed and maintained at a substantially constant value, and the power supply voltage can be used effectively. At this time, the voltage vector locus when the ⁇ - ⁇ conversion is performed can be substantially circular as shown in FIG.
  • the terminal voltage waveform of the motor drive voltage applied to each excitation coil Lu, Lv, and Lw of the three-phase brushless motor 12 is the DC component I of the d-axis current in the first term on the right-hand side of the above equation (10).
  • the three-phase brushless motor 12 provides optimal steering assistance according to the steering torque.
  • the steering wheel 1 can be steered satisfactorily by generating force.
  • the torque generated by the three-phase brushless motor 12 is controlled to be constant, a good steering feeling can be obtained without giving vibration or the like to the steering wheel 1.
  • the terminal voltage waveform of the motor drive voltage applied to each excitation coil Lu, Lv, and Lw of the motor 12 prevents the peak from occurring near the power supply voltage as shown in Fig. 14, and uses the voltage as a flat characteristic.
  • the motor rotation performance can be improved by improving the rate.
  • the d-axis current and the q-axis current are as shown in Fig. 15 (a), and the d-axis voltage Vd and the q-axis voltage Vq are shown in Fig. 15 (b) accordingly. It becomes like this.
  • Fig. 16 (a) when the terminal voltage waveform does not perform advance angle control and as shown in Fig. 16 (b) when advance angle control is performed, both voltage waveforms near the power supply voltage are shown. Since it has two peaks, the effective value of the terminal voltage of each phase decreases, and the motor rotation performance decreases.
  • the amplitude coefficient I can be easily obtained without performing the complicated calculation of equation (14).
  • aAmp can be calculated.
  • the d-axis target current i ( ⁇ ) and the q-axis target current i (dq ⁇ ) are converted into the three-phase target current Iu by the two-phase Z3-phase converter 37. *, Iv * and Iw *
  • the force described in the case where the voltage is supplied to the voltage control unit 40 is not limited to this.
  • the two-phase Z3 phase conversion unit 37 is omitted, and the current is replaced.
  • the motor currents Idu, Id v, and Idw detected by the detection circuit 22 are supplied to the 3-phase Z2-phase conversion unit to convert them into d-axis detection current and q-axis detection current, and the converted d-axis detection current and q-axis detection current After calculating the deviation from the d-axis target current i ( ⁇ ) and q-axis target current i ( ⁇ ) calculated by the target current setting unit 30, the deviation is converted into a two-phase Z3-phase dq
  • the force described in the case where the present invention is applied to the electric power steering apparatus is not limited to this, and is not limited to this.
  • the present invention can be applied to a device to which a three-phase brushless motor is applied, such as a device.
  • the first embodiment described above corresponds to the inventions according to claims 1 to 8 in the claims.
  • the steering assist control device 20 force steering torque T detected by the steering torque sensor 3 and the vehicle speed V detected by the vehicle speed sensor 21 in the first embodiment described above are input.
  • the angle detection signal ⁇ m detected by the motor position detection circuit 13 is input, and the electrical angle ⁇ output from the electrical angle calculation unit 50 that calculates the electrical angle ⁇ e based on the angle detection signal ⁇ m
  • the motor drive current output from the motor current detector 57 that detects the motor drive currents la and Ic supplied to the phase coils La and Lc of the three-phase brushless motor 12 in the inverter circuit 56 to be described later.
  • the detected values I, 1 and I estimated from the motor drive currents la and Ic described above are input.
  • the steering assist control device 20 is based on the steering torque T and the vehicle speed V, and the steering assist current command value I
  • Steering assistance dDC dA P that computes d-axis DC current command value I and d-axis current amplitude command value i based on computed steering assistance current command value I ref
  • A-phase current command value I for electric motor 12 b-phase current command value I and c-phase current finger aref bref
  • a vector control current command value calculation unit 52 for calculating the command value I.
  • the steering assist current command value calculation unit 51 refers to the steering assist current command value calculation map shown in FIG. 4 described above based on the steering torque T and the vehicle speed V, and the steering assist current command value I And ref shown in FIG. 6 and FIG. 7 based on the calculated steering assist current command value I.
  • the d-axis DC current command value I and the d-axis current amplitude command value i are calculated with reference to the d-axis DC current command value calculation map and the d-axis current amplitude command value calculation map shown in.
  • the vector control current command value calculation unit 52 is provided with the steering auxiliary current command value I, the d-axis DC current command value I, and the d ref dDC output from the steering auxiliary current command value calculation unit 51.
  • Axis current amplitude command value I is input, electrical angle ⁇ e and parameter setting unit 71 or dAMP described later D-axis and q-axis induced voltage e based on distortion parameters K, ⁇ , r? 1, ⁇ 5
  • the d-q-axis induced voltage calculation unit 61 performs induction by calculating the following formulas (17) and (18) representing the d-axis induced voltage calculation formula and the q-axis induced voltage calculation formula. Calculate d-axis induced voltage e and q-axis induced voltage e taking into account the voltage distortion.
  • R? L, r? 5 are composed of, for example, a microcomputer included in the dq axis induced voltage calculator 61.
  • each current detection value I of the electric motor 12 detected and estimated by the motor current detection unit 57 is set in the parameter setting unit 71.
  • the q-axis current command value calculation unit 62 calculates qref based on the constant torque formula and calculates the q-axis current command value I.
  • This constant torque expression is a relational expression expressed by the following equations (19) and (20) calculated from the energy equation of the motor.
  • T is the motor torque
  • is the motor mechanical angular velocity
  • is the motor torque constant
  • I, I, I mmtabc is the current value of each of the three phases
  • e, e, e are the induced voltages for each phase
  • I, I are d-axis
  • q-axis current e, e, aE bE cE dq dE qE e
  • e is the d-axis
  • q-axis induced voltage dOE qOE considering the strain calculated by the following formulas (21) and (22)
  • the d-axis current command value calculation unit 63 outputs the d-axis induced voltage e dOE output from the dq-axis induced voltage calculation unit 61 in the same manner as the d-axis target current calculation unit 34e in the first embodiment described above. And q-axis induced voltage e and d-axis DC current qOE output from steering assist current command value calculation unit 51
  • I is a parameter that can be arbitrarily determined.
  • I, i, i are the motor applied dDC dAMP qc qs
  • the dq axis induced voltage calculation unit 61 calculates the induced voltage based on the dq axis induced voltage calculation formula.
  • the d-q-axis induced voltage calculation formula for calculating the d-axis induced voltage e d0 and the q-axis induced voltage e is the following (24) and (25) q0
  • Equations (24) and (25) are equations when harmonics are included in the induced voltage, and the harmonic order k is actually controlled by the 7th and subsequent orders due to the upper limit of control response. Is often difficult. Therefore, the higher-order component of the induced voltage is often up to the fifth order, so the description up to the fifth order is used. In addition, since the 3rd harmonic is not converted to torque, it is not considered in the above formulas (2 4) and (25). Confirmed. If the induced voltage is a sine wave, E
  • armature reaction in order to drive an electric motor, a voltage is applied to each phase to generate an electromotive force due to current in each phase coil, which is attached to the rotor.
  • the rotor is rotated and driven using the attractive force and repulsive force of the permanent magnet, but the magnetomotive force generated by the armature current distorts the gap magnetic flux generated from the permanent magnet, resulting in induction.
  • a phenomenon that the voltage is distorted occurs. This is called armature reaction.
  • the armature reaction includes a straight-axis armature reaction and a horizontal-axis armature reaction.
  • Another factor causing torque ripple is the nonlinearity of the stator magnetization characteristics. If the magnetic properties of the stator are linear, the armature magnetomotive force generated by energization can generate an ideal magnetomotive force waveform, but the magnetic properties of the magnetic steel sheet actually used in the stator have linear characteristics. Therefore, the ideal armature magnetomotive force cannot be generated in the high current region, and the peak portion of the composite waveform is distorted, resulting in the generation of torque ripple and the torque sag in the high current region (this is called factor B). To do).
  • Angles ⁇ 1 and ⁇ 5 are distortion parameters determined by the phase current value. By determining this parameter for each phase current by parameter setting unit 71, d-axis induced voltage e and q dOE-axis induced The voltage e can be generated. [0105] The distortion parameter estimation principle and estimation method performed by the parameter setting unit 71 in the present embodiment will be described below.
  • the torque ripple is known to be dominated by the 6th-order component 6 ⁇ of the electrical angle ⁇ e, so the motor torque at a certain phase current is expressed by an approximate expression such as the following equation (26). be able to.
  • q-axis current value I is q-axis current value I calculated by the constant torque formula.
  • the d-axis current I is defined by the above equation (23).
  • All the required distortion parameters can be calculated.
  • the above four new parameters are obtained by repeatedly measuring the torque ripple by changing the q-axis current value I and the d-axis current value I, respectively.
  • the determined distortion parameter is set in the parameter setting unit 71, and the calculation formula of the d-q axis induced voltage calculation unit 61 is changed to the induced voltage calculation formulas (17) and (18) in consideration of the distortion. Then, measure the torque ripple with the actual machine, and finally determine a more effective value while observing the measurement results.
  • i dref q is a value necessary to calculate the d-axis current command value I described above.
  • the determined distortion parameters K, K, r? 1 and r? 5 are set in the parameter setting unit 71.
  • the distortion parameter determined by the determination method described above is set in the parameter setting unit 71.
  • the steering assist current command value calculation unit 51 uses the steering assist current command value calculation map shown in FIG. Refer to the steering assist current command value I
  • the calculated steering assist current command value I is converted into the vector control current command value calculation unit 52 rer.
  • the motor angle detection signal ⁇ m detected by the rotor position detection circuit 13 is supplied to the electrical angle calculation unit 50 and converted into the electrical angle ⁇ e.
  • the steering assist current command value I calculated by the steering assist current command value calculation unit 51, the d rer axis DC current command value I, the d axis current amplitude command value I, and the electrical angle ⁇ e are converted into vector control power dDC dAMP.
  • the flow command value calculation unit 52 is supplied.
  • I and 1 detected by the current detector 57 and I estimated within the detector are converted into the d-axis current value I and the q-axis current value I by the 3 adet cdet bdet phase Z2 phase converter 72. Converted d ⁇ q-axis induced voltage dq
  • the distortion parameters K, K, 7? 1, ⁇ 5 are output according to the input d-axis current value I and dq-axis current value I, which are input to the parameter setting unit 71 included in the calculation unit 41, and d-q-axis induction Voltage performance q 1 5
  • the arithmetic unit 61 calculates the distortion based on the output distortion parameters K, K, 7? 1, 7? 5 and the electrical angle ⁇ e.
  • the d-axis current command value calculation unit 63 uses the steering assist current command value I and the d-axis DC current ref
  • d-axis current amplitude command value i d-axis induced voltage e, q-axis induced voltage e, and dDC dAMP dOE qOE! Calculate the value I.
  • the d-axis current command value I and the steering assist current command value I Ef dOE qOE which does not cause torque fluctuation by performing the calculation of the above equation (18) based on the induced voltages e and e.
  • I, I and I are supplied to the subtraction units 53a, 53b and 53c, and aref bref cref in the motor current detection unit 57.
  • Deviations A la, A lb and A le are calculated. These current deviations A la, A lb and A le are PI-controlled by the PI control unit 54 and converted into voltage command values V, V and V. These voltage commands aref bref cref
  • the PWM controller 55 Based on the values V, V and V, the PWM controller 55 forms a pulse width modulated signal.
  • the three-phase current is supplied to the electric motor 12 by being supplied to the force inverter circuit 56, so that the electric motor 12 is driven and the steering auxiliary force corresponding to the steering auxiliary current command value I is ref.
  • the steering assist force generated by the electric motor 12 is transmitted to the output shaft 2b of the steering shaft 2 via the reduction gear 11, so that the steering wheel 1 can be operated with a light steering force.
  • the d-q axis induced voltage calculator 61 of the vector control current command value calculator 52 uses the d-axis current value and the q-axis current value to generate the d-axis induced voltage e.
  • the d-axis current value and q-axis current value supplied to the parameter setting unit 71 are calculated by estimating the remaining 1-phase current detection value from the 2-phase current detection value and converting the 3-phase Z2 phase. Therefore, it is possible to reduce the manufacturing cost by reducing the number of phase current detection units.
  • FIG. 27 shows the result of actual machine confirmation performed in the configuration of the second embodiment.
  • the torque ripple 6th order component was reduced and the overall torque ripple was also reduced, confirming the effect of this embodiment. It was also confirmed that the average torque increased in the high current region, and an improvement effect on the torque sag due to the nonlinearity of the stator magnetic characteristics was also confirmed f * i.
  • the force is also calculated by calculating the d-axis current command value I according to the equation (9). Therefore, harmonic motor control using the power supply voltage effectively can be performed.
  • the d-axis current amplitude command value i can be easily calculated and dAMP without performing the complicated calculation of the above described equation (14).
  • the force for estimating the induced voltage distortion parameter based on the result of torque ripple measurement with an actual machine for example, when the induced voltage distortion parameter is preliminarily determined by magnetic analysis. Use that parameter.
  • the induced voltage is taken into consideration up to the fifth order. This is not the case when computation is possible.
  • the one-phase current detection value is estimated from the two-phase current detection value actually measured by the parameter setting unit 71 in the dq-axis induced voltage calculation unit 61, and the three-phase Z2-phase conversion
  • the d-axis current value and q-axis current value calculated in the above are explained in detail.
  • the measured 3-phase current detection value is calculated by 3-phase Z2-phase conversion.
  • the d-axis current value and the q-axis current value thus obtained may be used. In this case, the estimation calculation error is eliminated, and the torque ripple can be more effectively suppressed.
  • the d-axis current command value I and the q-axis current command value I Is converted into 3-phase command current value I, 1 and I by 2-phase Z3-phase conversion section 64, and the force is also subtracted section 53 ref aref bref cref
  • the 2-phase Z3-phase conversion section 64 is omitted, and the motor current detection value I detected by the current detection section 57 is used instead. , 1 and the current value I estimated by the detector is supplied to the 3-phase Z2-phase converter, adet Ddet cdet
  • the force described in the case where the present invention is applied to a three-phase brushless motor is not limited to this.
  • the present invention is also applied to an n-phase brushless motor having four or more phases. Can be applied.
  • the force described in the case where the present invention is applied to the electric power steering apparatus is not limited to this, and the in-vehicle electric apparatus such as an electric brake apparatus and other electric apparatuses are not limited thereto.
  • the present invention can be applied to a device to which an n-phase brushless motor such as the above is applied.
  • the induced voltage at the time of high rotation and high current is reduced when the induced voltage compensation error due to the distortion of the electrode becomes remarkably large.
  • the control device 20 includes an angular velocity calculation unit 80, a current command value generation unit 81, a dq-axis current command value calculation unit 82, It comprises a two-phase Z3-phase conversion unit 83, a compensation induced voltage calculation unit 84, a current control unit 85, an addition unit 86, a PWM control unit 87, and an inverter circuit 88.
  • the angular velocity calculation unit 80 is configured to generate an electrical angle ⁇ e and a motor angular velocity com m based on the motor angle ⁇ m detected by the rotor position detection circuit 13 that detects the motor current in the inverter circuit 88. Is calculated.
  • the current command value generation unit 81 receives the steering torque T detected by the steering torque sensor 3 and the vehicle speed Vs detected by the vehicle speed sensor 21, and based on these, the current command value calculation map of FIG. To generate the current command value I for the electric motor 12, and the generated current ref
  • Command value I is output to d-q axis current command value calculation unit 82.
  • the d-q-axis current command value calculation unit 82 includes the d-axis current command value calculation unit 34, the induced voltage model calculation unit 35, and the q-axis current command value calculation unit 36 in the first embodiment described above. D-q ref of the electric motor 12 based on the current command value I generated by the value generator 81
  • Command value I and q-axis current command value I are output to 2-phase Z3-phase conversion unit 83.
  • the 2-phase Z3-phase conversion unit 83 converts the d-axis current command value I and the q-axis current command value I generated by the dq-axis current command value calculation unit 82 into the electrical angle 0 e output from the angular velocity calculation unit 80. Based on drer qref
  • the command values I, 1 and I are output to the current control unit 85.
  • the compensation induced voltage calculation unit 84 is configured to output the d-axis current command value I and the q-axis current command value I output from the d-q-axis current command value calculation unit 82 and the electrical angles 0 e and drer output from the angular velocity calculation unit 80.
  • the motor angular speed com is input, and based on these, the following equation (34) is calculated to calculate the induced voltage compensation values e "a, e” b and e “c of each phase of the electric motor 12, These induced voltage compensation values e "a, b and c are output to the adder 86 as feedforward compensation values.
  • the current control unit 85 includes the subtraction units 33a to 33c and the PI control unit 34 in the second embodiment described above, and the phase current command values I, I and I aref output from the two-phase Z3-phase conversion unit 83. bref and the motor mode detected by the motor current detector 87 provided in the inverter circuit 88 cref Each phase current Ima, Imb, and Imc of the controller 12 is input and the current deviation ⁇ ⁇ to ⁇ ⁇ is calculated.
  • a C aref cref is calculated, and the calculated voltage command values V to V are output to the PWM controller 87.
  • the PWM control unit 87 forms a pulse width modulation (PWM) signal based on the voltage command values V 1, V and V aref bref cref output from the current control unit 85 and outputs the pulse width modulation (PWM) signal to the inverter circuit 88.
  • PWM pulse width modulation
  • phase currents Ima, Imb and Imc corresponding to the phase current command values I, I aref bref and I converted by the two-phase Z3-phase conversion unit 83 are supplied to the electric motor 12.
  • the compensation induced voltage calculation unit 84 is provided in the configuration of the control device 20 in the first and second embodiments described above.
  • the compensation induced voltage calculation unit 84 uses the dq-axis current command value. Based on the d-axis current command value I and q-axis current command value I dref qr calculated by the calculation unit 82 and the electrical angle ⁇ e and the motor angular velocity com m calculated by the angular velocity calculation unit 80,
  • Feedforward compensation is performed with induced voltage compensation values e "a, b, and c according to the waveform, reducing induced voltage compensation error due to induced voltage distortion, which is a disturbance of the current control system that occurs at high rotation and high current.
  • induced voltage compensation values e "a, b, and c are a disturbance of the current control system that occurs at high rotation and high current.
  • the d-axis current command value I and the q-axis current command value I calculated by the d-q-axis current command value calculation unit 82 are supplied to the compensation induced voltage calculation unit 84.
  • the compensation induced voltage calculation unit 84 When to do dref qref
  • the d-q-axis current command value calculation unit 8 2 calculates the q-axis current command value I is the current index input from the current command value generation unit 61 qref
  • the current command value I calculated by the ref qref current command value generation unit 81 is replaced with the compensation induced voltage calculation unit 84 instead of the q-axis current command value I. Supplied to ref Even if it does so, the effect similar to 3rd Embodiment mentioned above can be acquired.
  • the compensation induced voltage calculation unit 84 calculates the three-phase induced voltage compensation values e "a to c corresponding to the respective phases of the electric motor 12 has been described. Not limited to this, as shown in FIG. 30, the 2-phase Z3-phase conversion unit 83, the current control unit 85, and the addition unit 86 are replaced, and the motor current Ima to be detected by the motor current detection unit 87 is changed.
  • Imc is supplied to the 3-phase Z2-phase conversion section 91, converted to d-axis motor detection current Imd and q-axis motor detection current Imq, supplied to current control section 85, and d-axis current command value I in current control section 85 And q-axis current command value I and d-axis motor detection current Imd and q-axis motor detection
  • the current deviations ⁇ Id and ⁇ Iq from the output current Imq are calculated, and the calculated current deviations ⁇ Id and ⁇ Iq are subjected to, for example, PI control processing to calculate the voltage command values V and V.
  • the compensation induced voltage calculation unit 84 is connected to the d-axis current command value I input from the dq-axis current command value calculation unit 82.
  • d-axis induced voltage compensation value e "d and q-axis induced voltage compensation value e" q are calculated, and the calculated d-axis induced voltage compensation value e "
  • the d and q-axis induced voltage compensation values q may be supplied as feed-forward compensation values to the adding unit 86.
  • the compensation induced voltage calculation unit 84 uses the dq-axis two-phase induced voltage compensation values. Therefore, the calculation load can be reduced and the d-axis current command values I and q can be reduced.
  • An induced voltage compensation value corresponding to qref can be calculated.
  • the d-axis current command value I and the q-axis current command value I calculated by the d ⁇ q-axis current command value calculation unit 82 are input to the compensation induced voltage calculation unit 84.
  • the motor detected by the motor current detector 87 is used instead of the d-axis current command value I and the q-axis current command value I.
  • the currents Ima to Imc are supplied to the three-phase Z2-phase conversion unit 91 in the same manner as in FIG.
  • the induced voltage compensation of each phase of the electric motor 12 based on the d-axis current detection value Imd and the q-axis current detection value Imq and the electric angle ⁇ e and the motor angular velocity com input from the angular velocity calculation unit 80.
  • the values e′a, e′b and e′c may be calculated. In this case, an induced voltage compensation value corresponding to the current detection value can be calculated.
  • the d-q-axis current command value calculation unit 82 is replaced with the d-axis current command value calculation unit 34, the induced voltage model calculation unit 35, and the q-axis in the first embodiment.
  • the present invention is not limited to this, and the vector control current command value calculation unit 52 in the second embodiment described above may be used. In this case, the current command value generator 81
  • the force described in the case where the present invention is applied to the electric power steering apparatus is not limited to this, and is not limited to this.
  • the present invention can be applied to a device to which an n-phase brushless motor is applied, such as an electric device.
  • the target current setting means does not cause torque fluctuation, and the absolute value of the combined vector of each phase drive voltage is substantially constant, and the phase current matches the neighborhood value including the value of 3Z2 times the power supply voltage.
  • the vector control current command value calculation unit calculates the d-axis induced voltage and the q-axis induced voltage based on the motor electrical angle, d-axis current value, and q-axis current value. It is possible to perform calculations including induced voltage distortion, and the torque drip is effective against induced voltage distortion by using the calculated d-axis induced voltage and q-axis induced voltage when calculating the q-axis current command value. It is possible to provide a motor drive control device that can be suppressed and an electric power steering device using the same.
  • the induced voltage compensation error which is a disturbance of the current control system, can be reduced, and the actual current becomes the current.
  • the expected torque can be obtained and It is possible to provide a motor drive control device that can reduce higher harmonic vibrations and an electric power steering device using the motor drive control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

明 細 書
モータ制御装置及びこれを使用した電動パワーステアリング装置 技術分野
[0001] 本発明は、誘起電圧に高調波成分が重畳された 3相ブラシレスモータ所謂高調波 モータを制御するモータ制御装置及びこれを使用した電動パワーステアリング装置 に関する。
背景技術
[0002] この種の誘起電圧に高調波成分を含む 3相ブラシレスモータの制御装置としては、 例えば、本出願人が先に提案した、ベクトル制御を用いてモータの各相の相電流指 令値を算出するベクトル制御相指令値算出部と、前記モータの各相のモータ相電流 を検出するモータ電流検出回路と、前記相電流指令値及び前記モータ相電流に基 づ 、てモータの相電流を制御する電流制御部とを備え、ベクトル制御相指令値算出 部が、各相逆起電圧を算出する各相逆起電圧算出部と、前記各相逆起電圧から逆 起電圧の d軸及び q軸成分である電圧 ed及び eqを算出する d-q電圧算出部と、前記 電圧 ed及び eq力 q軸成分である電流指令値 Iqrefを算出する q軸目標電流算出部 と、 d軸成分である電流指令値 Idrefを算出する d軸目標電流算出部と、前記電流指 令値 Iqref及び Idrefから各相の相電流指令値を算出する各相電流指令算出部とを 有するモータ駆動制御装置が知られている(例えば、特開 2004— 201487号公報 参照)。
発明の開示
[0003] し力しながら、上記特許文献 1に記載の従来例にあっては、エネルギーバランス方 程式を応用して、電流指令値 Irefとロータ電気角 Θと誘起電圧モデル (EMF : Elect ro Motion Force) eq ( Θ ) , ed ( 0 )と d軸電流 Idとによりモータトルクを決定する q 軸電流 Iqを算出するようにしているので、誘起電圧に高調波が含有された 3相ブラシ レスモータでもトルクを一定に制御することが可能となる。しかし、上記従来例では、 高調波モータのトルクを一定に制御した場合、その電流を通電するために必要なモ ータ駆動電圧波形が誘起電圧の高調波に応じて大きく歪んでしまい、電源電圧が有 効利用できずにモータ出力を向上させることができないという未解決の課題がある。 ここで、電源電圧を有効に活用したモータ駆動電圧波形とは、 3相駆動電圧の電圧 合成ベクトルが一定の状態である。
[0004] すなわち、上記従来例では、 3相モータ誘起電圧波形を 2軸の回転座標へ変換す るので、モータトルクに関与する 5次や 7次の高調波成分が含有された図 18に示す 誘起電圧 EMFu, EMFv及び EMFwをロータ回転座標系の dq軸の誘起電圧 e及 d び eに変換した場合、誘起電圧 e及び eは図 19に示すように電気角速度の 6倍で、 q d q
位相が 90度ずれた sin波形となる。ここで、誘起電圧に高調波を含まない正弦波モ ータの場合は、 dq軸の誘起電圧 e及び eは一定値となる。
d q
[0005] 上記誘起電圧 e及び eを用いて、下記(1)式で表されるトルク一定の条件式に準じ d q
、 q軸電流 Iを下記(2)式に従って算出した場合、 q軸電流 Iは図 20に示すように、 6 q q
n次成分 (n= l, 2, 3……)の高調波成分が含有される(d軸電流 Iは" 0"を含む直 d
流値であり、図 20では 50Aとする)。
[0006] [数 1]
1 co ra = (2/3) Kt l ref co ra = iu eu + i vev + i wew = i qeq + i d ed ( 1 )
Figure imgf000004_0001
[0007] ここで、 Tはモータトルク、 ω はモータ機械角速度、 Κはモータトルク定数、 i はモー m t ref タトルク指令電流、 iは U相電流、 iは V相電流、 iは W相電流、 eは U相誘起電圧 (E MF)、 eは V相誘起電圧(EMF)、 eは W相誘起電圧(EMF)、 Iは q軸電流、 Iは d
V w q d 軸電流、 eは q軸誘起電圧(EMF)、 eは d軸誘起電圧(EMF)である。
q d
このときのモータ駆動電圧は、下記(3)式のモータの特性方程式から求めると、図 2 1に示すようになる。
[0008] [数 2]
Figure imgf000005_0002
Figure imgf000005_0001
[0009] この際、下記 (4)式で示されるモータ駆動電圧波形の電圧合成ベクトルの絶対値 は図 22に示すように変動してしまう。(4)式で示されるベクトルの絶対値は、モータへ 印加する電圧エネルギーであるため、ここにリップルが生じた場合、図 22において斜 線で示す部分につ!、ては電圧を有効利用できて!、な!、ことになる。
[0010] [数 3]
| ν| =]Ϋ +ν ( 4 )
[0011] 電圧はモータの回転性能に大きく影響するため、これが高調波モータにおける回 転 ¾能の妨げとなって 、る。
また、近年、電動パワーステアリング装置の需要増加、高推力、静音性要求が高ま つている。特に、コラムタイプの電動パワーステアリング装置については運転者に近 い位置に配置されることから、より高い静音性が要求される。高推力を実現するため に、電動パワーステアリング装置に用いられる電動モータの高トルク化が必要である 力 高トルクモータはトルク定数が高いため、トルクリップルが増加し、その結果、振動 '騒音の悪ィ匕に繋がる。このことから、良好なトルクリップル性能を維持しつつ、大型 化することなく高出力なシステムを構築することが要望されている。
[0012] このような要望に応えるため、本出願人は先に、ロータの回転角度 Θ eと電気角速 度 co eに基づいて換算表を使用して各相の逆起電圧 ea、 eb、 ecを算出し、これら逆 起電圧 ea、 eb、 ecを n次高調波の矩形波若しくは疑似矩形波とすることで高トルクイ匕 し、逆起電圧 ea、 eb、 ecを 3相 Z2相変換して d軸逆起電圧 ed及び q軸逆起電圧 eq を算出すると共に、トルク指令値 Tref及び電気角速度 ω eに基づ 、て d軸指令値電 流 Idrefを算出し、且つトルクリップルを抑制するためにモータのエネルギーバランス 方程式を応用して下記(1)式に基づいて q軸指令値電流 Iqrefを算出し、これら d軸 指令値電流 Idref及び q軸指令値電流 Iqrefを 2相 Z3相変換して a〜c相電流指令 値を算出し、これら a〜c相電流指令値に基づ 、てフィードバック制御を行って電動モ ータを駆動するようにしたモータ駆動装置及び電動パワーステアリング装置を提案し て 、る(特開 2006 - 158198号公報参照)。
[0013] Iqref = (2/3Tref X ω m-ed X Idref) /eq (5)
ここで、 ω mは機械角速度で電気角速度 ω eをモータ極対数 Ρで除した値( = ω eZ P)である。
し力しながら、上記特開平 2006— 158198号公報に記載の従来例にあっては、ェ ネルギーバランス方程式を応用して、ロータ電気角 Θ e及び電気角速度 co eとに基づ いて誘起電圧(EMF : Electro Motive Force) e , eを算出すると共に、トルク指 q d
令値 Trefと電気角速度 ω eとに基づ 、て d軸電流指令値 I を算出し、これら誘起電
dref
圧 e及び eと d軸電流指令値 I とによりモータトルクを決定する q軸電流指令値 I を q d dref qref 算出するようにしているので、誘起電圧 e及び eがモータ電気角 Θ eの関数となって
q d
おり、実際にモータに電流を印加した場合、この印加電流でモータ内部に発生する 電機子起磁力により電機子反作用及びステータの磁ィ匕特性によって誘起電圧が歪 むため、歪み率が大きい場合には歪み分のトルクリップルが発生するという未解決の 課題がある。
[0014] そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、発 生トルクに関与しな 、d軸電流 Idを積極的に制御することで、モータ駆動電圧を波形 整形し、その結果、電圧合成ベクトルの変動を抑制し、モータ出力を向上させること ができるモータ制御装置及びこれを使用した電動パワーステアリング装置を提供する ことを第 1の目的としている。
また、本発明は、上記従来例の未解決の課題に着目してなされたものであり、電動 モータの電機子磁界による誘起電圧の歪みを考慮して電動モータを駆動制御するこ とにより、トルクリップルをより効果的に抑制することができるモータ駆動制御装置及 びこれを使用した電動パワーステアリング装置を提供することを第 2の目的としている
[0015] 上記第 1の目的を達成するために、請求項 1に係るモータ制御装置は、 3相ブラシ レスモータの相電流を検出する相電流検出手段と、前記 3相ブラシレスモータのロー タの回転位置を検出するロータ回転位置検出手段と、前記 3相ブラシレスモータの目 標電流を設定し、当該目標電流と前記ロータ回転位置検出手段で検出したロータ回 転位置とに基づ!/、てモータ相電流指令値を出力する目標電流設定手段と、該目標 電流設定手段から出力されるモータ相電流指令値と前記相電流検出手段で検出し た相電流とに基づ!、て駆動電圧を制御する駆動電圧制御手段と、該駆動電圧制御 手段の駆動電圧に基づいて前記 3相ブラシレスモータに相電流を供給するモータ駆 動回路とを備え、前記目標電流設定手段は、トルク変動を生じることなぐ且つ各相 駆動電圧の合成ベクトルの絶対値が略一定であり、電源電圧の 3Z2倍の値を含 む近傍値に一致する相電流指令値を出力するように構成されて ヽることを特徴として いる。
[0016] この請求項 1に係る発明では、前述した(1)式のエネルギーバランス方程式におけ る左辺の Τω を一定にするように相電流 i , i及び iを決定することにより、トルク変動 を起こさない相電流指令値を算出することができ、各相駆動電圧の合成ベクトルの絶 対値が略一定であり、電源電圧 X 3Z2の値と略一致させことにより、モータ駆動回 路から 3相ブラシレスモータに供給される電源電圧 VRを有効利用することができる。 すなわち、 3相ブラシレスモータの U, V, W相に印加できる電圧は 0〜VRであり、各 相を電圧ベクトル表現した場合、図 23に示すように、相電圧 Vu、 Vv及び Vwは互い に 120度シフトした 3相ベクトル表現となる。この相電圧 Vu、 Vv及び Vwの合成べタト ルが取り得る電圧ベクトルの範囲は、図 23でハッチングした領域となり、この領域のう ち合成ベクトルの絶対値を一定とできる領域は、電源電圧 X 3Z2の範囲までとな る。このため、合成ベクトルの絶対値を電源電圧の 3Z2倍を含む近傍値に設定す ることにより、合成ベクトルの絶対値が一定で電源電圧を有効利用することができる。
[0017] また、請求項 2に係るモータ制御装置は、 3相ブラシレスモータの相電流を検出す る相電流検出手段と、前記 3相ブラシレスモータのロータの回転位置を検出するロー タ回転位置検出手段と、前記 3相ブラシレスモータの目標相電流を設定し、当該目 標相電流と前記ロータ回転位置検出手段で検出したロータ回転位置とに基づいて 相電流指令値を出力する目標電流設定手段と、該目標電流設定手段から出力され る相電流指令値と前記相電流検出手段で検出した相電流とに基づいて駆動電圧を 制御する駆動電圧制御手段と、該駆動電圧制御手段の駆動電圧に基づ!、て前記 3 相ブラシレスモータに相電流を供給するモータ駆動回路とを備え、前記目標電流設 定手段は、誘起電圧に基本波成分以外の高調波成分が含まれる場合に、相電流指 令値波形を誘起電圧波形に対してモータ回転性能を向上させる進角制御を行う進 角制御手段を有し、該進角制御手段による進角制御時に、トルク変動を生じることな ぐ且つ各相駆動電圧の合成ベクトルの絶対値が略一定であり、電源電圧の 3Z2 倍の値を含む近傍値に一致する相電流指令値を出力するように構成されて!、ること を特徴としている。
[0018] この請求項 2に係る発明では、進角制御手段でモータ回転性能を向上させる進角 制御を行う際にも、前述した請求項 1に係る発明と同様に、トルク変動を生じることなく 、且つ合成ベクトルの絶対値が略一定で、電源電圧を有効利用することができる。 さらに、請求項 3に係るモータ制御装置は、請求項 1又は 2に係る発明において、前 記目標電流設定手段は、目標電流と前記ロータ回転位置検出手段で検出したロー タ回転位置とに基づいてロータ回転座標系の 2軸に変換した d—q座標で電流制御 を行うように構成されて 、ることを特徴として 、る。
[0019] この請求項 3に係る発明では、 d— q座標で電流制御を行って、 d軸電圧 Vd及び q 軸電圧 Vqの電圧合成ベクトル I V I ( = ^ (Vd2+Vq2) )を一定に制御することによ り、トルク一定の条件式を満たしつつ、 d軸電圧 Vd及び q軸電圧 Vqの変化が円条件 に近 、状態となるように d軸電流を制御することができる。
さらにまた、請求項 4に係るモータ制御装置は、請求項 1に係る発明において、前 記目標電流設定手段は、目標電流と前記ロータ回転位置検出手段で検出したロー タ回転位置とに基づいてロータ回転座標系の 2軸に変換した d—q座標で電流制御 を行うように構成され、少なくとも目標電流、ロータ電気角、ロータ電気角速度及びモ ータ定数情報に基づいて電気角 1周期に対して 6倍の周波数で且つ q軸電流の絶対 値と逆相又は正相で駆動する交流 d軸電流値を算出する d軸電流決定手段と、該 d 軸電流決定手段で決定した d軸電流値、目標電流、ロータ電気角及びモータ定数情 報に基づいて q軸電流をトルク一定の条件式より算出する q軸電流決定手段とを有し 、トルク変動を抑制しつつ、電源電圧を有効活用した各相駆動電圧の合成ベクトル の絶対値変動が小さ!、モータ駆動電圧波形となるようにモータ相電流指令値を決定 することを特徴としている。
[0020] この請求項 4に係る発明では、電圧合成ベクトルを一定とする d軸電流 Id及び q軸 電流 Iqを求めようとした場合、計算が複雑で解を求めるのが困難であるので、 d軸電 圧 Vd及び q軸電圧 Vqの電圧波形を直流 +ロータ電気角の 6倍の振動項の形で近 似する。この場合、 q軸電流 Iq及び q軸電圧 Vqの値はモータ回転方向によって符号 が逆転する。ここでは、 q軸電流 Iq及び q軸電圧 Vqが正の場合を前提に説明すると、 d軸電圧 Vd及び q軸電圧 Vqを逆位相とすると共に、振幅条件として両者の交流成分 の比に対して直流成分の比を逆関係とすることにより、電圧合成ベクトルが一定とな る円の接線上を移動するように設定することができ、このような d軸電圧 Vd及び q軸電 圧 Vqを設定するために、 d軸電流 Id及び q軸電流 Iqを逆位相とすると共に、 d軸電流 Idの交流成分の振幅を求めることにより d軸電流 Idを求め、この d軸電流 Idと目標電 流とロータ電気角と誘起電圧モデルとでトルク一定の条件式力 q軸電流 Iqを算出す る。
[0021] 上記モータ回転方向とは逆に q軸電流 Iq及び q軸電圧 Vqが負である場合、 d軸電 流 Idの振動項の計算は、 q軸電流 Iqの絶対値を使って求めるか d軸電流 Id及び q軸 電流 Iqを同位相とする
この結果、トルク変動を抑制しつつ、電源電圧を有効活用した各相駆動電圧の合 成ベクトルの絶対値変動が小さ 1ヽモータ駆動電圧波形となるようにモータ相電流指 令値を決定することができる。
[0022] なおさらに、請求項 5に係るモータ制御装置は、請求項 4に係る発明において、前 記交流 d軸電流決定手段は、予め前記目標電流と d軸振幅との関係を表す制御マツ プを有し、該制御マップを参照して目標電流から前記交流 d軸電流値の d軸振幅を 算出するように構成されて 、ることを特徴として!/、る。
この請求項 5に係る発明では、制御マップを使用して目標電流から交流 d軸電流値 の振幅を算出するので、複雑な演算を行うことなぐ交流 d軸電流値の振幅を容易に 算出することができ、 d軸電流 Idの演算負荷を大幅に低減することができる。 [0023] また、請求項 6に係るモータ制御装置は、請求項 2に係る発明にお 、て、前記目標 電流設定手段は、目標電流と前記ロータ回転位置検出手段で検出したロータ回転 位置とに基づいてロータ回転座標系の 2軸に変換した d— q座標で電流制御を行うよ うに構成され、前記目標電流とロータ角速度との関係から直流 d軸電流値を決定する 直流 d軸電流決定手段と、少なくとも目標電流、ロータ電気角、ロータ電気角速度及 びモータ定数情報に基づいて電気角 1周期に対して 6倍の周波数で且つ q軸電流の 絶対値と逆相又は正相で駆動する交流 d軸電流値を算出する交流 d軸電流決定手 段と、前記直流 d軸電流値、前記交流 d軸電流値、前記目標電流、ロータ電気角及 びモータ定数情報に基づいて q軸電流をトルク一定の条件式より算出する q軸電流 決定手段とを有し、進角制御時にもトルク変動を抑制しつつ、電源電圧を有効活用し た各相駆動電圧の合成ベクトルの絶対値変動が小さいモータ駆動電圧波形となるよ うにモータ相電流指令値を決定することを特徴として 、る。
[0024] この請求項 6に係る発明では、 3相ブラシレスモータを進角制御手段で進角制御す る場合でも、上述した請求項 4と同様に d軸電流 Id及び q軸電流 Iqを算出することが できる。
さらに、請求項 7に係るモータ制御装置は、請求項 6に係る発明において、前記交 流 d軸電流決定手段は、予め前記目標電流と d軸振幅との関係を表す制御マップを 有し、該制御マップを参照して目標電流から前記交流 d軸電流値の d軸振幅を算出 するように構成されて 、ることを特徴として 、る。
[0025] この請求項 7に係る発明では、進角制御手段で進角制御する場合の交流 d軸電流 値を制御マップを参照して算出するので、複雑な演算を行うことなく交流 d軸電流値 を容易に算出することができ、 d軸電流 Idの演算負荷を大幅に低減することができる さらにまた、請求項 8に係る電動パワーステアリング装置は、操舵系に対して操舵補 助力を発生する 3相ブラシレスモータを前記請求項 1乃至 7の何れか 1項に記載のモ ータ制御装置で駆動制御するようにしたことを特徴として 、る。
[0026] この請求項 8に係る発明では、電動パワーステアリング装置の操舵補助力を発生す る 3相ブラシレスモータを、電源電圧を有効利用して最適駆動することができると共に 、操舵系に与えるトルク変動を防止して良好な操舵感覚を与えることができる。
なおさらに、上記第 2の目的を達成するために、請求項 9に係るモータ駆動制御装 置は、 相数が 3相以上の電動モータを駆動するモータ駆動制御装置であって、前 記電動モータを駆動する電流指令値を演算する電流指令値演算部と、ベクトル制御 を用いて前記電動モータの各相の相電流指令値を算出するベクトル制御電流指令 値演算部とを備え、該ベクトル制御電流指令値演算部は、前記電動モータの各相誘 起電圧から誘起電圧の d軸成分及び q軸成分である d軸誘起電圧及び q軸誘起電圧 を算出する d— q軸誘起電圧演算部と、前記 d軸誘起電圧、前記 q軸誘起電圧及び 前記電流指令値に基づいて d軸電流指令値及び q軸電流指令値を算出する d— q軸 電流指令値演算部とを少なくとも有し、前記 d— q軸誘起電圧演算部はモータ電気角 、 d軸電流値及び q軸電流値を利用して d軸誘起電圧及び q軸誘起電圧を演算するよ うに構成されて 、ることを特徴として 、る。
[0027] この請求項 9に係る発明では、モータ電気角、 d軸電流値及び q軸電流値に基づ V、て d軸誘起電圧及び q軸誘起電圧を演算するので、モータ相電流に対する誘起電 圧の歪みを含めて演算することができ、演算した d軸誘起電圧及び q軸誘起電圧を q 軸電流指令値演算時に使用するようにことにより、誘起電圧の歪みに対してもトルクリ ップルを効果的に抑制することができる。また、前記演算した d軸誘起電圧及び q軸 誘起電圧を d軸電流指令値演算時に使用することにより、進角制御による回転数上 昇効果の低減を抑制できる。
[0028] また、請求項 10に係るモータ駆動制御装置は、請求項 9に係る発明にお 、て、前記 電動モータの各相のモータ相電流を検出するモータ電流検出部を有し、前記 d— q 軸誘起電圧演算部は、前記モータ電流検出部で検出したモータ相電流を n相 Z2相 変換した d軸電流値及び q軸電流値とモータ電気角とに基づ 、て d軸誘起電圧及び q 軸誘起電圧を演算するように構成されて 、ることを特徴として 、る。
この請求項 10に係る発明では、電動モータに実際に流れる実相電流に基づいて 算出した d軸電流値及び q軸電流値を用いて d軸誘起電圧及び q軸誘起電圧を演算 するので、より精度良く誘起電圧を演算することができ、トルクリップルを効果的に抑 ff¾することができる。 [0029] さらに、請求項 11に係るモータ駆動制御装置は、請求項 10に係る発明において、 前記モータ電流検出部は、少なくとも 1相以上の相電流検出値を残りの相電流検出 値に基づ 、て推定するように構成されて 、ることを特徴として!/、る。
この請求項 11に係る発明では、モータ相電流のうちの少なくとも 1相以上の相電流 検出値を推定するので、相電流検出部の数を減少させて、製造コストを低減すること ができる。
[0030] さらにまた、請求項 12に係るモータ駆動制御装置は、請求項 9に係る発明におい て、前記 d— q軸誘起電圧演算部は、前記 d軸電流指令値及び q軸電流指令値又は 当該 d軸電流指令値及び q軸電流指令値に相当する指令値情報と、モータ電気角と に基づ!/ヽて d軸誘起電圧及び q軸誘起電圧を演算するように構成されて!ヽることを特 徴としている。
この請求項 12に係る発明では、 d— q軸誘起電圧演算部で使用する d軸電流値及 び q軸電流値に代えて、 d軸電流指令値及び q軸電流指令値又はこれら指令値に相 当する指令値情報を適用することにより、演算処理での計算負荷を低減させることが できる。
[0031] なおさらに、請求項 13に係るモータ駆動制御装置は、請求項 9乃至 12の何れか 1 つの発明にお 、て、前記電動モータがブラシレスモータであることを特徴として 、る。 また、請求項 14に係るモータ駆動制御装置は、請求項 9乃至 13の何れか 1つに係 る発明において、前記電動モータの誘起電圧は、矩形波誘起電圧及び正弦波に高 調波成分を含有する疑似矩形波誘起電圧の何れか一方であることを特徴としている この請求項 13及び 14に係る発明では、電動モータがブラシレスモータであるので 、ブラシレスモータの誘起電圧を矩形波、又は正弦波に高調波成分が含有された疑 似矩形波とすることにより、高調波成分をコイル相間誘起電圧の 1次成分 (基本波成 分)を上昇させるように含有させると、誘起電圧定数の大きさは 1次成分 (基本波成分 )が支配的であるため、相間誘起電圧の 1次成分 (基本波成分)の上昇により誘起電 圧定数が上昇する。ブラシレスモータのトルク関係式は下記(2)式で表され、この(2) 式から明らかなように誘起電圧定数 Kとモータのトルク定数 Kとは同値であるため、 e T モータのトルク性能が向上する効果を有すると共に、上記駆動制御を用いることで高 調波が含有されていてもトルクリップルを抑制することが可能である。
[0032] T =EMF - I / ω =Κ · Ι =Κ · Ι (2)
m m m e m T m
ここで、 T =モータトルク、 EMFはコイル相間誘起電圧、 ω はモータ角速度、 Iは m m m モータ相電流、 Kは誘起電圧定数、 Kはモータトルク定数である。
e T
さらに、請求項 15に係る電動パワーステアリング装置は、操舵系に対して操舵補助 力を発生する電動モータを前記請求項 9乃至 14の何れか 1項に記載のモータ駆動 制御装置で駆動制御するようにしたことを特徴として 、る。
[0033] この請求項 15に係る発明では、操舵系に対して操舵補助力を発生する電動モータ を請求項 1乃至 7の何れか 1項に記載のモータ駆動制御装置で駆動制御するので、 静音性の優れた高出力の電動パワーステアリング装置を提供することができる。 さらにまた、請求項 16に係るモータ駆動制御装置は、 3以上の相数 nの電動モータ を駆動するモータ駆動制御装置であって、前記電動モータを駆動する電流指令値を 演算する電流指令値演算部と、前記電動モータのモータ角度を検出するモータ角度 検出部と、前記電動モータのモータ角速度を検出するモータ角速度検出部と、前記 モータ角速度で回転する d— q座標に沿って演算された d軸電流及び q軸電流値の 少なくとも一方と、前記モータ角速度及び前記モータ角度とに基づいて補償用誘起 電圧を演算する誘起電圧演算部とを備え、前記電動モータの誘起電圧を前記誘起 電圧演算部で演算した補償用誘起電圧でフィードフォワード補償することを特徴とし ている。
[0034] この請求項 16に係る発明では、誘起電圧演算部で、モータ角速度に相当する周 波数で回転する d— q座標に沿って演算された d軸電流値及び q軸電流値の少なくと も一方と、モータ角速度及びモータ角度とに基づいて補償用誘起電圧を生成し、生 成した補償用誘起電圧でフィードフォワード制御を行うので、高回転'高電流時に誘 起電圧歪みによる誘起電圧補償誤差を低減することができ、実電流が電流指令値に より追従し、期待のトルクが得られると共に、補償誤差による高調波振動を減らするこ とがでさる。
[0035] なおさらに、請求項 17に係るモータ駆動制御装置は、請求項 16に係る発明におい て、前記誘起電圧のフィードフォワード補償は、前記電動モータの各相で行うことを 特徴としている。
この請求項 17に係る発明では、電動モータの各相で誘起電圧のフィードフォワード 補償を行うので、高回転'高電流時に誘起電圧歪みによる誘起電圧補償誤差をより 各相で確実に低減させることができる。
[0036] また、請求項 18に係るモータ駆動制御装置は、請求項 16又は 17に係る発明にお いて、前記誘起電圧のフィードフォワード補償は、前記モータ角速度に相当する周波 数で回転する d— q座標上で行うことを特徴としている。
この請求項 18に係る発明では、誘起電圧のフィードフォワード補償を d— q座標上 で行うので、電動モータの相数にかかわらず、正確に誘起電圧補償誤差を低減する ことができ、全体の構成を簡易化することができる。
[0037] さらに、請求項 19に係るモータ駆動制御装置は、請求項 16乃至 18の何れか 1つ に係る発明にお 、て、前記誘起電圧演算部に入力する前記 d軸電流値及び q軸電 流値の少なくとも一方は、前記電流指令値より算出された d軸電流指令値及び q軸電 流指令値の少なくとも一方、又は当該 d軸電流指令値及び q軸電流指令値の少なくと も一方に相当する指令値情報であることを特徴としている。
この請求項 19に係る発明では、電流指令値より算出される d軸電流指令値及び q 軸電流指令値の少なくとも一方、又は当該 d軸電流指令値及び q軸電流指令値の少 なくとも一方に相当する指令値情報を誘起電圧演算部に入力するので、電流指令値 に応じて誘起電圧補償値を変化させることができる。
[0038] さらにまた、請求項 20に係るモータ駆動制御装置は、請求項 16乃至 18の何れか 1 つに係る発明において、前記誘起電圧演算部に入力する d軸電流及び q軸電流の 少なくとも一方は、前記電流検出部で検出された検出相電流を前記モータ角速度に 相当する周波数で回転する d— q座標で n相 Z2相変換した d軸電流値及び q軸電流 値の少なくとも一方であることを特徴として!/、る。
この請求項 20に係る発明では、前記電流検出部で検出された検出相電流を前記 モータ角速度に相当する周波数で回転する d— q座標で n相 Z2相変換した d軸電流 値及び q軸電流値の少なくとも一方を誘起電圧演算部に入力するので、検出電流に 応じて誘起電圧補償値を変化させることができる。
[0039] なおさらに、請求項 21に係るモータ駆動制御装置は、請求項 16乃至 20の何れか 1つに係る発明において、前記電動モータの誘起電圧は矩形波誘起電圧及び正弦 波に高調波成分を含む疑似矩形波誘起電圧の何れか一方であることを特徴としてい る。
この請求項 21に係る発明では、誘起電圧波形を矩形波及び正弦波に高調波成分 を含む疑似誘起電圧の何れか一方とすることにより、正弦波電流又は正弦波電圧で 制御する場合と比較すると、電流ピーク値又は電圧ピーク値が同じであれば、矩形 波電流又は矩形は電圧の方が実効値が大きくなるため大きな出力(パワー)を得るこ とがでさる。
[0040] また、請求項 22に係る電動パワーステアリング装置は、舵系に対して操舵補助力を 発生する電動モータを前記請求項 16乃至 21の何れか 1項に記載のモータ駆動制 御装置で駆動制御するようにしたことを特徴として 、る。
この請求項 22に係る発明では、電流制御系の外乱である誘起電圧補償誤差を低 減させて、実電流が電流指令値により追従し、期待のトルクが得られると共に、補償 誤差による高調波振動が減るため、良好な操舵性能が得られる。
[0041] 本発明によれば、目標電流設定手段は、トルク変動を生じることなぐ且つ各相駆 動電圧の合成ベクトルの絶対値が略一定であり、電源電圧の 3Z2倍の値を含む 近傍値に一致する相電流指令値を出力するように構成されて ヽるので、トルクを一定 に保った状態で電源電圧を有効利用することができるという効果が得られる。
ここで、 d— q軸座標系で電流制御する場合に、 q軸電流をトルク一定の条件式によ つて決定し、 d軸電流を q軸電流の逆相でロータ電気角の 1周期に対して 6倍の周波 数で駆動し、且つ q軸電流の絶対値と逆相又は正相の d軸電流値を算出し、算出し た d軸電流値に基づいてトルク一定の条件式によって q軸電流を算出することにより、 d軸電流によってトルク変動を抑制しかつ電源電圧を有効利用した高調波モータ制 御を行うことができるという効果が得られる。
[0042] また、電動パワーステアリング装置の操舵補助力を発生する 3相ブラシレスモータを 、電源電圧を有効利用して最適駆動することができると共に、操舵系に与えるトルク 変動を防止して良好な操舵感覚を与えることができるという効果が得られる。
さらに、ベクトル制御電流指令値演算部で、モータ電気角、 d軸電流値及び q軸電 流値に基づ!/ヽて d軸誘起電圧及び q軸誘起電圧を演算するので、モータ相電流に対 する誘起電圧の歪みを含めて演算することができ、演算した d軸誘起電圧及び q軸誘 起電圧を q軸電流指令値演算時に使用することにより、誘起電圧の歪みに対してもト ルクリップルを効果的に抑制することができるという効果が得られる。
[0043] さらにまた、電動パワーステアリング装置の操舵補助力を発生する電動モータを上 記モータ駆動制御装置で駆動制御することにより、静音性の優れた高出力の電動パ ワーステアリング装置を提供することができるという効果が得られる。
なおさらに、補償用誘起電圧を演算して、この補償用誘起電圧でフィードフォワード 補償することにより、電流制御系の外乱である誘起電圧補償誤差を低減することがで き、実電流が電流指令値により追従し、期待のトルクが得られると共に、補償誤差に よる高調波振動を低減させることができるという効果が得られる。
[0044] また、電動パワーステアリング装置の操舵補助力を発生する電動モータを上記モー タ駆動制御装置で駆動制御することにより、良好な操舵性能を発揮することができる という効果が得られる。
図面の簡単な説明
[0045] [図 1]本発明の第 1の実施形態を示す全体構成図である。
[図 2]モータ制御装置の一例を示すブロック図である。
[図 3]図 2の制御演算装置 23の具体的構成を示すブロック図である。
圆 4]操舵補助電流指令値算出マップを示す特性線図である。
[図 5]図 3の d軸電流算出部の具体的構成を示すブロック図である。
[図 6]d軸電流直流成分算出マップを示す特性線図である。
[図 7]d軸電流の振幅係数算出マップを示す特性線図である。
[図 8]本発明の基本原理の説明に供する波形図である。
[図 9]本発明による d軸電流及び q軸電流の電流波形を示す波形図である。
[図 10]本発明による d軸電圧及び q軸電圧の電圧波形を示す波形図である。
[図 11]本発明による電圧ベクトルの絶対値波形を示す波形図である。 [図 12] α - β変換時の電圧ベクトル軌跡を示す説明図である。
圆 13]進角制御を行わない場合のモータ端子電圧波形を示す波形図である。
圆 14]進角制御を行った場合のモータ端子電圧波形を示す波形図である。
[図 15]従来例の d, q軸電流及び d, q軸電圧の波形を示す波形図である。
圆 16]従来例の進角制御を行わない場合及び行う場合のモータ端子電圧波形を示 す波形図である。
圆 17]本発明と従来例の特性を比較する特性線図である。
[図 18]従来の高調波モータの誘起電圧波形を示す波形図である。
[図 19]従来の高調波モータの d— q変換波形を示す波形図である。
[図 20]従来の高調波モータの d軸及び q軸の電流波形を示す波形図である。
[図 21]従来の高調波モータの d軸電圧及び q軸電圧の電圧波形を示す波形図である
[図 22]従来の高調波モータの電圧合成ベクトルの絶対値波形を示す波形図である。 圆 23]本発明の基本原理の説明に供する説明図である。
圆 24]本発明の第 2の実施形態における制御装置の具体的構成を示すブロック図で ある。
圆 25]第 2の実施形態におけるベクトル制御電流指令値演算部の具体的構成を示 すブロック図である。
圆 26]電機子反作用の説明に供する説明図である。
[図 27]第 2の実施形態の実測結果を示す特性線図である。
圆 28]本発明の第 3の実施形態における制御装置の具体的構成を示すブロック図で ある。
圆 29]第 3の実施形態の変形例を示す図 28と同様のブロック図である。
[図 30]第 3の実施形態における他の変形例を表す制御装置の具体的構成を示すブ ロック図である。
圆 31]第 3の実施形態におけるさらに他の変形例を表す制御装置の具体的構成を 示すブロック図である。 発明を実施するための最良の形態 [0046] 以下、本発明の実施の形態を図面に基づいて説明する。
図 1は、本発明を電動パワーステアリング装置に適用した場合の第 1の実施形態を 示す全体構成図であって、図中、 1は、ステアリングホイールであり、このステアリング ホイール 1に運転者力も作用される操舵力が入力軸 2aと出力軸 2bとを有するステア リングシャフト 2に伝達される。このステアリングシャフト 2は、入力軸 2aの一端がステア リングホイール 1に連結され、他端は操舵トルク検出手段としての操舵トルクセンサ 3 を介して出力軸 2bの一端に連結されて 、る。
[0047] そして、出力軸 2bに伝達された操舵力は、ユニバーサルジョイント 4を介してロアシ ャフト 5に伝達され、さらに、ユニバーサルジョイント 6を介してピ-オンシャフト 7に伝 達される。このピ-オンシャフト 7に伝達された操舵力はステアリングギヤ 8を介してタ ィロッド 9に伝達され、図示しない転舵輪を転舵させる。ここで、ステアリングギヤ 8は、 ピ-オンシャフト 7に連結されたピ-オン 8aとこのピ-オン 8aに嚙合するラック 8bとを 有するラックアンドピ-オン形式に構成され、ピ-オン 8aに伝達された回転運動をラ ック 8bで直進運動に変換して 、る。
[0048] ステアリングシャフト 2の出力軸 2bには、操舵補助力を出力軸 2bに伝達する操舵補 助機構 10が連結されている。この操舵補助機構 10は、出力軸 2bに連結した減速ギ ャ 11と、この減速ギヤ 11に連結された操舵補助力を発生する 3相ブラシレスモータ 1 2とを備えている。
操舵トルクセンサ 3は、ステアリングホイール 1に付与されて入力軸 2aに伝達された 操舵トルクを検出するもので、例えば、操舵トルクを入力軸 2a及び出力軸 2b間に介 挿した図示しないトーシヨンバーの捩れ角変位に変換し、この捩れ角変位を抵抗変 化や磁気変化に変換して検出するように構成されている。
[0049] また、 3相ブラシレスモータ 12は、図 2に示すように、 U相コイル Lu、 V相コイル Lv 及び W相コイル Lwの一端が互いに接続されてスター結線とされ、各コイル Lu、 Lv及 び Lwの他端が操舵補助制御装置 20に接続されて個別にモータ駆動電流 Iu、 lv及 び Iwが供給される。また、 3相ブラシレスモータ 12は、ロータの回転位置を検出する レゾルバ、ロータリエンコーダ等で構成されるロータ位置検出回路 13を備えている。 操舵補助制御装置 20は、操舵トルクセンサ 3で検出された操舵トルク T及び車速セ ンサ 21で検出された車速 Vsが入力されると共に、ロータ位置検出回路 13で検出さ れたロータ回転角 Θが入力され、さらに 3相ブラシレスモータ 12の各相コイル Lu、 Lv 及び Lwに供給されるモータ駆動電流 Iu、 Iv及び Iwを検出するモータ電流検出回路 22から出力されるモータ駆動電流検出値 Iud、 Ivd及び Iwdが入力されている。
[0050] この操舵補助制御装置 20は、操舵トルク T及び車速 Vとモータ電流検出値 Iud、 Iv d及び Iwdとロータ回転角 Θとに基づいて操舵補助目標電流値を演算して、モータ 電圧指令値 Vu、 Vv及び Vwを出力する制御演算装置 23と、 3相ブラシレスモータ 1 2を駆動する電界効果トランジスタ (FET)で構成されるモータ駆動回路 24と、制御演 算装置 23から出力される相電圧指令値 Vu、Vv及び Vwに基づいてモータ駆動回路 24の電界効果トランジスタのゲート電流を制御する FETゲート駆動回路 25とを備え ている。
[0051] 制御演算装置 23は、図 3に示すように、ベクトル制御の優れた特性を利用して 3相 ブラシレスモータ 12をトルク変動を生じることなぐ且つ各相駆動電圧の合成ベクトル の絶対値が略一定であり、電源電圧の 3Z2倍の値を含む近傍値に一致するべク トル制御 d、 q成分の目標電流値 I ( Θ ), Ι ( Θ )を決定する弱め開示制御を行った後、
d q
これら目標電流値 I ( Θ ),Κ Θ )を各励磁コイル Lu〜Lwに対応した各相目標電流値 I d q
u*、 Iv*及び Iw*に変換して出力するベクトル制御を行う目標電流設定手段としての目 標電流設定部 30と、この目標電流設定部 30から出力される各相電流指令値 Iu、 Iv* 及び Iw*とモータ電流検出回路 22で検出したモータ電流検出値 Iud、 Ivd及び Iwdと で電流フィードバック処理を行って駆動電圧を制御する駆動電圧制御手段としての 駆動電圧制御部 40とを備えて ヽる。
[0052] ここで、 3相ブラシレスモータ 12をトルク変動を生じることなぐ且つ各相駆動電圧の 合成ベクトルの絶対値が略一定であり、電源電圧の 3Z2倍の値を含む近傍値に 一致する d軸目標電流 i ( Θ )及び q軸目標電流 i ( Θ )を決定する弱め界磁制御の基本
d q
原理を図 5〜図 8を伴って説明する。
先ず、第 1の条件であるトルク変動を起こさない条件は、前述した(1)式のエネルギ 一バランス方程式の左辺 Τ ω を一定とするように 3相ブラシレスモータ 12の各励磁コ
m
ィル Lu、 Lv及び Lwに供給するモータ電流 iu、 iv及び iwを決定することで実現される 。このためには、前記(1)式のトルク一定条件から下記(5)式に従って q軸電流 iを求 めること〖こ実現することがでさる。
[数 4]
Figure imgf000020_0001
[0054] ここで、 d軸 EMF成分 e は e =e Z ω、 q軸 EMF成分 e は e =e
d0 d0 d e qO qO qO Ζωで表され e るので、上記(5)式は下記(6)式に変形することができ、この(6)式によってトルクを 一定とする条件で q軸電流 i ( Θ )を算出することができる。
[0055] [数 5]
2 1 2 1
tiref ― oe— c eedo ( Θ ) id ( ) Ktiref ~eao ( θ ) id ( θ ) (0)= ^ ρ- = ^
ωε eq0 ( θ ) eq0 ( θ )
····' (6)
[0056] また、第 2の条件である各相駆動電圧の合成ベクトルの絶対値が略一定であり、電 源電圧 X 3Ζ2倍を含む近傍値と一致する条件は、後述するモータ駆動回路 24を 構成するインバータから供給される電源電圧 (バッテリ電圧 VR)を有効利用するため の条件である。
電源電圧が VRで定義される場合、 3相ブラシレスモータ 12の各相 U, V, W相に印 加できる電圧は 0〜VRであり、各相を電圧ベクトル表現した場合、ベクトル V、 V、 V は図 23に示すように、互いに 120度シフトした 3相ベクトル表現となる。これらのベタト ル V、 V、 Vの合成ベクトルが取り得る電圧ベクトルの範囲は、図 23でハッチング図 示の範囲であり、このうち合成ベクトルの絶対値を一定とできる範囲は「電源電圧 X 3Z2倍まである。したがって、合成ベクトルの絶対値が略一定を満足しつつ、最大 限電圧を有効利用するためには、その絶対値を電源電圧 X 3Z2倍に設定する。
[0057] この第 2の条件を満足するためには、 α— β変換時のベクトル軌跡を、図 8に示す ように、円に近づける必要があり、このためには d— q変換での d軸電圧 Vd及び q軸電 圧 Vqの電圧合成ベクトルの絶対値 | V | = (Vd2+Vq2)を、図 8に示すように、ベ タトルの絶対値 | V | の変動が完全に" 0"の条件はベクトルの絶対値 | V | の描く ベクトル軌跡が曲線 L1で示す原点(0, 0)を中心とする円 CO上を移動させることが望 ましいが、これを実現するのは計算が複雑で、解を求めるのは困難であるため、本実 施形態では、円条件に近い状態で電圧合成ベクトル I V |を一定とする d軸電流を 求めるようにしている。
[0058] 以下、説明を簡単にするために、 d軸電流 Id及び q軸電流 Iqが互いに正の場合即 ち回転方向が一方向となるようにした場合について説明する。
すなわち、本発明では、 d軸電圧 Vd及び q軸電圧 Vqが直流成分 +電気角 Θの 6 倍の振動項で表現されることに着目して、円条件に最も近い条件としてベクトル軌跡 が円の接線上 (d軸電圧 Vd及び q軸電圧 Vqの直流成分の法線上)を推移するように 設定している。
[0059] 図 8において、矢印 Y0で示すように d軸電圧 Vd及び q軸電圧 Vqの直流成分が成 す電圧合成ベクトル | V |を考えたときに、この電圧合成ベクトル | V |と円 COとの 交点での接線 (ベクトル I V |の法線 Ln)上を推移するように d軸電流 Id及び q軸電 流 iqを設定する。
このように、合成ベクトル | V |が法線 Ln上を移動するためには、図 8に示すように 、 d軸電圧 Vd( Θ 軸電圧 Vq( Θ )とが正値を取る場合、 180度位相がずれた逆位 相とする必要があり、両者の振幅条件としては、図 8における合成ベクトル I V Iを構 成する d軸電圧 Vdの直流成分 V と q軸電圧 Vqの直流成分 V で構成されるハツ dDC qDC
チング図示の三角形 T1と、法線 Lnと d軸電圧 Vdの交流成分 V の振幅及び q軸電 dAC
圧 Vqの交流成分 V の振幅で構成されるハッチング図示の三角形 T2とが相似形で qAC
あることから、 d軸電圧 Vd及び q軸電圧 Vqの直流成分と交流成分との比が下記(7) 式で表される法線条件を満足する必要がある。
[0060] [数 6]
Figure imgf000021_0001
[0061] そして、トルク一定の条件力 q軸電流 i ( Θ )は前述したように(6)式で一意に決定さ れることから、第 2の条件を満足するように d軸電流 i ( Θ )を設定する必要がある。
d
ところで、 d軸電圧 V及び q軸電圧 Vは、前述した(3)式で d軸電流 i及び q軸電流 i d q d
とモータ諸元である電気角速度 ω 、モータ抵抗 R、モータインダクタンス Lに基づい q e
て算出することができるが、前記(5)式を前記(3)式に代入して d軸電圧 V及び q軸 d 電圧 Vを求めても前記(5)式に微分項が含まれて!/、ると共に前記(5)式の分母に e q q があるため、 q軸電流 iには無限の高調波成分が含まれてしまい単純な形式では計 算することができない。
[0062] このため、 d軸電圧 V及び q軸電圧 Vを求めるために、 q軸電流 i ( Θ )の振動成分の d q q
中で、 6次の高調波成分が支配的であることを利用すると、 d軸電流 i ( Θ )及び q軸電 d
流 i ( Θ )は下記(8)及び(9)式で近似することができる。
d
[0063] [数 7] id ( Θ ) = IdDC + i dc cos (6 Θ ) + ids s in (60 )
i"S)
Figure imgf000022_0001
+iqccos(60)— iqssin(60) 但し、
2Ktiref 2Ktiref e qAco
3PEqDC0 3pE qDC0 :
[0064] ここで、上記(9)式は、前記(6)式をさらにティラー展開し (直流 +電気角 Θ の 6倍 e の振動項)の形に近似して 、る。
そして、 d軸電流 i ( Θ )に対して、前述した逆位相の条件を満足するために、前記(8 d
)式で定義される d軸電流モデルの逆位相とする。すなわち、 d軸電流 i ( Θ )は、前記( d
8)式を用いて、下記(10)式の形で定義すれば、 q軸電流 i ( Θ )の逆位相成分を持つ d軸電流 i ( Θ )として表現できる。
d
[0065] [数 8] id ( Θ ) =IdDC _IdAmp (iqccos(6 θ ) -iqs sin(6 Θ )) ( 1 0)
[0066] ここで、 I は d軸電流の直流成分、 I は d軸電流の振幅を決定する振幅係数であ る。なお、前記(9)式で q軸電流 i ( Θ )を算出する際に、 d軸電流 Iが必要となるが、未 q d
決定のパラメータである位相と振幅の項が Iqモデルに与える影響は 12次成分以降と なるため、 Iqモデル上では無視される。したがって、 Iqモデルに入力する d軸電流の 情報は直流値 I のみであり、(9)式の Iqモデルの算出は可能である。
dDC
また、 d軸 EMF成分 e 及び q軸 EMF成分 e も下記(11)式及び(12)式に示すよう d0 q0
に直流 +電気角の 6倍の振動項で近似することができる。
[0067] [数 9] eqo =eq/ ωβ =EqDC0 — eqACO cos (6 Θ ) (1 1)
edo =ea/ e =edACo sin (6 Θ ) (1 2)
[0068] このため、前述した(3)式の d軸電流 i、 q軸電流 i、 d軸 EMF成分 e 及び q軸 EMF d q dO
成分 e の全てが「直流 +電気角(Θ)の 6倍の振動項」として近似できるので、これらを q0
前記(3)式に代入することにより、 d軸電圧 V ( Θ )及び q軸電圧 V ( Θ )は下記(13)式 d Q
で近似することができる。
[0069] [数 10]
Vd ( Θ ) =VdDC +vdc cos (6 θ ) +vds sin(66 )
Vq(9) =VqDC + vqc cos (6 Θ ) + vqs sin (6 Θ )
但し、
VdDC二1 ^丄 dDC + ω 'L" IqDC
VqDC— J-qDC一 ω ,L+Eq
VdAc— dc cos (6 Θ ) +vds sin(6 Θ )
VqAc—vqc cos (6 Θ ) +vqs sin(6 Θ )
vdc— I dAmp (— R.i qc— 6ω,い iqs ) + o>.い i qc
vds = I dAmp (— 'iqc— 6ω *L-iqc) + ω -L-iqs+edAC
qc―― (— R' lqc— 6ω 'L- iqs ) + I dAmp · ω 'い iqC — eqAc
Vqc—— (~ R* iqs— 6ω 'L* iqc ) + 1 dAmp ' CO 'L* iqs
[0070] このようにして、前記(10)式により d軸電流 i ( Θ )の位相が求まったため、未決定の d
変数は d軸電流 I ( Θ )の振幅係数 I のみである。前記( 13)式の d軸電圧 V及び q 軸電圧 Vの振幅の関係式が法線条件を表す前記(7)式を満足するように d軸電流 I ( q d θ )の振幅係数 I を算出すると、例えば時計方向(CW)回転では下記(14)式のよ dAmp
うになり、これによつて電圧合成ベクトルの絶対値が略一定値となり、電源電圧の 3 Z2倍の値を含む近傍値に一致するように d軸電流 i ( Θ )の直流成分、振幅、位相を d
決定することができる。
[数 11]
r ヽ
7 ((())(()ζ +++ +ΛΜΛ+ΖΛ χΜ ρ〕。Ρ / ((())() + ++z+ Λ ΜΛΖΛ+ΧΜ ΛΛ ΐ① p。。
¾ (()))弋 ++Λ+Λ①Ι
ΐ
((() (()) ++ΖλΛ + +ΖΛ ΧΜ。
2 "2((())() +++ +zA +XMΛΖΛ ΧΜ Λ ΧΛ寸s p«¾
€ ΐ€)))) )(()))++ +ΛΛ + +ΛΛτ ①①.——。¾
(ご寸
( ) J9≤Μ Η33—— 。。_-
+ ン
そして、算出した d軸電流 i d ( θ )を前記 (6)式に代入することにより、トルク変動を発 生させない真の q軸電流 i ( Θ )を生成することができる。 上述した本発明による弱め界磁制御を実現するために、目標電流設定部 30は、図 3に示すように構成されている。すなわち、目標電流設定部 30は、操舵トルクセンサ 3 で検出した操舵トルク Tと車速センサ 21で検出した車速 Vsとが入力され、これらに基 づいて操舵補助電流指令値 I を算出する操舵補助電流指令値演算部 31と、ロータ ref
回転角検出回路 13で検出したロータ回転角 Θを電気角 Θ eに変換する電気角変換 部 32と、この電気角変換部 32から出力される電気角 Θ eを微分して電気角速度 co e を算出する微分回路 33と、操舵補助電流指令値 I と電気角速度 co eとに基づいて d ref
軸目標電流 Id*を算出する d軸目標電流算出部 34と、電気角 Θ e及び電気角速度 ω e に基づいて d q軸誘起電圧モデル EMF (Electro Motion Force)の d軸 EMF 成分 e { = e / ω = e sin ( 0 ) )及び q軸 EMF成分 e ( = e / ω = E e c dO d e dACO qO q e qDCO qACO os (6 0 ) )を算出する誘起電圧モデル算出部 35と、この誘起電圧モデル算出部 35 力 出力される d軸 EMF成分 e 及び q軸 EMF成分 e と d軸目標電流算出部 34から dO qO
出力される d軸目標電流 i ( Θ )と操舵補助電流指令値演算部 31から出力される操舵 d
補助電流指令値 I Θ )
refとに基づいて q軸目標電流 i (
q を算出する q軸目標電流算出部
36と、 d軸目標電流算出部 34から出力される d軸目標電流 i ( Θ )と q軸目標電流算
α
出部 36から出力される q軸目標電流 i ( 0 )とを 3相電流指令値 Iu、 Iv*及び Iw*に変 換する 2相 Z3相変換部 37とを備えている。
[0073] 上述した操舵補助電流指令値演算部 31は、操舵トルク T及び車速 Vsをもとに図 4 に示す操舵補助電流指令値算出マップを参照して操舵補助電流指令値 I
refを算出す る。ここで、操舵補助電流指令値算出マップは、図 4に示すように、横軸に操舵トルク Tをとり、縦軸に操舵補助電流指令値 I をとると共に、車速検出値 Vをパラメータとし ref
た放物線状の曲線で表される特性線図で構成されている。そして、操舵トルク Tが" 0 "からその近傍の設定値 T1までの間は操舵補助電流指令値 I 力 0"を維持し、操舵 ref
トルク Tが設定値 T1を超えると最初は操舵補助電流指令値 I が操舵トルク Tの増加 ref
に対して比較的緩やかに増加する力 さらに操舵トルク Tが増加すると、その増加に 対して操舵補助電流指令値 I
refが急峻に増加するように設定され、この特性曲線が、 車速が増加するに従って傾きが小さくなるように複数本設定されて ヽる。
[0074] また、 d軸目標電流算出部 34には、図 5に示すように、操舵補助電流指令値演算 部 31から出力される操舵補助電流指令値 I と、電気角変換部 32から出力される口 ref
ータ電気角 0 eと、後述する誘起電圧算出部 35から入力される誘起電圧モデルで表 される q軸 EMFの直流成分 E ( ω Ε =Ε ;)、 q軸 EMFの振幅成分 e ( ω e qDCO e qDCO qDC qACO e q
=e )、 d軸 EMFの振幅成分 e ( ω e =e )とが入力されている。
ACO qAC dACO e dACO dAC
この d軸目標電流算出部 34は、入力される操舵補助電流指令値 I をもとに図 6〖こ ref
示す d軸直流成分算出マップを参照して仮の d軸電流の直流成分 I を算出する進 dDC
角制御手段としての d軸電流直流成分算出部 34aと、同様に入力される操舵補助電 流指令値 I をもとに図 7に示す d軸振幅係数算出マップを参照して d軸電流の振幅を ref
決定する振幅係数 I を算出する d軸振幅係数算出部 34bと、操舵補助電流指令値 aAmp
I 、ロータ電気角 Θ e及び誘起電圧モデル EMFに基づいて擬似 q軸電流 i ( Θ を ref q 算出する擬似 q軸電流算出部 34cと、この擬似 q軸電流算出部 34cで算出した擬似 q 軸電流 i ( Θ )' に基づ!/ヽて d軸電流の振幅成分の逆位相分を算出する d軸逆位相電 流成分 I ( θ Y を算出する d軸電流振幅成分算出部 34dと、 d軸直流成分 I 、 d軸振 d dDC 幅係数 I 、d軸逆位相成分 に基づいて d軸目標電流 ι ( 0 )を算出する d軸 dAmp a d
目標電流算出部 34eとを備えている。
[0075] ここで、 d軸直流成分算出部 34aで参照する d軸直流成分算出マップは、図 6に示 すように、操舵補助電流指令値 I が" 0"から所定値 I までの間では d軸直流成分 I rer refl dD が一定値 Iddをとり、操舵補助電流指令値 I が所定値 I を超えると、操舵補助電流
C ref refl
指令値 I の増加に応じて d軸直流成分 I が一定値 Idlより徐々に減少して操舵補 ref dDC
助電流指令値 I が最大値 I に達すると d軸直流成分 I が" 0"となるように特性線 ref ref2 dDC
が設定されている。
[0076] また、 d軸振幅係数算出部 34bで参照する d軸振幅係数算出マップは、図 7に示す ように、特性線が設定されている。この d軸振幅係数算出マップは、前述した(14)式 における各変数を基本とし、各回転数においてモータ出力が最大となるようにシミュ レーシヨンしたときの操舵補助電流指令値 I と振幅係数 I との関係を特性線図とし ref dAmp
たものである。
さらに、擬似 q軸電流算出部 34cは、操舵補助電流指令値演算部 31から出力され る操舵補助電流指令値 I と、電気角変換部 32から出力されるロータ電気角 Θ eと、 ref 後述する誘起電圧算出部 35から入力される誘起電圧モデルで表される q軸 EMFの 直流成分 E ( ω Ε =Ε ;)、 q軸 EMFの振幅成分 e ( ω e =e )、 d軸 E qDCO e qDCO qDC qACO e qACO qAC
MFの振幅成分 e ( ω e =e )と、 d軸直流成分算出部 34aで算出した d軸直 dACO e dACO dAC
流成分 I とに基づ!/、てモータの正逆転駆動を考慮して前記(9)式の右辺を絶対値 dDC
化した下記(15)式の演算を行って擬似 q軸電流 I (
d θ Y を算出する。
[0077] ΐ q( θ ϊ = I I +i cos(6 0 )-i sin(6 Θ ) | …… (15)
qDC qc qs
さらに、 d軸電流振幅成分算出部 34dは、上記(8)式における右辺第 1項の q軸直 流分 I を除く交流成分の符号を反転させて下記(16)式に基づいて振幅成分の逆 qDC
位相出力 を算出する。
d
ί ( θ / = - (i cos(6 0 )-i sin(6 0 )) (16)
d qc qs
さらにまた、 d軸電流算出部 34eは、 d軸直流成分 I 、 d軸振幅係数 I 及び d軸 dDC dAmp 振幅成分の逆位相成分 i (
d θ y に基づいて前記(10)式の演算を行って d軸電流指 令値 ί ( θ )を算出する。
d
[0078] また、 q軸目標電流算出部 36は、 d軸電流指令値 i ( Θ )と、ロータの電気角速度 ω d e
、 d軸 EMF成分 e ( θ )、 q軸 EMF成分 e ( θ )に基づいて前記(6)式に示すトルク d0 q0 一 定の条件式に基づいて q軸電流指令値 i ( Θ )を算出する。
電圧制御部 40は、目標電流設定部 30から供給される電流指令値 Iu*, Iv*, Iw*から 電流検出回路 22で検出した各相コイル Lu、 Lv、 Lwに流れるモータ相電流検出値 I ud、Ivd、Iwdを減算して各相電流誤差 Δ ΐιι、 Δ ΐν、 A lwを求める減算器 41u、 41ν 及び 41wと、求めた各相電流誤差 Δ ΐιι、 Δ ΐν、 A lwに対して比例積分制御を行って 指令電圧 Vu、 Vv、 Vwを算出する PI制御部 42とを備えている。
[0079] そして、 PI制御部 42から出力される指令電圧 Vu、 Vv、 Vw力 SFETゲート駆動回路 25に供給される。
モータ駆動回路 24は、図 2に示すように、各相コイル Lu、 Lv及び Lwに対応して直 列に接続された Nチャンネル MOSFETで構成されるスイッチング素子 Qua, Qub、 Qva, Qvb及び Qwa, Qwbを並列に接続したインバータ構成を有し、スイッチング素 子 Qua, Qubの接続点、 Qva, Qvbの接続点及び Qwa, Qwbの接続点が夫々相コ ィル Lu、 Lv及び Lwの中性点 Pnとは反対側に接続されて!ヽる。 [0080] そして、モータ駆動回路 24を構成する各スイッチング素子 Qua, Qub、 Qva, Qvb 及び Qwa, Qwbのゲートに FETゲート駆動回路 25から出力される PWM (パルス幅 変調)信号が供給されている。
次に、上記第 1の実施形態の動作を説明する。
今、ステアリングホイール 1を操舵すると、そのときの操舵トルク Tが操舵トルクセンサ 3で検出されると共に、車速 Vが車速センサ 21で検出される。そして、検出された操 舵トルク T及び車速 Vが制御演算装置 23の目標電流設定部 30における操舵補助電 流指令値演算部 31に入力されることにより、この操舵補助電流指令値演算部 31で、 図 4の操舵補助電流指令値算出マップを参照して操舵補助電流指令値 I を算出す ref る。
[0081] そして、算出された操舵補助電流指令値 I 力 軸目標電流算出部 34及び q軸目標 ref
電流算出部 36に供給される。
一方、ロータ位置検出回路 13で検出されたロータ位置信号が電気角変換部 32に 供給されて電気角 Θ 3
eに変換されると共に、この電気角 Θ
eが微分回路 3 で微分され て電気角速度 ωが算出され、これら電気角 Θ 及び電気角速度 ωが誘起電圧モデ e e e
ル算出部 35に供給されて d軸 EMF成分 e ( Θ )、 q軸 EMF成分 e ( Θ )を算出し、これ d0 q0
らを d軸電流算出部 34の疑似 q軸電流算出部 34c及び q軸電流算出部 36に供給す る。
[0082] このため、 d軸電流算出部 34では、 d軸直流成分算出部 34aで操舵補助電流指令 値 I をもとに図 6の d軸直流成分算出マップを参照して d軸直流成分 I を算出すると ref dDC 共に、 d軸振幅係数算出部 34bで、操舵補助電流指令値 I をもとに図 7の q軸振幅 ref
係数算出マップを参照して d軸電圧 Vd及び q軸電圧 Vqが振幅の関係式である前記 (7)式を満足する d軸振幅係数 I を算出する。
dAmp
さらに、疑似 q軸電流算出部 34cで前記(15)式に基づいて疑似 q軸電流 i を算出し、次いで d軸電流振幅成分算出部 34dで、前記(16)式に基づいて d軸の逆 位相成分 i ( θ ) ' を算出する。
d
[0083] そして、 d軸目標電流算出部 34eで、前記(10)式の演算を行って d軸目標電流 i ( d θ )を算出し、算出した d軸目標電流 i ( Θ )を q軸電流算出部 36に供給すると共に 2 相 3相変換部 37に供給する。
このため、 q軸電流算出部 36では、前記(6)式の演算を行ってトルク変動を生じな い q軸目標電流 i ( Θ )を算出し、この q軸目標電流 i ( Θ )を 2相 Z3相変換部 37に供 給する。
[0084] このように、 d軸電流算出部 34で算出された d軸目標電流 i ( Θ )及び q軸電流算出 d
部 36で算出した q軸目標電流 i ( 0 )は、図 9に示すように、略 180度位相がずれた逆 位相となると共に、 d軸電圧 Vd及び q軸電圧 Vqは図 10に示すように同様に略 180度 位相がずれた逆位相となる。
このとき、 d軸電流算出部 34で、振幅係数算出部 34bで、 d軸電圧 Vd及び q軸電圧 Vqの直流成分比及び振動成分比が前記 (7)式を満足するように振幅係数 I を算 dAmp 出するので、前述した図 8に示すように、電圧合成ベクトルの絶対値 I V I ( = ^ (v d2 +Vq2)の移動軌跡が d— q軸の原点を中心する円 COと電圧合成ベクトルの絶対 値 I V Iとの接点における接線方向即ち d軸電圧 Vd及び q軸電圧 Vqの直流成分の 法線上を推移することになる。
[0085] このため、 d軸電圧 Vd及び q軸電圧 Vqの電圧合成ベクトルの絶対値 | V | は電気 角 Θ に対して図 11に示すように、電源電圧 X 3Z2〔V〕の近傍範囲でリップルを e
抑制して電圧合成ベクトル I V Iを略一定値に維持することができ、電源電圧を有 効利用することができる。このときの α— β変換したときの電圧ベクトル軌跡は図 12 に示すように、略円形とすることができる。
また、 3相ブラシレスモータ 12の各励磁コイル Lu、 Lv及び Lwに印加するモータ駆 動電圧の端子電圧波形は、前述した(10)式における右辺第 1項の d軸電流の直流 成分 I を" 0"に設定した進角制御無しの場合には、図 13に示すように、電源電圧 dDC
近傍でピークが発生することを防止して略平坦な特性となり、電圧利用率を向上させ てモータ回転性能を向上させることができ、 3相ブラシレスモータ 12で操舵トルクに応 じた最適な操舵補助力を発生して、ステアリングホイール 1を良好に操舵することがで きる。このとき、 3相ブラシレスモータ 12で発生するトルクが一定に制御されるので、ス テアリングホイール 1に振動等を与えることがなぐ良好な操舵感覚を得ることができ る。 [0086] また、 d軸電流の直流成分 I を制御する進角制御を行う場合でも、 3相ブラシレス dDC
モータ 12の各励磁コイル Lu、 Lv及び Lwに印加するモータ駆動電圧の端子電圧波 形は、図 14に示すように電源電圧近傍でピークが発生することを防止して平坦な特 性として電圧利用率を向上させてモータ回転性能を向上させることができる。
因みに、従来例の場合には、 d軸電流及び q軸電流が図 15 (a)に示すようになり、こ れに応じて d軸電圧 Vd及び q軸電圧 Vqが図 15 (b)に示すようになる。このため、端 子電圧波形が進角制御を行わない場合は図 16 (a)に、進角制御を行う場合には図 16 (b)に夫々示すように、何れも電源電圧近傍の電圧波形が 2つのピークを有する ことから各相の端子電圧の実効値が低下し、モータ回転性能が低下することになる。
[0087] このため、本発明によれば、図 17に示すように、回転速度 N—モータトルク T線図 の特性線 L が従来例における回転速度 N—モータトルク T線図の特性線 L に比
NT1 NT2 較して向上していると共に、モータ出力線図の特性線 L も従来例におけるモータ出
P1
力線図の特性線 L に対して向上している。
P2
また、上記実施形態のように、 d軸目標電流 i ( Θ )を算出する際に使用する振幅係 d
数 I
dAmpを振幅係数算出マップを参照して算出することにより、前述した(14)式の複雑 な演算を行うことなぐ容易に振幅係数 I
aAmpを算出することができる。
[0088] なお、上記第 1の実施形態にお!、ては、 d軸目標電流 i ( Θ )及び q軸目標電流 i ( d q θ )を 2相 Z3相変換部 37で 3相目標電流 Iu*、 Iv*及び Iw*に変換してカゝら電圧制御 部 40に供給する場合について説明した力 これに限定されるものではなぐ 2相 Z3 相変換部 37を省略し、これに代えて電流検出回路 22で検出したモータ電流 Idu、 Id v及び Idwを 3相 Z2相変換部に供給して d軸検出電流及び q軸検出電流に変換し、 変換した d軸検出電流及び q軸検出電流と、目標電流設定部 30で算出した d軸目標 電流 i ( Θ )及び q軸目標電流 i ( Θ )との偏差を算出した後、偏差を 2相 Z3相変換し d q
て相制御電圧を算出するようにしてもょ 、。
[0089] また、上記第 1の実施形態においては、本発明を電動パワーステアリング装置に適 用した場合について説明した力 これに限定されるものではなぐ電動ブレーキ装置 などの車載電動機器や他の電動機器等の 3相ブラシレスモータを適用した機器に本 発明を適用することができる。 以上の第 1の実施形態が請求の範囲における請求項 1〜8に係る発明に対応して いる。
次に、本発明の第 2の実施形態を図 24〜図 27について説明する。
[0090] この第 2の実施形態では、前述した第 1の実施形態における操舵補助制御装置 20 力 操舵トルクセンサ3で検出された操舵トルク T及び車速センサ 21で検出された車 速 Vが入力されると共に、モータ位置検出回路 13で検出された角度検出信号 Θ mが 入力され、この角度検出信号 Θ mに基づいて電気角 Θ eを演算する電気角演算部 5 0から出力される電気角 Θ eが入力され、さらに 3相ブラシレスモータ 12の相コイル La 及び Lcに供給されるモータ駆動電流 la及び Icを後述するインバータ回路 56内で検 出するモータ電流検出部 57から出力されるモータ駆動電流検出値 I 、1 及び前 adet cdet 記モータ駆動電流 la及び Icより推定された I が入力されて 、る。
bdet
[0091] この操舵補助制御装置 20は、図 24に示すように、操舵トルク T及び車速 Vに基づ いて操舵補助電流指令値 I
rerを演算すると共に、演算した操舵補助電流指令値 I refに 基づいて d軸直流電流指令値 I 及び d軸電流振幅指令値 i を演算する操舵補助 dDC dA P
電流指令値演算部 51と、この操舵補助電流指令値演算部 51から出力される操舵補 助電流指令値 I 、d軸直流電流指令値 I 及び d軸電流振幅指令値 i 及び電気 ref dDC dAMP 角 Θ eに基づ 、てベクトル制御演算を行って d軸電流指令値 I 及び q軸電流指令値 drer
I を算出し、これら d軸電流指令値 I 及び q軸電流指令値 I を 2相 Z3相変換処理 qref dref qref
して電動モータ 12に対する a相電流指令値 I 、 b相電流指令値 I 及び c相電流指 aref bref
令値 I を演算するベクトル制御電流指令値演算部 52とを備えて 、る。
cref
[0092] ここで、操舵補助電流指令値演算部 51は、操舵トルク T及び車速 Vをもとに前述し た図 4に示す操舵補助電流指令値算出マップを参照して操舵補助電流指令値 I を ref 算出すると共に、算出した操舵補助電流指令値 I に基づいて前述した図 6及び図 7 ref
に示す d軸直流電流指令値算出マップ及び d軸電流振幅指令値算出マップを参照し て d軸直流電流指令値 I 及び d軸電流振幅指令値 i を算出する。
dDC dAMP
また、ベクトル制御電流指令値演算部 52は、図 25に示すように、操舵補助電流指 令値演算部 51から出力される操舵補助電流指令値 I と d軸直流電流指令値 I と d ref dDC 軸電流振幅指令値 I 入力されて、電気角 Θ e及び後述するパラメータ設定部 71か dAMP ら出力される歪みパラメータ K、 Κ、 r? 1、 η 5に基づいて d軸及び q軸誘起電圧 e
1 5 dOE 及び e を算出する d— q軸誘起電圧演算部 61と、操舵補助電流指令値 I 、誘起電 qOE ref 圧 e , e 及び後述する d軸電流指令値 I に基づいて q軸電流指令値 I を演算す dOE qOE dref qref る q軸電流指令値演算部 62と、操舵補助電流指令値 I と誘起電圧 e 及び e と d軸 ref dOE qOE 直流電流指令値 I 及び d軸電流振幅指令値 i とに基づいて d軸電流指令値 I dDC dA P dref を算出する d軸電流指令値演算部 63と、 d軸電流指令値 I 、q軸電流指令値 I 及 drer qref び電気角 Θ eに基づ 、て 2相 Z3相変換処理を行って a相電流指令値 I 、 b相電流 aref 指令値 I 及び c相電流指令値 I を算出する 2相 Z3相変換部 64とを備えている。
brer crer
[0093] ここで、 d— q軸誘起電圧演算部 61では、 d軸誘起電圧算出式及び q軸誘起電圧算 出式を表す下記( 17)及び( 18)式の演算を行うことにより、誘起電圧の歪みを考慮し た d軸誘起電圧 e 及び q軸誘起電圧 e を算出する。
dOE qOE
e =e /ω =K Ε sin( τ? 1)+Κ Ε sin(6 θ + η 5) (17)
dOE dE m 1 1 5 5
e e / ω =K Ε cos( τ? 1)+Κ Ε cos(6 θ + η 5) (18) qOE qE m 1 1 5 5
VE:角速度 l[radZs]における k次高調波の無通電時の誘起電圧波高値 (k=l,5) k
K: k次高調波波高値歪みゲイン (k=l, 5)
k
η : k次高調波歪み位相角 (k=l,5)
k
e =Κ Ε ω sin( θ + η 1)+Κ Ε ω sin(5 θ + η 5)
aE 1 1 m 5 5 m
e =Κ Ε ω sin( θ —(2/3) π + η 1)+Κ Ε ω sin(5( θ —(2/3) π ) + τ? 5) bE 1 1 m 5 5 m
e =Κ Ε ω sin( θ +(2/3) π + r? 1)+Κ Ε ω sin(5( θ + (2/3) π ) + τ? 5) cE 1 1 m 5 5 m
e =(2/3){e cos Θ +e cos( Θ — (2/3) 7u) + e cos( θ +(2/3) π)}
dE aE bE cE
e =(2/3){e sin Θ +e sin( θ -(2/3)π) + Θ sin( θ +(2/3) π)}
qE aE bE cE
これら(17)式及び(18)式では、誘起電圧の歪みの考慮の可否を区別するために 添え字 Eを付加している。そして、上記(17)式及び(18)式におけるパラメータ K、 K
1
、 r? l、 r? 5は d— q軸誘起電圧演算部 61に含まれる例えばマイクロコンピュータで構
5
成されるパラメータ設定部 71によって設定される。
[0094] このパラメータ設定部 71にはモータ電流検出部 57にて検出、及び推定算出した電 動モータ 12の各電流検出値 I 、 及び
aref 1 I を、 3相
bref cref Z2相変換処理して d軸電流値 I 及び q軸電流値 Iを算出する 3相 Z2相変換部 72からの d軸電流値 I及び q軸電流 値 Iが入力され、後述するパラメータ設定処理を行ってパラメータ K、 Κ、 r? 1、 r? 5を
5
設定する
また、 q軸電流指令値演算部 62では、トルク一定式をもとに q軸電流指令値 I を算 qref 出する。このトルク一定式とはモータのエネルギー方程式より算出された下記(19)式 及び(20)式で表される関係式である。
[0095] Τ ω =ΚΙ ω =I e +1 e +1 e =(2/3)(I e +1 e )…… (19)
m m t ref m a aE b bE c cE q qE d dE
I ={(2/3)KI ω — e I }/e
qref t ref m dE dref qE
= {(2/3)KI e I }/e (20)
t ref dOE dref qOE
ここで、 Tはモータトルク、 ω はモータ機械角速度、 Κはモータトルク定数、 I、 I、 I m m t a b c は 3相の各相電流値、 e 、 e 、 e は各相誘起電圧、 I、 Iは d軸、 q軸電流、 e 、 e 、 aE bE cE d q dE qE e 、e は下記(21)式及び(22)式で算出される歪みを考慮した d軸、 q軸誘起電圧 dOE qOE
である。
[0096] e =e / ω (21)
dOE dE m
e =e / ω (22)
qOE qE m
また、 d軸電流指令値演算部 63では、前述した第 1の実施形態における d軸目標電 流算出部 34eと同様に d— q軸誘起電圧演算部 61から出力される d軸誘起電圧 e dOE 及び q軸誘起電圧 e と操舵補助電流指令値演算部 51から出力される d軸直流電流 qOE
指令値 I 及び d軸電流振幅指令値 i に基づいて下記(23)式の演算を行って d dDC dA P
軸電流指令値 I
drerを算出する。
[0097] 1 =1 — i {i cos(60 )-i sin(60 )} (23)
d dDC dAMP qc qs
この(23)式の I は任意に決定できるパラメータであり、 i 、i 、i はモータ印加 dDC dAMP qc qs
電圧の有効利用率を向上させるために決定されるパラメータであり、 i及び i は前述 qc qs した「数 7」に定義され、 i は前述した(14)式で定義されて!、る。
dAMP
また、 d— q軸誘起電圧演算部 61では、 d— q軸誘起電圧算出式に基づいて誘起 電圧を算出する。ここで、誘起電圧の歪みを考慮しない場合には、 d軸誘起電圧 e d0 及び q軸誘起電圧 e を算出する d— q軸誘起電圧算出式は、下記(24)式及び(25) q0
式で表される。
[0098] e =e / ω =E sin(6 θ ) (24)
d0 d m 5 e =e / ω =E -E cos(6 Θ ) (25)
q0 q m 1 5
V E:角速度 l [radZs]における k次高調波の無通電時の誘起電圧波高値(k=l k
,5)
e =Ε ω sin θ +E ω sin5 θ
a 1 m 5 m
e =E ω sin( 0 一 (2/3) π ) + Ε ω sin5( Θ 一(2/3) π )
b 1 m 5 m
e =E ω sin( 0 +(2/3) π ) + Ε ω sin5( θ +(2/3) π )
e l m 5 m
e =(2/3){e cos Θ +e cos( Θ— (2/3) π ) + e cos( θ +(2/3) π )}
d a b c
e = (2/3) {e sin 0 +e sin( θ -(2/3) π ) + Θ sin( θ +(2/3) π )}
q a b c
この(24)式及び(25)式は、誘起電圧に高調波が含まれた場合の式であり、その 高調波次数 kは、実際に 7次以降が制御応答性の上限などの影響により制御が困難 となる場合が多い。そのため、誘起電圧の高次成分は 5次までとすることが多いため 、 5次までの記述としている。また、 3次高調波は、トルクに変換されないため、上記(2 4)式及び(25)式では考慮しておらず、上記条件にお!、て十分な性能が得られるこ とは、別途確認済みである。なお、誘起電圧が正弦波である場合は E
5を零とすれば よぐ 7次以上の高調波が含まれる場合でも同様の展開が可能である。
[0099] ところで、誘起電圧に歪みが発生するとトルクリップルを生じることになる。
このトルクリップルを発生させる要因を説明すると、一般的に電動モータを駆動する ためには、各相に電圧を印加して各相コイルに電流による電気子起磁力を発生させ 、回転子に取り付けられている永久磁石との引力 ·斥力を利用し回転子を回転させ駆 動を行うが、電機子電流により発生する起磁力により、永久磁石より発生しているギヤ ップ磁束が歪み、その結果誘起電圧が歪む現象が発生する。これを電機子反作用と 言う。電機子反作用には直軸電機子反作用と横軸電機子反作用がある。
[0100] 直軸電機子反作用はモータの回転子磁束ベクトルに対し電機子起磁力ベクトルが 同軸方向に配置される場合に発生し、図 26 (a)に示すように、前記 2つのベクトルが 逆方向に配置される場合は減磁作用 (弱め界磁)が発生し、図 26 (b)に示すように前 記 2つのベクトルが同方向に配置される場合は磁ィ匕作用 (強め界磁)が発生する。ど ちらの場合にも直軸電機子反作用の影響では誘起電圧のベクトル位相はずれな ヽ ため、誘起電圧に高調波が含有されていてもトルク変動の要因とはならない。 [0101] これに対し、横軸電機子反作用(交さ磁化作用)は、図 26 (c)に示すように、モータ の回転子磁束ベクトルに対し電機子起磁力ベクトルが直軸方向に配置される場合に 発生し、特に力率 = 1の時には強く発生する。電機子電流により発生する電機子起 磁力により永久磁石より発生する回転子磁束との合成磁束力 ¾軸方向に歪むため、 誘起電圧上で回転方向へ磁石が進角するように見える。誘起電圧及び相電流が正 弦波である場合には位相ずれによるトルクリップルは発生しにくいが、誘起電圧及び 相電流が矩形波または擬似矩形波 (正弦波 +高調波成分)である場合には、誘起電 圧の位相ずれにより高調波成分にて発生するトルクリップルを抑制することができず 、トルクリップルが発生する要因となる(これを要因 Aとする)。
[0102] また、トルクリップルが発生するもうひとつの要因として、ステータ磁化特性の非線形 性がある。ステータの磁ィ匕特性が線形であれば通電による電機子起磁力は理想的な 起磁力波形を発生できるが、実際にステータに使用される電磁鋼板の磁ィ匕特性は線 形特性を持っていないため、高電流領域では理想的な電機子起磁力が発生できず 、合成波形のピーク部が歪み、結果トルクリップルの発生及び高電流域でのトルクの へたりにつながる(これを要因 Bとする)。
[0103] 上記 2つの要因 A及び Bは、発生メカニズムは異なるがモータ相電流に関連する誘 起電圧の歪みとして捉えることが可能である。
このように、誘起電圧は電機子起磁力により歪みが発生してしまうため、上述した(2 4)式及び(25)式の誘起電圧 e 及び e を基に後述するように q軸電流指令値演算 d0 q0
部 63で、トルク一定式より算出された q軸電流指令値 I を使用しても効果的にトルク qref
リップルを抑制できな ヽ場合がある。
[0104] そこで、本実施形態では、相電流による誘起電圧の歪みを考慮し、各次数の波高 値と位相が変化すると仮定し、前述した( 17)式及び( 18)式のように d— q軸誘起電 圧算出式を定義する。
上記(17)式及び(18)式で高調波波高値歪みゲイン K、 K及び高調波歪み位相
1 5
角 η 1、 η 5は相電流値により決定する歪みパラメータであり、このパラメータをパラメ ータ設定部 71で相電流毎に決定することで歪みを考慮した d軸誘起電圧 e 及び q dOE 軸誘起電圧 e を生成することが可能となる。 [0105] 以下に本実施形態でのパラメータ設定部 71で行う歪みパラメータの推定原理と推 定方法とを説明する。
電動モータ 12の通電状態での誘起電圧を直接測定することは非常に困難である ため、無通電状態の誘起電圧より上記歪みパラメータの推定を行う。
最初に(24)式及び(25)式の歪みを考慮しな!ヽ誘起電圧にて制御系を構成し、実 モータにて平均トルク及びトルクリップルの測定を行う。すなわち、(20)式の e 、e dOE qOE を(24)式及び(25)式の e 、e に置き換えて構成する。
d0 q0
[0106] トルクリップルは電気角 Θ eの 6次成分 6 Θが支配的であることが知見されていること により、ある相電流時におけるモータトルクは下記(26)式のような近似式で表すこと ができる。
T =T +Τ cos(6 Θ )+T sin(6 θ ) (26)
m 0 6c 6s
この(26)式において、右辺第一項 Tは平均トルクで、右辺第二項の Τ及び第三
0 6c 項の T は、トルクリップル 6次成分を cosと sinに分解した時の各振幅値である。上記 3
6s
つのパラメータはトルクリップル測定の結果を高速フーリエ変換 (FFT)することで求 めることができる。
[0107] 上記測定結果は誘起電圧の歪みを考慮しな!、誘起電圧での制御で測定したトルク リップル波形であり、前記(17)式、(18)式及び前記(26)式により下記(27)式が成 立する。
T =(2/3)(e I +e I )=T +Τ cos(6 0 )+T sin(6 θ )…… (27)
m qOE q dOE d 0 6c 6s
ここで、 q軸電流値 Iはトルク一定式によって算出された q軸電流値 I であるが、トル q qref
クを一定とするための q軸電流算出式である前記(20)式の分母に q軸誘起電圧 e が q0 含まれ Iの次数成分が無限となるため、このままでは歪みパラメータの解を求めること ができない。
[0108] そこで、実際に使用される q軸電流 Iは直流成分と電気角 6次成分の振幅成分が支 配的であることが実測により知見されているので、テーラー展開を利用し 6次成分ま での近似式として下記(28)式で算出する。
1 =1 +i cos(6 0 )-i sin(6 0 ) (28)
q qDC qc qs
··· I = 2K I /3E
qDC t ref 1 i = (E /E ) I
qc 5 1 qDC
i = (E /E ) I
qs 5 1 dDC
また、 d軸電流 Iは、前記(23)式で定義されている。
d
[0109] 一方、上記(27)式、(28)式及び前記(23)式より平均トルク T、 cos振幅 Τ 、 sin振
6C 幅 T は下式のように算出される。
T =(2/3)E (I K +1 K ) " (29)
0 1 qDC 1C dDC IS
T =(2/3)E (I (K K i K ) +I K ) · ·· •(30)
6C 5 qDC 1C 5C dA P IS dDC 5S
T =(2/3)E (一 I (K K i K ) +I K ) (31)
6S 5 dDC 1C 5C dAMP IS qDC 5S
·.· K =K sin( 7? 1)
Figure imgf000038_0001
K =K sin( 7? 5)
5S 5
K =K cos( 7? 5)
5C 5
上式では、求める 4つの歪みパラメータ (K、 Κ、 r? 1、 r? 5)を新たな 4つのパラメ一
1 5
タ (Κ 、Κ 、Κ 、Κ )に変換しており、この新たな 4つのパラメータが推定できれば
IS 1C 5S 5C
、求める歪みパラメータ全てを算出可能である。上記新たな 4つのパラメータは q軸電 流値 I及び d軸電流値 Iを各々変化させてトルクリップル測定を繰り返し行い、求めら q d
れたデータより q軸電流値及び d軸電流値と歪みパラメータとの関係として決定する。
[0110] そして、決定した歪みパラメータをパラメータ設定部 71に設定し、 d— q軸誘起電圧 演算部 61の算出式を、歪みを考慮した誘起電圧算出式(17)及び(18)式に変更し 、実機にてトルクリップル測定を行い、測定結果を見ながらより効果的な値を最終的 に決定する。この際、前述した d軸電流指令値 I を算出するために必要な値である i dref q
、 iの算出にも誘起電圧の情報が用いられているため、歪みを考慮した誘起電圧で c qs
下記(32)式及び (33)式のように再構築し、 d軸電流振幅指令値 i のマップにつ dAMP
いても再構築する。
[0111] i = (K E /K ¾ ) 1 一(K K E K ¾ ) 1 …… (32)
qc 5 5 1C 1 qDC IS 5 5 1C 1 dDC
i = (K E /K E ) 1 …… (33)
qs 5 5 1C 1 dDC
そして、決定した歪みパラメータ K、 K、 r? 1及び r? 5をパラメータ設定部 71に設定
1 5
する。 次に、上記第 2の実施形態の動作を説明する。
先ず、前述した決定手法にて決定した歪みパラメータをパラメータ設定部 71に設 定する。
[0112] この状態で、ステアリングホイール 1を操舵すると、そのときの操舵トルク Tが操舵ト ルクセンサ 3で検出されると共に、車速 Vが車速センサ 21で検出される。そして、検 出された操舵トルク T及び車速 Vが操舵補助電流指令値演算部 51に入力されること により、この操舵補助電流指令値演算部 51で、図 4の操舵補助電流指令値算出マツ プを参照して操舵補助電流指令値 I
rerを算出すると共に、算出した操舵補助電流指 令値 I に基づきマップを参照して d軸直流電流指令値 I 及び d軸電流振幅指令値 I ref dDC
dA Pを算出する。
[0113] そして、算出された操舵補助電流指令値 I がベクトル制御電流指令値演算部 52 rer
の d軸電流指令値演算部 63及び q軸電流指令値演算部 62に供給される。
一方、ロータ位置検出回路 13で検出されたモータ角度検出信号 Θ mが電気角演 算部 50に供給されて電気角 Θ eに変換される。
そして、操舵補助電流指令値演算部 51で算出された操舵補助電流指令値 I 、 d rer 軸直流電流指令値 I 、 d軸電流振幅指令値 I 及び電気角 Θ eがベクトル制御電 dDC dAMP
流指令値演算部 52に供給される。
[0114] 一方、電流検出部 57で検出された I 、1 及び同検出部内で推定された I が 3 adet cdet bdet 相 Z2相変換部 72にて d軸電流値 I及び q軸電流値 Iに変換されて d— q軸誘起電圧 d q
演算部 41に含まれるパラメータ設定部 71に入力され、入力された d軸電流値 I及び d q軸電流値 Iに従い歪みパラメータ K、 K、 7? 1、 η 5を出力し、 d— q軸誘起電圧演 q 1 5
算部 61は出力された歪みパラメータ K、 K、 7? 1、 7? 5及び電気角 Θ eに基づき歪み
1 5
を考慮した誘起電圧である d軸誘起電圧 e 及び q軸誘起電圧 e を算出し、これらを dOE qOE
d軸電流指令値演算部 63及び q軸電流指令値演算部 62に供給する。
[0115] このため、 d軸電流指令値演算部 63では、操舵補助電流指令値 I 、 d軸直流電流 ref
指令値 I 及び d軸電流振幅指令値 i と d軸誘起電圧 e 及び q軸誘起電圧 e と dDC dAMP dOE qOE に基づ!/、て前述した (23)式の演算を行って d軸電流指令値 I を算出する。
dref
一方、 q軸電流指令値演算部 62では、 d軸電流指令値 I 、操舵補助電流指令値 I 及び誘起電圧 e , e に基づいて前記(18)式の演算を行ってトルク変動を生じな ef dOE qOE
い q軸電流指令値 I
qrefを算出する。
[0116] そして、 d軸電流指令値 I 及び q軸電流指令値 I 力 ¾相 Z3相変換部 64に供給さ dref qrer
れることにより、 3相電流指令値 I 、1 及び I に変換されて、これら 3相電流指令値 aref bref cref
I 、 I 及び I が減算部 53a、 53b及び 53cに供給されて、モータ電流検出部 57で aref bref cref
検出された I 、1 及び同検出部 57内で推定された I を減算することにより、電流 adet cdet cdet
偏差 A la、 A lb及び A leが算出される。これら電流偏差 A la、 A lb及び A leが PI制 御部 54で PI制御されて電圧指令値 V 、V 及び V に変換され、これら電圧指令 aref bref cref
値 V 、V 及び V に基づいて PWM制御部 55で、パルス幅変調信号が形成され aref bref cref
、これ力インバータ回路 56に供給されて 3相電流が電動モータ 12に供給されること により、電動モータ 12が駆動されて操舵補助電流指令値 I に応じた操舵補助力を ref
発生する。そして、電動モータ 12で発生された操舵補助力が減速ギヤ 11を介してス テアリングシャフト 2の出力軸 2bに伝達されて、ステアリングホイール 1を軽い操舵力 で操! "它することができる。
[0117] このとき、前述したように、ベクトル制御電流指令値演算部 52の d— q軸誘起電圧演 算部 61で、 d軸電流値及び q軸電流値を利用して d軸誘起電圧 e 及び q軸誘起電 dOE
圧 e を算出するので、電機子起磁力による誘起電圧の歪みを考慮した d軸誘起電 qOE
圧 e 及び q軸誘起電圧 e を算出することができ、誘起電圧の歪みに対してもトルク dOE qOE
リップルを効果的に抑制することができる。
また、パラメータ設定部 71に供給する d軸電流値及び q軸電流値を、 2相電流検出 値から残りの 1相電流検出値を推定し、 3相 Z2相変換して算出するようにしているの で、相電流検出部の数を減少させて製造コストを低減することができる。
[0118] 本第 2の実施形態の構成にて実機確認を行った結果を図 27に示す。本手法の実 施後ではトルクリップル 6次成分が低減され全体的なトルクリップルも低減されており 、本実施形態の効果が確認された。また、高電流域での平均トルクが上昇することも 確認され、ステータ磁ィ匕特性の非線形性によるトルクのへたりに対する改善効果も確 f*i¾ れ 。
し力も、上述したように、 d軸電流指令値 I を前記(9)式の演算を行うことにより、算 出するので、電源電圧を有効利用した高調波モータ制御を行うことができる。
[0119] また、上記実施形態のように、 d軸電流指令値 I を算出する際に使用する d軸電流 dref
振幅指令値 i を d軸電流振幅指令値算出マップを参照して算出することにより、前 dA P
述した(14)式の複雑な演算を行うことなぐ容易に d軸電流振幅指令値 i を算出 dAMP することができる。
なお、上記第 2の実施形態においては、実機でのトルクリップル測定の結果より誘 起電圧の歪みパラメータの推定を行った力 例えば、磁気解析により誘起電圧の歪 みパラメータが予めわ力る場合は、そのパラメータを用いてもょ 、。
[0120] また、上記第 2の実施形態では歪みを考慮するパラメータを d-q軸誘起電圧演算部 61に組み込む場合、 e 、e を e 、e へ変更することを前提としている力 以下の d0 q0 dOE qOE
式を利用して歪みを考慮しない誘起電圧 (無通電状態での誘起電圧) e 、e よ
d0 q0 dOE
、e を求めてもよい。
qOE
e =E (K +K ) +K e -K e
dOE 1 IS 5S 5C dO 5S qO
e =E (K -K ) +K e +K e
qOE 1 1C 5C 5S dO 5C qO
また、上記第 2の実施形態では演算負荷の増大、及び推定パラメータの多様ィ匕を 避けるため、誘起電圧は 5次までの考慮としたが、磁気解析等の結果により予めパラ メータがわかり、高速演算が可能である場合にはこの限りではない。
[0121] さらに、上記第 2の実施形態では、 d— q軸誘起電圧演算部 61におけるパラメータ 設定部 71で実測した 2相電流検出値から 1相電流検出値を推測し、 3相 Z2相変換 して算出された d軸電流値及び q軸電流値を利用する場合にっ ヽて説明したが、これ に限定されるものではなぐ実測した 3相電流検出値を 3相 Z2相変換して算出され た d軸電流値及び q軸電流値を利用してもよく、この場合には推定演算誤差をなくし、 より効果的にトルクリップルを抑制することができる。一方、 d軸電流指令値演算部 63 で算出した d軸電流指令値 I 及び q軸電流指令値演算部 62で演算した q軸電流指 drer
令値 I 又はこれら d軸電流指令値 I 及び q軸電流指令値 I に相当する指令値情 qref dref qref
報を利用するようにしてもよぐこの場合には、演算処理での計算負荷を低減させるこ とがでさる。
[0122] さらに、上記第 2の実施形態においては、 d軸電流指令値 I 及び q軸電流指令値 I を 2相 Z3相変換部 64で 3相指令電流値 I 、1 及び I に変換して力も減算部 53 ref aref bref cref
a、 53b及び 53cに供給する場合について説明した力 これに限定されるものではな ぐ 2相 Z3相変換部 64を省略し、これに代えて電流検出部 57で検出したモータ電 流検出値 I 、1 及び同検出部で推定した電流値 I を 3相 Z2相変換部に供給し adet Ddet cdet
て d軸検出電流及び q軸検出電流に変換し、変換した d軸検出電流及び q軸検出電 流と d軸電流指令値演算部 43で演算した d軸電流指令値 I 及び q軸電流指令値演 dref
算部 62で演算した q軸電流指令値 I との偏差を算出した後、偏差を 2相 Z3相変換 qref
して PI制御部 54に供給するようにしてもょ 、。
[0123] さらに、上記第 2の実施形態においては、 3相ブラシレスモータに本発明を適用した 場合について説明した力 これに限定されるものではなぐ 4相以上の n相ブラシレス モータにも本発明を適用することができる。
さらにまた、上記第 2の実施形態においては、本発明を電動パワーステアリング装 置に適用した場合について説明した力 これに限定されるものではなぐ電動ブレー キ装置などの車載電動機器や他の電動機器等の n相ブラシレスモータを適用した機 器に本発明を適用することができる。
[0124] 以上の第 2の実施形態が請求の範囲における請求項 9〜 15に係る発明に対応し ている。
次に、本発明の第 3の実施形態を図 28について説明する。
この第 3の実施形態は、前述した第 2の実施形態で歪んだ誘起電圧に合わせてト ルクー定になるように電流指令値を生成する場合に加えて、高回転'高電流時に誘 起電圧の歪みによる誘起電圧補償誤差が著しく大きくなる場合に、誘起電圧補償誤 差を低減させるようにしたものである。
[0125] すなわち、第 3の実施形態においては、制御装置 20が、図 28に示すように、角速 度演算部 80、電流指令値生成部 81、 d— q軸電流指令値演算部 82、 2相 Z3相変 換部 83、補償誘起電圧演算部 84、電流制御部 85、加算部 86、 PWM制御部 87、 インバータ回路 88とで構成されて 、る。
角速度演算部 80は、インバータ回路 88内でモータ電流を検出するロータ位置検 出回路 13で検出したモータ角度 Θ mに基づいて電気角 Θ e及びモータ角速度 co m を演算する。
[0126] 電流指令値生成部 81は、操舵トルクセンサ 3で検出した操舵トルク T及び車速セン サ 21で検出した車速 Vsが入力されこれらに基づいて前述した図 4の電流指令値算 出用マップを参照して電動モータ 12に対する電流指令値 I を生成し、生成した電流 ref
指令値 I を d— q軸電流指令値演算部 82に出力する。
ref
d— q軸電流指令値演算部 82は、前述した第 1の実施形態における d軸電流指令 値算出部 34、誘起電圧モデル算出部 35及び q軸電流指令値算出部 36で構成され 、電流指令値生成部 81で生成した電流指令値 I に基づいて電動モータ 12の d— q ref
軸座標系の d軸電流指令値 I 及び q軸電流指令値 I を演算し、これら d軸電流指 dref qref
令値 I 及び q軸電流指令値 I を 2相 Z3相変換部 83に出力する。
dref qref
[0127] 2相 Z3相変換部 83は、 d q軸電流指令値演算部 82で生成した d軸電流指令値 I 及び q軸電流指令値 I を角速度演算部 80から出力される電気角 0 eに基づいて drer qref
2相 Z3相変換して各相電流指令値 I 、1 及び I を算出し、算出した各相電流指 aref bref crer
令値 I 、1 及び I を電流制御部 85に出力する。
aref bref cref
補償誘起電圧演算部 84は、 d— q軸電流指令値演算部 82から出力される d軸電流 指令値 I 及び q軸電流指令値 I と角速度演算部 80から出力される電気角 0 e及び drer qref
モータ角速度 comとが入力され、これらに基づいて下記(34)式の演算を行って、電 動モータ 12の各相の誘起電圧補償値 e"a、 e"b及び e"cを演算し、これら誘起電圧 補償値 e " a、 b及び cをフィードフォワード補償値として加算部 86に出力する。
[0128] e"a=K E comsin( θ + η 1) +Κ Ε comsin(5 θ + τ? 5)
1 1 5 5
e"b=K Ε comsin( θ (2/3) π + η 1)
1 1
+ΚΕ comsin(5( 0 -(2/3) π) + τ? 5)
5 5
e"c=K Ε comsin( θ + (2/3) π + η 1)
1 1
+ΚΕ comsin(5( 0 +(2/3) π) + τ? 5)
5 5
(34)
電流制御部 85は、前述した第 2の実施形態における減算部 33a〜33c及び PI制 御部 34で構成され、 2相 Z3相変換部 83から出力される相電流指令値 I 、 I 及び I aref bref とインバータ回路 88内に設けられたモータ電流検出部 87で検出された電動モー cref タ 12の各相電流 Ima、 Imb及び Imcとが入力され、これらの電流偏差 Δ Ι〜Δ Ιを算
A C
出し、これら電流偏差 Δ Ι〜Δ Ιを例えば PI制御処理して電圧指令値 V 〜V を
A C aref cref 算出し、算出した電圧指令値 V 〜V を PWM制御部 87に出力する。
aref cref
[0129] PWM制御部 87は、電流制御部 85から出力される電圧指令値 V 、V 及び V aref bref cref に基づいてパルス幅変調 (PWM)信号を形成してインバータ回路 88に出力する。 インバータ回路 88では、 2相 Z3相変換部 83で変換された相電流指令値 I 、 I aref bref 及び I に応じた相電流 Ima、 Imb及び Imcを電動モータ 12に供給する。
cref
この第 3の実施形態によると、前述した第 1及び第 2の実施形態における制御装置 20の構成に補償誘起電圧演算部 84が設けられ、この補償誘起電圧演算部 84で、 d q軸電流指令値演算部 82で演算された d軸電流指令値 I 及び q軸電流指令値 I dref qr と角速度演算部 80で演算された電気角 Θ e及びモータ角速度 co mとに基づいて電 ef
動モータ 12の各相の誘起電圧補償値 e"a、 e"b及び e"cを算出する。このため、算出 される誘起電圧補償値 e " a、 b及び cは歪んだ誘起電圧波形に応じた値となり、 これら誘起電圧補償値 e"a、 b及び cをフィードフォワード補償値として加算部 86 に供給する。
[0130] このため、加算部 86で、電流制御部 85から出力される電圧指令値 V 、V 及び aref bref
V に誘起電圧補償値 e"a、 e"b及び cが個別に加算されるので、歪んだ誘起電圧 cref
波形に応じた誘起電圧補償値 e"a、 b及び cでフィードフォワード補償を行うこと になり、高回転,高電流時に生じる電流制御系の外乱である誘起電圧の歪みによる 誘起電圧補償誤差を低減することができる。このため、電動モータ 12に供給する実 電流が電流指令値により正確に追従し、期待の操舵補助トルクが得られると共に、補 償誤差による高調波振動が減るため、良好な操舵性能を発揮することができる。
[0131] なお、上記第 3の実施形態においては、補償誘起電圧演算部 84に d— q軸電流指 令値演算部 82で演算した d軸電流指令値 I 及び q軸電流指令値 I を供給する場 dref qref
合について説明したが、これに限定されるものではなぐ d— q軸電流指令値演算部 8 2で演算される q軸電流指令値 I は、電流指令値生成部 61から入力される電流指 qref
令値 I に基づいて算出されるので、図 29に示すように、 q軸電流指令値 I に代えて ref qref 電流指令値生成部 81で算出される電流指令値 I を補償誘起電圧演算部 84に供給 ref するようにしても上述した第 3の実施形態と同様の作用効果を得ることができる。
[0132] また、上記第 2の実施形態においては、補償誘起電圧演算部 84で電動モータ 12 の各相に応じた 3相の誘起電圧補償値 e " a〜 cを算出する場合について説明した 1S これに限定されるものではなぐ図 30に示すように、 2相 Z3相変換部 83と電流 制御部 85及び加算部 86とを入れ換えると共に、モータ電流検出部 87で検出したモ ータ電流 Ima〜Imcを 3相 Z2相変換部 91に供給して d軸モータ検出電流 Imd及び q軸モータ検出電流 Imqに変換して電流制御部 85に供給し、電流制御部 85で、 d軸 電流指令値 I 及び q軸電流指令値 I と d軸モータ検出電流 Imd及び q軸モータ検
drer qref
出電流 Imqとの電流偏差 Δ Id及び Δ Iqを算出し、算出した電流偏差 Δ Id及び Δ Iq を例えば PI制御処理して電圧指令値 V 及び V を算出するように構成する。
dref qref
[0133] また、補償誘起電圧演算部 84を、 d— q軸電流指令値演算部 82から入力される d 軸電流指令値 I
dref及び q軸電流指令値 I
qrerと角速度演算部 60から入力される電気角
Θ e及びモータ角速度 ω mとに基づ ヽて d軸誘起電圧補償値 e " d及び q軸誘起電圧 補償値 e " qを算出するように構成し、算出した d軸誘起電圧補償値 e " d及び q軸誘起 電圧補償値 qをフィードフォワード補償値として加算部 86に供給するようにしてもよ い。この場合には、補償誘起電圧演算部 84で dq軸 2相分の誘起電圧補償値を演算 すればよいので、演算負荷を低減することができると共に、 d軸電流指令値 I 及び q
drer 軸電流指令値 I
qrefに応じた誘起電圧補償値を演算することができる。
[0134] さらに、上記第 3の実施形態においては、補償誘起電圧演算部 84に d— q軸電流 指令値演算部 82で演算した d軸電流指令値 I 及び q軸電流指令値 I を入力する
drer qref
場合について説明した力 これに限定されるものではなぐ図 31に示すように、 d軸電 流指令値 I 及び q軸電流指令値 I に代えて、モータ電流検出部 87で検出したモ
dref qref
ータ電流 Ima〜Imcを図 30と同様に 3相 Z2相変換部 91に供給して d軸電流検出値 Imd及び q軸電流検出値 Imqに変換し、これらを補償誘起電圧演算部 84に供給して 、これら d軸電流検出値 Imd及び q軸電流検出値 Imqと角速度演算部 80から入力さ れる電気角 Θ e及びモータ角速度 co mとに基づいて電動モータ 12の各相の誘起電 圧補償値 e'a、 e'b及び e'cを算出するようにしてもよい。この場合には、電流検出値 に応じた誘起電圧補償値を演算することができる。 [0135] さらにまた、上記第 3の実施形態においては、 d— q軸電流指令値演算部 82が第 1 の実施形態における d軸電流指令値演算部 34、誘起電圧モデル算出部 35及び q軸 電流指令値算出部 36で構成されている場合について説明したが、これに限定される ものではなぐ前述した第 2の実施形態におけるベクトル制御電流指令値演算部 52 で構成するようにしてもよぐこの場合には、電流指令値生成部 81で電流指令値 I
ref に基づいて d軸直流電流指令値 I 及び d軸電流振幅指令値 I を出力するように dDC dA P
構成すればよい。
[0136] なおさらに、上記第 3の実施形態においては、本発明を電動パワーステアリング装 置に適用した場合について説明した力 これに限定されるものではなぐ電動ブレー キ装置などの車載電動機器や他の電動機器等の n相ブラシレスモータを適用した機 器に本発明を適用することができる。
以上の第 3の実施形態が請求の範囲の請求項 16〜22に係る発明に対応している 産業上の利用の可能性
[0137] 少なくとも、目標電流設定手段を、トルク変動を生じることなぐ且つ各相駆動電圧 の合成ベクトルの絶対値が略一定であり、電源電圧の 3Z2倍の値を含む近傍値 に一致する相電流指令値を出力するように構成することにより、トルクを一定に保った 状態で電源電圧を有効利用することができるモータ駆動制御装置及びこれを使用し た電動パワーステアリング装置を提供することができる。
また、ベクトル制御電流指令値演算部で、モータ電気角、 d軸電流値及び q軸電流 値に基づ 1、て d軸誘起電圧及び q軸誘起電圧を演算するので、モータ相電流に対す る誘起電圧の歪みを含めて演算することができ、演算した d軸誘起電圧及び q軸誘起 電圧を q軸電流指令値演算時に使用することにより、誘起電圧の歪みに対してもトル クリップルを効果的に抑制することができるモータ駆動制御装置及びこれを使用した 電動パワーステアリング装置を提供することができる。
[0138] さらに、補償用誘起電圧を演算して、この補償用誘起電圧でフィードフォワード補 償することにより、電流制御系の外乱である誘起電圧補償誤差を低減することができ 、実電流が電流指令値により追従し、期待のトルクが得られると共に、補償誤差によ る高調波振動を低減させることができるモータ駆動制御装置及びこれを使用した電 動パワーステアリング装置を提供することができる。

Claims

請求の範囲
[1] 3相ブラシレスモータの相電流を検出する相電流検出手段と、前記 3相ブラシレス モータのロータの回転位置を検出するロータ回転位置検出手段と、前記 3相ブラシレ スモータの目標電流を設定し、当該目標電流と前記ロータ回転位置検出手段で検 出したロータ回転位置とに基づいてモータ相電流指令値を出力する目標電流設定 手段と、該目標電流設定手段から出力されるモータ相電流指令値と前記相電流検 出手段で検出した相電流とに基づいて駆動電圧を制御する駆動電圧制御手段と、 該駆動電圧制御手段の駆動電圧に基づいて前記 3相ブラシレスモータに相電流を 供給するモータ駆動回路とを備え、前記目標電流設定手段は、トルク変動を生じるこ となぐ且つ各相駆動電圧の合成ベクトルの絶対値が略一定であり、電源電圧の 3 Z2倍の値を含む近傍値に一致する相電流指令値を出力するように構成されている ことを特徴とするモータ制御装置。
[2] 3相ブラシレスモータの相電流を検出する相電流検出手段と、前記 3相ブラシレス モータのロータの回転位置を検出するロータ回転位置検出手段と、前記 3相ブラシレ スモータの目標相電流を設定し、当該目標相電流と前記ロータ回転位置検出手段 で検出したロータ回転位置とに基づいて相電流指令値を出力する目標電流設定手 段と、該目標電流設定手段から出力される相電流指令値と前記相電流検出手段で 検出した相電流とに基づ!/、て駆動電圧を制御する駆動電圧制御手段と、該駆動電 圧制御手段の駆動電圧に基づいて前記 3相ブラシレスモータに相電流を供給するモ ータ駆動回路とを備え、前記目標電流設定手段は、誘起電圧に基本波成分以外の 高調波成分が含まれる場合に、相電流指令値波形を誘起電圧波形に対してモータ 回転性能を向上させる進角制御を行う進角制御手段を有し、該進角制御手段による 進角制御時に、トルク変動を生じることなぐ且つ各相駆動電圧の合成ベクトルの絶 対値が略一定であり、電源電圧の 3Z2倍の値を含む近傍値に一致する相電流指 令値を出力するように構成されて 、ることを特徴とするモータ制御装置。
[3] 前記目標電流設定手段は、目標電流と前記ロータ回転位置検出手段で検出した ロータ回転位置とに基づいてロータ回転座標系の 2軸に変換した d— q座標で電流制 御を行うように構成されていることを特徴とする請求項 1又は 2に記載のモータ制御装 置。
[4] 前記目標電流設定手段は、目標電流と前記ロータ回転位置検出手段で検出した ロータ回転位置とに基づいてロータ回転座標系の 2軸に変換した d— q座標で電流制 御を行うように構成され、少なくとも目標電流、ロータ電気角、ロータ電気角速度及び モータ定数情報に基づいて電気角 1周期に対して 6倍の周波数で且つ q軸電流の絶 対値と逆相又は正相で駆動する交流 d軸電流値を算出する d軸電流決定手段と、該 d軸電流決定手段で決定した d軸電流値、目標電流、ロータ電気角及びモータ定数 情報に基づいて q軸電流をトルク一定の条件式より算出する q軸電流決定手段とを有 し、トルク変動を抑制しつつ、電源電圧を有効活用した各相駆動電圧の合成ベクトル の絶対値変動が小さ!、モータ駆動電圧波形となるようにモータ相電流指令値を決定 することを特徴とする請求項 1に記載のモータ制御装置。
[5] 前記交流 d軸電流決定手段は、予め前記目標電流と d軸振幅との関係を表す制御 マップを有し、該制御マップを参照して目標電流から前記交流 d軸電流値の d軸振幅 を算出するように構成されていることを特徴とする請求項 4に記載のモータ制御装置
[6] 前記目標電流設定手段は、目標電流と前記ロータ回転位置検出手段で検出した ロータ回転位置とに基づいてロータ回転座標系の 2軸に変換した d— q座標で電流制 御を行うように構成され、前記目標電流とロータ角速度との関係から直流 d軸電流値 を決定する直流 d軸電流決定手段と、少なくとも目標電流、ロータ電気角、ロータ電 気角速度及びモータ定数情報に基づいて電気角 1周期に対して 6倍の周波数で且 つ q軸電流の絶対値と逆相又は正相で駆動する交流 d軸電流値を算出する交流 d軸 電流決定手段と、前記直流 d軸電流値、前記交流 d軸電流値、前記目標電流、ロー タ電気角及びモータ定数情報に基づいて q軸電流をトルク一定の条件式より算出す る q軸電流決定手段とを有し、進角制御時にもトルク変動を抑制しつつ、電源電圧を 有効活用した各相駆動電圧の合成ベクトルの絶対値変動が小さいモータ駆動電圧 波形となるようにモータ相電流指令値を決定することを特徴とする請求項 2に記載の モータ制御装置。
[7] 前記交流 d軸電流決定手段は、予め前記目標電流と d軸振幅との関係を表す制御 マップを有し、該制御マップを参照して目標電流から前記交流 d軸電流値の d軸振幅 を算出するように構成されて 、ることを特徴とする請求項 6に記載のモータ制御装置
[8] 操舵系に対して操舵補助力を発生する 3相ブラシレスモータを前記請求項 1乃至 7 の何れか 1項に記載のモータ制御装置で駆動制御するようにしたことを特徴とする電 動パワーステアリング装置。
[9] 相数が 3相以上の電動モータを駆動するモータ駆動制御装置であって、
前記電動モータを駆動する電流指令値を演算する電流指令値演算部と、ベクトル 制御を用いて前記電動モータの各相の相電流指令値を算出するベクトル制御電流 指令値演算部とを備え、該ベクトル制御電流指令値演算部は、前記電動モータの各 相誘起電圧から誘起電圧の d軸成分及び q軸成分である d軸誘起電圧及び q軸誘起 電圧を算出する d— q軸誘起電圧演算部と、前記 d軸誘起電圧、前記 q軸誘起電圧 及び前記電流指令値に基づいて d軸電流指令値及び q軸電流指令値を算出する d q軸電流指令値演算部とを少なくとも有し、前記 d— q軸誘起電圧演算部はモータ 電気角、 d軸電流値及び q軸電流値を利用して d軸誘起電圧及び q軸誘起電圧を演 算するように構成されて 、ることを特徴とするモータ駆動制御装置。
[10] 前記電動モータの各相のモータ相電流を検出するモータ電流検出部を有し、前記 d q軸誘起電圧演算部は、前記モータ電流検出部で検出したモータ相電流を n相 Z2相変換した d軸電流値及び q軸電流値とモータ電気角とに基づ ヽて d軸誘起電 圧及び q軸誘起電圧を演算するように構成されて ヽることを特徴とする請求項 9に記 載のモータ駆動制御装置。
[11] 前記モータ電流検出部は、少なくとも 1相以上の相電流検出値を残りの相電流検 出値に基づいて推定するように構成されていることを特徴とする請求項 10に記載の モータ駆動制御装置。
[12] 前記 d— q軸誘起電圧演算部は、前記 d軸電流指令値及び q軸電流指令値又は当 該 d軸電流指令値及び q軸電流指令値に相当する指令値情報と、モータ電気角とに 基づ ヽて d軸誘起電圧及び q軸誘起電圧を演算するように構成されて!ヽることを特徴 とする請求項 9に記載のモータ駆動制御装置。
[13] 前記電動モータがブラシレスモータであることを特徴とする請求項 9乃至 12の何れ 力 1項に記載のモータ駆動制御装置。
[14] 前記電動モータの誘起電圧は、矩形波誘起電圧及び正弦波に高調波成分を含有 する疑似矩形波誘起電圧の何れか一方であることを特徴とする請求項 9乃至 13の何 れカ 1項に記載のモータ駆動制御装置。
[15] 操舵系に対して操舵補助力を発生する電動モータを前記請求項 9乃至 14の何れ 力 1項に記載のモータ駆動制御装置で駆動制御するようにしたことを特徴とする電動 パワーステアリング装置。
[16] 3以上の相数 nの電動モータを駆動するモータ駆動制御装置であって、
前記電動モータを駆動する電流指令値を演算する電流指令値演算部と、前記電 動モータのモータ角度を検出するモータ角度検出部と、前記電動モータのモータ角 速度を検出するモータ角速度検出部と、前記モータ角速度で回転する d— q座標に 沿って演算された d軸電流及び q軸電流値の少なくとも一方と、前記モータ角速度及 び前記モータ角度とに基づいて補償用誘起電圧を演算する誘起電圧演算部とを備 え、前記電動モータの誘起電圧を前記誘起電圧演算部で演算した補償用誘起電圧 でフィードフォワード補償することを特徴とするモータ駆動制御装置。
[17] 前記誘起電圧のフィードフォワード補償は、前記電動モータの各相で行うことを特 徴とする請求項 16に記載のモータ駆動制御装置。
[18] 前記誘起電圧のフィードフォワード補償は、前記モータ角速度に相当する周波数 で回転する d— q座標上で行うことを特徴とする請求項 16又は 17に記載のモータ駆 動制御装置。
[19] 前記誘起電圧演算部に入力する前記 d軸電流値及び q軸電流値の少なくとも一方 は、前記電流指令値より算出された d軸電流指令値及び q軸電流指令値の少なくとも 一方、又は当該 d軸電流指令値及び q軸電流指令値の少なくとも一方に相当する指 令値情報であることを特徴とする請求項 16乃至 18の何れ力 1項に記載のモータ駆 動制御装置。
[20] 前記誘起電圧演算部に入力する d軸電流及び q軸電流の少なくとも一方は、前記 電流検出部で検出された検出相電流を前記モータ角速度に相当する周波数で回転 する d— q座標で n相 Z2相変換した d軸電流値及び q軸電流値の少なくとも一方であ ることを特徴とする請求項 16乃至 18の何れか 1項に記載のモータ駆動制御装置。
[21] 前記電動モータの誘起電圧は、矩形波誘起電圧及び正弦波に高調波成分を含む 疑似矩形波誘起電圧の何れか一方であることを特徴とする請求項 16乃至請求項 20 の何れか 1項に記載のモータ駆動制御装置。
[22] 操舵系に対して操舵補助力を発生する電動モータを前記請求項 16乃至 21の何れ 力 1項に記載のモータ駆動制御装置で駆動制御するようにしたことを特徴とする電動 パワーステアリング装置。
PCT/JP2007/058005 2006-04-11 2007-04-11 モータ制御装置及びこれを使用した電動パワーステアリング装置 WO2007119755A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07741441A EP2012424A1 (en) 2006-04-11 2007-04-11 Motor control device and motor-driven power steering device using the same
US12/296,661 US8080957B2 (en) 2006-04-11 2007-04-11 Motor control device and motor-driven power steering system using the same
JP2008510970A JP4894856B2 (ja) 2006-04-11 2007-04-11 モータ制御装置及びこれを使用した電動パワーステアリング装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-109134 2006-04-11
JP2006109134 2006-04-11
JP2006239271 2006-09-04
JP2006-239271 2006-09-04

Publications (1)

Publication Number Publication Date
WO2007119755A1 true WO2007119755A1 (ja) 2007-10-25

Family

ID=38609516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058005 WO2007119755A1 (ja) 2006-04-11 2007-04-11 モータ制御装置及びこれを使用した電動パワーステアリング装置

Country Status (4)

Country Link
US (1) US8080957B2 (ja)
EP (1) EP2012424A1 (ja)
JP (3) JP4894856B2 (ja)
WO (1) WO2007119755A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273193A (ja) * 2008-04-30 2009-11-19 Daikin Ind Ltd インバータ装置及びそれを搭載した空気調和装置
JP2010004733A (ja) * 2008-05-22 2010-01-07 Rohm Co Ltd モータ駆動回路および駆動方法、および波形データの生成方法、それらを利用したハードディスク装置
TWI477935B (zh) * 2012-06-13 2015-03-21 Foxnum Technology Co Ltd 電流量測電路及具有該電流量測電路的電機控制裝置
WO2017159214A1 (ja) * 2016-03-16 2017-09-21 株式会社ミツバ モータ制御装置及びモータユニット
CN113258844A (zh) * 2020-02-12 2021-08-13 株式会社丰田自动织机 变换器控制装置及车载用流体机械

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268267A (ja) * 2008-04-25 2009-11-12 Sanyo Electric Co Ltd モータ制御装置及び発電機制御装置
JP4835959B2 (ja) * 2009-03-30 2011-12-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP5848266B2 (ja) * 2010-02-26 2016-01-27 セグウェイ・インコーポレイテッド 車両を制御するための装置及び方法
KR101628385B1 (ko) * 2010-03-31 2016-06-08 현대자동차주식회사 영구자석 동기모터의 제어방법
JP5703963B2 (ja) * 2011-05-25 2015-04-22 株式会社ジェイテクト 電動パワーステアリング装置
CN102832871A (zh) * 2011-06-13 2012-12-19 苏州能健电气有限公司 变桨控制系统用带矢量控制的交流电机的驱动装置
US9595902B2 (en) * 2011-08-03 2017-03-14 GM Global Technology Operations LLC Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands
KR101382749B1 (ko) * 2012-04-13 2014-04-08 현대자동차주식회사 레졸버 옵셋 보정 방법
KR101982281B1 (ko) 2012-07-31 2019-05-27 삼성전자주식회사 영구자석 동기 전동기에서 생성 가능한 최대 자속을 획득하는 방법 및 장치.
JP6279211B2 (ja) * 2013-01-31 2018-02-14 Ntn株式会社 電気自動車用同期モータの制御装置
CN103078570A (zh) * 2013-02-04 2013-05-01 上海理工大学 一种永磁无刷直流电机转矩脉动抑制系统及方法
US8868298B2 (en) * 2013-03-04 2014-10-21 Ford Global Technologies, Llc Electric power assist steering motor sensor redundancy
WO2014171027A1 (ja) * 2013-04-17 2014-10-23 日本精工株式会社 多相モータの制御装置及びそれを用いた電動パワーステアリング装置
DE102013211151A1 (de) 2013-06-14 2014-12-18 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Oberwellenkompensation
CN103490398B (zh) * 2013-10-17 2015-02-18 南车株洲电力机车研究所有限公司 一种永磁同步电机传动系统的直轴电流保护方法及装置
KR102089923B1 (ko) * 2013-11-13 2020-03-17 현대모비스 주식회사 전동식 파워 스티어링의 모터 위치의 보상 제어장치 및 그 방법
JP6295782B2 (ja) * 2014-03-31 2018-03-20 株式会社安川電機 電力変換装置、発電システム、制御装置および電力変換方法
CN104022708B (zh) * 2014-05-21 2017-02-15 上海电机学院 采用无速度传感器技术的电动变桨距驱动系统及方法
CN103973179B (zh) * 2014-05-23 2016-08-24 谭方平 扭矩波动抑制控制装置
KR101601444B1 (ko) * 2014-07-04 2016-03-21 현대자동차주식회사 모터 구동 시스템의 인버터 6-스텝 제어 장치 및 방법
JP6344151B2 (ja) * 2014-08-29 2018-06-20 株式会社リコー 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
EP3282576B1 (en) * 2015-04-10 2020-02-12 NSK Ltd. Motor control device and electric power steering device equipped with same
JP6450256B2 (ja) * 2015-05-11 2019-01-09 ミネベアミツミ株式会社 モータ駆動制御装置
EP3243728B1 (en) * 2015-08-11 2019-09-18 NSK Ltd. Motor control device, electric power steering device, and vehicle
US10177699B2 (en) * 2015-10-16 2019-01-08 Nsk Ltd. Motor control unit and electric power steering apparatus equipped with the same
JP6677016B2 (ja) * 2016-02-29 2020-04-08 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6648592B2 (ja) * 2016-03-25 2020-02-14 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
EP3264586B1 (en) * 2016-06-28 2020-04-29 STMicroelectronics Design and Application s.r.o. A method of controlling electric motors, corresponding device and motor
WO2018152177A1 (en) * 2017-02-14 2018-08-23 KSR IP Holdings, LLC Systems and methods for harmonic compensation
WO2018211671A1 (ja) * 2017-05-18 2018-11-22 東芝三菱電機産業システム株式会社 電力変換装置
JP6542304B2 (ja) 2017-08-10 2019-07-10 本田技研工業株式会社 回転電機の制御装置及び制御方法
TWI643442B (zh) * 2017-09-25 2018-12-01 祥誠科技股份有限公司 多相直流無刷馬達驅動電路
WO2019073599A1 (ja) * 2017-10-13 2019-04-18 日立ジョンソンコントロールズ空調株式会社 モータ駆動装置、及びこれを備える冷凍サイクル装置、並びにモータ駆動方法
US11146196B2 (en) * 2018-03-16 2021-10-12 Nissan Motor Co., Ltd. Electric machine control method and electric machine control device
EP3823159B1 (en) * 2018-07-13 2023-08-02 Mitsubishi Electric Corporation Control device for electric power steering device
US11277077B2 (en) * 2018-10-30 2022-03-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device suppressing waveform distortion in an output voltage
DE102019001463A1 (de) * 2019-03-04 2020-09-10 Nidec Drivexpert Gmbh Verfahren zum schwingungsreduzierten Betreiben eines BLDC-Motors
JP7311778B2 (ja) * 2019-10-23 2023-07-20 ダイキン工業株式会社 電力変換装置
DE112020006987T5 (de) * 2020-03-27 2023-01-12 Mitsubishi Electric Corporation Drei-Stufen-Leistungswandler und Verfahren zum Steuern eines Zwischenpotentials einer Gleichstromleistungszufuhreinheit
CN113904594A (zh) * 2021-09-01 2022-01-07 哈尔滨理工大学 一种基于单周期平均转矩的无刷直流电机控制方法
CN114035512B (zh) * 2021-11-22 2022-09-23 广东工业大学 一种基于两次泰勒展开的最小速度波动插补方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231894A (ja) * 1985-04-04 1986-10-16 Mitsubishi Electric Corp インバ−タ装置
JP2001054300A (ja) * 1999-08-06 2001-02-23 Meidensha Corp モータ制御装置におけるモータのトルクリップル補償方式
JP2003199390A (ja) * 2001-12-28 2003-07-11 Toshiba Corp ベクトル制御インバータ装置
JP2004201487A (ja) 2002-11-28 2004-07-15 Nsk Ltd モータ及びその駆動制御装置
JP2006158198A (ja) 2002-11-28 2006-06-15 Nsk Ltd モータ駆動制御装置及び電動パワーステアリング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928594B2 (ja) * 1990-06-22 1999-08-03 株式会社日立製作所 電力変換装置
JP3582505B2 (ja) * 2001-09-10 2004-10-27 日産自動車株式会社 モーター制御装置
JP3805657B2 (ja) * 2001-09-18 2006-08-02 株式会社ジェイテクト 電動パワーステアリング装置
JP4110865B2 (ja) * 2002-07-16 2008-07-02 日産自動車株式会社 永久磁石型電動機の制御システム
JP4033030B2 (ja) * 2003-04-21 2008-01-16 株式会社ジェイテクト 電動パワーステアリング装置
WO2004106143A1 (ja) * 2003-05-30 2004-12-09 Nsk Ltd. 電動パワーステアリング装置の制御装置
JP4039317B2 (ja) * 2003-06-12 2008-01-30 株式会社ジェイテクト 電動パワーステアリング装置
EP1720242A1 (en) * 2003-11-26 2006-11-08 Nsk Ltd., Device for controlling motor-driven power steering device
JP4604493B2 (ja) * 2004-01-13 2011-01-05 日本精工株式会社 電動パワーステアリング装置の制御装置
JP4613513B2 (ja) * 2004-04-28 2011-01-19 日本精工株式会社 電動パワーステアリング装置
JP2006014474A (ja) * 2004-06-25 2006-01-12 Favess Co Ltd モータ制御装置および電動パワーステアリング装置
JP4422567B2 (ja) * 2004-06-30 2010-02-24 株式会社日立製作所 モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231894A (ja) * 1985-04-04 1986-10-16 Mitsubishi Electric Corp インバ−タ装置
JP2001054300A (ja) * 1999-08-06 2001-02-23 Meidensha Corp モータ制御装置におけるモータのトルクリップル補償方式
JP2003199390A (ja) * 2001-12-28 2003-07-11 Toshiba Corp ベクトル制御インバータ装置
JP2004201487A (ja) 2002-11-28 2004-07-15 Nsk Ltd モータ及びその駆動制御装置
JP2006158198A (ja) 2002-11-28 2006-06-15 Nsk Ltd モータ駆動制御装置及び電動パワーステアリング装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273193A (ja) * 2008-04-30 2009-11-19 Daikin Ind Ltd インバータ装置及びそれを搭載した空気調和装置
JP2010004733A (ja) * 2008-05-22 2010-01-07 Rohm Co Ltd モータ駆動回路および駆動方法、および波形データの生成方法、それらを利用したハードディスク装置
TWI477935B (zh) * 2012-06-13 2015-03-21 Foxnum Technology Co Ltd 電流量測電路及具有該電流量測電路的電機控制裝置
WO2017159214A1 (ja) * 2016-03-16 2017-09-21 株式会社ミツバ モータ制御装置及びモータユニット
JPWO2017159214A1 (ja) * 2016-03-16 2019-01-24 株式会社ミツバ モータ制御装置及びモータユニット
CN113258844A (zh) * 2020-02-12 2021-08-13 株式会社丰田自动织机 变换器控制装置及车载用流体机械
CN113258844B (zh) * 2020-02-12 2023-06-02 株式会社丰田自动织机 变换器控制装置及车载用流体机械

Also Published As

Publication number Publication date
JP2012029559A (ja) 2012-02-09
JP5423759B2 (ja) 2014-02-19
JP4894856B2 (ja) 2012-03-14
JPWO2007119755A1 (ja) 2009-08-27
US8080957B2 (en) 2011-12-20
US20090167224A1 (en) 2009-07-02
JP5310815B2 (ja) 2013-10-09
JP2012016276A (ja) 2012-01-19
EP2012424A1 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP5423759B2 (ja) モータ制御装置及びこれを使用した電動パワーステアリング装置
JP5168448B2 (ja) モータ制御装置及び電動パワーステアリング装置
JP5167717B2 (ja) モータ駆動制御装置及びモータ駆動制御装置を使用した電動パワーステアリング装置
CN104052361B (zh) 用以补偿转矩脉动的电机控制系统
JP5751455B2 (ja) 回転電機制御装置
CN102047552B (zh) 电动机控制装置及电动助力转向装置
WO2009123113A1 (ja) モータ制御装置および電動パワーステアリング装置
US9979340B2 (en) Apparatus for controlling three phase rotary electric machine reducing peak value of phase current
JP6617500B2 (ja) 電動パワーステアリング制御方法、電動パワーステアリング制御装置、電動パワーステアリング装置および車両
WO2005035333A1 (ja) 電動パワーステアリング装置
JP5330652B2 (ja) 永久磁石モータ制御装置
KR20050083958A (ko) 모터 및 그 구동 제어 장치
JP5314669B2 (ja) 電動パワーステアリング装置
WO2008015856A1 (fr) Système de direction assistée électrique
US20090009127A1 (en) Motor control device and electric power steering device using the same
JP3804686B2 (ja) モータ駆動制御装置及び電動パワーステアリング装置
JP5172418B2 (ja) 電動機システムの制御装置
JP5719177B2 (ja) 電動パワーステアリング装置
CN109451782B (zh) 电动助力转向装置
JP2010029027A (ja) モータ制御装置
JP2008155683A (ja) 電気式動力舵取装置
JP7385776B2 (ja) 電動機の制御装置
JP2006136144A (ja) 無結線式モータ、その駆動制御装置及び無結線式モータの駆動制御装置を使用した電動パワーステアリング装置
JP2006217795A (ja) モータ及びその駆動制御装置
WO2020145068A1 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510970

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12296661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007741441

Country of ref document: EP