WO2005035333A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2005035333A1
WO2005035333A1 PCT/JP2004/014644 JP2004014644W WO2005035333A1 WO 2005035333 A1 WO2005035333 A1 WO 2005035333A1 JP 2004014644 W JP2004014644 W JP 2004014644W WO 2005035333 A1 WO2005035333 A1 WO 2005035333A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
compensation
phase
electric motor
Prior art date
Application number
PCT/JP2004/014644
Other languages
English (en)
French (fr)
Inventor
Takeshi Ueda
Katsutoshi Nishizaki
Original Assignee
Jtekt Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jtekt Corporation filed Critical Jtekt Corporation
Priority to EP04792055.8A priority Critical patent/EP1683705B1/en
Priority to US10/574,809 priority patent/US7474067B2/en
Priority to JP2005514569A priority patent/JP4736805B2/ja
Publication of WO2005035333A1 publication Critical patent/WO2005035333A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors

Definitions

  • the present invention relates to an electric power steering device mounted on a vehicle such as an automobile and assisting a driver's steering operation using an electric motor.
  • an electric power steering device mounted on an automobile is provided with an electric motor connected to a steering mechanism that leads to a steering member force steering wheel, and the motor power is applied to the steering mechanism to apply the motor power to the steering mechanism. It assists the driver in the steering operation with the steering member.
  • the cogging torque (mechanical ripple) caused by the motor configuration such as the number of poles of the rotor magnet and the number of slots for the stator winding, and the induced electromotive force waveform are distorted from the ideal waveform.
  • Ripple (pulsation) which is roughly divided into electric ripple generated by the electric current, occurs in the output torque.
  • torque ripple at the motor output is one of the factors that reduce the steering feeling in the steering device, and it is therefore strongly desired that the steering device suppress the torque ripple.
  • the conventional device includes changing the shape of the portion of the slot facing the rotor magnet and adjusting the skew angle. Some have tried to reduce torque ripple.
  • an electric power steering apparatus for example, a three-phase brushless motor is used as the electric motor.
  • torque ripple (electric ripple) appears in the output torque due to the higher-order component of the current generated by the rotation of the distorted magnetic field, and the steering filling decreases. was there.
  • the present invention is capable of suppressing torque ripple caused by a higher-order component of current, and thereby suppressing a reduction in steering feeling.
  • the purpose is to provide. Disclosure of the invention
  • the present invention for achieving the above object provides an electric power steering that determines a target current value of an electric motor in accordance with an operation of a steering member, applies the motor power to a steering mechanism, and assists steering.
  • Torque ripple compensation determining means for determining a value, a correcting means for correcting the determined target current value using a compensation value from the torque ripple compensation determining means, and a correction value after the correction by the correcting means.
  • Feedback control means for performing feedback control of the electric motor based on a target current value.
  • the torque ripple compensation determination means uses the rotational position information of the electric motor and the target current value determined in accordance with the operation of the steering member.
  • a current having the target current value is supplied to the motor, a torque ripple generated by a predetermined higher-order component of the current is expected, and a current higher-order component for canceling the expected torque ripple is expected.
  • the feedback control means performs feedback control of the electric motor based on the target current value corrected by the correction means based on the compensation value of the torque ripple compensation determination means, so that the control means performs the correction of the corrected target current value.
  • the current is supplied, the current is supplied to the motor in a state in which the predetermined high-order component of the current is removed, so that the torque ripple caused by the high-order component of the current can be suppressed.
  • the torque ripple compensation determination means changes the compensation value for the current higher-order component according to the determined target current value.
  • the torque ripple compensation determining means includes an electric motor in addition to a current higher-order distortion compensator that determines a compensation value for the current higher-order component.
  • a magnetic field distortion compensating unit that determines a compensation value for magnetic field distortion for suppressing torque ripple caused by distortion of a magnetic field formed in the motor using the rotational position information of the motor and the determined target current value. May be provided.
  • the target current value is corrected using the compensation value for the magnetic field distortion determined by the magnetic field distortion compensator in addition to the compensation value for the higher current component determined by the current higher-order distortion compensator.
  • the feedback control means causes the current of the target current value to flow, it suppresses not only the torque ripple caused by the higher-order current component but also the torque ripple caused by the magnetic field distortion formed in the electric motor. Therefore, it is possible to prevent a decrease in steering filling due to the ripple.
  • a current control system including the electric motor and the feedback control unit, and a rotation speed detection unit that detects a rotation speed of the electric motor based on the rotation position information.
  • Gain compensating means for calculating a gain compensation value for compensating for a decrease in gain depending on frequency characteristics of the current control system based on the rotational speed of the electric motor from the rotational speed detecting means, It is preferable that the correction unit corrects the determined target current value using a compensation value from the torque ripple compensation determination unit and a gain compensation value from the gain compensation calculation unit.
  • the feedback control means performs feedback control of the electric motor based on the target current value corrected using the compensation value of the torque ripple compensation determination means force and the gain compensation value of the gain compensation calculation means force.
  • a phase compensation for compensating a phase delay depending on a frequency characteristic of the current control system based on the rotation speed of the electric motor from the rotation speed detection means.
  • a phase compensation calculating means for determining the value;
  • the correcting means uses the compensation value from the torque ripple compensation determining means, the gain compensation value of the gain compensation calculating means, and the phase compensation value from the phase compensation calculating means, The determined target current value may be corrected.
  • the feedback control means is corrected using the compensation value of the torque ripple compensation determining means force, the gain compensation value of the gain compensation calculation means force, and the phase compensation value of the phase compensation calculation means force.
  • the electric motor is feedback-controlled, and the current flowing through the motor has a phase lag with respect to the induced voltage in accordance with the increase in the motor rotation speed in accordance with the frequency characteristics of the current control system. This can be compensated for, and a decrease in steering feeling due to the phase delay can be suppressed.
  • FIG. 1 is a schematic diagram showing a configuration of a main part of an electric power steering device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a relationship between three-phase AC coordinates and dq coordinates in the electric motor shown in FIG. 1.
  • FIG. 3 is a block diagram showing a configuration example of an ECU shown in FIG. 1.
  • FIG. 4 is a block diagram showing a specific configuration example of a magnetic field distortion compensator shown in FIG. 3.
  • FIG. 5 is a block diagram showing a specific configuration example of a current higher-order distortion compensator shown in FIG. 3.
  • FIG. 6 is a Bode diagram showing a specific example of frequency characteristics of the current control system shown in FIG. 3.
  • FIG. 7 is a waveform chart showing a specific example of measured data of no-load induced electromotive force (induced voltage) of the electric motor.
  • FIG. 8 is a waveform chart showing a specific waveform of a magnetic field distortion compensation current component determined by the magnetic field distortion compensation unit.
  • FIG. 9 is a graph showing a measurement example of a ratio of a higher-order component contained in an induced voltage in the electric motor to a first-order component.
  • FIG. 10 is a graph showing a measurement example of a gain change with respect to a primary component of a higher-order current component for a target current value of the electric motor.
  • FIG. 11 is a waveform chart showing specific output torque of the electric motor.
  • FIG. 1 is a schematic diagram showing a configuration of a main part of an electric power steering device according to one embodiment of the present invention.
  • the device is mounted on, for example, an automobile, and includes a steering shaft 2 that changes a direction of a steered wheel 8 in accordance with a steering operation of a driver applied to a steering member (steering wheel) 1. That is, the steering member 1 is connected to one end of the steering shaft 2, and the left and right steering wheels 8 are connected to the other end of the steering shaft 2 via a rack and pinion type transmission mechanism 6 and a tie rod 7. I have. Then, the rotational force of the steering shaft 2 is converted by the rack and pinion type transmission mechanism 6 into linear motion in the left-right direction, and the steered wheels 8 are steered.
  • a torque sensor 3 and an electric motor 5 connected via a speed reduction mechanism 4 are provided in the middle of the steering shaft 2.
  • the deceleration mechanism 4 and the electric motor 5 constitute a steering assist unit that applies a steering assist force by motor power to a steering mechanism from the steering member 1 to the steered wheels 8. That is, the torque sensor 3 detects a torque generated on the steering shaft 2 in accordance with a driver's steering operation on the steering member 1 or a road surface resistance reversely input from the steered wheels 8 and the like, and the torque detection value is obtained. Is output to the ECU 10 as a control device.
  • the ECU 10 is supplied with electric power from the battery 11 in accordance with the on / off operation of the induction switch 12, and outputs a vehicle speed signal Vs from a vehicle speed sensor 9 for detecting a vehicle speed, and the motor 5.
  • the ECU 10 performs driving control of the electric motor 5 based on these input signals so as to perform steering assist with a desired steering assist force. Become.
  • the electric motor 5 includes, for example, a rotor having a permanent magnet, and U-phase, V-phase, and W-phase coils (stator windings). It consists of a star-connected brushless motor.
  • each phase coil The target value of the phase current to be supplied to the coils, i.e., the current command values iu, i * v, and i * w for each phase coil, are expressed by the following (when the maximum value (amplitude) of the supplied current is I *) 1)
  • I * the maximum value of the supplied current
  • 0 re is the rotation angle (electric angle) of the permanent magnet (rotor) that rotates clockwise in the positive direction with respect to the U-phase coil, for example, as shown in FIG.
  • the electrical angle is information indicating the rotational position of the rotor.
  • ⁇ re (p / 2) X ⁇ m.
  • the angle represents an electrical angle.
  • the electric motor 5 is feedback-controlled by a feedback control unit described later included in the ECU 10, and d-q coordinates are used in the feedback control.
  • the dq coordinates define the direction of the magnetic flux by the permanent magnet as the d-axis and the direction orthogonal to the d-axis as the q-axis. This is a rotating coordinate system that rotates synchronously.
  • the ECU 10 first determines the current command values i * u, i * v for each phase coil shown in the above equations (1) and (3).
  • the current actually flowing through the U-phase, V-phase, and W-phase coils of the electric motor 5 is represented by V.
  • U-phase current detection values iu and V When the phase current detection value is The d-axis current detection value id and the q-axis current detection value iq are converted into d-q coordinates by substituting the detected values iu and iv into the following equations (6) and (7). It is becoming required. Then, the ECU 10 uses the d-axis current command value i * d and the q-axis current command value i * q, the d-axis current detection value id, and the q-axis current detection value iq, as described later in detail. Feedback control is performed.
  • FIG. 3 is a block diagram showing a configuration example of the ECU shown in FIG.
  • the ECU 10 includes a phase compensator 13 for inputting a torque signal Ts from the torque sensor 3, a microcomputer (hereinafter abbreviated as “microcomputer”) 100, and a microcomputer 100.
  • a motor drive unit configured by hardware for driving the electric motor 5 by a PWM signal in accordance with an instruction from the user.
  • the motor drive unit includes a three-phase PWM modulator 31 connected to the microcomputer 100, and stator windings (U, V, and W-phase coils) of the three-phase PWM modulator 31 and the electric motor 5 to be driven. ) And a motor drive circuit 32 connected between them.
  • the motor driving unit includes a motor driving circuit 32 and a V-phase current detector 33 and a U-phase current detector which respectively detect currents supplied to, for example, a V-phase coil and a U-phase coil among the three-phase coils.
  • a rotor angle position detector 35 provided on the electric motor 5 side and detecting the electric angle based on a sensor output (signal Sr corresponding to rotor rotation) from a position detection sensor 51 constituted by a resolver or the like.
  • the motor drive unit and a part of the microcomputer 100 constitute the feedback control unit 200 that performs feedback control of the electric motor 5.
  • the position detection sensor 51 and the rotor angle position detector 35 constitute a rotation position information obtaining means for obtaining the rotation position information (electric angle) of the electric motor 5!
  • the microcomputer 100 executes a program stored in advance in a nonvolatile memory (not shown) provided therein to execute predetermined arithmetic processing required for motor control.
  • this microcomputer 100 As shown in FIG. 3, the target current value calculator 14, the rotation direction designator 15, the convergence corrector 16, the adder 17, the magnetic field distortion compensator 18, the current higher-order distortion compensator 19, the rotor angular velocity calculator 20, Adders 21, 22, Subtractors 23, 24, d-axis current PI controller 25, q-axis current PI controller 26, d-q Z 3-phase AC coordinate converter 27, sign inverting adder 28, 3-phase AC Zd- A coordinate conversion unit 29 and a sine wave ROM table 30 are included, and a desired steering assist force is determined based on an input signal such as a vehicle speed signal Vs from the vehicle speed sensor 9, and the determined steering assist force is determined. And a motor control unit for providing an output (instruction) signal corresponding to the above to the motor drive unit.
  • a torque ripple compensation determining unit 101 having the magnetic field distortion compensating unit 18 and the current higher-order distortion compensating unit 19 is provided, and the calculation result of the compensation determining unit 101 is sent to the motor driving unit.
  • the torque ripple caused by the distortion of the magnetic field formed in the electric motor 5 and the torque ripple caused by the higher-order component of the current flowing through the motor 5 are reflected as described below. Can be reduced.
  • the rotor angular velocity calculation unit 20 constitutes a rotation speed detection unit that detects the rotation speed of the electric motor 5 based on the rotation position information from the rotation position information acquisition unit described above.
  • the phase compensator 13 performs phase compensation on the torque detection signal Ts and outputs the target current of the microcomputer 100. Output to the value calculator 14.
  • the ECU 10 receives a vehicle speed signal Vs output from the vehicle speed sensor 9 at a predetermined sampling cycle, and the input vehicle speed signal Vs is input to the target current value calculation unit 14 and the convergence The correction unit 16 is provided. Further, in the ECU 10, when the sensor signal Sr is input from the position detection sensor 51 to the rotor angular position detector 35, the rotor angular position detector 35 transmits the permanent magnet of the electric motor 5 based on the input sensor signal Sr.
  • the rotational position of the (rotor), that is, the electrical angle ⁇ re is detected. Then, the rotor angular position detector 35 outputs the angle signal indicating the detected electrical angle ⁇ re to the magnetic field distortion compensating unit 18, the current higher-order distortion compensating unit 19, the rotor angular velocity calculating unit 20, and the sine wave ROM table of the microcomputer 100. Output to 30.
  • the target current value calculation unit 14 obtains a target current value It, which is a value of a supply current to be supplied to the electric motor 5, based on the torque detection signal Ts after phase compensation and the vehicle speed signal Vs.
  • the calculation unit 14 includes a torque at the steering shaft 2 called an assist map, A table indicating the relationship between the target current value It and the vehicle speed for generating a desired steering assist force in accordance with the torque is stored in advance.
  • the computing unit 14 obtains the target current value It by referring to the table using the values of the torque detection signal Ts and the vehicle speed signal Vs as input parameters, and sends the target current value It to the rotation direction designation unit 15 and the adder 17. Output.
  • the target current value It corresponds to the q-axis current command value i * q shown in the above equation (5), and has a sign indicating the assist direction by the motor power.
  • the sign of the target current value It designates the rotation direction of the motor rotor.
  • the electric motor 5 is controlled to assist the rightward steering and the leftward steering with the steering member 1 respectively.
  • the rotation direction designation unit 15 determines the rotor rotation direction based on the sign of the target current value It input from the target current value calculation unit 14, generates a direction signal Sdir for designating the rotation direction, and generates the convergence correction unit. Output to 16.
  • the convergence correcting section 16 includes the vehicle speed signal Vs, the direction signal Sdir, and the rotor angular velocity core calculated by the rotor angular velocity calculating section 20 based on the electrical angle 0 re input from the rotor angular velocity position detector 35.
  • the correction unit 16 calculates a compensation current value ic for securing vehicle convergence by performing a predetermined operation using these input signals. Then, the compensation current value ic is added to the target current value It by the adder 17, and the adder 17 outputs the addition result as a q-axis basic current command value i * q0.
  • the q-axis basic current command value i * q0 is a basic command value (target current) of a supply current corresponding to a motor load for generating a desired steering assist force (that is, a torque to be generated by the electric motor 5).
  • Value which is simultaneously supplied to the magnetic field distortion compensating section 18 and the current high-order distortion compensating section 19 of the torque ripple compensation determining section 101, and is also output to the adder 22 so that the magnetic field distortion compensating section 18 and the current high-order distortion The value is added so that the result of the operation in the compensator 19 is reflected.
  • the d-axis basic current command value i * dO which is the basic command value of the d-axis current
  • i * dO 0 Is input to the adder 21 as
  • the magnetic field distortion compensating unit 18 calculates the electric angle ⁇ re as the rotational position information of the electric motor 5 from the rotor angular position detector 35 and the q-axis basic current command value i * q 0 from the adder 17.
  • the compensation value for the magnetic field distortion for suppressing the torque ripple caused by the distortion of the magnetic field formed in the motor 5 is determined.
  • the magnetic field distortion compensator 18 when the current commanded by the q-axis basic current command value i * q0 is supplied to each phase coil of the electric motor 5, the magnetic field distortion compensator 18 generates an induced electromotive force waveform induced in each phase coil.
  • the q-axis basic current command value i is set so that the expected torque ripple is suppressed.
  • Current compensation values for changing q0 are calculated for each d-axis current and q-axis current, and determined as d-axis current compensation value Aidl and q-axis current compensation value Aiql (details will be described later). Then, the magnetic field distortion compensating unit 18 outputs the d-axis current compensation value Aidl and the q-axis current compensation value ⁇ iql for the magnetic field distortion determined in the corresponding adders 21 and 22.
  • the d-axis current compensation value Aidl and the q-axis current compensation value ⁇ iql output from the magnetic field distortion compensating unit 18 are, as described later in detail, a frequency of a current control system including the electric motor 5 described later.
  • the gain is reduced and the phase lag dependent on the numerical characteristic is corrected so as not to occur as much as possible.
  • the current higher-order distortion compensator 19 uses the electric angle ⁇ re and the q-axis basic current command value i * q0 to cause a predetermined higher-order component of the current flowing through the motor 5.
  • the compensation value for the current higher-order component to cancel the torque ripple is determined.
  • the current higher-order distortion compensator 19 determines the current flowing through each phase coil when the current commanded by the q-axis basic current command value i * q0 is supplied to each phase coil of the electric motor 5.
  • the current compensation value for changing the q-axis basic current command value i * q0 in such a way that the expected torque ripple is canceled out It is calculated for each axis current and determined as the d-axis current compensation value ⁇ id2 and the q-axis current compensation value ⁇ iq2 (details will be described later). Then, the current higher-order distortion compensator 19 outputs the d-axis current compensation value ⁇ id2 and the q-axis current compensation value ⁇ iq2 for the current higher-order component determined by the corresponding adders 21 and 22.
  • the d-axis current compensation value Aid2 and the q-axis current compensation value Aiq2 output from the current higher-order distortion compensator 19 are, as described later in detail, a circuit of the above-described current control system including the electric motor 5.
  • the gain is reduced and the phase lag, which depends on the wave number characteristics, is corrected as little as possible.
  • the adders 21 and 22 provide a target current value determined according to the operation of the steering member 1 based on the compensation value from the torque ripple compensation determination unit 101 for each of the corresponding d-axis current and q-axis current.
  • the d-axis basic current command value i * d 0 set in the adder 21 and the magnetic field
  • the torque ripple compensation determining unit 101 The d-axis current command value i * d after the calculation result is calculated.
  • the adder 21 outputs the calculated d-axis current command value i * d to the subtractor 23 of the feedback control unit 200.
  • the adder 22 calculates the q-axis basic current command value i * qO from the adder 17 and the q-axis current for magnetic field distortion from the magnetic field distortion compensator 18 as shown in the following equation (9).
  • the adder 22 outputs the calculated q-axis current command value i * q to the subtractor 24 of the feedback control unit 200.
  • the subtractor 23 converts the d-axis current of the current actually supplied to the electric motor 5 into a d-axis current.
  • the detection value id is input from the three-phase alternating current Zd-q coordinate converter 29.
  • the subtractor 24 converts the q-axis current of the current actually supplied to the electric motor 5 into the q-axis current.
  • the detected current value iq is input from the three-phase AC Zd-q coordinate converter 29.
  • the three-phase AC Zd-q coordinate conversion unit 29 includes a V-phase current detection value iv and a U-phase current detection value detected by the V-phase current detector 33 and the U-phase current detector 34, respectively. iu has been entered. Further, the sin value of the electrical angle 0 re when the detection current is flowing is input from the sine wave ROM table 30 to the conversion unit 29. This The sine wave ROM table 30 stores the angle 0 and the sin value of the angle ⁇ in association with each other, and when the electrical angle 0 re is input from the rotor angle position detector 35, the sin value is stored in the above d. — QZ three-phase AC coordinate conversion unit 27 and three-phase AC Zd—Output immediately to q coordinate conversion unit 29!
  • the three-phase alternating current Zd-q coordinate converter 29 uses the input U-phase current detection value iu, V-phase current detection value iv, and sin value, and the above-described equations (6) and (7).
  • these subtractors 23 and 24 output the obtained d-axis current deviation ed and q-axis current deviation eq to the d-axis current PI control unit 25 and the q-axis current PI control unit 26, respectively.
  • the d-axis current PI control unit 25 and the q-axis current PI control unit 26 calculate the d-axis current deviation ed and the q-axis current deviation eq from the corresponding subtracters 23 and 24 according to the following equations (10) and (11). By substituting these values, the d-axis voltage command value v * d and the q-axis voltage command value v * q are calculated, and the calculated values are output to the d-qZ three-phase AC coordinate converter 27.
  • Kp and Ti are proportional gain and integration time, respectively, and are values preset in the d-axis current PI control unit 25 and the q-axis current PI control unit 26 according to motor characteristics and the like.
  • the d—q Z three-phase AC coordinate converter 27 includes a d-axis voltage command value v * d from the d-axis current PI controller 25 and a q-axis voltage command value v from the q-axis current PI controller 26. * q and sin value from sine wave ROM table 30 are input.
  • the conversion unit 27 uses the following equations (12) and (13) to calculate the applied d-axis voltage command value v * d and the q-axis voltage command The value v * q is converted to the U-phase voltage command value v * u And a V-phase voltage command value v * v, and outputs the result to the three-phase PWM modulator 31.
  • the output value of the conversion unit 27 is input to a sign inversion adder 28.
  • the sign inversion adder 28 uses the above-described U-phase voltage command value by using the following equation (14).
  • the W-phase voltage command value v * w is obtained from v * u and the V-phase voltage command value v * v, and output to the three-phase PWM modulator 31.
  • v * u ⁇ (2/3) ⁇ v * d X cos 0 re-v * q X sin 0 re ⁇ one (12)
  • the three-phase PWM modulation unit 31 performs PWM control with duty ratios corresponding to the U-phase voltage command value v * u, the V-phase voltage command value v * v, and the W-phase voltage command value v * w, respectively.
  • the signals Su, Sv, and Sw are generated and output to the motor drive circuit 32.
  • the motor drive circuit 32 includes a PWM voltage type inverter having a bridge circuit using power switching elements such as MOSFETs, and turns on each switching element in accordance with the PWM signals Su, Sv, and Sw.
  • the voltage of the battery 11 (FIG. 1) is applied to the U-phase, V-phase, and W-phase coils (FIG. 2) of the electric motor 5.
  • a current flows through each phase coil, and the motor 5 generates a torque Tm corresponding to the current and applies the torque Tm to the steering mechanism as a steering assist force.
  • the feedback control unit 200 sets the d-axis current detection value id and the q-axis current detection value iq to the d-axis current command value i * d and the q-axis current command, respectively.
  • the feedback control unit 200 sets the d-axis current detection value id and the q-axis current detection value iq to the d-axis current command value i * d and the q-axis current command, respectively.
  • the feedback control section 200, the electric motor 5 to be controlled by the feedback control section 200, and the position detection sensor 51 constitute the current control system having a feedback loop.
  • This current control system has frequency characteristics defined by the impedance of a coil installed in the motor 5 and the like.
  • the torque ripple compensation determining unit 101 uses the solid line and the dotted line in FIG. 6 in each of the magnetic field distortion compensating unit 18 and the current higher-order distortion compensating unit 19.
  • the data shown is tabulated and held as a frequency characteristic map described later, and the output compensation value of each unit is corrected so that a gain decrease and a phase delay depending on the frequency characteristic do not occur as much as possible. Te ru.
  • FIG. 4 is a block diagram showing a specific configuration example of the magnetic field distortion compensator shown in FIG.
  • the magnetic field distortion compensating section 18 includes a frequency calculating section 36, a gain / phase determining section 37, a subtractor 38, a magnetic field distortion compensation value determining section 39, an amplitude determining section 40, a correction rate calculating section 41,
  • functional blocks of the multipliers 42 and 43 are set, and the microcomputer 100 executes a program so that each of the blocks performs predetermined arithmetic processing.
  • the frequency calculating section 36, the gain / phase determining section 37, and the correction rate calculating section 41 perform the gain reduction depending on the frequency characteristic of the current control system based on the rotation speed of the electric motor 5 (FIG. 3). Constitutes a gain compensation calculating means for obtaining a gain compensation value for compensating for. Further, the frequency calculation unit 36 and the gain 'phase determination unit 37 provide a compensation value for compensating a phase delay depending on the frequency characteristic of the current control system based on V based on the rotation speed of the motor 5. Is also used as the phase compensation calculating means.
  • the frequency calculation unit 36 receives the rotor angular speed ⁇ re, which is the electrical angular rotation speed of the electric motor 5, from the rotor angular speed calculation unit 20. Then, the frequency calculation unit 36 calculates the frequency f of the torque ripple caused by the magnetic field distortion appearing in the motor output by substituting the input rotor angular velocity core into the following equation (15). This frequency f is the fundamental frequency of torque ripple caused by the current higher-order component distortion.
  • S is the order of the torque ripple (the number of torque ripples generated per electric angle cycle).
  • the gain / phase determination unit 37 includes a frequency characteristic map 37a corresponding to the frequency characteristic of the current control system shown in the Bode diagram (Fig. 6) (ie, a solid line and a dotted line shown in Fig. 6). (Data indicating the relationship between the frequency and the gain and phase).
  • the gain 'phase determiner 37 refers to the frequency characteristic map 37a, and determines the gain G and the phase difference of the current control system according to the input frequency f.
  • the ⁇ ⁇ e is obtained and output to the correction rate calculation unit 41 and the subtractor 38, respectively.
  • the gain decreases from 1 and the phase lag increases. Become.
  • the magnetic field distortion compensation value determination unit 39 includes a magnetic field distortion compensation map 39a in which the relationship between the electric angle and the value of the magnetic field distortion compensation current component for each of the d-axis current and the q-axis current is tabulated.
  • the compensation value determination unit 39 refers to the magnetic field distortion compensation map 39a, and the compensation value determination unit 39 determines the d-axis current unit compensation values AidlO and q for the magnetic field distortion corresponding to the input corrected electrical angle ⁇ mre. Determine the shaft current unit compensation value ⁇ iqlO.
  • the magnetic field formed in the motor 5 is distorted, that is, when the no-load induced electromotive force waveform is distorted in its ideal waveform, a sine wave is generated in each phase coil.
  • the motor output causes magnetic field distortion. Resulting torque ripple.
  • the output torque of the motor 5 is set to a constant value (for example, 1 [Nm]), which is caused by the magnetic field distortion.
  • the currents iOu, iOv, and iOw of each phase coil calculated by the equations (16)-(18) are calculated by using the following equations (19) and (20) with the electric angle 0 as a variable.
  • the magnetic field distortion compensation map 39a can be created as follows.
  • the current value iOql is obtained from the above equations (16)-(20).
  • the d-axis current value i (W2 and q-axis current value i0q2 necessary for the motor 5 to output the above unit torque is obtained (in this case, Since the output torque is proportional to the q-axis current and the d-axis current may be set to “0”, the d-axis current value W2 and the q-axis current value i0q2 can be easily obtained by performing a predetermined calculation on each of the above measured data.
  • the electric angle and the magnetic field distortion compensating current component which is a current component capable of suppressing the magnetic field distortion after being converted into the d-axis current and the q-axis current corresponding to the electric angle
  • a current waveform can be obtained that indicates the values of the above, and a table in which these data are associated can be created as the magnetic field distortion compensation map 39a.
  • the magnetic field distortion compensation value determination section 39 refers to the magnetic field distortion compensation map 39a created as described above, and obtains the d-axis current corresponding to the corrected electrical angle ⁇ mre input from the subtractor 38.
  • the unit compensation value ⁇ idlO and the q-axis current unit compensation value ⁇ iqlO are determined and output to the amplitude determination unit 40.
  • the amplitude determining unit 40 includes a desired operation from the adder 17 (FIG. 3) in addition to the d-axis current unit compensation value ⁇ idlO and the q-axis current unit compensation value ⁇ iqlO from the magnetic field distortion compensation value determining unit 39.
  • the q-axis basic current command value i * qO corresponding to the steering assist force is input.
  • the amplitude determination unit 40 determines a multiplication value for the d-axis current unit compensation value ⁇ idlO and the q-axis current unit compensation value ⁇ iqlO per unit torque based on the input q-axis basic current command value i * qO, By performing the multiplication process, the d-axis current compensation value A idll and the q-axis current compensation value A iqll corresponding to the desired steering assist force are obtained.
  • the amplitude determination unit 40 outputs the obtained d-axis current compensation value ⁇ dl 1 and q-axis current compensation value ⁇ iql 1 to multipliers 42 and 43, respectively.
  • the correction rate calculator 41 receives the current control system gain G determined by the gain / phase determiner 37.
  • the correction rate calculator 41 calculates the reciprocal 1 ZG of the gain G. Is calculated, and the correction rate Rm as the above-mentioned gain compensation value is obtained. Then, the correction rate calculation unit 41 outputs the correction rate Rm to the multipliers 42 and 43.
  • the multiplier 42 multiplies the d-axis current compensation value ⁇ idl 1 from the amplitude determiner 40 by the correction rate Rm from the correction rate calculator 41 to obtain the d-axis current compensation value A idl for the magnetic field distortion compensation. And outputs it to the adder 21 (Fig. 3).
  • the multiplier 43 multiplies the q-axis current compensation value A iqll from the amplitude determination unit 40 by the correction rate Rm from the correction rate calculation unit 41, and The q-axis current compensation value Aiql for magnetic field distortion compensation is obtained and output to the adder 22 (FIG. 3).
  • the multipliers 42 and 43 use the correction rate Rm to correct the d-axis current compensation value A idll and the q-axis current compensation value A iqll, thereby depending on the frequency characteristics of the current control system. Gain reduction can be compensated.
  • FIG. 5 is a block diagram showing a specific configuration example of the current higher-order distortion compensator shown in FIG.
  • the current higher-order distortion compensator 19 includes a frequency calculator 36, a gain 'phase determiner 37, a subtractor 38, a correction factor calculator 41, a current higher-order distortion compensation value determiner 44, and a multiplier.
  • the functional blocks of the calculators 45 and 46 are set, and the microcomputer 100 executes a program so that each of the blocks performs predetermined arithmetic processing.
  • the frequency calculator 36, the gain 'phase determiner 37, the subtracter 38, and the correction rate calculator 41 are configured to perform the same arithmetic processing as that of the magnetic field distortion compensator 18.
  • the phase compensation value ⁇ ⁇ e and the gain compensation value Rm for compensating for the phase delay and the gain drop depending on the frequency characteristics of the current control system are calculated.
  • the current higher-order distortion compensation value determiner 44 determines the q-axis basic current command value i * q0 and, as a predetermined higher-order component, for example, one of each of the fifth, seventh, eleventh, and thirteenth components.
  • the current higher-order distortion map 44a in which the relation between the gain and the higher-order component is tabulated, and the relation between the predetermined higher-order component and a correction value for compensating for the phase shift of the higher-order component with respect to the first-order component. are stored in a phase correction map 44b. Then, the current higher-order distortion compensation value determination unit 44 determines whether the corrected electrical angle ⁇ mre and the adder 17 (FIG.
  • the motor drive circuit 32 applies a sine-wave AC to each phase coil by chopper of DC power of the battery (FIG. 1),
  • the sine wave (fundamental wave) current is applied to the current flowing through each phase coil due to factors such as driving these switching elements by providing a small dead time to prevent a short circuit in each switching element that constitutes the ridge circuit.
  • Harmonic current components such as the fifth, seventh, eleventh, and thirteenth harmonics are superimposed on the component. That is, in the motor 5, due to the above-mentioned factors, the induced voltage includes, for example, the above-described predetermined higher-order component as shown in FIG. 9, and the current flowing through each phase coil is distorted by the rotation of the magnetic field.
  • the same high-order component current is added and the waveform becomes distorted with respect to the fundamental waveform (ideal waveform). Therefore, the measured data of the current flowing through each phase coil is acquired in advance, the measured values of the higher-order components superimposed on the acquired current value are grasped, and the above-described values are determined based on the measured values of the higher-order components. What is necessary is just to determine the compensation value for each higher-order component after the conversion into dq coordinates so that the current of each higher-order component is canceled by the addition processing in the adders 21 and 22.
  • the basic d-axis current compensation value Aid21 and the basic q-axis current compensation value Aiq21 are the compensation values for canceling the current of the fifth component as shown by the following equations (21) and (22), respectively.
  • ⁇ 21 ⁇ 2-5 + ⁇ 2-7 + ⁇ 2-11 + ⁇ 2-13 —— (21)
  • Aiq21 Aiq2- 5+ Aiq2- 7+ Aiq2- 11+ Aiq2- 13 —— (22)
  • the superimposition ratio of the predetermined current higher-order component varies according to a motor load (output torque) that is a desired steering assist force, that is, the q-axis basic current command value i * q0.
  • the current phase of the higher-order component also deviates from the current phase of the first-order component according to the q-axis basic current command value i * q0.
  • the compensation values Aid2-5, Aiq2 -5 and the compensation values Aid2-7 and Aiq2-7 for the seventh current are expressed by the following equations (23)-(26), respectively.
  • Aid2-5 i5 (i * q0) Xsin [6 ⁇ + ⁇ 5 (i * q0) ⁇ ]-(23)
  • Aid2-7 i7 (i * q0) Xsin [6 ⁇ 0re + ⁇ 7 (i * q0) ⁇ ] — (25)
  • Aiq2-7 -i7 (i qO) Xcos [6 ⁇ 0re + ⁇ 7 (i q0) ⁇ ]-(26)
  • the eleventh and thirteenth higher current components are Appearing as the twelfth torque higher-order component
  • the compensation values Aid2-ll and ⁇ iq2-ll for the eleventh current and the compensation values Aid2-13 and Aiq2-13 for the thirteenth current are (27)-(30).
  • Aid2-ll ill (i * q0) Xsin [12 ⁇ ⁇ + ⁇ 11 (i * q0) ⁇ ] — (27)
  • Aid2-13 il3 (i * q0) Xsin [12 ⁇ 0re + ⁇ 13 (i * q0) ⁇ ] — (29)
  • Aiq2-13 — il3 (i * q0) Xcos [12 ⁇ 0re + ⁇ 13 (i * q0) ⁇ ] — (30)
  • each compensation value for the fifth, seventh, eleventh, and thirteenth currents can be calculated for each d-axis current and q-axis current.
  • the current higher-order distortion compensation map 44a and the phase correction map 44b can be created as follows.
  • phase correction value for eliminating the phase shift for example, 05 (i * qO) in the above equations (23) and (24) is determined as a correction value for the fifth current component. be able to.
  • a table associating the determined correction value with the value of the q-axis basic current command value i * qO is created as the phase correction map 44b. You can do it.
  • the current higher-order distortion compensation value determiner 44 receives the corrected electrical angle ⁇ mre corrected by the phase compensation value ⁇ ⁇ e from the gain 'phase determiner 37 from the subtractor 38 and adds
  • the input is performed by referring to the current higher-order distortion compensation map 44a and the phase correction map 44b created as described above.
  • Correction electric angle ⁇ Determine the basic d-axis current compensation value Aid21 and the basic q-axis current compensation value Aiq21 corresponding to mre and the basic q-axis current command value i * q0.
  • the current higher-order distortion compensation value determination unit 44 outputs the d-axis current basic compensation value ⁇ id21 and the q-axis current basic compensation value ⁇ iq21 to multipliers 45 and 46, respectively, and these multipliers 45 and 46 Are multiplied by the gain compensation value Rm from the correction rate calculation unit 41, and output to the corresponding adders 21 and 22 as the d-axis current compensation value ⁇ id2 and the q-axis current compensation value ⁇ iq2 for current higher-order distortion. Is done.
  • the current higher-order distortion compensator (torque ripple compensation determining means) 19 includes the corrected electric angle ⁇ mre (rotational position information) and the q-axis basic current command value i *
  • ⁇ mre rotational position information
  • qO target current value
  • the current flowing through the motor 5 Current to change the q-axis basic current command value i * q0 so that the expected torque ripple is canceled in anticipation of the torque ripple generated by the fifth, seventh, eleventh, and thirteenth components of
  • the d-axis current compensation value ⁇ id2 and the q-axis current compensation value ⁇ iq2 for higher-order distortion are determined.
  • the magnetic field distortion compensating unit (torque ripple compensation determining means) 18 issues a command with the q-axis basic current command value i * q0 using the corrected electric angle ⁇ mre and the q-axis basic current command value i * q0.
  • the generated current is supplied to each phase coil of the electric motor 5
  • the expected torque ripple that appears in the motor output torque due to the distortion of the magnetic field in the motor 5 is suppressed, and the expected torque ripple is suppressed.
  • the d-axis current compensation value Aidl and the q-axis current compensation value Aiql for the magnetic field distortion for changing the q-axis basic current command value i * q0 are determined.
  • the adders 21 and 22 determine the determined d-axis current compensation value A i dl and the determined d-axis current compensation values ⁇ id2 and q as shown in the above-described equations (8) and (9).
  • the axis current compensation value ⁇ iql and the q axis current compensation value ⁇ iq2 the corresponding d-axis current and q-axis current command values are changed, and the feedback control unit (feedback control means) 200 is changed.
  • the feedback control unit (feedback control means) 200 is changed.
  • the electric motor 5 based on the Yes.
  • the torque ripple caused by the higher-order current component and the torque ripple caused by the magnetic field distortion can be suppressed. Drop can be prevented.
  • the gain compensating section comprising the frequency calculating section 36, the gain 'phase determining section 37, and the correction rate calculating section 41 Arithmetic means is provided, and the output values of the magnetic field distortion compensator 18 and the current higher-order distortion compensator 19 are corrected by the gain compensation value (correction rate Rm) calculated by the arithmetic means.
  • each of the magnetic field distortion compensating section 18 and the current higher-order distortion compensating section 19 is provided with a phase compensation calculating means including a frequency calculating section 36 and a gain / phase determining section 37.
  • the detected electrical angle ⁇ re is corrected by the phase compensation value (phase difference ⁇ ⁇ e) calculated by the means, and the phase lag depending on the frequency characteristics of the current control system is compensated.
  • phase compensation value phase difference ⁇ ⁇ e
  • the feedback control unit 200 does not use the output values of the magnetic field distortion compensating unit 18 and the current higher-order distortion compensating unit 19 without using the d-axis basic current shown in the first term of each of the above equations (8) and (9).
  • the electric motor 5 is driven using the command value i * d0 and the q-axis basic current command value i * q0, a large torque ripple appears in the motor output torque as shown by the dashed line in FIG. Fluctuated significantly.
  • the feedback control unit 200 uses the output value of the magnetic field distortion compensating unit 18, that is, the target current value specified by the sum of the first and second terms in the above equations (8) and (9)
  • the electric motor 5 is driven by using the The ripple detected is removed, and the waveform of the detected torque is shown by the dotted line in the figure.o
  • the feedback control unit 200 uses the respective output values of the magnetic field distortion compensating unit 18 and the current higher-order distortion compensating unit 19, that is, each of the first to first expressions in the above equations (8) and (9)
  • the fifth, seventh, eleventh, and thirteenth current components are added to the ripple component caused by the magnetic field distortion.
  • the resulting ripple is also removed.
  • the 6th-order ripple obtained by the above equations (23)-(26) and the 12th-order ripple obtained by the above equations (27)-(30) are excluded from the motor output torque.
  • the detected waveform of the torque became stable with very little fluctuation as shown by the solid line in FIG.
  • the force applied to the column-assisted electric power steering device in which the electric motor 5 is connected to the steering shaft 2 via the speed reduction mechanism 4 is shown. It is only necessary to provide torque ripple compensation determination means for determining the compensation value for the current higher-order component to cancel the torque ripple caused by the higher-order component.
  • the electric motor 5 is connected to the rack shaft of the rack-pioneer type transmission mechanism 6, and the present invention is also applied to a device of another assist type such as a rack assist type for assisting the movement of the rack shaft. Can be.
  • a configuration has been described in which a compensation value for canceling the torque ripple caused by the fifth, seventh, eleventh, and thirteenth components is determined as the predetermined higher-order current component.
  • the present invention is not limited to this.
  • a configuration that determines a compensation value for compensation (cancellation) may also be used.
  • the gain compensation calculation means and the phase compensation calculation in which some functional blocks are shared in the magnetic field distortion compensator 18 and the current higher-order distortion compensator 19 of the torque ripple compensation determination unit 101
  • the above calculation means is not provided in each of the compensation units 18 and 19 of the torque ripple compensation determination unit 101, but is disposed between the compensation determination unit 101 and the feedback control unit 200.
  • the compensation values for the magnetic field distortion and the current higher-order distortion are determined, respectively.
  • a configuration may be employed in which the determined value is corrected by the gain compensation value obtained by the gain compensation operation means and the phase compensation value obtained by the phase compensation operation means and input to the feedback control unit 200 as a command value!
  • the force described for the configuration in which the current higher-order distortion compensation map 44a is stored in the current higher-order distortion compensation value determination unit 44 is represented by the above-described equation (21)-(30). May be stored in the microcomputer 100, and the determining unit 44 may calculate the compensation value by using these formulas to determine the compensation value.
  • the electric motor of the present invention is not limited to this, and the brushless motor or brush having a number of phases other than three phases is used.
  • the present invention can be applied to an apparatus using another type of motor such as a DC motor with a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 電動モータの回転位置情報とその電動モータの目標電流値とを用いて、当該モータを流れる電流の所定の高次成分に起因するトルクリップルを打ち消すための電流高次成分用の補償値を決定する電流高次歪み補償部と、この電流高次歪み補償部からの補償値を用いて、上記目標電流値を補正する補正部とを設ける。そして、フィードバック制御部が、補正部によって補正された後の目標電流値に基づいて、電動モータをフィードバック制御する。これにより、電流高次成分に起因するトルクリップルを抑えることができ、よって操舵フィーリングの低下を抑制することができる。

Description

明 細 書
電動パワーステアリング装置
技術分野
[0001] 本発明は、自動車などの車両に搭載され、電動モータを用いてドライバーの操舵動 作を補助する電動パワーステアリング装置に関する。
背景技術
[0002] 例えば自動車に搭載される電動パワーステアリング装置は、操舵部材力 操向車 輪に至る操舵機構に連結された電動モータを備えており、このモータ動力を操舵機 構に付与することで上記操舵部材でのドライバーによる操舵動作を補助するようにな つている。
ところで、上記電動モータでは、そのロータ磁石の極数やステータ卷線用のスロット 数等のモータ構成に起因して生じるコギングトルク (機械的リップル)と、誘導起電力 波形が理想波形に対し歪むことによって発生する電気リップルとに大別されるリップ ル (脈動)が出力トルクに生じる。このようなモータ出力でのトルクリップルは、上記ス テアリング装置における操舵フィーリングを低下させる要因の一つであり、ゆえに当該 ステアリング装置ではトルクリップルを抑制することが強く望まれている。
そこで、従来装置には、例えば特開 2003— 61272号公報に記載されているように 、上記スロットのロータ磁石に対向する部分の形状を変更したり、スキュー角度を調 整したりすることにより、トルクリップルを低減しょうとしたものがある。
[0003] ところで、電動パワーステアリング装置では、上記電動モータとして例えば 3相ブラ シレスモータが用いられて 、る。
ところが、上記のようなモータでは、歪みをもつ磁界の回転により生じる電流の高次 成分に起因して、その出力トルクにトルクリップル (電気リップル)が現れて、操舵フィ 一リングの低下を生じることがあった。
[0004] 本発明は、上記のような従来の問題点に鑑み、電流高次成分に起因するトルクリツ プルを抑えることができ、よって操舵フィーリングの低下を抑制することができる電動 ノ ワーステアリング装置を提供することを目的とする。 発明の開示
[0005] 上記目的を達成するための本発明は、操舵部材の操作に応じて電動モータの目 標電流値を決定し、そのモータ動力を操舵機構に付与して操舵補助を行う電動パヮ 一ステアリング装置であって、
前記電動モータの回転位置情報と決定された前記目標電流値とを用いて、当該モ ータを流れる電流の所定の高次成分に起因するトルクリップルを打ち消すための電 流高次成分用の補償値を決定するトルクリップル補償決定手段と、前記トルクリップ ル補償決定手段からの補償値を用いて、前記決定された目標電流値を補正する補 正手段と、前記補正手段によって補正された後の目標電流値に基づき、前記電動モ ータをフィードバック制御するフィードバック制御手段とを備えたことを特徴とするもの である。
[0006] 上記のように構成された電動パワーステアリング装置では、トルクリップル補償決定 手段が、電動モータの回転位置情報と、操舵部材の操作に応じて決定された目標電 流値とを用いることにより、その目標電流値の電流が当該モータに供給されたときに 、その電流の所定の高次成分によって発生するトルクリップルを予期し、この予期し たトルクリップルを打ち消すための電流高次成分用の補償値を決定して 、る。また、 上記フィードバック制御手段は、補正手段がトルクリップル補償決定手段力もの補償 値を基に補正した目標電流値に基づき電動モータをフィードバック制御するので、当 該制御手段が補正後の目標電流値の電流を供給させたときに上記所定の電流高次 成分が取り除かれた状態で当該モータへの電流供給が行われて、電流高次成分に 起因するトルクリップルを抑えることができる。
[0007] また、上記電動パワーステアリング装置にぉ 、て、前記トルクリップル補償決定手段 は、前記決定された目標電流値に応じて、前記電流高次成分用の補償値を変化さ せることが好ましい。
この場合、上記の補償値がモータ負荷に応じて変化されることとなり、モータ負荷が 変化したときでも、フィードバック制御手段はより適切な補償値にて補正された目標 電流値を用いて電動モータを制御することができ、操舵フィーリング低下をより確実 に防ぐことができる。 [0008] また、上記電動パワーステアリング装置にぉ 、て、前記トルクリップル補償決定手段 には、前記電流高次成分用の補償値を決定する電流高次歪み補償部に加えて、前 記電動モータの回転位置情報と決定された前記目標電流値とを用いて、当該モータ 内に形成される磁界の歪みに起因するトルクリップルを抑制するための磁界歪み用 の補償値を決定する磁界歪み補償部が設けられてもよい。
この場合、上記電流高次歪み補償部が決定する電流高次成分用の補償値に加え て、磁界歪み補償部が決定する磁界歪み用の補償値を用いて、目標電流値が補正 されることとなり、上記フィードバック制御手段が当該目標電流値の電流を流させたと きに電流高次成分に起因するトルクリップルだけでなく電動モータ内に形成される磁 界歪みに起因するトルクリップルを抑制することができ、これらリップルによる操舵フィ 一リング低下を防ぐことができる。
[0009] また、上記電動パワーステアリング装置において、前記電動モータ及び前記フィー ドバック制御手段を含んだ電流制御系と、前記回転位置情報を基に前記電動モータ の回転速度を検出する回転速度検出手段と、前記回転速度検出手段からの前記電 動モータの回転速度に基づいて、前記電流制御系の周波数特性に依存するゲイン 低下を補償するためのゲイン補償値を求めるゲイン補償演算手段とを備え、 前記補正手段は、前記トルクリップル補償決定手段からの補償値と、前記ゲイン補 償演算手段からのゲイン補償値とを用いて、前記決定された目標電流値を補正する ことが好ましい。
この場合、上記フィードバック制御手段がトルクリップル補償決定手段力ゝらの補償値 とゲイン補償演算手段力 のゲイン補償値とを用いて補正された目標電流値に基づ いて、電動モータをフィードバック制御することとなり、上記電流制御系の周波数特性 に従って、そのモータを流れる電流のゲインがモータ回転速度の増加に応じて低下 するのを補償することができ、当該ゲイン低下に伴って操舵フィーリングが低下する のを抑制することができる。
[0010] また、上記電動パワーステアリング装置において、前記回転速度検出手段からの前 記電動モータの回転速度に基づいて、前記電流制御系の周波数特性に依存する位 相遅れを補償するための位相補償値を求める位相補償演算手段を備え、 前記補正手段は、前記トルクリップル補償決定手段からの補償値と、前記ゲイン補 償演算手段力ゝらのゲイン補償値と、前記位相補償演算手段からの位相補償値とを用 V、て、前記決定された目標電流値を補正してもよ 、。
この場合、上記フィードバック制御手段がトルクリップル補償決定手段力ゝらの補償値 とゲイン補償演算手段力ゝらのゲイン補償値と位相補償演算手段力ゝらの位相補償値と を用いて補正された目標電流値に基づ 、て、電動モータをフィードバック制御するこ ととなり、上記電流制御系の周波数特性に従って、そのモータを流れる電流が誘起 電圧に対してモータ回転速度の増加に応じて位相遅れを生じるのを補償することが でき、当該位相遅れに伴う操舵フィーリング低下を抑制することができる。
図面の簡単な説明
[0011] [図 1]本発明の一実施形態に係る電動パワーステアリング装置の主要部の構成を示 す模式図である。
[図 2]図 1に示した電動モータでの 3相交流座標と d— q座標との関係を示す図である。
[図 3]図 1に示した ECUの構成例を示すブロック図である。
[図 4]図 3に示した磁界歪み補償部の具体的な構成例を示すブロック図である。
[図 5]図 3に示した電流高次歪み補償部の具体的な構成例を示すブロック図である。
[図 6]図 3に示した電流制御系の周波数特性の具体例を示すボード線図である。
[図 7]上記電動モータの無負荷誘導起電力(誘起電圧)の実測データの具体例を示 す波形図である。
[図 8]上記磁界歪み補償部にて決定される磁界歪み補償電流成分の具体的な波形 を示す波形図である。
[図 9]上記電動モータでの誘起電圧に含まれる高次成分について、その 1次成分に 対する割合の測定例を示すグラフである。
[図 10]上記電動モータの目標電流値について、電流高次成分の 1次成分に対する ゲイン変化の測定例を示すグラフである。
[図 11]上記電動モータの具体的な出力トルクを示す波形図である。
発明を実施するための最良の形態
[0012] 以下、本発明の電動パワーステアリング装置の好ましい実施形態について、図面を 参照しながら説明する。尚、以下の説明では、操舵部材に連なる操舵軸に電動モー タとしてのブラシレスモータを連結したコラムアシスト式の電動パワーステアリング装置 に適用した場合を例示して説明する。
[0013] [電動パワーステアリング装置の全体構成]
図 1は、本発明の一実施形態に係る電動パワーステアリング装置の主要部の構成 を示す模式図である。図において、当該装置は、例えば自動車に搭載され、操舵部 材 (ステアリングホイール) 1に加わるドライバーの操舵動作に応じて、操向車輪 8の向 きを変える操舵軸 2を備えている。すなわち、操舵軸 2の一端側には、操舵部材 1が 連結されるとともに、他端側には左右の上記操向車輪 8がラックピ-オン式伝達機構 6及びタイロッド 7等を介して連結されている。そして、操舵軸 2の回転力 ラックピニ オン式伝達機構 6によって左右方向の直線運動に変換され、操向車輪 8が転舵され る。
また、上記操舵軸 2の途中には、トルクセンサ 3と、減速機構 4を介在させて連結さ れた電動モータ 5とが設けられている。これらの減速機構 4と電動モータ 5とが、操舵 部材 1から操向車輪 8に至る操舵機構にモータ動力による操舵補助力を付与する操 舵補助部を構成している。つまり、上記トルクセンサ 3は、ドライバーの操舵部材 1へ のステアリング操作や操向車輪 8側から逆入力される路面抵抗などに応じて操舵軸 2 に生じたトルクを検出して、そのトルク検出値を示すトルク検出信号 Tsを制御装置と しての ECU 10に出力する。また、この ECU 10には、イダ-シヨンスィッチ 12のオン Zオフ操作に応じてバッテリ 11から電力供給が行われるとともに、自動車速度を検出 する車速センサ 9からの車速信号 Vsと、上記モータ 5のロータ回転に応じた信号とが 入力されるようになっており、 ECU 10はこれらの入力信号を基に電動モータ 5の駆 動制御を行うことで所望の操舵補助力による操舵補助を実施するようになって ヽる。
[0014] [電動モータの構成及びその駆動制御の概要]
上記電動モータ 5は、図 2を参照して、例えば永久磁石を有するロータと、 U相、 V 相、及び W相の各相コイル (ステータ卷線)とを備え、正弦波駆動方式の 3相スター結 線のブラシレスモータにより構成されている。
ここで、このモータ 5において、所望の操舵補助力を発生させるために、各相コイル に供給すべき相電流の目標値、つまり各相コイルに対する電流指令値 i u、 i*v、及 び i*wは、その供給電流の最大値 (振幅)を I*としたときに次の(1)一 (3)式で表される
1 u = 丄 X sin Θ re —、丄 J
i*v = I* X sin ( 0 re— 2 π Ζ3) —— (2)
l w = I* X sin ( Θ re— 4 π / 3) = — ι u— i*v — (3)
但し、 0 reは、同図に示すように、例えば U相コイルを基準として時計方向まわりに 正回転する永久磁石(ロータ)の回転角度 (電気角)である。この電気角は、ロータの 回転位置を示す情報であり、当該ロータの実際の回転角度を示す機械角を Θ mとし 、ロータの磁極数を pとしたときに、 Θ re= (p/2) X Θ mで表される。尚、以下の説明 においては、特に明記するとき以外は、角度は電気角を表すものとする。
[0015] また、電動モータ 5は、上記 ECU 10に含まれた後述のフィードバック制御部によつ てフィードバック制御されており、さらにこのフィードバック制御では d-q座標が用いら れている。具体的には、上記 d— q座標は、永久磁石による磁束の方向を d軸とし、こ の d軸に直交する方向を q軸と規定したものであり、上記磁石回転(回転界磁)と同期 して回転する回転座標系である。そして、 ECU 10は、電動モータ 5への印加電圧の 指令値を決定する際に、まず上記(1)一 (3)式に示した各相コイルでの電流指令値 i *u、 i*v、及び i*wを、次の(4)及び(5)にそれぞれ表される d軸電流指令値 i*d及び q 軸電流指令値 i*qに変換し、これらの変換した d— q座標の電流指令値 i*d及び i*qに 基づき上記印加電圧指令値を決めている。このように、 3相交流座標(静止座標)で の電流指令値 i*u、 i*v、及び i*wを d— q座標の電流指令値 i*d及び i*qに変換するこ とにより、モータ 5の回転時でも ECU 10はその供給電流を直流量で制御可能となつ て、位相遅れの低減等を行いつつ、当該モータ 5の駆動制御を高精度に実施して所 望の操舵補助力を容易に発生させることができる。
i*d = 0 ― (4)
i*q = -^ (3/2) X I* — (5)
[0016] また、電動モータ 5の U相、 V相、及び W相の各相コイルを実際に流れる電流につ V、ては、後述の電流検出器にて例えば U相電流検出値 iu及び V相電流検出値 が 検出されて、それらの検出値 iu及び ivを下記の(6)及び(7)式に代入することで d— q 座標に変換した後の d軸電流検出値 id及び q軸電流検出値 iqが求められるようになつ ている。そして、 ECU 10では、後に詳述するように、上記 d軸電流指令値 i*d及び q 軸電流指令値 i * qと d軸電流検出値 id及び q軸電流検出値 iqとを用 、たフィードバック 制御が行われる。
id = ^2{ivX sin 0 re-iu X sin ( θ Γβ-2 π /3) } — (6)
iq = ^2{iv X cos 0 re-iu X cos ( θ Γβ-2 π /3) } —— (7)
[0017] [ECUの構成及び動作]
図 3は、図 1に示した ECUの構成例を示すブロック図である。図に示すように、上記 ECU 10〖こは、上記トルクセンサ 3からのトルク信号 Tsを入力する位相補償器 13と、 マイクロコンピュータ(以下、 "マイコン"と略称する。) 100と、このマイコン 100からの 指示に従って上記電動モータ 5を PWM信号にて駆動するハードウェアにより構成さ れたモータ駆動部とが設けられている。このモータ駆動部には、マイコン 100に接続 された 3相 PWM変調部 31と、この 3相 PWM変調部 31と駆動対象の電動モータ 5の 各ステータ卷線 (U、 V、 W相の各コイル)との間に接続されたモータ駆動回路 32とが 設けられている。
また、上記モータ駆動部は、モータ駆動回路 32と上記 3相コイルのうち、例えば V 相コイル及び U相コイルに供給される電流をそれぞれ検出する V相電流検出器 33及 び U相電流検出器 34と、電動モータ 5側に設けられ、レゾルバなどにより構成された 位置検出センサ 51からのセンサ出力(ロータ回転に応じた信号 Sr)を基に上記電気 角を検出するロータ角度位置検出器 35とを備えており、図に点線にて囲んで示すよ うに、当該モータ駆動部とマイコン 100の一部分とで電動モータ 5をフィードバック制 御する上記フィードバック制御部 200を構成している。また、上記位置検出センサ 51 とロータ角度位置検出器 35とが、電動モータ 5の回転位置情報 (電気角)を取得する 回転位置情報取得手段を構成して!/ヽる。
[0018] 上記マイコン 100には、その内部に設けられた不揮発性のメモリ(図示せず)に予め 格納されているプログラムを実行することにより、モータ制御に必要な所定の演算処 理を行う複数の機能ブロックが設けられている。すなわち、このマイコン 100には、図 3に示すように、目標電流値演算部 14、回転方向指定部 15、収斂性補正部 16、加 算器 17、磁界歪み補償部 18、電流高次歪み補償部 19、ロータ角速度演算部 20、 加算器 21, 22、減算器 23, 24、 d軸電流 PI制御部 25、 q軸電流 PI制御部 26、 d - q Z3相交流座標変換部 27、符号反転加算器 28、 3相交流 Zd - q座標変換部 29、及 び正弦波 ROMテーブル 30が含まれており、車速センサ 9からの車速信号 Vs等の入 力信号を基に所望の操舵補助力を決定し、この決定した操舵補助力に対応した出 力(指示)信号を上記モータ駆動部に与えるモータ制御部を構成している。
また、このモータ制御部では、上記磁界歪み補償部 18及び電流高次歪み補償部 1 9を有するトルクリップル補償決定部 101が設けられており、この補償決定部 101の 演算結果をモータ駆動部への指示信号に反映させることにより、後に詳述するように 、電動モータ 5内に形成される磁界の歪みに起因するトルクリップルと当該モータ 5を 流れる電流の高次成分に起因するトルクリップルとを低減できるようになつている。さ らに、ロータ角速度演算部 20が、上述の回転位置情報取得手段からの回転位置情 報を基に電動モータ 5の回転速度を検出する回転速度検出手段を構成している。
[0019] 上記のように構成された ECU 10では、トルクセンサ 3から上記トルク検出信号 Tsを 入力すると、上記位相補償器 13がそのトルク検出信号 Tsに位相補償を施してマイコ ン 100の目標電流値演算部 14に出力する。また、この ECU 10は、上記車速センサ 9から所定のサンプリング周期で出力される車速信号 Vsを入力しており、その入力し た車速信号 Vsは、マイコン 100の目標電流値演算部 14及び収斂性補正部 16に与 えられている。さらに、 ECU 10では、位置検出センサ 51からセンサ信号 Srがロータ 角度位置検出器 35に入力されると、このロータ角度位置検出器 35は入力したセン サ信号 Srに基づいて電動モータ 5の永久磁石(ロータ)の回転位置、つまり上記電気 角 Θ reを検出する。そして、ロータ角度位置検出器 35は、検出した電気角 Θ reを示 す角度信号をマイコン 100の磁界歪み補償部 18、電流高次歪み補償部 19、ロータ 角速度演算部 20、及び正弦波 ROMテーブル 30に出力する。
[0020] 上記目標電流値演算部 14は、位相補償後のトルク検出信号 Tsと車速信号 Vsと〖こ 基づいて、電動モータ 5に供給すべき供給電流の値である目標電流値 Itを求める。 詳細には、この演算部 14には、アシストマップと呼ばれる、操舵軸 2でのトルク、このト ルクに応じて所望の操舵補助力を発生させるための上記目標電流値 It、及び車速の 関係を示したテーブルが予め格納されている。そして、当該演算部 14は上記トルク 検出信号 Ts及び車速信号 Vsの各値を入力パラメータとして、上記テーブルを参照 することにより、目標電流値 Itを取得し、回転方向指定部 15及び加算器 17に出力す る。
また、この目標電流値 Itは、上述の(5)式にて示された q軸電流指令値 i*qに相当 するものであり、モータ動力によるアシスト方向を示す符号を有している。つまり、目 標電流値 Itの符号は、モータロータの回転方向を指定しており、例えば正及び負の 場合にそれぞれ操舵部材 1での右方向操舵及び左方向操舵を補助するように電動 モータ 5を回動させることを示して!/、る。
上記回転方向指定部 15は、目標電流値演算部 14から入力した目標電流値 Itの符 号に基づきロータ回転方向を判別し、その回転方向を指定する方向信号 Sdirを生成 して収斂性補正部 16に出力する。この収斂性補正部 16には、上記車速信号 Vsと、 方向信号 Sdirと、上記ロータ角速度演算部 20がロータ角速度位置検出器 35から入 力した電気角 0 reを基に算出したロータ角速度 coreとが入力されており、当該補正 部 16はこれらの入力信号を用いた所定演算を行うことにより、車両収斂性を確保す るための補償電流値 icを求める。そして、この補償電流値 icは、加算器 17にて上記 目標電流値 Itに加算され、加算器 17は、その加算結果を q軸基本電流指令値 i*q0と して出力する。
上記 q軸基本電流指令値 i*q0は、所望の操舵補助力を発生するためのモータ負荷 (つまり、電動モータ 5が発生すべきトルク)に対応する供給電流の基本的な指令値( 目標電流値)であり、トルクリップル補償決定部 101の磁界歪み補償部 18及び電流 高次歪み補償部 19に同時に与えられるとともに、加算器 22にも出力されて上記磁界 歪み補償部 18及び電流高次歪み補償部 19での演算結果が反映されるよう加算さ れる。
一方、 d軸方向の電流はトルクに関与しないことから、その d軸電流の基本的な指令 値である d軸基本電流指令値 i* dOの値は" 0"であり、 i*dO = 0として加算器 21に設定 入力されている。 [0022] 上記磁界歪み補償部 18は、ロータ角度位置検出器 35からの電動モータ 5の回転 位置情報としての電気角 Θ reと、加算器 17からの q軸基本電流指令値 i*q0とを用い て、そのモータ 5内に形成される磁界の歪みに起因するトルクリップルを抑制するた めの磁界歪み用の補償値を決定している。つまり、磁界歪み補償部 18は、上記 q軸 基本電流指令値 i*q0にて指令される電流が電動モータ 5の各相コイルに供給された ときに、各相コイルに誘起する誘導起電力波形での理想波形に対する歪み (モータ 5 内の磁界の歪み)に起因してモータ出力トルクに現れるトルクリップルを予期して、予 期したトルクリップルが抑制されるように当該 q軸基本電流指令値 i*q0を変更するた めの電流の補償値を d軸電流及び q軸電流毎に算出し d軸電流補償値 A idl及び q 軸電流補償値 A iqlとして決定している(詳細は後述)。そして、磁界歪み補償部 18 は、対応する加算器 21及び 22に定めた磁界歪み用の d軸電流補償値 A idl及び q 軸電流補償値 Δ iqlを出力する。
また、この磁界歪み補償部 18から出力される d軸電流補償値 A idl及び q軸電流補 償値 Δ iqlは、後に詳述するように、電動モータ 5を含んだ後述の電流制御系の周波 数特性に依存するゲイン低下及び位相遅れが極力生じな 、ように補正されて 、る。
[0023] また、上記電流高次歪み補償部 19は、上述の電気角 Θ re及び q軸基本電流指令 値 i*q0を用いて、そのモータ 5を流れる電流の所定の高次成分に起因するトルクリツ プルを打ち消すための電流高次成分用の補償値を決定している。つまり、電流高次 歪み補償部 19は、上記 q軸基本電流指令値 i*q0にて指令される電流が電動モータ 5の各相コイルに供給されたときに、各相コイルを流れる電流の所定の高次成分によ つて発生するトルクリップルを予期して、予期したトルクリップルが打ち消されるように 当該 q軸基本電流指令値 i*q0を変更するための電流の補償値を d軸電流及び q軸電 流毎に算出し d軸電流補償値 Δ id2及び q軸電流補償値 Δ iq2として決定して ヽる(詳 細は後述)。そして、電流高次歪み補償部 19は、対応する加算器 21及び 22に定め た電流高次成分用の d軸電流補償値 Δ id2及び q軸電流補償値 Δ iq2を出力する。 また、電流高次歪み補償部 19から出力される d軸電流補償値 A id2及び q軸電流 補償値 A iq2は、後に詳述するように、電動モータ 5を含んだ上述の電流制御系の周 波数特性に依存するゲイン低下及び位相遅れが極力生じな 、ように補正されて 、る [0024] 上記加算器 21及び 22は、対応する d軸電流及び q軸電流毎に、トルクリップル補償 決定部 101からの補償値を基に操舵部材 1の操作に応じて決定された目標電流値 を補正する補正手段を構成して!/、る。
具体的には、上記加算器 21では、下記の(8)式に示すように、当該加算器 21に設 定された d軸基本電流指令値 i*d0と、磁界歪み補償部 18からの磁界歪み用の d軸電 流補償値 A idlと、電流高次歪み補償部 19からの電流高次成分用の d軸電流補償 値 A id2との和を求めることにより、トルクリップル補償決定部 101の演算結果を反映 した後の d軸電流指令値 i*dが算出されている。そして、加算器 21は、算出した d軸 電流指令値 i*dをフィードバック制御部 200の減算器 23に出力する。
また、加算器 22では、下記の(9)式に示すように、上記加算器 17からの q軸基本電 流指令値 i* qOと、磁界歪み補償部 18からの磁界歪み用の q軸電流補償値 Δ iqlと、 電流高次歪み補償部 19からの電流高次成分用の q軸電流補償値 Δ iq2との和を求 めることにより、トルクリップル補償決定部 101の演算結果を反映した後の q軸電流指 令値 i*qが算出されている。そして、加算器 22は、算出した q軸電流指令値 i*qをフィ ードバック制御部 200の減算器 24に出力する。
i*d = i*dO+ A idl + A id2 一 (8)
i*q = i*qO+ A iql + A iq2 — (9)
[0025] 上記減算器 23には、加算器 21からの d軸電流指令値 i*dに加えて、電動モータ 5 に実際に供給されている電流の d軸電流に換算した後の d軸電流検出値 idが 3相交 流 Zd-q座標変換部 29から入力されている。同様に、上記減算器 24には、加算器 2 2からの q軸電流指令値 i*qに加えて、電動モータ 5に実際に供給されている電流の q 軸電流に換算した後の q軸電流検出値 iqが 3相交流 Zd - q座標変換部 29から入力 されている。
詳細にいえば、 3相交流 Zd— q座標変換部 29には、上記 V相電流検出器 33及び U相電流検出器 34によってそれぞれ検出された V相電流検出値 iv及び U相電流検 出値 iuが入力されている。さらに、この変換部 29には、上記検出電流が流されている ときでの上記電気角 0 reの sin値が正弦波 ROMテーブル 30から入力されている。こ の正弦波 ROMテーブル 30は、角度 0とその角度 Θの sin値とを互いに関連付けて 記憶しており、上記ロータ角度位置検出器 35から電気角 0 reを入力したときにその sin値を上記 d— qZ3相交流座標変換部 27及び 3相交流 Zd— q座標変換部 29に直 ちに出力するようになって!/、る。
そして、この 3相交流 Zd— q座標変換部 29は、入力した U相電流検出値 iu、 V相電 流検出値 iv、及び sin値と、上述の(6)及び(7)式とを用いて、上記 d軸電流検出値 id ( = ^2{iv X sin 0 re— iu X sin ( Θ re~2 π /3) })及び 軸電流検出値19 ( = 2{ cos Θ re-iu X cos ( 0 re~2 π /3) })を算出して対応する減算器 23、 24に出力する。
[0026] また、上記減算器 23は、入力した d軸電流指令値 i*dと d軸電流検出値 idとを減算 することにより、これらの入力値の偏差である d軸電流偏差 ed ( = i* d— id)を求めてい る。同様に、減算器 24は、入力した q軸電流指令値 i*qと q軸電流検出値 iqとを減算 することにより、これらの入力値の偏差である q軸電流偏差 eq ( = i* q— iq)を求めてい る。そして、これらの減算器 23、 24は、求めた d軸電流偏差 ed及び q軸電流偏差 eqを d軸電流 PI制御部 25及び q軸電流 PI制御部 26にそれぞれ出力する。
上記 d軸電流 PI制御部 25及び q軸電流 PI制御部 26は、次の(10)及び(11)式に 、対応する減算器 23、 24からの d軸電流偏差 ed及び q軸電流偏差 eqをそれぞれ代 入することにより、 d軸電圧指令値 v*d及び q軸電圧指令値 v*qを算出し、それら算出 値を d— qZ3相交流座標変換部 27に出力する。
v*d = Kp{ed+ (1/Ti) J (ed) dt} ——(10)
v*q = Kp{eq+ (1/Ti) J (eq) dt} —(11)
但し、上記 Kp及び Tiは、それぞれ比例ゲイン及び積分時間であり、モータ特性な どに応じて d軸電流 PI制御部 25及び q軸電流 PI制御部 26に予め設定された値であ る。
[0027] 上記 d— qZ3相交流座標変換部 27には、 d軸電流 PI制御部 25からの d軸電圧指 令値 v*d、 q軸電流 PI制御部 26からの q軸電圧指令値 v*q、及び正弦波 ROMテー ブル 30からの sin値が入力されている。そして、この変換部 27は、次に示す(12)及 び(13)式を用いて、 d - q座標上の印加電圧指令値である上記 d軸電圧指令値 v*d 及び q軸電圧指令値 v*qを、 3相交流座標上の同指令値である U相電圧指令値 v*u と V相電圧指令値 v*vとに変換して、上記 3相 PWM変調部 31に出力する。また、こ の変換部 27の出力値は符号反転加算器 28に入力されるようになっており、この符号 反転加算器 28は下記の(14)式を用いて、上記の U相電圧指令値 v*u及び V相電 圧指令値 v*vから W相電圧指令値 v*wを求めて、 3相 PWM変調部 31に出力する。 v*u = ^ (2/3) {v*d X cos 0 re-v*q X sin 0 re} 一 (12)
v*v = (2/3) {v*d X cos ( Θ re-2 π /3) -v*q X sin ( Θ re~2 π /3) }
一 (13)
ν w = —v u— v v — (,14;
[0028] 上記 3相 PWM変調部 31は、上記の U相電圧指令値 v*u、 V相電圧指令値 v*v、及 び W相電圧指令値 v*wにそれぞれ対応したデューティ比の PWM信号 Su、 Sv、及び Swを生成して、モータ駆動回路 32に出力する。
上記モータ駆動回路 32は、 MOSFETなどの電力用スイッチング素子を用いたブリ ッジ回路を有する PWM電圧形インバータを含んだものであり、各スイッチング素子を 上記 PWM信号 Su、 Sv、及び Swに従ってオン Zオフ動作させることにより、電動モー タ 5の U相、 V相、及び W相の各相コイル(図 2)にバッテリ 11 (図 1)力もの電圧が印 カロされる。これにより、電動モータ 5では、その各相コイルに電流が流れて、当該モー タ 5はその電流に応じたトルク Tmを生じ操舵補助力として上記操舵機構に付与する 。また、このように電動モータ 5が駆動されると、フィードバック制御部 200では、上記 d軸電流検出値 id及び q軸電流検出値 iqがそれぞれ d軸電流指令値 i*d及び q軸電 流指令値 i*qに等しくなるように当該モータ 5をフィードバック制御することで所望の操 舵補助力にて操舵補助が行われる。
[0029] [電流制御系の構成及びその周波数特性]
また、本実施形態では、図 3において、上記フィードバック制御部 200と、その制御 対象の電動モータ 5、及び位置検出センサ 51とにより、フィードバックループを有する 上記電流制御系が構成されている。この電流制御系では、上記モータ 5内に設置さ れたコイルのインピーダンスなどに規定される周波数特性を有している。また、電流 制御系では、 d軸電流指令値 i*d及び d軸電流検出値 idをそれぞれ入力及び出力と する d軸電流のフィードバックループと、 q軸電流指令値 i*q及び q軸電流検出値 iqを それぞれ入力及び出力とする q軸電流のフィードバックループとのいずれの閉ループ の場合も、その伝達関数に対するボード線図は、例えば図 6にて示されるものとなる。 すなわち、この電流制御系では、実用的な周波数範囲において、周波数が増大する につれて、図 6の実線に示すように、ゲインが l (dB = 0)力も低下する。また、位相遅 れは、同図に点線にて示すように、周波数が増大するにつれて、大きくなる。このよう な電流制御系の周波数特性の影響を抑えるために、上記トルクリップル補償決定部 101では、磁界歪み補償部 18及び電流高次歪み補償部 19の各部において、図 6に 実線及び点線にて示したデータがテーブルィ匕されて、後述の周波数特性マップとし て保持されており、各部の出力補償値は、当該周波数特性に依存するゲイン低下及 び位相遅れが極力生じな 、ように補正されて 、る。
[0030] [磁界歪み補償部の構成及びその動作]
図 4は、図 3に示した磁界歪み補償部の具体的な構成例を示すブロック図である。 図に示すように、上記磁界歪み補償部 18には、周波数算出部 36、ゲイン ·位相決定 部 37、減算器 38、磁界歪み補償値決定部 39、振幅決定部 40、修正率算出部 41、 及び乗算器 42、 43の機能ブロックが設定されており、マイコン 100がプログラムを実 行することにより、上記ブロックは各々所定の演算処理を行うようになっている。また、 上記周波数算出部 36、ゲイン ·位相決定部 37、及び修正率算出部 41が、電動モー タ 5 (図 3)の回転速度に基づいて、上記電流制御系の周波数特性に依存するゲイン 低下を補償するためのゲイン補償値を求めるゲイン補償演算手段を構成している。 また、周波数算出部 36とゲイン'位相決定部 37とは、同モータ 5の回転速度に基づ V、て、上記電流制御系の周波数特性に依存する位相遅れを補償するための位相補 償値を求める位相補償演算手段を兼用している。
[0031] 具体的にいえば、上記周波数算出部 36は、ロータ角速度演算部 20から電動モー タ 5の電気角換算の回転角速度である上記ロータ角速度 ω reを入力して 、る。そして 、この周波数算出部 36は、入力したロータ角速度 co reを次の(15)式に代入すること により、モータ出力に現れる磁界歪みに起因するトルクリップルの周波数 fを算出する 。また、この周波数 fは、電流高次成分歪みに起因するトルクリップルの基本周波数 である。
Figure imgf000017_0001
但し、 Sは、トルクリップルの次数 (電気角一周期あたりに発生するトルクリップルの 数)である。
[0032] 上記ゲイン ·位相決定部 37には、上記ボード線図(図 6)に示した上記電流制御系 の周波数特性に対応した周波数特性マップ 37a (すなわち、図 6に実線及び点線に て示した周波数とゲイン及び位相との関係を示すデータ)が保持されている。そして、 このゲイン'位相決定部 37は、周波数算出部 36から上記周波数 fを入力したときに、 周波数特性マップ 37aを参照して、入力した周波数 fに応じた電流制御系のゲイン G 及び位相差 Δ Θ eを求めて、修正率算出部 41及び減算器 38にそれぞれ出力する。 また、上述のように、電流制御系では、周波数が増大するにつれて(つまり、ロータ角 速度 co re、ひいては電動モータ 5の回転速度が速くなるにつれて)、ゲインが 1から低 下し位相遅れが大きくなる。
[0033] 上記減算器 38は、上記ロータ角度位置検出器 35 (図 3)力も電気角 Θ reを入力す るとともに、ゲイン'位相決定部 37からの位相補償値としての位相差 Δ Θ eを入力して おり、電気角 Θ reから位相差 Δ Θ eを減算処理している。そして、減算器 38は、その 減算処理結果である修正電気角 0 mre ( = 0 re - Δ 0 e)を磁界歪み補償値決定部 3 9に出力する。このように、減算器 38が、位相差 Δ Θ eを用いて、検出された電気角 Θ reを修正することにより、上記電流制御系の周波数特性に依存する位相遅れを補 償することができる。
[0034] 上記磁界歪み補償値決定部 39には、上記電気角と、 d軸電流及び q軸電流毎の磁 界歪み補償電流成分の値との関係をテーブルィ匕した磁界歪み補償マップ 39aが格 納されており、この磁界歪み補償マップ 39aを参照することで、当該補償値決定部 3 9は入力した修正電気角 Θ mreに対応する磁界歪み用の d軸電流単位補償値 A idlO 及び q軸電流単位補償値 Δ iqlOを決定して ヽる。
[0035] 以下、上記磁界歪み補償マップ 39aの作成方法について、具体的に説明する。
電動モータ 5を無負荷運転したときに当該モータ 5内に形成される磁界の歪み、つ まり無負荷誘導起電力波形がその理想波形に歪みを生じて 、る場合に、各相コイル に正弦波電流である電流 iu、 iv、 iwを供給すると、そのモータ出力には磁界歪みに起 因するトルクリップルが生じる。ここで、無負荷誘導起電力の各相コイルでの瞬時値 e 0u、 e0v、 eOwが既知であれば、モータ 5の出力トルクを一定値(例えば 1 [Nm])とし 上記磁界歪みに起因するトルクリップルを生じさせないような各相コイルの電流 i0u、i 0v、 iOwを決定することができる。例えば、上記出力トルクを一定値 Tとしたときに、そ のような各相コイルの電流 i0u、 i0v、 iOwは、次の(16)、(17)、及び(18)式にてそれ ぞれ算出することができる。
iOu = { (eOu-eOv) + (eOu— eOw) } X T
/{ (eOu— e0v) 2+ (eOu— e0w) 2+ (eOw— eOv) 2}— (16)
iOv = {T-(eOu-eOw) X iu}/ (e0v-e0w) -(17)
iOw = {T- (eOu-eOv) X iu} / (eOw-eOv) —(18)
また、(16)—(18)式で算出される各相コイルの電流 iOu、 iOv、 iOwを、電気角 0を 変数とする次の(19)及び(20)式によって d— q座標上の値に変換することにより、上 記磁界歪みに起因するトルクリップルを生じさせずに出力トルクを一定値 Tとするよう な d軸電流値 iOd及び q軸電流値 iOqを算出することができる。
iOd = ^2{iOvX sin 0 -iOu X sin ( θ -2 π /3) } —(19)
iOq = ^2{i0vX cos 0 -iOu X cos ( θ -2 π /3) } —(20)
上記のように、 d軸電流値 iOd及び q軸電流値 iOqを算出することができるので、磁界 歪み補償マップ 39aを次のようにして作成することができる。
まず、図 7に示すように、電動モータ 5の各相コイルでの無負荷誘導起電力(誘起 電圧)について、そのモータ 5の電気角の値が変化したときでの瞬時値 eOu、 eOv、 e Owの各実測データを取得しておく。そして、これらの各実測データを用いて、モータ 5 が上記磁界歪みに起因するトルクリップルを生じさせることなく単位トルク(1 [Nm])を 出力するのに必要な d軸電流値 iOdl及び q軸電流値 iOqlを上述の(16)—(20)式に より求める。さらに、無負荷誘導起電力波形が歪んでいない場合に当該モータ 5が上 記単位トルクを出力するのに必要な d軸電流値 i(W2及び q軸電流値 i0q2を求める(尚 、この場合では、出力トルクは q軸電流に比例し、 d軸電流は" 0"とすればよいので、 これら d軸電流値 W2及び q軸電流値 i0q2は上述の各実測データに所定演算を行う ことにより容易に求めることができる。;)。そして、電気角の値毎に、上記 d軸電流値 i Odlと d軸電流値 i0d2との差を求めて上述の d軸電流単位補償値 A idl0 (=i0dl— i 0d2)とし、かつ上記 q軸電流値 iOqlと q軸電流値 i0q2との差を求めて上述の q軸電流 単位補償値 Δ iqlO ( = i0ql-i0q2)として、これらの電気角と d軸電流単位補償値 Δ i dlO及び q軸電流単位補償値 A iqlOとを対応付ければよい。この結果、例えば図 8に 示すように、電気角と、この電気角に応じた d軸電流及び q軸電流に変換した後の磁 界歪みを抑制可能な電流成分である上記磁界歪み補償電流成分の値とを示す電流 波形を得ることができ、これらのデータを対応付けたテーブルを磁界歪み補償マップ 39aとして作成することができる。
[0037] 上記磁界歪み補償値決定部 39は、上述のように作成された磁界歪み補償マップ 3 9aを参照することにより、減算器 38から入力した修正電気角 Θ mreに対応する d軸電 流単位補償値 Δ idlO及び q軸電流単位補償値 Δ iqlOを決定し、振幅決定部 40に出 力する。
上記振幅決定部 40には、磁界歪み補償値決定部 39からの d軸電流単位補償値 Δ idlO及び q軸電流単位補償値 Δ iqlOに加えて、加算器 17 (図 3)からの所望の操 舵補助力に相当する q軸基本電流指令値 i*qOが入力されている。そして、振幅決定 部 40は、入力した q軸基本電流指令値 i * qOを基に単位トルク当たりの d軸電流単位 補償値 Δ idlO及び q軸電流単位補償値 Δ iqlOに対する乗算値を決定し、それらの乗 算処理を行うことにより、上記所望の操舵補助力に応じた d軸電流補償値 A idll及び q軸電流補償値 A iqllを求めている。振幅決定部 40は、求めた d軸電流補償値 Δ ί dl 1及び q軸電流補償値 Δ iql 1を乗算器 42及び 43にそれぞれ出力する。
[0038] また、上記修正率算出部 41には、ゲイン ·位相決定部 37が決定した上記電流制御 系のゲイン Gが入力されており、この修正率算出部 41は当該ゲイン Gの逆数 1 ZGを 算出し上述のゲイン補償値としての修正率 Rmを求める。そして、修正率算出部 41は 、修正率 Rmを乗算器 42及び 43に出力する。
上記乗算器 42は、振幅決定部 40からの d軸電流補償値 Δ idl 1に修正率算出部 4 1からの修正率 Rmを乗じることにより、上記磁界歪み補償用の d軸電流補償値 A idl を求めて加算器 21 (図 3)に出力する。同様に、乗算器 43は、振幅決定部 40からの q 軸電流補償値 A iqllに修正率算出部 41からの修正率 Rmを乗じることにより、上記 磁界歪み補償用の q軸電流補償値 A iqlを求めて加算器 22 (図 3)に出力する。この ように、乗算器 42及び 43が、修正率 Rmを用いて、 d軸電流補償値 A idll及び q軸電 流補償値 A iqllを修正することにより、上記電流制御系の周波数特性に依存するゲ イン低下を補償することができる。
[0039] [電流高次歪み補償部の構成及びその動作]
図 5は、図 3に示した電流高次歪み補償部の具体的な構成例を示すブロック図であ る。図に示すように、電流高次歪み補償部 19には、周波数算出部 36、ゲイン'位相 決定部 37、減算器 38、修正率算出部 41、電流高次歪み補償値決定部 44、及び乗 算器 45、 46の機能ブロックが設定されており、マイコン 100がプログラムを実行する ことにより、上記ブロックは各々所定の演算処理を行うようになっている。また、これら の機能ブロックのうち、周波数算出部 36、ゲイン'位相決定部 37、減算器 38、及び 修正率算出部 41は、上記磁界歪み補償部 18のものと同一演算処理を実施するよう 構成されており、上記電流制御系の周波数特性に依存する位相遅れ及びゲイン低 下を補償するための位相補償値 Δ Θ e及びゲイン補償値 Rmを算出するようになって いる。
[0040] 上記電流高次歪み補償値決定部 44は、上記 q軸基本電流指令値 i*q0と、所定の 高次成分として例えば 5次、 7次、 11次、及び 13次成分の各 1次成分に対するゲイン との関係をテーブル化した電流高次歪みマップ 44a、及び上記所定の高次成分とこ れらの各高次成分における 1次成分に対する位相ずれを補償するための修正値との 関係をテーブルィ匕した位相修正マップ 44bを保持している。そして、この電流高次歪 み補償値決定部 44は、減算器 38から上記修正電気角 Θ mre及び加算器 17 (図 3) 力も q軸基本電流指令値 i* q0を入力したときに、電流高次歪みマップ 44a及び位相 修正マップ 44bを参照することにより、電流高次歪み用の d軸電流基本補償値 Δ id21 及び q軸電流基本補償値 Δ iq21を決定して ヽる。
[0041] ここで、電流高次歪み補償マップ 44a及び位相修正マップ 44bの作成方法につい て、具体的に説明する。
電動モータ 5では、モータ駆動回路 32 (図 3)がバッテリ(図 1)力 の直流をチヨッパ することで正弦波状の交流を各相コイルに与えていたり、同駆動回路 32内の上記ブ リッジ回路を構成する各スイッチング素子での短絡を防ぐために微少なデッドタイムを 設けて、これらのスイッチング素子を駆動しているなどの要因によって、各相コイルを 流れる電流では正弦波 (基本波)電流成分に第 5、第 7、第 11、及び第 13高調波等 の高調波電流成分が重畳している。つまり、モータ 5では、上述の要因により、その誘 起電圧に例えば図 9に示すような上記所定の高次成分が含まれており、各相コイル を流れる電流にも歪みをもつ磁界の回転による同じ高次成分電流が加わって基本波 形 (理想波形)に対して歪んだものとなる。それ故、各相コイルを流れる電流の実測 データを予め取得するとともに、その取得した電流値に重畳する高次成分の各実測 値を把握し、それらの各高次成分の実測値に基づいて上記加算器 21、 22での加算 処理で各高次成分の電流が相殺されるよう d— q座標に変換した後の高次成分毎の 補償値を決定すればよい。すなわち、上記 d軸電流基本補償値 Aid21及び q軸電流 基本補償値 Aiq21は、下記の(21)及び(22)式にてそれぞれ示すように、第 5次成 分の電流を打ち消すための補償値 Aid2-5、 Aiq2-5と、第 7次成分の電流を打ち消 すための補償値 Aid2-7、 Aiq2-7と、第 11次成分の電流を打ち消すための補償値 Aid2-ll、 Aiq2-llと、第 13次成分の電流を打ち消すための補償値 Aid2-13、 Δί q2-13とに分けることができる。
Δίά21 = Δίά2-5+ Δίά2-7+ Δίά2-11+ Δίά2-13 —— (21)
Aiq21 = Aiq2- 5+ Aiq2- 7+ Aiq2- 11+ Aiq2- 13 —— (22)
また、上記所定の電流高次成分の各重畳割合は、所望の操舵補助力であるモータ 負荷(出力トルク)、つまり上記 q軸基本電流指令値 i*q0に応じて変化するものであり 、各高次成分の電流位相もまた q軸基本電流指令値 i * q0に応じて 1次成分の電流位 相に対しずれを生じる。さらに、第 5次及び第 7次の電流高次成分は、電動モータ 5 の出力トルクでは第 6次のトルク高次成分として現れることから、上記第 5次電流用の 補償値 Aid2-5、 Aiq2-5及び第 7次電流用の補償値 Aid2-7、 Aiq2-7は、次の(23) 一 (26)式でそれぞれ示される。
Aid2-5 = i5(i*q0) Xsin[6{ ΘΓΘ+ Θ 5(i*q0)}] -(23)
Aiq2-5 = i5(i*q0) Xcos[6{ 0re+ Θ 5(i*q0)}] —(24)
Aid2-7 = i7(i*q0) Xsin[6{ 0re+ Θ 7(i*q0)}] —(25) Aiq2-7 = -i7(i qO) Xcos[6{ 0re+ Θ 7(i q0)}]-(26) また、第 11次及び第 13次の電流高次成分は、電動モータ 5の出力トルクでは第 12 次のトルク高次成分として現れることから、上記第 11次電流用の補償値 Aid2-ll、 Δ iq2-ll及び第 13次電流用の補償値 Aid2-13、 Aiq2-13は、次の(27)—(30)式で 示される。
Aid2-ll = ill(i*q0) Xsin[12{ Θ ΓΘ+ θ 11 (i*q0) }]— (27)
Aiq2-ll = ill(i*q0) Xcos[12{ 0re+ Θ 11 (i*q0) }]— (28)
Aid2-13 = il3(i*q0) Xsin[12{ 0re+ Θ 13 (i*q0) }]— (29)
Aiq2-13 =— il3(i*q0) Xcos[12{ 0re+ Θ 13 (i*q0) }]— (30)
上記の(23)—(30)式を用いることにより、第 5、第 7、第 11、及び第 13次電流用の 各補償値を d軸電流及び q軸電流毎に算出することができるので、電流高次歪み補 償マップ 44a及び位相修正マップ 44bを次のようにして作成することができる。
まず、電動モータ 5の出力トルクが変化するようにその供給電流を変化させた場合 での各電流高次成分における 1次成分 (基本波)に対する電流高次成分ゲインにつ いて、その実測データを取得する。これにより、例えば図 10に示すように、各電流高 次成分毎の q軸基本電流指令値 i*qOと電流高次ゲインとの関係を示すグラフを得る ことができる。尚、この図において、各高次電流成分での 4個のプロットは、電動モー タ 5での出力トルクを示しており、図の左力も右側に向力つて順に同出力トルクが 1.0 、 2.0、 3.0、及び 4.0[Nm]の場合を示して!/ヽる。そして、作成したグラフ【こ基づ ヽ て、例えば第 5次電流成分の振幅に相当する上記(23)及び(24)式での i5 (i*qO)の 値と、 q軸基本電流指令値 i*qOの値とを対応付けたテーブルを電流高次歪み補償マ ップ 44aとして作成することができる。
また、上記のように、出力トルク (モータ負荷)を変化させた場合でのモータ供給電 流の測定波形に基づいて、その電流波形に含まれた基本波に対する各高次成分波 の位相ずれの実測データを取得する。そして、その取得データを基に上記位相ずれ を解消するための修正値、例えば第 5次電流成分での修正値として上記(23)及び( 24)式での 05 (i*qO)を決定することができる。そして、この決定した修正値と、 q軸基 本電流指令値 i*qOの値とを対応付けたテーブルを位相修正マップ 44bとして作成す ることがでさる。
[0044] そして、電流高次歪み補償値決定部 44は、ゲイン'位相決定部 37からの位相補償 値 Δ Θ eにて修正された修正電気角 Θ mreが減算器 38から入力され、かつ加算器 1 7 (図 3)から q軸基本電流指令値 i*q0が入力されると、上述のように作成された電流 高次歪み補償マップ 44a及び位相修正マップ 44bを参照することにより、入力した修 正電気角 Θ mre及び q軸基本電流指令値 i*q0に対応する d軸電流基本補償値 A i d21及び q軸電流基本補償値 A iq21を決定する。そして、電流高次歪み補償値決定 部 44は、 d軸電流基本補償値 Δ id21及び q軸電流基本補償値 Δ iq21を乗算器 45及 び 46にそれぞれ出力して、これらの乗算器 45及び 46にて修正率算出部 41からの ゲイン補償値 Rmが乗算されて、電流高次歪み用の d軸電流補償値 Δ id2及び q軸電 流補償値 Δ iq2として対応する加算器 21、 22に出力される。
[0045] 以上のように構成された本実施形態では、電流高次歪み補償部(トルクリップル補 償決定手段) 19が上記修正電気角 Θ mre (回転位置情報)と q軸基本電流指令値 i* qO (目標電流値)とを用いて、上記 q軸基本電流指令値 i*q0にて指令される電流が電 動モータ 5の各相コイルに供給されたときに、そのモータ 5を流れる電流の第 5、第 7、 第 11、及び第 13次成分によって発生するトルクリップルを予期して、予期したトルクリ ップルが打ち消されるように当該 q軸基本電流指令値 i*q0を変更するための電流高 次歪み用の d軸電流補償値 Δ id2及び q軸電流補償値 Δ iq2を決定して 、る。また、 磁界歪み補償部(トルクリップル補償決定手段) 18が上記修正電気角 Θ mreと q軸基 本電流指令値 i*q0とを用いて、上記 q軸基本電流指令値 i*q0にて指令される電流が 電動モータ 5の各相コイルに供給されたときに、当該モータ 5内の磁界の歪みに起因 してモータ出力トルクに現れるトルクリップルを予期して、予期したトルクリップルが抑 制されるように当該 q軸基本電流指令値 i*q0を変更するための磁界歪み用の d軸電 流補償値 A idl及び q軸電流補償値 A iqlを決定している。そして、加算器 21及び 22 (補正手段)が、上述の(8)及び (9)式に示したように、決定された d軸電流補償値 A i dlと d軸電流補償値 Δ id2及び q軸電流補償値 Δ iqlと q軸電流補償値 Δ iq2とを用い て、対応する d軸電流及び q軸電流の指令値を変更し、フィードバック制御部(フィ一 ドバック制御手段) 200がこれら変更された指令値に基づき電動モータ 5を駆動して いる。この結果、上記目標電流値に基づく電流がモータ 5に流されたときに、電流高 次成分に起因するトルクリップル及び磁界歪みに起因するトルクリップルを抑制する ことができ、これらリップルによる操舵フィーリング低下を防ぐことができる。
[0046] また、本実施形態では、磁界歪み補償部 18及び電流高次歪み補償部 19の各部 において、周波数算出部 36、ゲイン'位相決定部 37、及び修正率算出部 41からな るゲイン補償演算手段が設けられ、この演算手段が算出したゲイン補償値 (修正率 R m)により、磁界歪み補償部 18及び電流高次歪み補償部 19の各出力値が補正され ている。これにより、上記電流制御系の周波数特性に従って、そのモータを流れる電 流のゲインがモータ回転速度の増加に応じて低下するのを補償することができ、当 該ゲイン低下に伴って操舵フィーリングが低下するのを抑制することができる。
[0047] また、本実施形態では、磁界歪み補償部 18及び電流高次歪み補償部 19の各部 において、周波数算出部 36及びゲイン ·位相決定部 37からなる位相補償演算手段 が設けられ、この演算手段が算出した位相補償値 (位相差 Δ Θ e)により、検出された 電気角 Θ reが修正されて、上記電流制御系の周波数特性に依存する位相遅れが補 償されている。これにより、電動モータ 5の回転速度が変化したときでも、モータ 5での 供給電流が上記電流制御系の周波数特性に従って、誘起電圧に対する位相遅れが 発生するのを補償することができ、当該位相遅れに伴う操舵フィーリング低下を抑制 することができる。
[0048] ここで、電動モータの具体的な出力トルクを示す図 11を参照して、上記トルクリップ ル補償決定手段の効果について具体的に説明する。
フィードバック制御部 200が、磁界歪み補償部 18及び電流高次歪み補償部 19の 各出力値を用いずに上述の(8)及び (9)式での各第 1項で示した d軸基本電流指令 値 i * d0及び q軸基本電流指令値 i * q0を用 ヽて電動モータ 5を駆動したときには、図 1 1の一点鎖線にて示すように、そのモータ出力トルクには大きいトルクリップルが現れ て大幅に変動した。
また、フィードバック制御部 200が、磁界歪み補償部 18の出力値を用いたとき、つ まり上記 (8)及び (9)式での各第 1及び第 2項の和で指定される目標電流値を用い て電動モータ 5を駆動したときには、そのモータ出力トルクのうち磁界歪みに起因す るリップル分が排除されて、当該トルクの検出波形は同図の点線に示されるものとな つた o
[0049] さらに、フィードバック制御部 200が、磁界歪み補償部 18及び電流高次歪み補償 部 19の各出力値を用いたとき、つまり上記(8)及び(9)式での各第 1一第 3項の和で 指定される目標電流値を用いて電動モータ 5を駆動したときには、上記磁界歪みに 起因するリップル分に加え、上記第 5、第 7、第 11、及び第 13次電流成分に起因す るリップル分も取り除かれる。詳細には、モータ出力トルクから上記(23)—(26)式に て求められる第 6次のリップル分及び上記(27)—(30)式にて求められる第 12次のリ ップル分が排除されて、当該トルクの検出波形は同図の実線に示すように、変動が 極めて少ない安定したものとなった。すなわち、本実施形態では、図 10に示したよう に、 q軸基本電流指令値 i*qO (所望の操舵補助力を発生するためのモータ負荷)が 大きくなるにつれて、その電動モータ 5を流れる電流に電流高次成分が重畳し易ぐ その重畳した電流高次成分に起因するトルクリップル分も増大して操舵フィーリング の低下を生じ易い装置において、上記トルクリップル分を大きく減衰させることができ る。この結果、比較的大きいアシスト力で操舵補助を行う必要があるステアリング操作 、例えば停止中の車両において、操向車輪のタイヤ角を変更する据え切り操作など のアシスト操作を安定した状態で行わせることができる。
[0050] 尚、上記の説明では、操舵軸 2に電動モータ 5が減速機構 4を介して連結されるコラ ムアシスト式の電動パワーステアリング装置に適用した場合を示した力 本発明は所 定の電流高次成分に起因するトルクリップルを打ち消すための電流高次成分用の補 償値を決定するトルクリップル補償決定手段を設けたものであればょ ヽ。具体的には 、例えば電動モータ 5がラックピ-オン式伝達機構 6のラック軸に連結されて、このラッ ク軸の移動をアシストするラックアシスト式等の他のアシスト形式の装置にも適用する ことができる。
また、上記の説明では、所定の電流高次成分として、第 5、第 7、第 11、及び第 13 次成分に起因するトルクリップルを打ち消すための補償値を決定する構成について 説明したが、本発明はこれに限定されるものではなぐ基本波(1次成分)に対し重畳 され易い高調波電流成分、例えば図 10に示したように第 5次及び第 7次電流成分を 補償 (相殺)するための補償値を決定する構成でもよ ヽ。
[0051] また、上記の説明では、トルクリップル補償決定部 101の磁界歪み補償部 18及び 電流高次歪み補償部 19内に一部の機能ブロックを共用した上記ゲイン補償演算手 段と位相補償演算手段とを設けた場合について説明したが、本発明はこれに限定さ れるものではな 、。例えば上記の演算手段をトルクリップル補償決定部 101の各補 償部 18、 19内に設けることなぐ当該補償決定部 101とフィードバック制御部 200と の間に配置し、各補償部 18、 19がロータ角度位置検出器 35からの電気角 0 reと、 加算器 22からの q軸基本電流指令値 i*qOとを用いて磁界歪み用及び電流高次歪み 用の補償値をそれぞれ決定し、これらの決定値を上記ゲイン補償演算手段が求めた ゲイン補償値と位相補償演算手段が求めた位相補償値とで補正してフィードバック 制御部 200に指令値として入力させる構成でもよ!/、。
[0052] また、上記の説明では、例えば電流高次歪み補償値決定部 44内に電流高次歪み 補償マップ 44aを格納する構成について説明した力 上記(21)—(30)式に示した 数式をマイコン 100内に記憶させ、同決定部 44がこれらの数式を用いて演算するこ とで補償値を決定する構成でもよ ヽ。
また、上記の説明では、電動モータ 5に 3相ブラシレスモータを使用した場合につい て説明したが、本発明の電動モータはこれに限定されるものではなぐ 3相以外の相 数のブラシレスモータやブラシ付きの直流モータなどの他の形式のモータを使用した 装置にも適用することができる。

Claims

請求の範囲
[1] 操舵部材の操作に応じて電動モータの目標電流値を決定し、そのモータ動力を操 舵機構に付与して操舵補助を行う電動パワーステアリング装置であって、
前記電動モータの回転位置情報と決定された前記目標電流値とを用いて、当該モ ータを流れる電流の所定の高次成分に起因するトルクリップルを打ち消すための電 流高次成分用の補償値を決定するトルクリップル補償決定手段と、
前記トルクリップル補償決定手段からの補償値を用いて、前記決定された目標電流 値を補正する補正手段と、
前記補正手段によって補正された後の目標電流値に基づき、前記電動モータをフ イードバック制御するフィードバック制御手段と
を備えたことを特徴とする電動パワーステアリング装置。
[2] 前記トルクリップル補償決定手段は、前記決定された目標電流値に応じて、前記電 流高次成分用の補償値を変化させることを特徴とする請求項 1に記載の電動パワー ステアリング装置。
[3] 前記トルクリップル補償決定手段には、
前記電流高次成分用の補償値を決定する電流高次歪み補償部に加えて、 前記電動モータの回転位置情報と決定された前記目標電流値とを用いて、当該モ ータ内に形成される磁界の歪みに起因するトルクリップルを抑制するための磁界歪 み用の補償値を決定する磁界歪み補償部が設けられていることを特徴とする請求項 1または 2に記載の電動パワーステアリング装置。
[4] 前記電動モータ及び前記フィードバック制御手段を含んだ電流制御系と、
前記回転位置情報を基に前記電動モータの回転速度を検出する回転速度検出手 段と、
前記回転速度検出手段からの前記電動モータの回転速度に基づいて、前記電流 制御系の周波数特性に依存するゲイン低下を補償するためのゲイン補償値を求める ゲイン補償演算手段とを備え、
前記補正手段は、前記トルクリップル補償決定手段からの補償値と、前記ゲイン補 償演算手段からのゲイン補償値とを用いて、前記決定された目標電流値を補正する ことを特徴とする請求項 1一 3のいずれかに記載の電動パワーステアリング装置。 前記回転速度検出手段からの前記電動モータの回転速度に基づいて、前記電流 制御系の周波数特性に依存する位相遅れを補償するための位相補償値を求める位 相補償演算手段を備え、
前記補正手段は、前記トルクリップル補償決定手段からの補償値と、前記ゲイン補 償演算手段力ゝらのゲイン補償値と、前記位相補償演算手段からの位相補償値とを用 いて、前記決定された目標電流値を補正することを特徴とする請求項 4に記載の電 動パワーステアリング装置。
PCT/JP2004/014644 2003-10-07 2004-10-05 電動パワーステアリング装置 WO2005035333A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04792055.8A EP1683705B1 (en) 2003-10-07 2004-10-05 Electric power steering device
US10/574,809 US7474067B2 (en) 2003-10-07 2004-10-05 Electric power steering system
JP2005514569A JP4736805B2 (ja) 2003-10-07 2004-10-05 電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003348566 2003-10-07
JP2003-348566 2003-10-07

Publications (1)

Publication Number Publication Date
WO2005035333A1 true WO2005035333A1 (ja) 2005-04-21

Family

ID=34430968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014644 WO2005035333A1 (ja) 2003-10-07 2004-10-05 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US7474067B2 (ja)
EP (1) EP1683705B1 (ja)
JP (1) JP4736805B2 (ja)
KR (1) KR20060120015A (ja)
WO (1) WO2005035333A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780095A1 (en) * 2005-10-28 2007-05-02 NSK Ltd., Electric power steering apparatus and controller thereof
JP2007118794A (ja) * 2005-10-28 2007-05-17 Nsk Ltd 電動パワーステアリング装置及びその制御装置
JP2007216698A (ja) * 2006-02-14 2007-08-30 Nsk Ltd 電動パワーステアリング装置及びその制御装置
JP2007236015A (ja) * 2006-02-27 2007-09-13 Toshiba Corp モータ制御装置
JP2008054386A (ja) * 2006-08-23 2008-03-06 Renesas Technology Corp 同期電動機の制御装置
JP2008211908A (ja) * 2007-02-26 2008-09-11 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2008273391A (ja) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp 電動パワーステアリング制御装置
CN104009692A (zh) * 2013-02-27 2014-08-27 日立空调·家用电器株式会社 马达控制装置以及使用了该马达控制装置的空调机
JP2017143631A (ja) * 2016-02-09 2017-08-17 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2019230818A1 (ja) * 2018-06-01 2019-12-05 日本電産株式会社 モータ制御装置、モータ制御方法およびモータシステム
WO2023181521A1 (ja) * 2022-03-21 2023-09-28 日立Astemo株式会社 制御装置、車両挙動制御装置および力発生機構システム

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879657B2 (ja) * 2006-05-31 2012-02-22 本田技研工業株式会社 電動機の制御装置
JP2008029082A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 回転電機制御装置、回転電機制御方法及び回転電機制御プログラム
WO2008047698A1 (fr) * 2006-10-16 2008-04-24 Mitsuba Corporation Moteur sans balai et procédé de commande d'un moteur sans balai
US7932692B2 (en) * 2006-11-13 2011-04-26 Denso Corporation Control system for rotary electric machine with salient structure
JP5070867B2 (ja) * 2007-02-05 2012-11-14 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
EP1962413A1 (en) * 2007-02-22 2008-08-27 Stmicroelectronics SA Ripple compensator and switching converter comprising such a ripple compensator
JP2008211910A (ja) * 2007-02-26 2008-09-11 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2008211909A (ja) * 2007-02-26 2008-09-11 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
US7622877B2 (en) * 2007-03-13 2009-11-24 Gm Global Technology Operations, Inc. Method and system for controlling permanent magnet AC machines
JP5056175B2 (ja) * 2007-06-01 2012-10-24 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5233178B2 (ja) * 2007-06-14 2013-07-10 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5082719B2 (ja) * 2007-09-26 2012-11-28 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
US7839106B2 (en) * 2008-03-05 2010-11-23 Gm Global Technology Operations, Inc. System and methods involving dynamic closed loop motor control and flux weakening
US7768220B2 (en) 2008-04-24 2010-08-03 Gm Global Technology Operations, Inc. Harmonic torque ripple reduction at low motor speeds
DE102008060672A1 (de) * 2008-12-08 2010-06-10 Grohe Ag Vorrichtung und Verfahren zum Betrieb eines Antriebs
CN102232031B (zh) * 2009-01-22 2013-09-18 丰田自动车株式会社 电动动力转向装置
JP5303297B2 (ja) * 2009-02-02 2013-10-02 アスモ株式会社 モータ制御装置及びモータ制御方法
JP4835959B2 (ja) * 2009-03-30 2011-12-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
US8054084B2 (en) * 2009-05-19 2011-11-08 GM Global Technology Operations LLC Methods and systems for diagnosing stator windings in an electric motor
US8354817B2 (en) * 2009-06-18 2013-01-15 GM Global Technology Operations LLC Methods and systems for diagnosing stator windings in an electric motor
JP5789911B2 (ja) * 2009-10-06 2015-10-07 株式会社ジェイテクト 回転角検出装置及び電動パワーステアリング装置
US8253365B2 (en) * 2009-10-20 2012-08-28 GM Global Technology Operations LLC Methods and systems for performing fault diagnostics for rotors of electric motors
JP4858600B2 (ja) * 2009-11-20 2012-01-18 トヨタ自動車株式会社 操舵伝達比可変装置の制御装置
GB201003456D0 (en) * 2010-03-02 2010-04-14 Trw Ltd Current sensor error compensation
US8497698B2 (en) 2010-08-11 2013-07-30 GM Global Technology Operations LLC Methods and systems for diagnosing faults for rotors of electric motors
JP5803422B2 (ja) * 2011-08-22 2015-11-04 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5724776B2 (ja) * 2011-09-12 2015-05-27 日本精工株式会社 モータ制御装置及び電動パワーステアリング装置
US20130119900A1 (en) * 2011-11-10 2013-05-16 Ford Global Technologies, Llc Motor torque ripple compensation
CN103378788B (zh) * 2012-04-28 2015-11-25 瑞萨电子(中国)有限公司 变频空调用压缩机的驱动方法和装置
JP6085102B2 (ja) * 2012-06-06 2017-02-22 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド モータ制御装置、およびそれを用いた空気調和機
KR101495187B1 (ko) * 2012-08-30 2015-02-24 엘지전자 주식회사 전기차량용 모터 제어 장치 및 이를 이용한 토크리플 저감 방법
US9018881B2 (en) 2013-01-10 2015-04-28 GM Global Technology Operations LLC Stator winding diagnostic systems and methods
JP6279211B2 (ja) * 2013-01-31 2018-02-14 Ntn株式会社 電気自動車用同期モータの制御装置
KR101853521B1 (ko) * 2014-01-08 2018-06-04 주식회사 만도 전자 제어 장치, 이를 포함하는 전동식 파워 스티어링 시스템 및 랙 앤 피니언 기어의 마모에 따른 보상 전류 결정 방법
JP6378887B2 (ja) * 2014-02-04 2018-08-22 Kyb株式会社 電動パワーステアリング装置
FR3018647B1 (fr) * 2014-03-11 2016-02-26 Renault Sas Procede et systeme de commande d'une machine electrique triphasee de vehicule automobile.
DE102014008462A1 (de) * 2014-06-06 2015-12-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren zum Betrieb eines bürstenbehafteten Kommutatormotors eines Verstellantriebs und Verstellantrieb
WO2016000215A1 (zh) * 2014-07-01 2016-01-07 广东美芝制冷设备有限公司 速度波动的抑制方法、控制装置和压缩机控制系统
JP6467209B2 (ja) * 2014-12-09 2019-02-06 オークマ株式会社 電動機のコギングトルク測定方法
US10090788B2 (en) 2016-03-03 2018-10-02 Robert Bosch Gmbh Optimal torque ripple reduction through current shaping
US11498611B2 (en) * 2018-05-11 2022-11-15 Nidec Corporation Motor control device, driving device, and power steering device
KR102226037B1 (ko) * 2019-01-22 2021-03-10 현대모비스 주식회사 모터 제어 장치 및 방법
KR102119413B1 (ko) * 2019-02-21 2020-06-05 현대모비스 주식회사 토크 리플 보상 장치 및 방법
US11876471B2 (en) * 2021-06-25 2024-01-16 Texas Instruments Incorporated Motor controller including resonant controllers
US11664757B1 (en) * 2022-05-16 2023-05-30 Forcecon Technology Co., Ltd. Motor control system with adjustable voltage harmonic and method for correcting the motor control system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264293A (ja) * 1985-08-22 1987-03-23 Yokogawa Electric Corp モ−タ駆動回路
JPS6460264A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Method and device for controlling voltage type inverter
JPH0454872A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電力変換装置
JPH0479788A (ja) * 1990-07-20 1992-03-13 Hitachi Ltd 電力変換装置
JP2001018822A (ja) * 1999-07-08 2001-01-23 Toyota Motor Corp 車両の電動パワーステアリング装置
JP2001186790A (ja) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2002525021A (ja) * 1998-09-04 2002-08-06 コネ コーポレイション 電流安定化された電動機の制御方法
JP2002223600A (ja) * 2000-11-22 2002-08-09 Nissan Motor Co Ltd モータ制御装置
JP2002247899A (ja) * 2001-02-16 2002-08-30 Nissan Motor Co Ltd モーター制御装置
JP2003137110A (ja) * 2001-11-05 2003-05-14 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2003199390A (ja) * 2001-12-28 2003-07-11 Toshiba Corp ベクトル制御インバータ装置
JP2004064909A (ja) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd モータ制御装置
JP2004215399A (ja) * 2002-12-27 2004-07-29 Yaskawa Electric Corp モータ制御方法および制御装置
JP2004328814A (ja) * 2003-04-21 2004-11-18 Koyo Seiko Co Ltd 電動パワーステアリング装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321356B2 (ja) * 1996-05-20 2002-09-03 株式会社日立製作所 モータ制御装置及び電気車用制御装置
US6008617A (en) * 1996-05-20 1999-12-28 Hitachi, Ltd. Motor control device for high frequency AC driven motor
JP3298006B2 (ja) * 1998-12-24 2002-07-02 日本精工株式会社 電動パワーステアリング装置の制御装置
EP1211798B1 (en) 2000-11-22 2018-01-10 Nissan Motor Co., Ltd. Motor control apparatus and motor control method
JP2003061272A (ja) 2001-08-09 2003-02-28 Mitsubishi Electric Corp 永久磁石型回転電機及び電動パワーステアリング装置
JP5130716B2 (ja) * 2007-01-09 2013-01-30 株式会社ジェイテクト モータ制御装置および電気式動力舵取装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264293A (ja) * 1985-08-22 1987-03-23 Yokogawa Electric Corp モ−タ駆動回路
JPS6460264A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Method and device for controlling voltage type inverter
JPH0454872A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電力変換装置
JPH0479788A (ja) * 1990-07-20 1992-03-13 Hitachi Ltd 電力変換装置
JP2002525021A (ja) * 1998-09-04 2002-08-06 コネ コーポレイション 電流安定化された電動機の制御方法
JP2001018822A (ja) * 1999-07-08 2001-01-23 Toyota Motor Corp 車両の電動パワーステアリング装置
JP2001186790A (ja) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2002223600A (ja) * 2000-11-22 2002-08-09 Nissan Motor Co Ltd モータ制御装置
JP2002247899A (ja) * 2001-02-16 2002-08-30 Nissan Motor Co Ltd モーター制御装置
JP2003137110A (ja) * 2001-11-05 2003-05-14 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2003199390A (ja) * 2001-12-28 2003-07-11 Toshiba Corp ベクトル制御インバータ装置
JP2004064909A (ja) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd モータ制御装置
JP2004215399A (ja) * 2002-12-27 2004-07-29 Yaskawa Electric Corp モータ制御方法および制御装置
JP2004328814A (ja) * 2003-04-21 2004-11-18 Koyo Seiko Co Ltd 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1683705A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696709B2 (en) 2005-10-28 2010-04-13 Nsk Ltd. Electric power steering apparatus and controller therefor
JP2007118794A (ja) * 2005-10-28 2007-05-17 Nsk Ltd 電動パワーステアリング装置及びその制御装置
EP1780095A1 (en) * 2005-10-28 2007-05-02 NSK Ltd., Electric power steering apparatus and controller thereof
JP2007216698A (ja) * 2006-02-14 2007-08-30 Nsk Ltd 電動パワーステアリング装置及びその制御装置
JP2007236015A (ja) * 2006-02-27 2007-09-13 Toshiba Corp モータ制御装置
US8362727B2 (en) 2006-08-23 2013-01-29 Renesas Electronics Corporation Control device for synchronous motor
JP2008054386A (ja) * 2006-08-23 2008-03-06 Renesas Technology Corp 同期電動機の制御装置
JP2008211908A (ja) * 2007-02-26 2008-09-11 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2008273391A (ja) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP4536085B2 (ja) * 2007-04-27 2010-09-01 三菱電機株式会社 電動パワーステアリング制御装置
CN104009692A (zh) * 2013-02-27 2014-08-27 日立空调·家用电器株式会社 马达控制装置以及使用了该马达控制装置的空调机
JP2014166082A (ja) * 2013-02-27 2014-09-08 Hitachi Appliances Inc モータ制御装置、およびそれを用いた空気調和機
JP2017143631A (ja) * 2016-02-09 2017-08-17 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2019230818A1 (ja) * 2018-06-01 2019-12-05 日本電産株式会社 モータ制御装置、モータ制御方法およびモータシステム
WO2023181521A1 (ja) * 2022-03-21 2023-09-28 日立Astemo株式会社 制御装置、車両挙動制御装置および力発生機構システム

Also Published As

Publication number Publication date
US7474067B2 (en) 2009-01-06
KR20060120015A (ko) 2006-11-24
EP1683705B1 (en) 2015-04-08
EP1683705A4 (en) 2010-05-12
EP1683705A1 (en) 2006-07-26
JPWO2005035333A1 (ja) 2007-11-22
JP4736805B2 (ja) 2011-07-27
US20070052381A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2005035333A1 (ja) 電動パワーステアリング装置
JP4033030B2 (ja) 電動パワーステアリング装置
JP5130716B2 (ja) モータ制御装置および電気式動力舵取装置
JP5417195B2 (ja) 永久磁石モータのトルクリプル抑制制御装置、電動パワーステアリングシステム
JP5423759B2 (ja) モータ制御装置及びこれを使用した電動パワーステアリング装置
US8779701B2 (en) Control apparatus for permanent magnet motor
EP1777806A2 (en) Motor drive control apparatus and electric power steering apparatus
JP4039317B2 (ja) 電動パワーステアリング装置
JP4912874B2 (ja) 電動パワーステアリング装置の制御装置
US20080201041A1 (en) Control device for electric power steering apparatus
WO2009091015A1 (ja) モータ制御装置および電動パワーステアリング装置
WO2004106143A1 (ja) 電動パワーステアリング装置の制御装置
US20170373627A1 (en) Apparatus for controlling three phase rotary electric machine reducing peak value of phase current
WO2006109809A1 (ja) 電動パワーステアリング装置
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
CN101981808A (zh) 电动机控制装置
JP2007091182A (ja) 電動パワーステアリング装置の制御装置
JP5397664B2 (ja) モータ制御装置
JP2006149146A (ja) 無結線式モータの駆動制御装置及び無結線式モータの駆動制御装置を使用した電動パワーステアリング装置
JP2007325408A (ja) 電動モータ制御装置及びこれを使用した電動パワーステアリング装置
JP4466082B2 (ja) 電動パワーステアリング装置の制御装置
JP2008155683A (ja) 電気式動力舵取装置
JP2007118785A (ja) 車両の操舵アシスト装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514569

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007052381

Country of ref document: US

Ref document number: 10574809

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067006642

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004792055

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792055

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10574809

Country of ref document: US