WO2014171027A1 - 多相モータの制御装置及びそれを用いた電動パワーステアリング装置 - Google Patents

多相モータの制御装置及びそれを用いた電動パワーステアリング装置 Download PDF

Info

Publication number
WO2014171027A1
WO2014171027A1 PCT/JP2013/077701 JP2013077701W WO2014171027A1 WO 2014171027 A1 WO2014171027 A1 WO 2014171027A1 JP 2013077701 W JP2013077701 W JP 2013077701W WO 2014171027 A1 WO2014171027 A1 WO 2014171027A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
control
control cycle
pwm signal
Prior art date
Application number
PCT/JP2013/077701
Other languages
English (en)
French (fr)
Inventor
孝義 菅原
洋介 今村
浩保 熊谷
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US14/240,656 priority Critical patent/US9362860B2/en
Priority to EP13882504.7A priority patent/EP2945277B1/en
Priority to BR112015026318A priority patent/BR112015026318A2/pt
Priority to CN201380064620.5A priority patent/CN104871425B/zh
Priority to JP2014501113A priority patent/JP5655975B1/ja
Publication of WO2014171027A1 publication Critical patent/WO2014171027A1/ja
Priority to US15/145,858 priority patent/US9667179B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the present invention calculates a duty command value for each phase for controlling the current of the multiphase motor by control calculation, forms a PWM (pulse width modulation) signal corresponding to each phase duty command value,
  • a control device for a multi-phase motor that is driven by applying a command current (voltage) to the motor
  • an electric power steering system that uses the multi-phase motor control device to apply assist force by the motor to the steering system of the vehicle. Relates to the device.
  • a single current detection circuit one shunt type current detection circuit
  • each phase PWM signal is transmitted over two control cycles.
  • the shift is gradually corrected, and during the shift correction, the current is estimated using the current detection observer and the current detection is continued, and the current detection is stably performed at the current detection timing when the PWM signal is turned on simultaneously in one phase or two phases (
  • the present invention relates to a control device for a multi-phase motor that reduces vibration and noise (abnormal noise) by processing by A / D conversion, and an electric power steering device using the same.
  • An electric power steering device that applies a steering assist force (assist force) to a steering mechanism of a vehicle by a rotational force of a motor, a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reducer.
  • a steering assist force is applied to the vehicle.
  • Such a conventional electric power steering device (EPS) performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
  • the adjustment of the motor applied voltage is performed by duty control of PWM control. This is done by adjusting the command value.
  • a column shaft (steering shaft, handle shaft) 2 of the steering handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, and a tie rod. Via 6a and 6b, it is further connected to the steering wheels 8L and 8R via hub units 7a and 7b. Further, the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the steering handle 1, and a motor 20 for assisting the steering force of the steering handle 1 is applied to the column shaft 2 via the reduction gear 3. It is connected.
  • the control unit (ECU) 100 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 100 calculates a current command value of an assist (steering assistance) command based on the steering torque Tr detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, and compensates the current command value.
  • the current supplied to the motor 20 is controlled by the voltage control value E subjected to.
  • the vehicle speed Vel can also be received from CAN (Controller Area Network) or the like.
  • the control unit 100 is mainly composed of a CPU (or MPU or MCU), and a general function executed by a program in the CPU is as shown in FIG.
  • the function and operation of the control unit 100 will be described with reference to FIG. 2.
  • the steering torque Tr detected by the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are input to the current command value calculation unit 101, and an assist map or the like is displayed.
  • the current command value Iref1 is calculated using this.
  • the calculated current command value Iref1 is limited in output by the maximum output limiter 102 based on the overheat protection condition or the like, and the current command value Iref2 whose maximum output is limited is input to the subtractor 103.
  • the controlled voltage control value E is input to the PWM control unit 105 to calculate the duty command value, and the motor 20 is driven via the inverter 106 by the PWM signal PS calculated from the duty command value.
  • the motor current Im of the motor 20 is detected by the current detection circuit 120 in the inverter 106, and the motor current Im is input to the subtraction unit 103 and fed back.
  • a resolver 21 is connected as a rotation sensor, and an angular velocity calculation unit 22 that calculates an angular velocity ⁇ from the rotation angle ⁇ is provided.
  • the inverter 106 that controls the motor current Im with the voltage control value E and drives the motor 20 uses a bridge circuit in which a semiconductor switching element (FET) and the motor 20 are bridge-connected, and is determined based on the voltage control value E.
  • the semiconductor switching element is ON / OFF controlled by the duty command value of the PWM signal thus controlled to control the motor current Im.
  • the PWM control unit 105 inputs each phase carrier signal, and calculates a PWM-Duty command value D1 to D6 for three phases (U, V, W) according to a predetermined formula for the voltage control value E. 105A and a gate drive unit 105B that drives each gate of FET1 to FET6 with PWM-Duty command values D1 to D6 to turn on / off, and an inverter 106 includes U-phase upper stage FET1 and lower stage FET4.
  • the upper and lower arms are composed of a three-phase bridge composed of upper and lower arms composed of an upper stage FET 2 and a lower stage FET 5 of V phase and upper and lower arms composed of an upper stage FET 3 and a lower stage FET 6 of a W phase, and PWM-Duty command values D1 ⁇
  • the motor 20 is driven by being turned ON / OFF at D6.
  • power is supplied to the inverter 106 from the battery 13 via the power relay 14.
  • the PWM signal that determines the ON / OFF timing of the switching element for driving the multiphase motor compares the sawtooth wave or triangular wave carrier signal with the duty command value corresponding to the target current value in each phase of the motor. Is generated. Whether the PWM signal is high level (H) or low level (L) is determined depending on whether the value of the carrier signal is greater than or less than the duty command value.
  • the current detection circuit 120 There is unification.
  • a single shunt type current detection circuit is known as the unification of current detection circuits, and the configuration of the single shunt type current detection circuit 120 is as shown in FIG. 4, for example (for example, Japanese Patent Application Laid-Open No. 2009-131064). ).
  • FIG. 5 shows a connection diagram of the battery 13, the inverter 106, the current detection circuit 120, and the motor 20, and the U-phase upper FET 1 is ON (lower FET 4 is OFF), and the V-phase upper FET 2 is OFF (lower FET 5 is ON).
  • FIG. 6 shows a state where the upper FET 1 of the U phase is ON (lower FET 4 is OFF), the upper FET 2 of the V phase is ON (lower FET 5 is OFF), and the upper FET 3 of the W phase is OFF (lower FET 6 is ON).
  • Current paths are shown.
  • the total value of the phases in which the upper stage FETs are ON appears in the current detection circuit 120 as a detection current. That is, the U-phase current can be detected in FIG. 5, and the U-phase and V-phase currents can be detected in FIG. The same applies to the case where the current detection circuit 120 is connected between the upper arm of the inverter 106 and the power source (battery 13). 5 and 6, the connection of the resolver 21 and the power relay 14 are omitted.
  • each phase current of the three phases Can be detected.
  • the U-phase current I U is detected
  • the total value of the U-phase current I U and the V-phase current IV is detected by the current detector 120.
  • I U + I V + I W 0
  • the inverter 106 composed of a single current detection circuit 120 as shown in FIG. 4, the influence of noise components such as rigging noise generated by the current flowing through the current detection circuit 120 immediately after each FET is turned on. It is necessary to remove and detect an accurate current.
  • the interval between the timings when the FET is turned ON / OFF between one phase and the other phase becomes very short, the current required for current detection does not flow through the FET, or the dead time (dead zone) ) And the delay in the response of the circuit, the current cannot be measured accurately.
  • the time interval at the time of switching between one phase and the other phase is small, the time interval at the time of switching between one phase and the other phase is reduced by, for example, performing a correction to shift (arrangement movement) the phase of the predetermined phase.
  • an accurate current value of each phase of the multiphase motor can be detected using a single current detection circuit.
  • the shift correction if the ON / OFF frequency of the switching element for driving the multiphase motor is included in the audible frequency, it will be heard by the user as noise (abnormal noise) and will not be heard. Gives pleasure.
  • FIG. 7 shows a timing chart in the case where the two UVW phases cannot be detected.
  • One control cycle is 250 ⁇ s, and it consists of five cycles of a sawtooth wave PWM signal having a cycle of 50 ⁇ s. .
  • FIG. 7 shows operations in the fourth cycle, the fifth cycle of the previous control cycle T1, and the first to fifth cycles of the current control cycle T2.
  • the U-phase PWM signal is Duty 52%
  • the V-phase PWM signal is Duty 47%
  • the W-phase PWM signal is Duty 51%.
  • the time interval between the V phase of the minimum duty phase and the W phase of the intermediate phase, and the time interval between the W phase of the intermediate phase and the U phase of the maximum phase is as short as 4% and 1%, respectively, switching noise during that period unless the phase is shifted
  • the A / D conversion time for accurately detecting the current value cannot be taken. Therefore, the V-phase PWM signal of the minimum phase is shifted by 8% to the left (so that the phase is advanced), and the PWM signal of the maximum phase U is shifted to the right (so that the phase is delayed) by 11%. is doing.
  • the switching time intervals of the V phase and the W phase, and the U phase and the W phase are both increased to 12%, and the accurate current values of the U phase and the V phase can be detected in each PWM cycle.
  • the U-phase PWM signal is reduced from Duty 52% to 51%, and the V-phase PWM signal is Duty 47. %,
  • the W-phase PWM signal is increased from Duty 51% to 52%. Therefore, the Duty maximum phase changed from the U phase to the W phase, and the Duty intermediate phase changed from the W phase to the U phase. Note that the Duty minimum phase is also the V phase this time.
  • the U phase changes from being shifted to not shifted, the V phase is shifted and remains unchanged, and the W phase is shifted from not shifted to shifted. is there.
  • the time at the end of the previous control cycle T1 that is, the current control.
  • the shunt waveform the waveform of the voltage generated across the shunt resistor for current detection
  • an instantaneous current fluctuation occurs. With this sudden current fluctuation, there is a problem that noise based on current ripple is generated from the motor.
  • the shunt waveform in FIG. 7 shows the U-phase and ⁇ V-phase currents in the previous control cycle T1, and the W-phase and ⁇ V-phase currents in the current control cycle T2.
  • Patent Document 1 a control device for a multiphase motor disclosed in Japanese Patent No. 4884356 (Patent Document 1).
  • a pair of an upper arm switching element and a lower arm switching element a driving unit that drives a multiphase motor, a single current detection unit that detects a current value of the multiphase motor, Based on the current value and carrier signal detected by the current detection means, a PWM signal generation means for generating a plurality of phase PWM signals within one control cycle, and a PWM signal of a predetermined phase generated by the PWM signal generation means, Phase shift means for gradually changing the amount of movement of the phase within one control cycle and moving it to the drive means, and the phase shift means has zero phase movement of the predetermined phase in the immediately preceding control cycle.
  • the shift amount of the phase of the predetermined phase in the current control cycle is not zero, the shift amount is gradually increased from zero in the current control cycle, or in the immediately preceding control cycle. If the phase shift amount of the predetermined phase is not zero and the phase shift amount of the predetermined phase in the current control cycle is zero, the shift amount is gradually decreased toward zero in the current control cycle. It is like that.
  • the present invention has been made under the circumstances as described above, and the object of the present invention is to use a single shunt current detection circuit to reduce the processing capacity of the CPU and reduce the shift amount per time.
  • An object of the present invention is to provide a control device for a multi-phase motor that is made finer and reduces the occurrence of vibration and noise (abnormal noise) and an electric power steering device using the same.
  • the present invention relates to a control device for a multi-phase motor, and the above object of the present invention consists of a pair of an upper arm switching element and a lower arm switching element, and a driving unit for driving the multi-phase motor, and a current value of the multi-phase motor.
  • a single current detection circuit that detects a plurality of first phase PWM signals within two control periods based on a current value and a carrier signal detected by the current detection circuit;
  • a phase shift control unit that shifts the first PWM signal of a predetermined phase generated by the PWM signal generation unit by gradually changing a phase shift amount within two control periods, and outputs the phase shift control unit to the drive unit;
  • a current detection observer that estimates an estimated current value of the multiphase motor based on a current value detected by the current detection circuit, wherein the PWM signal generation unit includes the estimated current value and the carrier signal.
  • the second phase PWM signal is generated within two control periods, and the phase shift control unit has a phase shift amount of a predetermined phase in the immediately preceding control period being zero, and the current control period
  • the shift amount of the phase of the predetermined phase is not zero
  • the shift amount is gradually increased from zero in the current control cycle and the next control cycle, and the second phase PWM signal in the next control cycle.
  • the phase shift amount of the predetermined phase in the immediately preceding control cycle is not zero and the phase shift amount of the predetermined phase in the current control cycle is zero. This is achieved by gradually decreasing the shift amount toward zero in the current control cycle and the next control cycle, and using the second phase PWM signal in the next control cycle.
  • the phase shift control unit calculates a shift amount of the first PWM signal to a final shift position, sets the number of shifts to n, and shifts by shift amount / n. Or the phase shift of the predetermined phase is performed with the number of shifts m ( ⁇ n) in the current control cycle, and the remaining (n ⁇ m) shifts are performed in the next control.
  • the current detection observer is configured to estimate the current value in the current control cycle based on the current value detected in the previous control cycle. Is achieved more effectively.
  • the current of the multiphase motor is detected using the single shunt current detection circuit, and the predetermined duty phase is gradually shifted over two control periods of the PWM control period. Can be kept small, and vibration and noise can be further reduced.
  • the current value is estimated using the current detection observer, and the duty is set by the current estimation value. Can be continued.
  • the present invention calculates each phase duty command value for controlling the current of a multiphase motor (for example, a three-phase (U phase, V phase, W phase) brushless DC motor) by control calculation, and each phase duty command A control device for a multiphase motor that generates a PWM signal according to a value and drives the motor by giving a command current (voltage) from an inverter by PWM control, and an electric power steering device using the control device.
  • a multiphase motor for example, a three-phase (U phase, V phase, W phase) brushless DC motor
  • a single current detection circuit (single shunt type current detection circuit) is arranged on the power input side or power output side (ground side) of the inverter for PWM control and to make the shift amount finer Since each phase PWM signal is gradually shift-corrected over two control cycles and current cannot be detected during shift correction, current detection is continued by estimating the current using a current detection observer, and one phase Alternatively, vibration and noise are reduced by performing stable current detection (A / D conversion) at the current detection timing when the PWM signal is turned ON simultaneously for two phases. In particular, since the shift correction is performed over two control cycles while continuing the current control using the current detection observer, fine correction can be performed, and vibration and noise can be further reduced.
  • FIG. 8 shows an example of an embodiment of the present invention.
  • a PWM signal generation unit 131 that generates a PWM signal of each phase based on the current control value E includes a duty calculation unit 132.
  • a current detection availability determination unit 140 that determines whether or not current detection by the one-shunt type current detection circuit 15 is possible is connected.
  • the current detection possibility determination unit 140 determines whether or not the current detection circuit 150 can detect a current value based on each phase PWM signal generated by the PWM signal generation unit 131, that is, the current detection circuit 150 accurately It is determined whether there is a switching time interval that can detect a large current value.
  • the phase shift amount calculation unit 133 calculates the phase shift amount of the PWM signal, and the PWM signal phase shift unit 134 calculates the calculated phase shift. Based on the quantity, the phase of the PWM signal is gradually changed seven times within two control periods to be advanced or delayed, and the phase-shifted PWM signal is passed through the duty output unit 143 via the gate driving unit 144 and the inverter 145. Output and drive the motor.
  • the phase shift amount calculation unit 133 and the PWM signal phase shift unit 134 constitute a phase shift control unit.
  • the current detection period determination unit 152 determines the current detection start timing and the current detection period by the current detection circuit 150 based on the falling time of the PWM signal of each phase determined by the phase shift amount calculation unit 133.
  • Each phase current input unit 151 calculates the current value of the remaining phase that cannot be directly detected based on the current value detected by the current detection circuit 150 and the PWM signal generated by the PWM signal generation unit 131. And input.
  • a current detection observer 141 as disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-252991 is connected to the CPU 130. Based on the current value detected by the current detection circuit 150 in the previous control cycle, the current control is performed. The current value in the period is estimated by a known method. A triangular or sawtooth carrier signal is input via a carrier signal input unit 142. A memory for storing the current detection value and the like is separately connected.
  • 9 and 10 are flowcharts showing an operation example of the control device for the multiphase motor according to the embodiment of the present invention.
  • step S10 it is determined whether or not it is the first control cycle. If it is the first control cycle, the steering torque, the vehicle speed, the duty command value calculated by the duty calculation unit 132, etc. Based on this, the PWM signal generator 131 generates a PWM signal for each UVW phase (step S11). Next, based on the duty command value of each UVW phase, for example, pattern determination as shown in Patent Document 1 is performed (step S12), but the current detection availability determination unit 140 first detects a two-phase current. If the two-phase current can be detected, there is no need for shift correction. Therefore, the phase shift amount calculation unit 133 sets the shift amount to zero (step S14). ).
  • the current detectability determination unit 140 determines whether or not a one-phase current can be detected (step S15), and a one-phase current can be detected.
  • the phase shift amount calculation unit 133 calculates the shift amount of the maximum duty command value phase or the minimum duty command value phase (step S16).
  • the phase shift amount calculation unit 133 calculates the shift amounts of the maximum duty command value phase and the minimum duty command value phase (step S17). The shift amount is calculated by the phase shift amount calculation unit 133. However, if two phases can be detected, no shift is required, and the phase shift amount of each phase of the PWM signal may be zero.
  • phase of the phase with the maximum or minimum Duty command value will be delayed or advanced, and the shift amount will be calculated. Both the phase of the phase having the maximum command value and the phase of the phase having the minimum Duty command value are shifted, and the respective shift amounts are calculated.
  • the current detection period determination unit 152 determines the current detection start timing by the current detection circuit 150 based on the falling time of the PWM signal of each phase determined by the phase shift amount calculation unit 133 (step S20). .
  • the PWM signal phase shift unit 134 shifts the PWM signal phase of each phase by the calculated shift amount (step S21). Note that the calculation of the shift amount in each of the seven periods within the two control periods will be described in detail with reference to FIG. However, when there is no PWM phase shift (step S14), the phase shift amount is zero.
  • step S22 the current detection circuit 150 starts A / D conversion (step S23).
  • a / D conversion period switching of each phase does not occur, and the PWM signal of the predetermined phase falls when the time necessary for A / D conversion has elapsed.
  • the current detection circuit 150 detects the two-phase current in this way, each phase current input unit 131 is not detected based on the principle that the total of the three currents flowing into the three-phase motor is zero. Is calculated (step S24).
  • step S30 it is determined whether or not it is the second control cycle (step S30). If it is the first control cycle, the process returns to step S21 to repeat the shift. If it is the second control cycle, the current detection observer 141 reads the previous current detection value (step S31) and estimates the current value of the current control cycle (step S32). Based on the current estimated value estimated by the current detection observer 141, the PWM signal generation unit 131 generates each phase PWM signal of the current control cycle (step S33), and further performs the first remaining shift (step S33). S34) Repeat until the end of the shift, that is, the final position (step S35). When the shift is completed, the process returns when the third control cycle is reached, and when it is not the third control period, the process returns to step S30 to repeat the above operation (step S36).
  • FIG. 11 is a flowchart for calculating the shift amount in each of seven periods within two control periods.
  • the control period is 250 ⁇ s
  • the PWM signal based on the sawtooth wave carrier signal having a period of 50 ⁇ s is calculated from seven periods. It is made up.
  • a difference D between the phase shift amount of the current control cycle and the phase shift amount of the previous control cycle is calculated (step S40).
  • the phase shift amount in the nth cycle of the current control cycle is set to (phase shift amount in the previous seventh cycle) + D ⁇ n / 7 (step S41).
  • phase shift amount in the first cycle is (phase shift amount in the previous seventh cycle) + D / 7
  • phase shift amount in the second cycle is (in the previous seventh cycle).
  • Phase shift amount + D ⁇ 2/7
  • the phase shift amount in the third cycle is (phase shift amount in the previous seventh cycle) + D ⁇ 3/7
  • the phase shift amount in the fourth cycle is (Phase shift amount in the previous seventh cycle) + D ⁇ 4/7
  • the phase shift amount in the fifth cycle is (phase shift amount in the previous seventh cycle) + D ⁇ 5/7
  • the phase shift amount in the sixth period is (phase shift amount in the previous seventh period) + D ⁇ 6/7
  • the phase shift amount in the final seventh period is (the previous seventh shift).
  • Fig. 12 shows an example of the timing of each phase of shift and control when the maximum phase of the Duty command value is shifted to the intermediate phase, the intermediate phase of the Duty command value is shifted to the maximum phase, and the minimum phase of the Duty command value is not shifted. Show.
  • the duty calculated using the detected current value is set at the timing t5 at the beginning of the first control cycle, and PWM1 shift 1, PWM2 shift 2, PWM3 shift 3, PWM4 shift 4, PWM5 shift 5, PWM6 shift 6, PWM7
  • the shift is gradually corrected as in shift 7.
  • the sixth time (PWM 6 shift 6) and the seventh time (PWM 7 shift 7) are related to the next cycle (second time).
  • the current detection circuit 150 cannot detect the current. Therefore, current estimation is performed at timing t6 by the current detection observer 141 using the current detection value detected at timing t1. Then, current control calculation (calculation of current command value) and duty calculation (pulse width and presence / absence of shift) are performed using the current estimation value estimated by the current detection observer 141. Timings t7 and t8 indicate timings at which the current control calculation and duty calculation are performed using the current estimation values. Timing t9 indicates a case where a shift is necessary. The shift is executed up to the seventh time, and the next cycle (the third time) ). Using the estimated current value, the duty calculated by the current detection observer 141 is set at the timing t10 at the beginning of the second control cycle, and the phase shift amount is determined seven times as described above.
  • the shift correction range is not limited to one control cycle, but seven shift corrections are performed so that the next two control cycles are applied. That is, the current control using the current detected by the single current detection circuit (one shunt type current detection circuit) 150 and the shift correction are performed seven times in total, but the shift correction does not fall within one control cycle.
  • the sixth and seventh shifts depend on the next control cycle. Since current detection by the current detection circuit 150 is not possible in the control cycle of the period during which shift correction is being performed, the current detection value is detected by the current detection observer 141 using the current detection value previously detected by the current detection circuit 150, and is estimated. Set the current control and duty with the estimated current value. The result of setting current control and duty with the estimated current value is reflected in the next cycle PWM8, PWM9, and PWM10, and may be corrected for the PWM6 shift 6 and PWM7 shift 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

上下段アームスイッチング素子の対から成り、多相モータを駆動する駆動部と、電流値を検出する単一の電流検出回路と、電流値及びキャリア信号に基づいて、2制御周期内で複数の第1の各相PWM信号を生成するPWM信号生成部と、PWM信号生成部が生成する所定相の第1のPWM信号を、2制御周期内での位相のシフト量を徐々に変化させてシフトさせ、駆動部に出力する位相シフト制御部と、電流値に基づいて、多相モータの電流推定値を推定する電流検出オブザーバとを備え、PWM信号生成部は電流推定値及びキャリア信号に基づいて2制御周期内で複数の第2の各相PWM信号を生成し、位相シフト制御部は、直前の制御周期における所定相の位相のシフト量がゼロであり、今回の制御周期における所定相の位相のシフト量がゼロでない場合は、今回の制御周期及び次の制御周期においてシフト量をゼロから徐々に大きくして次の制御周期に第2の各相PWM信号を用いる。

Description

多相モータの制御装置及びそれを用いた電動パワーステアリング装置
 本発明は、制御演算により多相モータの電流を制御するための各相Duty指令値を算出し、各相Duty指令値に応じたPWM(パルス幅変調)信号を形成し、PWM制御によるインバータからモータに指令電流(電圧)を与えて駆動する多相モータの制御装置に関すると共に、その多相モータの制御装置を用いて、車両の操舵系にモータによるアシスト力を付与するようにした電動パワーステアリング装置に関する。特に、インバータの電源入力側又は電源出力側(接地側)に単一の電流検出回路(1シャント式電流検出回路)を配設してPWM制御すると共に、各相PWM信号を2制御周期に亘って徐々にシフト補正し、シフト補正中は電流検出オブザーバを用いて電流を推定して電流検出を継続し、1相又は2相同時にPWM信号がONとなる電流検出タイミングで安定的に電流検出(A/D変換)して処理することで、振動や騒音(異音)を低減した多相モータの制御装置及びそれを用いた電動パワーステアリング装置に関する。
 車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置(EPS)は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM制御のDuty指令値の調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、操向ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、操向ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、操向ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)100には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット100は、トルクセンサ10で検出された操舵トルクTrと車速センサ12で検出された車速Velとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御値Eによってモータ20に供給する電流を制御する。なお、車速VelはCAN(Controller Area Network)等から受信することも可能である。
 コントロールユニット100は主としてCPU(又はMPUやMCU)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、図2のようになっている。
 図2を参照してコントロールユニット100の機能及び動作を説明すると、トルクセンサ10で検出された操舵トルクTr及び車速センサ12からの車速Velは電流指令値演算部101に入力され、アシストマップ等を用いて電流指令値Iref1が演算される。演算された電流指令値Iref1は過熱保護条件等に基づいて最大出力制限部102で出力を制限され、最大出力を制限された電流指令値Iref2は減算部103に入力される。
 減算部103は、電流指令値Iref2とフィードバックされているモータ20のモータ電流Imとの偏差Iref3(=Iref2-Im)を求め、偏差Iref3はPI(比例・積分)等の電流制御部104で制御され、制御された電圧制御値EはPWM制御部105に入力されてDuty指令値を演算され、Duty指令値を演算されたPWM信号PSによってインバータ106を介してモータ20を駆動する。モータ20のモータ電流Imはインバータ106内の電流検出回路120で検出され、モータ電流Imが減算部103に入力されてフィードバックされる。モータ20をd-q軸でベクトル制御する場合には、回転センサとしてレゾルバ21が連結されると共に、回転角度θから角速度ωを演算する角速度演算部22が設けられている。
 電圧制御値Eでモータ電流Imを制御し、モータ20を駆動するインバータ106には、半導体スイッチング素子(FET)とモータ20とをブリッジ接続したブリッジ回路を使用し、電圧制御値Eに基づいて決定されたPWM信号のDuty指令値により半導体スイッチング素子をON/OFF制御してモータ電流Imを制御する。
 モータ20が3相(U,V,W)ブラシレスDCモータの場合、PWM制御部105及びインバータ106の詳細は例えば図3に示すような構成となっている。即ち、PWM制御部105は、各相キャリア信号を入力すると共に、電圧制御値Eを所定式に従って3相(U,V,W)分のPWM-Duty指令値D1~D6を演算するDuty演算部105Aと、PWM-Duty指令値D1~D6でFET1~FET6の各ゲートを駆動してON/OFFするゲート駆動部105Bとで構成されており、インバータ106は、U相の上段FET1及び下段FET4で成る上下アームと、V相の上段FET2及び下段FET5で成る上下アームと、W相の上段FET3及び下段FET6で成る上下アームとで成る3相ブリッジで構成されており、PWM-Duty指令値D1~D6でON/OFFされることによってモータ20を駆動する。また、インバータ106には、電源リレー14を経てバッテリ13から電力が供給されている。多相モータを駆動するためのスイッチング素子のON/OFFのタイミングを決定するPWM信号は、モータ各相において、鋸歯波状や三角波状のキャリア信号と目標電流値に応じたDuty指令値とを比較することにより生成される。キャリア信号の値がDuty指令値以上か未満かによってPWM信号がハイレベル(H)か、ローレベル(L)かが決定される。
 このような構成において、インバータ106の駆動電流ないしはモータ20のモータ電流を計測する必要があるが、コントロールユニット100のコンパクト化、軽量化、コストダウンの要求項目の1つとして、電流検出回路120の単一化がある。電流検出回路の単一化として1シャント式電流検出回路が知られており、1シャント式の電流検出回路120の構成は例えば図4に示すようになっている(例えば特開2009-131064号公報)。即ち、FETブリッジの底部アームと接地(GND)との間に1つのシャント抵抗R1が接続されており、FETブリッジに電流が流れたときのシャント抵抗R1による降下電圧を演算増幅器(差動増幅回路)121及び抵抗R2~R4で電流値Imaに換算し、更に抵抗R6及びコンデンサC1で成るフィルタを経てA/D変換部122で所定のタイミングにA/D変換し、ディジタル値の電流値Imを出力するようになっている。なお、演算増幅器121の正端子入力には、抵抗R5を経て基準電圧となる2.5Vが接続されている。
 図5はバッテリ13、インバータ106、電流検出回路120及びモータ20の結線図を示すと共に、U相の上段FET1がON(下段FET4はOFF)、V相の上段FET2がOFF(下段FET5はON)、W相の上段FET3がOFF(下段FET6はON)の状態時の電流経路(破線)を示している。また、図6は、U相の上段FET1がON(下段FET4はOFF)、V相の上段FET2がON(下段FET5はOFF)、W相の上段FET3がOFF(下段FET6はON)の状態時の電流経路(破線)を示している。これら図5及び図6の電流経路から分かるように、上段FETがONしている相の合計値が電流検出回路120に検出電流として現れる。即ち、図5ではU相電流を検出することができ、図6ではU相及びV相電流を検出することができる。これは、電流検出回路120がインバータ106の上段アームと電源(バッテリ13)との間に接続されている場合も同様である。なお、図5及び図6では、レゾルバ21の連結及び電源リレー14を省略している。
 以上のことより、1相ON状態のとき、及び2相ON状態のときに電流検出回路120で電流を検出し、3相の電流和が0である特性を利用すると、3相の各相電流の検出が可能となる。図5の場合にはU相の電流Iを検出することになり、図6の場合にはU相の電流IとV相の電流Iの合計値が電流検出器120で検出されるが、3相の場合にはI+I+I=0の関係がるので、W相の電流IがI=-(I+I)として検出されることになる。
 しかしながら、図4に示すような単一の電流検出回路120で構成されたインバータ106では、各FETのON直後に電流検出回路120に電流が流れることにより発生するリギングノイズ等のノイズ成分の影響を除去して、正確な電流を検出する必要がある。また、1つの相と他の相との間で、FETがON/OFFするタイミングの間隔が非常に短くなる場合には、電流検出に必要な電流がFETに流れないことや、デッドタイム(不感帯)の存在、さらには回路の応答遅延等に起因して、正確な電流測定ができなくなる。電流検出回路にA/D変換部を使用する場合、A/D変換動作が正常に行われるためには、同じ大きさの信号が一定期間(例えば2μs以上)連続して入力されなければならない。安定した信号が連続して入力されないと、A/D変換部は正確な電流値を検出することができないためである。
 そのため、1相ONの状態及び2相ONの状態を、電流検出に必要な時間だけ継続する必要がある。しかしながら、各相Duty指令値が近似している場合は、その時間を確保することができない問題がある。
 1つの相と他の相のスイッチング時の時間間隔が小さい場合に、例えば所定相の位相をシフト(配置移動)する補正を施すことで、1つの相と他の相のスイッチング時の時間間隔が大きくなり、単一の電流検出回路を用いて多相モータの各相の正確な電流値を検出することができるようになる。しかし、シフト補正を施した結果、多相モータを駆動するためのスイッチング素子のON/OFFの周波数が可聴周波数内に含まれていると、利用者に騒音(異音)として聞こえてしまい、不快感を与える。
 図7は、3相のUVW相について、2相とも検出不可能である場合のタイミングチャートを示しており、1制御周期は250μsであり、50μs周期の鋸歯波状PWM信号の5周期から成っている。図7では、前回の制御周期T1の第4番目の周期、第5番目の周期及び今回の制御周期T2の第1番目~第5番目の周期での動作を示している。前回の制御周期T1においては、U相PWM信号がDuty52%、V相PWM信号がDuty47%、W相PWM信号がDuty51%の場合を示している。Duty最小相のV相と中間相のW相間、中間相のW相と最大相のU相間の時間間隔がそれぞれ4%及び1%と短いため、位相のシフトをしなければその期間のスイッチングノイズが収まらず、正確に電流値を検出するためのA/D変換時間がとれない。そのため、最小相のV相のPWM信号を左側に(位相を早めるように)位相を8%シフトし、最大相のU相のPWM信号を右側に(位相を遅らせるように)位相を11%シフトしている。これにより、V相とW相、及びU相とW相のスイッチング時間間隔がいずれも12%と大きくなり、各PWM周期においてU相及びV相の正確な電流値を検出することができる。
 今回の制御周期T2の第1番目~第5番目の周期での動作について述べると、今回の制御周期T2においては、U相PWM信号がDuty52%から51%に減少し、V相PWM信号がDuty47%で変化なしであり、W相PWM信号がDuty51%から52%へ増加している。従って、Duty最大相がU相からW相に変化し、Duty中間相がW相からU相に変化した。なお、Duty最小相は今回もV相である。Duty最小相のV相と中間相のU相間、中間相のU相と最大相のW相間の時間間隔がそれぞれ4%及び1%と短いため、位相のシフトをしなければその期間のスイッチングノイズが収まらず、正確に電流値を検出するためのA/D変換時間がとれない。そのため、最小相のV相のPWM信号を左側に(位相を早めるように)位相を8%シフトし、最大相のW相のPWM信号を右側に(位相を遅らせるように)位相を11%シフトし、中間相のU相のPWM信号をシフトしないことになる。
 これにより、今回の制御周期T2の5つの各PWM周期において、U相とV相、及びW相とU相のスイッチング時間間隔がいずれも12%と大きくなり、各PWM周期においてU相及びV相の正確な電流値を検出できる。
 なお、本例は、U相については、シフトありからシフトなしに変化し、V相については、シフトありのままでシフト量が変化せず、W相については、シフトなしからシフトありに変化した場合である。このように、前回と今回の制御周期T1,T2において各相のDutyの大小関係が変化することにより、シフトあり/なしが変化する場合、前回の制御周期T1の終わりの時間、即ち今回の制御周期T2のスタート時間において、シャント波形(電流検出用のシャント抵抗の両端に生じる電圧の波形)に表れているように、瞬間的な電流変動が発生する。この急激な電流変動に伴い、モータから電流リップルに基づく騒音が発生するという問題があった。なお、図7のシャント波形は、前回の制御周期T1においてはU相と-V相の電流を、また、今回の制御周期T2においてはW相と-V相の電流をそれぞれ示している。
 以上のように、各制御周期T1,T2におけるシフト状態が変化することで、急激な電流変動に伴う電流リップルの影響により騒音が発生する場合がある。シフト状態の変化には次の3通りがある。
(1)シフトなし→シフトありに変化
(2)シフトあり→シフトなしに変化
(3)シフトあり(シフト量A)→シフトあり(シフト量B)であって、シフト量が変化する(すなわち、A≠B)
 かかる問題を解決するものとして、特許第4884356号公報(特許文献1)に開示された多相モータの制御装置がある。特許文献1の制御装置では、上アームスイッチング素子と下アームスイッチング素子の対から成り、多相モータを駆動する駆動手段と、前記多相モータの電流値を検出する単一の電流検出手段と、電流検出手段で検出される電流値及びキャリア信号に基づいて、1制御周期内で複数の各相PWM信号を生成するPWM信号生成手段と、PWM信号生成手段が生成する所定相のPWM信号を、1制御周期内での位相の移動量を徐々に変化させて移動させ、駆動手段に出力する位相移動手段とを備え、位相移動手段は、直前の制御周期における所定相の位相の移動量がゼロであり、今回の制御周期における所定相の位相の移動量がゼロでない場合は、今回の制御周期においてシフト量をゼロから徐々に大きくしてゆき、或いは直前の制御周期における所定相の位相の移動量がゼロでなく、今回の制御周期における所定相の位相の移動量がゼロである場合は、今回の制御周期においてシフト量をゼロに向けて徐々に小さくしてゆくようになっている。
特許第4884356号公報
 しかしながら、特許文献1に開示された装置では、シフト補正が1制御周期内に限定されるため、それに伴って1PWM周期毎のシフト量が大きくなってしまう。また、1制御周期内でシフト補正を完了するため(1制御周期内に限定しているため、5PWM周期以上を使ってシフト補正することができないため)、振動や騒音(異音)の発生を小さく抑えることも制限されてしまう問題がある。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、1シャント式電流検出回路を用い、CPUの処理能力の低減化を図った上で、1回当たりのシフト量をより微細にして、振動や騒音(異音)の発生を低減した多相モータの制御装置及びそれを用いた電動パワーステアリング装置を提供することにある。
 本発明は、多相モータの制御装置に関し、本発明の上記目的は、上段アームスイッチング素子と下段アームスイッチング素子の対から成り、多相モータを駆動する駆動部と、前記多相モータの電流値を検出する単一の電流検出回路と、前記電流検出回路で検出される電流値及びキャリア信号に基づいて、2制御周期内で複数の第1の各相PWM信号を生成するPWM信号生成部と、前記PWM信号生成部が生成する所定相の第1のPWM信号を、2制御周期内での位相のシフト量を徐々に変化させてシフトさせ、前記駆動部に出力する位相シフト制御部と、前記電流検出回路で検出される電流値に基づいて、前記多相モータの電流推定値を推定する電流検出オブザーバとを備え、前記PWM信号生成部は前記電流推定値及び前記キャリア信号に基づいて、2制御周期内で複数の第2の各相PWM信号を生成し、前記位相シフト制御部は、直前の制御周期における所定相の位相のシフト量がゼロであり、今回の制御周期における所定相の位相のシフト量がゼロでない場合は、今回の制御周期及び次の制御周期においてシフト量をゼロから徐々に大きくしてゆき、前記次の制御周期に前記第2の各相PWM信号を用いることすることにより、或いは前記位相シフト制御部は、直前の制御周期における所定相の位相のシフト量がゼロでなく、今回の制御周期における所定相の位相のシフト量がゼロである場合は、今回の制御周期及び次の制御周期においてシフト量をゼロに向けて徐々に小さくしてゆき、前記次の制御周期に前記第2の各相PWM信号を用いることにより達成される。
 また、本発明の上記目的は、前記位相シフト制御部は、前記第1のPWM信号の最終的なシフト位置へのシフト量を算出すると共に、シフト回数をn回とし、シフト量/nずつシフトさせるようになっていることにより、或いは前記所定相の位相のシフトを、シフト回数m(<n)を前記今回の制御周期で実施し、残り(n-m)回のシフトを前記次の制御周期で実施するようになっていることにより、或いは前記電流検出オブザーバは、前記前回の制御周期で検出された電流値に基づいて前記今回の制御周期における電流値を推定するようになっていることにより、より効果的に達成される。
 上記各多相モータの制御装置を搭載することにより、上記目的の電動パワーステアリング装置を達成できる。
 本発明によれば、1シャント式電流検出回路を用いて多相モータの電流を検出し、PWM制御周期の2制御周期に亘って所定のDuty相を徐々にシフトしているので、電流変化量を小さく抑えることができ、一層振動や騒音を低減することができる。PWM制御の2周期中の初めの1周期で電流を検出することができないが、本発明では電流検出オブザーバを用いて電流値を推定し、電流推定値でDutyを設定しているので、電流制御を継続して行うことができる。
電動パワーステアリング装置の概要を示す構成図である。 コントロールユニットの一般的な構成例を示すブロック図である。 PWM制御部及びインバータの構成例を示す結線図である。 1シャント式電流検出回路の構成例を示す結線図である。 1シャント式電流検出回路を備えたインバータの電流検出動作例を示す電流経路図である。 1シャント式電流検出回路を備えたインバータの電流検出動作例を示す電流経路図である。 各相PWM信号について、2相とも検出不可能である場合のタイミングチャートである。 本発明の構成例を示すブロック図である。 本発明の動作例を示すフローチャートの一部である。 本発明の動作例を示すフローチャートの一部である。 シフト量の算出例を示すフローチャートである。 本発明によるPWM信号のシフト補正の一例を示すタイミングチャートある。
 1シャント式電流検出回路を用いて各相モータの電流検出を行うには、一般的には各相PWM信号の配置移動(シフト)により意図する相のPWM-ON状態を所定時間保持した状態を形成して電流検出を行うことで、各相のモータ電流を検出する。この場合、各相のDuty指令値の大きさによって1PWM中のDuty配置を決定するが、ある2相の大きさの状態が変化して2相の再配置をする際に、2相同時に再配置すると、急激な電流変化が起こることによりモータ作動音が発生する。本発明では、PWM制御周期の2周期に亘って所定の位相を徐々に変化させ、電流変化量をできるだけ小さく抑えることにより、振動や騒音(異音)を一層低減させるようにしている。
 即ち、本発明は、制御演算により多相モータ(例えば3相(U相、V相、W相)ブラシレスDCモータ)の電流を制御するための各相Duty指令値を演算し、各相Duty指令値に応じたPWM信号を形成し、PWM制御によるインバータからモータに指令電流(電圧)を与えて駆動する多相モータの制御装置及びそれを用いた電動パワーステアリング装置である。インバータの電源入力側又は電源出力側(接地側)に単一の電流検出回路(1シャント式電流検出回路)を配設してPWM制御すると共に、1回当たりのシフト量を細かにするために、各相PWM信号を2制御周期に亘って徐々にシフト補正し、シフト補正中は電流検出することができないため、電流検出オブザーバを用いて電流を推定することによって電流検出を継続し、1相又は2相同時にPWM信号がONとなる電流検出タイミングで安定的に電流検出(A/D変換)して処理することで、振動や騒音を低減している。特に電流検出オブザーバを用いて電流制御を継続しながら、2制御周期に亘ってシフト補正しているので、微細な補正ができ、振動や騒音をより低減することができる。
 以下に、本発明の実施の形態を、図面を参照して説明する。
 図8は本発明の実施形態の一例を示しており、全体の制御を行うCPU130には、電流制御値Eに基づいて各相のPWM信号を生成するPWM信号生成部131がDuty演算部132を経て接続され、1シャント式の電流検出回路15での電流検出が可能か否かを判定する電流検出可否判定部140が接続されている。電流検出可否判定部140は、PWM信号生成部131で生成された各相PWM信号に基づいて、電流検出回路150で電流値を検出することが可能か否か、即ち、電流検出回路150で正確な電流値を検出できるだけのスイッチングの時間間隔があるか否かを判定する。位相シフト量算出部133は、電流検出回路150で正確な電流値を検出できないと判定されたときに、PWM信号の位相のシフト量を算出し、PWM信号位相シフト部134は算出された位相シフト量に基づいて、PWM信号の位相を2制御周期内で7回にわたって徐々に変化させて早め又は遅らせ、位相をシフトされたPWM信号をDuty出力部143を経てゲート駆動部144、インバータ145を介して出力し、モータを駆動する。位相シフト量算出部133及びPWM信号位相シフト部134で位相シフト制御部を構成している。
 電流検出期間決定部152は、位相シフト量算出部133で決定された各相のPWM信号の立ち下がり時間に基づいて、電流検出回路150による電流検出開始タイミング及び電流検出期間を決定する。各相電流入力部151は、電流検出回路150で検出された電流値と、PWM信号生成部131で生成されたPWM信号とに基づいて、直接検出することができない残りの相の電流値を算出して入力する。
 また、CPU130には、例えば特開2002-252991号公報で示されるような電流検出オブザーバ141が接続されており、前回制御周期に電流検出回路150で検出された電流値に基づいて、今回の制御周期における電流値を公知の手法で推定する。三角波又は鋸歯波状のキャリア信号はキャリア信号入力部142を経て入力される。なお、電流検出値等を格納するメモリが別途接続されている。
 図9及び図10は、本発明の実施形態に係る多相モータの制御装置の動作例を示すフローチャートである。
 最初に、1回目の制御周期であるか否かを判定し(ステップS10)、1回目の制御周期である場合には、操舵トルクや車速、Duty演算部132で演算されたDuty指令値等に基づいて、PWM信号生成部131はUVW各相のPWM信号を生成する(ステップS11)。次いで、UVW各相のDuty指令値に基づき、例えば特許文献1に示されているようなパターン判定を行う(ステップS12)が、電流検出可否判定部140は、先ず2相の電流を検出することができるか否かを判定し(ステップS13)、2相の電流を検出することができる場合にはシフト補正の必要がないので、位相シフト量算出部133はシフト量をゼロとする(ステップS14)。また、電流検出可否判定部140は、2相の電流を検出することができない場合には、1相の電流を検出可能か否かを判定し(ステップS15)、1相の電流検出が可能な場合には、位相シフト量算出部133はDuty指令値最大相又はDuty指令値最小相のシフト量を算出する(ステップS16)。1相の電流検出が不可能な場合には、位相シフト量算出部133はDuty指令値最大相及びDuty指令値最小相のシフト量を算出する(ステップS17)。シフト量の算出は位相シフト量算出部133が行うが、2相が検出可能である場合にはシフトを必要とせず、PWM信号各相の位相シフト量はゼロでよい。1相のみが検出可能である場合にはDuty指令値が最大又は最小である相の位相を遅らせるか早めることとなり、そのシフト量を計算し、1相も検出不可能である場合には、Duty指令値が最大である相の位相と、Duty指令値が最小である相の位相を両方シフトすることとなり、それぞれのシフト量を算出する。
 次に、電流検出期間決定部152は、位相シフト量算出部133で決定された各相のPWM信号の立ち下がり時間に基づいて、電流検出回路150による電流検出開始タイミングを決定する(ステップS20)。PWM信号位相シフト部134は算出されたシフト量だけ各相のPWM信号位相のシフトを実施する(ステップS21)。なお、2制御周期内の7つの各周期におけるシフト量の算出についての説明は図12で詳述する。ただし、PWM位相シフト無しの場合(ステップS14)には、位相シフト量はゼロである。
 その後、電流検出開始タイミングになったときに(ステップS22)、電流検出回路150がA/D変換を開始する(ステップS23)。このA/D変換期間中は各相のスイッチングは発生せず、A/D変換に必要な時間が経過した時点で所定相のPWM信号が立ち下がる。このようにして電流検出回路150が2相の電流を検出した後、各相電流入力部131は、3相モータに流れ込む3電流の合計はゼロであるという原理に基づいて、検出していない残りの1相の電流値を算出する(ステップS24)。
 次に2回目の制御周期か否かを判定し(ステップS30)、1回目の制御周期の場合には上記ステップS21にリターンしてシフトの実施を繰り返す。また、2回目の制御周期であれば、電流検出オブザーバ141は前回の電流検出値を読み取り(ステップS31)、今回の制御周期の電流値を推定する(ステップS32)。電流検出オブザーバ141で推定された電流推定値に基づいて、PWM信号生成部131は今回の制御周期の各相PWM信号を生成し(ステップS33)、更に1回目の残りのシフトを実施し(ステップS34)、シフト終了、つまり最終的な位置となるまで繰り返す(ステップS35)。シフト終了となったとき、3回目の制御周期になればリターンし、3回目になっていない場合には上記ステップS30にリターンして、上記動作を繰り返す(ステップS36)。
 図11は2制御周期内の7つの各周期におけるシフト量の算出についてのフローチャートであり、本制御において、制御周期は250μsであり、50μs周期の鋸歯波状キャリア信号に基づいたPWM信号の7周期から成っている。最初に、各相について、今回の制御周期の位相シフト量と前回の制御周期の位相シフト量との差Dを算出する(ステップS40)。次に、各相について、今回の制御周期の第n番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D・n/7とする(ステップS41)。即ち、第1番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D/7、第2番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D・2/7、第3番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D・3/7、第4番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D・4/7、第5番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D・5/7、第6番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+D・6/7、そして、最終の第7番目の周期における位相シフト量を、(前回の第7番目の周期における位相シフト量)+Dとする。
 特に、直前の制御周期における所定相の位相の移動量と今回の制御周期における所定相の位相の移動量が同じ場合は、D=0となり、今回の制御周期の全ての周期における位相シフト量は、前回の第7番目の周期における位相シフト量と同じとなる。つまり、直前の制御周期と今回の制御周期におけるシフトの状態に変化はない。
 また、直前の制御周期における所定相の位相の移動量がゼロであり、今回の制御周期における所定相の位相の移動量がゼロでない場合は、今回の制御周期の第n番目の周期における位相シフト量は、D・n/7となる。即ち、今回の制御周期においては、シフト量をゼロから徐々に大きくしていくことになる。更に、直前の制御周期における所定相の位相の移動量がゼロでなく、今回の制御周期における所定相の位相の移動量がゼロである場合は、D=-(前回の第7番目の周期における位相シフト量)であるので、今回の制御周期の第n番目の周期における位相シフト量は、下記数1となる。
(数1)
(前回の第7番目の周期における位相シフト量)+D・n/7
=(前回の第7番目の周期における位相シフト量)・(1-n/7)
 
 つまり、今回の制御周期においてはシフト量を徐々に小さくしていき、最終の周期においてシフト量がゼロになる。つまり、位相が最終的な位置に移動する。
 図12は、Duty指令値の最大相を中間相に、Duty指令値の中間相を最大相にシフトし、Duty指令値の最小相はシフトなしの場合の、シフトや制御の各相タイミング例を示している。
 0回目の制御周期のタイミングt1で電流検出回路150により各相の電流検出(A/D変換)を行い、その電流検出値を用いて電流制御演算(電流指令値の計算)とそれに伴うDuty演算(パルス幅とシフトの有無)を行う。タイミングt2及びt3が電流制御演算及びDuty演算に相当しており、タイミングt4はシフトが必要な場合を示しており、本願発明ではシフトは7回で行うようになっていると共に、6回目及び7回目が次周期(2回目)にかかるようになっている。電流検出値を用いて演算されたDutyを1回目の制御周期の始めのタイミングt5でセットし、PWM1シフト1、PWM2シフト2、PWM3シフト3、PWM4シフト4、PWM5シフト5、PWM6シフト6、PWM7シフト7のように徐々にシフト補正する。この結果、6回目(PWM6シフト6)及び7回目(PWM7シフト7)は次周期(2回目)にかかる。
 なお、7回目のシフトでは量子化誤差分を考慮したシフトを実施するようになっている。
 1回目の制御周期では、上述のようにシフト補正を行っているため、電流検出回路150で電流を検出することができない。そのため、タイミングt1で検出した電流検出値を用いて、電流検出オブザーバ141によりタイミングt6で電流推定を行う。そして、電流検出オブザーバ141により推定された電流推定値を用いて電流制御演算(電流指令値の計算)とそれに伴うDuty演算(パルス幅とシフトの有無)を行う。タイミングt7及びt8が、電流推定値で電流制御演算及びDuty演算を行うタイミングを示しており、タイミングt9はシフトが必要な場合を示しており、シフトは7回目まで実行され、次周期(3回目)にかかるようになっている。電流推定値を用いて、電流検出オブザーバ141により演算されたDutyを2回目の制御周期の始めのタイミングt10でセットし、上述と同様に7回で位相のシフト量を決める。
 2回目の制御周期のPWM7シフト7のタイミングではシフト(7回目)が終了しており、タイミングt1’で電流検出回路150による電流検出を行う。以下、上述と同様な動作を繰り返す。
 本発明は、シフト補正する範囲を制御周期の1周期内に限定するのではなく、7回のシフト補正を行って次周期の2制御周期にかかるようにしている。即ち、単一の電流検出回路(1シャント式電流検出回路)150で検出した電流を用いた電流制御及びDutyで計7回のシフト補正を行うが、シフト補正は1制御周期内に収まってはおらず、6回目及び7回目のシフトが次の制御周期にかかっている。シフト補正を行っている期間の制御周期では電流検出回路150による電流検出ができないため、前回に電流検出回路150で検出された電流検出値を用いて電流検出オブザーバ141で電流を推定し、推定された電流推定値で電流制御及びDutyをセットする。電流推定値で電流制御及びDutyをセットした結果は、次周期のPWM8、PWM9、PWM10に反映させると共に、PWM6シフト6及びPWM7シフト7に対して補正を行うこともある。
 なお、上述では3相ブラシレスモータについて説明したが、他の相のモータについても同様な制御が可能である。
1       操向ハンドル
10      トルクセンサ
12      車速センサ
13      バッテリ
20      モータ
100     コントロールユニット
101     電流指令値演算部
102     最大出力制限部
104     電流制御部
105     PWM制御部
105A    Duty演算部
105B    ゲート駆動部
106     インバータ
130     CPU
131     PWM信号生成部
132     Duty演算部
133     位相シフト量算出部
134     PWM信号位相シフト部
140     電流検出可否判定部
141     電流検出オブザーバ
142     キャリア信号入力部
143     Duty出力部
144     ゲート駆動部
145     インバータ
150     1シャント式電流検出回路
151     各相電流入力部
152     電流検出期間決定部

Claims (6)

  1. 上段アームスイッチング素子と下段アームスイッチング素子の対から成り、多相モータを駆動する駆動部と、
    前記多相モータの電流値を検出する単一の電流検出回路と、
    前記電流検出回路で検出される電流値及びキャリア信号に基づいて、2制御周期内で複数の第1の各相PWM信号を生成するPWM信号生成部と、
    前記PWM信号生成部が生成する所定相の第1のPWM信号を、2制御周期内での位相のシフト量を徐々に変化させてシフトさせ、前記駆動部に出力する位相シフト制御部と、
    前記電流検出回路で検出される電流値に基づいて、前記多相モータの電流推定値を推定する電流検出オブザーバと、
    を備え、
    前記PWM信号生成部は前記電流推定値及び前記キャリア信号に基づいて、2制御周期内で複数の第2の各相PWM信号を生成し、
    前記位相シフト制御部は、
    直前の制御周期における所定相の位相のシフト量がゼロであり、今回の制御周期における所定相の位相のシフト量がゼロでない場合は、今回の制御周期及び次の制御周期においてシフト量をゼロから徐々に大きくしてゆき、前記次の制御周期に前記第2の各相PWM信号を用いることを特徴とする多相モータの制御装置。
  2. 上段アームスイッチング素子と下段アームスイッチング素子の対から成り、多相モータを駆動する駆動部と、
    前記多相モータの電流値を検出する単一の電流検出回路と、
    前記電流検出回路で検出される電流値及びキャリア信号に基づいて、2制御周期内で複数の第1の各相PWM信号を生成するPWM信号生成部と、
    前記PWM信号生成部が生成する所定相の第1のPWM信号を、2制御周期内での位相のシフト量を徐々に変化させてシフトさせ、前記駆動部に出力する位相シフト制御部と、
    前記電流検出回路で検出される電流値に基づいて、前記多相モータの電流推定値を推定する電流検出オブザーバと、
    を備え、
    前記PWM信号生成部は前記電流推定値及び前記キャリア信号に基づいて、2制御周期内で複数の第2の各相PWM信号を生成し、
    前記位相シフト制御部は、
    直前の制御周期における所定相の位相のシフト量がゼロでなく、今回の制御周期における所定相の位相のシフト量がゼロである場合は、今回の制御周期及び次の制御周期においてシフト量をゼロに向けて徐々に小さくしてゆき、前記次の制御周期に前記第2の各相PWM信号を用いることを特徴とする多相モータの制御装置。
  3. 前記位相シフト制御部は、前記第1のPWM信号の最終的なシフト位置へのシフト量を算出すると共に、シフト回数をn回とし、シフト量/nずつシフトさせるようになっている請求項1又は2に記載の多相モータの制御装置。
  4. 前記所定相の位相のシフトを、シフト回数m(<n)を前記今回の制御周期で実施し、残り(n-m)回のシフトを前記次の制御周期で実施するようになっている請求項3に記載の多相モータの制御装置。
  5. 前記電流検出オブザーバは、前記前回の制御周期で検出された電流値に基づいて前記今回の制御周期における電流値を推定するようになっている請求項1乃至4のいずれかに記載の多相モータの制御装置。
  6. 前記請求項1~5に記載の多相モータの制御装置を搭載したことを特徴とする電動パワーステアリング装置。
PCT/JP2013/077701 2013-04-17 2013-10-11 多相モータの制御装置及びそれを用いた電動パワーステアリング装置 WO2014171027A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/240,656 US9362860B2 (en) 2013-04-17 2013-10-11 Multi-phase motor control apparatus and electric power steering apparatus using the same
EP13882504.7A EP2945277B1 (en) 2013-04-17 2013-10-11 Control device for multiphase motor and electrical power steering device using same
BR112015026318A BR112015026318A2 (pt) 2013-04-17 2013-10-11 aparelho de controle motor multi-fase e aparelho elétrico de direção utilizando o mesmo
CN201380064620.5A CN104871425B (zh) 2013-04-17 2013-10-11 多相电动机控制装置及使用该多相电动机控制装置的电动助力转向装置
JP2014501113A JP5655975B1 (ja) 2013-04-17 2013-10-11 多相モータの制御装置及びそれを用いた電動パワーステアリング装置
US15/145,858 US9667179B2 (en) 2013-04-17 2016-05-04 Multi-phase motor control apparatus and electric power steering apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086906 2013-04-17
JP2013086906 2013-04-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/240,656 A-371-Of-International US9362860B2 (en) 2013-04-17 2013-10-11 Multi-phase motor control apparatus and electric power steering apparatus using the same
US15/145,858 Division US9667179B2 (en) 2013-04-17 2016-05-04 Multi-phase motor control apparatus and electric power steering apparatus using the same

Publications (1)

Publication Number Publication Date
WO2014171027A1 true WO2014171027A1 (ja) 2014-10-23

Family

ID=51730994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077701 WO2014171027A1 (ja) 2013-04-17 2013-10-11 多相モータの制御装置及びそれを用いた電動パワーステアリング装置

Country Status (6)

Country Link
US (2) US9362860B2 (ja)
EP (1) EP2945277B1 (ja)
JP (1) JP5655975B1 (ja)
CN (1) CN104871425B (ja)
BR (1) BR112015026318A2 (ja)
WO (1) WO2014171027A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070869A1 (ja) * 2019-10-11 2021-04-15 日立Astemo株式会社 3相ブラシレスモータの制御装置及び制御方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125269A1 (ja) * 2014-02-21 2015-08-27 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
JP5858207B1 (ja) * 2014-05-29 2016-02-10 日本精工株式会社 電動パワーステアリング装置
EP3282576B1 (en) * 2015-04-10 2020-02-12 NSK Ltd. Motor control device and electric power steering device equipped with same
CN107852123B (zh) 2015-08-19 2019-07-19 日本精工株式会社 电子控制装置以及搭载了该电子控制装置的电动助力转向装置
CN105429550B (zh) * 2015-12-31 2018-02-09 北京经纬恒润科技有限公司 一种电流采样偏差的修正方法及系统
JP6583000B2 (ja) * 2016-01-07 2019-10-02 株式会社デンソー 回転電機の制御装置
JP6529452B2 (ja) * 2016-03-11 2019-06-12 日立オートモティブシステムズ株式会社 モータ駆動装置及びモータ駆動装置における相電流検出方法
DE102016215174A1 (de) * 2016-08-15 2018-02-15 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Verfahren zum Betrieben einer elektrischen Maschine und elektrische Maschine
JP6709141B2 (ja) * 2016-10-04 2020-06-10 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置及び駆動方法
US10097115B2 (en) * 2016-11-07 2018-10-09 Infineon Technologies Ag Auto-synchronization of brushless DC motors
TWI643442B (zh) * 2017-09-25 2018-12-01 祥誠科技股份有限公司 多相直流無刷馬達驅動電路
DE102018205537B4 (de) * 2018-04-12 2022-04-21 Audi Ag Dämpfen eines Schwingens eines Überlagerungslenksystems
DE102019219034A1 (de) * 2019-12-06 2021-06-10 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Maschine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216362A (ja) * 1989-02-15 1990-08-29 Matsushita Electric Ind Co Ltd 電動パワーステアリングシステムのpwm回路
JP2002252991A (ja) 2001-02-26 2002-09-06 Matsushita Electric Ind Co Ltd モータ制御装置
JP2009018808A (ja) * 2008-09-12 2009-01-29 Nsk Ltd 電動パワーステアリング装置
JP2009131064A (ja) 2007-11-26 2009-06-11 Omron Corp 多相電動機の制御装置
JP4884356B2 (ja) 2007-11-26 2012-02-29 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
WO2012093503A1 (ja) * 2011-01-05 2012-07-12 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置
JP2012218525A (ja) * 2011-04-06 2012-11-12 Jtekt Corp 電動パワーステアリング装置
JP2012228155A (ja) * 2011-04-22 2012-11-15 Ricoh Co Ltd モータ駆動装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825722A1 (de) * 1998-06-09 1999-12-16 Philips Patentverwaltung Schaltungsanordnung zum Speisen eines Elektromotors
JP3989400B2 (ja) * 2003-05-07 2007-10-10 本田技研工業株式会社 電動パワーステアリング装置
EP1720242A1 (en) * 2003-11-26 2006-11-08 Nsk Ltd., Device for controlling motor-driven power steering device
JP5196211B2 (ja) * 2005-09-22 2013-05-15 株式会社ジェイテクト 車両用操舵装置
US8080957B2 (en) * 2006-04-11 2011-12-20 Nsk, Ltd. Motor control device and motor-driven power steering system using the same
JP5252475B2 (ja) * 2007-11-06 2013-07-31 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
JP5396948B2 (ja) * 2009-03-17 2014-01-22 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5402414B2 (ja) * 2009-09-02 2014-01-29 日本精工株式会社 電動パワーステアリング装置
JP5365701B2 (ja) * 2009-12-25 2013-12-11 トヨタ自動車株式会社 電動パワーステアリング装置
JP5343955B2 (ja) * 2009-12-25 2013-11-13 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP4941686B2 (ja) * 2010-03-10 2012-05-30 株式会社デンソー 電力変換装置
JP5045799B2 (ja) * 2010-08-27 2012-10-10 株式会社デンソー 電力変換装置、駆動装置、及び、これを用いた電動パワーステアリング装置
JP5641335B2 (ja) * 2011-01-31 2014-12-17 株式会社デンソー 電力変換装置
JP5724776B2 (ja) * 2011-09-12 2015-05-27 日本精工株式会社 モータ制御装置及び電動パワーステアリング装置
JP5660085B2 (ja) * 2012-08-06 2015-01-28 株式会社デンソー 回転機の制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216362A (ja) * 1989-02-15 1990-08-29 Matsushita Electric Ind Co Ltd 電動パワーステアリングシステムのpwm回路
JP2002252991A (ja) 2001-02-26 2002-09-06 Matsushita Electric Ind Co Ltd モータ制御装置
JP2009131064A (ja) 2007-11-26 2009-06-11 Omron Corp 多相電動機の制御装置
JP4884356B2 (ja) 2007-11-26 2012-02-29 オムロンオートモーティブエレクトロニクス株式会社 多相電動機の制御装置
JP2009018808A (ja) * 2008-09-12 2009-01-29 Nsk Ltd 電動パワーステアリング装置
WO2012093503A1 (ja) * 2011-01-05 2012-07-12 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置
JP2012143101A (ja) * 2011-01-05 2012-07-26 Nsk Ltd モータ制御装置及びそれを用いた電動パワーステアリング装置
JP2012218525A (ja) * 2011-04-06 2012-11-12 Jtekt Corp 電動パワーステアリング装置
JP2012228155A (ja) * 2011-04-22 2012-11-15 Ricoh Co Ltd モータ駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070869A1 (ja) * 2019-10-11 2021-04-15 日立Astemo株式会社 3相ブラシレスモータの制御装置及び制御方法
JPWO2021070869A1 (ja) * 2019-10-11 2021-04-15
JP7277597B2 (ja) 2019-10-11 2023-05-19 日立Astemo株式会社 3相ブラシレスモータの制御装置及び制御方法
US11764720B2 (en) 2019-10-11 2023-09-19 Hitachi Astemo, Ltd. Control device and control method for three-phase brushless motor

Also Published As

Publication number Publication date
EP2945277B1 (en) 2019-04-17
EP2945277A4 (en) 2017-01-18
EP2945277A1 (en) 2015-11-18
US9667179B2 (en) 2017-05-30
CN104871425A (zh) 2015-08-26
BR112015026318A2 (pt) 2019-08-27
CN104871425B (zh) 2017-07-11
US20160248351A1 (en) 2016-08-25
JPWO2014171027A1 (ja) 2017-02-16
JP5655975B1 (ja) 2015-01-21
US20160072421A1 (en) 2016-03-10
US9362860B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
JP5655975B1 (ja) 多相モータの制御装置及びそれを用いた電動パワーステアリング装置
CN109463039B (zh) 电动助力转向装置
JP5196211B2 (ja) 車両用操舵装置
JP5724776B2 (ja) モータ制御装置及び電動パワーステアリング装置
US9184690B2 (en) Electrically driven power steering system and control apparatus for the same
JP5402948B2 (ja) モータ制御装置及びそれを用いた電動パワーステアリング装置
US20130066524A1 (en) Control device for electric power steering apparatus
JP5908424B2 (ja) モータ制御装置およびパワーステアリング装置
CN109496393B (zh) 电动助力转向装置
WO2016098244A1 (ja) モータ制御装置及びそれを用いた電動パワーステアリング装置
JP2013017363A (ja) モータ制御装置
JP2015050908A (ja) モータ制御装置
JP5858207B1 (ja) 電動パワーステアリング装置
CN108698638B (zh) 动力转向装置的控制装置、以及使用它的动力转向装置
JP6136803B2 (ja) モータ制御装置及びそれを用いた電動パワーステアリング装置
JP5929521B2 (ja) モータ制御装置及びそれを用いた電動パワーステアリング装置
JP2011114883A (ja) モータ制御装置及びそれを用いた電動パワーステアリング装置
JP2009296764A (ja) ブラシレスモータ制御装置
JP2006158119A (ja) パワーステアリング制御装置、方法、およびプログラム
JP4556464B2 (ja) 電動パワーステアリング装置の制御装置
JP2019092343A (ja) モータ制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014501113

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14240656

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013882504

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015026318

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015026318

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151016