WO2017159214A1 - モータ制御装置及びモータユニット - Google Patents

モータ制御装置及びモータユニット Download PDF

Info

Publication number
WO2017159214A1
WO2017159214A1 PCT/JP2017/005953 JP2017005953W WO2017159214A1 WO 2017159214 A1 WO2017159214 A1 WO 2017159214A1 JP 2017005953 W JP2017005953 W JP 2017005953W WO 2017159214 A1 WO2017159214 A1 WO 2017159214A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
brushless motor
wiper
mode
angle
Prior art date
Application number
PCT/JP2017/005953
Other languages
English (en)
French (fr)
Inventor
直希 小島
智彦 安中
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to US16/079,329 priority Critical patent/US20190047517A1/en
Priority to JP2018505371A priority patent/JPWO2017159214A1/ja
Priority to EP17766221.0A priority patent/EP3431351A4/en
Priority to CN201780016795.7A priority patent/CN108778856A/zh
Publication of WO2017159214A1 publication Critical patent/WO2017159214A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0896Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to a vehicle driving condition, e.g. speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed

Definitions

  • the present invention relates to a motor control device and a motor unit.
  • This application claims priority based on Japanese Patent Application No. 2016-052153 for which it applied on March 16, 2016, and uses the content here.
  • a wiper motor is used as a drive source for swinging a wiper arm in a wiper device mounted on a vehicle.
  • the wiper device drives the wiper motor to swing the wiper arm within a predetermined range on the windshield, thereby wiping off dust, raindrops, and the like attached to the windshield.
  • the wiper device has a low-speed operation mode in which the wiper blade is operated at a low speed by driving the wiper motor at a low speed, and a high-speed operation mode in which the wiper blade is operated at a high speed by driving the wiper motor at a high speed.
  • FIG. 13A is a schematic diagram illustrating an example of motor characteristics required for the wiper motor in the high speed operation mode and the low speed operation mode.
  • the area surrounded by a dotted line shows the motor characteristics required in the high speed operation mode at the time of high speed driving where the load of the wiper motor is the highest, and the two areas surrounded by broken lines are respectively low speed driving Shows the types of motor characteristics required in the low-speed operation mode.
  • the motor characteristics required in the high speed operation mode require a higher rotation speed of the wiper motor, and the motor characteristics required in the low speed operation mode are compared with those in the high speed operation mode. Therefore, a larger torque is required. Accordingly, the load fluctuation of the wiper motor due to the vehicle speed is large between the low-speed operation mode during low-speed traveling and the high-speed operation mode during high-speed traveling, so that a large difference occurs in required motor characteristics.
  • the wiper motor characteristic is set as indicated by H1 in FIG. 13A so as to obtain the motor characteristic required in the high-speed operation mode
  • the wiper device is required in the low speed operation mode in the low speed operation mode.
  • PWM pulse width modulation
  • the wiper motor is driven at a high speed by controlling the advance angle of the wiper motor in the high-speed operation mode while performing the sine wave drive without using the duty ratio or significantly lowering the wiper motor.
  • a highly efficient control method of rotating has been proposed (for example, Patent Document 1).
  • the wiper motor is advanced with a sine wave control, the torque decreases as the rotational speed increases. Therefore, in the high-speed operation mode during high-speed running with a high load, the rotational speed does not increase and the required motor characteristics may not be satisfied. Therefore, it is necessary to set the characteristics of the wiper motor so as to obtain the motor characteristics required in the high-speed operation mode. In that case, the wiper motor is increased by increasing the size of the magnet used for the wiper motor or increasing the number of windings of the armature coil. Increases in size. Therefore, the wiper motor cannot be reduced in size.
  • An aspect of the present invention provides a motor control device and a motor unit that can downsize a wiper motor.
  • One aspect of the present invention is a motor control device that controls a brushless motor that swings a wiper arm, in a position detection unit that detects the rotational position of a rotor, and in a low output mode in which the output of the brushless motor is low.
  • the brushless motor is driven in a sine wave, the energization angle is set to an angle larger than 120 degrees in the high output mode in which the output is higher than that in the low output mode, and the brushless motor is advanced by a predetermined electrical angle based on the rotational position of the rotor.
  • a control unit that energizes the brushless motor at an angled timing.
  • one aspect of the present invention is the motor control device, wherein the energization angle is an electrical angle and is between 120 degrees and 180 degrees.
  • one aspect of the present invention is the motor control device, wherein the control unit drives the brushless motor in a rectangular wave in the high output mode.
  • the low output mode is a mode in which the wiper arm is swung at a preset speed
  • the high output mode is the mode in which the wiper arm is It is a mode for swinging at a higher speed than the low output mode, an operation mode when the vehicle speed is higher than a predetermined value, or an operation mode when the load applied to the brushless motor is higher than a predetermined value.
  • One embodiment of the present invention is a motor unit including a brushless motor that swings a wiper arm and the above-described motor control device.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration illustrating a windshield 11 of a vehicle 10 on which a wiper device 12 including a motor control device according to the present embodiment is mounted.
  • FIG. 2 is a diagram showing an example of the appearance of the motor unit 19 in the present embodiment.
  • FIG. 3 is a bottom view of the motor unit 19 in the present embodiment with the under cover removed.
  • FIG. 4 is a diagram illustrating an example of a schematic configuration of a control system of the wiper device 12 in the present embodiment.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the control unit 54 in the present embodiment.
  • FIG. 6 is a timing chart showing energization timings of the U, V, and W phases by the first drive control unit 641 in the present embodiment.
  • FIG. 7 is a timing chart showing energization timings of the U, V, and W phases by the second drive control unit 642 in the present embodiment.
  • FIG. 8 is a diagram showing motor characteristics of the brushless motor 30 in the sine wave drive and the advance / wide-angle energization drive in the present embodiment.
  • FIG. 9 is a diagram illustrating the flow of processing of the control unit 54 in the present embodiment.
  • FIG. 10 is a diagram illustrating a modification of the processing flow of the control unit 54 in the present embodiment.
  • FIG. 11 is a diagram illustrating the motor characteristics of the brushless motor 30 in the present embodiment.
  • FIG. 12 is a diagram illustrating an example of a waveform in which a harmonic is superimposed on a sine wave of the motor control device according to the present embodiment.
  • FIG. 13 is a schematic diagram showing an example of motor characteristics required for a wiper motor in the conventional high-speed operation mode and low-speed operation mode.
  • the motor control device of this embodiment controls a brushless motor that swings the wiper arm.
  • the motor control device drives the brushless motor in a sine wave in the low output mode where the output of the brushless motor is low, and the conduction angle is higher than 120 degrees in the high output mode where the output is higher than in the low output mode.
  • the brushless motor is energized at a timing that is a large angle and advanced by a predetermined electrical angle with respect to the rotational position of the rotor.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration illustrating a windshield 11 of a vehicle 10 on which a wiper device 12 including a motor control device according to the present embodiment is mounted.
  • the vehicle 10 includes a windshield 11 and a wiper device 12.
  • the wiper device 12 wipes the windshield 11.
  • the wiper device 12 includes wiper arms 14 and 16, wiper blades 17 and 18, a motor unit 19, and a power transmission mechanism 20.
  • the wiper arm 14 swings about the pivot shaft 13.
  • the wiper arm 16 swings about the pivot shaft 15.
  • the wiper blade 17 is attached to the free end of the wiper arm 14.
  • the wiper blade 18 is attached to the free end of the wiper arm 16.
  • the motor unit 19 drives the wiper arms 14 and 16.
  • the power of the motor unit 19 is individually transmitted to the wiper arms 14 and 16 via a power transmission mechanism 20 configured by levers, links, and the like.
  • FIG. 2 is a diagram showing an example of the appearance of the motor unit 19 in the present embodiment.
  • FIG. 3 is a bottom view of the motor unit 19 shown in FIG. 2 with the under cover 28 removed.
  • the external appearance of the motor unit 19 is mainly constituted by a case 23 and a frame 24.
  • the case 23 has a bottomed cylindrical shape.
  • the frame 24 has a hollow shape.
  • the frame 24 and the case 23 are fixed by a fastening member (not shown).
  • the motor unit 19 includes a brushless motor 30, a rotor shaft 22a, an opening 24a, a worm wheel 25, an output shaft 26, a speed reduction mechanism 27, an under cover 28, a control board 29, a sensor magnet 38, and a motor control.
  • a device 33 is provided.
  • the brushless motor 30 swings the wiper arms 14 and 16 based on a control instruction from the motor control device 33.
  • the brushless motor 30 is a three-phase, four-pole brushless motor.
  • the brushless motor 30 includes a stator 21 and a rotor (rotor) 22.
  • the stator 21 is fixed to the inner periphery of the case 23.
  • the stator 21 includes three-phase armature coils 21u, 21v, and 21w.
  • the armature coils 21u, 21v, and 21w are wound around the stator 21.
  • three-phase armature coils 21u, 21v, and 21w are connected by a Y connection that is connected at a neutral point at one end.
  • the brushless motor 30 is a motor in which each armature coil 21u, 21v, 21w functions as both a positive electrode and a negative electrode.
  • the rotor 22 is provided inside the stator 21.
  • the rotor 22 includes a rotor shaft 22a and a four-pole permanent magnet 22b attached to the rotor shaft 22a.
  • a plurality of bearings (not shown) are provided in the case 23, and the rotor shaft 22a is rotatably supported by the plurality of bearings.
  • the rotor shaft 22 a has a half in the length direction arranged inside the case 23 and the other half in the frame 24.
  • a speed reduction mechanism 27 is formed on the outer periphery of a portion of the rotor shaft 22a disposed in the frame 24.
  • the speed reduction mechanism 27 includes a worm 22c and a gear 25a.
  • the worm 22 c is provided on the outer periphery of the rotor shaft 22 a disposed in the frame 24.
  • the gear 25 a is formed on the outer periphery of the worm wheel 25 provided in the frame 24.
  • the gear 25a is meshed with the worm 22c.
  • the worm wheel 25 is configured to rotate integrally with the output shaft 26.
  • the speed reduction mechanism 27 makes the rotational speed (output rotational speed) of the output shaft 26 lower than the rotational speed (input rotational speed) of the rotor 22.
  • a shaft hole (not shown) is provided in the upper part of the frame 24. The end of the output shaft 26 opposite to the end to which the worm wheel 25 is fixed is exposed to the outside through the shaft hole of the frame 24.
  • a power transmission mechanism 20 is connected to a portion of the output shaft 26 exposed to the outside of the frame 24 as shown in FIG.
  • the opening 24a is provided in a portion of the frame 24 opposite to the shaft hole.
  • the opening 24 a is formed for attaching the worm wheel 25 and the like inside the frame 24.
  • the under cover 28 is provided so as to close the opening 24a.
  • the under cover 28 has a tray shape.
  • the control board 29 is provided in a space surrounded by the under cover 28 and the frame 24. As shown in FIG. 2, for example, the control board 29 is attached to the under cover 28.
  • the control board 29 is provided with a motor control device 33 for controlling the brushless motor 30.
  • the sensor magnet 38 is provided at a location arranged in the frame 24 of the rotor shaft 22a.
  • the sensor magnet 38 rotates integrally with the rotor shaft 22a.
  • the sensor magnet 38 is magnetized so that N poles and S poles are alternately arranged along the circumferential direction of the rotor shaft 22a.
  • FIG. 4 is a diagram illustrating an example of a schematic configuration of a control system of the wiper device 12 in the present embodiment.
  • the wiper device 12 includes a wiper switch 37, a rotation angle detection unit 39, a vehicle speed sensor 40, and a motor control device 33.
  • the wiper switch 37 is provided in the vehicle interior of the vehicle 10.
  • the wiper switch 37 is a switch for swinging the wiper arms 14 and 16.
  • the wiper switch 37 includes a low speed operation mode in which the wiper arms 14 and 16 are operated at a low speed (for example, a preset speed), a high speed operation mode in which the wiper arms 14 and 16 are operated at a higher speed than the low speed operation mode, and the wiper arms 14 and 16.
  • a low speed operation mode in which the wiper arms 14 and 16 are operated at a low speed (for example, a preset speed)
  • a high speed operation mode in which the wiper arms 14 and 16 are operated at a higher speed than the low speed operation mode
  • Each mode can be switched to a stop mode for stopping the swinging operation.
  • the wiper switch 37 is operated by the driver, and outputs an operation signal indicating the operation to the motor control device 33.
  • the driver can switch the wiping speed of the wiper arms 14 and 16 by operating the wiper switch 37 based on conditions such as rainfall and snowfall.
  • the driver can select a low-speed operation mode in which the wiper arms 14 and 16 are operated at a predetermined low speed by operating the wiper switch 37 when the amount of rainfall and snowfall is small.
  • the wiper switch 37 outputs a low speed operation mode signal indicating the low speed operation mode to the motor control device 33 as an operation signal based on an operation by the driver to select the low speed operation mode.
  • the driver can operate the wiper switch 37 to select the high-speed operation mode in which the wiper arms 14 and 16 are operated at a speed higher than the above-described low speed.
  • the wiper switch 37 outputs a high-speed operation mode signal indicating the high-speed operation mode to the motor control device 33 as an operation signal based on an operation by the driver to select the high-speed operation mode.
  • the wiper switch 37 uses the stop mode signal indicating the stop mode as an operation signal as the operation signal. Output to.
  • the vehicle speed sensor 40 is provided in the vehicle 10.
  • the vehicle speed sensor 40 measures the traveling speed (hereinafter referred to as “vehicle speed”) V of the vehicle 10.
  • vehicle speed the traveling speed of the vehicle 10.
  • the vehicle speed sensor 40 outputs the measured vehicle speed V of the vehicle 10 to the motor control device 33.
  • the rotation angle detector 39 detects a signal corresponding to the rotation of the rotor 22.
  • the rotation angle detection unit 39 includes three Hall ICs, and is provided at positions that are 120 degrees magnetically with respect to the rotor shaft 22a. When the rotor 22 rotates, these three Hall ICs output to the motor control device 33 pulse signals that are 120 degrees out of phase with each other. That is, the rotation angle detection unit 39 generates a pulse signal based on a change in the magnetic pole of the sensor magnet 38 as the rotor 22 rotates, and outputs the pulse signal to the motor control device 33.
  • the motor control device 33 includes an inverter 52 and a control unit 54.
  • the inverter 52 includes six switching elements 52a to 52f connected in a three-phase bridge, and diodes 53a to 53f connected in antiparallel between the collectors and emitters of the switching elements 52a to 52f.
  • Each of the switching elements 52a to 52f is, for example, an FET (Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
  • Each gate of the six switching elements 52 a to 52 f connected in a bridge connection is connected to the control unit 54.
  • the collectors or emitters of the switching elements 52a to 52f are connected to Y-connected armature coils 21u, 21v, and 21w. Accordingly, the six switching elements 52a to 52f perform a switching operation based on the drive signal (gate signal) output from the control unit 54, and the power supply voltage of the DC power supply 51 applied to the inverter 52 is changed to the three-phase.
  • the AC voltage U phase, V phase, W phase
  • U phase, V phase, W phase is supplied to the armature coils 21u, 21v, 21w.
  • the control unit 54 determines the rotation position of the rotor 22 based on the pulse signal supplied from the rotation angle detection unit 39. Moreover, the control part 54 detects the rotation speed of the rotor 22 based on a pulse signal. Then, the control unit 54 drives the brushless motor 30 in a sine wave in the low output mode where the output of the brushless motor 30 is low. That is, the control unit 54 outputs the first drive signal to the inverter 52, thereby supplying a sine wave current to the armature coils 21u, 21v, and 21w to rotationally drive the rotor 22. Thereby, it is possible to cancel the torque ripple in the low output mode. Therefore, the operation sound of the brushless motor 30 is reduced as compared with the rectangular wave drive.
  • control unit 54 energizes the brushless motor 30 at a timing when the energization angle is set to an angle larger than 120 degrees and advanced by a predetermined electrical angle in the high output mode where the output is higher than in the low output mode.
  • drive control for energizing the brushless motor 30 at a timing when the energization angle is greater than 120 degrees and advanced by a predetermined electrical angle may be referred to as advance / wide-angle energization drive. That is, the control unit 54 outputs the second drive signal to the inverter 52, thereby driving the armature coils 21u, 21v, 21w to advance and wide-angle energization.
  • control unit 54 sets the energization angle to an angle larger than 120 degrees, thereby generating a large torque for the brushless motor 30 and performing advance angle control at a predetermined electrical angle to thereby control the brushless motor 30. Increase the number of revolutions. Thereby, the control unit 54 can satisfy the motor characteristics required in the high output mode. Therefore, since it is possible to design the motor characteristics of the brushless motor 30 so as to obtain the characteristics in the low output mode, the brushless motor 30 can be downsized.
  • the low output mode is a mode in which the wiper arms 14 and 16 are swung at a low speed
  • the high output mode is a mode in which the wiper arms 14 and 16 are swung at a high speed
  • the vehicle speed V of the vehicle 10 is a predetermined value V.
  • This is an operation mode when the load is larger than th or the load due to wiping the windshield 11 (wiping surface) is larger than a predetermined value.
  • the load at this time is determined by the control unit 54 based on the rotation speed of the rotor 22 and the duty ratio of the brushless motor 30.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the control unit 54 in the present embodiment.
  • the control unit 54 includes a position detection unit 61, a load determination unit 62, a mode determination unit 63, and a drive control unit 64.
  • the position detector 61 detects the rotational position of the rotor 22 based on the pulse signal supplied from the rotation angle detector 39.
  • the position detector 61 outputs the detected rotational position of the rotor 22 to the drive controller 64.
  • the load determination unit 62 determines whether or not the vehicle speed V measured by the vehicle speed sensor 40 exceeds a predetermined value Vth set in advance.
  • the load determination unit 62 determines that the load of the brushless motor 30 is high when the vehicle speed V measured by the vehicle speed sensor 40 exceeds a predetermined value Vth .
  • the load determination unit 62 outputs a high load signal indicating the determination result to the mode determination unit 63. This is because when the vehicle speed V of the vehicle 10 increases, the air volume to the windshield 11 of the vehicle 10 increases, and the movement of the wiper blades 17 and 18 that wipe the windshield 11 is hindered.
  • the brushless motor 30 needs to swing the wiper arms 14 and 16 at a high output. Therefore, when the vehicle speed V exceeds the predetermined value Vth , the control unit 54 generates a large torque for the brushless motor 30 by shifting from the low output mode to the high output mode, and the position detection unit 61 The rotational speed of the brushless motor 30 is increased by performing advance angle control with a predetermined electrical angle on the basis of the detected rotational position of the rotor 22.
  • the load determination unit 62 is a predetermined value calculated from a predetermined value of the rotational speed of the rotor 22 and / or the current value of the brushless motor 30 detected based on the pulse signal supplied from the rotation angle detection unit 39. Whether or not exceeds a predetermined value set in advance.
  • the load determination unit 62 has a predetermined value calculated from the rotation value of the rotor 22 detected based on the pulse signal supplied from the rotation angle detection unit 39, the current value of the brushless motor 30, or both, When it exceeds a predetermined value set in advance, it is determined that the load of the brushless motor 30 is high.
  • the load determination unit 62 determines that the load of the brushless motor 30 is high, the load determination unit 62 outputs a high load signal indicating the determination result to the mode determination unit 63. This is because a situation change such as a change in rainfall occurs, resistance to the movement of the wiper blades 17 and 18 on the windshield 11 (wiping surface) of the vehicle 10 increases, and the movement of the wiper blades 17 and 18 is hindered. It is. In this case, the brushless motor 30 needs to swing the wiper arms 14 and 16 at a high output.
  • the control unit 54 switches from the low output mode to the high output mode.
  • the advance control is performed with a predetermined electrical angle with reference to the rotational position of the rotor 22 detected by the position detection unit 61, thereby the brushless motor. Increase the number of revolutions of 30.
  • the mode determination unit 63 determines whether to drive the brushless motor 30 in the low output mode, to drive in the high output mode, or to stop driving the brushless motor 30.
  • the mode determination unit 63 determines to drive the brushless motor 30 in the low output mode, and outputs a low output mode signal indicating the low output mode to the drive control unit 64.
  • the mode determination unit 63 determines to drive the brushless motor 30 in the high output mode and outputs a high output mode signal indicating the high output mode to the drive control unit 64.
  • the mode determination unit 63 determines to drive the brushless motor 30 in the high output mode, and sends a high output mode signal indicating the high output mode to the drive control unit 64. Output.
  • the mode determination unit 63 determines to stop driving the brushless motor 30, and outputs a stop signal indicating stop of driving of the brushless motor 30 to the drive control unit 64. .
  • the drive control unit 64 includes a first drive control unit 641 and a second drive control unit 642.
  • the drive control unit 64 acquires the low output mode signal from the mode determination unit 63, the drive control unit 64 performs sine wave driving of the brushless motor 30 by the first drive control unit 641.
  • FIG. 6 is a timing chart showing energization timings of the U, V, and W phases by the first drive control unit 641 in the present embodiment.
  • the first drive control unit 641 outputs the first drive signal to the inverter 52 at the energization timing corresponding to the rotational position of the rotor 22 detected by the position detection unit 61, thereby driving the brushless motor 30 in a sine wave.
  • FIG. 7 is a timing chart showing energization timings of the U, V, and W phases by the second drive control unit 642 in the present embodiment.
  • the second drive control unit 642 maintains the energization angle at 120 ° + ⁇ (0 ° ⁇ ⁇ 60 °) while maintaining a predetermined electrical angle based on the rotational position of the rotor 22 detected by the position detection unit 61.
  • the second drive signal is output to the inverter 52 at the energization timing that is advanced only by the angle. That is, the second drive control unit 642 simultaneously performs wide-angle energization that increases the energization angle from 120 degrees and advance angle control that advances the energization timing for energizing the armature coils 21u, 21v, and 21w.
  • the drive control unit 64 can generate a large torque with respect to the brushless motor 30 and can increase the rotational speed of the brushless motor 30.
  • FIG. 8 is a diagram showing motor characteristics of the brushless motor 30 in the sine wave drive and the advance / wide-angle energization drive in the present embodiment.
  • H2 represents the motor characteristics of the advance / wide-angle energization drive.
  • L2 represents the motor characteristic of the sine wave drive.
  • region enclosed with the dotted line shows the motor characteristic in the one wiping cycle required for the high-speed operation mode at the time of high-speed driving
  • Two regions surrounded by a broken line show the types of motor characteristics in one wiping cycle required in the low speed operation mode at a low vehicle speed.
  • the motor characteristic in one wiping cycle shows a motor characteristic when a wiper blade reciprocates once on the windshield 11 (wiping surface).
  • the drive control unit 64 performs the sine wave drive in the low output mode, thereby satisfying the motor characteristics in one wiping cycle required in the low speed operation mode and reducing the operation noise.
  • the brushless motor 30 can be driven efficiently.
  • the drive control unit 64 executes the advance / wide-angle energization drive when the low output mode is shifted to the high output mode. That is, the drive control unit 64 increases the rotation speed of the brushless motor 30 by advance angle control and sets the energization angle to an angle larger than 120 degrees to prevent a decrease in torque due to an increase in rotation speed High torque can be generated.
  • the drive control unit 64 can satisfy the motor characteristics in one wiping cycle required in the high-speed operation mode by performing the advance / wide-angle energization drive. Accordingly, the brushless motor 30 can be designed based on the motor characteristics required in the low speed operation mode, and the brushless motor 30 can be reduced in size and weight.
  • the drive control part 64 stops the drive of the brushless motor 30 by the 1st drive control part 641 or the 2nd drive control part 642, when a stop signal is acquired from the mode determination part 63. That is, when the drive control unit 64 acquires a stop signal from the mode determination unit 63, the drive control unit 64 stops driving the brushless motor 30 and stops the swinging operation of the wiper arms 14 and 16.
  • FIG. 9 is a diagram illustrating the flow of processing of the control unit 54 in the present embodiment.
  • FIG. 10 is a diagram for explaining a modification of FIG. 9 in the present embodiment.
  • the control unit 54 determines whether or not the wiper switch 37 has been operated to the low speed operation side by the driver (step S101). For example, when acquiring the low speed operation mode signal from the wiper switch 37, the control unit 54 determines that the wiper switch 37 has been operated to the low speed operation side. When the wiper switch 37 is operated to the low speed operation side by the driver, the control unit 54 drives the brushless motor 30 in a sine wave (step S102).
  • the control unit 54 determines whether or not the wiper switch 37 is operated to the high speed operation side (step S103). For example, when the high speed operation mode signal is acquired from the wiper switch 37, the control unit 54 determines that the wiper switch 37 is operated to the high speed operation side. When the wiper switch 37 is operated to the high speed operation side by the driver, the control unit 54 drives the brushless motor 30 to advance / wide-angle energization (step S104).
  • the processing flow of the control unit 54 in the present embodiment shown in FIG. 9 may be the processing flow of the control unit 54 shown in FIG.
  • the control unit 54 determines whether or not the wiper switch 37 has been operated to the low speed operation side by the driver (step S201). For example, when acquiring the low speed operation mode signal from the wiper switch 37, the control unit 54 determines that the wiper switch 37 has been operated to the low speed operation side. When the wiper switch 37 is operated to the low speed operation side by the driver, the control unit 54 determines whether or not the high output mode is necessary (step S202). When it is determined that the high output mode is not necessary, the control unit 54 drives the brushless motor 30 in a sine wave (step S203).
  • the control unit 54 determines whether or not the wiper switch 37 is operated to the high speed operation side (step S204). For example, when the high speed operation mode signal is acquired from the wiper switch 37, the control unit 54 determines that the wiper switch 37 is operated to the high speed operation side. When the wiper switch 37 is operated to the high speed operation side by the driver, the control unit 54 determines whether or not the high output mode is necessary (step S205). When it is determined that the high output mode is necessary, the control unit 54 drives the brushless motor 30 to advance / wide-angle energization (step S206).
  • control unit 54 determines that the wiper switch 37 has been operated to the low speed operation side in the process of step S201, and determines that the high output mode is necessary in the process of step S202, the Wide-angle energization drive. Further, when the control unit 54 determines that the wiper switch 37 is operated to the high speed operation side in the process of step S204 and determines that the high output mode is not necessary in the process of step S205, the control unit 54 causes the brushless motor 30 to be a sine wave. To drive.
  • control unit 54 can appropriately switch between the low output mode and the high output mode regardless of whether the wiper switch 37 is on the low speed operation side or the high speed operation side. As a result, it is possible to cope with a change in the situation on the windshield 11 (wiping surface) due to a change in the external environment such as a change in the rainfall or a change in the vehicle speed.
  • the motor control device 33 drives the brushless motor 30 in a sine wave in the low output mode where the output of the brushless motor 30 is low, and the conduction angle in the high output mode where the output is higher than in the low output mode. Is set to an angle larger than 120 degrees, and the brushless motor 30 is energized at a timing based on a predetermined electrical angle with reference to the rotational position of the rotor 22 detected by the position detector 61.
  • the motor control device 33 can efficiently and reduce operation noise by using a sine wave drive without using the duty ratio or by significantly reducing the duty ratio in the low-speed operation mode that is frequently used. Is possible. FIG.
  • FIG. 11 is a diagram illustrating the motor characteristics of the brushless motor 30 in the present embodiment.
  • the solid line indicates the motor characteristics of the advance / wide-angle energization drive in this embodiment.
  • a dotted line shows the motor characteristic by the advance angle control in the conventional sine wave drive.
  • the alternate long and short dash line indicates the motor characteristics of the sine wave drive in the present embodiment.
  • An alternate long and two short dashes line indicates the motor characteristics by the conventional 120-degree conduction control. As shown in FIG.
  • the motor control device 33 performs advance / wide-angle energization drive (solid line) in rectangular wave control, so that advance angle control in sinusoidal drive ( Compared with the dotted line), the motor characteristics can be further improved and the motor characteristics required in the high-speed operation mode can be satisfied.
  • the brushless motor 30 can be made into the physique matched to the motor characteristic requested
  • the motor control device 33 determines the rotational position of the rotor 22 based on the pulse signal supplied from the rotation angle detection unit 39, but is not limited thereto.
  • the motor control device 33 may determine the rotational position of the rotor 22 based on the induced voltage generated in each armature coil 21u, 21v, 21w according to the rotation of the rotor 22. This eliminates the need for the rotation angle detection unit 39 that detects the rotation position of the rotor 22, thereby reducing the number of parts and the manufacturing cost of the brushless motor 30.
  • the wiper device 12 may include an output shaft sensor that detects at least one of the rotational speed and the absolute position of the output shaft 26.
  • the absolute position is a rotation angle of the output shaft 26 with respect to the reference position.
  • the reference position may be set at an arbitrary position within the range of 360 degrees.
  • the motor control device 33 may determine the rotational position of the rotor 22 based on the detection signal from the output shaft sensor.
  • the wiper device 12 is not limited to the windshield 11 of the vehicle 10 and may wipe the rear glass.
  • the wiper device 12 may have a structure in which the wiper arms 14 and 16 swing around the output shaft 26 as a fulcrum.
  • the wiper device 12 may be configured to drive the two wiper arms 14 and 16 by different brushless motors.
  • the brushless motor 30 of the present embodiment may be an IPM (Interior Permanent Magnet) structure motor or an SPM (Surface Permanent Magnet) structure motor.
  • the mode selected by the wiper switch 37 is not limited to the two types of the low speed operation mode and the high speed operation mode, and may be three or more types.
  • the rotation speed of the rotor 22 in the medium speed operation mode is higher than the rotation speed of the rotor 22 in the low speed wiping mode and lower than the rotation speed of the rotor 22 in the high speed operation mode.
  • the motor control device 33 may perform advance angle control in the sine wave drive of the brushless motor 30, or may perform advance angle / wide angle energization drive.
  • the energization angle in the advance / wide-angle energization drive in the medium speed operation mode is larger than 120 degrees and narrower than the energization angle in the advance / wide-angle energization drive in the high-speed operation mode.
  • the electrical angle in the advance / wide-angle energization drive in the medium speed operation mode is larger than 0 degrees and smaller than the electrical angle in the advance / wide-angle energization drive in the high speed operation mode.
  • the advance angle + wide angle energization drive may be performed (see FIG. 10). That is, regardless of the mode selected by the wiper switch 37, it is possible to perform the advance angle + wide angle energization drive when the high load signal is acquired to the mode determination unit 63.
  • the motor control device 33 in the above-described embodiment generates a pseudo rectangular wave by superimposing a harmonic on a sine wave when the brushless motor 30 is driven to advance and wide-angle energize. It may be generated and output to the brushless motor 30.
  • the control unit 54 in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client in that case may be included and a program held for a certain period of time.
  • the program may be a program for realizing a part of the above-described functions, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. It may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • the control unit 54 determines the load on the brushless motor 30 based on a predetermined value calculated from the rotation number of the rotor 22 and / or a predetermined value of the current value of the brushless motor 30 or both.
  • the load may be determined using a current detection device or a torque sensor.

Abstract

ワイパアームを揺動動作させるブラシレスモータを制御するモータ制御装置であって、回転子の回転位置を検出する位置検出部と、前記ブラシレスモータの出力が低い低出力モード時において前記ブラシレスモータを正弦波駆動し、前記低出力モード時よりも出力が高い高出力モード時において通電角を120度よりも大きい角度とし、前記回転子の回転位置を基準として所定の電気角だけ進角させたタイミングで前記ブラシレスモータに通電する制御部と、を備える。

Description

モータ制御装置及びモータユニット
 本発明は、モータ制御装置及びモータユニットに関する。
 本願は、2016年3月16日に出願された日本国特願2016-052153号に基づき優先権を主張し、その内容をここに援用する。
 従来から、車両に搭載されるワイパ装置には、ワイパアームを揺動させるための駆動源としてワイパモータが用いられている。ワイパ装置は、ワイパモータを駆動することで、ワイパアームをフロントガラス上における所定の範囲内で揺動動作させ、フロントガラスに付着した埃や雨滴等を払拭する。
 一般に、ワイパ装置は、ワイパモータを低速で駆動することでワイパブレードを低速で動作させる低速作動モードと、ワイパモータを高速で駆動することでワイパブレードを高速で動作させる高速作動モードとを備える。図13(a)は、高速作動モード及び低速作動モードにおいてワイパモータに要求されるモータ特性の一例を示した概略図である。
 図13(a)において、点線で囲まれた領域はワイパモータの負荷が最も高くなる高速走行時の高速作動モードにおいて要求されるモータ特性を示し、破線で囲まれた2つの領域は、それぞれ低速走行時の低速作動モードにおいて要求されるモータ特性の類型を示す。
図13(a)に示すように、高速作動モードにおいて要求されるモータ特性では、ワイパモータの回転速度の高速化が求められ、低速作動モードにおいて要求されるモータ特性では、高速作動モードの場合に比較してより大きなトルクが求められる。したがって、低速走行時の低速作動モードと、高速走行時の高速作動モードとでは、車速によるワイパモータの負荷変動が大きいため、要求されるモータ特性において大きな差が発生する。
 そのため、高速作動モードにおいて要求されるモータ特性を得るように図13(a)にH1で示すようにワイパモータの特性を設定すると、ワイパモータのサイズや質量の大きなモータになってしまう可能性がある。また、高速作動モードにおいて要求されるモータ特性を得るようにワイパモータの特性を図13(a)にH1で示すように設定した場合、ワイパ装置は、低速作動モード時において低速作動モードで要求されるモータ特性を得るため、PWM(pulse width modulation)制御するデューティ比を下げることで、ワイパモータを図13(a)にL1で示すようなワイパモータの特性に制御する必要がある。ただし、図13(b)に示すように、一般的に、デューティ比が高い方がモータの効率が良い。すなわち、低速作動モードにおいてデューティ比を下げるとワイパモータの効率が低下する可能性がある。
 上記課題を解決するために、ワイパモータの駆動において、ディーティ比を使用せずに、もしくは大幅に下げて正弦波駆動を行うとともに、高速作動モード時においてワイパモータを進角制御することで、ワイパモータを高速回転させる高効率の制御方法が提案されている(例えば、特許文献1)。
特開2015-168273号公報
 しかしながら、ワイパモータに対して進角をつけて正弦波制御すると、回転数の上昇に伴いトルクが低下してしまう。したがって、高負荷である高速走行時の高速作動モードでは回転数が上昇せず、要求されるモータ特性を満足できない可能性がある。そのため、高速作動モードにおいて要求されるモータ特性を得るようにワイパモータの特性を設定する必要があり、その際にはワイパモータに使用されるマグネットの大型化や電機子コイルの巻線数の増加によりワイパモータが大型化する。したがって、ワイパモータを小型化できない。
 本発明の態様は、ワイパモータを小型化可能なモータ制御装置及びモータユニットを提供する。
 本発明の一態様は、ワイパアームを揺動動作させるブラシレスモータを制御するモータ制御装置であって、回転子の回転位置を検出する位置検出部と、前記ブラシレスモータの出力が低い低出力モード時において前記ブラシレスモータを正弦波駆動し、前記低出力モード時よりも出力が高い高出力モード時において通電角を120度よりも大きい角度とし、前記回転子の回転位置を基準として所定の電気角だけ進角させたタイミングで前記ブラシレスモータに通電する制御部と、を備えるモータ制御装置である。
 また、本発明の一態様は、前記モータ制御装置であって、前記通電角は電気角で、120度から180度までの間である。
 また、本発明の一態様は、前記モータ制御装置であって、前記制御部は、前記高出力モード時において、前記ブラシレスモータを矩形波駆動する。
 また、本発明の一態様は、前記モータ制御装置であって、前記低出力モードは、前記ワイパアームを予め設定された速度で揺動動作させるモードであり、前記高出力モードは、前記ワイパアームを前記低出力モードより高速で揺動動作させるモード、又は車速が所定値よりも大きい場合の動作モード、又はブラシレスモータにかかる負荷が所定値よりも大きい場合の動作モードである。
 また、本発明の一態様は、ワイパアームを揺動動作させるブラシレスモータと、上述のモータ制御装置と、を備えるモータユニットである。
 本発明の態様によれば、ワイパモータを小型化可能なモータ制御装置及びモータユニットを提供することができる。
図1は、本実施形態におけるモータ制御装置を備えたワイパ装置12を搭載した車両10のフロントガラス11を示す概略構成の一例を示す図である。 図2は、本実施形態におけるモータユニット19の外観の一例を示す図である。 図3は、本実施形態におけるモータユニット19のアンダーカバーが取り外された状態の底面図である。 図4は、本実施形態におけるワイパ装置12の制御系の概略構成の一例を示す図である。 図5は、本実施形態における制御部54の構成概略の一例を示す図である。 図6は、本実施形態における第1駆動制御部641によるU、V、W各相の通電タイミングを示すタイミングチャートである。 図7は、本実施形態における第2駆動制御部642によるU、V、W各相の通電タイミングを示すタイミングチャートである。 図8は、本実施形態における正弦波駆動及び進角・広角通電駆動におけるブラシレスモータ30のモータ特性を示す図である。 図9は、本実施形態における制御部54の処理の流れについて説明する図である。 図10は、本実施形態における制御部54の処理の流れの変形例について説明する図である。 図11は、本実施形態におけるブラシレスモータ30のモータ特性を示す図である。 図12は、本実施形態におけるモータ制御装置の正弦波に高調波を重畳した波形の一例を示す図である。 図13は、従来の高速作動モード及び低速作動モードにおいてワイパモータに要求されるモータ特性の一例を示した概略図である。
 以下、発明の実施の形態を通じて本発明の態様を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、図面において、同一又は類似の部分には同一の符号を付して、重複する説明を省く場合がある。
 本実施形態のモータ制御装置は、ワイパアームを揺動動作させるブラシレスモータを制御する。そして、モータ制御装置は、ブラシレスモータの出力が低い低出力モード時においては、ブラシレスモータを正弦波駆動し、低出力モード時よりも出力が高い高出力モード時においては通電角を120度よりも大きい角度とし、回転子の回転位置を基準として所定の電気角だけ進角させたタイミングでブラシレスモータに通電する。以下に、本実施形態におけるモータ制御装置について、図を用いて説明する。
 図1は、本実施形態におけるモータ制御装置を備えたワイパ装置12を搭載した車両10のフロントガラス11を示す概略構成の一例を示す図である。
 図1に示すように、車両10は、フロントガラス11及びワイパ装置12を備える。
 ワイパ装置12は、フロントガラス11を払拭する。
 ワイパ装置12は、ワイパアーム14,16、ワイパブレード17,18、モータユニット19及び動力伝達機構20を備える。
 ワイパアーム14は、ピボット軸13を中心として揺動する。ワイパアーム16は、ピボット軸15を中心として揺動する。
 ワイパブレード17は、ワイパアーム14の自由端に取り付けられている。ワイパブレード18は、ワイパアーム16の自由端に取り付けられている。
 モータユニット19は、ワイパアーム14,16を駆動する。本実施形態では、モータユニット19の動力は、レバー、リンク等により構成された動力伝達機構20を経由して、ワイパアーム14,16に個別に伝達される。
 図2は、本実施形態におけるモータユニット19の外観の一例を示す図である。図3は、図2に示すモータユニット19のアンダーカバー28が取り外された状態の底面図である。
 図2に示すように、モータユニット19の外観は、主としてケース23及びフレーム24によって構成される。
 ケース23は、有底円筒形状を備えている。フレーム24は、中空の形状を備えている。フレーム24とケース23とは、図示しない締結部材により固定されている。
 図3に示すように、モータユニット19は、ブラシレスモータ30、ロータ軸22a、開口部24a、ウォームホイール25、出力軸26、減速機構27、アンダーカバー28、制御基板29、センサマグネット38及びモータ制御装置33を備える。
 ブラシレスモータ30は、モータ制御装置33の制御指示に基づいてワイパアーム14,16を揺動動作させる。
 例えば、ブラシレスモータ30は、3相4極形であるブラシレスモータである。
 ブラシレスモータ30は、ステータ21及びロータ(回転子)22を備える。
 ステータ21は、ケース23の内周に固定されている。ステータ21は、三相の電機子コイル21u,21v,21wを備える。ステータ21は、その電機子コイル21u,21v,21wが巻装されている。例えば、三相の電機子コイル21u,21v,21wは、一端の中性点で接続されるY結線により接続される。また、ブラシレスモータ30は、各電機子コイル21u,21v,21wが、正極及び負極の両方として機能するモータである。
 例えば、ロータ22は、ステータ21の内側に設けられている。ロータ22は、ロータ軸22aと、ロータ軸22aに取り付けた4極の永久磁石22bとを備える。ケース23内には複数の軸受(不図示)が設けられており、ロータ軸22aは、複数の軸受により回転可能に支持されている。
 ロータ軸22aは、長さ方向の略半分がケース23の内部に配置されており、残りの略半分がフレーム24内に配置されている。
 ロータ軸22aのうちフレーム24内に配置された部分の外周には、減速機構27が形成されている。減速機構27は、ウォーム22c及びギヤ25aを備える。
 ウォーム22cは、フレーム24内に配置されたロータ軸22aの外周に設けられている。ギヤ25aは、フレーム24内に設けられたウォームホイール25の外周に形成されている。ギヤ25aは、ウォーム22cと噛合されている。
 ウォームホイール25は、出力軸26と一体回転するように構成されている。減速機構27は、ロータ22の動力を出力軸26に伝達する際に、ロータ22の回転数(入力回転数)よりも出力軸26の回転数(出力回転数)を低くする。また、図2において、フレーム24の上部には、図示しない軸孔が設けられている。出力軸26におけるウォームホイール25が固定された端部に対して反対側の端部は、フレーム24の軸孔を経由して外部に露出している。出力軸26におけるフレーム24の外部に露出した部分には、図1に示すように動力伝達機構20が連結されている。
 開口部24aは、フレーム24における軸孔の反対側の部分に設けられている。開口部24aは、フレーム24の内部にウォームホイール25等を取り付けるために形成されたものである。アンダーカバー28は、開口部24aを塞ぐように設けられている。アンダーカバー28はトレイ形状を備えている。
 制御基板29は、アンダーカバー28とフレーム24とにより取り囲まれた空間に設けられている。図2に示すように、例えば、制御基板29はアンダーカバー28に取り付けられる。この制御基板29には、ブラシレスモータ30を制御するモータ制御装置33が設けられている。
 センサマグネット38は、ロータ軸22aのうちフレーム24内に配置された箇所に設けられている。センサマグネット38は、ロータ軸22aと一体回転する。センサマグネット38は、ロータ軸22aの円周方向に沿って、N極とS極とが交互に並ぶように着磁されている。
 以下に、本実施形態におけるモータ制御装置33について、図面を用いて説明する。
 図4は、本実施形態におけるワイパ装置12の制御系の概略構成の一例を示す図である。ワイパ装置12は、ワイパスイッチ37、回転角検出部39、車速センサ40及びモータ制御装置33を備える。
 ワイパスイッチ37は、車両10の車室内に備えられている。
 ワイパスイッチ37は、ワイパアーム14,16を揺動動作させるスイッチである。
 ワイパスイッチ37は、ワイパアーム14,16を低速(例えば、予め設定された速度)で動作させる低速作動モード、ワイパアーム14,16を低速作動モードより高速で動作させる高速作動モード、及びワイパアーム14,16の揺動動作を停止させる停止モードの各モードに切り換え可能である。
 ワイパスイッチ37は、運転者により操作されることで、その操作を示す操作信号をモータ制御装置33に出力する。例えば、運転者は、降雨量、降雪量等の条件に基づいて、ワイパスイッチ37を操作することでワイパアーム14,16の払拭速度を切り替えることができる。運転者は、降雨量、降雪量が少ないとき、ワイパスイッチ37を操作することでワイパアーム14,16を予め定められた低速で動作させる低速作動モードを選択することができる。この場合、ワイパスイッチ37は、運転者による、低速作動モードを選択する操作に基づいて、低速作動モードを示す低速作動モード信号を操作信号としてモータ制御装置33に出力する。
 一方、運転者は、降雨量、降雪量が多いとき、ワイパスイッチ37を操作して、ワイパアーム14,16を、上記の低速よりも高速で動作させる高速作動モードを選択することができる。この場合、ワイパスイッチ37は、運転者による、高速作動モードを選択する操作に基づいて、高速作動モードを示す高速作動モード信号を操作信号としてモータ制御装置33に出力する。
 また、運転者によりワイパスイッチ37に対してワイパアーム14,16の揺動動作を停止させる操作が行われた場合に、ワイパスイッチ37は、停止モードを示す停止モード信号を操作信号としてモータ制御装置33に出力する。
 車速センサ40は、車両10に設けられている。車速センサ40は、車両10の走行速度(以下、「車速」という。)Vを計測する。車速センサ40は、計測した車両10の車速Vをモータ制御装置33に出力する。
 回転角検出部39は、ロータ22の回転に応じた信号を検出する。例えば、回転角検出部39は、3つのホールICを備え、ロータ軸22aを中心として磁気的に互いに120度となる位置に設けられている。これらの3つのホールICは、ロータ22が回転すると、それぞれ互いに120度位相のずれたパルス信号をモータ制御装置33に対して出力する。すなわち、回転角検出部39は、ロータ22の回転に伴い、センサマグネット38の磁極の変化に基づいたパルス信号を発生し、モータ制御装置33に出力する。
 モータ制御装置33は、インバータ52及び制御部54を備える。
 インバータ52は、3相ブリッジ接続された6個のスイッチング素子52a~52fと、各スイッチング素子52a~52fのそれぞれのコレクタ-エミッタ間に逆並列に接続されたダイオード53a~53fとを備える。各スイッチング素子52a~52fは、例えば、FET(Field Effect Transistor;電界効果トランジスタ)、又はIGBT(Insulated Gate Bipolar Transistor;絶縁ゲートバイポーラトランジスタ)である。ブリッジ接続された6個のスイッチング素子52a~52fの各ゲートは制御部54に接続される。
 スイッチング素子52a~52fのコレクタまたはエミッタは、Y結線された電機子コイル21u,21v,21wに接続される。これにより、6個のスイッチング素子52a~52fは、制御部54から出力される駆動信号(ゲート信号)に基づいてスイッチング動作を行い、インバータ52に印加される直流電源51の電源電圧を、3相(U相、V相、W相)の交流電圧として、電機子コイル21u,21v,21wに供給する。
 制御部54は、回転角検出部39から供給されるパルス信号に基づいて、ロータ22の回転位置を決定する。また、制御部54は、パルス信号に基づいて、ロータ22の回転数を検出する。そして、制御部54は、ブラシレスモータ30の出力が低い低出力モード時にブラシレスモータ30を正弦波駆動する。すなわち、制御部54は、第1駆動信号をインバータ52に出力することで、電機子コイル21u,21v,21wに対して正弦波電流を供給してロータ22を回転駆動する。これにより、低出力モード時において、トルクリップルを相殺することが可能となる。そのため、ブラシレスモータ30の作動音が矩形波駆動と比較して低減される。
 一方、制御部54は、低出力モード時よりも出力が高い高出力モード時に、通電角を120度よりも大きな角度として、所定の電気角だけ進角させたタイミングでブラシレスモータ30に通電する。以下の説明において、通電角を120度よりも大きな角度として、所定の電気角だけ進角させたタイミングでブラシレスモータ30に通電する駆動制御を進角・広角通電駆動と称す場合がある。すなわち、制御部54は、第2駆動信号をインバータ52に出力することで、電機子コイル21u,21v,21wに対して進角・広角通電駆動する。すなわち、制御部54は、通電角を120度よりも大きな角度に設定することで、ブラシレスモータ30に対して大きなトルクを発生させるとともに、所定の電気角で進角制御を行うことでブラシレスモータ30の回転数を上昇させる。これにより、制御部54は、高出力モードにおいて要求されるモータ特性を満足することが可能となる。したがって、低出力モード時の特性を得るようにブラシレスモータ30のモータ特性を設計することが可能となるため、ブラシレスモータ30の小型化が可能となる。例えば、低出力モードは、ワイパアーム14,16を低速で揺動動作させるモードであり、高出力モードは、ワイパアーム14,16を高速で揺動動作させるモード、又は車両10の車速Vが所定値Vthよりも大きい場合やフロントガラス11(払拭面)を払拭することによる負荷が所定値よりも大きい場合の動作モードである。なお、このときの負荷とは、ロータ22の回転数とブラシレスモータ30のデューティ比とに基づいて制御部54により判定される。
 以下に、本実施形態における制御部54について、図を用いて説明する。
 図5は、本実施形態における制御部54の構成概略の一例を示す図である。
 制御部54は、位置検出部61、負荷判定部62、モード判定部63及び駆動制御部64を備える。
 位置検出部61は、回転角検出部39から供給されるパルス信号に基づいて、ロータ22の回転位置を検出する。位置検出部61は、検出したロータ22の回転位置を駆動制御部64に出力する。
 負荷判定部62は、車速センサ40が計測した車速Vが予め設定された所定値Vthを超えたか否かを判定する。負荷判定部62は、車速センサ40が計測した車速Vが所定値Vthを超えた場合に、ブラシレスモータ30の負荷が高負荷であると判定する。負荷判定部62は、ブラシレスモータ30の負荷が高負荷であると判定した場合に、その判定結果を示す高負荷信号をモード判定部63に出力する。これは、車両10の車速Vが上がると、車両10のフロントガラス11への風量が増大し、フロントガラス11上を払拭するワイパブレード17,18の動きが妨げられるためである。この場合には、ブラシレスモータ30は高出力でワイパアーム14,16を揺動動作させる必要がある。したがって、制御部54は、車速Vが所定値Vthを超えた場合、低出力モードから高出力モードに移行することで、ブラシレスモータ30に対して大きなトルクを発生させるとともに、位置検出部61が検出したロータ22の回転位置を基準として所定の電気角で進角制御を行うことでブラシレスモータ30の回転数を上昇させる。
 また、負荷判定部62は、回転角検出部39から供給されるパルス信号に基づいて検出されるロータ22の回転数またはブラシレスモータ30の電流値の所定値、もしくはその両方から算出される所定値が、予め設定された所定値を超えたか否かを判定する。負荷判定部62は、回転角検出部39から供給されるパルス信号に基づいて検出されるロータ22の回転数またはブラシレスモータ30の電流値の所定値、もしくはその両方から算出される所定値が、予め設定された所定値を超えた場合に、ブラシレスモータ30の負荷が高負荷であると判定する。負荷判定部62は、ブラシレスモータ30の負荷が高負荷であると判定した場合に、その判定結果を示す高負荷信号をモード判定部63に出力する。これは、雨量の変化などの状況変化が起こり、車両10のフロントガラス11(払拭面)上におけるワイパブレード17,18の動きへの抵抗が増加し、ワイパブレード17、18の動きが妨げられるためである。この場合には、ブラシレスモータ30は高出力でワイパアーム14,16を揺動動作させる必要がある。したがって、制御部54は、ロータ22の回転数またはブラシレスモータ30の電流値の所定値、もしくはその両方から算出される所定値が、予め設定された所定値を超えた場合、低出力モードから高出力モードに移行することで、ブラシレスモータ30に対して大きなトルクを発生させるとともに、位置検出部61が検出したロータ22の回転位置を基準として所定の電気角で進角制御を行うことでブラシレスモータ30の回転数を上昇させる。
 モード判定部63は、ブラシレスモータ30を低出力モードで駆動するか、高出力モードで駆動するか、又はブラシレスモータ30の駆動を停止するかのいずれかであるかを判定する。
 モード判定部63は、ワイパスイッチ37から低速作動モード信号を取得した場合に、ブラシレスモータ30を低出力モードで駆動すると判定し、低出力モードを示す低出力モード信号を駆動制御部64に出力する。
 モード判定部63は、ワイパスイッチ37から高速作動モード信号を取得した場合に、ブラシレスモータ30を高出力モードで駆動すると判定し、高出力モードを示す高出力モード信号を駆動制御部64に出力する。また、モード判定部63は、負荷判定部62から高負荷信号を取得した場合に、ブラシレスモータ30を高出力モードで駆動すると判定し、高出力モードを示す高出力モード信号を駆動制御部64に出力する。
 モード判定部63は、ワイパスイッチ37から停止モード信号を取得した場合に、ブラシレスモータ30の駆動を停止させる判定をし、ブラシレスモータ30の駆動の停止を示す停止信号を駆動制御部64に出力する。
 駆動制御部64は、第1駆動制御部641及び第2駆動制御部642を備える。
 駆動制御部64は、モード判定部63から低出力モード信号を取得した場合には、第1駆動制御部641によるブラシレスモータ30の正弦波駆動を実行する。図6は、本実施形態における第1駆動制御部641によるU、V、W各相の通電タイミングを示すタイミングチャートである。第1駆動制御部641は、位置検出部61により検出されたロータ22の回転位置に応じた通電タイミングで第1駆動信号をインバータ52に出力することで、ブラシレスモータ30を正弦波駆動する。
 一方、駆動制御部64は、モード判定部63から高出力モード信号を取得した場合には、第2駆動制御部642によるブラシレスモータ30の進角・広角通電駆動を実行する。
図7は、本実施形態における第2駆動制御部642によるU、V、W各相の通電タイミングを示すタイミングチャートである。
 第2駆動制御部642は、通電角を通電角120度+α(0度<α<60度)に維持したまま、位置検出部61により検出されたロータ22の回転位置を基準として所定の電気角だけ進角させた通電タイミングで第2駆動信号をインバータ52に出力する。すなわち、第2駆動制御部642は、通電角を120度から広げる広角通電と、電機子コイル21u,21v,21wに通電する通電タイミングを進める進角制御を同時に行う。これにより、駆動制御部64は、ブラシレスモータ30に対して大きなトルクを発生させるとともに、ブラシレスモータ30の回転数を上昇させることが可能となる。
 図8は、本実施形態における正弦波駆動及び進角・広角通電駆動におけるブラシレスモータ30のモータ特性を示す図である。
 図8において、H2は進角・広角通電駆動のモータ特性を示す。L2は、正弦波駆動のモータ特性を示す。また、点線で囲まれた領域は高速走行時の高速作動モードに要求される一払拭周期でのモータ特性を示す。破線で囲まれた2つの領域は、低い車速の低速作動モードにおいて要求される一払拭周期でのモータ特性の類型を示す。なお、一払拭周期でのモータ特性とは、フロントガラス11(払拭面)上をワイパブレードが一往復するときのモータ特性を示す。
 図8に示すように、駆動制御部64は、低出力モードにおいて、正弦波駆動を行うことで、低速作動モードで要求される一払拭周期でのモータ特性を満足するとともに、作動音を低減させ効率良くブラシレスモータ30を駆動することができる。また、駆動制御部64は、低出力モードから高出力モードに移行した場合には、進角・広角通電駆動を実行する。すなわち、駆動制御部64は、進角制御によりブラシレスモータ30の回転数を上昇させるとともに、通電角を120度よりも大きい角度に設定することで、回転数の上昇によるトルクの低下を防止し、高トルクを発生させることができる。したがって、駆動制御部64は、進角・広角通電駆動を行うことで、高速作動モードで要求される一払拭周期でのモータ特性を満足することができる。これにより、低速作動モードで要求されるモータ特性に基づいて、ブラシレスモータ30を設計することが可能となり、ブラシレスモータ30の小型化及び軽量化が可能となる。
 なお、駆動制御部64は、モード判定部63から停止信号を取得した場合には、第1駆動制御部641又は第2駆動制御部642によるブラシレスモータ30の駆動を停止する。すなわち、駆動制御部64は、モード判定部63から停止信号を取得した場合には、ブラシレスモータ30の駆動を停止し、ワイパアーム14,16の揺動動作を停止させる。
 以下に、本実施形態における制御部54の処理の流れについて、図を用いて説明する。
 図9は、本実施形態における制御部54の処理の流れについて説明する図である。図10は、本実施形態における図9の変形例を説明する図である。
 制御部54は、運転者によりワイパスイッチ37が低速作動側に操作されたか否かを判定する(ステップS101)。例えば、制御部54は、ワイパスイッチ37から低速作動モード信号を取得した場合に、ワイパスイッチ37が低速作動側に操作されたと判定する。制御部54は、運転者によりワイパスイッチ37が低速作動側に操作された場合、ブラシレスモータ30を正弦波駆動する(ステップS102)。
 一方、制御部54は、運転者によりワイパスイッチ37が低速作動側に操作されていない場合、ワイパスイッチ37が高速作動側に操作されたか否かを判定する(ステップS103)。例えば、制御部54は、ワイパスイッチ37から高速作動モード信号を取得した場合に、ワイパスイッチ37が高速作動側に操作されたと判定する。制御部54は、運転者によりワイパスイッチ37が高速作動側に操作された場合、ブラシレスモータ30を進角・広角通電駆動する(ステップS104)。
 また、図9に示した本実施形態における制御部54の処理の流れを、図10に示す制御部54の処理の流れとしてもよい。
 制御部54は、運転者によりワイパスイッチ37が低速作動側に操作されたか否かを判定する(ステップS201)。例えば、制御部54は、ワイパスイッチ37から低速作動モード信号を取得した場合に、ワイパスイッチ37が低速作動側に操作されたと判定する。制御部54は、運転者によりワイパスイッチ37が低速作動側に操作された場合、高出力モードが必要か否かを判定する(ステップS202)。制御部54は、高出力モードが必要ないと判定した場合に、ブラシレスモータ30を正弦波駆動する(ステップS203)。
 一方、制御部54は、運転者によりワイパスイッチ37が低速作動側に操作されていない場合、ワイパスイッチ37が高速作動側に操作されたか否かを判定する(ステップS204)。例えば、制御部54は、ワイパスイッチ37から高速作動モード信号を取得した場合に、ワイパスイッチ37が高速作動側に操作されたと判定する。制御部54は、運転者によりワイパスイッチ37が高速作動側に操作された場合、高出力モードが必要か否かを判定する(ステップS205)。制御部54は、高出力モードが必要と判定した場合に、ブラシレスモータ30を進角・広角通電駆動する(ステップS206)。
 さらに、制御部54は、ステップS201の処理においてワイパスイッチ37が低速作動側に操作されたと判定し、且つステップS202の処理において高出力モードが必要と判定した場合に、ブラシレスモータ30を進角・広角通電駆動する。また、制御部54は、ステップS204の処理においてワイパスイッチ37が高速作動側に操作されたと判定し、且つステップS205の処理において高出力モードが必要ないと判定した場合に、ブラシレスモータ30を正弦波駆動する。
 このような構成とすることで、ワイパスイッチ37が低速作動側にあるか高速作動側にあるかによらず、制御部54によって低出力モードと高出力モードとを適宜切替えることができる。これにより、雨量の変化などの外部環境の変化や車速の変化などによるフロントガラス11(払拭面)上の状況変化へ対応することが可能となる。
 上述したように本実施形態において、モータ制御装置33は、ブラシレスモータ30の出力が低い低出力モード時にブラシレスモータ30を正弦波駆動し、低出力モード時よりも出力が高い高出力モード時に通電角を120度よりも大きい角度とし、位置検出部61が検出したロータ22の回転位置を基準として所定の電気角に基づいたタイミングでブラシレスモータ30に通電する。このように、モータ制御装置33は、使用頻度の高い低速作動モード時において、ディーティ比を使用せずに、もしくは大幅に下げて正弦波駆動することで、効率良く、且つ作動音を低減することが可能となる。
 図11は、本実施形態におけるブラシレスモータ30のモータ特性を示す図である。実線は、本実施形態における進角・広角通電駆動のモータ特性を示す。点線は、従来の正弦波駆動における進角制御によるモータ特性を示す。一点鎖線は、本実施形態における正弦波駆動のモータ特性を示す。二点鎖線は、従来の120度通電制御によるモータ特性を示す。
 図11に示すように、高い特性が必要な高速作動モード時においては、モータ制御装置33は、矩形波制御における進角・広角通電駆動(実線)することで、正弦波駆動における進角制御(点線)と比較してよりモータ特性を上げ、高速作動モードで要求されるモータ特性を満足することができる。これにより、ブラシレスモータ30を、低速作動モードにおいて要求されるモータ特性に合わせた体格にすることができ、モータサイズや質量の低減が可能となる。
 上述の実施形態において、モータ制御装置33は、回転角検出部39から供給されるパルス信号に基づいて、ロータ22の回転位置を決定したが、これに限定されない。例えば、モータ制御装置33は、ロータ22の回転に応じて各電機子コイル21u,21v,21wに発生する誘起電圧に基づいて、ロータ22の回転位置を決定してもよい。これにより、ロータ22の回転位置を検出する回転角検出部39が不要となるため、ブラシレスモータ30の部品点数及び製造コストを低減することができる。
 また、上述の実施形態において、ワイパ装置12は、出力軸26の回転数又は絶対位置の少なくとも一方を検出する出力軸センサを備えてもよい。絶対位置とは、基準位置に対する出力軸26の回転角度である。基準位置は、360度の範囲内のうち、任意の位置に定めればよい。モータ制御装置33は、この出力軸センサからの検出信号に基づいてロータ22の回転位置を決定してもよい。
 また、上述の実施形態において、ワイパ装置12は、車両10のフロントガラス11に限らずリヤガラスを払拭するものであってもよい。また、ワイパ装置12は、出力軸26を支点としてワイパアーム14,16が揺動する構造でもよい。
 また、上述の実施形態において、ワイパ装置12は、2本のワイパアーム14,16を、それぞれ異なるブラシレスモータにより駆動する構成であってもよい。また、本実施形態のブラシレスモータ30は、IPM(Interior Permanent Magnet)構造のモータであってもよいし、SPM(Surface Permanent Magnet)構造のモータであってもよい。
 また、上述の実施形態において、ワイパスイッチ37により選択されるモードは、低速作動モード及び高速作動モードの2種類に限らず、3種類以上あってもよい。例えば、ワイパスイッチ37により選択されるモードは、低速作動モード、中速作動モード、高速作動モードの3種類あってもよい。ここで、中速作動モードにおけるロータ22の回転数は、低速払拭モードにおけるロータ22の回転数よりも高く、高速作動モードにおけるロータ22の回転数よりも低い。例えば、ワイパスイッチ37により中速作動モードが選択された場合、モータ制御装置33は、ブラシレスモータ30を正弦波駆動における進角制御を行ってもよいし、進角・広角通電駆動を行ってもよい。ただし、中速作動モード時の進角・広角通電駆動における通電角は、120度よりも大きく、且つ高速作動モード時における進角・広角通電駆動における通電角よりも狭い。又は、中速作動モード時の進角・広角通電駆動における電気角は、0度よりも大きく、且つ高速作動モード時における進角・広角通電駆動における電気角よりも小さい。
 また、高速作動モード、中速作動モードおよび低速作動モードに限らず、ブラシレスモータ30にかかる負荷が高いと判断されたときに、進角+広角通電駆動を行うようにしてもよい(図10参照)。つまり、ワイパスイッチ37により選択されるモードによらず、モード判定部63への高負荷信号の取得が行われた際に進角+広角通電駆動を行うことが可能である。
 また、図12に示すように、上述の実施形態におけるモータ制御装置33は、ブラシレスモータ30を進角・広角通電駆動する際に、正弦波に高調波を重畳することで擬似的に矩形波を生成しブラシレスモータ30に出力してもよい。
 上述した実施形態における制御部54をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 また、上述した実施形態においては、制御部54は、ロータ22の回転数またはブラシレスモータ30の電流値の所定値、もしくはその両方から算出される所定値にてブラシレスモータ30への負荷を判定していたが、手段は問わない。例えば、電流検出装置やトルクセンサを用いて、負荷を判定してもよい。
 以上、この発明の態様の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
11 フロントガラス
12 ワイパ装置
19 モータユニット
54 制御部
61 位置検出部
62 負荷判定部
63 モード判定部
64 駆動制御部
641 第1駆動制御部
642 第2駆動制御部

Claims (5)

  1.  ワイパアームを揺動動作させるブラシレスモータを制御するモータ制御装置であって、
     回転子の回転位置を検出する位置検出部と、
     前記ブラシレスモータの出力が低い低出力モード時において前記ブラシレスモータを正弦波駆動し、前記低出力モード時よりも出力が高い高出力モード時において通電角を120度よりも大きい角度とし、前記回転子の回転位置を基準として所定の電気角だけ進角させたタイミングで前記ブラシレスモータに通電する制御部と、
     を備えるモータ制御装置。
  2. 前記通電角は、電気角で120度から180度までの間である請求項1に記載のモータ制御装置。
  3.  前記制御部は、前記高出力モード時において、前記ブラシレスモータを矩形波駆動する請求項1又は請求項2に記載のモータ制御装置。
  4.  前記低出力モードは、前記ワイパアームを予め設定された速度で揺動動作させるモードであり、
     前記高出力モードは、前記ワイパアームを前記低出力モードより高速で揺動動作させるモード、又は車速が所定値よりも大きい場合の動作モード、又はブラシレスモータにかかる負荷が所定値よりも大きい場合の動作モードである請求項1から請求項3のいずれか一項に記載のモータ制御装置。
  5.  ワイパアームを揺動動作させるブラシレスモータと、
     請求項1から請求項4のいずれか一項に記載のモータ制御装置と、
     を備えるモータユニット。
PCT/JP2017/005953 2016-03-16 2017-02-17 モータ制御装置及びモータユニット WO2017159214A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/079,329 US20190047517A1 (en) 2016-03-16 2017-02-17 Motor control apparatus and motor unit
JP2018505371A JPWO2017159214A1 (ja) 2016-03-16 2017-02-17 モータ制御装置及びモータユニット
EP17766221.0A EP3431351A4 (en) 2016-03-16 2017-02-17 MOTOR AND ENGINE CONTROL DEVICE
CN201780016795.7A CN108778856A (zh) 2016-03-16 2017-02-17 电动机控制装置和电动机单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016052153 2016-03-16
JP2016-052153 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017159214A1 true WO2017159214A1 (ja) 2017-09-21

Family

ID=59851887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005953 WO2017159214A1 (ja) 2016-03-16 2017-02-17 モータ制御装置及びモータユニット

Country Status (5)

Country Link
US (1) US20190047517A1 (ja)
EP (1) EP3431351A4 (ja)
JP (1) JPWO2017159214A1 (ja)
CN (1) CN108778856A (ja)
WO (1) WO2017159214A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763739A (zh) * 2017-11-10 2019-05-17 爱信精机株式会社 控制车辆的开闭构件的控制设备
CN110435881A (zh) * 2019-08-20 2019-11-12 中航飞机起落架有限责任公司 一种用于飞机前轮电动转弯和减摆的复合控制方法
JP2020115733A (ja) * 2019-01-18 2020-07-30 株式会社ミツバ モータ及びブラシレスワイパーモータ
JPWO2020196744A1 (ja) * 2019-03-26 2020-10-01
CN112513579A (zh) * 2018-08-01 2021-03-16 法雷奥系统公司 Dc电流电动马达、齿轮马达和刮水系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040109A (zh) * 2019-05-08 2019-07-23 上海禹点电子科技有限公司 一种雨刮的调速控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354887A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2004015902A (ja) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd モータの制御装置、モータ、電気機器及びモータの制御方法
WO2007119755A1 (ja) * 2006-04-11 2007-10-25 Nsk Ltd. モータ制御装置及びこれを使用した電動パワーステアリング装置
JP2015168273A (ja) 2014-03-04 2015-09-28 アスモ株式会社 ワイパ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310394A (ja) * 1987-06-08 1988-12-19 Asmo Co Ltd ブロワ用ブラシレスモ−タの駆動方法
US5376870A (en) * 1992-02-10 1994-12-27 Matsushita Electric Industrial Co., Ltd. Apparatus for driving a brushless DC motor
GB0227976D0 (en) * 2002-11-29 2003-01-08 Shaw Thomas M Rotating Electrical Machine
JP4748171B2 (ja) * 2008-02-08 2011-08-17 株式会社デンソー Eps用モータ駆動装置
JP5476177B2 (ja) * 2010-03-26 2014-04-23 パナソニック株式会社 電動工具
JP2014014197A (ja) * 2010-12-28 2014-01-23 Nippon Densan Corp 単相ブラシレスモータ
JP6074694B2 (ja) * 2013-05-28 2017-02-08 カルソニックカンセイ株式会社 車両用ブラシレスモータの制御方法
JP5962591B2 (ja) * 2013-06-03 2016-08-03 株式会社デンソー モータ駆動装置
CN105850027A (zh) * 2013-12-25 2016-08-10 株式会社美姿把 无刷电机及刮水器装置、电机装置及电机装置的控制方法
JP6239377B2 (ja) * 2013-12-25 2017-11-29 株式会社ミツバ ブラシレスモータ及びワイパ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354887A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2004015902A (ja) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd モータの制御装置、モータ、電気機器及びモータの制御方法
WO2007119755A1 (ja) * 2006-04-11 2007-10-25 Nsk Ltd. モータ制御装置及びこれを使用した電動パワーステアリング装置
JP2015168273A (ja) 2014-03-04 2015-09-28 アスモ株式会社 ワイパ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431351A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763739A (zh) * 2017-11-10 2019-05-17 爱信精机株式会社 控制车辆的开闭构件的控制设备
CN112513579A (zh) * 2018-08-01 2021-03-16 法雷奥系统公司 Dc电流电动马达、齿轮马达和刮水系统
CN112513579B (zh) * 2018-08-01 2024-05-07 法雷奥系统公司 Dc电流电动马达、齿轮马达、刮水系统和电连接器
JP2020115733A (ja) * 2019-01-18 2020-07-30 株式会社ミツバ モータ及びブラシレスワイパーモータ
JPWO2020196744A1 (ja) * 2019-03-26 2020-10-01
WO2020196744A1 (ja) 2019-03-26 2020-10-01 株式会社ミツバ モータ制御装置、モータ制御方法及びモータユニット
JP7462613B2 (ja) 2019-03-26 2024-04-05 株式会社ミツバ モータ制御装置、モータ制御方法及びモータユニット
CN110435881A (zh) * 2019-08-20 2019-11-12 中航飞机起落架有限责任公司 一种用于飞机前轮电动转弯和减摆的复合控制方法

Also Published As

Publication number Publication date
CN108778856A (zh) 2018-11-09
JPWO2017159214A1 (ja) 2019-01-24
EP3431351A1 (en) 2019-01-23
US20190047517A1 (en) 2019-02-14
EP3431351A4 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
WO2017159214A1 (ja) モータ制御装置及びモータユニット
JP6316467B2 (ja) ワイパ装置
WO2015045003A1 (ja) ブラシレスワイパモータ
US9929624B2 (en) Brushless motor and wiper apparatus
JP6302638B2 (ja) ワイパ装置
JP2009124834A (ja) ブラシレスモータ
JP5979924B2 (ja) ワイパ装置
JP2010045941A (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP6239377B2 (ja) ブラシレスモータ及びワイパ装置
US8766574B2 (en) Method and control device for operating a three-phase brushless direct current motor
JP6852587B2 (ja) 車両用ワイパ装置
JP2015168273A (ja) ワイパ制御装置
JP2013223317A (ja) ブラシレスワイパモータ
JP6658783B2 (ja) ワイパ制御装置
JP2018174608A (ja) 回路内蔵ブラシレスdcモータおよびそれを搭載した天井扇風機
JP2015196464A (ja) ワイパ制御装置
JP7462613B2 (ja) モータ制御装置、モータ制御方法及びモータユニット
WO2018143259A1 (ja) ワイパ装置
JP7396663B2 (ja) モータ制御装置、モータユニット、モータ制御方法
JP2019043158A (ja) ワイパ装置
JP2019043159A (ja) ワイパ装置
JP2019182003A (ja) ワイパ装置
JP2011010402A (ja) モータ制御装置および電動パワーステアリング装置
JP2010178407A (ja) 電動機駆動装置とそれを用いた空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766221

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766221

Country of ref document: EP

Effective date: 20181016

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766221

Country of ref document: EP

Kind code of ref document: A1