WO2018143259A1 - ワイパ装置 - Google Patents
ワイパ装置 Download PDFInfo
- Publication number
- WO2018143259A1 WO2018143259A1 PCT/JP2018/003173 JP2018003173W WO2018143259A1 WO 2018143259 A1 WO2018143259 A1 WO 2018143259A1 JP 2018003173 W JP2018003173 W JP 2018003173W WO 2018143259 A1 WO2018143259 A1 WO 2018143259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiper
- speed
- wiping
- rotation
- wiper blade
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/06—Wipers or the like, e.g. scrapers characterised by the drive
- B60S1/08—Wipers or the like, e.g. scrapers characterised by the drive electrically driven
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/46—Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
- B60S1/48—Liquid supply therefor
- B60S1/52—Arrangement of nozzles; Liquid spreading means
Definitions
- the present invention relates to a wiper device.
- a wiper device that wipes a wiper blade between an upper reversal position and a lower reversal position on the windshield glass of the vehicle is configured to be able to change the speed of the wiper blade wiping operation.
- the wiping operation of the wiper device is controlled based on a target speed map in which a target speed with respect to the position of the wiper blade on the windshield glass is predetermined.
- the wiping speed is changed by using a target speed map having a target speed different from the target speed map used at the current time point.
- the target speed map is as shown in FIG. 7.
- the position of the wiper blade is defined on the horizontal axis by the rotation angle or time of the wiper motor, and the target speed is defined on the vertical axis.
- P1 indicates the upper reversal position of the wiping range
- P2 indicates the lower reversal position of the wiping range.
- Patent Document 1 describes a “smooth start-up” that is slower than a reference motor speed used in a normal wiping operation when restarting a wiper blade that has stopped between reversal positions.
- An invention of a wiper control device that starts a wiper motor at "speed” is disclosed.
- the control at “smooth start-up speed” described in Patent Document 1 is applied when the wiper blade stopped halfway between the inversion positions is restarted.
- the wiping speed is set during the wiping operation. This is not the case when an instruction to change from low speed to high speed is given.
- the wiper switch is switched at time t01, the wiping speed is changed from the target speed indicated by the low-speed target speed map 192 to the target speed indicated by the high-speed target speed map 190 by “smooth start-up speed”. Even if the wiper switch is gradually changed, the wiper blade reaches the upper turning position P1 before the actual wiping speed reaches the target speed after switching depending on the time when the wiper switch is operated. There is a risk that.
- the wiper blade may overrun at the upper reversal position P1, and the user may feel uncomfortable with the operation of the wiper device.
- the present invention has been made in view of the above, and an object thereof is to provide a wiper device that can smoothly change the wiping speed of a wiper blade.
- a wiper device includes a wiper motor that reciprocates a wiper blade by rotation of an output shaft, and controls the rotation of the wiper motor according to a command signal, and is in a reciprocating wiping operation
- the command signal is changed in a state where the wiper blade is located in the switching prohibition area before the reversal position of the reciprocating wiping operation
- the command signal before the change is changed until the wiper blade reaches the reversal position.
- a controller that controls rotation of the wiper motor and controls rotation of the wiper motor based on a changed command signal when the wiper blade is reversed at the reversal position.
- the wiping speed of the wiper blade can be changed smoothly.
- the control unit changes the command signal in a state where the wiper blade during the reciprocating wiping operation is located in an area other than the switching prohibited area. In this case, control is performed to gradually change the rotation speed from the rotation speed according to the command signal before the change to the rotation speed according to the command signal after the change.
- the wiping speed of the wiper blade can be smoothly changed by gradually changing the wiping speed within a predetermined switching time.
- the time for gradually changing the rotational speed or the rate of change of the rotational speed for gradually changing the rotational speed is predetermined.
- the time for gradually changing the rotational speed or the rate of change of the rotational speed for gradually changing the rotational speed is determined in advance, and the wiping speed of the wiper blade is smoothly smoothed according to the predetermined time or rate of change. Can be changed.
- FIG. 1 is a schematic diagram illustrating a configuration of a wiper device 10 according to the present embodiment.
- the wiper device 10 is for wiping a windshield glass 12 provided in a vehicle such as a passenger car.
- the wiper device 10 includes a pair of wipers 14 and 16, a wiper motor 18, a link mechanism 20, and a wiper device 10. And a wiper control circuit 22 corresponding to the core.
- the wipers 14 and 16 are composed of wiper arms 24 and 26 and wiper blades 28 and 30, respectively.
- the base end portions of the wiper arms 24 and 26 are respectively fixed to pivot shafts 42 and 44 described later, and the wiper blades 28 and 30 are respectively fixed to the distal end portions of the wiper arms 24 and 26.
- the wiper blades 28 and 30 reciprocate on the windshield glass 12 as the wiper arms 24 and 26 rotate, and the wiper blades 28 and 30 wipe the windshield glass 12. Further, a lower inversion position P2 at the time of high speed wiping, a lower inversion position P3 at the time of low speed wiping, and a storage position P4 are provided below the windshield glass 12.
- the wiper motor 18 has an output shaft 32 that can rotate forward and reverse via a speed reduction mechanism 52 mainly composed of a worm gear.
- the link mechanism 20 includes a crank arm 34, a first link rod 36, and a pair of pivots.
- Lever 38, 40, a pair of pivot shafts 42, 44, and a second link rod 46 are provided.
- crank arm 34 One end side of the crank arm 34 is fixed to the output shaft 32, and the other end side of the crank arm 34 is rotatably connected to one end side of the first link rod 36. Further, the other end side of the first link rod 36 is rotatably connected to a position near the end different from the end having the pivot shaft 42 of the pivot lever 38, and the end having the pivot shaft 42 of the pivot lever 38. Both ends of the second link rod 46 are rotatably connected to the end different from the above and the end of the pivot lever 40 corresponding to the end of the pivot lever 38.
- the pivot shafts 42 and 44 are rotatably supported by a pivot holder (not shown) provided on the vehicle body, and the ends of the pivot levers 38 and 40 having the pivot shafts 42 and 44 are connected to the pivot shafts 42 and 44.
- the wiper arms 24 and 26 are fixed to each other.
- the wiper device 10 when the output shaft 32 rotates forward and backward, the rotational force of the output shaft 32 is transmitted to the wiper arms 24 and 26 via the link mechanism 20.
- the wiper blades 28 and 30 reciprocate on the windshield glass 12 with the reciprocating rotation.
- the wiper blade when the output shaft 32 is rotated forward and backward within the range of the rotation angle ⁇ A , the wiper blade reciprocates between the lower reverse position P2 and the upper reverse position P1 during high speed wiping.
- the wiper blade When the output shaft 32 is rotated forward and backward within the range of the rotation angle ⁇ B , the wiper blade reciprocates between the lower inversion position P3 and the upper inversion position P1 during low speed wiping.
- the wiper blade When the output shaft 32 is rotated forward and backward within the range of the rotation angle ⁇ C , the wiper blade reciprocates between the storage position P4 and the upper reverse position P1.
- the case where the output shaft 32 is rotated forward and backward within the range of the rotation angle ⁇ A is a case where a wiper switch 50 described later is in a high-speed operation mode selection position.
- the case where the output shaft 32 is rotated forward and backward within the range of the rotation angle ⁇ B is when the wiper switch 50 described later is in the low speed operation mode selection position or the intermittent operation mode selection position.
- the crank arm 34 and the first link rod 36 are linear. It is configured to be made.
- the wiper motor 18 is connected to a wiper control circuit 22 for controlling the rotation of the wiper motor 18.
- the rotational speed of the output shaft 32 changes according to the position of the wiper blades 28 and 30 on the windshield glass 12 from the rotational angle of the output shaft 32 detected by the absolute angle sensor 54.
- a microcomputer 58 that controls the drive circuit 56 and a memory 60 that stores data used to control the drive circuit 56 are configured, and the wiper switch 50 is connected to the microcomputer 58.
- the memory 60 stores a target speed map that defines the rotational speed of the wiper motor 18 in accordance with the positions of the wiper blades 28 and 30.
- the target speed maps 90 and 92 in FIG. 3 are examples of the target speed map in the present embodiment. As shown in FIG. 3, the target speed map includes a start position ⁇ 0 (upper reversal position P1), a target wiping position ⁇ 1 (lower reversing position P2 at high speed wiping), and a target wiping position ⁇ 2 (lower reversing at low speed wiping).
- the rotation speed of the wiper motor 18 is set to 0, and an upward convex curve is drawn so that the rotation speed of the wiper motor 18 is maximized between the upper reversal position P1 and the lower reversal position P2 during high speed wiping. ing.
- the horizontal axis in FIG. 3 is time. Therefore, it takes time for the wiper blades 28 and 30 to reach the one inversion position of the target speed map 92 having a low wiping speed as compared with the target speed map 90 having a high wiping speed.
- the horizontal axis of the target speed maps 90 and 92 in FIG. 3 may be used for the rotation control of the wiper motor 18 by setting the rotation angle of the output shaft 32 of the wiper motor 18. With such a target speed map, the position of the wiper blades 28 and 30 can be defined by the rotation angle of the output shaft 32 in view of the fact that the rotation angle of the output shaft 32 corresponds to the position of the wiper blades 28 and 30.
- the microcomputer 58 controls the drive circuit 56 according to the target speed map stored in the memory 60 and the rotation angle of the output shaft 32 of the wiper motor 18 detected by the absolute angle sensor 54. Control.
- the absolute angle sensor 54 is a sensor that is provided in the speed reduction mechanism 52 of the wiper motor 18 and detects the rotation angle of the output shaft 32.
- the absolute angle sensor is an MR sensor using a magnetoresistive effect element as an example, and detects a magnetic field of a sensor magnet (not shown) provided at the end of the output shaft 32.
- the absolute angle sensor 54 outputs a signal corresponding to a change in the magnetic field of the sensor magnet by the rotation of the output shaft 32 by serial communication, and the microcomputer 58 rotates the rotation angle of the output shaft 32 from the signal input from the absolute angle sensor 54. Is calculated.
- the microcomputer 58 refers to the target speed map in which the horizontal axis stored in the memory 60 is the rotation angle of the output shaft 32, extracts the rotation speed corresponding to the rotation angle of the output shaft 32 calculated in the target speed map,
- the drive circuit 56 is controlled so that the rotation angle of the output shaft 32 of the wiper motor 18 becomes the rotation speed extracted from the target speed map.
- the drive circuit 56 generates a voltage to be applied to the wiper motor 18 by PWM (pulse width modulation).
- the drive circuit 56 includes an H-bridge circuit that uses an FET (field effect transistor) as a switching element, and outputs a voltage having a predetermined duty ratio under the control of the microcomputer 58.
- the rotation speed and rotation angle of the output shaft 32 are not the same as the rotation speed and rotation angle of the wiper motor main body.
- the wiper motor main body and the speed reduction mechanism 52 are inseparably configured, hereinafter, the rotation speed and rotation angle of the output shaft 32 are regarded as the rotation speed and rotation angle of the wiper motor 18. .
- the wiper switch 50 is a switch that turns on or off the power supplied from the vehicle battery to the wiper motor 18.
- the wiper switch 50 includes a low-speed operation mode selection position for rotating the wiper blades 28 and 30 at a low speed, a high-speed operation mode selection position for rotating the wiper blades 28 and 30 at a high speed, an intermittent operation mode selection position for rotating the wiper blades 28 and 30 intermittently at a constant cycle, and storage. It can be switched to the (stop) mode selection position. Further, a signal corresponding to the selected position of each mode is output to the microcomputer 58.
- the wiper control circuit 22 When a signal output from the wiper switch 50 according to the selected position of each mode is input to the wiper control circuit 22, the wiper control circuit 22 stores control corresponding to the output signal from the wiper switch 50 in the memory 60. According to the target speed map.
- FIG. 2 is a block diagram showing an example of a schematic configuration of the wiper apparatus 10 according to the present embodiment. Moreover, the wiper motor 18 shown in FIG. 2 is a DC motor with a brush as an example.
- the wiper device 10 shown in FIG. 2 includes a drive circuit 56 that generates a voltage to be applied to a coil terminal of the wiper motor 18 and a microcomputer of a wiper control circuit 22 that controls on and off of switching elements that constitute the drive circuit 56. 58.
- the power of the battery 80 is supplied to the microcomputer 58 via the diode 66, and the voltage of the supplied power is detected by a voltage detection circuit 62 provided between the diode 66 and the microcomputer 58. The detection result is output to the microcomputer 58.
- An electrolytic capacitor C1 is provided between the diode 66 and the microcomputer 58, with one end connected and the other end (-) grounded.
- the electrolytic capacitor C1 is a capacitor for stabilizing the power supply of the microcomputer 58.
- the electrolytic capacitor C1 protects the microcomputer 58 by storing a sudden high voltage such as a surge and discharging it to the ground region.
- the microcomputer 58 receives a command signal for instructing the rotational speed of the wiper motor 18 from the wiper switch 50 via the signal input circuit 64.
- the command signal output from the wiper switch 50 is an analog signal
- the signal is digitized by the signal input circuit 64 and input to the microcomputer 58.
- the absolute angle sensor 54 that detects the magnetic field of the sensor magnet 70 that changes according to the rotation of the output shaft 32 is connected to the microcomputer 58.
- the microcomputer 58 specifies the position of the wiper blades 28 and 30 on the windshield glass 12 by calculating the rotation angle of the output shaft 32 based on the signal output from the absolute angle sensor 54. Further, the microcomputer 58 calculates the rotation speed of the output shaft 32 from the change in the rotation angle of the output shaft 32 per unit time.
- the microcomputer 58 refers to the target speed map that defines the rotational speed of the wiper motor 18 according to the position of the wiper blades 28 and 30 stored in the memory 60, and the rotation of the wiper motor 18 determines the specified wiper blade.
- the drive circuit 56 is controlled so as to have a rotational speed corresponding to the positions 28 and 30. If there is a deviation between the rotation speed of the output shaft 32 calculated from the rotation angle detected by the absolute angle sensor 54 and the rotation speed according to the position of the wiper blades 28 and 30, the deviation is eliminated. In this way, the rotational speed of the output shaft 32 is controlled.
- the drive circuit 56 includes an H-bridge circuit 56A using transistors Tr1, Tr2, Tr3, Tr4 which are N-type FETs as switching elements.
- the drains of the transistors Tr1 and Tr2 are connected to the battery 80 via the noise prevention coil 76, and the sources are connected to the drains of the transistors Tr3 and Tr4, respectively.
- the sources of the transistors Tr3 and Tr4 are grounded.
- the source of the transistor Tr1 and the drain of the transistor Tr3 are connected to one end of the coil of the wiper motor 18, and the source of the transistor Tr2 and the drain of the transistor Tr4 are connected to the other end of the coil of the wiper motor 18.
- a reverse connection protection circuit 68 and a noise prevention coil 76 are provided between the battery 80 as a power source and the drive circuit 56, and the electrolytic capacitor C ⁇ b> 2 is parallel to the drive circuit 56. Is provided.
- the noise prevention coil 76 is an element for suppressing noise generated by switching of the drive circuit 56.
- the electrolytic capacitor C2 alleviates noise generated from the drive circuit 56, stores a sudden high voltage such as a surge, and discharges it to the ground region, whereby an excessive current is input to the high voltage drive circuit 56. This is an element for preventing this.
- the reverse connection protection circuit 68 is a circuit for protecting the elements constituting the wiper control circuit 22 when the positive electrode and the negative electrode of the battery 80 are connected in reverse to the case shown in FIG.
- the reverse connection protection circuit 68 includes a so-called diode-connected FET or the like in which its drain and gate are connected.
- FIG. 3 shows a case where, in the wiper device 10 according to the present embodiment, the target speed determined by the target speed map 92 corresponding to the low speed wiping is changed to the target speed determined by the target speed map 90 corresponding to the high speed wiping.
- the horizontal axis in FIG. 3 is time.
- P1 and P2 on the horizontal axis in FIG. 3 indicate times when the wiper blades 28 and 30 reach the upper reversal position P1 and the lower reversal position P2 during high speed wiping. Accordingly, P1 (P2) of the target speed map 92 corresponding to the low speed wiping is later in time series than P1 (P2) of the target speed map 90 corresponding to the high speed wiping.
- the wiper switch 50 is moved from the low speed operation mode selection position at time t1. This is a case where the position is switched to the high speed operation mode selection position.
- the target speed determined by the target speed map 92 is gradually approached from the target speed determined by the target speed map 92.
- the target speed of the wiping speed changes linearly as shown in FIG. 3, and the rate of change of the target speed is constant.
- the target speed target speed before switching
- the target speed S 2 target speed after switching
- the rate of change of the target velocity ⁇ is calculated by the following formula (1).
- the switching time T 1 is specifically determined through calculation at the time of design and actual machine tests so that the wiping speed can be smoothly switched.
- ⁇ (S 2 ⁇ S 1 ) / T 1 (1)
- the change rate ⁇ may be a predetermined value.
- the wiping speed is gradually changed according to the change rate ⁇ , and when the changed target speed is reached, the speed changing process is terminated.
- the switching time T 1 changes according to the difference between the target speeds before and after the change.
- the change rate ⁇ may be changed so as to show a curved shape that changes according to time and position, in addition to the linear shape as shown in FIG.
- a predetermined time range including the time when the wiper blades 28, 30 reach the upper reversal position P ⁇ b> 1 (or the lower reversal position P ⁇ b> 2 during high speed wiping) or the wiper blade 28, If the range of 30 predetermined positions is the switching prohibition area 96 and the above-described time t1 is within the switching prohibition area 96, the wiping speed is not changed from the time t1, and the upper inversion position P1 (or at the time of high speed wiping) Until the lower inversion position P2) is reached, the wiper blades 28 and 30 are wiped using the target speed map 92 before switching as a command value.
- the wiping speed is controlled using the target speed map 90, which is the target speed map after switching, as a command value. Switch.
- the target speed is gradually changed according to the change rate ⁇ of the target speed as shown in the above formula (1), and the actual wiping speed is changed in accordance with the change in the target speed.
- the change rate ⁇ When the wiping speed is gradually changed according to the above, before the wiping speed reaches the target speed after switching, the wiper blades 28 and 30 are in the upper reversing position P1 (the lower reversing position P2 at the high speed wiping or the lower reversing at the low speed wiping). It reaches near the position P3).
- the wiper blades 28 and 30 may overrun at the upper inversion position P1 (the lower inversion position P2 at high speed wiping or the lower inversion position P3 at low speed wiping), and the user feels uncomfortable with the operation of the wiper device 10. There is a case.
- the wiper blades 28 and 30 are in the upper reversing position P1 (the lower reversing position P2 during the high speed wiping or the low speed wiping).
- the wiping speed near the upper inversion position P1 (the lower inversion position P2 at the time of high speed wiping or the lower inversion position P3 at the time of low speed wiping) by switching the target speed map used for the control when reaching the lower inversion position P3). Disturbance of wiping operation due to change of
- the range of the switching prohibition area 96 varies depending on the specification of the wiper device 10, as an example, the wiper blades 28 and 30 reach the upper inversion position P1 (the lower inversion position P2 at the time of high speed wiping or the lower inversion position P3 at the time of low speed wiping).
- the switching prohibition area 96 starts from a time corresponding to the switching time T 1 before the time or a time before the time.
- the horizontal axis is indicated by time, but the horizontal axis may be indicated by the position of the wiper blades 28 and 30 based on the rotation angle of the output shaft 32 of the wiper motor 18 detected by the absolute angle sensor 54.
- Switching inhibition area 96 In this case, switching from the position of the upper reversing position P1 (or a high speed wiping nowadays reversal position P2) from the time before corresponds to the switching time T 1 or older than the hours wiper blades 28 and 29 inhibited area Let 96 begin.
- FIG. 4 is a flowchart showing an example of the wiping speed changing process of the wiper apparatus 10 according to the present embodiment.
- step 400 rotation control based on a command signal corresponding to the position of the wiper switch 50 is executed.
- step 402 it is determined whether or not the wiper switch 50 is operated to change the command signal. If the determination is negative, the procedure of step 400 is continued. If the determination is affirmative, the wiper switch 50 is determined in step 404. Whether or not the position of the wiper blades 28 and 30 when the wiper switch 50 is operated is outside the switching prohibition area 96 is determined.
- step 404 determines whether or not the actual wiping speed of the wiper blades 28 and 30 has reached the changed wiping speed. If the determination is negative, the wiping speed change in step 406 is continued and an affirmative determination is made. In the case of, the process is returned.
- step 410 it is determined in step 410 whether the wiper blades 28, 30 have reached the upper reversal position P1 or the lower reversal position P2 during high speed wiping. If the determination in step 410 is negative, the wiping operation at the wiping speed before the change is continued until the wiper blades 28 and 30 reach the upper reverse position P1 or the high speed wiping lower reverse position P2, and an affirmative determination is made in step 410. In the case of, the wiping speed is changed at the reverse position reached in step 412 and the process is returned.
- the wiper blades 28 and 30 are operated based on the operation of the wiper switch 50 when the wiper blades 28 and 30 reach the reverse position. Control to change the wiping speed. Such control can suppress the turbulence of the wiping operation of the wiper blade in the vicinity of the reversal position and can smoothly change the wiping speed of the wiper blade.
- FIG. 5 is a block diagram showing an outline of an example of the configuration of the wiper control circuit 122 according to the present embodiment.
- the wiper control circuit 122 shown in FIG. 5 includes a drive circuit 126 that generates a voltage to be applied to the coil terminal of the wiper motor 118, and a microcomputer 124 that controls on and off of the switching elements constituting the drive circuit 126. It is out.
- the microcomputer 124 refers to the target speed map that defines the rotational speed of the wiper motor 118 according to the position of the wiper blades 28, 30 stored in the memory 160, and the rotation of the wiper motor 118 determines the specified wiper blade 28,
- the drive circuit 126 is controlled so as to have a rotational speed corresponding to the position of 30. If there is a deviation between the rotation speed of the output shaft 32 calculated from the rotation angle detected by the absolute angle sensor 54 and the rotation speed according to the position of the wiper blades 28 and 30, the deviation is eliminated. In this way, the rotational speed of the output shaft 32 is controlled.
- the rotor 172 of the wiper motor 118 is composed of three S-pole and N-pole permanent magnets.
- the magnetic field of the rotor 172 is detected by the hall sensor 170.
- Hall sensor 170 may detect the magnetic field of a sensor magnet provided separately from rotor 172 in accordance with the polarity of the permanent magnet of rotor 172.
- Hall sensor 170 detects the magnetic field of rotor 172 or the sensor magnet as a magnetic field indicating the position of rotor 172.
- the hall sensor 170 is a sensor for detecting the position of the rotor 172 by detecting a magnetic field formed by the rotor 172 or the sensor magnet.
- the hall sensor 170 includes three hall elements corresponding to U, V, and W phases.
- the Hall sensor 170 outputs a change in the magnetic field generated by the rotation of the rotor 172 as a voltage change signal approximating a sine wave.
- the signal output from the hall sensor 170 is input to the microcomputer 124 which is a control circuit.
- the microcomputer 124 is an integrated circuit, and the power supplied from the battery 80 as a power source is controlled by the standby circuit 150.
- the analog waveform signal input from the hall sensor 170 to the microcomputer 124 is input to the hall sensor edge detector 156 provided with a circuit for converting an analog signal such as a comparator into a digital signal in the microcomputer 124.
- the hall sensor edge detection unit 156 converts the input analog waveform into a digital waveform, and detects an edge portion from the digital waveform.
- the digital waveform and edge information are input to the motor position estimation unit 154, and the position of the rotor 172 is calculated. Information on the calculated position of the rotor 172 is input to the energization control unit 158.
- a signal for instructing the rotation speed of the wiper motor 118 (rotor 172) is input from the wiper switch 50 to the command value calculation unit 152 of the microcomputer 124.
- the command value calculation unit 152 extracts a command related to the rotation speed of the wiper motor 118 from the signal input from the wiper switch 50 and inputs the command to the energization control unit 158.
- the energization control unit 158 calculates the phase of the voltage that changes according to the position of the rotor 172 calculated by the motor position estimation unit 154, and based on the calculated phase and the rotation speed of the rotor 172 indicated by the wiper switch 50. To determine the drive duty value.
- the energization control unit 158 performs PWM control that generates a PWM signal that is a pulse signal corresponding to the drive duty value and outputs the PWM signal to the drive circuit 126.
- the drive circuit 126 is configured by a three-phase (U-phase, V-phase, W-phase) inverter. As shown in FIG. 5, the drive circuit 126 includes three N-channel field effect transistors (MOSFETs) 174U, 174V, and 174W (hereinafter referred to as “FETs 174U, 174V, and 174W”) each serving as an upper switching element. And three N-channel field effect transistors 176U, 176V, and 176W (hereinafter referred to as “FETs 176U, 176V, and 176W”) as lower-stage switching elements.
- MOSFETs N-channel field effect transistors
- FET 174U, 174V, and 174W and the FETs 176U, 176V, and 176W are collectively referred to as “FET 174” and “FET 176” when it is not necessary to distinguish between them, and “U” when it is necessary to distinguish between them. , “V”, “W” are attached with symbols.
- FET 174 and FET 176 the source of FET 174U and the drain of FET 176U are connected to the terminal of coil 140U, the source of FET 174V and the drain of FET 176V are connected to the terminal of coil 140V, the source of FET 174W and the source of FET 176W The drain is connected to the terminal of the coil 140W.
- the gates of the FET 174 and the FET 176 are connected to the energization control unit 158, and a PWM signal is input.
- the FET 174 and the FET 176 are turned on when an H level PWM signal is input to the gate, and a current flows from the drain to the source. Further, when an L level PWM signal is input to the gate, the transistor is turned off and no current flows from the drain to the source.
- the wiper control circuit 122 of the present embodiment includes a battery 80, a noise prevention coil 82, smoothing capacitors 84A and 84B, and the like.
- the battery 80, the noise prevention coil 82, and the smoothing capacitors 84A and 84B constitute a substantially DC power source.
- a voltage sensor that detects the voltage of the battery 80
- a current sensor that detects a motor current that is the current of the coil 140 of the wiper motor 118
- a substrate on which the wiper control circuit 122 is mounted.
- a thermistor or the like for detecting the temperature is mounted.
- FIG. 6A is a time chart showing an example of an energization pattern to the coils 140U, 140V, and 140W in the high torque rotation control.
- Energizations 102U, 102V, and 102W and energizations 104U, 104V, and 104W indicated by rectangles in FIG. 6A indicate timings when the coils 140U, 140V, and 140W are energized.
- 6A and 6B the energizations 102U, 102V, and 102W and the energizations 104U, 104V, and 104W are shown as rectangles for convenience.
- the voltages modulated in a pulse form by PWM are the coils 140U and 140V.
- 6A and 6B (for example, between the time t0 and the time t1) is a time for the rotor 172 to rotate 60 degrees in electrical angle. 6A is a timing corresponding to the position of the magnetic pole of the rotor 172 detected by the Hall sensor 170.
- the FET 174W and the FET 176V are turned on, and the coil 140W is energized to the coil 140V.
- the FET 174U and the FET 176V are turned on, and the coil 140U is energized from the coil 140V.
- the FET 174U and the FET 176W are turned on, and the coil 140U is energized to the coil 140W.
- the FET 174V and the FET 176W are turned on, and the coil 140V is energized to the coil 140W.
- FIG. 6B is a time chart showing an example of an energization pattern to the coils 140U, 140V, and 140W in the high rotation control.
- the energization timings of the energizations 102U, 102V, 102W, 104U, 104V, and 104W in FIG. 6A are respectively advanced by 106, 106V, 106W, 108U, 108V, and 108W when the energization timing is advanced by t ⁇ . It is carried out. Since t ⁇ varies depending on the specifications of the wiper motor and the like, it is specifically determined through a simulation at the time of design or an experiment using an actual machine.
- a brushless DC motor it is effective to advance the electrical angle of the energization timing to each phase of U, V, and W when the output shaft is rotated at high speed. Further, in order to suppress the motor current while ensuring the torque of the output shaft, the U, V, and W phases are energized at a timing corresponding to the magnetic pole position of the rotor 172 detected by the Hall sensor 170. In this embodiment, when the output shaft 32 of the wiper motor 118 is rotated at a high speed, the energization timing is advanced as shown in FIG. 6B to suppress the motor current while ensuring the torque of the output shaft. As shown in FIG.
- the U, V, and W phases are energized at a timing corresponding to the magnetic pole position of the rotor 172 detected by the Hall sensor 170.
- the torque of the output shaft 32 of the wiper motor 118 may be further improved. If the energization timing delay is excessive, the wiper motor 118 cannot maintain the rotation of the output shaft 32 and may step out.
- the wiper switch 50 when the wiper switch 50 is switched from the low speed operation mode selection position to the high speed operation mode selection position, the duty ratio of the voltage applied to the coil of the wiper motor 118 is gradually increased and the energization timing is gradually increased. To advance from low rotation control to high rotation control.
- the wiper switch 50 when the wiper switch 50 is switched from the high speed operation mode selection position to the low speed operation mode selection position, the duty ratio of the voltage applied to the coil of the wiper motor 118 is gradually reduced and the energization timing is also reduced. Is gradually delayed to switch from high rotation control to low rotation control.
- the wiper switch 50 Control to change to the wiping speed based on the operation is performed.
- Such control can suppress the turbulence of the wiping operation of the wiper blade in the vicinity of the reversal position and can smoothly change the wiping speed of the wiper blade.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Water Supply & Treatment (AREA)
- Control Of Direct Current Motors (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
マイクロコンピュータは、目標速度マップに基づいたワイパモータの回転速度の制御中に時間で目標速度マップより定まる払拭速度に変更される指示が入力された場合に、ワイパモータの回転速度を、目標速度マップより定まる回転速度から、目標速度マップより定まる回転速度まで徐々に変化させる。また、マイクロコンピュータは、ワイパブレードが切替禁止領域内に存在するときにワイパスイッチが操作された場合は、ワイパブレードが反転位置に到達してから使用する目標速度マップを切り替える。
Description
本発明は、ワイパ装置に関する。
車両のウィンドシールドガラス上の上反転位置と下反転位置との間でワイパブレードを払拭動作させるワイパ装置は、ワイパブレードの払拭動作の速度を変更可能に構成されている。ワイパ装置の払拭動作は、ウィンドシールドガラス上のワイパブレードの位置に対する目標速度を予め定めた目標速度マップに基づいて制御される。払拭動作の速度(払拭速度)を変更する場合には、現在時点で用いている目標速度マップとは目標速度が異なる目標速度マップを用いることによって、払拭速度を変更する。目標速度マップは、図7に示したようなものであり、例えば、ワイパブレードの位置をワイパモータの回転角度又は時間で横軸に定義し、縦軸に目標速度を定義している。図7において、例えば、P1は払拭範囲の上反転位置を示し、P2は払拭範囲の下反転位置を示している。
特開2011-218998号公報(特許文献1)には、反転位置の間で停止したワイパブレードを再始動する場合に、通常の払拭動作の際に使用される基準モータ速度よりも遅い「滑らか起動速度」でワイパモータを始動するワイパ制御装置の発明が開示されている。
しかしながら、特許文献1に記載の「滑らか起動速度」での制御は、反転位置の間で途中停止したワイパブレードを再始動する場合に適用されるものであり、例えば、払拭動作中に払拭速度を低速から高速に変更する指示がなされた場合は、その限りではない。仮に、図7に示したように、時間t01でワイパスイッチが切り替えられて低速用の目標速度マップ192が示す目標速度から高速用の目標速度マップ190が示す目標速度まで払拭速度を「滑らか起動速度」のように徐々に変更した場合であっても、ワイパスイッチが操作された時間によっては、切り替え後の目標速度に実際の払拭速度が到達する前にワイパブレードが上反転位置P1に到達してしまうおそれがある。
その結果、上反転位置P1でワイパブレードがオーバーランするおそれがあるのみならず、ユーザがワイパ装置の動作に違和感を覚えるおそれがあった。
本発明は上記に鑑みてなされたもので、ワイパブレードの払拭速度を円滑に変更できるワイパ装置を提供することを目的とする。
上記目的を解決するために第1の態様に係るワイパ装置は、出力軸の回転によりワイパブレードを往復払拭動作させるワイパモータと、指令信号に応じて前記ワイパモータの回転を制御すると共に、往復払拭動作中の前記ワイパブレードが、往復払拭動作の反転位置の手前の切替禁止領域に位置した状態で、前記指令信号が変更された場合、前記ワイパブレードが前記反転位置に到達するまで変更前の指令信号に応じて前記ワイパモータの回転を制御し、かつ前記ワイパブレードが前記反転位置で反転する際に変更後の指令信号に基づいて前記ワイパモータの回転を制御する制御部と、を含んでいる。
このワイパ装置によれば、ワイパブレードが反転位置手前の切替禁止領域内の場合には、ワイパスイッチが操作されても払拭速度の変更を行わず、ワイパブレードが反転位置に到達してから払拭速度を変更するので、ワイパブレードの払拭速度を円滑に変更することができる。
第2の態様に係るワイパ装置は、第1の態様において、前記制御部は、往復払拭動作中の前記ワイパブレードが、前記切替禁止領域以外の領域に位置した状態で、前記指令信号が変更された場合、変更前の指令信号に応じた回転速度から変更後の指令信号に応じた回転速度まで、回転速度を徐々に変化させる制御を行う。
このワイパ装置によれば、所定の切替時間内に払拭速度を徐々に変更することにより、ワイパブレードの払拭速度を円滑に変更することができる。
第3の態様に係るワイパ装置は、第2の態様において、前記回転速度を徐々に変化させる時間、または前記回転速度を徐々に変化させる回転速度の変化率は予め定められている。
このワイパ装置によれば、回転速度を徐々に変化させる時間、または回転速度を徐々に変化させる回転速度の変化率は予め定められ、定められた時間または変化率に従って、ワイパブレードの払拭速度を円滑に変更することができる。
[第1の実施の形態]
図1は、本実施の形態に係るワイパ装置10の構成を示す概略図である。ワイパ装置10は、例えば、乗用自動車等の車両に備えられたウィンドシールドガラス12を払拭するためのものであり、一対のワイパ14、16と、ワイパモータ18と、リンク機構20と、ワイパ装置10の中核に相当するワイパ制御回路22とを備えている。
図1は、本実施の形態に係るワイパ装置10の構成を示す概略図である。ワイパ装置10は、例えば、乗用自動車等の車両に備えられたウィンドシールドガラス12を払拭するためのものであり、一対のワイパ14、16と、ワイパモータ18と、リンク機構20と、ワイパ装置10の中核に相当するワイパ制御回路22とを備えている。
ワイパ14、16は、それぞれワイパアーム24、26とワイパブレード28、30とにより構成されている。ワイパアーム24、26の基端部は、後述するピボット軸42、44に各々固定されており、ワイパブレード28、30は、ワイパアーム24、26の先端部に各々固定されている。
ワイパ14、16は、ワイパアーム24、26の回動に伴ってワイパブレード28、30がウィンドシールドガラス12上を往復移動し、ワイパブレード28、30がウィンドシールドガラス12を払拭する。また、ウィンドシールドガラス12の下部には高速払拭時下反転位置P2、低速払拭時下反転位置P3及び格納位置P4が設けられている。
ワイパモータ18は、主にウォームギアで構成された減速機構52を介して、正逆回転可能な出力軸32を有し、リンク機構20は、クランクアーム34と、第1リンクロッド36と、一対のピボットレバー38、40と、一対のピボット軸42、44と、第2リンクロッド46とを備えている。
クランクアーム34の一端側は、出力軸32と固定されており、クランクアーム34の他端側は、第1リンクロッド36の一端側と回動可能に連結されている。また、第1リンクロッド36の他端側は、ピボットレバー38のピボット軸42を有する端とは異なる端寄りの箇所に回動可能に連結されており、ピボットレバー38のピボット軸42を有する端とは異なる端及びピボットレバー40におけるピボットレバー38の当該端に対応する端には、第2リンクロッド46の両端がそれぞれ回動可能に連結されている。
また、ピボット軸42、44は、車体に設けられた図示しないピボットホルダによって回動可能に支持されており、ピボットレバー38、40におけるピボット軸42、44を有する端は、ピボット軸42、44を介してワイパアーム24、26が各々固定されている。
本実施の形態に係るワイパ装置10では、出力軸32が正逆回転されると、この出力軸32の回転力がリンク機構20を介してワイパアーム24、26に伝達され、このワイパアーム24、26の往復回動に伴ってワイパブレード28、30がウィンドシールドガラス12上で往復移動をする。例えば、出力軸32が回転角度θAの範囲で正逆転されると、ワイパブレードは、高速払拭時下反転位置P2と上反転位置P1との間を往復移動する。出力軸32が回転角度θBの範囲で正逆転されると、ワイパブレードは、低速払拭時下反転位置P3と上反転位置P1との間を往復移動する。また、出力軸32が回転角度θCの範囲で正逆転されると、ワイパブレードは、格納位置P4と上反転位置P1との間を往復移動する。出力軸32が回転角度θAの範囲で正逆転される場合は、後述するワイパスイッチ50が高速作動モード選択位置の場合である。また、出力軸32が回転角度θBの範囲で正逆転される場合は、後述するワイパスイッチ50が低速作動モード選択位置又は間欠作動モード選択位置の場合である。
本実施の形態に係るワイパ装置10では、図1に示されるように、ワイパブレード28、30が格納位置P4に位置された場合には、クランクアーム34と第1リンクロッド36とが直線状をなす構成とされている。
ワイパモータ18には、ワイパモータ18の回転を制御するためのワイパ制御回路22が接続されている。本実施の形態に係るワイパ制御回路は、絶対角センサ54が検知した出力軸32の回転角からワイパブレード28、30のウィンドシールドガラス12上における位置に応じて出力軸32の回転速度が変化するように駆動回路56を制御するマイクロコンピュータ58及び駆動回路56の制御に用いるデータを記憶したメモリ60を有して構成され、マイクロコンピュータ58には、ワイパスイッチ50が接続されている。
メモリ60は、ワイパブレード28、30の位置に応じてワイパモータ18の回転速度を規定した目標速度マップを記憶している。図3の目標速度マップ90、92は、本実施の形態における目標速度マップの一例である。図3に示したように、目標速度マップは、開始位置θ0(上反転位置P1)、目標払拭位置θ1(高速払拭時下反転位置P2)及び目標払拭位置θ2(低速払拭時下反転位置P3)でワイパモータ18の回転速度は0に定められ、上反転位置P1と高速払拭時下反転位置P2との間でワイパモータ18の回転速度が最大になるように、上の凸の曲線を描いている。図3の横軸は時間である。そのため、払拭速度が遅い目標速度マップ92は、払拭速度が速い目標速度マップ90に比して、一方の反転位置にワイパブレード28、30が到達するのに時間がかかる。また、図3の目標速度マップ90、92の横軸をワイパモータ18の出力軸32の回転角度にして、ワイパモータ18の回転制御に使用してもよい。かかる目標速度マップであれば、出力軸32の回転角度がワイパブレード28、30の位置と対応することに鑑み、出力軸32の回転角度でワイパブレード28、30の位置を規定することができる。
マイクロコンピュータ58は、ワイパスイッチ50がオンになった場合に、メモリ60に記憶されている目標速度マップと、絶対角センサ54によって検出されたワイパモータ18の出力軸32の回転角度に従って駆動回路56を制御する。
絶対角センサ54は、ワイパモータ18の減速機構52内に設けられ、出力軸32の回転角度を検出するセンサである。絶対角センサは、一例として、磁気抵抗効果素子を用いたMRセンサであり、出力軸32の末端に設けられたセンサマグネット(図示せず)の磁界を検出する。絶対角センサ54は、出力軸32の回転によるセンサマグネットの磁界の変化に応じた信号をシリアル通信で出力し、マイクロコンピュータ58は、絶対角センサ54から入力された信号から出力軸32の回転角度を算出する。
マイクロコンピュータ58は、メモリ60に記憶された横軸が出力軸32の回転角度である目標速度マップを参照し、目標速度マップにおいて算出した出力軸32の回転角度に対応する回転速度を抽出し、ワイパモータ18の出力軸32の回転角度が目標速度マップから抽出した回転速度になるように駆動回路56を制御する。
駆動回路56は、ワイパモータ18に印加する電圧をPWM(pulse width modulation)によって生成する。駆動回路56は、スイッチング素子にFET(電界効果トランジスタ)を使用したHブリッジ回路を含み、マイクロコンピュータ58の制御によって、所定のデューティ比の電圧を出力する。
本実施の形態に係るワイパモータ18は、前述のように減速機構52を有しているので、出力軸32の回転速度及び回転角は、ワイパモータ本体の回転速度及び回転角と同一ではない。しかしながら、本実施の形態では、ワイパモータ本体と減速機構52は一体不可分に構成されているので、以下、出力軸32の回転速度及び回転角を、ワイパモータ18の回転速度及び回転角とみなすものとする。
ワイパスイッチ50は、車両のバッテリからワイパモータ18に供給される電力をオン又はオフするスイッチである。
ワイパスイッチ50は、ワイパブレード28、30を、低速で回動させる低速作動モード選択位置、高速で回動させる高速作動モード選択位置、一定周期で間欠的に回動させる間欠作動モード選択位置、格納(停止)モード選択位置に切換可能である。また、各モードの選択位置に応じた信号をマイクロコンピュータ58に出力する。
ワイパスイッチ50から各モードの選択位置に応じて出力された信号がワイパ制御回路22に入力されると、ワイパ制御回路22がワイパスイッチ50からの出力信号に対応する制御をメモリ60に記憶されている目標速度マップに従って行うようになっている。
図2は、本実施の形態に係るワイパ装置10の構成の概略の一例を示すブロック図である。また、図2示したワイパモータ18は、一例として、ブラシ付きDCモータである。
図2に示したワイパ装置10は、ワイパモータ18のコイルの端子に印加する電圧を生成する駆動回路56と、駆動回路56を構成するスイッチング素子のオン及びオフを制御するワイパ制御回路22のマイクロコンピュータ58とを含んでいる。マイクロコンピュータ58には、ダイオード66を介してバッテリ80の電力が供給されると共に、供給される電力の電圧は、ダイオード66とマイクロコンピュータ58との間に設けられた電圧検出回路62によって検知され、検知結果はマイクロコンピュータ58に出力される。また、ダイオード66とマイクロコンピュータ58との間に一端が接続され、他端(-)が接地された電解コンデンサC1が設けられている。電解コンデンサC1は、マイクロコンピュータ58の電源を安定化するためのコンデンサである。電解コンデンサC1は、例えば、サージ等の突発的な高電圧を蓄え、接地領域に放電することにより、マイクロコンピュータ58を保護する。
マイクロコンピュータ58には信号入力回路64を介してワイパスイッチ50からワイパモータ18の回転速度を指示するための指令信号が入力される。ワイパスイッチ50から出力された指令信号がアナログ信号の場合には、当該信号は信号入力回路64においてデジタル化されてマイクロコンピュータ58に入力される。
また、マイクロコンピュータ58には、出力軸32の回転に応じて変化するセンサマグネット70の磁界を検知する絶対角センサ54が接続されている。マイクロコンピュータ58は、絶対角センサ54が出力した信号に基づいて、出力軸32の回転角度を算出することにより、ワイパブレード28、30のウィンドシールドガラス12上での位置を特定する。また、マイクロコンピュータ58は、単位時間での出力軸32の回転角度の変化から、出力軸32の回転速度を算出する。
さらに、マイクロコンピュータ58は、メモリ60に記憶されているワイパブレード28、30の位置に応じてワイパモータ18の回転速度を規定した目標速度マップを参照して、ワイパモータ18の回転が、特定したワイパブレード28、30の位置に応じた回転速度になるように駆動回路56を制御する。絶対角センサ54で検出された回転角度から算出された出力軸32の回転速度と、ワイパブレード28、30の位置に応じた回転速度とに偏差が生じている場合には、当該偏差を解消するようにして、出力軸32の回転速度を制御する。
駆動回路56は、図2に示すように、スイッチング素子にN型のFETであるトランジスタTr1、Tr2、Tr3、Tr4を用いたHブリッジ回路56Aを備えている。トランジスタTr1及びトランジスタTr2は、ドレインがノイズ防止コイル76を介してバッテリ80に各々接続されており、ソースがトランジスタTr3及びトランジスタTr4のドレインに各々接続されている。また、トランジスタTr3及びトランジスタTr4のソースは接地されている。
また、トランジスタTr1のソース及びトランジスタTr3のドレインは、ワイパモータ18のコイルの一端に接続されており、トランジスタTr2のソース及びトランジスタTr4のドレインは、ワイパモータ18のコイルの他端に接続されている。
トランジスタTr1及びトランジスタTr4の各々のゲートにハイレベル信号が入力されることにより、トランジスタTr1及びトランジスタTr4がオンになり、ワイパモータ18には例えばワイパブレード28、30を車室側から見て時計回りに動作させるCW電流72が流れる。さらに、トランジスタTr1及びトランジスタTr4の一方をオン制御しているとき、他方をPWM制御により、小刻みにオンオフ制御することにより、CW電流72の電圧を変調できる。
また、トランジスタTr2及びトランジスタTr3の各々のゲートにハイレベル信号が入力されることにより、トランジスタTr2及びトランジスタTr3がオンになり、ワイパモータ18には例えばワイパブレード28、30を車室側から見て反時計回りに動作させるCCW電流74が流れる。さらに、トランジスタTr2及びトランジスタTr3の一方をオン制御しているとき、他方をPWM制御により、小刻みにオンオフ制御することにより、CCW電流74の電圧を変調できる。
本実施の形態では、電源であるバッテリ80と駆動回路56との間には逆接続保護回路68及びノイズ防止コイル76が設けられると共に、駆動回路56に対して並列になるように電解コンデンサC2が設けられている。ノイズ防止コイル76は、駆動回路56のスイッチングによって発生するノイズを抑制するための素子である。
電解コンデンサC2は、駆動回路56から生じるノイズを緩和すると共に、サージ等の突発的な高電圧を蓄え、接地領域に放電することにより、当該高電圧の駆動回路56に過大な電流が入力されるのを防止するための素子である。
逆接続保護回路68は、バッテリ80の正極と負極が図2に示した場合とは逆に接続された場合に、ワイパ制御回路22を構成する素子を保護するための回路である。逆接続保護回路68は、一例として、自身のドレインとゲートを接続した、いわゆるダイオード接続されたFET等で構成される。
以下、本実施の形態に係るワイパ装置10の作用及び効果について説明する。図3は、本実施の形態に係るワイパ装置10において、低速払拭時に対応した目標速度マップ92で定められた目標速度から高速払拭時に対応した目標速度マップ90で定められた目標速度に変更する場合の一例を示している。図3の横軸は時間である。図3の横軸上のP1、P2は、ワイパブレード28、30が上反転位置P1、高速払拭時下反転位置P2に達した場合の時間を示している。従って、低速払拭時に対応した目標速度マップ92のP1(P2)は、高速払拭時に対応した目標速度マップ90のP1(P2)よりも、時系列では後の時間になる。
図3に示したように、目標速度マップ92で定められた目標速度から目標速度マップ90で定められた目標速度に変更される場合は、時間t1に、ワイパスイッチ50が低速作動モード選択位置から高速作動モード選択位置に切り替えられた場合である。本実施の形態では、時間t1から時間t2までの間に、目標速度マップ92で定められた目標速度から目標速度マップ90で定められた目標速度に徐々に近付ける。
本実施の形態では、払拭速度の目標速度は、図3に示したように線形的に変化し、目標速度の変化率は一定である。例えば、図3において時間t1での目標速度(切替前の目標速度)がS1で、時間t2での目標速度(切替後の目標速度)がS2で、払拭速度の切替に要する時間がt2-t1=T1の場合、目標速度の変化率αは下記の式(1)で算出される。切替時間T1は、払拭速度の切替が円滑に行われるように、設計時の計算及び実機の試験を通じて具体的に決定する。
α=(S2-S1)/T1 …(1)
α=(S2-S1)/T1 …(1)
変化率αは予め定められた値でもよい。ワイパスイッチ50が操作された場合、払拭速度を変化率αに従って徐々に変化させ、変更後の目標速度に達した場合に、速度変更の処理を終了する。かかる場合は、切替時間T1は、変更前後の目標速度の差に応じて変化する。また、変化率αは、図3のような直線状以外に、時間や位置に応じて変化する曲線状を示すように変化させてもよい。
ワイパスイッチ50が低速作動モード選択位置から高速作動モード選択位置に切り替えられる時間t1がワイパブレード28、30が上反転位置P1(又は高速払拭時下反転位置P2)に到達する時間に近い場合は、切り替え後の目標速度に実際の払拭速度が到達する前にワイパブレードが上反転位置P1(又は高速払拭時下反転位置P2)に到達してしまうおそれがある。
本実施の形態では、図3に示したように、ワイパブレード28、30が上反転位置P1(又は高速払拭時下反転位置P2)に到達する時間を含む所定の時間の範囲又はワイパブレード28、30の所定の位置の範囲を切替禁止領域96とし、上述の時間t1が切替禁止領域96内にある場合には、時間t1から払拭速度の変更を行わず、上反転位置P1(又は高速払拭時下反転位置P2)に到達するまでは、切替前の目標速度マップ92を指令値としてワイパブレード28、30を払拭動作させる。そして、ワイパブレード28、30が上反転位置P1(又は高速払拭時下反転位置P2)に到達した際に、切替後の目標速度マップである目標速度マップ90を指令値とした払拭速度の制御に切り替える。
本実施の形態では、ワイパブレード28、30が上反転位置P1と高速払拭時下反転位置P2(又は低速払拭時下反転位置P3)との間を払拭動作中にワイパスイッチ50が操作された場合には、上述の式(1)に示したような目標速度の変化率αに従って、徐々に目標速度を変化させ、かつ実際の払拭速度を当該目標速度の変化に応じて変化させる。しかしながら、ワイパスイッチ50が操作されたタイミングが、ワイパブレード28、30が上反転位置P1(高速払拭時下反転位置P2又は低速払拭時下反転位置P3)の近くに達した場合は、変化率αに従って払拭速度を徐々に変化させていたのでは、払拭速度が切替後の目標速度に達する前に、ワイパブレード28、30が上反転位置P1(高速払拭時下反転位置P2又は低速払拭時下反転位置P3)付近に到達する。その結果、上反転位置P1(高速払拭時下反転位置P2又は低速払拭時下反転位置P3)でワイパブレード28、30がオーバーランする場合があるし、ユーザがワイパ装置10の動作に違和感を覚える場合がある。
本実施の形態では、上述のように、ワイパスイッチが操作されたタイミングが切替禁止領域96内の場合には、ワイパブレード28、30が上反転位置P1(高速払拭時下反転位置P2又は低速払拭時下反転位置P3)に到達した際に、制御に使用する目標速度マップを切替えることにより、上反転位置P1(高速払拭時下反転位置P2又は低速払拭時下反転位置P3)付近での払拭速度の変更に伴う払拭動作の乱れを防止する。
切替禁止領域96の範囲は、ワイパ装置10の仕様によって異なるが、一例として、ワイパブレード28、30が上反転位置P1(高速払拭時下反転位置P2又は低速払拭時下反転位置P3)に到達する時間よりも切替時間T1に相当する時間前又は当該時間以上前の時間から切替禁止領域96が始まるようにする。
なお、図3では横軸を時間で示したが、横軸を、絶対角センサ54が検知したワイパモータ18の出力軸32の回転角度に基づくワイパブレード28、30の位置で示してもよい。かかる場合に切替禁止領域96は、上反転位置P1(又は高速払拭時下反転位置P2)から切替時間T1に相当する時間前又は当該時間以上前のワイパブレード28、29の位置から切替禁止領域96が始まるようにする。
図4は、本実施の形態に係るワイパ装置10の払拭速度変更処理の一例を示したフローチャートである。ステップ400では、ワイパスイッチ50の位置に応じた指令信号に基づく回転制御が実行される。
ステップ402では、ワイパスイッチ50が操作されて指令信号に変化が生じたか否かが判定され、否定判定の場合にはステップ400の手順を継続し、肯定判定の場合にはステップ404で、ワイパスイッチ50が操作された時間又はワイパスイッチ50が操作された際のワイパブレード28、30の位置が切替禁止領域96外か否かを判定する。
ステップ404で肯定判定の場合には、ステップ406で払拭速度を変更する。ステップ408では、ワイパブレード28、30の実際の払拭速度が変更後の払拭速度に到達したか否かを判定し、否定判定の場合にはステップ406での払拭速度の変更を継続し、肯定判定の場合には、処理をリターンする。
ステップ404で否定判定の場合には、ステップ410でワイパブレード28、30が上反転位置P1又は高速払拭時下反転位置P2に到達したか否かを判定する。ステップ410で否定判定の場合には、ワイパブレード28、30が上反転位置P1又は高速払拭時下反転位置P2に到達するまで変更前の払拭速度での払拭動作を継続し、ステップ410で肯定判定の場合には、ステップ412で到達した反転位置で払拭速度を変更して処理をリターンする。
以上説明したように、本実施の形態によれば、ワイパスイッチが操作されたタイミングが反転位置に近い場合にはワイパブレード28、30が反転位置に到達した際に、ワイパスイッチ50の操作に基づいた払拭速度に変更する制御を行う。かかる制御により、反転位置付近でのワイパブレードの払拭動作の乱調を抑制することができ、ワイパブレードの払拭速度を円滑に変更できる。
[第2の実施の形態]
続いて、本発明の第2の実施の形態について説明する。本実施の形態は、ワイパモータ118がブラシレスDCモータである点が第1の実施の形態と相違するが、その他の構成については、図1に示した第1の実施の形態と同じなので、詳細な説明は省略する。
続いて、本発明の第2の実施の形態について説明する。本実施の形態は、ワイパモータ118がブラシレスDCモータである点が第1の実施の形態と相違するが、その他の構成については、図1に示した第1の実施の形態と同じなので、詳細な説明は省略する。
図5は、本実施の形態に係るワイパ制御回路122の構成の一例の概略を示すブロック図である。図5に示したワイパ制御回路122は、ワイパモータ118のコイルの端子に印加する電圧を生成する駆動回路126と、駆動回路126を構成するスイッチング素子のオン及びオフを制御するマイクロコンピュータ124とを含んでいる。
マイクロコンピュータ124は、メモリ160に記憶されているワイパブレード28、30の位置に応じてワイパモータ118の回転速度を規定した目標速度マップを参照して、ワイパモータ118の回転が、特定したワイパブレード28、30の位置に応じた回転速度になるように駆動回路126を制御する。絶対角センサ54で検出された回転角度から算出された出力軸32の回転速度と、ワイパブレード28、30の位置に応じた回転速度とに偏差が生じている場合には、当該偏差を解消するようにして、出力軸32の回転速度を制御する。
ワイパモータ118のロータ172は、各々3つのS極及びN極の永久磁石で構成されている。ロータ172の磁界は、ホールセンサ170によって検知される。ホールセンサ170は、ロータ172の永久磁石の極性に対応してロータ172とは別に設けられたセンサマグネットの磁界を検知してもよい。ホールセンサ170は、ロータ172又はセンサマグネットの磁界を、ロータ172の位置を示す磁界として検知する。
ホールセンサ170は、ロータ172又はセンサマグネットにより形成された磁界を検出することにより、ロータ172の位置を検出するためのセンサである。ホールセンサ170は、U、V、Wの各相に対応する3つのホール素子を含んでいる。ホールセンサ170は、ロータ172の回転によって生じた磁界の変化を、正弦波に近似した電圧の変化の信号として出力する。
ホールセンサ170が出力した信号は、制御回路であるマイクロコンピュータ124に入力される。マイクロコンピュータ124は、集積回路であり、スタンバイ回路150によって電源であるバッテリ80から供給される電力が制御されている。
ホールセンサ170からマイクロコンピュータ124に入力されたアナログ波形の信号は、マイクロコンピュータ124内にある、コンパレータ等のアナログ信号をデジタル信号に変換する回路を備えたホールセンサエッジ検出部156に入力される。ホールセンサエッジ検出部156では、入力されたアナログ波形をデジタル波形に変換し、デジタル波形からエッジ部分を検出する。
デジタル波形及びエッジの情報はモータ位置推定部154に入力され、ロータ172の位置が算出される。算出されたロータ172の位置の情報は、通電制御部158に入力される。
また、マイクロコンピュータ124の指令値算出部152には、ワイパスイッチ50からワイパモータ118(ロータ172)の回転速度を指示するための信号が入力される。指令値算出部152は、ワイパスイッチ50から入力された信号からワイパモータ118の回転速度に係る指令を抽出して、通電制御部158に入力する。
通電制御部158は、モータ位置推定部154で算出されたロータ172の位置に応じて変化する電圧の位相を算出すると共に、算出した位相及びワイパスイッチ50により指示されたロータ172の回転速度に基づいて駆動デューティ値を決定する。また、通電制御部158は、駆動デューティ値に応じたパルス信号であるPWM信号を生成して駆動回路126に出力するPWM制御を行う。
駆動回路126は、三相(U相、V相、W相)インバータにより構成されている。図5に示すように、駆動回路126は、各々が上段スイッチング素子としての3つのNチャンネル電界効果トランジスタ(MOSFET)174U、174V、174W(以下、「FET174U、174V、174W」と言う)、各々が下段スイッチング素子としての3つのNチャンネル電界効果トランジスタ176U、176V、176W(以下、「FET176U、176V、176W」と言う)とを備えている。なお、FET174U、174V、174W及びFET176U、176V、176Wは、各々、個々を区別する必要がない場合は「FET174」、「FET176」と総称し、個々を区別する必要がある場合は、「U」、「V」、「W」の符号を付して称する。
FET174、FET176のうち、FET174Uのソース及びFET176Uのドレインは、コイル140Uの端子に接続されており、FET174Vのソース及びFET176Vのドレインは、コイル140Vの端子に接続されており、FET174Wのソース及びFET176Wのドレインは、コイル140Wの端子に接続されている。
FET174及びFET176のゲートは通電制御部158に接続されており、PWM信号が入力される。FET174及びFET176は、ゲートにHレベルのPWM信号が入力するとオン状態になり、ドレインからソースに電流が流れる。また、ゲートにLレベルのPWM信号が入力されるとオフ状態になり、ドレインからソースへ電流が流れない状態になる。
また、本実施の形態のワイパ制御回路122には、バッテリ80、ノイズ防止コイル82、及び平滑コンデンサ84A、84B等が構成されている。バッテリ80、ノイズ防止コイル82、及び平滑コンデンサ84A、84Bは略直流電源を構成している。なお、図5には図示していないが、バッテリ80の電圧を検出する電圧センサ、ワイパモータ118のコイル140の電流であるモータ電流を検出する電流センサ、及びワイパ制御回路122が実装された基板の温度を検出するためのサーミスタ等が実装されている。
図6Aは高トルク回転制御におけるコイル140U、140V、140Wへの通電パターンの一例を示したタイムチャートである。図6Aにおいて矩形で示された通電102U、102V、102W及び通電104U、104V、104Wは、コイル140U、140V、140Wへ通電されるタイミングを示している。図6A,Bにおいて、通電102U、102V、102W及び通電104U、104V、104Wは、便宜上、矩形で示されているが、実際の通電では、PWMによりパルス状に変調された電圧がコイル140U、140V、140Wに印加される。なお、図6A,Bの単位時間(例えば、時間t0から時間t1の間)は、ロータ172が電気角で60°回転する時間である。また、図6Aにおける通電のタイミングは、ホールセンサ170によって検出したロータ172の磁極の位置に対応したタイミングである。
時間t0から時間t1までは、FET174WとFET176Vとがオンになり、コイル140Wからコイル140Vへ通電される。時間t1から時間t2では、FET174UとFET176Vとがオンになり、コイル140Uからコイル140Vへ通電される。時間t2から時間t3では、FET174UとFET176Wとがオンになり、コイル140Uからコイル140Wへ通電される。時間t3から時間t4では、FET174VとFET176Wとがオンになり、コイル140Vからコイル140Wへ通電される。時間t4から時間t5では、FET174VとFET176Uとがオンになり、コイル140Vからコイル140Uへ通電される。時間t5から時間t6では、FET174WとFET176Uとがオンになり、コイル140Wからコイル140Uへ通電される。時間t6から時間t7では、FET174WとFET176Vとがオンになり、コイル140Wからコイル140Vへ通電される。時間t7から時間t8では、FET174UとFET176Vとがオンになり、コイル140Uからコイル140Vへ通電される。
図6Bは、高回転制御におけるコイル140U、140V、140Wへの通電パターンの一例を示したタイムチャートである。図6Bでは、図6Aの通電102U、102V、102W、104U、104V、104Wに対して通電のタイミングを各々tα早めた(進角させた)タイミングで通電106U、106V、106W、108U、108V、108Wを行っている。tαは、ワイパモータの仕様等によって異なるので、設計時のシミュレーション、又は実機を用いた実験を通じて具体的に決定する。
一般にブラシレスDCモータでは、出力軸を高速回転させる場合に、U、V、Wの各相への通電タイミングの電気角を進角させることが効果的である。また、出力軸のトルクを担保しつつモータ電流を抑制するには、ホールセンサ170によって検出したロータ172の磁極の位置に対応したタイミングでU、V、Wの各相へ通電する。本実施の形態では、ワイパモータ118の出力軸32を高速回転させる場合には図6Bに示したように通電タイミングを進角させ、出力軸のトルクを担保しつつモータ電流を抑制するには図6Aに示したようにホールセンサ170によって検出したロータ172の磁極の位置に対応したタイミングでU、V、Wの各相へ通電する。なお、図6Aに示した通電タイミングよりも遅角させたタイミングでU、V、Wの各相に通電した場合は、ワイパモータ118の出力軸32のトルクがさらに向上する場合があるが、モータ電流は増大し、また、通電タイミングの遅角が過大な場合には、ワイパモータ118は出力軸32の回転を維持できず脱調するおそれがある。
本実施の形態では、ワイパスイッチ50が、低速作動モード選択位置の場合に低回転制御を行い、高速作動モード選択位置の場合に高回転制御を行う。上述のように、低回転制御では、ワイパモータ18の出力軸32のトルクを大きくしてもモータ電流は、高回転制御の場合よりも抑制される。ワイパ装置10を始動する際には、多くの場合、ワイパスイッチ50を格納(停止)モード選択位置から低速作動モード選択位置に切り替えるが、ワイパ装置10の始動直後には、ウィンドシールドガラス12上には積雪等の障害物が存在する場合がある。本実施の形態では、かかる障害物を払拭排除するために、始動直後に選択される機会が多い低速作動モードでワイパモータ18の出力軸32のトルクを大きくする低回転制御を行う。
本実施の形態では、ワイパスイッチ50が低速作動モード選択位置から高速作動モード選択位置に切り替えられた場合は、ワイパモータ118のコイルに印加する電圧のデューティ比を徐々に大きくすると共に、通電タイミングを徐々に進角させて、低回転制御から高回転制御に切り替える。
また、本実施の形態では、ワイパスイッチ50が高速作動モード選択位置から低速作動モード選択位置に切り替えられた場合は、ワイパモータ118のコイルに印加する電圧のデューティ比を徐々に小さくすると共に、通電タイミングを徐々に遅角させて、高回転制御から低回転制御に切り替える。
また本実施の形態では、第1の実施の形態のように、ワイパスイッチが操作されたタイミングが反転位置に近い場合にはワイパブレード28、30が反転位置に到達した際に、ワイパスイッチ50の操作に基づいた払拭速度に変更する制御を行う。かかる制御により、反転位置付近でのワイパブレードの払拭動作の乱調を抑制することができ、ワイパブレードの払拭速度を円滑に変更できる。
日本出願特願2017-017774号の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (5)
- 出力軸の回転によりワイパブレードを往復払拭動作させるワイパモータと、
指令信号に応じて前記ワイパモータの回転を制御すると共に、往復払拭動作中の前記ワイパブレードが、往復払拭動作の反転位置の手前の切替禁止領域に位置した状態で、前記指令信号が変更された場合、前記ワイパブレードが前記反転位置に到達するまで変更前の指令信号に応じて前記ワイパモータの回転を制御し、かつ前記ワイパブレードが前記反転位置で反転する際に変更後の指令信号に基づいて前記ワイパモータの回転を制御する制御部と、
を含むワイパ装置。 - 前記制御部は、往復払拭動作中の前記ワイパブレードが、前記切替禁止領域以外の領域に位置した状態で、前記指令信号が変更された場合、変更前の指令信号に応じた回転速度から変更後の指令信号に応じた回転速度まで、回転速度を徐々に変化させる制御を行う請求項1に記載のワイパ装置。
- 前記回転速度を徐々に変化させる時間、または前記回転速度を徐々に変化させる回転速度の変化率は予め定められている請求項2に記載のワイパ装置。
- 前記切替禁止領域は、前記ワイパブレードが前記反転位置に到達する時間よりも、前記回転速度を徐々に変化させるために必要な切替時間に相当する時間前又は当該時間以上前の前記ワイパブレードの位置から始まるように設定される請求項2または3に記載のワイパ装置。
- 前記出力軸の回転角度を検知する回転角度検出部を備え、
前記制御部は、前記回転角度検出部が検知した回転角度に基づいて前記ワイパブレードの位置及び前記出力軸の回転速度を算出し、前記出力軸の回転速度及び予め定められた回転速度の変化率に基づいて前記切替時間を算出し、前記ワイパブレードの位置及び前記切替時間に基づいて前記ワイパブレードが前記切替禁止領域に位置するか否かを判断する請求項4に記載のワイパ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/480,620 US11014538B2 (en) | 2017-02-02 | 2018-01-31 | Wiper device |
CN201880009398.1A CN110234546B (zh) | 2017-02-02 | 2018-01-31 | 雨刮器装置 |
DE112018000657.3T DE112018000657B4 (de) | 2017-02-02 | 2018-01-31 | Wischervorrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017017774A JP6859728B2 (ja) | 2017-02-02 | 2017-02-02 | ワイパ装置 |
JP2017-017774 | 2017-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018143259A1 true WO2018143259A1 (ja) | 2018-08-09 |
Family
ID=63039712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003173 WO2018143259A1 (ja) | 2017-02-02 | 2018-01-31 | ワイパ装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11014538B2 (ja) |
JP (1) | JP6859728B2 (ja) |
CN (1) | CN110234546B (ja) |
DE (1) | DE112018000657B4 (ja) |
WO (1) | WO2018143259A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11420594B2 (en) * | 2017-08-28 | 2022-08-23 | Rosemount Aerospace Inc. | Configurable variable sweep variable speed wiper system |
CN111361528A (zh) * | 2020-04-27 | 2020-07-03 | 浙江宏博汽配有限公司 | 一种智能雨刷电机的控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247541A (ja) * | 1985-04-26 | 1986-11-04 | Nissan Motor Co Ltd | ワイパ−駆動装置 |
JP2001026255A (ja) * | 1999-07-13 | 2001-01-30 | Jidosha Denki Kogyo Co Ltd | ワイパ装置 |
JP2002264776A (ja) * | 2001-03-14 | 2002-09-18 | Mitsuba Corp | ワイパ装置の制御方法 |
JP2014015158A (ja) * | 2012-07-10 | 2014-01-30 | Asmo Co Ltd | ワイパ装置 |
JP2015006809A (ja) * | 2013-06-24 | 2015-01-15 | アスモ株式会社 | ワイパ制御装置 |
JP2018001816A (ja) * | 2016-06-28 | 2018-01-11 | アスモ株式会社 | ワイパ制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4742280A (en) * | 1986-02-14 | 1988-05-03 | Nippondenso Co., Ltd. | Control device for wiper apparatus with two-direction rotatable motor |
EP1069013A3 (en) * | 1999-07-13 | 2005-01-19 | Jidosha Denki Kogyo Kabushiki Kaisha | Wiper control device |
FR2818600B1 (fr) * | 2000-12-21 | 2003-03-07 | Valeo Systemes Dessuyage | Procede de commande d'un moteur d'essuyage, controleur mettant en oeuvre le procede et dispositif d'essuyage utilisant un tel controleur |
JP2009248650A (ja) * | 2008-04-02 | 2009-10-29 | Toyota Motor Corp | ワイパ制御装置 |
JP5466563B2 (ja) * | 2010-04-12 | 2014-04-09 | 株式会社ミツバ | ワイパ制御装置及びワイパ装置制御方法 |
JP2013023176A (ja) * | 2011-07-26 | 2013-02-04 | Mitsuba Corp | モータ制御装置 |
US9061657B2 (en) * | 2012-07-10 | 2015-06-23 | Asmo Co., Ltd. | Wiper device |
EP2873568B1 (en) * | 2012-07-12 | 2020-05-06 | Mitsuba Corporation | Wiper control method and wiper control device |
JP6448485B2 (ja) | 2015-06-26 | 2019-01-09 | 三菱電機株式会社 | 太陽電池モジュール、太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置 |
-
2017
- 2017-02-02 JP JP2017017774A patent/JP6859728B2/ja active Active
-
2018
- 2018-01-31 US US16/480,620 patent/US11014538B2/en active Active
- 2018-01-31 DE DE112018000657.3T patent/DE112018000657B4/de active Active
- 2018-01-31 CN CN201880009398.1A patent/CN110234546B/zh active Active
- 2018-01-31 WO PCT/JP2018/003173 patent/WO2018143259A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247541A (ja) * | 1985-04-26 | 1986-11-04 | Nissan Motor Co Ltd | ワイパ−駆動装置 |
JP2001026255A (ja) * | 1999-07-13 | 2001-01-30 | Jidosha Denki Kogyo Co Ltd | ワイパ装置 |
JP2002264776A (ja) * | 2001-03-14 | 2002-09-18 | Mitsuba Corp | ワイパ装置の制御方法 |
JP2014015158A (ja) * | 2012-07-10 | 2014-01-30 | Asmo Co Ltd | ワイパ装置 |
JP2015006809A (ja) * | 2013-06-24 | 2015-01-15 | アスモ株式会社 | ワイパ制御装置 |
JP2018001816A (ja) * | 2016-06-28 | 2018-01-11 | アスモ株式会社 | ワイパ制御装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112018000657B4 (de) | 2024-08-08 |
CN110234546B (zh) | 2022-12-20 |
DE112018000657T5 (de) | 2019-10-24 |
JP6859728B2 (ja) | 2021-04-14 |
JP2018122788A (ja) | 2018-08-09 |
US11014538B2 (en) | 2021-05-25 |
CN110234546A (zh) | 2019-09-13 |
US20200198585A1 (en) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6528398B2 (ja) | ワイパ制御装置 | |
JP4735681B2 (ja) | モータ制御回路,車両用ファン駆動装置及びモータ制御方法 | |
JP7221166B2 (ja) | ブラシレスモータ、ブラシレスモータの制御方法およびワイパ装置の制御方法 | |
US20190047517A1 (en) | Motor control apparatus and motor unit | |
JP6852587B2 (ja) | 車両用ワイパ装置 | |
JP2015168273A (ja) | ワイパ制御装置 | |
WO2018143259A1 (ja) | ワイパ装置 | |
CN109379901B (zh) | 无刷电动机以及控制方法 | |
JP2015196464A (ja) | ワイパ制御装置 | |
JP6816576B2 (ja) | ワイパ装置 | |
JP2017136880A (ja) | ワイパ制御装置 | |
JP6658783B2 (ja) | ワイパ制御装置 | |
JP6834427B2 (ja) | ワイパ装置 | |
JP6938925B2 (ja) | ワイパ装置 | |
CN110192339B (zh) | 雨刮器装置 | |
JP6593215B2 (ja) | ワイパ制御装置 | |
EP3624329B1 (en) | Brushless motor, method for controlling the same and method for controlling wiper device | |
JP6536719B2 (ja) | ワイパ制御装置 | |
JP6919203B2 (ja) | ワイパ装置 | |
JP2018001816A (ja) | ワイパ制御装置 | |
WO2022239584A1 (ja) | 車両用ワイパ装置及び車両用ワイパ装置の制御方法 | |
JP2018134959A (ja) | ワイパ装置 | |
JP2019043158A (ja) | ワイパ装置 | |
JP2019209915A (ja) | ワイパ装置及びワイパ装置の制御方法 | |
JP2018131063A (ja) | ワイパ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18747255 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18747255 Country of ref document: EP Kind code of ref document: A1 |