WO2007063997A1 - Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method - Google Patents

Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method Download PDF

Info

Publication number
WO2007063997A1
WO2007063997A1 PCT/JP2006/324121 JP2006324121W WO2007063997A1 WO 2007063997 A1 WO2007063997 A1 WO 2007063997A1 JP 2006324121 W JP2006324121 W JP 2006324121W WO 2007063997 A1 WO2007063997 A1 WO 2007063997A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion element
mis
light
type conversion
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2006/324121
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Yagi
Tadao Endo
Toshio Kameshima
Katsuro Takenaka
Keigo Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US11/721,281 priority Critical patent/US7989772B2/en
Priority to CN200680044425.6A priority patent/CN101317104B/zh
Priority to EP06833891A priority patent/EP1958005A1/en
Publication of WO2007063997A1 publication Critical patent/WO2007063997A1/en
Anticipated expiration legal-status Critical
Priority to US13/163,431 priority patent/US8222611B2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/191Photoconductor image sensors
    • H10F39/195X-ray, gamma-ray or corpuscular radiation imagers

Definitions

  • the present invention relates to a radiation imaging apparatus to be preferably used for diagnosis for medical care and industrial non-destructive inspection and its control method.
  • electromagnetic waves such as X ray and Y ray and ⁇ ray and ⁇ ray are included in radiation.
  • an X-ray digital imaging apparatus for performing imaging by using a converter such as a photoelectric transducer for converting light into an electrical signal and thereby using radiation such as X ray is practically used and spread in accordance with the advancement of semiconductor technology.
  • the present invention it is possible to restrain the sensitivity change of a conversion element. Therefore, it is possible to restrain the fluctuation or image uncomfortable feeling of image luminance and obtain an image having a high image quality.
  • Fig. 1 is a sectional view showing the structure of a pixel using an MIS-type photoelectric conversion element
  • Fig. 2A is an energy band diagram for explaining the photoelectric conversion mode of an MIS-type photoelectric conversion element
  • Fig. 2B is an energy band diagram for explaining the saturation state of an MIS-type photoelectric conversion element
  • Fig. 2C is an energy band diagram for explaining the refresh mode of an MIS-type photoelectric conversion element
  • Fig. 3 is a circuit diagram showing the configuration of one pixel of a two-dimensional sensor of an X-ray imaging apparatus
  • Fig. 4 is a timing chart showing changes of potentials of points A and B in the pixel shown in Fig. 3;
  • Fig. 5 is a circuit diagram showing the configuration of one pixel of a two-dimensional sensor of the radiation imaging apparatus (X-ray imaging apparatus) of first embodiment of the present invention
  • Fig. 6 is a timing chart showing changes of potentials of points C and D in the pixel shown in Fig. 5;
  • Fig. 7 is a circuit diagram showing the configuration of two-dimensional sensor in which nine pixels are arranged like a matrix
  • Fig. 9 is a timing chart showing operations of the two-dimensional sensor 801 of the first embodiment.
  • Fig. 10 is a flowchart showing the driving method of the two-dimensional sensor 801 of the first embodiment
  • Fig. 11 is a circuit diagram showing the configuration of one pixel of a two-dimensional sensor of the radiation imaging apparatus (X-ray imaging apparatus) of second embodiment of the present invention.
  • Fig. 12 is a timing chart showing changes of potentials of points E and F in the pixel shown in Fig. 11;
  • Fig. 13 is a circuit diagram showing the configuration of a two-dimensional sensor in which nine pixels shown in Fig. 11 are arranged like a matrix and its peripheral circuits;
  • Fig. 14 is a timing chart showing operations of a two-dimensional sensor 1002 of the second embodiment
  • Fig. 15A is a timing chart showing an example of the relation between driving and output of a two- dimensional sensor when light is irradiated;
  • Fig. 15B is a timing chart showing another example of the relation between driving and output of a two-dimensional sensor when light is irradiated;
  • Fig. 15C is a timing chart showing another example of the relation between driving and output of a two-dimensional sensor when light is irradiated;
  • Fig. 15D is a timing chart showing still another example of the relation between driving and output of a two-dimensional sensor when light is irradiated;
  • a TFT 216 is formed on a glass substrate 201. Moreover, a gate line 220, gate insulating film 202, channel layer 203, N + amorphous silicon layer 204, drain electrode 205, and source electrode 206 are formed on the TFT 216. Furthermore, a signal line 219 for transferring an electrical signal output from the TFT 216 to a signal amplifying circuit is connected to the source electrode 206.
  • MIS-type conversion element 217 serving as an MIS-type conversion element is also formed on a glass substrate. Moreover, a sensor bottom electrode layer 207, insulting layer 208, photoelectric conversion layer 209, N + amorphous silicon layer 210, transparent electrode 211, and sensor bias line 218 are formed on the MIS-type photoelectric conversion element 217. A voltage is supplied from the transparent electrode 211 and sensor bias line 218 to the photoelectric conversion layer 209.
  • the N + amorphous silicon layer 210 has an ohmic contact with the photoelectric conversion layer 209 and transparent electrode 211, which is a layer for blocking implantation of positive holes from the sensor bias line 218.
  • the phosphor protective layer 215 protects the phosphor 214 from humidity or the like. Then, the operational principle of the MIS-type photoelectric conversion element is described by referring to the energy band diagram of the MIS-type photoelectric conversion element shown in Figs. 2A to 2C.
  • a positive voltage is applied to the sensor bias line 218 of the MIS-type photoelectric conversion element 217 and positive holes are accumulated.
  • the photoelectric conversion mode when light 301 is irradiated to the photoelectric conversion layer 209, positive hole 303 and electron 302 are generated by the photoelectric effect in the photoelectric conversion layer 209. Then, the positive hole 303 is moved to the interface between the insulating layer 208 and photoelectric conversion layer 209 by an electric field and the electron 302 is moved to the N+ amorphous silicon layer 210 side.
  • the positive hole 303 cannot pass through the insulting layer 208, it is accumulated on the interface between the photoelectric conversion layer 209 and the insulating layer 208.
  • a voltage proportional to the dose of the light 301 or time is generated in the MIS-type photoelectric conversion element 217 and the potential of the bottom electrode layer 207 is lowered.
  • the positive hole 303 generated in the photoelectric conversion layer 209 cannot move up to the interface between the photoelectric conversion layer 209 and the insulating layer 208 and the positive hole 303 is recombined with the electron 302 and disappears. Therefore, a voltage proportional to the dose of the light 301 or time is not generated. Then, because a voltage proportional to the dose of the light 301 or time is not generated in the saturated MIS-type photoelectric conversion element 217, the sensitivity is lowered and a normal X-ray image cannot be obtained.
  • the light sensitivity of the MIS-type photoelectric conversion element 217 depends on the voltage applied to the photoelectric conversion layer 209.
  • the positive hole 303 generated by photoelectric effect is moved by an electric field applied to the photoelectric conversion layer 209 and reaches the interface between the photoelectric conversion layer 209 and the insulating layer 208.
  • this time does not become shorter than the life time of the positive hole 303 decided by the film quality of the photoelectric conversion layer 209, the positive hole 303 cannot reach the interface between the photoelectric conversion layer 209 and the insulating layer 208 and it disappears. Therefore, it is impossible to take out the positive hole 303 as an electrical signal.
  • the refresh mode shown in Fig. 2C is realized and it is possible to newly accumulate positive holes 303 in the photoelectric conversion mode by the removed number of positive holes 303. Therefore, by setting the sensor bias to be supplied at the time of refresh operation to a lower value, it is possible that a sensor does not easily become a saturation state even if much light is irradiated. Moreover, it is possible to keep the voltage applied to the photoelectric conversion layer 209 constant by this refresh operation before light irradiation. Therefore, in the state in which the refresh operation is effective, sensitivities are not changed, However, immediately after the refresh mode is changed to the photoelectric conversion mode, current due to electrons implanted into the MIS-type photoelectric conversion element 217 in the refresh mode flows.
  • Fig. 3 is a circuit diagram showing the configuration of one pixel of the two-dimensional sensor (sensor unit) in an X-ray imaging apparatus. As described above, one pixel includes the TFT 216 and MIS-type photoelectric conversion element 217.
  • the gate line 220 is connected to the gate of the TFT 216 and the signal line 219 is connected to the source electrode 206 of the TFT 216.
  • the sensor bias line 218 for applying a voltage required to perform photoelectric conversion and refresh is connected to the MIS-type photoelectric conversion element 217.
  • the signal line 219, gate line 220, and sensor bias line 218 are shared by a plurality of pixels constituting a two-dimensional sensor.
  • the gate line 220 is connected to a vertical driving circuit 105 and a voltage for selectively turning on/off the TFT 216 is supplied from the vertical driving circuit 105.
  • the sensor bias line 218 is connected to a sensor power supply 402.
  • the sensor power supply 402 includes a power supply Vs for photoelectric conversion and a power supply Vref necessary for the refresh of a sensor, in which power supply outputs can be optionally changed by a control signal VSC.
  • the signal line 219 connects the source electrode 206 of the TFT 216 and the input of a signal amplifying circuit constituted by using a current-integrating-type amplifier 401.
  • Fig. 4 is a timing chart showing changes of voltages of points A and B in the pixel shown in Fig. 3.
  • Fig. 3 shows a voltage (Va-Vb) applied to the photoelectric conversion layer 209 together with potential Va of the point A and potential Vb of the point B when repeating irradiation with X ray and refresh from immediately after turning-on of a power supply.
  • the TFT 216 is driven synchronously with refresh or read. Moreover, when a power supply is turned on, it is assumed that the TFT 216 is regularly turned on/off. To change the operation halt state to the imaging possible state, supply of voltages is started from the sensor power supply 402, power supply Vcom, and power supply Vss. In this case, the potential Va becomes equal to the voltage Vs.
  • the potential Vb is shown by the following Numerical Formula 1 when assuming the capacity of the photoelectric conversion layer 209 as Ci, the capacity of the insulating layer 208 as C SlN , and the reference power supply of the amplifier 401 as Vr. (Numerical Formula 1)
  • Vb — x (Vs - Vr)+ Vr
  • the potential Vb rises due to accumulation of generated electric charges because when X ray is irradiated, the photoelectric effect occurs by the light of a phosphor ' for emitting light by receiving X ray. Moreover, in the refresh mode (state in which the voltage Vref is supplied to the sensor bias line 218), because the voltage Va is changed from Vs, to
  • refresh shows an effect. That is, the effect of refresh is first shown by making the state of the MIS-type photoelectric conversion element 217 approach to the saturation state.
  • the voltage (Va-Vb) applied to the photoelectric conversion layer 209 is slowly lowered because electric charges generated by photoelectric effect are accumulated. Therefore, in the period a, the sensitivity of the MIS-type photoelectric conversion element 217 is slowly lowered whenever imaging is performed. Then, when imaging a plurality of sheets in the period a, a problem occurs that the contrast of an image is slowly lowered due to a change of sensitivities whenever imaging is performed or a problem occurs that sensitivities are changed between a sensor having much dose of light and a sensor having less dose of light and a problem occurs that uncomfortable feeling appears in an image in the last imaging.
  • a method for continuously applying a voltage to a pixel to keep the period ⁇ is considered,
  • deterioration of the characteristic is accelerated. Therefore, this is not preferable in view of the reliability of an apparatus.
  • a conventional digital X-ray imaging apparatus restrains characteristic deterioration of the two- dimensional sensor 103 by stopping voltage supply to the sensor bias source 218, power supply Vcom, and power supply Vss when imaging is not performed and supplying no voltage to the two-dimensional sensor 103.
  • Fig. 5 is a circuit diagram showing the configuration of one pixel of a two- dimensional sensor (sensor unit) in a radiation imaging apparatus (X-ray imaging apparatus) of the first embodiment of the present invention.
  • a component provided with the same symbol as that in Fig. 1, 3 or the like is a device or circuit having the same function and its description is omitted.
  • This embodiment is provided with a light source 601, power supply 603 for making the light source 601 emit light, and switch 605 as means for bringing the MIS-type photoelectric conversion element 217 into a saturation state before performing X-ray imaging.
  • the light source 601 it is possible to use a light source capable of discharging the light having a wavelength which can be detected by the photoelectric conversion layer 209 serving as the conversion layer of an MIS-type conversion element at optional timing.
  • a light source capable of discharging the light having a wavelength which can be detected by the photoelectric conversion layer 209 serving as the conversion layer of an MIS-type conversion element at optional timing.
  • an MIS-type photoelectric conversion element using amorphous silicon it is possible to use a device in which a plurality of LEDs or cold-cathode tubes are arranged, a device in which a light guide plate and a LED or cold-cathode tube are combined, or EL device.
  • the light having a wavelength which can be detected by the MIS-type photoelectric conversion element may includes also a radiation such as infrared rays and ultraviolet rays or the like other than the visible light.
  • a control circuit 604 for controlling the light source 601 and an X-ray source 119 is provided. That is, the control circuit 604 can control light emission/no light emission of the light source 601 or control exposure of X ray from the X- ray source 119. For example, light irradiation by the light source 601 is controlled by the control circuit 604 so that the light is irradiated only for predetermined necessary time. In this case, it is preferable that the control circuit 604 sets the control circuit 604 so that it cannot expose the X- ray source 119 and X ray is not erroneously irradiated. Then, operations of one pixel constituted as described are described by referring to Fig. 6. Fig.
  • FIG. 6 is a timing chart showing changes of voltages of -points C and D in the pixel shown in Fig. 5.
  • Fig. 6 shows a voltage (Vc-Vd) applied to the photoelectric conversion layer 209 together with the potential Vc of the point C and the potential Vd of the point D when repeating X-ray irradiation and refresh from immediately after turning-on of a power supply.
  • the pause state in which no voltage is supplied to a two-dimensional sensor is changed to the imaging state for supplying a voltage to the Mistype photoelectric conversion element 217 and TFT 216.
  • the potential of the sensor bias line 218 becomes Vs and the voltage applied to the MIS-type photoelectric conversion element 217 is shown by Numerical Formula 1.
  • a display for communicating that X ray can be exposed to a worker it is preferable to change a display for communicating that X ray can be exposed to a worker. Furthermore, when operations of a two-dimensional sensor are different before start of X-ray imaging and after start of X-ray imaging, it is allowed to change driving of the sensor in accordance with a signal of the control circuit 604.
  • control circuit 604 is provided for a control computer 108 or program/control board 110 of a conventional X-ray imaging apparatus. Moreover, it is allowed to realize the function of the control circuit 604 by combining operations of the control computer 108 and program/control board 110. Then, a two-dimensional sensor (sensor unit) having 9 above pixels (3 x 3 pixels) and its peripheral circuits are described below.
  • Fig. 7 is a circuit diagram showing the configuration of a two- dimensional sensor in which nine pixels shown in Fig. 5 are arranged like a matrix and its peripheral circuits.
  • Fig. 8 is an illustration showing the configuration of an X-ray imaging apparatus using the two-dimensional sensor shown in Fig. 7.
  • the two-dimensional sensor (sensor unit) 801 shown in Fig. 7 is constituted when the MIS-type photoelectric conversion element 217 (S11-S33) and thin-film transistor (TFT) 216 (T11-T33) are arranged like a matrix of 3 x 3.
  • the MIS-type photoelectric conversion element 217 (S11-S33) converts light emitted from a phosphor into an electrical signal.
  • the thin-film transistor 216 (T11-T33) outputs electric charges accumulated in the MIS-type photoelectric conversion element 217 at ' optional timing.
  • a phosphor 101 is provided on the MIS-type photoelectric conversion element 217 as shown in Fig. 8.
  • the phosphor 101 mainly contains Gd 2 O 2 S, Gd 2 O 3 and/or CsI: Tl.
  • the two-dimensional sensor 801 has amplifiers
  • AMPl to AMP3 respectively provided with a capacity Cf for accumulating electric charges output from the TFT 216 and connects with a signal amplifying circuit 802 for amplifying a signal.
  • Signal lines Sigl to Sig3 are set between the signal amplifying circuit 802 and the two-dimensional sensor 801.
  • the signal lines Sigl to Sig3 are connected to the drain electrode of the TFT 216.
  • the signal amplifying circuit 802 connects with an Amp reference power supply 807 serving as the reference power supply of the amplifiers AMPl to AMP3.
  • the signal amplifying circuit 802 connects with a sample-and- hold circuit 803 for holding output voltage of the signal amplifying circuit 802 for an optional period and multiplexer 804 for serially outputting signals held by the sample-and-hold circuit 803.
  • the sample- and-hold circuit 803 holds an electrical signal output from the signal amplifying circuit 802 until the circuit 802 is selected by the multiplexer 804.
  • the signal amplifying circuit 802 connects with a buffer amplifier 805 for outputting the output of the multiplexer 804 at a low impedance and A/D converter 806 for converting an analog signal into a digital signal.
  • the signal amplifying circuit 802, sample-and-hold circuit 803, multiplexer 804, and buffer amplifier 805 are included in a signal processing circuit 809.
  • the two-dimensional sensor 801 connects with a power supply Vs necessary for photoelectric conversion and sensor power supply 402 provided with the power supply Vref for setting the MIS-type photoelectric conversion element 217 to a refresh mode.
  • the sensor bias line 218 is connected between the N+ amorphous silicon layer of the Mistype photoelectric conversion element 217 and the sensor power supply 402.
  • the sensor power supply 402 and Amp reference power supply 807 are included in a low-noise power supply 827.
  • a vertical driving circuit 105 for driving gate lines VgI to Vg3 connected to the gate electrode of the TFT 216 of the two-dimensional sensor 801 is provided.
  • step S1802 when an operator starts imaging by performing a necessary procedure (step S1802), a predetermined voltage is applied to the two- dimensional sensor 801, the voltage Vs is applied to the MIS-type photoelectric conversion element 217 and the voltage Vss is applied to the gate lines VgI to Vg3. Moreover, a voltage necessary for the Amp reference power supply and driving is also applied to the signal amplifying circuit 802 and an operation state is started (step S1803) .
  • step S1804 After starting the imaging state, light is irradiated from the light source 601 iww the control by control circuit 604 (control computer 808) (step S1804).
  • the output of the two-dimensional sensor 801 is sent to the control computer 808 after the output is converted into digital data and necessary processing is applied.
  • the control circuit 604 determines whether to realize a saturation state or stop irradiation of light in accordance with the data (step S1805) . However, while light is irradiated, as shown in Fig. 6, refresh operation, photoelectric conversion operation, and read are repeated.
  • the time for irradiating light can be programmed in the control computer 808. Then, it is allowed to set the irradiation time when the two- dimensional sensor 801 is fabricated or at the time of setting after fabrication. Moreover, it is allowed to monitor the output fluctuation from the MIS-type photoelectric conversion element 217 at the time of light irradiation and determine light irradiation stop time.
  • control computer 808 determines stopping of irradiation of light, it stops irradiation in step S1806.
  • the two-dimensional sensor 801 also starts the operation for imaging by an operator when X-ray irradiation is started (step S1807) .
  • the operation for imaging a static image is described below.
  • the MIS-type photoelectric conversion element 217 is first refreshed by using the sensor power supply 402.
  • the MIS-type photoelectric conversion element 217 is refreshed by using the sensor power supply 402 in order to secure a large dynamic range necessary for a static image.
  • the control signal VSC is first set to low (Lo) to supply the voltage Vref optimum for refresh to the sensor bias line 218.
  • the refresh mode is not realized.
  • the voltage Vcom is further supplied to the gate lines VgI to Vg3 by the vertical driving circuit 105 to turn on the TFT 216 and equalize the potential of the sensor bottom electrode layer 207 with potentials of the signal lines Sigl to Sig3.
  • the control signal RC of the amplifiers AMPl to AMP3 is set to high (Hi) to set potentials of the signal lines Sigl to Slg3 to the reference potential Vr.
  • the TFT 216 for each pixel is turned on for each line However, it is also allowed to simultaneously turn on all TFTs 216.
  • the control signal SH of the sample-and-hold circuit 803 is set to high (Hi) to transfer outputs of the amplifiers Ampl to Amp3 connected to sample-and-hold capacities SHl to SH3 to sample-and-hold capacities SHl to SH3.
  • the control signal SH is kept high (Hi) until voltages output from the amplifiers Ampl to Amp3 are sufficiently transferred to sample-and-hold capacities and after transfer is completed, the voltages are set to low ( Lo ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
PCT/JP2006/324121 2005-11-29 2006-11-27 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method Ceased WO2007063997A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/721,281 US7989772B2 (en) 2005-11-29 2006-11-27 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
CN200680044425.6A CN101317104B (zh) 2005-11-29 2006-11-27 辐射成像设备及其控制方法
EP06833891A EP1958005A1 (en) 2005-11-29 2006-11-27 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
US13/163,431 US8222611B2 (en) 2005-11-29 2011-06-17 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-344537 2005-11-29
JP2005344537 2005-11-29
JP2006-305241 2006-11-10
JP2006305241A JP4834518B2 (ja) 2005-11-29 2006-11-10 放射線撮像装置、その制御方法、及びそれを実行させるためのプログラムを記録した記録媒体

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/721,281 A-371-Of-International US7989772B2 (en) 2005-11-29 2006-11-27 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
US13/163,431 Division US8222611B2 (en) 2005-11-29 2011-06-17 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method

Publications (1)

Publication Number Publication Date
WO2007063997A1 true WO2007063997A1 (en) 2007-06-07

Family

ID=38092329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324121 Ceased WO2007063997A1 (en) 2005-11-29 2006-11-27 Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method

Country Status (6)

Country Link
US (2) US7989772B2 (enExample)
EP (1) EP1958005A1 (enExample)
JP (1) JP4834518B2 (enExample)
CN (1) CN101317104B (enExample)
RU (1) RU2379712C1 (enExample)
WO (1) WO2007063997A1 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134480A1 (en) * 2008-11-20 2010-06-03 Canon Kabushiki Kaisha Drive circuit for semiconductor image sensor array
WO2010122894A2 (en) 2009-04-20 2010-10-28 Canon Kabushiki Kaisha Imaging apparatus and imaging system, method thereof and program for the same

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104219A (ja) * 2005-10-03 2007-04-19 Canon Inc 放射線撮影装置及びその制御方法、放射線撮影システム
JP4989197B2 (ja) * 2005-12-13 2012-08-01 キヤノン株式会社 放射線撮像装置、放射線撮像システム、及び補正方法
JP4850730B2 (ja) 2006-03-16 2012-01-11 キヤノン株式会社 撮像装置、その処理方法及びプログラム
JP4989120B2 (ja) * 2006-06-16 2012-08-01 キヤノン株式会社 放射線撮像システム及びその駆動方法
JP5300216B2 (ja) * 2006-08-29 2013-09-25 キヤノン株式会社 電子カセッテ型放射線検出装置
JP2008212644A (ja) * 2007-02-06 2008-09-18 Canon Inc 放射線撮像装置及びその駆動方法、並びに放射線撮像システム
CN105717532B (zh) * 2007-04-12 2019-07-26 皇家飞利浦电子股份有限公司 闪烁体的空间增益分布的确定
KR20090102185A (ko) * 2008-03-25 2009-09-30 삼성전자주식회사 엑스레이 검출기의 구동방법 및 이를 이용한 엑스레이검출기
JP5396814B2 (ja) * 2008-10-28 2014-01-22 コニカミノルタ株式会社 放射線画像撮影システム
JP5377081B2 (ja) * 2009-06-01 2013-12-25 キヤノン株式会社 放射線撮影装置及びその制御方法
JP5361628B2 (ja) 2009-09-15 2013-12-04 キヤノン株式会社 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
US8637802B2 (en) * 2010-06-18 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Photosensor, semiconductor device including photosensor, and light measurement method using photosensor
JP5539139B2 (ja) * 2010-09-28 2014-07-02 キヤノン株式会社 撮像装置、撮像システム、撮像装置の制御方法
JP5469040B2 (ja) * 2010-11-18 2014-04-09 富士フイルム株式会社 放射線画像撮影装置
EP2761586B1 (en) * 2011-08-31 2022-10-12 Koninklijke Philips N.V. Differential phase contrast imaging with energy sensitive detection
JP5512638B2 (ja) 2011-11-22 2014-06-04 富士フイルム株式会社 放射線画像検出装置及び放射線撮影システム
JP6021323B2 (ja) * 2011-12-13 2016-11-09 キヤノン株式会社 X線撮影装置
JP2013228366A (ja) * 2012-03-29 2013-11-07 Canon Inc 放射線検出装置及び放射線検出システム
US8803061B2 (en) * 2012-07-16 2014-08-12 Varian Medical Systems International Ag Circuitry and method for collecting image array data with separate addressing and dynamic clamping of pixels to allow for faster pixel data readout and full removal of pixel charges
JP2014035296A (ja) * 2012-08-09 2014-02-24 Canon Inc 放射線撮影装置及び放射線撮影システム
JP5934128B2 (ja) 2013-02-28 2016-06-15 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP5986524B2 (ja) 2013-02-28 2016-09-06 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6016673B2 (ja) 2013-02-28 2016-10-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
US9360564B2 (en) * 2013-08-30 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP6463136B2 (ja) 2014-02-14 2019-01-30 キヤノン株式会社 放射線検出装置及び放射線検出システム
GB2524470B (en) * 2014-02-16 2019-04-17 Wang Wei An apparatus and method for "high-resolution" electrical impedance imaging
JP6491434B2 (ja) * 2014-08-12 2019-03-27 キヤノン株式会社 放射線撮像装置及び放射線検出システム
KR20160038387A (ko) * 2014-09-30 2016-04-07 주식회사 레이언스 엑스선 디텍터 및 그 구동방법
JP6570315B2 (ja) 2015-05-22 2019-09-04 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6573377B2 (ja) 2015-07-08 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6573378B2 (ja) 2015-07-10 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP6587517B2 (ja) 2015-11-13 2019-10-09 キヤノン株式会社 放射線撮像システム
JP6663210B2 (ja) 2015-12-01 2020-03-11 キヤノン株式会社 放射線撮像装置及びその制御方法
JP6706963B2 (ja) 2016-04-18 2020-06-10 キヤノン株式会社 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の制御方法
CN109716165B (zh) * 2016-10-27 2022-09-30 深圳帧观德芯科技有限公司 辐射检测器中的暗噪音补偿
JP6871717B2 (ja) 2016-11-10 2021-05-12 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像方法
JP6853729B2 (ja) 2017-05-08 2021-03-31 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
CN108982552A (zh) * 2017-06-01 2018-12-11 群创光电股份有限公司 光检测装置以及其操作方法
CN110869809B (zh) 2017-07-10 2023-07-25 佳能株式会社 放射线成像装置和放射线成像系统
JP7067912B2 (ja) 2017-12-13 2022-05-16 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6818724B2 (ja) 2018-10-01 2021-01-20 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP7170497B2 (ja) 2018-10-22 2022-11-14 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP7361516B2 (ja) 2019-07-12 2023-10-16 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影装置の制御方法、および、プログラム
CN113053677B (zh) * 2019-12-26 2023-12-01 佳能株式会社 电源单元和包括电源单元的放射线摄像装置
JP7619821B2 (ja) 2021-02-09 2025-01-22 キヤノン株式会社 情報処理装置、放射線撮影システム、情報処理方法およびプログラム
JP7449260B2 (ja) 2021-04-15 2024-03-13 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2023117956A (ja) 2022-02-14 2023-08-24 キヤノン株式会社 センサ基板、放射線撮像装置、放射線撮像システム、および、センサ基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326286A (ja) * 1993-05-10 1994-11-25 Olympus Optical Co Ltd 裏面入射型固体撮像装置
JP2002040144A (ja) * 2000-07-28 2002-02-06 Canon Inc 光電変換装置並びに光電変換デバイス、像情報処理システム及びその駆動方法
JP2003078124A (ja) * 2001-06-07 2003-03-14 Canon Inc 放射線撮像装置及びそれを用いた放射線撮像システム
JP2004146769A (ja) * 2002-08-30 2004-05-20 Shimadzu Corp 放射線検出器
JP2005006790A (ja) * 2003-06-18 2005-01-13 Canon Inc X線デジタル画像撮影システム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066944B2 (ja) * 1993-12-27 2000-07-17 キヤノン株式会社 光電変換装置、その駆動方法及びそれを有するシステム
US6828539B1 (en) * 1998-12-24 2004-12-07 Fuji Photo Film Co., Ltd. Detection signal correction method and device as well as solid-state detector for use therewith
JP2003505705A (ja) * 1999-07-26 2003-02-12 エッジ メディカル デバイシス リミティド X線画像化用ディジタル検出器
US6818899B2 (en) 2001-06-07 2004-11-16 Canon Kabushiki Kaisha Radiographic image pickup apparatus and method of driving the apparatus
US6952015B2 (en) 2001-07-30 2005-10-04 Canon Kabushiki Kaisha Image pick-up apparatus and image pick-up system
JP4147094B2 (ja) * 2002-11-22 2008-09-10 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP4217505B2 (ja) * 2003-02-28 2009-02-04 キヤノン株式会社 撮像装置及びx線撮像装置
JP4307138B2 (ja) 2003-04-22 2009-08-05 キヤノン株式会社 光電変換装置、及び光電変換装置の制御方法
JP4669653B2 (ja) 2003-04-22 2011-04-13 キヤノン株式会社 放射線撮像装置、放射線撮像システム及びコンピュータプログラム
JP2005175418A (ja) * 2003-11-19 2005-06-30 Canon Inc 光電変換装置
JP4533010B2 (ja) 2003-11-20 2010-08-25 キヤノン株式会社 放射線撮像装置、放射線撮像方法及び放射線撮像システム
JP4307230B2 (ja) 2003-12-05 2009-08-05 キヤノン株式会社 放射線撮像装置及び放射線撮像方法
JP4441294B2 (ja) 2004-03-12 2010-03-31 キヤノン株式会社 放射線撮像装置及びその制御方法
JP4469638B2 (ja) 2004-03-12 2010-05-26 キヤノン株式会社 読み出し装置及び画像撮影装置
US7403594B2 (en) 2004-03-31 2008-07-22 Canon Kabushiki Kaisha Radiation imaging apparatus and control method therefor
JP2005287773A (ja) 2004-03-31 2005-10-20 Canon Inc 画像撮影装置及び画像撮影システム
JP4307322B2 (ja) 2004-05-18 2009-08-05 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP4479457B2 (ja) * 2004-05-27 2010-06-09 ソニー株式会社 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
JP5058517B2 (ja) 2005-06-14 2012-10-24 キヤノン株式会社 放射線撮像装置及びその制御方法並びに放射線撮像システム
JP4965931B2 (ja) 2005-08-17 2012-07-04 キヤノン株式会社 放射線撮像装置、放射線撮像システム、その制御方法、及び制御プログラム
JP4750512B2 (ja) 2005-09-01 2011-08-17 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP5317388B2 (ja) 2005-09-30 2013-10-16 キヤノン株式会社 放射線撮像装置、放射線撮像システム及びプログラム
JP2007104219A (ja) 2005-10-03 2007-04-19 Canon Inc 放射線撮影装置及びその制御方法、放射線撮影システム
JP2007151761A (ja) 2005-12-02 2007-06-21 Canon Inc 放射線撮像装置、システム及び方法、並びにプログラム
JP4989197B2 (ja) 2005-12-13 2012-08-01 キヤノン株式会社 放射線撮像装置、放射線撮像システム、及び補正方法
JP4891096B2 (ja) 2006-01-30 2012-03-07 キヤノン株式会社 放射線撮像装置
US7589793B2 (en) * 2006-02-07 2009-09-15 Chenhuan Yang Television receiver that can receive both regular broadcast-satellite television and digital terrestrial broadcast
JP5043448B2 (ja) 2006-03-10 2012-10-10 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP4868926B2 (ja) 2006-04-21 2012-02-01 キヤノン株式会社 放射線撮像装置
JP4847202B2 (ja) 2006-04-27 2011-12-28 キヤノン株式会社 撮像装置及び放射線撮像システム
JP4989120B2 (ja) 2006-06-16 2012-08-01 キヤノン株式会社 放射線撮像システム及びその駆動方法
JP5159161B2 (ja) 2006-06-26 2013-03-06 キヤノン株式会社 放射線撮像装置、放射線撮像システム及びその制御方法
JP5038031B2 (ja) 2006-07-11 2012-10-03 キヤノン株式会社 放射線撮影装置、その駆動方法及び放射線撮影システム
JP2008042478A (ja) 2006-08-04 2008-02-21 Canon Inc 撮像装置、放射線撮像装置、及びその駆動方法
JP5300216B2 (ja) 2006-08-29 2013-09-25 キヤノン株式会社 電子カセッテ型放射線検出装置
JP4986771B2 (ja) 2006-08-31 2012-07-25 キヤノン株式会社 撮像装置、その駆動方法及び放射線撮像システム
JP5049739B2 (ja) * 2006-11-01 2012-10-17 キヤノン株式会社 放射線撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326286A (ja) * 1993-05-10 1994-11-25 Olympus Optical Co Ltd 裏面入射型固体撮像装置
JP2002040144A (ja) * 2000-07-28 2002-02-06 Canon Inc 光電変換装置並びに光電変換デバイス、像情報処理システム及びその駆動方法
JP2003078124A (ja) * 2001-06-07 2003-03-14 Canon Inc 放射線撮像装置及びそれを用いた放射線撮像システム
JP2004146769A (ja) * 2002-08-30 2004-05-20 Shimadzu Corp 放射線検出器
JP2005006790A (ja) * 2003-06-18 2005-01-13 Canon Inc X線デジタル画像撮影システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134480A1 (en) * 2008-11-20 2010-06-03 Canon Kabushiki Kaisha Drive circuit for semiconductor image sensor array
WO2010122894A2 (en) 2009-04-20 2010-10-28 Canon Kabushiki Kaisha Imaging apparatus and imaging system, method thereof and program for the same
WO2010122894A3 (en) * 2009-04-20 2011-10-13 Canon Kabushiki Kaisha Imaging apparatus and imaging system, method thereof and program for the same
US8829438B2 (en) 2009-04-20 2014-09-09 Canon Kabushiki Kaisha Imaging apparatus and imaging system, method thereof and program for the same

Also Published As

Publication number Publication date
EP1958005A1 (en) 2008-08-20
CN101317104B (zh) 2011-01-19
US7989772B2 (en) 2011-08-02
CN101317104A (zh) 2008-12-03
RU2379712C1 (ru) 2010-01-20
JP2007181183A (ja) 2007-07-12
US20110240870A1 (en) 2011-10-06
US8222611B2 (en) 2012-07-17
JP4834518B2 (ja) 2011-12-14
US20090294679A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US7989772B2 (en) Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
US10068943B2 (en) Radiation imaging apparatus and radiation imaging system
US6239439B1 (en) Radiation detecting device and radiation detecting method
US7573038B2 (en) Radiation image pickup apparatus, radiation image pickup system, their control method and their control program
JP6585910B2 (ja) 放射線撮像装置および放射線撮像システム
US7557355B2 (en) Image pickup apparatus and radiation image pickup apparatus
US7382859B2 (en) X-ray imaging apparatus and method
JP5171431B2 (ja) 光電変換装置、放射線撮像装置及び放射線検出装置
US20110317054A1 (en) Imaging apparatus and imaging system, and control method and program for the same
US20200371259A1 (en) Radiation imaging apparatus and radiation imaging system
CN110022771B (zh) 针对动态成像的同步
CN102640017B (zh) 成像装置、成像系统和控制该装置的方法
US20210243389A1 (en) Radiation image capturing apparatus and radiation image capturing system
US7164115B2 (en) Photoelectric conversion apparatus, manufacturing method therefor, and X-ray imaging apparatus
JP2018085644A (ja) 放射線撮像装置および放射線撮像システム
JP2004170216A (ja) 放射線検出装置
US9924113B2 (en) Radiation imaging apparatus and radiation imaging system
JP6494387B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2012134827A (ja) 放射線画像検出器
JP2004024682A (ja) 放射線検出装置及び放射線検出システム
JP6555893B2 (ja) 放射線撮像装置および放射線撮像システム
JP2016111630A (ja) 放射線撮像装置および放射線撮像システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044425.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006833891

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008126221

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11721281

Country of ref document: US