WO2007049573A1 - 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法 - Google Patents

無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2007049573A1
WO2007049573A1 PCT/JP2006/321092 JP2006321092W WO2007049573A1 WO 2007049573 A1 WO2007049573 A1 WO 2007049573A1 JP 2006321092 W JP2006321092 W JP 2006321092W WO 2007049573 A1 WO2007049573 A1 WO 2007049573A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
particles
resin
oxide particles
dispersion
Prior art date
Application number
PCT/JP2006/321092
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Kurino
Toru Kinoshita
Naoki Takamiya
Yoshitaka Yamamoto
Tsuyoshi Kawase
Yoshizumi Ishikawa
Yoichi Sato
Ryosuke Nakamura
Yuko Katsube
Original Assignee
Sumitomo Osaka Cement Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005314204A external-priority patent/JP5167582B2/ja
Priority claimed from JP2005369159A external-priority patent/JP2007171555A/ja
Priority claimed from JP2006041094A external-priority patent/JP5540458B2/ja
Priority claimed from JP2006089917A external-priority patent/JP5167595B2/ja
Priority claimed from JP2006127565A external-priority patent/JP2007299981A/ja
Priority claimed from JP2006140268A external-priority patent/JP5453707B2/ja
Application filed by Sumitomo Osaka Cement Co., Ltd. filed Critical Sumitomo Osaka Cement Co., Ltd.
Priority to US12/084,093 priority Critical patent/US7985476B2/en
Priority to CN200680039934XA priority patent/CN101296982B/zh
Priority to EP06812152.4A priority patent/EP1950239B1/en
Priority to KR1020087009837A priority patent/KR101302277B1/ko
Publication of WO2007049573A1 publication Critical patent/WO2007049573A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • Inorganic oxide transparent dispersion inorganic oxide particle-containing resin composition, light-emitting element sealing composition and light-emitting element, hard coat film, optical functional film and optical component, and method for producing inorganic oxide particle-containing resin composition
  • the present invention relates to a transparent inorganic oxide dispersion and a resin composition containing inorganic oxide particles, a composition for sealing a light emitting device and a light emitting device, and a method for producing a resin composition containing inorganic oxide particles, More specifically, an inorganic oxide transparent dispersion that can be suitably used as a filler material for rosin and that can improve the refractive index and mechanical characteristics and maintain transparency, and the inorganic oxide transparent dispersion
  • the present invention relates to an inorganic oxide particle-containing resin composition combined with a resin by a polymerization reaction, a light-emitting element sealing composition and a light-emitting element, and a method for producing an inorganic oxide particle-containing resin composition.
  • the present invention also provides a composition for sealing a light emitting device capable of maintaining the transparency as a sealing material and improving the refractive index and mechanical properties, and the composition for sealing a light emitting device.
  • the present invention relates to a light emitting element capable of improving light extraction efficiency by sealing a light transmission region with an object, and thus obtaining high emission luminance, and an optical semiconductor device including the light emitting element.
  • the present invention also relates to a zirconium oxide-containing epoxy resin composition used for light emitting diodes (LEDs) and the like, an inorganic oxide particle-containing resin composition containing the same, a light emitting element, and an optical semiconductor device. More specifically, the zirconium oxide-containing epoxy resin composition used for realizing the high refractive index of the light emitting diode, the inorganic oxide particle-containing resin composition containing the same, and the inorganic oxide particle-containing resin composition.
  • the present invention relates to a light emitting element capable of improving light extraction efficiency by sealing a light transmission region with a fat composition, and thus obtaining high emission luminance, and an optical semiconductor device including the light emitting element. Is.
  • the present invention also relates to a transparent plastic member containing inorganic oxide particles (transparent plastic member containing zirconia fine particles) and a composite plastic member.
  • Transparent plastic member containing inorganic oxide particles that can achieve both high refractive index and high transparency while improving mechanical properties by combining fine particles and various plastic members.
  • the present invention relates to (a transparent plastic member containing zirconia fine particles) and a composite plastic member.
  • the present invention also relates to a hard coat film, an optical functional film, an optical lens, and an optical component, and more specifically, a hard coat film capable of improving refractive index and toughness with high light transmittance for visible light.
  • a hard coat film capable of improving refractive index and toughness with high light transmittance for visible light.
  • glass substrates have been widely used as substrates for flat panel displays (FPD) such as liquid crystal displays (LCDs), plasma displays (PDPs), and electoric luminescence displays (ELs).
  • FPD flat panel displays
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • ELs electoric luminescence displays
  • This glass substrate has problems such as being easily broken, not being bent, and having a large specific gravity and unsuitable for light weight. Therefore, many attempts have been made to use a flexible plastic substrate instead of a glass substrate. It has become.
  • the required properties for plastic substrates for flat panel displays (FPD) include transparency, refractive index, and mechanical properties.
  • oxide fine particles such as zirconium oxide and titer are used as high refractive index fillers.
  • a high refractive index and highly transparent thickness-number micron using a zircoure particle composite plastic that is a composite of a zirconia particle having a particle size of 10 to LOONm and a resin is used.
  • a film has been proposed (see, for example, Patent Document 1).
  • optical semiconductor devices such as optical pickups used in CDs, CD-ROMs, CD-Videos, MOs, CD-Rs, DVDs, various display devices, display devices, etc.
  • a forward-biased pn junction region is used as a light-emitting region, and in this light-emitting region, electrons and holes are recombined to emit light in the visible light region, ultraviolet region, or infrared region (LED: light emitting diode) is widely used.
  • an LED chip formed by laminating gallium nitride compound semiconductors is mounted on a lead frame, the LED chip and the lead frame are electrically connected, and this LED chip also serves as a protection function and a lens function. Sealed with water.
  • the optical refractive index of the light emitting layer is about 2 when a gallium nitride (GaN) compound semiconductor is used for the light emitting layer.
  • silicone resin having a refractive index of about 1.4 is suitable for these requirements. Widely used (see, for example, Patent Documents 2 and 3).
  • a resin is combined with an inorganic acid such as silica as a filler.
  • a dispersion obtained by dispersing an inorganic acid in water and Z or an organic solvent and a resin are mixed by various methods to obtain a resin.
  • a method of dispersing the filler is mentioned.
  • the semiconductor element in order to protect a semiconductor element, the semiconductor element is sealed with a transparent sealing resin such as epoxy resin or silicone resin.
  • a transparent sealing resin such as epoxy resin or silicone resin.
  • silicone resin When a silicone resin is used as an LED sealing resin, the silicone resin is excellent in heat resistance and light resistance, but has insufficient adhesion to a semiconductor element and has a refractive index. Therefore, there was a problem when the light extraction efficiency of LED power decreased!
  • epoxy resin bisphenol A type epoxy resin (Epi-bis type resin) and cresol novolac type epoxy resin are used. These epoxy resins are benzene ring, that is, unsaturated. Because it has a bond, it is easy to absorb ultraviolet rays!
  • these epoxy resins have a problem that they are easily oxidized by radicals generated by absorbed ultraviolet energy, and as a result, are easily yellowed.
  • FPD flat panel displays
  • LCD liquid crystal displays
  • PDP plasma displays
  • EL electoric luminescence displays
  • SED surface electric field displays
  • the surface of this flat panel display has anti-reflection (AR) film, anti-glare ( AG) Functional films using various plastic films such as hard coat (HC) films are affixed to help improve visibility and prevent scratches on the surface.
  • Important properties required for such a plastic film include transparency, refractive index, mechanical properties, and the like.
  • a plastic film and an inorganic oxide filler film having a high refractive index, such as Zircoyu (ZrO) are used.
  • a composite plastic film composed of titania (TiO 2) or the like is used.
  • This method includes (a) a method in which an inorganic acid filler is dispersed in a resin monomer, and the resin monomer is polymerized or polycondensed to obtain a plastic film containing an inorganic oxide filler. b) A method of dispersing an inorganic oxide filler in a liquid resin material, then forming it into a film, and then curing the resin material to form a plastic film containing an inorganic oxide filler. is there.
  • a paint containing an inorganic oxide filler and a binder component is applied onto a plastic film, and then the binder component is cured to form a film.
  • the binder component silica prepared by a sol-gel method is used.
  • Inorganic materials such as polyester, and resin materials such as polyester and polyether are used.
  • a zirconia particle composite plastic film having a high refractive index and high transparency of several microns in thickness is proposed by combining zirconia particles having a particle size of 10 to 100 nm and plastic.
  • zirconia particles having a particle size of 10 to 100 nm and plastic For example, see Patent Document 1).
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • cyclic olefin-based resin cyclic olefin-based resin
  • PCs have large birefringence.
  • PMMA has high water absorption and insufficient heat resistance.
  • the cyclic olefin-based resin capable of solving these problems also has problems such as the surface having low scratch resistance and being easily scratched.
  • a hard coat layer on the surface, which has been widely used.
  • a high refractive index hard coat layer is used for applications such as prevention of interference fringes between a plastic lens and a hard coat layer, and a hard coat for an antireflection film (see, for example, Patent Documents 6 and 7).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-161111
  • Patent Document 2 JP 2005-105217 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-292779
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-68234
  • Patent Document 5 Japanese Patent Laid-Open No. 05-171012
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-1393
  • Patent Document 7 JP-A-11-302597
  • the thickness of the substrate is taken as the optical path length, and the transmittance of visible light in this optical path length is obtained. Yes. Therefore, it becomes difficult to maintain transparency as the thickness increases.
  • a thickness of several meters ensures high refractive index and high transparency, so the thickness is several tens / zm, or If it becomes above, it will become difficult to maintain transparency.
  • the zirconium oxide particle composite plastic film has been studied, but the refractive index and the transparency when the zirconium composite particle plastic is used as a balta body. However, the current situation has not been examined.
  • the surface of the inorganic oxide particles is hydrophilic.
  • sebum may be separated from each other, or may not be separated, but may become turbid and devitrified, and may be combined with inorganic oxide particles while maintaining the transparency of the resin. The problem is that it is difficult.
  • a surface modifier such as an organic polymer dispersant is applied to the surface of the inorganic oxide particles, thereby adding an inorganic acid.
  • the composite of the hydrophobic inorganic oxide particles and the resin has the mechanical properties and refractive index of the composite itself. Although there is an excellent point of increasing the particle size, the particle size of the inorganic oxide particles is as large as 20 nm or more, so the transparency is lowered, and in some cases, there is a risk of devitrification. .
  • the present invention has been made in order to solve the above-described problems, and is obtained by modifying the surface of the inorganic oxide particles with a surface modifier having one or more reactive functional groups.
  • Inorganic oxide transparent dispersion capable of maintaining transparency while improving rate and mechanical properties, and inorganic oxide particles in which this inorganic oxide transparent dispersion and resin are combined and integrated by polymerization reaction It aims at providing the manufacturing method of the containing resin composition, the composition for light emitting element sealing, a light emitting element, and an inorganic oxide particle containing resin composition.
  • the refractive index of the light emitting layer is higher than the refractive index of the silicone resin. For this reason, when the light emitted from the light emitting layer is incident on the silicone resin at an angle smaller than the critical angle, there is a problem that the light is totally reflected at the interface with the silicone resin. When such total reflection occurs, the light extraction efficiency decreases, and as a result, the light emission luminance of the light emitting diode decreases.
  • the present invention has been made to solve the above-described problems, and is a transparent material as a sealing material.
  • An object of the present invention is to provide a composition for sealing a light-emitting element, a light-emitting element, and an optical semiconductor device capable of maintaining the lightness and improving the refractive index and the mechanical characteristics.
  • the present invention has been made to solve the above-described problems, and has excellent heat resistance and light resistance, a high refractive index, and a zirconia-containing epoxy resin composition.
  • An object of the present invention is to provide a resin composition containing inorganic oxide particles containing a light emitting element, a light emitting element and an optical semiconductor device.
  • a film having a high refractive index can be formed on the surface of the plastic film. Because the membrane is integrated with the substrate, it is difficult to fully follow the folding of the plastic film. Therefore, if an attempt is made to bend the plastic film after forming a high refractive index film on the surface of the plastic film, there is a risk that the high refractive index film may crack or the high refractive index film may peel off. There was a problem.
  • the present invention has been made to solve the above problems, and has a high refractive index and high transparency.
  • An object of the present invention is to provide a transparent plastic member and a composite plastic member containing inorganic oxide particles that can achieve both of the properties and at the same time improve the mechanical properties.
  • the conventional high refractive index hard coat layer there is a composite material in which a high refractive index filler such as zirconia, titanium dioxide, tin oxide or the like is contained in the resin.
  • a high refractive index filler such as zirconia, titanium dioxide, tin oxide or the like
  • any high refractive index filler with a primary particle size of a coarse particle of several meters to a fine material of several nanometers is kneaded into a resin where aggregation is severe.
  • the high refractive index filler cannot be uniformly dispersed in the resin because it exists in the state of coarse particles having a diameter of several / zm at all. Therefore, the light transmittance and refractive index of the hard coat film with respect to visible light In addition, there is a problem that it is difficult to further improve toughness.
  • the present invention has been made to solve the above-described problems, and includes a hard coat film, an optical functional film, and an optical lens capable of improving the refractive index and toughness with high transparency.
  • An object of the present invention is to provide an optical component.
  • the present inventors have made one or more reactions on the surface of inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • This inorganic oxide transparent dispersion can be obtained by modifying the surface with a surface modifier having a functional functional group and dispersing the surface of the inorganic oxide particles in the dispersion to obtain an inorganic oxide transparent dispersion.
  • the refractive index and mechanical properties can be improved while maintaining the transparency of the composite. The present invention has been completed.
  • the inorganic oxide transparent dispersion of the present invention is an inorganic oxide whose surface is modified by a surface modifier having one or more reactive functional groups and whose dispersed particle diameter is 1 nm or more and 20 nm or less. It is characterized by containing particles.
  • the reactive functional group preferably has a carbon-carbon double bond or a silicon monohydrogen bond.
  • the reactive functional group is an alkoxyl group, a hydroxyl group, a vinyl group, a styryl group, an acryl group, a methacryl group, an allyloyl group, or an epoxy group.
  • the above is preferable.
  • the surface modifier includes an alkoxysilane compound, a chlorosilane compound, an alkylalkoxysilane compound, an alkylchlorosilane compound, a siloxane compound, a surfactant, and a titanium coupling. It is preferable that one or more selected from the group of drug powers.
  • the alkoxysilane compound or chlorosilane is preferably a silane coupling agent.
  • the siloxane compound is preferably a modified silicone or a silicone resin.
  • the weight ratio of the modified portion on the surface is preferably 5% by weight or more and 200% by weight or less of the inorganic oxide particles.
  • the inorganic oxide particles are preferably zirconia particles.
  • the zirconia particles are preferably tetragonal zirconia particles.
  • the content of the inorganic acid particles is preferably 1% by weight or more and 70% by weight or less.
  • the inorganic oxide particle-containing resin composition (transparent composite) of the present invention contains inorganic oxide particles obtained from the inorganic oxide transparent liquid dispersion of the present invention and a resin. It is characterized by.
  • the resin composition containing inorganic oxide particles of the present invention is characterized in that the inorganic oxide particles of the present invention are dispersed in a resin and reacted with the resin.
  • the content of the inorganic acid particles is preferably 1% by weight or more and 80% by weight or less.
  • the resin is preferably a silicone resin, an epoxy resin or an acrylic resin.
  • the epoxy resin is preferably a hydrogenated epoxy resin obtained by hydrogenating an aromatic ring of an aromatic epoxy resin.
  • the inorganic oxide particles are preferably zirconia particles.
  • the content of the zirconia particles is preferably 10% by weight or more and 60% by weight or less.
  • the composition for sealing a light emitting device of the present invention is characterized by comprising the inorganic oxide transparent dispersion of the present invention.
  • a composition for sealing a light emitting device of the present invention comprises the resin composition containing inorganic oxide particles of the present invention (transparent composite). .
  • the inorganic oxide particles preferably have a refractive index of 1.8 or more, and the resin is a silicone resin.
  • the inorganic oxide particles are zirconia particles, and when the content is not less than 10% by weight and not more than 60% by weight, the transmittance power of light having a wavelength of 350 nm or more and 800 nm or less is 3 ⁇ 40% or more. preferable.
  • the light-emitting device of the present invention is characterized in that at least the light transmission region is the inorganic oxide particle-containing resin composition of the present invention.
  • the light emitting device of the present invention is preferably formed by sealing at least a light transmission region with the composition for sealing a light emitting device of the present invention!
  • the method for producing a resin composition containing inorganic oxide particles of the present invention comprises mixing the inorganic oxide transparent dispersion of the present invention and a resin, and molding or filling the resulting mixture. Then, the molded body or filler is cured.
  • the present inventors have found that a nanometer-class square that has a high toughness mechanism called martensitic transformation when combined as a second phase and has an advantage in improving mechanical properties.
  • the surface of tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less was modified with a surface modifier, and the tetragonal zirconia particles with modified surface were dispersed. If the inorganic oxide transparent dispersion is dispersed in the liquid, it is possible to improve the refractive index and mechanical properties while maintaining the transparency of the composite when combined with the resin.
  • the headline and the present invention were completed.
  • the inorganic oxide transparent dispersion of the present invention contains tetragonal zirconia particles having a surface modified by a surface modifier and a dispersed particle size of 1 nm or more and 20 nm or less.
  • the surface modifier is preferably one or more selected from the group strength of alkoxysilane compounds, siloxane compounds, surfactants, and titanium coupling agents.
  • the alkoxysilane compound is preferably a silane coupling agent.
  • the siloxane compound is a modified silicone.
  • the weight ratio of the modified portion on the surface is preferably 5% by weight or more and 200% by weight or less of the tetragonal zirconia particles.
  • the content of the tetragonal zirconium particles is preferably 1% by weight or more and 70% by weight or less.
  • the resin composition containing inorganic oxide particles of the present invention has a surface modified with a surface modifier, and tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less are dispersed in the resin. It is characterized by becoming.
  • the resin is preferably a silicone resin, an epoxy resin, or an attalylate resin.
  • the content of the tetragonal zirconium particles is preferably 1% by weight or more and 80% by weight or less.
  • the method for producing a resin composition containing inorganic oxide particles of the present invention comprises mixing the inorganic oxide transparent dispersion of the present invention and a resin, and molding or filling the resulting mixture. Then, the molded body or filler is cured.
  • the present inventors have focused on inorganic oxide particles having a refractive index of 1.8 or more as inorganic fillers, and those having a primary particle size of a few to a few nanometers from a coarse particle size of several / zm.
  • the composition for sealing a light emitting device of the present invention comprises inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and a refractive index of 1.8 or more, and silicone resin. It is characterized by having.
  • the inorganic oxide particles are preferably zirconia particles.
  • the content of the inorganic oxide particles is preferably 1% by weight or more and 80% by weight or less.
  • the light emitting device of the present invention is characterized in that at least a light transmission region is sealed with the composition for sealing a light emitting device of the present invention.
  • the optical semiconductor device of the present invention comprises the light emitting element of the present invention.
  • the present inventors have modified the surface of hydrogenated epoxy resin with a surface modifier, and the dispersed particle diameter is lnm or more.
  • the inventors have found that the addition of zirconia particles of 20 nm or less can maintain the heat resistance and light resistance of the epoxy resin, and can improve the refractive index, thereby completing the present invention.
  • the inorganic acid oxide particle-containing resin composition of the present invention has a surface modified with a surface modifier and a tetragonal zirconia particle having a dispersed particle diameter of 1 nm or more and 20 nm or less and an aromatic ring. It contains hydrogenated hydrogenated epoxy resin.
  • the surface modifier is preferably a siloxane compound and Z or a surfactant.
  • the content of the zirconia particles is preferably 10% by weight or more and 60% by weight or less.
  • the composition for sealing a light emitting device (transparent composite) of the present invention comprises the inorganic oxide particle-containing resin composition (zircoa-containing epoxy resin composition) of the present invention. It is characterized by.
  • the composition for sealing a light-emitting device (transparent composite) of the present invention is the composition for light-emitting device sealing (transparent composite), wherein the content of the zirconia particles is 10 wt% or more and 60 wt% or less. In the case below, it is preferable that the transmittance of light having a wavelength of 350 nm or more and 800 nm or less is 80% or more.
  • the light emitting device of the present invention is characterized in that at least a light transmission region is sealed with the composition for sealing a light emitting device (transparent composite) according to claim 4.
  • An optical semiconductor device of the present invention comprises the light emitting element of the present invention.
  • the present inventors modified the surface of zirconia fine particles having a dispersed particle diameter of 1 nm or more and 20 nm or less with a surface modifier, and this By uniformly dispersing the surface-modified zircoure fine particles in a transparent plastic film or sheet, it is possible to realize the dispersibility and high filling rate of the zircoure fine particles in the plastic.
  • the inventors have found that a high refractive index can be achieved while securing the properties, and at the same time, it is possible to improve the mechanical characteristics, and the present invention has been completed.
  • the inorganic oxide particle-containing transparent plastic member (zircoa fine particle-containing transparent plastic member) of the present invention is an inorganic oxide particle obtained from the inorganic oxide transparent dispersion liquid. It is characterized by containing.
  • a transparent plastic member containing inorganic oxide particles of the present invention is a transparent plastic member in the form of a film or a sheet, the surface of which is modified with a surface modifier, and the dispersed particle size is 1 nm or more and 20 nm or less. It is preferable to contain fine particles!
  • the content of the zirconia fine particles is preferably 10 wt% or more and 80 wt% or less.
  • the transparent plastic member containing inorganic oxide particles preferably has a visible light transmittance of 80% or more when the thickness is 30 m or more and 300 m or less.
  • the surface modifier is preferably one or more selected from the group strength of alkoxysilane, chlorosilane, alkylalkoxysilane, alkylchlorosilane, siloxane, and surfactant.
  • the alkoxysilane or chlorosilane is preferably a silane coupling agent.
  • the siloxane is preferably a modified silicone or a silicone resin.
  • a composite plastic member of the present invention is characterized by comprising the inorganic oxide particle-containing transparent plastic member of the present invention.
  • the present inventors have referred to this composite material as a martensitic transformation when zirconia particles as an inorganic filler, particularly tetragonal zirconia, is added as the second phase of the composite material.
  • zirconia particles as an inorganic filler, particularly tetragonal zirconia
  • Convention zirconia particles have Regardless of whether the primary particle size is coarse from a few nanometers to a fine nanometer, even if kneaded into a flocculated agglomerate, it is in the form of coarse particles with a diameter of several meters.
  • tetragonal zirconia particles with a dispersed particle size of lnm or more and 20nm or less as zirconia particles
  • zirconia particles To form a hard coat film containing tetragonal zirconium particles, and found that it satisfies high light transmittance, high refractive index, high thermal stability, high hardness and weather resistance, and completed the present invention. It came to do.
  • the hard coat film of the present invention is characterized by containing inorganic oxide particles obtained from the inorganic oxide transparent dispersion of the present invention.
  • the hard coat film of the present invention preferably contains tetragonal zirconium oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • the tetragonal zirconium particles are preferably dispersed in a hard coat substrate.
  • the content of the tetragonal zirconia particles is preferably 1% by weight or more and 80% by weight or less.
  • the optical functional film of the present invention is characterized by comprising the hard coat film of the present invention at least in a light transmission region.
  • the optical lens of the present invention is characterized by comprising the hard coat film of the present invention at least in a light transmission region.
  • the optical component of the present invention includes the optical lens of the present invention.
  • an inorganic oxide transparent dispersion of the present invention an inorganic acid having a surface modified by a surface modifier having one or more reactive functional groups and having a dispersed particle diameter of 1 nm or more and 20 nm or less. Since the compound particles are contained, the refractive index and mechanical properties can be further enhanced, and the transparency can be maintained.
  • the refractive index and mechanical properties can be further improved and transparency can be maintained.
  • the inorganic oxide transparent dispersion of the present invention and a resin are mixed to obtain The resulting mixture is molded or filled, and then the molded body or filling is cured, so that it has excellent refractive index and mechanical properties, and there is no risk of lowering transparency.
  • Fat composition (transparent composite) J can be produced easily and inexpensively.
  • the surface was modified with a surface modifier, and tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less were contained.
  • tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less were contained.
  • this inorganic oxide transparent dispersion when mixed with a resin, it has a high refractive index, excellent transparency, and improved mechanical properties. Body) ”can be easily obtained.
  • the "resin composition containing inorganic oxide particles (transparent composite)" of the present invention a tetragonal zirco having a surface modified by a surface modifier and having a dispersed particle diameter of 1 nm or more and 20 nm or less. Since your particles are dispersed in the resin, the refractive index, transparency and mechanical properties can be improved.
  • the inorganic oxide transparent dispersion of the present invention is mixed with resin.
  • the resulting mixture or molding is then molded, and then the molded body or filling is cured.
  • the “refining composition containing inorganic oxide particles” has high refractive index, excellent transparency, and improved mechanical properties.
  • Product (transparent composite) "can be produced easily and inexpensively.
  • composition for sealing a light emitting device of the present invention inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 ⁇ m or less and a refractive index of 1.8 or more, and a silicone resin Therefore, transparency can be maintained and the refractive index and mechanical properties can be improved.
  • the transparency of the light transmitting region can be maintained and the refractive index can be maintained. , Thermal stability, hardness and weather resistance can be improved.
  • the optical semiconductor device of the present invention since the light emitting element of the present invention is provided, the performance as the device can be improved, and the reliability of the device can be improved over a long period of time.
  • the inorganic oxide particle-containing resin composition of the present invention has a surface modified with a surface modifier and tetragonal zirconium particles having a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • a composition for encapsulating a light emitting device (transparent composite) that is excellent in heat resistance and light resistance and has improved refractive index while maintaining transparency because it contains hydrogenated epoxy resin having hydrogenated aromatic rings. Can be obtained.
  • the transparency of the light transmission region is maintained.
  • the refractive index, thermal stability, hardness and weather resistance can be improved.
  • the optical semiconductor device of the present invention since the light emitting element of the present invention is provided, the performance as the device can be improved, and the reliability of the device can be improved over a long period of time.
  • the surface is modified with a surface modifier with a transparent plastic member in the form of a film or a sheet, and the dispersed particle size is Since it contains zirconia fine particles of lnm or more and 20nm or less, the refractive index can be increased while maintaining the transparency of the plastic member, and the mechanical properties can be improved.
  • the composite plastic member of the present invention since the transparent plastic member containing the inorganic oxide particles of the present invention is provided, the composite plastic member has a high refractive index while maintaining the transparency. Can also improve mechanical properties.
  • the dispersed particle diameter is 1 nm or more and 20 nm or less. Since tetragonal zirconia particles are contained, transparency can be maintained and refractive index and toughness can be improved.
  • the optical functional film of the present invention since the hard coat film of the present invention is provided at least in the light transmission region, the transparency of the light transmission region can be maintained, and the refractive index, thermal stability, Hardness and weather resistance can be improved. Therefore, it is possible to improve reliability over a long period of time.
  • the optical lens of the present invention since the hard coat film of the present invention is provided at least in the light transmission region, the transparency of the light transmission region can be maintained, and the refractive index, thermal stability, hard hardness can be maintained. Degree and weather resistance can be improved. Therefore, it is possible to improve reliability over a long period of time.
  • the optical lens of the present invention since the optical lens of the present invention is provided, the performance as the component can be improved, and the reliability of the optical component can be improved over a long period of time. .
  • FIG. 1 is a diagram showing a powder X-ray diffraction pattern of zirconium oxide particles of Example 6 of the present invention.
  • FIG. 2 is a cross-sectional view showing a light emitting diode according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an optical lens according to an embodiment of the present invention.
  • inorganic oxide transparent dispersion inorganic oxide particle-containing resin composition, light-emitting element sealing composition, light-emitting element, and inorganic oxide particle-containing resin composition of the present invention. The best mode will be described.
  • the inorganic oxide transparent dispersion of the present invention comprises inorganic oxide particles having a surface modified by a surface modifier having one or more reactive functional groups and a dispersed particle size of 1 nm or more and 20 nm or less.
  • a dispersion containing a dispersion medium comprises inorganic oxide particles having a surface modified by a surface modifier having one or more reactive functional groups and a dispersed particle size of 1 nm or more and 20 nm or less.
  • the inorganic oxide is not particularly limited, but examples thereof include acid zirconium (ZrO 2), acid
  • Titanium dioxide TiO 2
  • silicon oxide SiO 2
  • aluminum oxide Al 2 O 3
  • iron oxide Fe 2 O
  • FeO, Fe 2 O copper oxide (CuO, Cu 2 O), zinc oxide (ZnO), yttrium oxide (Y ⁇
  • Niobium oxide Nb 2 O 3
  • molybdenum oxide MoO 2
  • indium oxide In 2 O, In 2 O
  • PbO, PbO bismuth oxide (BiO), cerium oxide (CeO, CeO), antimony oxide
  • RuO Diruthenium
  • composite oxides in which a plurality of these inorganic oxides are combined for example, tin-added indium oxide (ITO), antimony-added tin oxide (ATO), aluminum zinc oxide (ZnO ⁇ Al 2 O 3), etc. Also mentioned.
  • ITO tin-added indium oxide
  • ATO antimony-added tin oxide
  • ZnO ⁇ Al 2 O 3 aluminum zinc oxide
  • the surface modifier must have at least one reactive functional group, and the reactive functional group may have a carbon-carbon double bond or a silicon monohydrogen bond. preferable.
  • the reactive functional group may be one or more selected from the group power of alkoxyl group, hydroxyl group, vinyl group, styryl group, acrylic group, methacrylic group, acryloyl group, and epoxy group. I like it.
  • a carbon-carbon double bond or a cage is particularly preferable.
  • the group strength of alkoxysilane compounds, siloxane compounds, titanium coupling agents, and surfactants is also one or more selected.
  • a silan coupling agent is particularly preferable as the alkoxysilane compound, and a modified silicone or silicone resin is used as the siloxane compound.
  • silane coupling agent examples include butyltrimethoxysilane, vinyltriethoxysilane, butyltrichlorosilane, buttophenoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropinoretrie.
  • modified silicone examples include epoxy-modified silicone, epoxy-polyether-modified silicone, methacryl-modified silicone, phenol-modified silicone, methylstyryl-modified silicone, acrylic-modified silicone, alkoxy-modified silicone, and methylhydrogen silicone. It is done.
  • the functional group bonded to the vinyl group and Z or the silicon atom contributes to a chemical reaction when curing the resin. Therefore, it is particularly preferable.
  • silicone resin examples include methyl silicone resin, methyl phenyl silicone resin, diphenyl silicone resin, and the like.
  • an anionic surfactant a cationic surfactant, an ionic surfactant such as an amphoteric surfactant, or a nonionic surfactant is preferably used.
  • anionic surfactant examples include sodium fatty acid such as sodium oleate, sodium stearate, sodium laurate, fatty acid potassium, fatty acid ester sulfate.
  • fatty acid systems such as sodium onate, phosphoric acid systems such as sodium alkyl phosphate ester, olefins such as sodium alpha olein sulfonate, alcohols such as sodium alkyl sulfate, and alkylbenzenes.
  • Examples of the cationic surfactant include salty alkyl methyl ammonium, salty alkyl dimethyl ammonium, alkyl trimethyl ammonium chloride, alkyl dimethylbenzyl ammonium chloride, and the like. It is done.
  • Examples of the zwitterionic surfactant include a carboxylic acid type such as an alkylaminocarboxylate and a phosphoric acid ester type such as phosphobetaine.
  • nonionic surfactants include fatty acids such as acrylic acid, crotonic acid, oleic acid, linoleic acid, linolenic acid, polyoxyethylene lanolin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and polyoxyethylene.
  • fatty acids such as acrylic acid, crotonic acid, oleic acid, linoleic acid, linolenic acid, polyoxyethylene lanolin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and polyoxyethylene.
  • unsaturated fatty acids such as alkyl phenyl ether and fatty acid alcohol amide.
  • titanium coupling agent examples include isopropyl triisostearoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dodecyl) benzene sulfo-rutitanate, neopentyl (diallyl) oxystoyl (dioctyl) phosphate titanate, neopentyl (diaryl) ) Oxitoline neododecanol titanate and the like.
  • Examples of a method for modifying the surface of the inorganic oxide particles using the surface modifier include a wet method and a dry method.
  • the wet method is a method of modifying the surface of the inorganic oxide particles by introducing the surface modifier and the inorganic oxide particles into a solvent and mixing them.
  • the dry method is a method of modifying the surface of the inorganic oxide particles by introducing the surface modifier and the dried inorganic oxide particles into a dry mixer such as a mixer and mixing them.
  • the weight ratio of the modified portion of the inorganic oxide particles whose surface is modified is preferably 5% by weight or more and 200% by weight or less of the total amount of the inorganic oxide particles, more preferably 10% by weight. It is more than 100% by weight and more preferably 20% by weight to 100% by weight.
  • the reason for limiting the weight ratio of the modified part to 5 wt% or more and 200 wt% or less is If the weight ratio of the modified portion is less than 5% by weight, it becomes difficult to compatibilize the inorganic oxide particles in the resin, and transparency is lost when combined with the resin. This is because if the weight ratio of the modified portion exceeds 200% by weight, the effect of the surface treatment agent on the resin properties increases, and the composite properties such as the refractive index decrease.
  • the reason why the dispersed particle size of the inorganic oxide particles is limited to 1 nm or more and 20 nm or less is that if the dispersed particle size is less than 1 nm, the crystallinity becomes poor and the particle characteristics such as refractive index are reduced. On the other hand, when the dispersed particle diameter exceeds 20 nm, the transparency of the dispersion or the inorganic oxide particle-containing resin composition is lowered.
  • the inorganic oxide particles are nano-sized particles, when the inorganic oxide particles are dispersed in the resin to obtain the inorganic oxide particle-containing resin composition, light It is possible to maintain the transparency of the composite with low scattering.
  • the reason why the zirconia particles are limited to tetragonal zirconia particles is that, from the standpoint of fine particle synthesis, when the particle size of the fine particles is reduced to 20 nm or less, tetragonal crystals are conventionally known monoclinic crystals.
  • martensite is compared with the case where monoclinic zirconia particles are added. It is a force that exhibits high toughness due to volume expansion called transformation.
  • the reason why the dispersed particle size of tetragonal zirconia particles is limited to not less than 1 nm and not more than 20 nm is that when the dispersed particle size is less than 1 nm, crystallinity is poor and particle characteristics such as refractive index are exhibited. On the other hand, if the dispersed particle diameter exceeds 20 nm, the transparency of the dispersion or the inorganic oxide-containing particle-containing resin composition is lowered.
  • tetragonal zirconium particles are nano-sized particles, even when the tetragonal zirconium particles are dispersed in a resin to obtain a resin composition containing inorganic oxide particles. It is possible to maintain the transparency of the composite with low light scattering.
  • the content of the inorganic oxide particles is preferably 1% by weight or more and 70% by weight or less, more preferably 1% by weight or more and 50% by weight or less, and further preferably 5% by weight or more and 30 % By weight or less.
  • the reason why the content of the inorganic oxide particles is limited to 1% by weight or more and 70% by weight or less is the range in which the inorganic oxide particles can take a good dispersion state. If the content is less than S1% by weight, the effect as inorganic oxide particles will be reduced, and if it exceeds 70% by weight, gelling will cause agglomeration and the characteristics of the dispersion will be lost. It is.
  • the dispersion medium basically contains at least one or more of water, an organic solvent, a liquid resin monomer, and a liquid resin oligomer.
  • organic solvent examples include alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycolenomonomethenoatenoacetate, and propylene glycolenomono.
  • alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycolenomonomethenoatenoacetate, and propylene glycolenomono.
  • Ethenoleol teracetate y Esters such as butyrolatatane, Jetyl ether, Ethylene glyconolemonomethinoreethenore (Metinorecellosonoleb), Ethyleneglycolenoremonoethylenoreteenore (Etinorecellosoleb), Ethylene Ethers such as glyconomonobutinoreethenore (butinorecerosenorebu), diethyleneglycolenomonomethinoleatere, diethyleneglycolenoremonoethylenoate, acetone, methylethylketone, methylisobute Ketones such as ruketone, acetylacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, amides such as dimethylformamide, N, N dimethylace
  • liquid resin monomer an acrylic or methacrylic monomer such as methyl acrylate or methyl methacrylate, an epoxy monomer or the like is preferably used.
  • liquid resin oligomers urethane acrylate oligomers, epoxy acrylate oligomers, acrylate oligomers and the like are preferably used.
  • this inorganic oxide transparent dispersion may contain a resin monomer or the like as long as its properties are not impaired.
  • the visible light transmittance of this inorganic oxide transparent dispersion varies depending on the composition and content of the inorganic oxide, but when the content of the inorganic oxide is 5 wt%, the optical path length is 10 mm.
  • the visible light transmittance at that time is preferably 90% or more, more preferably 95% or more.
  • the visible light transmittance when the optical path length is 10 mm is 95% or more when the content of zirconia particles is 1% by weight.
  • the content power is 80% or more at 0% by weight.
  • the resin composition containing inorganic oxide particles of the present invention is an inorganic oxide having a surface modified with a surface modifier having one or more reactive functional groups and having a dispersed particle diameter of 1 nm or more and 20 nm or less. It is a composite formed by dispersing particles in a resin and reacting with the resin.
  • thermoplastic resin thermosetting, light by visible light, ultraviolet light, infrared light, etc. (electromagnetic wave) is acceptable as long as it is transparent to light in a predetermined wavelength band such as visible light or near infrared light.
  • Curing resins such as curability and electron beam curing by electron beam irradiation are preferably used.
  • Examples of such a resin include acrylates such as polymethylmethacrylate (PMMA) and polycyclohexenomethacrylate, polycarbonate (PC), polystyrene (PS), polyester, polyester, Polyarylate, polyacrylic acid ester, polyamide, phenol formaldehyde (phenol resin), diethylene glycol bisvalyl carbonate, acrylonitrile styrene copolymer (AS resin), methylmethacrylate styrene copolymer (MS resin), Examples thereof include poly-4-methylpentene, norbornene-based polymer, polyurethane, epoxy, and silicone. Particularly preferred are silicone, epoxy, and acrylate.
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • PS polystyrene
  • polyester polyester
  • Polyarylate polyacrylic acid ester
  • polyamide phenol formaldehyde
  • AS resin acrylonitrile styrene copolymer
  • AS resin acrylonitrile sty
  • the silicone resin preferably has at least the following component strengths (a) to (c):
  • alkenyl group in the component (a) examples include a bur group, a allyl group, a pentyl group, and a hexyl group, and a vinyl group is particularly preferable.
  • examples of the functional group bonded to a key atom other than the alkali group include a methyl group and an ether group.
  • examples thereof include alkyl groups such as til group, propyl group and butyl group, aryl groups such as phenyl group and tolyl group, aralkyl groups such as benzyl group and phenethyl group, and methyl group is particularly preferable.
  • the functional group bonded to the carbon atom other than the hydrogen atom in the component (b) includes an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, a phenyl group, a tolyl group, and the like. Examples thereof include aralkyl groups such as aryl group, benzyl group and phenethyl group, and methyl group is particularly preferable.
  • component (b) should be such that the amount of hydrogen atoms is in the range of 0.1 to 10 moles with respect to 1 mole of the total alkenyl group contained in component (a). More preferred is an amount that falls within the range of 0.1 to 5 moles, and still more preferred is an amount that falls within the range of 0.5 to 2 moles.
  • the catalyst for hydrosilylation reaction of component (c) is a catalyst for promoting hydrosilylation reaction between an alkenyl group in component (a) and a hydrogen atom bonded to a silicon atom in component (b). It is a catalyst.
  • a catalyst examples include a platinum-based catalyst, a rhodium-based catalyst, a palladium-based catalyst, and the like, and a platinum-based catalyst is particularly preferable.
  • platinum-based catalyst examples include fine platinum powder, chloroplatinic acid, platinum-one-year-old refin complex, platinum carbonyl complex, and the like.
  • the content of the component (c) is an amount capable of promoting the curing of the present composition, that is,
  • the metal atom in the component is in the range of 0.01 to 500 ppm with respect to the composition, more preferably in the range of 0.01 to 50 ppm. .
  • the silicone resin may contain a heat-resistant agent, a dye, a pigment, a flame retarder, and the like as other optional components.
  • Epoxy resins include bisphenol A type epoxy resin and bisphenol F type epoxy resin. Bifunctional, bisphenol S-type epoxy resin, hydrogenated bisphenol A-type epoxy resin, biphenyl type epoxy resin, etc. Bifunctional glycidyl ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak -Type epoxy resin, alkyl-modified triphenol methane type epoxy resin, trifunctional hydroxyphenol methane type epoxy resin, tetrafunctional roll ethane type epoxy resin, etc.
  • Glycidyl such as tetraglycidinoresin minidiphenylenoxymethane type epoxy resin, triglycidyl isocyanurate type epoxy resin, aminophenol type epoxy resin, Yuji phosphorus type epoxy resin, toluidine type epoxy resin Amine type epoxy resin is preferably used.
  • a curing agent for epoxy resin polyaddition type, catalyst type, condensation type, or any other type can be used.
  • diaminodiphenylmethane, diaminodiphenylsulfone, polyamide, dicyandiamide, diethylene examples include triamine, triethylenetetramine, hexaldehyde, oral phthalic anhydride, and methyltetrahydrophthalic anhydride.
  • acrylic resin monofunctional acrylate and Z or polyfunctional acrylate are used, and one or more of them are used.
  • Alkyl (meth) acrylates such as butyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate
  • Alkoxyalkylene glycol (meth) acrylate such as methoxypropylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate
  • N-substituted acrylamides such as (meth) acrylamide and N-butoxymethyl (meth) acrylamide.
  • Tri (meth) acrylates such as pentaerythritol tritalate, trimethylolpropane tri (meth) acrylate, ethylene oxide, and propylene oxide modified trimethylolpropane triacrylate
  • Tetra (meth) acrylates such as pentaerythritol tetraacrylate and ditrimethylolpropane tetraacrylate
  • penta (meth) atrelates such as dipentaerythritol (monohydroxy) pentatalylate.
  • cyclohexyl (meth) acrylate is a monofunctional type
  • dicyclopentadienyl di (meta) is a multifunctional type.
  • aromatic (meth) acrylates monofunctional types include phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxychetyl (meth) acrylate, phenoxyethylene glycol (meta ) Atallate isotropic
  • the polyfunctional type includes diaphthalates such as bisphenol A di (meth) acrylate and bisphenol F di (meth) acrylate.
  • Examples of (e) polyurethane (meth) acrylate include polyurethane ether (meth) acrylate and polyester (meth) acrylate.
  • Epoxy (meth) acrylates include bisphenol A type epoxy acrylate and novolak type epoxy acrylate.
  • radical polymerization initiators lauroyl peroxide, benzoyl peroxide, di-t-butyl peroxide, t-butylperoxy 2-ethylhexanoate, tert-butylenoperoxyisobutyrate, tert-butylenoperoxide
  • peroxide polymerization initiators such as xypivalate, tert-butylenoperoxybenzoate K t butyl peroxyacetate
  • azo polymerization initiators such as 2,2'-azobisisobutyl-tolyl.
  • the polymerization reaction between the reactive functional group remaining on the surface of the inorganic oxide particles and the resin has a refractive index and mechanical properties. It can be further increased, and transparency can be maintained, which is preferable.
  • the polymerization reaction is, for example, an addition polymerization reaction or a condensation polymerization reaction in the case of silicone resin, and an addition polymerization reaction in the case of epoxy resin or acrylic resin. Table 1 shows the reaction forms.
  • silicone resin epoxy resin, acrylic resin, etc., an antioxidant, a release agent, a coupling agent, an inorganic filler, and the like are added as long as the characteristics are not impaired. Caro is good.
  • the content of the inorganic oxide particles is preferably 1 wt% or more and 80 wt% or less, more preferably 10 wt% or more and 80 wt% or less, More preferably, it is 10% by weight or more and 50% by weight or less.
  • the reason why the content of the inorganic oxide particles is limited to 1% by weight or more and 80% by weight or less is that the lower limit of 1% by weight is an addition rate that can improve the refractive index and mechanical properties.
  • the upper limit of 80% by weight is the maximum value of the addition rate that can maintain the properties (flexibility and specific gravity) of the resin itself.
  • the visible light transmittance of the inorganic oxide particle-containing resin composition is determined by the composition of the inorganic oxide and Although the content varies depending on the content, when the content of the inorganic oxide is 25% by weight, the visible light transmittance when the optical path length is lm m is preferably 90% or more, more preferably 92% or more. For example, when zirconia particles are used as the inorganic oxide particles, the visible light transmittance when the optical path length is 1 mm is 95% or more when the content of zirconia particles is 1% by weight. The content power is 80% or more at 0% by weight.
  • the refractive index of the zirconium oxide particles is 2.15
  • the refractive index of the acrylic resin and the silicone resin is about 1.4
  • the refractive index of the epoxy resin is Compared with a ratio of about 1.5, it is possible to further improve the refractive index of the resin.
  • the zircoyu particles have high toughness and hardness, they are suitable for improving the mechanical properties of the composite.
  • these zirconia particles are nano-sized particles having a particle size of 1 nm or more and 20 nm or less, the transparency of the composite material with small light scattering is maintained even when it is combined with a resin. It is possible.
  • An example of the inorganic oxide particle-containing resin composition of the present invention is an optical element made of silicone resin.
  • This optical element is manufactured by placing one or more types of organopolysiloxane, a curing agent, and a catalyst in a mold and thermally curing in the mold to obtain a molded body having a predetermined shape.
  • thermosetting reaction reactions such as condensation crosslinking, peroxide crosslinking, and platinum addition crosslinking can be used.
  • thermosetting by addition polymerization reaction using a platinum catalyst is preferable.
  • the resin composition containing inorganic oxide particles of the present invention can be produced by the following method.
  • the inorganic oxide transparent dispersion of the present invention described above and a monomer or oligomer of resin are mixed using a mixer or the like to obtain a resin composition that is easy to flow.
  • the resin composition is molded using a mold, or filled in a mold or a container, and then the molded product or filling is heated or irradiated with ultraviolet rays or infrared rays. And the molded body or filling is cured.
  • it can be polymerized by simple mixing.
  • UV curable resin such as acrylic resin
  • radical polymerization initiated by heating or light irradiation examples thereof include a molding method using a reaction and a transfer molding method.
  • the radical polymerization reaction include a polymerization reaction by heat (thermal polymerization), a polymerization reaction by light such as ultraviolet rays (photopolymerization), a polymerization reaction by gamma ( ⁇ ) rays, or a combination of these. It is done.
  • the composition for sealing a light emitting device of the present invention is a transparent dispersion of the inorganic oxide of the present invention, that is, the surface is modified with a surface modifier having one or more reactive functional groups, and the dispersed particle diameter is 1 nm or more.
  • This is a fluid fluid that is a mixture of a dispersion containing inorganic oxide particles of 20 nm or less and a dispersion medium and the above-described silicone resin, epoxy resin, acrylic resin, and the like.
  • the light emitting device of the present invention has at least a light transmission region made of the inorganic oxide particle-containing resin composition of the present invention, and the light emitting device sealing composition is filled in at least the light transmission region of the light emitting device. Then, the filler is either heated or irradiated with ultraviolet rays or infrared rays, and the filler is cured, so that the light transmission region of the light emitting element is filled with the inorganic oxide particle-containing resin of the present invention. It is sealed with a composition.
  • the light transmission region is sealed with the sealing material (composition) that has high refractive index and high mechanical properties and excellent transmissivity. Excellent in transmittance, high refractive index, high hardness, etc. Therefore, the light extraction efficiency of the light emitting element can be improved, and as a result, the light emission luminance can be improved.
  • the sealing material composition that has high refractive index and high mechanical properties and excellent transmissivity. Excellent in transmittance, high refractive index, high hardness, etc. Therefore, the light extraction efficiency of the light emitting element can be improved, and as a result, the light emission luminance can be improved.
  • Example 1 Zirconium Precursor Precursor was added to a zirconium salt solution prepared by dissolving 2615 g of zirconium oxychloride octahydrate in 40 L (liter) of pure water and stirring with diluted ammonia water of 344 g of 28% ammonia water in 20 L of pure water. Body slurry was prepared.
  • the solid was pulverized with an automatic mortar or the like and then baked in an atmosphere at 500 ° C. for 1 hour using an electric furnace.
  • the fired product is put into pure water, stirred to form a slurry, washed with a centrifuge, and the added sodium sulfate is sufficiently removed, followed by drying with a dryer. Zircoyu particles were prepared.
  • the dispersion particle size was measured by using a dynamic light scattering particle size distribution measuring device (Malvern Co., Ltd.) and adjusting the content of zirconia particles in the inorganic oxide transparent dispersion to 1% by weight. It was a fee.
  • the measurement temperature was 25 ° C.
  • the particle size standard was the volume standard
  • the refractive index of the dispersed particles of zircoure was 2.15
  • the refractive index of toluene as the dispersion medium was 1.49.
  • the visible light transmittance of the dispersion was measured by placing a sample prepared by adjusting the zircoure content of the above dispersion to 5% by weight with toluene in a quartz cell (10 mm x 10 mm).
  • the visible light transmittance at 10 mm was measured using a spectrophotometer (manufactured by JASCO Corporation).
  • the transmittance of 80% or more is “ ⁇ ”
  • the transmittance of less than 80% is “X”. Table 2 shows the results of these measurements.
  • Fig. 1 shows a powder X-ray diffraction pattern (chart) of zircoyu particles. From this powder X-ray diffraction pattern, it was confirmed that the crystal system of the zirconium oxide particles was a tetragonal system.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • Example 2 85 g of toluene as a dispersion medium and 5 g of methoxy-modified silicone KR-213 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a surface modifier are added to 10 g of the zirconium oxide particles and mixed, followed by dispersion treatment! In addition, an inorganic oxide transparent dispersion (Z2) of Example 2 was prepared.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • the tetragonal zirconia particles in this zircouore dispersion (Z4) have a surface modifier added!
  • the surface should be modified with a surface modifier.
  • Example 1 except that RC-100 (manufactured by Daiichi Rare Element Co., Ltd.) was used as the zirconium oxide particles. Dispersion treatment was performed according to the above, and a zirconia dispersion liquid (Z5) of Comparative Example 3 was produced.
  • RC-100 manufactured by Daiichi Rare Element Co., Ltd.
  • silicone oil a mixture of a methylhydride diene polysiloxane and an organopolysiloxane each having a vinyl group at both ends
  • a salt was further added.
  • Platinic acid was added to 100 parts by weight of silicone oil to 20 ppm, and the solvent was removed by vacuum drying to prepare a resin composition.
  • the resin composition was poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, and cured by heating at 150 ° C. for 2 hours.
  • the inorganic oxide particles of Example 3 An impregnated resin composition was prepared.
  • the zirconia content of this inorganic oxide particle-containing resin composition is 50 weight 0 /.
  • Example 2 To 100 g of the inorganic oxide transparent dispersion (Zl) of Example 1, 7 g of epoxy resin: Epicoat 828 and 3 g of Epicure 3080 (V, slip is made by Japan Epoxy Resins Co., Ltd.) are added and dried by vacuum drying. Solvent removal was performed to prepare a resin composition.
  • this resin composition was poured into a mold assembled with glass plates so as to have a thickness of 1 mm, cured by heating at 80 ° C. for 30 minutes, and containing the inorganic oxide particles of Example 4.
  • a resin composition was prepared.
  • Inorganic oxide transparent dispersion (Zl) lOOg of Example 1 5 g of 1,6-hexanediol diacrylate, 2.5 g of pentaerythritol tritalylate, 2 g of pentaerythritol tetraatalylate, polymerization initiator As a result, 0.5 g of benzoyl peroxide was added and the solvent was removed by vacuum drying to prepare a resin composition.
  • the resin composition was poured into a mold assembled with glass plates so as to have a thickness of 1 mm, and cured by heating at 60 ° C for 5 hours and then at 120 ° C for 2 hours, The inorganic acid oxide particle-containing resin composition of Example 5 was produced.
  • the content of zircoia in the inorganic acid oxide particle-containing resin composition was 50% by weight.
  • Silicone oil (mixture of methylhydrogen polysiloxane and organopolysiloxane having vinyl groups at both ends) in 100 g of the zirconia dispersion (Z3) of Comparative Example 1
  • this rosin composition was processed according to Example 3 to produce a resin composition containing inorganic oxide particles of Comparative Example 4.
  • the content of zircoia in the inorganic acid oxide particle-containing resin composition was 50% by weight.
  • Epoxy Resin Epicoat 828 and 3g of Epicure 3080 as a curing agent (V, slip is made by Japan Epoxy Resins Co., Ltd.) to 100g of Zirca dispersion (Z3) of Comparative Example 1 and vacuum dry. Solvent removal was carried out to produce a resin composition.
  • this rosin composition was treated according to Example 4 to produce an inorganic oxide particle-containing resin composition of Comparative Example 5.
  • the content of zircoia in the inorganic acid oxide particle-containing resin composition was 50% by weight.
  • the inorganic acid oxide particle-containing resin composition of Comparative Example 7 was treated in the same manner as Comparative Example 4 except that the content of zirconium oxide in the inorganic acid oxide particle-containing resin composition was 1% by weight. Produced.
  • the inorganic acid oxide particle-containing resin composition of Comparative Example 8 was treated in the same manner as Comparative Example 5 except that the content of zirconium oxide in the inorganic acid oxide particle-containing resin composition was 1% by weight. Produced.
  • the inorganic acid oxide particle-containing resin composition of Comparative Example 9 was treated in the same manner as in Comparative Example 6 except that the content of zirconium oxide in the inorganic acid oxide particle-containing resin composition was 1% by weight. Produced.
  • the inorganic oxide particle-containing resin composition of Comparative Example 10 was prepared in the same manner as in Comparative Example 4 except that the zircoure dispersion (Z5) of Comparative Example 3 was used.
  • the inorganic oxide particle-containing resin composition of Comparative Example 11 was prepared in the same manner as in Comparative Example 5 except that the zircoure dispersion (Z5) of Comparative Example 3 was used.
  • a resin composition containing inorganic oxide particles of Comparative Example 12 was prepared in the same manner as in Comparative Example 6 except that the zircouore dispersion (Z5) of Comparative Example 3 was used.
  • Visible light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation).
  • the measurement sample is a Balta body with a size of 100 X 100 X 1 mm, and the transmittance is 80
  • More than% is “ ⁇ ” and less than 80% is “X”.
  • JIS K 7142 Pulse-Coupled Index Measurement Method
  • ⁇ X '' indicates that the refractive index is improved by 0.05 or more, and ⁇ X '' indicates that the refractive index is improved by less than 0.05, based on the resin not supplemented with zirconia. It was.
  • JIS K 7215 “Plastic Durometer Hardness Test Method” JIS-A hardness was measured using a durometer.
  • each inorganic oxide particle containing 50% by weight of the zirconium oxide composition prepared by using the resin composition of Comparative Examples 10 to 12 using the zirconia dispersion liquid (Z5) of Comparative Example 3 was used. Based on the hardness of the oleoresin composition, “ ⁇ ” was given when it was higher than this standard value, and “X” was given when it was lower than this standard value.
  • Example 5 1 Acrylic resin 5 0 o O o
  • Comparative Example 16 to: L2 any of visible light transmittance, refractive index, and hardness was inferior to Examples 2 to 4.
  • Example 6 Preparation of inorganic oxide transparent dispersion (zirconia transparent dispersion)
  • Example 1 particle synthesis was performed to produce zirconia particles.
  • the dispersion particle size was measured by using a dynamic light scattering particle size distribution measuring device (Malvern Co., Ltd.) and adjusting the content of zirconia particles in the inorganic oxide transparent dispersion to 1% by weight. It was a fee.
  • the data analysis conditions were such that the particle diameter standard was the volume standard, the refractive index of the dispersed particles of zirconia was 2.15, and the refractive index of the dispersion medium of toluene was 1.49.
  • the visible light transmittance of the dispersion was measured by placing a sample prepared by adjusting the zircouure content of the above dispersion to 5 wt% using toluene in a quartz cell (10 mm x 10 mm), and measuring the optical path length of this sample. Visible light transmittance was measured using a spectrophotometer (manufactured by JASCO Corp.). Here, the transmittance of 80% or more is “ ⁇ ”, and the transmittance of less than 80% is “X”.
  • Fig. 1 shows a powder X-ray diffraction pattern (chart) of zircoyu particles. From this powder X-ray diffraction pattern, it was confirmed that the crystal system of the zirconium oxide particles was a tetragonal system.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • toluene as a dispersion medium 85 g of toluene as a dispersion medium and 5 g of 3-methacryloxypropyltrimethoxysilane, which is a silane coupling agent having an acrylic group, are added to and mixed with 10 g of the zirconium oxide particles, followed by dispersion treatment. Then, an inorganic oxide transparent dispersion (Z7) of Example 7 was produced.
  • KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd. was used as 3-methacryloxypropyltrimethoxysilane.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • Example 8 A liquid (Z8) was prepared.
  • KBM as 3-glycidoxypropyltrimethoxysilane
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • zirconium oxide dispersion (Z11) of Comparative Example 15 90 g of toluene as a dispersion medium was mixed with 10 g of the zirconium oxide particles, and then dispersion treatment was performed to prepare a zirconium oxide dispersion (Z11) of Comparative Example 15.
  • the zirconium oxide particles of this zirconium oxide dispersion (Zl 1) are obtained by adding a surface modifier to the dispersion liquid, so that the surface is modified with the surface modifier.
  • the dispersed particle diameter and visible light transmittance of the zirconium oxide particles were measured. Table 4 shows the measurement results.
  • Example 6 To 100 g of the inorganic oxide transparent dispersion (Zl) of Example 6, 10 g of silicone oil (a mixture of a methylhydride diene polysiloxane and an organopolysiloxane each having a bur group at both ends) was added, and further, chlorination was performed. Platinum resin was added to 20 parts by weight with respect to 100 parts by weight of silicone oil, and the solvent was removed by vacuum drying to prepare a resin composition.
  • silicone oil a mixture of a methylhydride diene polysiloxane and an organopolysiloxane each having a bur group at both ends
  • the resin composition was poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, and cured by heating at 150 ° C. for 2 hours to obtain inorganic oxide particles of Example 9.
  • An oil-containing oleoresin composition was prepared.
  • the content of zircoia in the inorganic acid oxide particle-containing resin composition was 50% by weight.
  • inorganic oxide transparent dispersion (Z7) of Example 7 100 g of inorganic oxide transparent dispersion (Z7) of Example 7, 5 g of 1,6-hexanediol diacrylate, 2.5 g of pentaerythritol triacrylate, 2 g of pentaerythritol tetraacrylate, polymerization initiator As a result, 0.5 g of benzoyl peroxide was added and the solvent was removed by vacuum drying to prepare a resin composition.
  • this resin composition is lmm in a mold assembled with glass plates. Then, the mixture was cured by heating at 60 ° C. for 5 hours and then at 120 ° C. for 2 hours to prepare a resin composition containing inorganic oxide particles of Example 10.
  • the content of zircoia in the inorganic acid oxide particle-containing resin composition was 50% by weight.
  • the resin composition was poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, and cured by heating at 80 ° C. for 30 minutes, whereby the inorganic oxide particles of Example 11 were used.
  • An oil-containing oleoresin composition was prepared.
  • the content of zircoia in the inorganic acid oxide particle-containing resin composition was 50% by weight.
  • a resin composition containing inorganic oxide particles of Comparative Example 16 was prepared in the same manner as in Example 9 except that the inorganic oxide transparent dispersion (Z9) of Comparative Example 1 was used.
  • the inorganic oxide particle-containing resin composition of Comparative Example 17 was prepared in the same manner as in Example 10 except that the inorganic oxide transparent dispersion (Z9) of Comparative Example 1 was used.
  • a resin composition containing inorganic oxide particles of Comparative Example 18 was prepared in the same manner as in Example 11 except that the inorganic oxide transparent dispersion (Z9) of Comparative Example 1 was used.
  • the inorganic oxide particle-containing resin composition of Comparative Example 19 was prepared in the same manner as in Example 9, except that the zircoure dispersion (Z10) of Comparative Example 14 was used.
  • the inorganic oxide particle-containing resin composition of Comparative Example 20 was prepared in the same manner as in Example 10 except that the zircoure dispersion (Z10) of Comparative Example 2 was used. [0174] "Comparative Example 21"
  • the inorganic oxide particle-containing resin composition of Comparative Example 21 was prepared in the same manner as in Example 11 except that the zircoure dispersion (Z10) of Comparative Example 2 was used.
  • the inorganic acid oxide particle-containing resin composition of Comparative Example 22 was treated in the same manner as Comparative Example 19 except that the content of zirconium oxide in the inorganic acid oxide particle-containing resin composition was 1% by weight. Produced.
  • the inorganic acid oxide particle-containing resin composition of Comparative Example 23 was treated in the same manner as Comparative Example 20 except that the content of zirconium oxide in the inorganic acid oxide particle-containing resin composition was 1% by weight. Produced.
  • the inorganic acid oxide particle-containing resin composition of Comparative Example 24 was treated in the same manner as Comparative Example 21 except that the content of zirconium oxide in the inorganic acid oxide particle-containing resin composition was 1% by weight. Produced.
  • Visible light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation).
  • the measurement sample was a Balta body with a size of 100 X 100 X 1 mm, and the transmittance of 80% or more was “ ⁇ ” and less than 80% was “X”.
  • JIS K 7142 Pulse-Coupled Index Measurement Method
  • ⁇ X '' indicates that the refractive index is improved by 0.05 or more, and ⁇ X '' indicates that the refractive index is improved by less than 0.05, based on the resin not supplemented with zirconia. It was. [0180] (3) Hardness
  • JIS K 7215 “Plastic Durometer Hardness Test Method”
  • JIS-— hardness was measured using a durometer.
  • each inorganic oxide particle containing 50% by weight of the zirconium oxide composition prepared by using the resin composition of Comparative Examples 16 to 18 using the zirconia dispersion (Z9) of Comparative Example 1 was used. Based on the hardness of the oleoresin composition, the case where the value is higher than the reference value is “ ⁇ ”, and the case where the value is lower than the reference value is “X”.
  • Table 5 shows the above evaluation results.
  • FIG. 2 is a cross-sectional view showing a light emitting diode (LED: light emitting element) according to an embodiment of the present invention. is there.
  • LED light emitting diode
  • 1 is an LED chip made of III-V compound semiconductor power
  • 2 is a lead frame on which LED chip 1 is mounted
  • 3 is an external terminal drawn out from lead frame 2
  • 4 is LED chip 1 and lead frame 2
  • Sealing material light-emitting element sealing composition
  • 5 is a metal case that houses LED chip 1 and lead frame 2
  • 6 is for insulating external terminals 3
  • An insulator 7 is an opening formed in the metal case 5.
  • the LED chip 1 is a chip in which a III-V compound semiconductor, for example, a gallium nitride compound semiconductor such as GaN, GaAlN, InGaN, or InAlGaN is stacked on a crystal substrate such as sapphire.
  • a III-V compound semiconductor for example, a gallium nitride compound semiconductor such as GaN, GaAlN, InGaN, or InAlGaN is stacked on a crystal substrate such as sapphire.
  • Encapsulant 4 contains inorganic oxide particles in which inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and a refractive index of 1.8 or more are dispersed in a transparent silicone resin. It is a resin composition.
  • the inorganic oxide particles having a refractive index of 1.8 or more are not particularly limited.
  • Specific examples of this oxide include ZrO, TiO, SnO, AlO, FeO, CuO, ZnO, YO, and Nb.
  • Examples thereof include tin oxide (ATO: Antimony Tin Oxide) and tin-added indium tin oxide (ITO).
  • ATO Antimony Tin Oxide
  • ITO tin-added indium tin oxide
  • the reason for limiting the dispersed particle size of the inorganic oxide particles to 1 nm or more and 20 nm or less is that if the dispersed particle size is less than 1 nm, the crystallinity becomes poor and the particle characteristics such as refractive index are reduced. On the other hand, when the dispersed particle diameter exceeds 20 nm, the transparency of the dispersion or the inorganic acid oxide particle-containing resin composition is lowered.
  • the inorganic oxide particles are nano-sized particles, even in the case of the inorganic oxide particle-containing resin composition combined with the resin, the transparency of the composite with small light scattering is maintained. It is possible to have.
  • the reason for limiting the refractive index of inorganic oxide particles to 1.8 or more is This is because, since the refractive index of the resin used is about 1.4, a refractive index of 1.8 or more is required to obtain the effect of increasing the refractive index by addition.
  • the resin may be a resin that is transparent to light emitted from the LED chip 1, for example, light in a predetermined wavelength band such as visible light, near infrared light, or near ultraviolet light.
  • a curable resin such as thermoplasticity, thermosetting, light (electromagnetic wave) curable by visible light, ultraviolet ray, infrared ray, or the like, or electron beam curable by electron beam irradiation is preferably used.
  • the resin examples include silicone resin, epoxy resin, acrylic resin, and silicone resin is particularly preferable.
  • the silicone resin preferably has at least the following component strengths (a) to (c):
  • alkenyl group in the component (a) examples include a buyl group, a allyl group, a pentyl group, and a hexyl group, and a vinyl group is particularly preferred.
  • Examples of the functional group bonded to a carbon atom other than the alcohol group include alkyl groups such as methyl, ethyl, propyl and butyl, aryl groups such as phenyl and tolyl groups, benzyl Group, aralkyl group such as phenethyl group, and the like, and methyl group is particularly preferable.
  • Examples of the functional group bonded to a carbon atom other than a hydrogen atom in the component (b) include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, a phenyl group, and a tolyl group.
  • Examples thereof include aralkyl groups such as aryl group, benzyl group and phenethyl group, and methyl group is particularly preferable.
  • the content of component (b) should be such that the amount of hydrogen atoms is in the range of 0.1 to 10 moles with respect to 1 mole of the total alkenyl group contained in component (a). More preferred is an amount that falls within the range of 0.1 to 5 moles, and still more preferred is an amount that falls within the range of 0.5 to 2 moles.
  • the catalyst for hydrosilylation reaction of component (c) is for promoting hydrosilylation reaction between an alkenyl group in component (a) and a hydrogen atom bonded to a silicon atom in component (b). It is a catalyst. Examples of such a catalyst include a platinum-based catalyst, a rhodium-based catalyst, a palladium-based catalyst, and the like, and a platinum-based catalyst is particularly preferable.
  • platinum-based catalyst examples include fine platinum powder, chloroplatinic acid, platinum-one-year-old refin complex, platinum carbonyl complex, and the like.
  • the content of the component (c) is an amount capable of promoting the curing of the present composition, that is,
  • the metal atom in the component is in the range of 0.01 to 500 ppm with respect to the composition, more preferably in the range of 0.01 to 50 ppm. .
  • the silicone resin may contain a heat-resistant agent, a dye, a pigment, a flame retarder, and the like as other optional components.
  • an antioxidant may be added to the above-mentioned silicone resin in a range that does not impair the characteristics.
  • the content of the inorganic oxide particles in the inorganic oxide particle-containing resin composition is preferably 1 wt% or more and 80 wt% or less, more preferably 10 wt% or more and 80 wt%. % By weight or less, more preferably 10% by weight or more and 50% by weight or less.
  • the reason why the content of the inorganic oxide particles is limited to 1% by weight or more and 80% by weight or less is that the lower limit of 1% by weight is an addition rate that can improve the refractive index and mechanical properties.
  • the upper limit of 80% by weight is the maximum value of the addition rate that can maintain the properties (flexibility and specific gravity) of the resin itself.
  • the light transmittance at an optical path length lmm is preferably 80% or more, more preferably 85% or more. It is.
  • This light transmittance varies depending on the content of inorganic oxide particles in the resin composition containing inorganic oxide particles, and the inorganic oxide particle content is 90% or more when the content of inorganic oxide particles is 1% by weight.
  • the content power of particles is 80% or more at 0% by weight.
  • the refractive index of the inorganic oxide particles is 1.8 or more
  • the resin has a refractive index of about 1.4 compared to the refractive index of the silicone resin. It is possible to further improve the refractive index of.
  • the inorganic oxide particles are nano-sized particles having a size of 1 nm or more and 20 nm or less, the transparency of the composite material with small light scattering can be maintained even when the inorganic oxide particles are combined with the resin. Is possible.
  • the transparent region of light emitted from the LED chip 1 is made of transparent inorganic oxide particles having a dispersed particle size of In m or more and 20 nm or less and a refractive index of 1.8 or more. Since this is sealed with a sealing material 4 comprising a resin composition containing inorganic oxide particles dispersed in fat, this light transmission region has high light transmittance, high refractive index, and high heat stability. Excellent in heat resistance, high hardness and weather resistance.
  • the light extraction efficiency of the light emitting diode is improved, and as a result, the light emission luminance is improved.
  • the LED chip 1 is mounted at a predetermined position on the lead frame 2, the LED chip 1 and the lead frame 2 are electrically connected by wire bonding (not shown), and unnecessary portions of the lead of the lead frame 2 are cut. Apply the bending force to the remaining lead to make the external terminal 3.
  • the LED chip 1 and the lead frame 2 are bonded to an inorganic acid in which inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 ⁇ m or less and a refractive index of 1.8 or more are dispersed in a transparent silicone resin. It is sealed with a sealing material 4 that also has the power of a resin particle-containing resin composition.
  • the resin composition is applied so as to cover the LED chip 1 and the lead frame 2, and then the coating film is heated to cure the coating film.
  • the LED chip 1 and the lead frame 2 were dispersed in transparent silicone resin with inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and a refractive index of 1.8 or more. It can be sealed with a sealing material 4 having a composition of a resin composition containing inorganic oxide particles.
  • a metal case 5 is attached so as to cover the LED chip 1, the lead frame 2 and the sealing material 4, and the external terminals 3 are insulated by the insulator 6.
  • the light-emitting diode of this embodiment shown in FIG. 2 can be manufactured.
  • this light emitting diode is applied to an optical semiconductor device such as an optical pickup used in CD, CD-ROM, CD-Video, MO, CD-R, DVD, etc., the performance as the device can be improved. And the reliability of the apparatus can be improved over a long period of time.
  • an optical semiconductor device such as an optical pickup used in CD, CD-ROM, CD-Video, MO, CD-R, DVD, etc.
  • the inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and a refractive index of 1.8 or more are made of transparent silicone. Since the resin composition containing inorganic oxide particles dispersed in the resin is used as the sealing material 4 having both a protective function and a lens function, the light transmittance, refractive index, thermal stability, hardness In addition, weather resistance can be improved.
  • the light extraction efficiency can be improved and the light emission luminance can be improved.
  • the inorganic oxide transparent dispersion described above and a resin monomer or oligomer are mixed, then pressure-kneaded, and then mixed.
  • the kneaded product is cooled and pulverized to obtain a resin composition that is a mixture of inorganic acid and resin, and this resin composition is then applied so as to cover the LED chip 1 and the lead frame 2.
  • zirconia particles are used as inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and a refractive index of 1.8 or more, and a comparative example thereof.
  • the power to specifically explain the present invention S, the present invention is not limited by these examples.
  • Example 12 Preparation of inorganic oxide transparent dispersion (zirconia transparent dispersion)
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • the zirconium - in ⁇ particles 10 g, of methyl E chill ketone 85 g, a surface modifier as a silane coupling agent KBM- 3 1_Rei 3 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added 5g as a dispersion medium
  • the surface of the zirconium oxide particles was modified with a silane coupling agent.
  • a dispersion treatment was performed to produce an inorganic oxide transparent dispersion (Z12) having a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • Porridge A particle-containing rosin composition was prepared.
  • the zirconia content of the inorganic oxide particle-containing resin composition was 50% by weight.
  • Silica sol MEK-ST (manufactured by Nissan Chemical Co., Ltd.) was used as inorganic oxide particles, and this silica sol was diluted with methyl ethyl ketone to a silica concentration of 10% by weight. S1).
  • the average dispersed particle diameter of the silica particles in this silica dispersion (S1) was 15 nm.
  • methylbeal silicone, methylhydride silicone and chloroplatinic acid used in Example 12 were added to this silica dispersion, and the solvent was removed by vacuum drying to produce a resin composition.
  • the content of silica particles in this rosin composition was 50% by weight.
  • Dispersion treatment was performed according to Example 12 except that zirconia particles RC-100 (Daiichi Rare Element Chemical Co., Ltd.) was used as the inorganic oxide particles, and the zirconia dispersion liquid of Comparative Example 26 ( Z13) was produced.
  • the average dispersed particle diameter of the zirconia particles in this zirconia dispersion (Z13) was 10 nm.
  • methylbeal silicone, methylnodrosilicone silicone and chloroplatinic acid used in Example 12 were added, and the solvent was removed by vacuum drying to prepare a resin composition.
  • the content of zircoyu particles in this rosin composition was 50% by weight.
  • a resin composition was prepared according to Comparative Example 26. However, the content of zirconia particles in this rosin composition was 2% by weight.
  • Example 12 With respect to each of the resin compositions containing inorganic oxide particles in Example 12 and Comparative Examples 25 to 27, three points of visible light transmittance, refractive index and hardness were evaluated by the following apparatus or method. It was.
  • Visible light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation).
  • the measurement sample was a Balta body with a size of 100 X 100 X 1 mm, and the transmittance of 80% or more was “ ⁇ ” and less than 80% was “X”.
  • JIS K 7142 Pulse-Coupled Index Measurement Method
  • JIS K 7215 “Plastic Durometer Hardness Test Method” JIS-A hardness was measured using a durometer.
  • the hardness of the resin composition containing inorganic oxide particles having a zirconia content of 50% by weight was prepared using the resin composition of Comparative Example 26 using a zirconia dispersion (Z13).
  • Table 6 shows the results of the evaluation described above, where “ ⁇ ” was given when the value was higher than this reference value and “X” was given when the value was lower than this reference value.
  • Zl 2 Zirconia transparent dispersion
  • the inorganic oxide particle-containing resin compositions of Comparative Examples 25 to 27 were inferior to Example 12 in any one or more of visible light transmittance, refractive index, and hardness.
  • Example 13 Fabrication of light emitting diode “Example 13”
  • the LED chip and the lead frame were sealed using the resin composition of Example 12, and the resin composition was cured in the same manner as Example 12 to produce the light emitting diode of Example 13.
  • the LED chip and lead frame were sealed using the resin composition of Comparative Example 25, and this resin composition was cured in the same manner as in Example 12 to produce a light emitting diode of Comparative Example 28.
  • the LED chip and lead frame were sealed using the resin composition of Comparative Example 26, and this resin composition was cured in the same manner as in Example 13 to produce a light emitting diode of Comparative Example 29.
  • the LED chip and lead frame were sealed using the resin composition of Comparative Example 27, and this resin composition was cured in the same manner as in Example 13 to produce a light emitting diode of Comparative Example 30.
  • the light output was measured when a forward current of 20 mA was applied at room temperature.
  • the inorganic oxide particle-containing resin composition of the present invention a light-emitting element sealing composition containing the resin composition (transparent composite), and the best mode for carrying out the light-emitting element and the optical semiconductor device will be described. To do.
  • the encapsulant 4 is a composition for encapsulating a light emitting device, in which zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less are dispersed in a transparent soy sauce.
  • the composition for sealing a light emitting device forming the sealing material 4 contains the inorganic oxide particle-containing resin composition of the present invention.
  • the surface of the inorganic oxide particle-containing resin composition of the present invention is modified with a surface modifier.
  • it contains zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and hydrogenated epoxy resin obtained by hydrogenating an aromatic ring.
  • zircouore particles whose surface is modified by the surface modifier either monoclinic zirconia particles or tetragonal zirconia particles, or monoclinic zirconia particles and tetragonal zirconia particles are used. Force Tetragonal Zirconia for the following reasons Particles are preferred.
  • Tetragonal zirconia particles are preferred as the zirconia particles because the strength of fine particle synthesis is also more stable than the monoclinic crystals conventionally known when the particle size of the fine particles is reduced to 20 nm or less.
  • the mechanical properties of the resin composite in which high hardness zircoyu particles are dispersed in the resin can be improved, and in this resin composite, monoclinic zirconium oxide particles can be used. Compared with the case where it is added, this is a force that exhibits higher toughness due to volume expansion called martensitic transformation.
  • the reason why the dispersed particle diameter of the zirconia particles is set to 1 nm or more and 20 nm or less is that when the dispersed particle diameter is less than 1 nm, the crystallinity is poor and it is difficult to express particle characteristics such as refractive index. On the other hand, when the dispersed particle diameter exceeds 20 nm, the transparency is lowered when the dispersion liquid is a resin composite.
  • the zircoyu particles are nano-sized particles, it is possible to maintain the transparency of the resin with a small light scattering even in the resin complex combined with the resin.
  • the content of zircoua particles is preferably 10 wt% or more and 60 wt% or less, more preferably 15 wt% or more and 50 wt% or less. .
  • the increase in the refractive index of epoxy resin is not sufficient.
  • the luminous efficiency of the LEDs cannot be improved and the mechanical properties are improved. Can not do it.
  • the content of zircoyu particles exceeds 60% by weight, the epoxy resin itself becomes brittle.
  • Hydrogenated epoxy resin includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, 3, 3 ', 5, 5, tetramethyl-4, 4, biphenol type epoxy resin, 4, Biphenol type epoxy resin such as 4'-biphenol type epoxy resin; phenol novolac type epoxy resin; cresol novolac type epoxy resin; bisphenol A type novolac type epoxy resin; naphthalenediol type epoxy resin; -Role methane type epoxy resin; Tetrakisphenol dirol ethane type epoxy resin; Hydrogenated epoxy resin that directly hydrogenates the aromatic ring of aromatic epoxy resin such as phenol dicyclopentagennopolak type epoxy resin Examples include fats. Among these hydrogenated epoxy resins, hydrogenated epoxy resins obtained by directly hydrogenating the aromatic rings of bisphenol A type epoxy resin, bisphenol F type epoxy resin, and biphenol type epoxy resin have a hydrogenation rate ( Especially preferred because of its high hydrogenation rate.
  • an acid anhydride curing agent is used as a curing agent.
  • Acid anhydride curing agents include glutaric anhydride, 2-methyldaltaric anhydride, 2,2-dimethyldaltaric anhydride, 2,2 dimethyldaltaric anhydride, 2,4 dimethyldaltaric anhydride, and 2,2 Examples include jetyldaltaric acid, anhydrous 2,4 jetyldartaric acid, 2-propylglutaric anhydride, and 2-butyldaltaric anhydride.
  • the addition amount of the acid anhydride curing agent is preferably 20 parts by weight or more and 100 parts by weight or less when the total amount of the surface modifier and hydrogenated epoxy resin is 100 parts by weight. More preferably, it is at least 80 parts by weight.
  • a curing accelerator and an anti-oxidation agent may be added to the above-described inorganic oxide particle-containing resin composition within a range that does not impair the properties thereof.
  • curing accelerator examples include tertiary amines and salts thereof, imidazoles and salts thereof, organic phosphines, zinc octylate, tin octylate and the like. Of these curing accelerators, organic phosphines are particularly preferred.
  • the addition amount of the curing accelerator is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the acid anhydride curing agent. 0.05 to 5 parts by weight More preferably.
  • antioxidants examples include monophenols, bisphenols, polymer-type phenols, sulfur-based antioxidants, phosphorus-based antioxidants and the like.
  • Monophenols include 2,6-di-tert-butyl-cresole, butylated hydroxylanol, 2,6-di-tert-butyl-p-ethylphenol, stearyl- 13-(3,5-di-tert-butyl 4-hydroxyphenol- E) propionate.
  • Bisphenols include 2,2, monomethylene bis (4-methyl 6-t-butyl phenol), 2, 2, -methylene bis (4-ethyl 6-tert-butyl phenol), 4, 4'-thiobis (3 —Methyl-6—t-butylphenol), 4, 4, -butylidenebis (3-methyl-6-) t-Butylphenol), 3, 9 Bis [1, 1-Dimethyl-2- ⁇ j8- (3-T-Butyl-4-hydroxy-5-methylphenol) propio-loxy ⁇ ethyl] 2, 4, 8, 10-Tetraoxaspiro [ 5, 5] Undeccan.
  • Polymeric phenols include 1, 1, 3 tris (2-methyl 4-hydroxy-l-t-butyl phenol) butane, 1, 3, 5 trimethyl 2, 4, 6 tris (3, 5 Di-tert-butyl 4-hydroxybenzyl) benzene, tetrakis [methylene-3- (3 ', 5, di-di-tert-butyl-4-hydroxyphenol) propionate] methane, bis [3,3, bis (4, -Hydroxy-3, -t-butylphenol) butyric acid] glycol ester, 1, 3,5 tris (3,5,1 di-tert-butyl 4,1-hydroxybenzyl) S triazine-2, 4, 6— (1H, 3H, 5H) trione, tocophenol and the like.
  • Sulfuric acid oxidants include dilauryl 3, 3 'thiodipropionate, dimyristyl.
  • Examples of the phosphorus-based anti-oxidation agent include phosphites and oxaphosphaphenanthrene oxides.
  • the phosphites include triphenyl phosphite, diphenyl isodecyl phosphite, ferdiisodecyl phosphite, tris (norphe) phosphite, diisodecyl pentaerythritol phosphite, tris (2 , 4 Di-t-butylphenol) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite, cyclic neopentane tantetraylbi (2, 4 di-tert-butylphenol) phosphite, cyclic Neopentanetetraylbi (2,4 di-tert-butyl 4-methylphenol) phosphite, bis [2-tert-butyl-6-methyl-4 ⁇ 2 (octadecyloxycarboxyl) eth
  • the oxaphosphaphenanthrene oxides include 9, 10 dihydro-9 oxer 10 0 phosphaphenanthrene mono 10-oxide, 10- (3,5 di-tert-butyl 4-hydroxybenzyl) 9,10 dihydro-one 9-oxa 10 phosphaphenanthrene-10 oxide, 10 decyloxy 9, 10 dihydro-9 oxa 10 phosphaphenanthrene-10-oxide, and the like.
  • These anti-oxidation agents can be used alone, but it is particularly preferable to use them in combination with a phenol-based Z-sulfur system or a phenol-based Z-phosphorus system.
  • the addition amount of the antioxidant is preferably 0.01 parts by weight or more and 10 parts by weight or less when the total amount of the surface modifier and the hydrogenated epoxy resin is 100 parts by weight. More preferably, the amount is not less than 5 parts by weight and not more than 5 parts by weight.
  • dilute aqueous ammonia is stirred into a zirconium salt solution in which a zirconium salt such as oxyzirconium chloride octahydrate is dissolved in pure water, to prepare a zirconium oxide precursor slurry.
  • a zirconium salt such as oxyzirconium chloride octahydrate
  • an aqueous solution of an inorganic salt such as sodium sulfate is added to the slurry while stirring.
  • the amount of inorganic salt added at this time is 20 to 40% by weight with respect to the zirconium equivalent of zirconium ions in the zirconium salt solution.
  • this mixture is dried in the air at 100 to 150 ° C. for 24 hours to 36 hours using a dryer to obtain a solid.
  • the fired product is put into pure water, stirred to form a slurry, washed with a centrifuge, sufficiently removed the added inorganic salt, and then dried with a dryer. Create zirconium particles.
  • an organic solvent and a surface modifier as a dispersion medium are added to and mixed with the zircoure particles, and then dispersed with a wet mixer such as a bead mill using 0.05 mm to 1 mm zirconia beads.
  • a wet mixer such as a bead mill using 0.05 mm to 1 mm zirconia beads.
  • the surface modification of the zirconium oxide particles with the surface modifier is carried out to prepare a zirconium oxide dispersion.
  • the composition for sealing a light-emitting device of the present invention contains an inorganic oxide particle-containing resin composition.
  • this inorganic acid oxide particle-containing resin composition is cured.
  • This composition for sealing a light-emitting element has a content of zirconia particles of 10% by weight or more and 60% by weight or less, and a light transmittance of a wavelength of 350 nm or more and 800 nm or less is 80% or more.
  • the light transmittance varies depending on the content of the zircoure particles in the composition for sealing a light-emitting device.
  • the content of zircoure particles is 90% or more when the content is 1% by weight, and the content power of the zircoure particles is 80% or more when the content is 0% by weight. It is.
  • the tetragonal zirconia particles When tetragonal zirconia particles are used as the zirconia particles, the tetragonal zirconia particles have a refractive index of 2.15. By dispersing it in the hydrogenated epoxy resin that forms the composition for use, the refractive index of the composition for sealing a light-emitting element can be further improved compared to the refractive index of epoxy resin of about 1.5. It is possible.
  • Tetragonal zirconia particles can be expected to improve the toughness value due to martensite transformation compared to monoclinic zirconia particles, and the mechanical properties of the composition for sealing a light-emitting device with higher strength, toughness and hardness. Suitable for improvement.
  • tetragonal zirconium particles are nano-sized particles, it is possible to maintain the transparency of the composite material with a small light scattering even when it is combined with a resin.
  • the region force from the LED chip 1 to the opening 7 of the metal case 5 is a transmission region of light emitted from the LED chip 1, and this light transmission region has a dispersed particle size.
  • the light-transmitting region has a high light transmittance, because it is sealed with a sealing material 4 having a composition for light-emitting element sealing in which zircoure particles of lnm or more and 20nm or less are dispersed in a transparent hydrogenated epoxy resin. Excellent refractive index, high thermal stability, high hardness and weather resistance.
  • the light extraction efficiency of the light emitting diode is improved, and as a result, the light emission luminance is improved.
  • the LED chip 1 is mounted at a predetermined position on the lead frame 2, and the LED chip 1 and the lead frame 2 are electrically connected by wire bonding (not shown) to form a lead frame. Cut the unnecessary part of lead 2 and apply bending force to the remaining lead to make external terminal 3.
  • the LED chip 1 and the lead frame 2 are sealed with a sealing material 4 made of a composition for sealing a light-emitting element in which zirconia particles having a dispersed particle diameter of 1 nm or more and 20 ⁇ m or less are dispersed in a transparent hydrogenated epoxy resin. Seal.
  • the above-described inorganic oxide particle-containing resin composition is used.
  • the LED chip 1 and the lead frame 2 are sealed with a composition for sealing a light-emitting element in which zirconia particles having a dispersed particle diameter of 1 nm or more and 20 ⁇ m or less are dispersed in a transparent hydrogenated epoxy resin.
  • a composition for sealing a light-emitting element in which zirconia particles having a dispersed particle diameter of 1 nm or more and 20 ⁇ m or less are dispersed in a transparent hydrogenated epoxy resin.
  • a metal case 5 is attached so as to cover the LED chip 1, the lead frame 2 and the sealing material 4, and the external terminals 3 are insulated by the insulator 6.
  • the light-emitting diode of this embodiment shown in FIG. 2 can be manufactured.
  • this light-emitting diode is applied to an optical semiconductor device such as an optical pickup used in a CD, CD-ROM, CD-Video, MO, CD-R, DVD, etc., the performance as the device will be improved. The reliability of the apparatus can be improved over a long period of time.
  • the composition for sealing a light-emitting device in which zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less are dispersed in a transparent hydrogenated epoxy resin. Since the object is used as the sealing material 4 having both a protective function and a lens function, the light transmittance, refractive index, thermal stability, hardness and weather resistance can be improved. Therefore, the light extraction efficiency can be improved, and the light emission luminance can be improved.
  • the above-described resin composition containing inorganic oxide particles is applied so as to cover the LED chip 1 and the lead frame 2, and this coating film is cured.
  • this coating film is cured.
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • toluene as a dispersion medium and 10 g of “silane coupling agent system” (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) as a surface modifier are mixed with 10 g of the tetragonal zircon particles.
  • silane coupling agent system KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a dispersion treatment was carried out by a bead mill using 0.1 mm ⁇ zirca-ure beads to prepare a tetragonal zircon dispersion.
  • the dispersed particle size of tetragonal zirconia particles in this tetragonal zirconia dispersion was measured using a dynamic light scattering particle size distribution analyzer (manufactured by Malvern) and found to be 10 nm.
  • the resin composition containing inorganic oxide particles is poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, then at 100 ° C for 30 minutes, and then at 140 ° C. Then, it was cured by heating for 3 hours to produce a zircouore-containing epoxy resin composite.
  • the content of tetragonal zirconia particles in this zirconium oxide-containing epoxy resin composite is 50% by weight.
  • Tetragonal zirconia particles were prepared in the same manner as in Example 14.
  • the dispersion particle size of the tetragonal zirconia particles in this tetragonal zirconia dispersion was measured using a dynamic light scattering particle size distribution analyzer (manufactured by Malvern) and found to be lOnm. Next, 100 g of this tetragonal zirconium dispersion was used to prepare a resin composition containing inorganic oxide particles in the same manner as in Example 14.
  • a zirconium-containing epoxy resin composite was produced in the same manner as in Example 14.
  • the content of tetragonal zirconia particles in the zirconia-containing epoxy resin composite was 50% by weight.
  • Tetragonal zirconia particles were prepared in the same manner as in Example 14.
  • the dispersion particle size of the tetragonal zirconia particles in this tetragonal zirconia dispersion was measured using a dynamic light scattering particle size distribution analyzer (manufactured by Malvern) and found to be lOnm. Next, 100 g of this tetragonal zirconium dispersion was used to prepare a resin composition containing inorganic oxide particles in the same manner as in Example 14.
  • a zirconium-containing epoxy resin composite was produced in the same manner as in Example 14.
  • the content of tetragonal zirconia particles in the zirconia-containing epoxy resin composite was 50% by weight.
  • the dispersion particle size of the tetragonal zirconia particles in this tetragonal zirconia dispersion was measured using a dynamic light scattering particle size distribution analyzer (manufactured by Malvern) and found to be lOnm.
  • 100 g of this tetragonal zircon dispersion was added to 7 g of bisphenol A type epoxy resin (Epoxy resin Epcoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) and a curing agent (Epicure 3080, Japan Epoxy Resin ( 3 g) was prepared and made into a desolvent by vacuum drying to prepare a resin composition containing inorganic oxide particles.
  • the resin composition containing inorganic oxide particles is poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, then at 100 ° C for 30 minutes, and then at 140 ° C. Then, it was cured by heating for 3 hours to produce a zircouore-containing epoxy resin composite.
  • the content of tetragonal zirconia particles in this zirconium oxide-containing epoxy resin composite is 50% by weight.
  • toluene as a dispersion medium was mixed with 10 g of the tetragonal zircon particles, and then dispersed by a bead mill using 0.1 mm ⁇ zirconia beads.
  • the treatment liquid after the dispersion treatment became white turbid, and the zirconium particles were settled.
  • the dispersed particle size of the zircoure particles in this zircoure dispersion was measured using a dynamic light scattering type particle size distribution measuring device (manufactured by Malvern) and found to be lOOnm.
  • Example 14 using 100 g of this zirconium oxide dispersion, an inorganic oxide was obtained in the same manner as in Example 14. A particle-containing rosin composition was prepared.
  • a zirconium-containing epoxy resin composite was produced in the same manner as in Example 14.
  • the content of zirconia particles in the zirconia-containing epoxy resin composite was 50% by weight.
  • the dispersed particle size of the zircoure particles in this zircoure dispersion was measured using a dynamic light scattering type particle size distribution measuring device (manufactured by Malvern) and found to be lOOnm.
  • the resin composition containing inorganic oxide particles is poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, then at 100 ° C for 30 minutes, and then at 140 ° C. Then, it was cured by heating for 3 hours to produce a zircouore-containing epoxy resin composite.
  • the content of the zirconium oxide particles in this zirconium oxide-containing epoxy resin composite was 50% by weight.
  • toluene as a dispersion medium and 10 g of “silane coupling agent system” (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) as a surface modifier are mixed with 10 g of the tetragonal zircon particles. Thereafter, a dispersion treatment was performed by a bead mill using 0.1 mm zircore beads to prepare a tetragonal zirconia dispersion.
  • silane coupling agent system KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the dispersed particle size of tetragonal zirconia particles in this tetragonal zirconia dispersion was measured using a dynamic light scattering particle size distribution analyzer (manufactured by Malvern) and found to be 10 nm.
  • the resin composition containing inorganic oxide particles is poured into a mold assembled with a glass plate so as to have a thickness of 1 mm, then at 100 ° C for 30 minutes, and then at 140 ° C. Then, it was cured by heating for 3 hours to produce a zircouore-containing epoxy resin composite.
  • the content of tetragonal zirconia particles in this zirconium oxide-containing epoxy resin composite was 50% by weight.
  • the measurement sample was a Balta body having a size of 100 ⁇ 100 ⁇ 1 mm.
  • ⁇ X '' indicates that the refractive index is improved by 0.05 or more, and ⁇ X '' indicates that the refractive index is improved by less than 0.05, based on the resin not supplemented with zirconia. It was.
  • bisphenol A type epoxy resin epoxy resin epoxy coat 828, manufactured by Japan Epoxy Resin Co., Ltd.
  • a curing agent e (Picure 3080, manufactured by Japan Epoxy Resins Co., Ltd.
  • a cured epoxy resin composition consisting of 7 g was used. This resin has a visible light transmittance of 75% and a haze value of 0.20%.
  • hydrogenated epoxy resin obtained by directly hydrogenating bisphenol A type epoxy resin (hydrogenation rate 100%, epoxy resin epoxy coat YX8000, manufactured by Japan Epoxy Resin Co., Ltd.), 10 g of tartaric anhydride as a curing agent (Tokyo Chemical Industry Co., Ltd.) 7g, Curing accelerator (Hishico Irin PX-4ET, Nippon Igaku Kogyo Co., Ltd.) 0.lg and 2, 6 —Di-t-butyl p-talesol (manufactured by Kanto Chemical Co., Ltd.) 0. lg epoxy resin composition cured with visible light transmittance of 85% and haze value of 0.20% there were. Table 8 shows the above evaluation results.
  • a transparent plastic member containing inorganic oxide particles of the present invention is a transparent plastic member in the form of a film or a sheet, the surface of which is modified with a surface modifier, and the dispersed particle size is 1 nm or more and 20 nm or less. It is a transparent plastic member containing fine particles.
  • the transparent plastic member is a film or sheet having a thickness of 10 ⁇ m to 5 mm.
  • the transparent plastic member has various thicknesses and shapes such as a transparent plastic film, a transparent plastic sheet, and a thin transparent plastic substrate. It can be selected appropriately according to the application.
  • the zirconia fine particles are uniformly dispersed in a plastic having transparency to visible light.
  • the dispersed particle diameter of the zirconium oxide fine particles is preferably 1 nm or more and 20 nm or less.
  • the reason why the dispersed particle size of the zirconia particles is limited to 1 nm or more and 20 nm or less is that if the dispersed particle size is less than 1 nm, the crystallinity becomes poor and it is difficult to express particle characteristics such as refractive index. On the other hand, if the dispersed particle diameter exceeds 20 nm, the transparency of the plastic member is lowered.
  • the zirconia particles are nano-sized particles, it is possible to maintain transparency with small light scattering even when the zirconia particles are dispersed in a plastic member.
  • the surface of these zirconia fine particles is modified with a surface modifier.
  • the hydrophilic zirconia particles are hydrophobized, and the dispersibility of the composite plastic is ensured.
  • the surface modifier there is no particular limitation as long as it can be used.
  • one or more types of alkoxysilane, chlorosilane, alkylalkoxysilane, alkylchlorosilane, siloxane, and surfactant are also selected. preferable.
  • silane compounds such as alkoxysilanes, chlorosilanes, alkylalkoxysilanes, alkylchlorosilanes, and siloxanes that are superior in heat resistance are more preferable. It is.
  • Plastics that are transparent to visible light and that have a thickness of 10 ⁇ m to 5 mm in the form of a film or sheet are acceptable, such as films, sheets, and very thin plates. Various shapes can be selected and used depending on the application.
  • plastics examples include polyethylene terephthalate (PET), polycarbonate (PC), polyethersulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), and aromatic polyetherketone.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PES polyethersulfone
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • PEEK polyolefin
  • TAC triacetyl cellulose
  • AS resin acrylonitrile 'styrene copolymer
  • MS resin methyl methacrylate' styrene copolymer
  • TPX poly-4-methylpentene
  • polyester resin polyimide resin, epoxy resin, norbornene polymer having transparency to visible light can also be used.
  • the content of the fine zirconium oxide particles is preferably 10 wt% or more and 80 wt% or less, more preferably 20 wt% or more and 80 wt% or less.
  • the reason why the content of the zirconium fine particles is limited to 10% by weight or more and 80% by weight or less is that the lower limit of 10% by weight is the minimum value of the effective content for improving the refractive index of the plastic member. Below the wt%, the plastic member cannot have a high refractive index. On the other hand, the upper limit of 80% by weight is the maximum content that can maintain the characteristics of the plastic member itself, and if it exceeds 80% by weight, the properties of the plastic member may be lost. .
  • the visible light transmittance is preferably 80% or more when the optical path length is 100 m when the content of the zirconia fine particles is 25% by weight. More preferably, it is 82% or more.
  • This visible light transmittance varies depending on the content of the zirconia fine particles in the transparent plastic member.
  • the content of the zirconia fine particles is 85% or more when the content is 10% by weight, and the content power of the zirconia fine particles is 80% or more when the content is 0% by weight. is there.
  • the refractive index of the Zircoyu fine particles varies slightly depending on the crystal system, but is larger than 2. Therefore, it is possible to improve the refractive index by dispersing the zirconium fine particles in plastic.
  • the zirconia fine particles are nano-sized particles, it is possible to maintain the transparency of the plastic member with small light scattering even when it is combined with plastic.
  • the surface is modified with a surface modifier, and zircoyu fine particles with a dispersed particle size of 1 nm or more and 20 nm or less are used as raw materials for plastics to be composited. It can be obtained by uniformly dispersing into a mixture, polymerizing or condensation polymerizing the mixture to obtain a plastic composition containing zirconia fine particles, and molding the plastic composition into a film or sheet.
  • antireflection film such as antireflection (AR) film, antiglare (AG) film, and hard coat (HC) film are formed on the surface of the transparent plastic member containing the inorganic oxide particles, or reflective.
  • Anti-reflection (AR) function, anti-glare (AG) function, anti-scratch function, etc. by bonding various plastic films such as anti-reflection (AR) film, anti-glare (AG) film, hard coat (HC) film, etc.
  • a composite plastic member having various functions can be obtained.
  • Examples of the composite plastic member include a functional film and a functional sheet.
  • this polyethylene terephthalate composition was melt-extruded at 290 ° C, then stretched three times in length and width at 90 ° C, and then heat-treated at 220 ° C for 15 seconds to obtain a thickness of 100
  • a polyethylene terephthalate film containing fine ⁇ m biaxially-stretched zirconia fine particles was prepared.
  • Particle synthesis was performed according to Example 1 to produce zirconia fine particles.
  • the dispersed particle size of the zircoure fine particles of this inorganic oxide transparent dispersion was measured using a dynamic light scattering particle size distribution analyzer (manufactured by Malvern) and found to be 8 nm.
  • a zirconium dispersion was prepared according to Example 18.
  • a zirconia dispersion was prepared by carrying out a dispersion treatment according to Example 17 except that RC-100 (manufactured by Daiichi Rare Element Co., Ltd.) was used as the zirconia particles.
  • the dispersion particle size of zirconia particles in this dispersion was measured and found to be lOOnm.
  • a dispersion treatment was carried out in accordance with Example 18 except that RC-100 (manufactured by Daiichi Rare Element Co., Ltd.) was used as the zirconium particles.
  • RC-100 manufactured by Daiichi Rare Element Co., Ltd.
  • the dispersed particle size of the zirconia particles of this dispersion was measured, it was lOOnm.
  • a zirconia dispersion was prepared by carrying out a dispersion treatment according to Example 19 except that RC-100 (manufactured by Daiichi Rare Element Co., Ltd.) was used as the zirconia particles.
  • the dispersion particle size of zirconia particles in this dispersion was measured and found to be lOOnm.
  • a 100 m thick zirconium sulfone particle-containing polyethersulfone resin film was produced.
  • Examples 17 to 19 and Comparative Examples 36 to 41 were evaluated by the following apparatus or method for three points: visible light transmittance, haze, and refractive index.
  • Visible light transmittance Using a spectrophotometer V-570 (manufactured by JASCO), the wavelength is 350 ⁇ ! Visible light transmittance in the range of ⁇ 800 nm was measured for air at 100%.
  • Enomoto Industry Standard Measured when the air was set to 0% using a haze meter NDH-2000 (Nippon Denshoku Co., Ltd.) in accordance with JIS K 7136 “How to determine haze of plastic single transparent material”.
  • JIS K 7142 Pulse-Coupled Index Measurement Method
  • indicates that the refractive index is improved by 0.05 or more
  • X indicates that the refractive index is improved only by less than 0.05, based on the film not added with zirconia.
  • Comparative Examples 36 to 41 were inferior to Examples 17 to 19 in any of visible light transmittance, haze, and refractive index.
  • FIG. 3 is a cross-sectional view showing an optical lens according to an embodiment of the present invention.
  • 1 is a transparent base material that also has a composition power for sealing a flat light-emitting element
  • 2 is a substantially hemispherical minute convex lens portion formed on the surface (one surface) of the transparent base material 1
  • 3 is transparent It is a node coat film formed so as to cover the entire base material 1 and the convex lens portion 2, and the transparent base material 1 and the entire convex lens portion 2 are used as a light transmission region.
  • This composition for sealing a light-emitting element is a composition for sealing a light-emitting element in which tetragonal zirconium particles having a dispersed particle diameter of 1 nm or more and 20 nm or less are dispersed in a transparent resin.
  • the reason for limiting the zirconium oxide particles to tetragonal zirconium particles is that, from the standpoint of fine particle synthesis, when the particle size of the fine particles becomes as small as 20 nm or less, the tetragonal crystals are conventionally known monoclinic crystals. And the mechanical properties of the light-emitting device sealing composition having a higher hardness, and the composition for sealing a light-emitting device in which zircoyu particles are dispersed in a resin.
  • tetragonal zirconium when tetragonal zirconium is added as the second phase of the composition for sealing a light-emitting device, it has higher toughness due to volume expansion called martensitic transformation, compared to the case where monoclinic zirconia particles are added. It is the power that shows.
  • the reason why the dispersion particle size of tetragonal zirconia particles is limited to 1 nm or more and 20 nm or less is that when the dispersion particle size is less than 1 nm, the crystallinity becomes poor and the particle characteristics such as refractive index are exhibited. On the other hand, when the dispersed particle diameter exceeds 20 nm, the transparency is lowered in the case of a dispersion or a composition for sealing a light emitting device.
  • tetragonal zirconia particles are nano-sized particles, even in a composition for sealing a light emitting device combined with a resin, the transparency of the composite with small light scattering is maintained. Is possible.
  • the hard coat film a film in which tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less are dispersed in a hard coat substrate is preferably used.
  • the film thickness of the hard coat film is preferably 0.1 m or more and 100 ⁇ m or less so that the function as the hard coat film can be sufficiently exerted and various characteristics of the optical lens are not impaired. In particular, it should be 1 ⁇ m or more and 50 ⁇ m or less.
  • Examples of the hard coat base material include organic materials such as acrylates, silicones, and talented xetanes, and inorganic materials such as alkoxysilanes, zirconates, and aluminas. One or more of these materials can be used. Is used.
  • thermoplasticity thermoplasticity
  • thermosetting property thermosetting property
  • electron beam curable property by electron beam irradiation is suitably used. It is done.
  • acrylate hard coat substrate monofunctional acrylate and Z or multifunctional acrylate are used, and one or more of them are used.
  • Alkyl (meth) acrylates such as butyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate
  • Alkoxyalkylene glycol (meth) acrylate such as methoxypropylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate
  • N-substituted acrylamides such as (meth) acrylamide and N-butoxymethyl (meth) acrylamide.
  • Tri (meth) acrylates such as pentaerythritol tritalate, trimethylolpropane tri (meth) acrylate, ethylene oxide, and propylene oxide modified trimethylolpropane triacrylate
  • Tetra (meth) acrylates such as pentaerythritol tetraacrylate and ditrimethylolpropane tetraacrylate
  • penta (meth) atrelates such as dipentaerythritol (monohydroxy) pentatalylate.
  • the monofunctional type is cyclohexyl (meth) acrylate
  • the polyfunctional type is dicyclopentagenyl di (meta ) Atallate and the like.
  • aromatic (meth) acrylates monofunctional types include phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxychetyl (meth) acrylate, phenoxyethylene glycol (meta ) Atallate isotropic
  • the polyfunctional type includes diaphthalates such as bisphenol A di (meth) acrylate and bisphenol F di (meth) acrylate.
  • Examples of (e) polyurethane (meth) acrylate include polyurethane ether (meth) acrylate and polyester (meth) acrylate.
  • Epoxy (meth) acrylates include bisphenol A type epoxy acrylate and novolak type epoxy acrylate.
  • Photopolymerization initiators include acetophenones, benzophenones, ketals, anthraquinones, thixanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Thiuram compounds, fluoroamine compounds and the like are used.
  • polymerization initiator examples include the following. 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxycyclohexylphenol ketone, 1-hydroxydimethylphenol ketone and other acetophenones, benzoin methyl ether, benzoin ethyl ether, Benzoin such as benzoin isopropyl ether, benzophenone, 2,4 dichlorobenzophenone, p Benzophenone such as benzophenone, lauroyl peroxide, benzoyl peroxide, di-t-butyl peroxide, t-butyl peroxide 2-ethyl Peroxides such as hexanoate, tert-butylenoperoxyisobutyrate, tert-butylenoperoxypivalate, tert-butylenoperoxybenzoate, tert-butylperoxyacetate, 2, 2, Zobisisobuty
  • silicone hard coat substrate one or more compounds selected from the organic chain compounds represented by the following general formula (1) and Z or a partial hydrolysis condensate thereof are used.
  • R is a monovalent organic group having 1 to 18 carbon atoms
  • X is a hydrolyzable group
  • a is 0, 1, or 2.
  • R for example, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a lauryl group, a cetyl group, a stearyl group, a cyclohexyl group, and the like
  • Examples include chain, branched or cyclic alkyl groups, aryl groups such as full groups, aralkyl groups such as benzyl groups, alkell groups such as bur groups, aryl groups, probe groups, butyr groups, and the like. It is done.
  • halogen atoms such as an epoxy group, an amino group, a mercapto group, a (meth) ataryloxy group, or a chlorine atom.
  • X may be a hydrolyzable group, and examples thereof include an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a phenoxy group, or a halogen atom such as a chlorine atom.
  • Examples of the organic silicon compound represented by the general formula (1) include tetrachlorosila. , Tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, methinoretrimethoxysilane, dimethylenoresimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxy Silane, n-hexyltriethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldichlorosilane, silane, vinylmethyldimethoxysilane, vinylmethylgerm Toxisilane, 5-hexenyl trimethoxysilane, 3-
  • the silicone-based hard coat substrate may contain a heat-resistant agent, a dye, a pigment, a flame retardant, and the like as other optional components.
  • a polymerization inhibitor is used as long as the properties are not impaired.
  • Leveling agents, thickeners, anti-coloring agents, UV absorbers, silane coupling agents, antistatic agents, adhesion-imparting agents, antioxidants, release agents, inorganic fillers, heat-resistant agents, dyes, difficult A flame retardant may be added.
  • the content of tetragonal zirconium particles in the hard coat film is preferably 1% by weight or more and 80% by weight or less, more preferably 10% by weight or more and 80% by weight or less, and further preferably 10% by weight. % To 50% by weight.
  • the reason why the content of tetragonal zirconium particles is limited to 1% by weight or more and 80% by weight or less is that the lower limit of 1% by weight is an additive calorie ratio that can improve the refractive index and mechanical properties.
  • the upper limit of 80% by weight is the maximum value of the addition rate that can maintain the properties (flexibility and specific gravity) of the resin itself.
  • the visible light transmittance is preferably 90% or more, more preferably 92% when the optical path length is 1mm. % Or more.
  • This visible light transmittance varies depending on the content of tetragonal zirconia particles in the hard coat film.
  • the content of tetragonal zirconia particles is 1% by weight, it is 95% or more.
  • the content power of particles is 80% or more at S40% by weight.
  • the refractive index of tetragonal zirconia particles is 2.15, by dispersing the tetragonal zirconia particles in the resin, the refractive index of the attalylate resin and the silicone resin 1. About 4, the refractive index of epoxy resin can be improved more than that of about 1.5.
  • tetragonal zirconium particles can be expected to improve the toughness value due to martensitic transformation compared to monoclinic zirconium particles, and they are suitable for improving the mechanical properties of composites with high toughness and hardness. Yes.
  • tetragonal zirconium particles are nano-sized particles, it is possible to maintain the transparency of the composite material with a small light scattering even when it is combined with a resin.
  • tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less were dispersed in a transparent hard coat material, so that the transparency was maintained and the refractive index and toughness were maintained. Will also improve. This improves transparency, refractive index, thermal stability, hardness and weather resistance, and thus improves reliability over a long period of time.
  • This inorganic oxide transparent dispersion is a dispersion containing tetragonal zirconium particles having a dispersion particle diameter of 1 nm or more and 20 nm or less and a dispersion medium.
  • the dispersion medium basically contains at least one or more of water, an organic solvent, a liquid resin monomer, and a liquid resin oligomer.
  • Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol, ethyl acetate, butyl acetate, lactic acid ethyl, propylene glycol-monomono meth- oleenoate acetate, and propylene glycol.
  • alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol, ethyl acetate, butyl acetate, lactic acid ethyl, propylene glycol-monomono meth- oleenoate acetate, and propylene glycol.
  • Noremonochinenore monoteracetate Noremonochinenore monoteracetate, y Esters such as butyrolatataton, Jetyl ether, Ethylene glycolenomonomethinoreethenore (Metinorecello norebu), Ethylene glyconole monoechinoleatee nore (etinorecero sorelev) , Ethers such as ethylene glycol monobutino elenotere (butyno cereo sonoleb), diethylene glycono mono methino elenotere, diethylene glycol enore monoethanolate, acetone, methyl ethyl ketone, methyl ether Ketones such as butyl ketone, acetylacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, amides such as dimethylformamide, N, N dimethylaceto
  • liquid resin monomer acrylic or methacrylic monomers such as methyl acrylate and methyl methacrylate, and epoxy monomers are preferably used. Further, as the above-mentioned liquid resin oligomers, urethane acrylate oligomers, epoxy acrylate oligomers, acrylate oligomers and the like are preferably used.
  • the content of tetragonal zirconium particles is preferably 1% by weight or more and 70% by weight or less, more preferably 1% by weight or more and 50% by weight or less, and further preferably 5% by weight or more and 30% by weight. % Or less.
  • the reason why the content of tetragonal zirconia particles is limited to 1% by weight or more and 70% by weight or less is that this range is a range in which the tetragonal zirconia particles can take a good dispersion state, and the content is If it is less than 1% by weight, the effect as tetragonal zirconia particles will be reduced, and if it exceeds 70% by weight, gelling will cause agglomeration and precipitation, and the characteristics as a dispersion will disappear. is there.
  • this inorganic oxide transparent dispersion contains other inorganic oxide particles, a dispersant, a dispersion aid, a coupling agent, a resin monomer, and the like, as long as the characteristics are not impaired. May be.
  • Inorganic oxide particles other than tetragonal zirconia particles include monoclinic or cubic zirconium oxide particles, titanium oxide, dumbbell, cerium oxide, tin oxide, antimony-added tin oxide (ATO), and tin-added indium oxide. (ITO).
  • dispersant examples include phosphate ester type dispersants.
  • Examples of the surface treatment agent include a silane coupling agent and a phosphate ester dispersant.
  • This inorganic oxide transparent dispersion has a visible light transmittance of 90% or more when the optical path length is 10 mm when the content of tetragonal zirconia particles is 5% by weight. Preferably it is 95% or more.
  • This visible light transmittance varies depending on the content of tetragonal zirconia particles.
  • the content of tetragonal zirconia particles is 1% by weight, it is 95% or more, and the content of tetragonal zirconia particles is 40% by weight. % Is over 80%.
  • the inorganic oxide transparent dispersion described above and a resin monomer or oligomer are mixed to prepare a resin composition that is easy to flow.
  • this resin composition is applied so as to cover the entire transparent substrate 1 and convex lens part 2 by various coating methods such as spin coating, bar coating, flow coating, and dip, thereby forming a hard coating film. .
  • it can be polymerized and resinated simply by mixing.
  • a resin composition containing ultraviolet (UV) curable resin such as acrylic resin
  • radical polymerization initiated by heating or light irradiation is used. Reaction etc. are mentioned.
  • this radical polymerization reaction include a polymerization reaction by heat (thermal polymerization), a polymerization reaction by light such as ultraviolet rays (photopolymerization), a polymerization reaction by gamma rays, or a method in which a plurality of these are combined.
  • silicone resin when silicone resin is used, one or a plurality of organic key compounds, a curing agent, and a catalyst are mixed to form a paint, and then the entire transparent substrate 1 and convex lens part 2 are covered. By applying and curing, a hard coat film can be produced. Reactions such as condensation crosslinking can be used as the thermosetting reaction.
  • the optical lens of this embodiment shown in FIG. 3 can be manufactured.
  • the node coat film 3 in which tetragonal zirconia particles having a dispersed particle diameter of 1 nm or more and 20 nm or less are dispersed in the node coat substrate is provided.
  • Light transmittance, refractive index, thermal stability, hardness and weather resistance can be improved. Therefore, an optical lens excellent in high light transmittance, high refractive index, high thermal stability, high hardness, and weather resistance can be provided.
  • the hard coat film 3 is formed so as to cover the entire transparent base material 1 and convex lens portion 2 of the optical lens, but the hard coat film 3 is formed in the light transmission region of the optical lens. In other words, it may be formed only on the convex lens portion 2.
  • the hard coat film 3 may be formed on an optical component other than the optical lens, for example, a microlens array.
  • this hard coat film 3 by laminating this hard coat film 3 with a film having other functions, for example, an antireflection film or an electromagnetic shielding film, it can be used as an optical functional film.
  • a film having other functions for example, an antireflection film or an electromagnetic shielding film
  • the optical lens of the present embodiment is applied to an optical component such as a projector, the optical transmittance of the optical lens, the refractive index, the thermal stability, the hardness, and the weather resistance are improved, thereby improving the performance of the entire optical component.
  • the reliability of optical components can be improved over a long period of time.
  • Example 20 Preparation of inorganic oxide transparent dispersion (zirconia transparent dispersion)
  • Particle synthesis was carried out according to Example 1 to produce zircoure particles.
  • this solution was applied to a 100 ⁇ 100 ⁇ 2 mm acrylic substrate by a bar coating method, and then cured by heating at 120 ° C. for 2 hours to obtain a cured film thickness of 3 / zm.
  • a hard coat film was prepared. The content of the zirconia particles in this hard coat film was 50% by weight.
  • Example 20 To 100 g of the inorganic oxide transparent dispersion (Z14) of Example 20, 7 g of methyltriethoxysilane and 3 g of 3-glycidoxypropyltrimethoxysilane were stirred and stirred at 5 ° C. for 2 hours, The mixture was aged at 60 ° C for 4 hours. Next, 10 g of diacetone alcohol was added to the aged solution to prepare a curable silicone compound solution.
  • Dispersion treatment was carried out in accordance with Example 20 except that RC-100 containing monoclinic and tetragonal zircon particles (made by Daiichi Rare Element Co., Ltd.) was used as the zircoyu particles.
  • a zircouore dispersion (Z 15) was prepared. Incidentally, the average dispersed particle size of these zircoyu particles was lOOnm.
  • this curable acrylate solution was treated according to Example 20 to prepare a hard coat film of Comparative Example 42.
  • the content of the zirconia particles in this hard coat film was set to 50% by weight.
  • Methyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane used in Example 21 were added to the zirconium dioxide dispersion (Z15) of Comparative Example 42 and stirred at 5 ° C for 2 hours. The mixture was aged at 60 ° C for 4 hours. Next, diacetone alcohol was added to the aged solution to prepare a curable silicone compound solution.
  • this curable silicone compound solution was treated according to Example 21 to produce a hard coat film of Comparative Example 43.
  • the content of the zirconia particles in this hard coat film was set to 50% by weight.
  • a curable acrylate solution was prepared according to Comparative Example 42. Next, this solution was treated according to Example 20 to produce a hard coat film of Comparative Example 44. However, the content of the zircouore particles in this hard coat film was 2% by weight.
  • a curable silicone compound solution was prepared according to Comparative Example 43. Next, this solution was treated according to Example 21 to produce a hard coat film of Comparative Example 45. However, the content of zircoyu particles in this hard coat film was 2% by weight. [0335] "Evaluation of hard coat film"
  • Visible light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation).
  • Each of the curable talate solution or the curable silicone compound solution obtained in Examples 20 and 2 and Comparative Examples 42 to 45 was applied onto a silicon wafer by spin coating, and measured using a spectroscopic ellipsometer. did.
  • ⁇ X '' indicates that the refractive index is improved by 0.05 or more, and ⁇ X '' indicates that the refractive index is improved only by less than 0.05, based on the resin that does not contain the zirconium oxide particles.
  • the hardness was measured in accordance with Japanese Industrial Standards: JIS K 5600—5—4 “Mechanical properties of paint film—Tuging hardness (pencil method)”.
  • the reference value is based on the hardness of the hard coat film of Comparative Examples 42 and 31, which was prepared using the Zircoure Dispersion (Z15) of Comparative Example 42 and the content of zirconia particles was 50% by weight.
  • the case where the value is higher is “ ⁇ ”, and the case where the value is lower than this reference value is “X”.
  • Example 20 Z14 vacuum relay 50 ooo
  • Example 21 Z14 silicone 50 ⁇ 0 Ratio 42
  • Comparative Examples 42 to 45 were inferior to Examples 20 and 2 in any of visible light transmittance, refractive index, and hardness.
  • the inorganic oxide transparent dispersion of the present invention is an inorganic oxide having a surface modified with a surface modifier having one or more reactive functional groups and having a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • a surface modifier having one or more reactive functional groups and having a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • the inorganic oxide transparent dispersion of the present invention contains tetragonal zirconium particles having a surface modified by a surface modifier and a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • tetragonal zirconium particles having a surface modified by a surface modifier and a dispersed particle diameter of 1 nm or more and 20 nm or less.
  • LED semiconductor laser
  • the composition for sealing a light-emitting element of the present invention comprises inorganic oxide particles having a dispersed particle diameter of 1 nm or more and 20 nm or less and a refractive index of 1.8 or more, and silicone resin.
  • the light transmittance, refractive index, thermal stability, hardness, and weather resistance can be improved, and the effect of improving the characteristics of the light-emitting diode (LED) is extremely large.
  • the effect is great also in the field of various devices using diodes, and the industrial effect is extremely large.
  • the inorganic oxide particle-containing resin composition of the present invention has a surface modified with a surface modifier, and has a dispersed particle diameter of lnm or more and 20nm or less, and aromatic particles.
  • Light transmittance, refractive index, thermal stability, hardness and weather resistance can be improved by containing hydrogenated epoxy resin with hydrogenated aromatic ring of Poxy resin.
  • the effect is great in various fields where the above physical properties are required, and the industrial effect is extremely large.
  • the transparent plastic member containing inorganic oxide particles according to the present invention has a surface modified with a surface modifier and zirconia fine particles having a dispersed particle diameter of 1 nm or more and 20 nm or less in a film or sheet form. Dispersion in the plastic increases the refractive index and transparency of the plastic member in the form of a film or sheet, and improves the mechanical properties.
  • Display substrates or functional films for flat panel displays such as displays (LCD), plasma displays (PDP), electoluminescence displays (EL), surface electric field displays (SED), and microarrays in the optical field Lens sheet, prism sheet, Fresnel lens, lenticular lens
  • FPD flat panel displays
  • LCD displays
  • PDP plasma displays
  • EL electroluminescence displays
  • SED surface electric field displays
  • microarrays in the optical field Lens sheet, prism sheet, Fresnel lens, lenticular lens The effect is also great in lens sheets such as glass, light guide plates, diffusion films, holographic substrates, and light control films.
  • the hard coat film of the present invention contains tetragonal zircoure particles having a dispersed particle diameter of 1 nm or more and 20 nm or less, so that the transparency can be maintained and the refractive index and toughness can be improved.
  • Camera, lens-integrated film camera, various cameras such as video cameras, CD, CD-ROM, MD (MO is wrong), CD-R, The effect is great not only in various equipment such as optical pickups such as CD-Video and DVD, OA equipment such as copiers and printers, but also in various industrial fields where hard coat films are applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 無機酸化物粒子の表面を1つ以上の反応性官能基を有する表面修飾剤により修飾することにより、屈折率および機械的特性の向上と共に透明性維持を可能とする無機酸化物透明分散液、及び、この無機酸化物透明分散液と樹脂とを重合反応により複合一体化した無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子並びに無機酸化物粒子含有樹脂組成物の製造方法、および、透明性が高く、屈折率及び靭性を向上させることが可能なハードコート膜と光学機能膜及び光学レンズ並びに光学部品を提供する。本発明の無機酸化物透明分散液は、1つ以上の反応性官能基を有する表面修飾剤により表面が修飾されかつ分散粒径が1nm以上かつ20nm以下の無機酸化物粒子と、分散媒とを含有し、この表面修飾剤は、シランカップリング剤、変性シリコーン、界面活性剤の群から選択された1種または2種以上であることを特徴とする。

Description

明 細 書
無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封 止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに 無機酸化物粒子含有樹脂組成物の製造方法
技術分野
[0001] 本発明は、無機酸化物透明分散液と無機酸化物粒子含有榭脂組成物、発光素子 封止用組成物及び発光素子並びに無機酸化物粒子含有榭脂組成物の製造方法に 関し、更に詳しくは、榭脂のフイラ一材として好適に用いられ、屈折率および機械的 特性の向上と共に透明性維持を可能とする無機酸化物透明分散液、及び、この無 機酸化物透明分散液と樹脂とを重合反応により複合一体化した無機酸化物粒子含 有榭脂組成物、発光素子封止用組成物及び発光素子並びに無機酸化物粒子含有 榭脂組成物の製造方法に関するものである。
また、本発明は、封止材としての透明性を維持するとともに、屈折率及び機械的特 性を向上させることが可能な発光素子封止用組成物、及び、この発光素子封止用組 成物により光の透過領域を封止することで光取り出し効率を向上させ、よって、高い 発光輝度を得ることが可能な発光素子、並びに、この発光素子を備えた光半導体装 置に関するものである。
また、本発明は、発光ダイオード(LED: light emitting diode)などに用いられ るジルコユア含有エポキシ榭脂組成物とこれを含有する無機酸化物粒子含有榭脂 組成物および発光素子並びに光半導体装置に関し、更に詳しくは、発光ダイオード の高屈折率ィ匕を実現するために用いられるジルコユア含有エポキシ榭脂組成物とこ れを含有する無機酸化物粒子含有榭脂組成物、および、この無機酸化物粒子含有 榭脂組成物により光の透過領域を封止することで光の取り出し効率を向上させ、よつ て、高い発光輝度を得ることが可能な発光素子、並びに、この発光素子を備えた光 半導体装置に関するものである。
また、本発明は、無機酸ィ匕物粒子含有透明プラスチック部材 (ジルコ-ァ微粒子含 有透明プラスチック部材)及び複合プラスチック部材に関し、更に詳しくは、ジルコ- ァ微粒子と各種プラスチック部材とを複合ィ匕することにより、高屈折率、高透明性の 双方を実現すると同時に機械的特性の向上を図ることが可能な無機酸ィ匕物粒子含 有透明プラスチック部材 (ジルコ-ァ微粒子含有透明プラスチック部材)及び複合プ ラスチック部材に関するものである。
また、本発明は、ハードコート膜と光学機能膜及び光学レンズ並びに光学部品に関 し、更に詳しくは、可視光線に対する光透過率が高ぐ屈折率及び靭性を向上させる ことが可能なハードコート膜、このハードコート膜を備えることで光透過率が高ぐ屈 折率及び靭性に優れた光学機能膜、及び、このハードコート膜を備えることで、光透 過率、屈折率及び靭性に優れた光学レンズ、並びに、この光学レンズを備えた光学 部品に関するものである。
背景技術
[0002] 従来より、シリカ等の無機酸ィ匕物をフイラ一として榭脂と複合ィ匕することにより、榭脂 の機械的特性等を向上させる試みがなされている。このフィラーと榭脂とを複合ィ匕す る方法としては、無機酸ィ匕物を水および Zまたは有機溶媒中に分散させた分散液と 榭脂とを混合する方法が一般的であり、分散液と榭脂を種々の方法により混合するこ とにより、無機酸ィ匕物粒子が第 2相として複合化された無機酸ィ匕物粒子複合ィ匕プラス チックを作製することができる。
[0003] 一方、液晶ディスプレイ (LCD)、プラズマディスプレイ (PDP)、エレクト口ルミネッセ ンスディスプレイ (EL)等のフラットパネルディスプレイ (FPD)用基板としては、従来、 ガラス基板が多く用いられてきたが、このガラス基板には、割れ易い、曲げられない、 比重が大きく軽量ィ匕に不向き等の問題があり、そこで、ガラス基板の代わりとして、柔 軟性を有するプラスチック基板を用いる試みが数多く行われるようになってきた。 フラットパネルディスプレイ (FPD)用としてのプラスチック基板に対する要求特性と しては、透明性、屈折率、機械的特性等が挙げられている。
[0004] また、プラスチックの屈折率を向上させるための無機酸ィ匕物フイラ一としては、ジル コユア、チタ-ァ等の酸ィ匕物微粒子が高屈折率フィラーとして利用されている。
また、無機酸ィ匕物フイラーを榭脂と複合ィ匕するために、無機酸ィ匕物フイラ一を水系 溶媒や有機溶媒中に分散させた分散液が開発され、榭脂の屈折率の向上について 検討されている。
この複合ィ匕の例としては、粒径 10〜: LOOnmのジルコユア粒子と榭脂とを複合ィ匕し たジルコユア粒子複合ィ匕プラスチックを用いた高屈折率かつ高透明性の厚み数ミク ロンの膜が提案されている (例えば、特許文献 1参照)。
[0005] また、 CD, CD-ROM, CD -Video, MO、 CD-R, DVD等に用いられる光ピッ クアップ等の光半導体装置、各種ディスプレイ装置、表示用機器等における発光素 子としては、従来、順バイアスされた pn接合域を発光領域とし、この発光領域にて電 子とホールとが再結合することにより可視光領域、紫外領域または赤外領域の光を 放出する発光ダイオード (LED: light emitting diode)が広く利用されている。
この発光ダイオードは、窒化ガリウム系化合物半導体等を積層してなる LEDチップ をリードフレームに搭載し、この LEDチップとリードフレームとを電気的に接続し、この LEDチップを保護機能およびレンズ機能を兼ねた榭脂により封止している。
[0006] この発光ダイオードでは、発光層に窒化ガリウム (GaN)系化合物半導体を用いた 場合の発光層の光学的な屈折率は 2程度である。
また、封止に用いられる榭脂としては、透明性、機械的強度、靭性等が要求される ことから、これらの要求に適した榭脂として屈折率が 1. 4程度のシリコーン榭脂等が 広く用いられている(例えば、特許文献 2、 3参照)。
[0007] また、榭脂の機械的特性などを向上させるために、従来、榭脂とフイラ一としてのシ リカなどの無機酸ィ匕物とを複合ィ匕して 、る。
この樹脂とフイラ一を複合ィ匕する方法としては、無機酸ィ匕物を水および Zまたは有機 溶媒に分散させた分散液と榭脂を、種々の方法によって混合することにより、榭脂中 にフイラ一を分散させる方法が挙げられる。
また、 LEDでは、半導体素子を保護するために、エポキシ榭脂ゃシリコーン榭脂な どの透明な封止榭脂によって半導体素子を封止している。し力しながら、 LEDの短 波長化や高輝度化の要求が高まるに伴って、 LED力 放出されるエネルギーが増 加するため、封止榭脂が黄変して、 LEDの輝度が低下するという問題があった。
[0008] LEDの封止榭脂として、シリコーン榭脂を用いた場合、シリコーン榭脂は、耐熱性 ゃ耐光性に優れているものの、半導体素子との接着性が十分でない上に、屈折率が 低!、ため、 LED力もの光の取り出し効率が低下すると!/、う問題があった。 一方、エポキシ榭脂としては、ビスフエノール A型エポキシ榭脂(ェピ一ビス型榭脂) やクレゾ一ルノボラック型エポキシ樹脂が用いられて 、るが、これらのエポキシ榭脂は ベンゼン環すなわち不飽和結合を有して 、るため、紫外線を吸収し易!、と!/、う性質 がある。
したがって、これらのエポキシ榭脂は、吸収した紫外線のエネルギーによって発生し たラジカルにより酸ィ匕し易くなり、結果として、黄変し易くなるといった問題があった。
[0009] このような問題を解決する手段として、ビスフエノール A型エポキシ榭脂ゃクレゾ一 ルノボラック型エポキシ榭脂の芳香環を直接水素化した、すなわち、芳香環に水素を 結合した水添エポキシ榭脂が提案されている。し力しながら、芳香環を水素化すると 、エポキシ榭脂中の不飽和結合が低減するので、水添エポキシ榭脂は耐光性が向 上するが、その反面、水添エポキシ榭脂は耐熱性が低下するという問題があった。そ こで、水添エポキシ榭脂に、酸無水物、硬化促進剤、酸化防止剤などを配合し、その 配合割合を最適化することによって、耐熱性を向上した水添エポキシ榭脂が提案さ れている(例えば、特許文献 4参照)。
[0010] また、従来より、シリカ等の無機酸ィ匕物をフイラ一として榭脂と複合ィ匕することにより 、榭脂の機械的特性等を向上させる試みがなされている。このフィラーと榭脂とを複 合ィ匕する方法としては、無機酸ィ匕物を水および Zまたは有機溶媒中に分散させた分 散液と樹脂とを混合する方法が一般的であり、分散液と榭脂を種々の方法により混 合することにより、無機酸化物粒子が複合化された無機酸化物粒子複合化プラスチ ックを作製することができる。
[0011] 一方、液晶ディスプレイ (LCD)、プラズマディスプレイ (PDP)、エレクト口ルミネッセ ンスディスプレイ(EL)、表面電界ディスプレイ(SED)等のフラットパネルディスプレイ (FPD)分野においては、近年、従来用いられてきたガラス基板に替わり、各種プラス チック材料を用いる試みが数多く行われるようになってきた。プラスチック材料を使用 することで、ガラス基板における問題点である割れ易さ、加工性、重量等を改善する ことが可能になる。
また、このフラットパネルディスプレイの表面には、反射防止(AR)フィルム、防眩( AG)フィルム、ハードコート(HC)フィルム等の各種プラスチックフィルムを用いた機 能性フィルムが貼付けられ、視認性の向上や表面のキズ防止等に役立っている。こ のようなプラスチックフィルムに求められる特性として重要なものには、透明性、屈折 率、機械的特性等が挙げられる。特に、屈折率の向上を図る場合には、プラスチック フィルムと、それ自体屈折率の高い無機酸ィ匕物フイラ一、例えば、ジルコユア (ZrO )
2 ゃチタニア (TiO )等を複合ィ匕した複合プラスチックフィルムが使用されて 、る。
2
[0012] このような無機酸ィ匕物フイラ一とプラスチックとを複合ィ匕する方法としては、大別して 、次の二つの方法が挙げられる。
(1)無機酸ィ匕物フイラ一をプラスチック中に練り込む方法。
この方法としては、(a)榭脂モノマー中に無機酸ィ匕物フイラ一を分散させ、この榭脂 モノマーを重合または縮重合させて無機酸ィ匕物フイラ一含有プラスチックフィルムと する方法、(b)液状の榭脂材料に無機酸ィ匕物フイラ一を分散させ、次いで、フィルム 状に成形し、その後、榭脂材料を硬化させて無機酸化物フィラー含有プラスチックフ イルムとする方法、等がある。
この無機酸ィ匕物フイラ一含有プラスチックフィルムの例としては、ポリエステル中に 粒子径が 0. 005 /ζ πι〜0. 3 mのジルコ-ァ粒子を分散させることにより、表面の 耐磨耗性を向上させたジルコユア粒子含有ポリエステルフィルムが提案されて ヽる ( 例えば、特許文献 5参照)。
[0013] (2)プラスチックフィルム上に無機酸ィ匕物フイラ一を含む膜を形成する方法。
この方法は、プラスチックフィルム上に、無機酸化物フィラー及びバインダー成分を 含む塗料を塗布し、次いで、このバインダー成分を硬化させて膜とする方法であり、 バインダー成分としては、ゾルゲル法で作製したシリカ等の無機材料、ポリエステル やポリエーテル等の榭脂材料が用いられて 、る。
この膜の例としては、粒径 10〜100nmのジルコ-ァ粒子とプラスチックとを複合化 することにより、高屈折率かつ高透明性の厚み数ミクロンのジルコユア粒子複合ィ匕プ ラスチック膜が提案されている (例えば、特許文献 1参照)。
[0014] また、光学用の透明プラスチック材料としては、従来、ポリカーボネート (PC)、ポリメ チルメタタリレート(PMMA)、環状ォレフィン系榭脂等が広く使用されている。しかし ながら、これらの透明プラスチック材料をプロジェクター用の光学レンズ、光ディスクの ピックアップ用の光学レンズ及び基板、フラットパネルディスプレイ (FPD)用の基板 等へ適用しょうとする場合、 PCは複屈折が大きぐまた、 PMMAは吸水性が大きぐ 耐熱性も不十分なものであった。
また、これらの問題を解決することができる環状ォレフィン系榭脂においても、耐擦 傷性が低ぐ表面に傷がつき易い等の問題点があった。
一般に、これら光学用透明プラスチック材料の表面の耐擦傷性を改善するには、表 面にハードコート層を形成する方法があり、多岐に亘つて用いられている。中でも、プ ラスチックレンズとハードコート層の干渉縞の防止や、反射防止膜用ハードコート等 の用途には、高屈折率ハードコート層が用いられている(例えば、特許文献 6、 7参照
) o
[0015] 特許文献 1:特開 2005— 161111号公報
特許文献 2 :特開 2005— 105217号公報
特許文献 3:特開 2004 - 292779号公報
特許文献 4:特開 2005 - 68234号公報
特許文献 5 :特開平 05— 171012号公報
特許文献 6:特開 2004 - 1393号公報
特許文献 7:特開平 11― 302597号公報
発明の開示
発明が解決しょうとする課題
[0016] ところで、従来の無機酸ィ匕物粒子複合ィ匕プラスチックを用いた基板の透明性を評 価する場合、基板の厚みを光路長として、この光路長における可視光線の透過率を 求めている。したがって、厚い方が透明性を維持するのが困難になる。
例えば、上述した従来のジルコユア粒子複合ィ匕プラスチック膜の場合、厚みを数 mとすることで高屈折率、高透明性を確保したものであるから、厚みが数十/ z m、ある いはそれ以上になると、透明性を維持するのが困難になる。
このように、ジルコユア粒子複合ィ匕プラスチック膜にっ ヽては検討されて 、るものの 、ジルコユア粒子複合ィ匕プラスチックをバルタ体とした場合の屈折率や透明性につ ヽ ては、検討されていないのが現状である。
また、従来の無機酸ィ匕物粒子を疎水性である樹脂と複合ィ匕しょうとすると、この無機 酸ィ匕物粒子の表面が親水性を有しているために、無機酸ィ匕物粒子と榭脂とが分離し たり、分離はしないものの濁って失透したり等の不具合が発生する虞があり、榭脂の 透明性を維持したまま無機酸ィ匕物粒子と複合ィ匕することは困難であるという問題点が めつに。
そこで、一般的な解決法として、無機酸ィ匕物粒子の表面を疎水化するために、有機 高分子分散剤等の表面修飾剤を無機酸ィ匕物粒子の表面に付与することにより無機 酸ィ匕物粒子と榭脂との相溶性を高める工夫がなされているが、この疎水化された無 機酸化物粒子と榭脂との複合体は、複合体そのものの機械的特性及び屈折率を上 昇させるという優れた点があるものの、無機酸ィ匕物粒子の粒径が 20nm以上と大きい ために透明性が低下し、場合によっては失透してしまう虞があるという問題点があつ た。
[0017] 本発明は、上記の課題を解決するためになされたものであって、無機酸化物粒子 の表面を 1つ以上の反応性官能基を有する表面修飾剤により修飾することにより、屈 折率および機械的特性の向上と共に透明性維持を可能とする無機酸ィ匕物透明分散 液、及び、この無機酸化物透明分散液と榭脂とを重合反応により複合一体化した無 機酸化物粒子含有榭脂組成物、発光素子封止用組成物及び発光素子並びに無機 酸化物粒子含有榭脂組成物の製造方法を提供することを目的とする。
[0018] また、従来の発光ダイオードでは、封止榭脂に屈折率が 1. 4程度のシリコーン榭脂 等を用いているために、発光層の屈折率の方がシリコーン榭脂の屈折率より大きぐ このため、発光層から放出される光が臨界角より小さな角度でシリコーン榭脂に入射 すると、シリコーン榭脂との界面で全反射してしまうという問題点があった。このような 全反射が生じた場合、光の取り出し効率が低下し、その結果、発光ダイオードの発光 輝度が低下することとなる。
また、封止榭脂の靭性が低い場合には、例えば、 LEDパッケージをプリント基板等 に実装する際に、はんだリフロー時にクラックが発生する等の問題点があった。
[0019] 本発明は、上記の課題を解決するためになされたものであって、封止材としての透 明性を維持するとともに、屈折率及び機械的特性を向上させることが可能な発光素 子封止用組成物及び発光素子並びに光半導体装置を提供することを目的とする。
[0020] また、エポキシ榭脂の芳香環を水素化した水添エポキシ榭脂は耐光性が向上する ものの、それ自体の屈折率が低下してしまい、水添加エポキシ榭脂を LEDなどの封 止榭脂として用いた場合、光の取り出し効率が低下すると!、う問題があった。
[0021] 本発明は、上記の課題を解決するためになされたものであって、耐熱性おょび耐 光性に優れるとともに、屈折率が高 、ジルコ-ァ含有エポキシ榭脂組成物とこれを含 有する無機酸化物粒子含有榭脂組成物および発光素子並びに光半導体装置を提 供することを目的とする。
[0022] また、従来の無機酸ィ匕物フイラ一をプラスチック中に練り込む方法では、 0. 005 μ m〜0. 3 /z mのジルコユア粒子を物理的処理のみで複合化しているために、プラス チックフィルムの厚みを数十/ z m以上とした場合、プラスチックフィルムの高屈折率を 確保するためには、高屈折率を生じさせるに十分な量の無機酸化物フィラーを含有 させる必要がある。しカゝしながら、無機酸化物フィラーの含有量を増加させると、ブラ スチックフィルムの透明性を確保することが困難になるという問題点があった。一方、 プラスチックフィルムの透明性を確保するためには、無機酸ィ匕物フイラ一の含有量を 減らさざるを得ず、屈折率を向上させることが難しくなるという問題点があった。
このように、プラスチックフィルムに無機酸ィ匕物フイラ一を含有させた場合、高屈折 率と透明性との間にはトレードオフの関係があり、高屈折率と透明性の双方を満足す ることが困難であった。
[0023] 一方、プラスチックフィルム上に無機酸ィ匕物フイラ一を含む膜を形成する方法では、 確かに、プラスチックフィルムの表面に高屈折率の膜を形成することはできるものの、 この高屈折率膜が基材と一体化して ヽな 、ために、プラスチックフィルムの折曲に完 全に追随することは困難である。したがって、プラスチックフィルムの表面に高屈折率 膜を形成した後に、プラスチックフィルムに曲げ加工を施そうとすると、高屈折率膜に クラックが生じたり、あるいは高屈折率膜が剥離してしまう虞があるという問題点があつ た。
[0024] 本発明は、上記の課題を解決するためになされたものであって、高屈折率、高透明 性の双方を実現すると同時に機械的特性の向上を図ることが可能な無機酸ィ匕物粒 子含有透明プラスチック部材及び複合プラスチック部材を提供することを目的とする
[0025] また、従来の高屈折率ハードコート層に用いられる材料としては、ジルコ-ァ、チタ 二了、酸化スズ等の高屈折率フィラーを榭脂中に含有させた複合材料がある。しかし ながら、従来の複合材料では、一次粒径が数 mの粗大なものから数 nmの微細な ものまでのいずれの高屈折率フィラーであっても、凝集が激しぐ榭脂中に混練して も数/ z mの径の粗大粒の状態で存在するために、高屈折率フィラーを榭脂中に均一 分散させることができず、したがって、ハードコート膜の可視光線に対する光透過率、 屈折率及び靭性をさらに向上させることが難しいという問題点があった。
[0026] 本発明は、上記の課題を解決するためになされたものであって、透明性が高ぐ屈 折率及び靭性を向上させることが可能なハードコート膜と光学機能膜及び光学レン ズ並びに光学部品を提供することを目的とする。
課題を解決するための手段
[0027] 本発明者等は、無機酸ィ匕物粒子の表面修飾剤について鋭意検討を重ねた結果、 分散粒径が lnm以上かつ 20nm以下の無機酸化物粒子の表面を、 1つ以上の反応 性官能基を有する表面修飾剤により修飾し、この表面が修飾された無機酸ィ匕物粒子 を分散液中に分散させて無機酸化物透明分散液とすれば、この無機酸化物透明分 散液を用いて無機酸化物粒子と榭脂とを重合反応により複合一体化した場合に、複 合体の透明性を維持しながら、屈折率、機械的特性の向上が可能であることを見出 し、本発明を完成するに至った。
[0028] すなわち、本発明の無機酸ィ匕物透明分散液は、 1つ以上の反応性官能基を有する 表面修飾剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の無機 酸化物粒子を含有してなることを特徴とする。
[0029] 前記反応性官能基は、炭素 炭素二重結合またはケィ素一水素結合を有すること が好ましい。
前記反応性官能基は、アルコキシル基、ヒドロキシル基、ビニル基、スチリル基、ァ クリル基、メタクリル基、アタリロイル基、エポキシ基の群力 選択される 1種または 2種 以上であることが好ましい。
[0030] 前記表面修飾剤は、アルコキシシランィ匕合物、クロロシランィ匕合物、アルキルアルコ キシシランィ匕合物、アルキルクロロシランィ匕合物、シロキサンィ匕合物、界面活性剤、お よびチタンカップリング剤力 なる群より選択された 1種または 2種以上であることが好 ましい。
前記アルコキシシランィ匕合物またはクロロシランは、シランカップリング剤であること が好ましい。
前記シロキサンィ匕合物は、変性シリコーンまたはシリコーンレジンであることが好まし い。
前記表面の修飾部分の重量比は、前記無機酸化物粒子の 5重量%以上かつ 200 重量%以下であることが好まし 、。
[0031] 前記無機酸化物粒子は、ジルコニァ粒子であることが好ましい。
前記ジルコニァ粒子は正方晶ジルコニァ粒子であることが好ましい。
前記無機酸ィヒ物粒子の含有率は、 1重量%以上かつ 70重量%以下であることが 好ましい。
[0032] 本発明の無機酸化物粒子含有榭脂組成物 (透明複合体)は、本発明の無機酸ィ匕 物透明分散液から得られた無機酸化物粒子と、榭脂とを含有することを特徴とする。 本発明の無機酸ィ匕物粒子含有榭脂組成物は、本発明の無機酸ィ匕物粒子を榭脂 中に分散しかつ当該樹脂と反応してなることを特徴とする。
前記無機酸ィヒ物粒子の含有率は、 1重量%以上かつ 80重量%以下であることが 好ましい。
前記榭脂は、シリコーン榭脂、エポキシ榭脂またはアクリル榭脂であることが好まし い。
前記エポキシ榭脂は芳香族エポキシ榭脂の芳香環を水素化した水添エポキシ榭 脂であることが好ましい。
前記無機酸ィ匕物粒子はジルコニァ粒子であることが好ましい。
前記ジルコユア粒子の含有率は 10重量%以上かつ 60重量%以下であることが好 ましい。 [0033] 本発明の発光素子封止用組成物は、本発明の無機酸化物透明分散液を含有して なることを特徴とする。
[0034] 本発明の発光素子封止用組成物は、本発明の無機酸化物粒子含有榭脂組成物( 透明体複合体)を含有してなることを特徴とする発光素子封止用組成物。
前記無機酸化物粒子の屈折率が 1. 8以上であり、前記榭脂はシリコーン榭脂であ ることが好ましい。
前記無機酸ィ匕物粒子はジルコユア粒子であって、その含有率が 10重量%以上か つ 60重量%以下の場合、波長 350nm以上かつ 800nm以下の光の透過率力 ¾0% 以上であることが好ましい。
本発明の発光素子は、少なくとも光透過領域を本発明の無機酸化物粒子含有榭 脂組成物としたことを特徴とする。
本発明の発光素子は、少なくとも光透過領域を、本発明の発光素子封止用組成物 により封止してなることが好まし!/、。
[0035] 本発明の無機酸ィ匕物粒子含有榭脂組成物の製造方法は、本発明の無機酸ィ匕物 透明分散液と、榭脂とを混合し、得られた混合物を成形もしくは充填し、次いで、この 成形体もしくは充填物を硬化することを特徴とする。
[0036] また、本発明者等は、第 2相として複合ィ匕した場合にマルテンサイト変態という高靭性 ィ匕機構が存在し、機械的特性向上の面で優位性があるナノメートル級の正方晶ジル コ-ァ粒子について鋭意検討を重ねた結果、分散粒径が lnm以上かつ 20nm以下 の正方晶ジルコニァ粒子の表面を表面修飾剤により修飾し、この表面が修飾された 正方晶ジルコニァ粒子を分散液中に分散させて無機酸化物透明分散液とすれば、 榭脂と複合ィ匕した場合において、複合体の透明性を維持しながら、屈折率、機械的 特性の向上が可能であることを見出し、本発明を完成するに至った。
[0037] すなわち、本発明の無機酸ィ匕物透明分散液は、表面修飾剤により表面が修飾され かつ分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子を含有してなる ことを特徴とする。
前記表面修飾剤は、アルコキシシランィ匕合物、シロキサンィ匕合物、界面活性剤、チ タンカップリング剤の群力も選択された 1種または 2種以上であることが好ましい。 前記アルコキシシランィ匕合物は、シランカップリング剤であることが好まし 、。
前記シロキサンィ匕合物は、変性シリコーンであることが好ま U、。
[0038] 前記表面の修飾部分の重量比は、前記正方晶ジルコニァ粒子の 5重量%以上か つ 200重量%以下であることが好まし 、。
前記正方晶ジルコ-ァ粒子の含有率は、 1重量%以上かつ 70重量%以下であるこ とが好ましい。
[0039] 本発明の無機酸ィ匕物粒子含有榭脂組成物は、表面修飾剤により表面が修飾され かつ分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子を榭脂中に分散 してなることを特徴とする。
前記榭脂は、シリコーン榭脂、エポキシ榭脂またはアタリレート榭脂であることが好 ましい。
前記正方晶ジルコ-ァ粒子の含有率は、 1重量%以上かつ 80重量%以下であるこ とが好ましい。
[0040] 本発明の無機酸ィ匕物粒子含有榭脂組成物の製造方法は、本発明の無機酸ィ匕物 透明分散液と、榭脂とを混合し、得られた混合物を成形もしくは充填し、次いで、この 成形体もしくは充填物を硬化することを特徴とする。
[0041] また、本発明者等は、無機フィラーとして屈折率が 1. 8以上の無機酸化物粒子に 着目し、また、一次粒径が数/ z mの粗大なものから数 nmの微細なものまでのいずれ であっても凝集が激しぐ榭脂中に混練しても数/ z mの径の粗大粒の状態で存在し、 封止材料の透明性が失われると 、う欠点を克服するために鋭意検討を重ねた結果、 分散粒径が lnm以上かつ 20nm以下でありかつ屈折率が 1. 8以上の無機酸化物粒 子と、シリコーン榭脂とを含有する発光素子封止用組成物により発光素子の光透過 領域を封止すれば、高光透過率、高屈折率、高い熱安定性、高硬度および耐候性 を満足しつつ、発光素子の光取り出し効率を向上させることが可能であることを見出 し、本発明を完成するに至った。
[0042] すなわち、本発明の発光素子封止用組成物は、分散粒径が lnm以上かつ 20nm 以下でありかつ屈折率が 1. 8以上である無機酸化物粒子と、シリコーン榭脂とを含 有してなることを特徴とする。 前記無機酸化物粒子は、ジルコユア粒子であることが好ま ヽ。
前記無機酸化物粒子の含有率は 1重量%以上かつ 80重量%以下であることが好 ましい。
[0043] 本発明の発光素子は、少なくとも光透過領域を、本発明の発光素子封止用組成物 により封止してなることを特徴とする。
本発明の光半導体装置は、本発明の発光素子を備えてなることを特徴とする。
[0044] また、本発明者等は、上記課題を解決するために鋭意研究を行った結果、水添ェ ポキシ榭脂に、表面修飾剤により表面が修飾され、かつ、分散粒径が lnm以上かつ 20nm以下のジルコユア粒子を添加することにより、エポキシ榭脂の耐熱性および耐 光性を維持するとともに、屈折率を向上することができることを見出し、本発明を完成 するに至った。
すなわち、本発明の無機酸ィ匕物粒子含有榭脂組成物は、表面修飾剤により表面 が修飾され、かつ、分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子と 、芳香環を水素化した水添エポキシ榭脂とを含有してなることを特徴とする。
[0045] 本発明の無機酸化物粒子含有榭脂組成物は、前記表面修飾剤が、シロキサンィ匕 合物および Zまたは界面活性剤であることが好ましい。
本発明の無機酸ィ匕物粒子含有榭脂組成物は、前記ジルコユア粒子の含有率は 10 重量%以上かつ 60重量%以下であることが好ましい。
[0046] 本発明の発光素子封止用組成物 (透明複合体)は、本発明の無機酸化物粒子含 有榭脂組成物 (ジルコ-ァ含有エポキシ榭脂組成物)を含有してなることを特徴とす る。
[0047] 本発明の発光素子封止用組成物 (透明複合体)は、前記発光素子封止用組成物( 透明複合体)において、ジルコユア粒子の含有率が 10重量%以上かつ 60重量%以 下の場合、波長 350nm以上かつ 800nm以下の光の透過率が 80%以上であること が好ましい。
[0048] 本発明の発光素子は、少なくとも光透過領域を、請求項 4記載の発光素子封止用 組成物 (透明複合体)により封止してなることを特徴とする。
[0049] 本発明の光半導体装置は、本発明の発光素子を備えてなることを特徴とする。 [0050] また、本発明者等は、上記の課題を解決するために鋭意検討を行った結果、分散 粒径が lnm以上かつ 20nm以下のジルコニァ微粒子の表面を表面修飾剤により修 飾し、この表面修飾したジルコユア微粒子をフィルム状またはシート状の透明なプラ スチック中に均一に分散させることにより、プラスチックにおけるジルコユア微粒子の 分散性及び高充填率を実現することが可能であり、その結果、高透明性を確保した まま高屈折率ィ匕が可能であり、同時に機械的特性の向上をも図ることが可能であるこ とを見出し、本発明を完成するに至った。
[0051] すなわち、本発明の無機酸ィ匕物粒子含有透明プラスチック部材 (ジルコ-ァ微粒 子含有透明プラスチック部材)は、前記無機酸ィ匕物透明分散液カゝら得られた無機酸 化物粒子を含有してなることを特徴とする。
本発明の無機酸ィ匕物粒子含有透明プラスチック部材は、フィルム状またはシート状 の透明プラスチック部材であって、表面修飾剤により表面が修飾され、かつ、分散粒 径が lnm以上かつ 20nm以下のジルコユア微粒子を含有してなることが好まし!/、。
[0052] 前記ジルコユア微粒子の含有率は 10重量%以上かつ 80重量%以下であることが 好ましい。
この無機酸ィ匕物粒子含有透明プラスチック部材は、厚みを 30 m以上かつ 300 m以下とした場合の可視光透過率が 80%以上であることが好ましい。
[0053] 前記表面修飾剤は、アルコキシシラン、クロロシラン、アルキルアルコキシシラン、ァ ルキルクロロシラン、シロキサン、界面活性剤の群力 選択された 1種または 2種以上 であることが好ましい。
前記アルコキシシランまたはクロロシランは、シランカップリング剤であることが好まし い。
前記シロキサンは、変性シリコーンまたはシリコーンレジンであることが好ましい。
[0054] 本発明の複合プラスチック部材は、本発明の無機酸ィ匕物粒子含有透明プラスチッ ク部材を備えて 、ることを特徴とする。
[0055] また、本発明者等は、無機フイラ一としてのジルコユア粒子、特に、正方晶ジルコ- ァを複合材料の第 2相として添加した場合に、この複合材料がマルテンサイト変態と 称される体積膨張により高い靭性を示すことに着目し、従来のジルコユア粒子が有す る、一次粒径が数/ z mの粗大なものから数 nmの微細なものまでのいずれであっても 凝集が激しぐ榭脂中に混練しても数 mの径の粗大粒の状態で存在し、封止材料 の透明性が失われると!、う欠点を克服するために鋭意検討を重ねた結果、ジルコ- ァ粒子として分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子を用い、 この正方晶ジルコ-ァ粒子を含むハードコート膜を形成すれば、高光透過率、高屈 折率、高い熱安定性、高硬度および耐候性を満足することを見出し、本発明を完成 するに至った。
[0056] すなわち、本発明のハードコート膜は、本発明の無機酸化物透明分散液から得ら れた無機物酸化物粒子を含有してなることを特徴とする。
本発明のハードコート膜は、分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ ユア粒子を含有してなることが好ましい。 前記正方晶ジルコ-ァ粒子は、ハードコー ト基材中に分散してなることが好ま 、。
前記正方晶ジルコ-ァ粒子の含有率は 1重量%以上かつ 80重量%以下であること が好ましい。
[0057] 本発明の光学機能膜は、少なくとも光透過領域に、本発明のハードコート膜を備え てなることを特徴とする。
本発明の光学レンズは、少なくとも光透過領域に、本発明のハードコート膜を備え てなることを特徴とする。
[0058] 本発明の光学部品は、本発明の光学レンズを備えてなることを特徴とする。
発明の効果
[0059] 本発明の無機酸ィ匕物透明分散液によれば、 1つ以上の反応性官能基を有する表 面修飾剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の無機酸 化物粒子を含有したので、屈折率および機械的特性をさらに高めることができ、透明 性を維持することができる。
したがって、この無機酸化物透明分散液と榭脂とを混合すれば、屈折率が高ぐ透 明性に優れ、しかも機械的特性が向上した「無機酸ィ匕物粒子含有榭脂組成物 (透明 複合体)」を容易に得ることができる。
[0060] 本発明の「無機酸ィ匕物粒子含有榭脂組成物 (透明複合体)」によれば、本発明の無 機酸ィ匕物粒子を榭脂中に分散しかつ当該樹脂と反応してなることとしたので、屈折 率および機械的特性をさらに高めるとともに、透明性を維持することができる。
[0061] 本発明の「無機酸ィ匕物粒子含有榭脂組成物 (透明複合体)」の製造方法によれば、 本発明の無機酸化物透明分散液と、榭脂とを混合し、得られた混合物を成形もしく は充填し、次いで、この成形体もしくは充填物を硬化するので、屈折率および機械的 特性に優れ、しかも透明性が低下する虞のな 、「無機酸化物粒子含有榭脂組成物( 透明複合体) Jを容易かつ安価に作製することができる。
[0062] また、本発明の無機酸ィ匕物透明分散液によれば、表面修飾剤により表面が修飾さ れかつ分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子を含有したの で、屈折率および機械的特性の向上と共に透明性の維持を図ることができる。
したがって、この無機酸化物透明分散液を榭脂に混合すれば、屈折率が高ぐ透 明性に優れ、しかも機械的特性が向上した「無機酸ィ匕物粒子含有榭脂組成物 (透明 複合体)」を容易に得ることができる。
[0063] 本発明の「無機酸ィ匕物粒子含有榭脂組成物 (透明複合体)」によれば、表面修飾 剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ ユア粒子を榭脂中に分散したので、屈折率、透明性および機械的特性を高めること ができる。
[0064] 本発明の「無機酸ィ匕物粒子含有榭脂組成物 (透明複合体)」の製造方法によれば、 本発明の無機酸化物透明分散液と、榭脂とを混合し、得られた混合物を成形もしく は充填し、次いで、この成形体もしくは充填物を硬化するので、屈折率が高ぐ透明 性に優れ、しかも機械的特性が向上した「無機酸化物粒子含有榭脂組成物 (透明複 合体)」を容易かつ安価に作製することができる。
[0065] また、本発明の発光素子封止用組成物によれば、分散粒径が lnm以上かつ 20η m以下でありかつ屈折率が 1. 8以上である無機酸化物粒子と、シリコーン榭脂とを含 有したので、透明性を維持することができ、屈折率及び機械的特性を向上させること ができる。
[0066] 本発明の発光素子によれば、少なくとも光透過領域を本発明の発光素子封止用組 成物により封止したので、この光透過領域の透明性を維持することができ、屈折率、 熱安定性、硬度および耐候性を向上させることができる。
したがって、光取り出し効率を向上させることができ、高い発光輝度を得ることがで き、さらには、長期に亘つて信頼性を向上させることができる。
[0067] 本発明の光半導体装置によれば、本発明の発光素子を備えたので、装置としての 性能を向上させることができ、長期に亘つて装置の信頼性を向上させることができる。
[0068] また、本発明の無機酸化物粒子含有榭脂組成物は、表面修飾剤により表面が修 飾され、かつ、分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子と、芳 香環を水素化した水添エポキシ榭脂とを含有してなるので、耐熱性および耐光性に 優れ、透明性を維持したまま屈折率を向上した発光素子封止用組成物 (透明複合体 )を得ることができる。
[0069] 本発明の発光素子によれば、少なくとも光透過領域を本発明の発光素子封止用組 成物 (透明複合体)により封止したので、この光透過領域の透明性を維持することが でき、屈折率、熱安定性、硬度および耐候性を向上させることができる。
したがって、光取り出し効率を向上させることができ、高い発光輝度を得ることがで き、さらには、長期に亘つて信頼性を向上させることができる。
[0070] 本発明の光半導体装置によれば、本発明の発光素子を備えたので、装置としての 性能を向上させることができ、長期に亘つて装置の信頼性を向上させることができる。
[0071] また、本発明の無機酸ィ匕物粒子含有透明プラスチック部材によれば、フィルム状ま たはシート状の透明プラスチック部材で、表面修飾剤により表面が修飾され、かつ、 分散粒径が lnm以上かつ 20nm以下のジルコユア微粒子を含有したので、プラスチ ック部材の透明性を維持したままで高屈折率ィ匕することができ、しかも機械的特性を 向上させることができる。
したがって、屈折率が高ぐ透明性も高ぐしかも機械的特性が向上したプラスチッ ク部材を提供することができる。
[0072] 本発明の複合プラスチック部材によれば、本発明の無機酸ィ匕物粒子含有透明ブラ スチック部材を備えたので、複合プラスチック部材の透明性を維持したままで高屈折 率ィ匕することができ、し力も機械的特性を向上させることができる。
[0073] また、本発明のハードコート膜によれば、分散粒径が lnm以上かつ 20nm以下の 正方晶ジルコ-ァ粒子を含有したので、透明性を維持することができ、屈折率及び 靭性を向上させることができる。
[0074] 本発明の光学機能膜によれば、少なくとも光透過領域に本発明のハードコート膜を 備えたので、この光透過領域の透明性を維持することができ、屈折率、熱安定性、硬 度および耐候性を向上させることができる。したがって、長期に亘つて信頼性を向上 させることがでさる。
[0075] 本発明の光学レンズによれば、少なくとも光透過領域に本発明のハードコート膜を 備えたので、この光透過領域の透明性を維持することができ、屈折率、熱安定性、硬 度および耐候性を向上させることができる。したがって、長期に亘つて信頼性を向上 させることがでさる。
[0076] 本発明の光学部品によれば、本発明の光学レンズを備えたので、部品としての性 能を向上させることができ、長期に亘つて光学部品の信頼性を向上させることができ る。
図面の簡単な説明
[0077] [図 1]本発明の実施例 6のジルコユア粒子の粉末 X線回折図形を示す図である。
[図 2]本発明の一実施形態の発光ダイオードを示す断面図である。
[図 3]本発明の一実施形態の光学レンズを示す断面図である
符号の説明
1 LEDチップ
2 リードフレーム
3 外部端子
4 封止材
5 メタルケース
6 絶縁体
7 開口部
8 透明基材
9 凸レンズ部
10 ハードコート膜 発明を実施するための最良の形態
[0079] 本発明の無機酸化物透明分散液と無機酸化物粒子含有榭脂組成物、発光素子 封止用組成物及び発光素子並びに無機酸化物粒子含有榭脂組成物の製造方法を 実施するための最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するもの であり、特に指定のない限り、本発明を限定するものではない。
[0080] 「無機酸化物透明分散液」
本発明の無機酸ィ匕物透明分散液は、 1つ以上の反応性官能基を有する表面修飾 剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の無機酸ィ匕物粒 子と、分散媒とを含む分散液である。
[0081] 無機酸ィ匕物としては、特に限定されないが、例えば、酸ィ匕ジルコニウム (ZrO )、酸
2 化チタン (TiO )、酸化ケィ素(SiO )、酸ィ匕アルミニウム (Al O )、酸化鉄 (Fe O、
2 2 2 3 2 3
FeO、 Fe O )、酸化銅(CuO、 Cu O)、酸化亜鉛 (ZnO)、酸化イットリウム (Y Ο
3 4 2 2 3 酸化ニオブ(Nb O )、酸化モリブデン(MoO )、酸化インジウム(In O、 In O)、酸
2 5 3 2 3 2 ィ匕スズ(SnO )、酸化タンタル (Ta O )、酸化タングステン (WO、 W O )、酸化鉛(
2 2 5 3 2 5
PbO、 PbO )、酸化ビスマス(Bi O )、酸化セリウム(CeO、 Ce O )、酸化アンチモ
2 2 3 2 2 3
ン(Sb O、 Sb O )、酸化ゲルマニウム(GeO、 GeO)、酸化ランタン(La O )、酸
2 3 2 5 2 2 3 ィ匕ルテニウム (RuO )等が挙げられる。
2
[0082] また、これらの無機酸化物を複数種、複合した複合酸化物、例えば、スズ添加酸化 インジウム(ITO)、アンチモン添カ卩酸化スズ (ATO)、酸化アルミニウム亜鉛(ZnO · Al O )等も挙げられる。
2 3
[0083] 上記の表面修飾剤としては、 1つ以上の反応性官能基を有することが必要であり、 この反応性官能基としては、炭素 炭素二重結合またはケィ素一水素結合を有する ことが好ましい。
また、この反応性官能基としては、アルコキシル基、ヒドロキシル基、ビニル基、スチ リル基、アクリル基、メタクリル基、アタリロイル基、エポキシ基の群力 選択される 1種 または 2種以上であることが好まし 、。
[0084] これらの表面修飾剤のうち特に好ましいのは、炭素 炭素二重結合またはケィ素 一水素結合を有するもののうち、アルコキシシランィ匕合物、シロキサンィ匕合物、チタン カップリング剤、界面活性剤の群力も選択された 1種または 2種以上である。
これらの表面修飾剤のうち特に好ましいのは、アルコキシシランィ匕合物としてはシラ ンカップリング剤であり、シロキサン化合物としては変性シリコーン又はシリコーンレジ ンである。
[0085] シランカップリング剤としては、例えば、ビュルトリメトキシシラン、ビニルトリエトキシ シラン、ビュルトリクロルシラン、ビュルトフエノキシシラン、 3—グリシドキシプロピルトリ メトキシシラン、 3—グリシドキシプロピノレトリエトキシシラン、 3—グリシドキシプロビルト リクロルシラン、 3—グリシドキシプロピルトリフエノキシシラン、 p—スチリルトリメトキシ シラン、 p—スチリルトリエトキシシラン、 p—スチリルトリクロルシシラン、 p—スチリルトリ フエノキシシラン、 3—アタリロキシプロピルトリメトキシシラン、 3—アタリロキシプロピノレ トリエトキシシラン、 3—アタリロキシプロピルトリクロルシラン、 3—アタリロキシプロピル トリフエノキシシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—メタクリロキシプ 口ピルトリエトキシシラン、 3—メタクリロキシプロピルトリクロルシラン、 3—メタクリロキシ プロピルトリフエノキシシラン、ァリルトリメトキシシラン、ァリルトリエトキシシラン、ァリル トリクロルシシラン、ァリルトリフエノキシシラン等が挙げられる。
[0086] また、ビュルェチルジメトキシシラン、ビュルェチルジェトキシシラン、ビュルェチル ジクロルシラン、ビニルェチルジフエノキシシラン、 3—グリシドキシプロピルェチルジ
ースチリルェチルジメトキシシラン、 p—スチリルェチルジェトキシシラン、 p—スチリル トリェチルジクロルシシラン、 p—スチリルェチルジフエノキシシラン、 3—アタリロキシ プロピルェチルジメトキシシラン、 3—アタリロキシプロピルェチルジェトキシシラン、 3 アタリロキシプロピルェチルジクロルシラン、 3—アタリロキシプロピルェチルジフエ ノキシシラン、 3—メタクリロキシプロピルェチルジメトキシシラン、 3—メタクリロキシプ 口ピルェチルジェトキシシラン、 3—メタクリロキシプロピルェチルジクロルシラン、 3— メタクリロキシプロピルェチルジフエノキシシラン、ァリルェチルジメトキシシラン、ァリ ルェチルジェトキシシラン、ァリルェチルジクロルシシラン、ァリルェチルジフエノキシ シラン等ち挙げられる。
[0087] さらに、ビ-ルジェチルメトキシシラン、ビュルジェチルエトキシシラン、ビュルジェ チルクロルシラン、ビ-ルジェチルフエノキシシラン、 3—グリシドキシプロピルジェチ ノレメトキシシラン、 3—グリシドキシプロピノレジェチノレエトキシシラン、 3—グリシドキシ ースチリルジェチルメトキシシラン、 p—スチリルジェチルエトキシシラン、 p—スチリル ジェチルクロルシシラン、 p—スチリルジェチルフエノキシシラン、 3—アタリロキシプロ ピルジェチルメトキシシラン、 3—アタリロキシプロピルジェチルエトキシシラン、 3—ァ クリロキシプロピルジェチルクロルシラン、 3—アタリロキシプロピルジェチルフエノキシ シラン、 3—メタクリロキシプロピルジェチルメトキシシラン、 3—メタクリロキシプロピル ジェチルエトキシシラン、 3—メタクリロキシプロピルジェチルクロルシラン、 3—メタタリ ロキシプロピルジェチルフエノキシシラン、ァリルジェチルメトキシシラン、ァリルジェ チルエトキシシラン、ァリルジェチルクロルシシラン、ァリルジェチルフエノキシシラン 等も挙げられる。
[0088] 変性シリコーンとしては、エポキシ変性シリコーン、エポキシ 'ポリエーテル変性シリ コーン、メタクリル変性シリコーン、フエノール変性シリコーン、メチルスチリル変性シリ コーン、アクリル変性シリコーン、アルコキシ変性シリコーン、メチルハイドロジェンシリ コーン等が挙げられる。
また、ビニル基および Zまたはケィ素原子に結合した官能基を有する変性シリコー ンを用いると、ビニル基および Zまたはケィ素原子に結合した官能基が榭脂を硬化さ せる際の化学反応に寄与するので、特に好ましい。
また、シリコーンレジンとしては、メチルシリコーンレジン、メチルフエニルシリコーン レジン、ジフエ-ルシリコーンレジン等が挙げられる。
[0089] 界面活性剤としては、陰イオン系界面活性剤、陽イオン系界面活性剤、両性イオン 界面活性剤等のイオン性界面活性剤、あるいは非イオン系界面活性剤が好適に用 いられる。
陰イオン系界面活性剤としては、例えば、ォレイン酸ナトリウム、ステアリン酸ナトリウ ム、ラウリン酸ナトリウム等の脂肪酸ナトリウム、脂肪酸カリウム、脂肪酸エステルスルフ オン酸ナトリウム等の脂肪酸系、アルキルリン酸エステルナトリウム等のリン酸系、アル ファオレインスルフォン酸ナトリウム等のォレフィン系、アルキル硫酸ナトリウム等のァ ルコール系、アルキルベンゼン系等が挙げられる。
陽イオン系界面活性剤としては、例えば、塩ィ匕アルキルメチルアンモ-ゥム、塩ィ匕 アルキルジメチルアンモ-ゥム、塩化アルキルトリメチルアンモ-ゥム、塩化アルキル ジメチルベンジルアンモ -ゥム等が挙げられる。
[0090] 両性イオン界面活性剤としては、例えば、アルキルアミノカルボン酸塩等のカルボ ン酸系、フォスフォベタイン等のリン酸エステル系が挙げられる。
非イオン系界面活性剤としては、例えば、アクリル酸、クロトン酸、ォレイン酸、リノ一 ル酸、リノレン酸、ポリオキシエチレンラノリン脂肪酸エステル、ポリオキシエチレンソ ルビタン脂肪酸エステル等の脂肪酸系、ポリオキシエチレンアルキルフエニルエーテ ル、脂肪酸アル力ノールアミド等の不飽和脂肪酸等が挙げられる。
[0091] チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、 イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ドデシル)ベン ゼンスルホ-ルチタネート、ネオペンチル(ジァリル)ォキシートリ(ジォクチル)ホスフ エイトチタネート、ネオペンチル (ジァリル)ォキシートリネオドデカノィルチタネート等 が挙げられる。
[0092] 上記の表面修飾剤を用いて無機酸ィ匕物粒子の表面を修飾する方法としては、湿式 法、乾式法等が挙げられる。
湿式法とは、表面修飾剤と無機酸化物粒子を溶媒に投入し混合することにより、無 機酸化物粒子の表面を修飾する方法である。
乾式法とは、表面修飾剤と乾燥した無機酸ィ匕物粒子をミキサー等の乾式混合機に 投入し混合することにより、無機酸ィ匕物粒子の表面を修飾する方法である。
[0093] この表面が修飾された無機酸化物粒子の修飾部分の重量比は、無機酸化物粒子 全体量の 5重量%以上かつ 200重量%以下であることが好ましぐより好ましくは 10 重量%以上かつ 100重量%以下、さらに好ましくは 20重量%以上かつ 100重量% 以下である。
ここで、修飾部分の重量比を 5重量%以上かつ 200重量%以下と限定した理由は 、修飾部分の重量比が 5重量%未満であると、無機酸化物粒子の榭脂への相溶が 困難となり、榭脂との複合ィ匕の際に透明性が失われるからであり、一方、修飾部分の 重量比が 200重量%を超えると、表面処理剤が榭脂特性へ及ぼす影響が大きくなり 、屈折率等の複合体特性が低下するからである。
[0094] また、無機酸ィ匕物粒子の分散粒径を lnm以上かつ 20nm以下と限定した理由は、 分散粒径が lnm未満であると、結晶性が乏しくなり、屈折率等の粒子特性を発現す ることが難しくなるからであり、一方、分散粒径が 20nmを超えると、分散液や無機酸 化物粒子含有榭脂組成物とした場合に透明性が低下するからである。
このように、無機酸化物粒子は、ナノサイズの粒子であるから、この無機酸化物粒子 を榭脂中に分散させて無機酸化物粒子含有榭脂組成物とした場合にぉ 、ても、光 散乱が小さぐ複合体の透明性を維持することが可能である。
[0095] また、ジルコニァ粒子を正方晶ジルコニァ粒子に限定した理由は、微粒子合成の 立場からは微粒子の粒径が 20nm以下のように小さくなると、正方晶の方が従来知ら れている単斜晶よりも安定になることと、硬度が高ぐ無機酸化物粒子含有榭脂組成 物の機械的特性を向上させることができる上に、ジルコユア粒子を榭脂中に分散させ た無機酸ィ匕物粒子含有榭脂組成物とした場合に、正方晶ジルコ-ァを無機酸ィ匕物 粒子含有榭脂組成物の第 2相として添加すると、単斜晶ジルコユア粒子を添加した 場合と比べて、マルテンサイト変態と称される体積膨張により高い靭性を示す力ゝらで ある。
[0096] また、正方晶ジルコニァ粒子の分散粒径を lnm以上かつ 20nm以下と限定した理 由は、分散粒径が lnm未満であると、結晶性が乏しくなり、屈折率等の粒子特性を 発現することが難しくなるからであり、一方、分散粒径が 20nmを超えると、分散液や 無機酸ィ匕物粒子含有榭脂組成物とした場合に透明性が低下するからである。
このように、正方晶ジルコ-ァ粒子は、ナノサイズの粒子であるから、この正方晶ジ ルコユア粒子を榭脂中に分散させて無機酸化物粒子含有榭脂組成物とした場合に おいても、光散乱が小さぐ複合体の透明性を維持することが可能である。
[0097] この無機酸ィ匕物粒子の含有率は、 1重量%以上かつ 70重量%以下が好ましぐよ り好ましくは 1重量%以上かつ 50重量%以下、さらに好ましくは 5重量%以上かつ 30 重量%以下である。
ここで、無機酸ィ匕物粒子の含有率を 1重量%以上かつ 70重量%以下と限定した理 由は、この範囲が無機酸ィ匕物粒子が良好な分散状態を取りうる範囲であり、含有率 力 S1重量%未満であると、無機酸ィ匕物粒子としての効果が低下し、また、 70重量%を 超えると、ゲルィ匕ゃ凝集沈澱が生じ、分散液としての特徴を消失するからである。
[0098] 分散媒は、基本的には、水、有機溶媒、液状の榭脂モノマー、液状の榭脂オリゴマ 一のうち少なくとも 1種以上を含有したものである。
上記の有機溶媒としては、例えば、メタノール、エタノール、 2—プロパノール、ブタ ノール、ォクタノール等のアルコール類、酢酸ェチル、酢酸ブチル、乳酸ェチル、プ ロピレングリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエ 一テルアセテート、 y ブチロラタトン等のエステル類、ジェチルエーテル、エチレン グリコーノレモノメチノレエーテノレ(メチノレセロソノレブ)、エチレングリコーノレモノエチノレエ ーテノレ(ェチノレセロソノレブ)、エチレングリコーノレモノブチノレエーテノレ(ブチノレセロソノレ ブ)、ジエチレングリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエー テル等のエーテル類、アセトン、メチルェチルケトン、メチルイソブチルケトン、ァセチ ルアセトン、シクロへキサノン等のケトン類、ベンゼン、トルエン、キシレン、ェチルベ ンゼン等の芳香族炭化水素、ジメチルホルムアミド、 N, N ジメチルァセトァセトアミ ド、 N—メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒のうち 1種また は 2種以上を用いることができる。
[0099] 上記の液状の榭脂モノマーとしては、アクリル酸メチル、メタクリル酸メチル等のァク リル系またはメタクリル系のモノマー、エポキシ系モノマー等が好適に用いられる。 また、上記の液状の榭脂オリゴマーとしては、ウレタンアタリレート系オリゴマー、ェ ポキシアタリレート系オリゴマー、アタリレート系オリゴマー等が好適に用いられる。 この無機酸化物透明分散液は、上記以外に、その特性を損なわない範囲において 榭脂モノマー等を含有して 、てもよ 、。
[0100] この無機酸化物透明分散液の可視光透過率は、無機酸化物の組成及び含有率に より異なるが、無機酸化物の含有率を 5重量%とした場合、光路長を 10mmとしたとき の可視光透過率は 90%以上が好ましぐより好ましくは 95%以上である。 例えば、無機酸ィ匕物粒子としてジルコユア粒子を用いた場合、光路長を 10mmとし たときの可視光透過率は、ジルコユア粒子の含有率が 1重量%では 95%以上、ジル コ-ァ粒子の含有率力 0重量%では 80%以上である。
[0101] 「無機酸化物粒子含有榭脂組成物 (透明複合体)」
本発明の無機酸ィ匕物粒子含有榭脂組成物は、 1つ以上の反応性官能基を有する 表面修飾剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の無機 酸ィ匕物粒子を榭脂中に分散しかつ当該樹脂と反応してなる複合体である。
榭脂としては、可視光線あるいは近赤外線等の所定の波長帯域の光に対して透明 性を有する榭脂であればよぐ熱可塑性、熱硬化性、可視光線や紫外線や赤外線等 による光 (電磁波)硬化性、電子線照射による電子線硬化性等の硬化性榭脂が好適 に用いられる。
[0102] このような榭脂としては、例えば、ポリメチルメタタリレート(PMMA)、ポリシクロへキ シノレメタタリレート等のアタリレート、ポリカーボネート(PC)、ポリスチレン(PS)、ポリエ 一テル、ポリエステル、ポリアリレート、ポリアクリル酸エステル、ポリアミド、フエノール ホルムアルデヒド(フエノール榭脂)、ジエチレングリコールビスァリルカーボネート、 アクリロニトリル.スチレン共重合体 (AS榭脂)、メチルメタクレート'スチレン共重合体 (MS榭脂)、ポリー4ーメチルペンテン、ノルボルネン系ポリマー、ポリウレタン、ェポ キシ、シリコーン等が挙げられ、特に好ましくは、シリコーン、エポキシ、アタリレートで ある。
[0103] シリコーン榭脂は、少なくとも下記の(a)〜(c)の成分力も構成されることが好ましい
(a) 1分子中のケィ素原子に結合した官能基のうち少なくとも 2つがアルケニル基であ るオルガノポリシロキサン (b) 1分子中のケィ素原子に結合した官能基のうち少なくと も 2つが水素原子であるか、または分子鎖の両端が水素原子で封鎖された直鎖状の オルガノポリシロキサン (c)ヒドロシリル化反応用触媒
[0104] (a)成分中のァルケ-ル基としては、ビュル基、ァリル基、ペンテ-ル基、へキセ- ル基等が挙げられ、特に、ビニル基が好ましい。
また、このァルケ-ル基以外のケィ素原子に結合した官能基としては、メチル基、ェ チル基、プロピル基、ブチル基等のアルキル基、フエ-ル基、トリル基等のァリール基 、ベンジル基、フエネチル基等のァラルキル基等が挙げられ、特に、メチル基が好ま しい。
[0105] (b)成分中の水素原子以外のケィ素原子に結合した官能基としては、メチル基、ェ チル基、プロピル基、ブチル基等のアルキル基、フエ-ル基、トリル基等のァリール基 、ベンジル基、フエネチル基等のァラルキル基等が挙げられ、特に、メチル基が好ま しい。
また、(b)成分の含有量は、(a)成分に含まれている合計ァルケ-ル基 1モルに対 して水素原子が 0. 1〜10モルの範囲内となる量であることが好ましぐより好ましくは 0. 1〜5モルの範囲内となる量であり、さらに好ましくは 0. 5〜2モルの範囲内となる 量である。
[0106] (c)成分のヒドロシリル化反応用触媒は、(a)成分中のアルケニル基と、(b)成分中 のケィ素原子に結合した水素原子とのヒドロシリルイ匕反応を促進するための触媒であ る。この様な触媒としては、例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒 等が挙げられ、特に、白金系触媒が好ましい。
この白金系触媒としては、白金微粉末、塩化白金酸、白金一才レフイン錯体、白金 カルボ二ル錯体等が挙げられ、特に、塩ィ匕白金酸が好ましい。
[0107] また、(c)成分の含有量は、本組成物の硬化を促進させることのできる量、すなわち
(a)成分中のアルケニル基と (b)成分中のケィ素原子に結合した水素原子とのヒドロ シリルイ匕反応を促進させることのできる量であればよぐ特に限定されることはないが 、具体的には、本組成物に対して本成分中の金属原子が重量単位で 0. 01〜500p pmの範囲内であることが好ましぐより好ましくは 0. 01〜50ppmの範囲内である。
[0108] 本成分中の金属原子の含有量を上記のように限定した理由は、含有量が 0. Olpp m未満であると、本組成物が十分に硬化しない虞がある力 であり、一方、含有量が 500ppmを超えると、得られた硬化物に着色等の問題が生じる虞があるからである。 このシリコーン榭脂については、本発明の目的を損なわないかぎり、その他任意の 成分として、耐熱剤、染料、顔料、難燃性付与剤等を含有してもよい。
[0109] エポキシ榭脂としては、ビスフエノール A型エポキシ榭脂、ビスフエノール F型ェポキ シ榭脂、ビスフエノール S型エポキシ榭脂、水素添加ビスフエノール A型エポキシ榭 脂、ビフエニル型エポキシ榭脂等の 2官能型のグリシジルエーテル型エポキシ榭脂、 フエノールノボラック型エポキシ榭脂、オルソクレゾールノボラック型エポキシ榭脂、ァ ルキル変性トリフエノールメタン型エポキシ榭脂、トリス ·ヒドロキシフエ-ルメタン型ェ ポキシ榭脂、テトラフエ-ロールエタン型エポキシ榭脂等の多官能型のグリシジルェ 一テル型エポキシ榭脂、テトラグリシジノレジアミニジフエ二ノレメタン型エポキシ榭月旨、ト リグリシジルイソシァヌレート型エポキシ榭脂、ァミノフエノール型エポキシ榭脂、 Ύ二 リン型エポキシ榭脂、トルイジン型エポキシ榭脂等のグリシジルァミン型エポキシ榭脂 等が好適に用いられる。
[0110] エポキシ榭脂の硬化剤としては、重付加型、触媒型、縮合型の 、ずれのタイプのも のでも使用可能であり、例えば、ジアミノジフエ-ルメタン、ジアミノジフエ-ルスルホン 、ポリアミド、ジシアンジアミド、ジエチレントリァミン、トリエチレンテトラミン、へキサヒド 口無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられる。
[oiii] ァクリノレ榭脂としては、単官能アタリレートおよび Zまたは多官能アタリレートが用い られ、これらのうち 1種または 2種以上が用いられる。
単官能アタリレート及び多官能アタリレートそれぞれの具体例について次に挙げる
(a)脂肪族単官能 (メタ)アタリレートとしては、
ブチル (メタ)アタリレート、ラウリル (メタ)アタリレート、ステアリル (メタ)アタリレート等 のアルキル (メタ)アタリレート
メトキシプロピレングリコール (メタ)アタリレート、エトキシジエチレングリコール (メタ) アタリレート等のアルコキシアルキレングリコール (メタ)アタリレート
(メタ)アクリルアミド、 N -ブトキシメチル (メタ)アクリルアミド等の N -置換アクリルァ ミド等が挙げられる。
[0112] (b)脂肪族多官能 (メタ)アタリレートとしては、
1, 6—へキサンジオールジ (メタ)アタリレート、 1. 4—ブタンジオールジ (メタ)アタリ レート、エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレ ート、トリエチレングリコールジ (メタ)アタリレート、テトラエチレングリコールジ (メタ)ァ タリレート、トリプロピレングリコールジ (メタ)アタリレート、ネオペンチルグリコールジ (メ タ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、ポリブタンジオールジ(メ タ)アタリレート、等のアルキレングリコールジ (メタ)アタリレート
ペンタエリスリトールトリアタリレート、トリメチロールプロパントリ(メタ)アタリレート、ェ チレンオキサイド、プロピレンオキサイド変性トリメチロールプロパントリアタリレート等 のトリ(メタ)アタリレート
ペンタエリスリトールテトラアタリレート、ジ一トリメチロールプロパンテトラアタリレート 等のテトラ (メタ)アタリレート
ジペンタエリスリトール(モノヒドロキシ)ペンタアタリレート等のペンタ(メタ)アタリレー ト等が挙げられる。
[0113] (c)脂環式 (メタ)アタリレートのうち、単官能型としては、シクロへキシル (メタ)アタリレ ート等が、また、多官能型としては、ジシクロペンタジェニルジ (メタ)アタリレート等が 挙げられる。
(d)芳香族 (メタ)アタリレートのうち、単官能型としては、フ ニル (メタ)アタリレート、 ベンジル (メタ)アタリレート、フエノキシェチル (メタ)アタリレート、フエノキシジェチレ ングリコール (メタ)アタリレート等力 また、多官能型としては、ビスフエノール Aジ (メタ )アタリレート等のジアタリレート類、ビスフエノール Fジ (メタ)アタリレート等が挙げられ る。
[0114] (e)ポリウレタン (メタ)アタリレートとしては、ポリウレタンエーテル (メタ)アタリレート、ポ リエステル (メタ)アタリレート等が挙げられる。
(f)エポキシ (メタ)アタリレートとしては、ビスフエノール A型エポキシアタリレート、ノボ ラック型エポキシアタリレート等が挙げられる。
[0115] ラジカル重合開始剤としては、ラウロイルパーオキサイド、ベンゾィルパーオキサイド 、ジー t ブチルパーオキサイド、 t ブチルパーォキシ 2—ェチルへキサノエート 、 tーブチノレパーォキシイソブチレート、 tーブチノレパーォキシピバレート、 tーブチノレ パーォキシベンゾエー K t ブチルパーォキシアセテート等の過酸化物系重合開始 剤、あるいは 2, 2'—ァゾビスイソプチ口-トリル等のァゾ系重合開始剤が挙げられる [0116] この無機酸ィ匕物粒子と榭脂との反応形態としては、無機酸ィ匕物粒子の表面に残存 する反応性官能基と樹脂との重合反応が、屈折率および機械的特性をさらに高める ことができ、透明性を維持することができるので、好ましい。
この重合反応としては、例えば、シリコーン榭脂の場合、付加重合反応または縮合 重合反応であり、エポキシ榭脂またはアクリル榭脂の場合、付加重合反応である。 表 1に反応形態を示す。
[0117] [表 1]
Figure imgf000031_0001
[0118] また、上記のシリコーン榭脂、エポキシ榭脂、アクリル榭脂等に対しては、その特性 を損なわない範囲において、酸化防止剤、離型剤、カップリング剤、無機充填剤等を 添カロしてちょい。
[0119] この無機酸化物粒子含有榭脂組成物では、無機酸化物粒子の含有率は、 1重量 %以上かつ 80重量%以下が好ましぐより好ましくは 10重量%以上かつ 80重量% 以下、さらに好ましくは 10重量%以上かつ 50重量%以下である。
ここで、無機酸ィ匕物粒子の含有率を 1重量%以上かつ 80重量%以下と限定した理 由は、下限値の 1重量%は屈折率及び機械的特性の向上が可能となる添加率の最 小値であるからであり、一方、上限値の 80重量%は榭脂自体の特性 (柔軟性、比重) を維持することができる添加率の最大値であるからである。
[0120] この無機酸化物粒子含有榭脂組成物の可視光透過率は、無機酸化物の組成及び 含有率により異なるが、無機酸化物の含有率を 25重量%とした場合、光路長を lm mとしたときの可視光透過率は 90%以上が好ましぐより好ましくは 92%以上である。 例えば、無機酸ィ匕物粒子としてジルコユア粒子を用いた場合、光路長を lmmとし たときの可視光透過率は、ジルコユア粒子の含有率が 1重量%では 95%以上、ジル コ-ァ粒子の含有率力 0重量%では 80%以上である。
[0121] このジルコユア粒子の屈折率は 2. 15であるから、このジルコユア粒子を榭脂中に 分散させることにより、アクリル榭脂、シリコーン榭脂の屈折率 1. 4程度、エポキシ榭 脂の屈折率 1. 5程度と比べて、榭脂の屈折率をそれ以上に向上させることが可能で ある。
また、このジルコユア粒子は、靭性、硬度が高いので、複合体の機械的特性向上に 適している。
また、このジルコ-ァ粒子は、粒径が lnm以上かつ 20nm以下のナノサイズの粒子 であるから、榭脂と複合化させた場合においても、光散乱が小さぐ複合材料の透明 性を維持することが可能である。
[0122] 本発明の無機酸ィ匕物粒子含有榭脂組成物の一例として、シリコーン榭脂からなる 光学素子が挙げられる。この光学素子は、 1種または複数種のオルガノポリシロキサ ン、硬化剤、触媒を金型に入れ、この金型中にて熱硬化させ、所定の形状の成形体 とすることにより製造される。熱硬化反応としては、縮合架橋、パーオキサイド架橋、 白金付加架橋等の反応を用いることができる。特に、白金触媒を用いた付加重合反 応による熱硬化が好ましい。
[0123] 「無機酸化物粒子含有榭脂組成物 (透明複合体)の製造方法」
本発明の無機酸ィ匕物粒子含有榭脂組成物は、次に挙げる方法により作製すること ができる。
まず、上述した本発明の無機酸化物透明分散液と、榭脂のモノマーやオリゴマーを 、ミキサー等を用いて混合し、流動し易い状態の榭脂組成物とする。
次いで、この榭脂組成物を金型を用いて成形、または金型あるいは容器内に充填 し、次いで、この成形体もしくは充填物に加熱、あるいは紫外線や赤外線等の照射、 の!ヽずれかを施し、この成形体もしくは充填物を硬化させる。 [0124] ここで、榭脂のモノマーやオリゴマーが、反応性を有する炭素二重結合 (C = C)を 有する場合、単に混合するだけでも、重合'榭脂化させることができる。
特に、アクリル榭脂等の紫外線 (UV)硬化性榭脂を含む榭脂組成物を硬化させる 方法としては、様々な方法があるが、代表的には、加熱または光照射により開始され るラジカル重合反応を用いたモールド成形法、トランスファー成形法等が挙げられる 。このラジカル重合反応としては、熱による重合反応 (熱重合)、紫外線等の光による 重合反応 (光重合)、ガンマ( Ί )線による重合反応、あるいは、これらの複数を組み 合わせた方法等が挙げられる。
[0125] 「発光素子封止用糸且成物」
本発明の発光素子封止用組成物は、本発明の無機酸化物透明分散液、すなわち 、 1つ以上の反応性官能基を有する表面修飾剤により表面が修飾されかつ分散粒径 が lnm以上かつ 20nm以下の無機酸ィ匕物粒子と分散媒とを含む分散液と、上述し たシリコーン樹脂、エポキシ樹脂、アクリル榭脂等とを混合したものであり、流動性の ある流体である。
[0126] 「発光素子」
本発明の発光素子は、少なくとも光透過領域を本発明の無機酸化物粒子含有榭 脂組成物としたものであり、上記の発光素子封止用組成物を発光素子の少なくとも 光透過領域に充填し、次いで、充填物に加熱、あるいは紫外線や赤外線等の照射、 のいずれかを施し、この充填物を硬化させることにより、発光素子の光透過領域を本 発明の無機酸ィ匕物粒子含有榭脂組成物により封止したものである。
[0127] この発光素子によれば、光透過領域を、屈折率および機械的特性が高ぐし力も透 明性に優れた封止材 (組成物)により封止したので、この光透過領域が高光透過率、 高屈折率、高硬度等に優れたものとなる。したがって、発光素子の光の取り出し効率 を向上させることができ、その結果、発光輝度を向上させることができる。
実施例
[0128] 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの 実施例によって限定されるものではない。
[0129] [無機酸ィ匕物透明分散液 (ジルコニァ透明分散液)の作製および評価]「実施例 1」 ォキシ塩化ジルコニウム 8水塩 2615gを純水 40L (リットル)に溶解させたジルコ- ゥム塩溶液に、 28%アンモニア水 344gを純水 20Lに溶解させた希アンモニア水を 攪拌しながら加え、ジルコユア前駆体スラリーを調整した。
次いで、このスラリーに、硫酸ナトリウム 300gを 5Lの純水に溶解させた硫酸ナトリウ ム水溶液を攪拌しながらカ卩えた。このときの硫酸ナトリウムの添カ卩量は、ジルコニウム 塩溶液中のジルコニウムイオンのジルコ-ァ換算値に対して 30重量%であった。
[0130] 次いで、この混合物を、乾燥器を用いて、大気中、 130°Cにて 24時間、乾燥させ、 固形物を得た。
次いで、この固形物を自動乳鉢等により粉砕した後、電気炉を用いて、大気中、 50 0°Cにて 1時間焼成した。
次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を 用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥さ せ、ジルコユア粒子を作製した。
[0131] 次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 85g、表面修飾剤とし てシランカップリング剤 KBM— 1403 (信越化学 (株)社製)を 5gカ卩えて混合し、正方 晶ジルコ-ァ粒子の表面を表面修飾剤により修飾した。その後分散処理を行い、実 施例 1の無機酸ィ匕物透明分散液 (Z1)を作製した。
[0132] 次いで、この無機酸ィ匕物透明分散液のジルコユア粒子の分散粒径及び分散液の 可視光透過率を測定した。
分散粒径は、動的光散乱式粒径分布測定装置 (Malvern社製)を用い、無機酸ィ匕 物透明分散液中のジルコユア粒子の含有量を 1重量%に調製したものを測定用試 料とした。測定温度を 25°Cとした。また、データ解析条件としては、粒子径基準を体 積基準とし、分散粒子であるジルコユアの屈折率を 2.15、分散媒であるトルエンの屈 折率を 1. 49とした。
[0133] また、分散液の可視光透過率は、上記の分散液のジルコユア含有率をトルエンを 用いて 5重量%に調製した試料を石英セル(lOmm X 10mm)に入れ、この試料の 光路長 10mmとしたときの可視光透過率を分光光度計(日本分光社製)を用いて測 定した。ここでは、透過率が 80%以上を「〇」、 80%未満を「X」とした。 表 2に、これらの測定結果を示す。
また、この分散液のジルコニァ粒子の結晶系を X線回折装置を用いて調べた。 図 1にジルコユア粒子の粉末 X線回折図形 (チャート)を示す。この粉末 X線回折図 形により、ジルコユア粒子の結晶系が正方晶系であることが確認された。
[0134] 「実施例 2」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 85g、表面修飾剤とし てメトキシ変性シリコーン KR—213 (信越ィ匕学 (株)社製)を 5g加えて混合し、その後 分散処理を行!ヽ、実施例 2の無機酸化物透明分散液 (Z2)を作製した。
次 、で、実施例 1に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 2に測定結果を示す。
[0135] 「比較例 1」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 89. 6g、表面修飾剤と してシランカップリング剤 KBM— 143 (信越化学 (株)社製)を 0. 4gカ卩えて混合し、 その後分散処理を行い、比較例 1のジルコニァ分散液 (Z3)を作製した。
次 、で、実施例 1に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 2に測定結果を示す。
[0136] 「比較例 2」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 90gカ卩えて混合し、そ の後分散処理を行!、、比較例 2のジルコニァ分散液 (Z4)を作製した。
このジルコユア分散液 (Z4)の正方晶ジルコ-ァ粒子は、表面修飾剤を加えて!/ヽな
V、ために、表面が表面修飾剤により修飾されて ヽな 、ものである。
次 、で、実施例 1に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 2に測定結果を示す。
[0137] 「比較例 3」
ジルコユア粒子として RC— 100 (第一希元素 (株)社製)を用いた以外は、実施例 1 に準じて分散処理を行 、、比較例 3のジルコニァ分散液 (Z5)を作製した。
次いで、実施例 1に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 2に測定結果を示す。
[表 2]
Figure imgf000036_0001
[0139] [無機酸化物粒子含有榭脂組成物 (透明複合体)の作製]「実施例 3」
実施例 1の無機酸化物透明分散液(Zl) 100gに、シリコーンオイル (メチルハイド口 ジエンポリシロキサンと両末端に各々ビニル基を有するオルガノポリシロキサンとの混 合物) 10gを加え、さらに、塩ィ匕白金酸をシリコーンオイル 100重量部に対して 20pp mとなるように加え、真空乾燥により脱溶剤化し、樹脂組成物を作製した。
次いで、この榭脂組成物を、ガラス板で組み上げた型の中に厚みが lmmになるよ うに流し込み、 150°Cにて 2時間加熱して硬化させ、実施例 3の無機酸ィ匕物粒子含 有樹脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコニァの含有率は 50重量0 /。であった
[0140] 「実施例 4」
実施例 1の無機酸化物透明分散液 (Zl) 100gに、エポキシレジン:ェピコート 828 を 7gおよび硬化剤としてェピキュア 3080を 3g (V、ずれもジャパンエポキシレジン (株 )社製)加え、真空乾燥により脱溶剤化し、樹脂組成物を作製した。
次いで、この榭脂組成物を、ガラス板で組み上げた型の中に厚みが lmmになるよ うに流し込み、 80°Cにて 30分間加熱して硬化させ、実施例 4の無機酸化物粒子含 有樹脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量0 /。であった [0141] 「実施例 5」
実施例 1の無機酸ィ匕物透明分散液 (Zl) lOOgに、 1, 6—へキサンジオールジァク リレート 5g、ペンタエリスリトールトリアタリレート 2. 5g、ペンタエリスリトールテトラアタリ レート 2g、重合開始剤としてベンゾィルパーオキサイド 0. 5gをカ卩え、真空乾燥により 脱溶剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を、ガラス板で組み上げた型の中に厚みが lmmになるよ うに流し込み、 60°Cにて 5時間、続いて 120°Cにて 2時間加熱して硬化させ、実施例 5の無機酸ィ匕物粒子含有榭脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった
[0142] 「比較例 4」
比較例 1のジルコ-ァ分散液(Z3) 100gに、シリコーンオイル (メチルハイドロジェン ポリシロキサンと両末端に各々ビニル基を有するオルガノポリシロキサンとの混合物)
10gを加え、さらに、塩化白金酸をシリコーンオイル 100重量部に対して 20ppmとな るように加え、真空乾燥により脱溶剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を実施例 3に準じて処理し、比較例 4の無機酸化物粒子 含有樹脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった
[0143] 「比較例 5」
比較例 1のジルコ-ァ分散液(Z3) 100gに、エポキシレジン:ェピコート 828を 7gお よび硬化剤としてェピキュア 3080を 3g (V、ずれもジャパンエポキシレジン (株)社製) 加え、真空乾燥により脱溶剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を実施例 4に準じて処理し、比較例 5の無機酸化物粒子 含有樹脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった [0144] 「比較例 6」
比較例 1のジルコ-ァ分散液(Z3) 100gに、 1, 6—へキサンジオールジァクリレー ト 5g、ペンタエリスリトールトリアタリレート 2. 5g、ペンタエリスリトールテトラアタリレート 2g、重合開始剤としてベンゾィルパーオキサイド 0. 5gをカ卩え、真空乾燥により脱溶 剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を実施例 5に準じて処理し、比較例 6の無機酸化物粒子 含有樹脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった
[0145] 「比較例 7」
無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率を 1重量%とした以外は、 比較例 4に準じて処理し、比較例 7の無機酸ィ匕物粒子含有榭脂組成物を作製した。
[0146] 「比較例 8」
無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率を 1重量%とした以外は、 比較例 5に準じて処理し、比較例 8の無機酸ィ匕物粒子含有榭脂組成物を作製した。
[0147] 「比較例 9」
無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率を 1重量%とした以外は、 比較例 6に準じて処理し、比較例 9の無機酸ィ匕物粒子含有榭脂組成物を作製した。
[0148] 「比較例 10」
比較例 3のジルコユア分散液 (Z5)を用いた以外は、比較例 4に準じて処理し、比 較例 10の無機酸化物粒子含有榭脂組成物を作製した。
[0149] 「比較例 11」
比較例 3のジルコユア分散液 (Z5)を用いた以外は、比較例 5に準じて処理し、比 較例 11の無機酸化物粒子含有榭脂組成物を作製した。
[0150] 「比較例 12」
比較例 3のジルコユア分散液 (Z5)を用いた以外は、比較例 6に準じて処理し、比 較例 12の無機酸化物粒子含有榭脂組成物を作製した。
[0151] 「無機酸化物粒子含有榭脂組成物の評価」 実施例 3〜5及び比較例 4〜 12それぞれの無機酸ィ匕物粒子含有榭脂組成物につ いて、可視光透過率、屈折率及び硬度の 3点について、下記の装置または方法によ り評価を行った。
(1)可視光透過率
分光光度計(日本分光社製)を用いて可視光線の透過率を測定した。 ここでは、測定用試料を 100 X 100 X 1mmの大きさのバルタ体とし、透過率が 80
%以上を「〇」、 80%未満を「 X」とした。
[0152] (2)屈折率
日本工業規格: JIS K 7142「プラスチックの屈折率測定方法」に準拠し、アッベ屈 折計により測定した。
ここでは、ジルコユアを添カ卩していない榭脂を基準として、屈折率が 0. 05以上向上 した場合を「〇」、屈折率が 0. 05未満しか向上しな力つた場合を「X」とした。
[0153] (3)硬度
日本工業規格: JIS K 7215「プラスチックのデュロメータ硬さ試験方法」に準拠し、 デュロメータを用いて JIS— A硬度を測定した。
ここでは、比較例 3のジルコニァ分散液 (Z5)を用いた比較例 10〜12の榭脂組成 物を用いて作製され、ジルコユアの含有率が 50重量%である各無機酸ィ匕物粒子含 有榭脂組成物の硬さを基準とし、この基準値より高い場合を「〇」、この基準値より低 い場合を「X」とした。
以上の評価結果を表 3に示す。
[0154] [表 3]
ジレコニァの 可視光
分散液の
榭脂の種類 含有率 透過率 屈折率 硬度
種類 (重量 ¾) (%)
実施例 3 Z 1 シリコーン樹脂 5 0 O O o
実施例 4 Z 1 エポキシ樹脂 5 0 o O o
実施例 5 2 1 アクリル樹脂 5 0 o O o
比較例 4 Z 3 シリコ一ン榭脂 5 0 X 0 o
比較例 5 Z 3 エポキシ樹脂 5 0 X O o
比較例 6 Z 3 アクリル樹脂 5 0 X 〇 o
比較例 7 Z 3 シリコーン樹脂 1 〇 X X 比較例 8 Z 3 エポキシ樹脂 1 O X X 比較例 9 Z 3 アクリル樹脂 1 O X X 比較例 1 0 Z 5 シリコーン樹脂 5 0 X o S p 比較例 1 1 Z 5 エポキシ樹脂 5 0 X O 基準 比較例 1 2 Z 5 アクリル樹脂 5 0 X O
(注) Z 1 :実施例 1のジルコニァ透明分散液
Z 3 比較例 1のジルコニァ分散液
Z 5 :比較例 3のジルコニァ分散液
[0155] これらの評価結果によれば、実施例 3〜5では、可視光透過率、屈折率、硬度とも に良好であることが分力 た。
一方、比較例 16〜: L2では、可視光透過率、屈折率、硬度のいずれかの特性が実 施例 2〜4と比べて劣ってレ、た。
[0156] 「実施例 6」(無機酸ィ匕物透明分散液 (ジルコニァ透明分散液)の作成)
実施例 1に準じて粒子合成を行レ、、ジルコニァ粒子を作製した。
[0157] 次いで、このジルコニァ粒子 10gに、分散媒としてトルエンを 85g、表面修飾剤とし て炭素 炭素二重結合を有するシランカップリング剤であるビニルトリメトキシシラン を 5g加えて混合し、ジルコユア粒子の表面を表面修飾剤により修飾した。ここでは、 ビニルトリメトキシシランとして KBM1003 (信越化学 (株)社製)を用いた。
その後分散処理を行レヽ、実施例 6の無機酸化物透明分散液 (Z6)を作製した。 [0158] 次いで、この無機酸ィ匕物透明分散液のジルコユア粒子の分散粒径及び分散液の 可視光透過率を測定した。
分散粒径は、動的光散乱式粒径分布測定装置 (Malvern社製)を用い、無機酸ィ匕 物透明分散液中のジルコユア粒子の含有量を 1重量%に調製したものを測定用試 料とした。また、データ解析条件としては、粒子径基準を体積基準とし、分散粒子で あるジルコユアの屈折率を 2. 15、分散媒であるトルエンの屈折率を 1. 49とした。
[0159] また、分散液の可視光透過率は、上記の分散液のジルコユア含有率をトルエンを 用いて 5重量%に調製した試料を石英セル(lOmm X 10mm)に入れ、この試料の 光路長を 10mmとしたときの可視光透過率を分光光度計(日本分光社製)を用いて 測定した。ここでは、透過率が 80%以上を「〇」、 80%未満を「X」とした。
表 4に、これらの測定結果を示す。
また、この分散液のジルコニァ粒子の結晶系を X線回折装置を用いて調べた。 図 1にジルコユア粒子の粉末 X線回折図形 (チャート)を示す。この粉末 X線回折図 形により、ジルコユア粒子の結晶系が正方晶系であることが確認された。
[0160] 「実施例 7」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 85g、表面修飾剤とし てアクリル基を有するシランカップリング剤である 3—メタクリロキシプロピルトリメトキシ シランを 5g加えて混合し、その後分散処理を行い、実施例 7の無機酸化物透明分散 液 (Z7)を作製した。ここでは、 3—メタクリロキシプロピルトリメトキシシランとして KBM - 503 (信越化学 (株)社製)を用いた。
次 ヽで、実施例 6に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 4に測定結果を示す。
[0161] 「実施例 8」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 85g、表面修飾剤とし てエポキシ基を有するシランカップリング剤である 3—グリシドキシプロピルトリメトキシ シランを 5g加えて混合し、その後分散処理を行い、実施例 8の無機酸化物透明分散 液 (Z8)を作製した。ここでは、 3—グリシドキシプロピルトリメトキシシランとして KBM
-403 (信越化学 (株)社製)を用いた。
次 ヽで、実施例 6に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 4に測定結果を示す。
[0162] 「比較例 13」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 85g、表面修飾剤とし て反応性官能基を有しないシランカップリング剤であるデシルトリメトキシシランを 5g 加えて混合し、その後分散処理を行い、比較例 13の無機酸ィ匕物透明分散液 (Z9)を 作製した。ここでは、デシルトリメトキシシランとして KBM— 3103C (信越ィ匕学 (株)社 製)を用いた。
次 ヽで、実施例 6に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 4に測定結果を示す。
[0163] 「比較例 14」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 89. 6g、表面修飾剤と してエポキシ基を有するシランカップリング剤である 3—グリシドキシプロピルトリメトキ シシランを 0. 4gカ卩えて混合し、その後分散処理を行い、比較例 14のジルコユア分 散液 (Z10)を作製した。ここでは、 3—グリシドキシプロピルトリメトキシシランとして KB M-403 (信越化学 (株)社製)を用いた。
次 ヽで、実施例 6に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 4に測定結果を示す。
[0164] 「比較例 15」
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
次いで、このジルコユア粒子 10gに、分散媒としてトルエンを 90gカ卩えて混合し、そ の後分散処理を行い、比較例 15のジルコユア分散液 (Z11)を作製した。このジルコ ユア分散液 (Zl 1)のジルコユア粒子は、分散液に表面修飾剤を加えて!/、な 、ため に、表面が表面修飾剤により修飾されて 、な 、ものである。 次 、で、実施例 1に準じてジルコユア粒子の分散粒径及び可視光透過率を測定し た。表 4に測定結果を示す。
[0165] [表 4]
Figure imgf000043_0001
[0166] [無機酸化物粒子含有榭脂組成物 (透明複合体)の作製]
「実施例 9」
実施例 6の無機酸化物透明分散液 (Zl) 100gに、シリコーンオイル (メチルハイド口 ジエンポリシロキサンと両末端に各々ビュル基を有するオルガノポリシロキサンとの混 合物) 10gを加え、さらに、塩化白金酸をシリコーンオイル 100重量部に対して 20pp mとなるように加え、真空乾燥により脱溶剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を、ガラス板で組み上げた型の中に厚みが lmmになるよ うに流し込み、 150°Cにて 2時間加熱して硬化させ、実施例 9の無機酸ィ匕物粒子含 有榭脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった
[0167] 「実施例 10」
実施例 7の無機酸ィ匕物透明分散液 (Z7) 100gに、 1, 6—へキサンジオールジァク リレート 5g、ペンタエリスリトールトリアタリレート 2. 5g、ペンタエリスリトールテトラアタリ レート 2g、重合開始剤としてベンゾィルパーオキサイド 0. 5gをカ卩え、真空乾燥により 脱溶剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を、ガラス板で組み上げた型の中に厚みが lmmになるよ うに流し込み、 60°Cにて 5時間、続いて 120°Cにて 2時間加熱して硬化させ、実施例 10の無機酸化物粒子含有榭脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった
[0168] 「実施例 11」
実施例 8の無機酸化物透明分散液 (Z8) lOOgに、エポキシレジン:ェピコート 828 を 7gおよび硬化剤としてェピキュア 3080を 3g (V、ずれもジャパンエポキシレジン (株 )社製)加え、真空乾燥により脱溶剤化し、榭脂組成物を作製した。
次いで、この榭脂組成物を、ガラス板で組み上げた型の中に厚みが lmmになるよ うに流し込み、 80°Cにて 30分間加熱して硬化させ、実施例 11の無機酸ィ匕物粒子含 有榭脂組成物を作製した。
この無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率は 50重量%であった
[0169] 「比較例 16」
比較例 1の無機酸ィ匕物透明分散液 (Z9)を用いた以外は、実施例 9に準じて処理し 、比較例 16の無機酸化物粒子含有榭脂組成物を作製した。
[0170] 「比較例 17」
比較例 1の無機酸ィ匕物透明分散液 (Z9)を用いた以外は、実施例 10に準じて処理 し、比較例 17の無機酸化物粒子含有榭脂組成物を作製した。
[0171] 「比較例 18」
比較例 1の無機酸ィ匕物透明分散液 (Z9)を用いた以外は、実施例 11に準じて処理 し、比較例 18の無機酸化物粒子含有榭脂組成物を作製した。
[0172] 「比較例 19」
比較例 14のジルコユア分散液 (Z10)を用いた以外は、実施例 9に準じて処理し、 比較例 19の無機酸化物粒子含有榭脂組成物を作製した。
[0173] 「比較例 20」
比較例 2のジルコユア分散液 (Z10)を用いた以外は、実施例 10に準じて処理し、 比較例 20の無機酸化物粒子含有榭脂組成物を作製した。 [0174] 「比較例 21」
比較例 2のジルコユア分散液 (Z10)を用いた以外は、実施例 11に準じて処理し、 比較例 21の無機酸化物粒子含有榭脂組成物を作製した。
[0175] 「比較例 22」
無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率を 1重量%とした以外は、 比較例 19に準じて処理し、比較例 22の無機酸ィ匕物粒子含有榭脂組成物を作製し た。
[0176] 「比較例 23」
無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率を 1重量%とした以外は、 比較例 20に準じて処理し、比較例 23の無機酸ィ匕物粒子含有榭脂組成物を作製し た。
[0177] 「比較例 24」
無機酸ィ匕物粒子含有榭脂組成物のジルコユアの含有率を 1重量%とした以外は、 比較例 21に準じて処理し、比較例 24の無機酸ィ匕物粒子含有榭脂組成物を作製し た。
[0178] 「無機酸化物粒子含有榭脂組成物の評価」
実施例 9〜 11及び比較例 16〜24それぞれの無機酸ィ匕物粒子含有榭脂組成物に ついて、可視光透過率、屈折率及び硬度の 3点について、下記の装置または方法に より評価を行った。
(1)可視光透過率
分光光度計(日本分光社製)を用いて可視光線の透過率を測定した。 ここでは、測定用試料を 100 X 100 X 1mmの大きさのバルタ体とし、透過率が 80 %以上を「〇」、 80%未満を「 X」とした。
[0179] (2)屈折率
日本工業規格: JIS K 7142「プラスチックの屈折率測定方法」に準拠し、アッベ屈 折計により測定した。
ここでは、ジルコユアを添カ卩していない榭脂を基準として、屈折率が 0. 05以上向上 した場合を「〇」、屈折率が 0. 05未満しか向上しな力つた場合を「X」とした。 [0180] (3)硬度
日本工業規格: JIS K 7215「プラスチックのデュロメータ硬さ試験方法」に準拠し、 デュロメータを用いて JIS— Α硬度を測定した。
ここでは、比較例 1のジルコニァ分散液 (Z9)を用いた比較例 16〜 18の榭脂組成 物を用いて作製され、ジルコユアの含有率が 50重量%である各無機酸ィ匕物粒子含 有榭脂組成物の硬さを基準とし、この基準値より高い場合を「〇」、この基準値より低 い場合を「X」とした。
以上の評価結果を表 5に示す。
[0181] [表 5]
Figure imgf000046_0001
[0182] これらの評価結果によれば、実施例 9〜11では、可視光透過率、屈折率、硬度とも に良好であることが分力つた。
一方、比較例 16〜24では、可視光透過率、屈折率、硬度のいずれかの特性が実 施例 9〜: L 1と比べて劣っていた。
[0183] 本発明の発光素子封止用組成物及び発光素子並びに光半導体装置を実施する ための最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するもの であり、特に指定のない限り、本発明を限定するものではない。
[0184] 図 2は、本発明の一実施形態の発光ダイオード (LED:発光素子)を示す断面図で ある。
図において、 1は III— V族化合物半導体力 なる LEDチップ、 2は LEDチップ 1が 搭載されるリードフレーム、 3はリードフレーム 2から外部へ引き出される外部端子、 4 は LEDチップ 1およびリードフレーム 2を封止する保護機能およびレンズ機能を兼ね た封止材 (発光素子封止用組成物)、 5は LEDチップ 1およびリードフレーム 2を収納 するメタルケース、 6は外部端子 3を絶縁するための絶縁体、 7はメタルケース 5に形 成された開口部である。
[0185] LEDチップ 1は、サファイア等の結晶基板上に III— V族化合物半導体、例えば、 G aN、 GaAlN、 InGaN、 InAlGaN等の窒化ガリウム系化合物半導体を積層したチッ プである。
封止材 4は、分散粒径が lnm以上かつ 20nm以下でありかつ屈折率が 1. 8以上で ある無機酸ィ匕物粒子を透明なシリコーン榭脂中に分散した無機酸ィ匕物粒子含有榭 脂組成物である。
[0186] 屈折率が 1. 8以上の無機酸ィ匕物粒子としては、特に限定されないが、例えば、 Zr、 Ti、 Sn、 Si、 Al、 Fe、 Cu、 Zn、 Y、 Nb、 Mo、 In、 Ta、 W、 Pb、 Bi、 Ce、 Sb及び Geの 群から選択される 1種または 2種以上を含有する酸化物粒子が挙げられる。この酸ィ匕 物の具体例としては、 ZrO、 TiO、 SnO、 Al O、 Fe O、 CuO、 ZnO、 Y O、 Nb
2 2 2 2 3 2 3 2 3
O、 MoO、 In O、 Ta O、 WO、 PbO、 Bi O、 CeO、 Sb O、アンチモン添カロ
2 5 3 2 3 2 5 3 2 3 2 2 5
酸化スズ(ATO : Antimony Tin Oxide)、スズ添カ卩酸化インジウム(ITO: Indium Tin O xide)等が挙げられる。
[0187] ここで、無機酸ィ匕物粒子の分散粒径を lnm以上かつ 20nm以下と限定した理由は 、分散粒径が lnm未満であると、結晶性が乏しくなり、屈折率等の粒子特性を発現 することが難しくなるからであり、一方、分散粒径が 20nmを超えると、分散液や無機 酸ィ匕物粒子含有榭脂組成物とした場合に透明性が低下するからである。
このように、無機酸ィ匕物粒子はナノサイズの粒子であるから、榭脂と複合化した無 機酸化物粒子含有榭脂組成物においても、光散乱が小さぐ複合体の透明性を維 持することが可能である。
また、無機酸ィ匕物粒子の屈折率を 1. 8以上と限定した理由は、 LED封止材として 用いられる榭脂の屈折率が 1. 4程度であるため、添加による高屈折率化の効果を得 るためには 1. 8以上の屈折率が必要となるからである。
[0188] 榭脂としては、 LEDチップ 1から放出される光、例えば、可視光線、近赤外線あるい は近紫外線等の所定の波長帯域の光に対して透明性を有する榭脂であればよぐ 熱可塑性、熱硬化性、可視光線や紫外線や赤外線等による光 (電磁波)硬化性、電 子線照射による電子線硬化性等の硬化性榭脂が好適に用いられる。
この榭脂としては、例えば、シリコーン榭脂、エポキシ榭脂、アクリル榭脂等が挙げ られ、特に好ましくは、シリコーン榭脂が挙げられる。
[0189] シリコーン榭脂は、少なくとも下記の(a)〜(c)の成分力も構成されることが好ましい
(a) 1分子中のケィ素原子に結合した官能基のうち少なくとも 2つがアルケニル基であ るオルガノポリシロキサン (b) 1分子中のケィ素原子に結合した官能基のうち少なくと も 2つが水素原子であるか、または分子鎖の両端が水素原子で封鎖された直鎖状の オルガノポリシロキサン (c)ヒドロシリル化反応用触媒
[0190] (a)成分中のァルケ-ル基としては、ビュル基、ァリル基、ペンテ-ル基、へキセ- ル基等が挙げられ、特に、ビニル基が好ましい。
また、このァルケ-ル基以外のケィ素原子に結合した官能基としては、メチル基、ェ チル基、プロピル基、ブチル基等のアルキル基、フエ-ル基、トリル基等のァリール基 、ベンジル基、フエネチル基等のァラルキル基等が挙げられ、特に、メチル基が好ま しい。
[0191] (b)成分中の水素原子以外のケィ素原子に結合した官能基としては、メチル基、ェ チル基、プロピル基、ブチル基等のアルキル基、フエ-ル基、トリル基等のァリール基 、ベンジル基、フエネチル基等のァラルキル基等が挙げられ、特に、メチル基が好ま しい。
また、(b)成分の含有量は、(a)成分に含まれている合計ァルケ-ル基 1モルに対 して水素原子が 0. 1〜10モルの範囲内となる量であることが好ましぐより好ましくは 0. 1〜5モルの範囲内となる量であり、さらに好ましくは 0. 5〜2モルの範囲内となる 量である。 [0192] (c)成分のヒドロシリル化反応用触媒は、(a)成分中のアルケニル基と、(b)成分中 のケィ素原子に結合した水素原子とのヒドロシリルイ匕反応を促進するための触媒であ る。この様な触媒としては、例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒 等が挙げられ、特に、白金系触媒が好ましい。
この白金系触媒としては、白金微粉末、塩化白金酸、白金一才レフイン錯体、白金 カルボ二ル錯体等が挙げられ、特に、塩ィ匕白金酸が好ましい。
[0193] また、(c)成分の含有量は、本組成物の硬化を促進させることのできる量、すなわち
(a)成分中のアルケニル基と (b)成分中のケィ素原子に結合した水素原子とのヒドロ シリルイ匕反応を促進させることのできる量であればよぐ特に限定されることはないが 、具体的には、本組成物に対して本成分中の金属原子が重量単位で 0. 01〜500p pmの範囲内であることが好ましぐより好ましくは 0. 01〜50ppmの範囲内である。
[0194] 本成分中の金属原子の含有量を上記のように限定した理由は、含有量が 0. Olpp m未満であると、本組成物が十分に硬化しない虞がある力 であり、一方、含有量が 500ppmを超えると、得られた硬化物に着色等の問題が生じる虞があるからである。 このシリコーン榭脂については、本発明の目的を損なわないかぎり、その他任意の 成分として、耐熱剤、染料、顔料、難燃性付与剤等を含有してもよい。
また、上記のシリコーン榭脂に対しては、その特性を損なわない範囲において、酸 化防止剤、離型剤、カップリング剤、無機充填剤等を添加してもよい。
[0195] この無機酸ィ匕物粒子含有榭脂組成物における無機酸ィ匕物粒子の含有率は、 1重 量%以上かつ 80重量%以下が好ましぐより好ましくは 10重量%以上かつ 80重量 %以下、さらに好ましくは 10重量%以上かつ 50重量%以下である。
ここで、無機酸ィ匕物粒子の含有率を 1重量%以上かつ 80重量%以下と限定した理 由は、下限値の 1重量%は屈折率及び機械的特性の向上が可能となる添加率の最 小値であるからであり、一方、上限値の 80重量%は榭脂自体の特性 (柔軟性、比重) を維持することができる添加率の最大値であるからである。
[0196] この無機酸ィ匕物粒子含有榭脂組成物では、放出する光の波長を 450nmとしたとき の、光路長 lmmにおける光透過率は 80%以上が好ましぐより好ましくは 85%以上 である。 この光透過率は、無機酸ィ匕物粒子含有榭脂組成物における無機酸ィ匕物粒子の含 有率により異なり、無機酸化物粒子の含有率が 1重量%では 90%以上、無機酸化物 粒子の含有率力 0重量%では 80%以上である。
[0197] 無機酸化物粒子の屈折率は 1. 8以上であるから、この無機酸化物粒子を榭脂中 に分散させることにより、シリコーン榭脂の屈折率 1. 4程度と比べて、榭脂の屈折率 をそれ以上に向上させることが可能である。
また、この無機酸化物粒子は、 lnm以上かつ 20nm以下のナノサイズの粒子であ るから、榭脂と複合化させた場合においても、光散乱が小さぐ複合材料の透明性を 維持することが可能である。
[0198] この発光ダイオードでは、 LEDチップ 1からメタルケース 5の開口部 7に至る領域が
LEDチップ 1から放出される光の透過領域とされ、この光透過領域が分散粒径が In m以上かつ 20nm以下でありかつ屈折率が 1. 8以上である無機酸化物粒子を透明 なシリコーン榭脂中に分散した無機酸ィ匕物粒子含有榭脂組成物カゝらなる封止材 4に より封止されているので、この光透過領域は、高光透過率、高屈折率、高い熱安定 性、高硬度および耐候性に優れたものとなる。
したがって、発光ダイオードの光の取り出し効率が向上し、その結果、発光輝度が 向上する。
[0199] 次に、この発光ダイオードの製造方法について説明する。
まず、 LEDチップ 1をリードフレーム 2上の所定位置に搭載し、この LEDチップ 1とリ ードフレーム 2とをワイヤボンディング(図示略)により電気的に接続し、リードフレーム 2のリードの不要部分をカットし、残ったリードに曲げ力卩ェを施し、外部端子 3とする。 次いで、この LEDチップ 1及びリードフレーム 2を、分散粒径が lnm以上かつ 20η m以下でありかつ屈折率が 1. 8以上である無機酸化物粒子を透明なシリコーン榭脂 中に分散した無機酸ィ匕物粒子含有榭脂組成物力もなる封止材 4により封止する。
[0200] この封止材 4となる榭脂組成物を作製する際に、前記に示す無機酸ィ匕物透明分散 液を用いる。
[0201] 「封止方法」
上述した無機酸ィ匕物透明分散液と、榭脂のモノマーやオリゴマーを、ミキサー等を 用いて混合し、次いで、押出機、加熱ロール、加熱-一ダ等の混練機を用いて加圧 混練し、次いで、この混練物を冷却'粉砕し、無機酸ィ匕物と樹脂の混合物である榭脂 組成物を作製する。
次 、で、この榭脂組成物を LEDチップ 1およびリードフレーム 2を覆う様に塗布し、 次いで、この塗膜に加熱を施し、この塗膜を硬化させる。
[0202] 以上により、 LEDチップ 1及びリードフレーム 2を、分散粒径が lnm以上かつ 20nm 以下でありかつ屈折率が 1. 8以上である無機酸化物粒子を透明なシリコーン榭脂中 に分散した無機酸ィ匕物粒子含有榭脂組成物力 なる封止材 4により封止することが できる。
この封止後、 LEDチップ 1、リードフレーム 2及び封止材 4を覆うように、メタルケース 5を装着し、外部端子 3を絶縁体 6により絶縁処理する。
以上により、図 2に示す本実施形態の発光ダイオードを作製することができる。
[0203] この発光ダイオードを、 CD, CD-ROM, CD -Video, MO、 CD-R, DVD等 に用いられる光ピックアップ等の光半導体装置に適用すれば、装置としての性能を 向上させることができ、長期に亘つて装置の信頼性を向上させることができる。
[0204] 以上説明したように、本実施形態の発光ダイオードによれば、分散粒径が lnm以 上かつ 20nm以下でありかつ屈折率が 1. 8以上である無機酸化物粒子を透明なシリ コーン榭脂中に分散した無機酸ィ匕物粒子含有榭脂組成物を、保護機能およびレン ズ機能を兼ねた封止材 4として用いたので、光透過率、屈折率、熱安定性、硬度およ び耐候性を向上させることができる。
したがって、光の取り出し効率を向上させることができ、発光輝度を向上させること ができる。
[0205] 本実施形態の発光ダイオードの製造方法によれば、上述した無機酸ィ匕物透明分 散液と、榭脂のモノマーやオリゴマーを混合し、その後、加圧混練し、次いで、この混 練物を冷却'粉砕し、無機酸ィ匕物と樹脂の混合物である榭脂組成物とし、次いで、こ の榭脂組成物を LEDチップ 1およびリードフレーム 2を覆う様に塗布し、この塗膜を硬 化させるので、光透過率、屈折率、熱安定性、硬度および耐候性が向上した上に、 光の取り出し効率が向上し、発光輝度が向上した発光ダイオードを容易に作製する ことができる。
[実施例]
[0206] 以下、分散粒径が lnm以上かつ 20nm以下でありかつ屈折率が 1. 8以上である無 機酸ィ匕物粒子としてジルコユア粒子を用いた実施例、及びそれに対する比較例によ り本発明を具体的に説明する力 S、本発明はこれらの実施例によって限定されるもので はない。
[0207] A.無機酸化物粒子含有榭脂組成物 (透明複合体)の作製「実施例 12」(無機酸ィ匕 物透明分散液 (ジルコニァ透明分散液)の作製)
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
[0208] 次いで、このジルコ-ァ粒子 10gに、分散媒としてメチルェチルケトンを 85g、表面 修飾剤としてシランカップリング剤 KBM— 31〇3 (信越化学 (株)社製)を 5g加えて混 合し、ジルコユア粒子の表面をシランカップリング剤により修飾した。その後分散処理 を行い、分散粒径が lnm以上かつ 20nm以下の無機酸ィ匕物透明分散液 (Z12)を作 製した。
[0209] (封止材の作製)
この無機酸化物透明分散液 (Z12) 100gに、メチルビ-ルシリコーン (ビニル基の 平均含有量: 3mol%) 9g、およびメチルハイドロジェンシリコーン(ビュル基の平均含 有量: 30mol%) lgを加え、さらに塩化白金酸をシリコーン 100重量部に対して 20pp mとなるように加え、真空乾燥により脱溶剤化し、榭脂組成物を作製した。
次 、で、この榭脂組成物をガラス板で組み上げた型の中に厚みが 1mmになるよう に流し込み、次いで、 150°Cにて 2時間加熱して硬化させ、実施例 12の無機酸ィ匕物 粒子含有榭脂組成物を作製した。この無機酸化物粒子含有榭脂組成物のジルコ二 ァの含有率は 50重量%であった。
[0210] 「比較例 25」
無機酸ィ匕物粒子として、シリカゾル MEK— ST (日産化学社製)を用い、このシリカ ゾルをメチルェチルケトンにより希釈してシリカの濃度を 10重量%とし、比較例 25の シリカ分散液 (S1)とした。
このシリカ分散液(S1)中のシリカ粒子の平均分散粒径は 15nmであった。 次いで、このシリカ分散液に、実施例 12で用いたメチルビ-ルシリコーン、メチルハ イドロジェンシリコーン及び塩ィ匕白金酸を加え、真空乾燥により脱溶剤化し、榭脂組 成物を作製した。ただし、この榭脂組成物中のシリカ粒子の含有率を 50重量%とし た。
次いで、この榭脂組成物を実施例 12に準じて処理し、比較例 25の無機酸ィ匕物粒 子含有榭脂組成物を作製した。
[0211] 「比較例 26」
無機酸ィ匕物粒子として、ジルコニァ粒子 RC— 100 (第一稀元素化学工業 (株)製) を用いた以外は、実施例 12に準じて分散処理を行い、比較例 26のジルコユア分散 液 (Z13)を作製した。このジルコニァ分散液 (Z13)中のジルコニァ粒子の平均分散 粒径は 10nmであった。
このジルコユア分散液に、実施例 12で用いたメチルビ-ルシリコーン、メチルノヽイド ロジェンシリコーン及び塩ィ匕白金酸を加え、真空乾燥により脱溶剤化し、榭脂組成物 を作製した。ただし、この榭脂組成物中のジルコユア粒子の含有率を 50重量%とし た。
次いで、この榭脂組成物を実施例 12に準じて処理し、比較例 25の無機酸ィ匕物粒 子含有榭脂組成物を作製した。
[0212] 「比較例 27」
比較例 26に準じて榭脂組成物を作製した。ただし、この榭脂組成物中のジルコ二 ァ粒子の含有率を 2重量%とした。
次いで、この榭脂組成物を実施例 12に準じて処理し、比較例 27の無機酸ィ匕物粒 子含有榭脂組成物を作製した。
[0213] 「無機酸化物粒子含有榭脂組成物の評価」
実施例 12及び比較例 25〜27それぞれの無機酸ィ匕物粒子含有榭脂組成物につ いて、可視光透過率、屈折率および硬度の 3点について、下記の装置または方法に より評価を行った。
[0214] (1)可視光透過率
分光光度計(日本分光社製)を用いて可視光線の透過率を測定した。 ここでは、測定用試料を 100 X 100 X 1mmの大きさのバルタ体とし、透過率が 80 %以上を「〇」、 80%未満を「 X」とした。
(2)屈折率
日本工業規格: JIS K 7142「プラスチックの屈折率測定方法」に準拠し、アッベ屈 折計により測定した。
ここでは、屈折率が 1. 5以上のものを「〇」、屈折率が 1. 5未満のものを「X」とした [0215] (3)硬度
日本工業規格: JIS K 7215「プラスチックのデュロメータ硬さ試験方法」に準拠し、 デュロメータを用いて JIS— A硬度を測定した。
ここでは、ジルコニァ分散液 (Z13)を用いた比較例 26の樹脂組成物を用いて作製 され、ジルコニァの含有率が 50重量%である無機酸ィ匕物粒子含有榭脂組成物の硬 さを基準とし、この基準値より高い場合を「〇」、この基準値より低い場合を「X」とした 以上の評価結果を表 6に示す。
[0216] [表 6]
Figure imgf000054_0001
Zl 2 :ジルコニァ透明分散液
S1:シリカゾル
Z13 :ジルコ二ァ分敝液
[0217] これらの評価結果によれば、実施例 12の無機酸ィ匕物粒子含有榭脂組成物では、 可視光透過率、屈折率、硬度ともに良好であることが分力 た。
一方、比較例 25〜27の無機酸化物粒子含有樹脂組成物では、可視光透過率、 屈折率、硬度のいずれか 1つ以上の特性が実施例 12と比べて劣っていた。
[0218] B.発光ダイオードの作製「実施例 13」 実施例 12の榭脂組成物を用いて LEDチップおよびリードフレームを封止し、この 榭脂組成物を実施例 12と同様にして硬化させ、実施例 13の発光ダイオードを作製 した。
[0219] 「比較例 28」
比較例 25の榭脂組成物を用いて LEDチップおよびリードフレームを封止し、この 榭脂組成物を実施例 12と同様にして硬化させ、比較例 28の発光ダイオードを作製 した。
[0220] 「比較例 29」
比較例 26の榭脂組成物を用いて LEDチップおよびリードフレームを封止し、この 榭脂組成物を実施例 13と同様にして硬化させ、比較例 29の発光ダイオードを作製 した。
[0221] 「比較例 30」
比較例 27の榭脂組成物を用いて LEDチップおよびリードフレームを封止し、この 榭脂組成物を実施例 13と同様にして硬化させ、比較例 30の発光ダイオードを作製 した。
[0222] 「発光ダイオードの評価」
実施例 13及び比較例 28〜30それぞれの発光ダイオードについて、室温において 順方向電流を 20mA通電した際の光出力を測定した。
ここでは、ジルコユア粒子を含有しな 、榭脂のみで封止した場合の光出力を基準と し、光出力の向上率が 10%以上の場合を「〇」、 10%未満の場合を「X」とした。 以上の評価結果を表 7に示す。
[0223] [表 7] ジルコニァ 分散液
粒子の含有率 分散粒径 榭腊 光出力
(里量%) 種類
(nm)
実施例 13 50 Z12 8 シリコーン o
比較例 28 50 S1 10 シリコーン X
比較例 29 50 213 100 シリコーン X
比較例 30 2 Z13 100 シリコーン X
Z12 :ジルコニァ透明分散1;夜
S1 :シリカゾル
Z13 :ジルコニァ分散液
[0224] これらの評価結果によれば、実施例 13では、光出力の向上が良好であることが分 かった。
一方、比較例 28〜30では、光出力の向上が実施例 13と比べて劣っていた。
[0225] これから、本発明の無機酸化物粒子含有樹脂組成物とこれを含有する発光素子封 止用組成物 (透明複合体)および発光素子並びに光半導体装置を実施するための 最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するもの であり、特に指定のない限り、本発明を限定するものではない。
[0226] 封止材 4は、分散粒径が lnm以上かつ 20nm以下のジルコニァ粒子を透明な榭月旨 中に分散した発光素子封止用組成物である。 封止材 4をなす発光素子封止用組成物は、本発明の無機酸化物粒子含有榭脂組 成物を含有してなるものである。
[0227] 本発明の無機酸化物粒子含有樹脂組成物は、表面修飾剤により表面が修飾され
、かつ、分散粒径が lnm以上かつ 20nm以下のジルコユア粒子と、芳香環を水素化 した水添エポキシ榭脂とを含有してなるものである。
[0228] 表面修飾剤により表面が修飾されたジルコユア粒子としては、単斜晶ジルコユア粒子 または正方晶ジルコ-ァ粒子のいずれか一方、あるいは、単斜晶ジルコユア粒子お よび正方晶ジルコニァ粒子が用いられる力 下記のような理由から正方晶ジルコニァ 粒子が好ましい。
ジルコニァ粒子として正方晶ジルコニァ粒子が好まし 、理由は、微粒子合成の立場 力もは微粒子の粒径が 20nm以下のように小さくなると、正方晶の方が従来知られて いる単斜晶よりも安定になることと、硬度が高ぐジルコユア粒子を榭脂中に分散させ た榭脂複合体の機械的特性を向上させることができる上に、この榭脂複合体におい ては、単斜晶ジルコユア粒子を添加した場合と比べて、マルテンサイト変態と称され る体積膨張により高い靭性を示す力 である。
[0229] また、ジルコニァ粒子の分散粒径を lnm以上かつ 20nm以下とした理由は、分散粒 径が lnm未満では、結晶性が乏しくなり、屈折率などの粒子特性を発現することが難 しくなるからであり、一方、分散粒径が 20nmを超えると、分散液ゃ榭脂複合体とした 場合に透明性が低下する力 である。
このように、ジルコユア粒子は、ナノサイズの粒子であるから、榭脂と複合化した榭脂 複合体においても、光散乱が小さぐ榭脂の透明性を維持することが可能である。
[0230] 本発明のジルコユア含有エポキシ榭脂では、ジルコユア粒子の含有率が 10重量% 以上かつ 60重量%以下であることが好ましぐ 15重量%以上かつ 50重量%以下で あることがより好ましい。
ジルコユア粒子の含有率が 10重量%未満では、エポキシ榭脂の屈折率の上昇が十 分ではなぐ LEDに用いた場合に、 LEDの発光効率を向上することができない上に 、機械的特性を向上することができない。一方、ジルコユア粒子の含有率が 60重量 %を超えると、エポキシ榭脂自体が脆くなる。
[0231] 水添エポキシ榭脂としては、ビスフエノール A型エポキシ榭脂、ビスフエノール F型ェ ポキシ榭脂、 3, 3 ' , 5, 5,ーテトラメチルー 4, 4,ービフエノール型エポキシ榭脂、 4, 4'ービフエノール型エポキシ榭脂などのビフエノール型エポキシ榭脂;フエノールノボ ラック型エポキシ榭脂;クレゾ一ルノボラック型エポキシ榭脂;ビスフエノール A型ノボ ラック型エポキシ榭脂;ナフタレンジオール型エポキシ榭脂;トリスフエ-ロールメタン 型エポキシ榭脂;テトラキスフエ二ロールエタン型エポキシ榭脂;フエノールジシクロべ ンタジェンノポラック型エポキシ榭脂などの芳香族エポキシ榭脂の芳香環を直接水 素化した水添エポキシ榭脂などが挙げられる。 これらの水添エポキシ榭脂の中でも、ビスフエノール A型エポキシ榭脂、ビスフエノー ル F型エポキシ榭脂、ビフエノール型エポキシ榭脂の芳香環を直接水素化した水添 エポキシ榭脂は、水添率 (水素化率)が高 、ため特に好ま 、。
[0232] この無機酸ィ匕物粒子含有榭脂組成物には、硬化剤として、酸無水物硬化剤が用い られる。
酸無水物硬化剤としては、無水グルタル酸、無水 2—メチルダルタル酸、無水 2,2— ジメチルダルタル酸、無水 2, 2 ジメチルダルタル酸,無水 2,4 ジメチルダルタル酸 、無水 2,2 ジェチルダルタル酸,無水 2,4 ジェチルダルタル酸、無水 2 プロピ ルグルタル酸、 無水 2—ブチルダルタル酸などが挙げられる。
酸無水物硬化剤の添加量は、表面修飾剤および水添エポキシ榭脂の総量を 100重 量部とした場合に、 20重量部以上かつ 100重量部以下であることが好ましぐ 40重 量部以上かつ 80重量部以下であることがより好ましい。
[0233] また、上記の無機酸ィ匕物粒子含有榭脂組成物には、その特性を損なわない範囲に おいて、硬化促進剤、酸ィ匕防止剤を添加してもよい。
硬化促進剤としては、 3級ァミン類およびその塩類、イミダゾール類およびその塩類、 有機ホスフィン類、ォクチル酸亜鉛、ォクチル酸錫などが挙げられる。これらの硬化 促進剤の中でも、有機ホスフィン類が特に好ま ヽ。
硬化促進剤の添加量は、酸無水物硬化剤 100重量部に対して、 0. 01重量部以上 かつ 10重量部以下であることが好ましぐ 0. 05重量部以上かつ 5重量部以下である ことがより好ましい。
[0234] 酸化防止剤としては、モノフエノール類、ビスフエノール類、高分子型フエノール類、 硫黄系酸化防止剤、リン系酸ィ匕防止剤などが挙げられる。
モノフエノール類としては、 2, 6 ジ tーブチルー p クレゾール、ブチル化ヒドロキ シァ-ノール、 2, 6 ジ— t—ブチル—p ェチルフエノール、ステアリル— 13 - (3, 5—ジー t ブチル 4 ヒドロキシフエ-ル)プロピオネートなどが挙げられる。
[0235] ビスフエノール類としては、 2, 2,一メチレンビス(4—メチル 6— t—ブチルフエノー ル)、 2, 2,ーメチレンビス(4ーェチルー 6 t—ブチルフエノール)、 4, 4'ーチオビ ス(3—メチルー 6— t—ブチルフエノール)、 4, 4,ーブチリデンビス(3—メチルー 6— t ブチルフエノール)、 3, 9 ビス [1, 1—ジメチルー 2— { j8— (3— t—ブチル 4 ーヒドロキシー5 メチルフエ-ル)プロピオ-ルォキシ}ェチル ] 2, 4, 8, 10—テトラ ォキサスピロ [5, 5]ゥンデカンなどが挙げられる。
[0236] 高分子型フエノール類としては、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ一 5— t— ブチルフエ-ル)ブタン、 1, 3, 5 トリメチルー 2, 4, 6 トリス(3, 5 ジ—tーブチ ル一 4—ヒドロキシベンジル)ベンゼン、テトラキス一 [メチレン一 3— (3' , 5,一ジ一 t ーブチルー 4,ーヒドロキシフエ-ル)プロピオネート]メタン、ビス [3, 3,一ビス一(4, —ヒドロキシ— 3,— t—ブチルフエ-ル)ブチリックアシッド]グリコールエステル、 1, 3 , 5 トリス(3,, 5,一ジ一 t—ブチル 4,一ヒドロキシベンジル) S トリアジンー 2 , 4, 6— (1H, 3H, 5H)トリオン、トコフエノールなどが挙げられる。
[0237] 硫黄系酸ィ匕防止剤としては、ジラウリル 3, 3' チォジプロピオネート、ジミリスチル
3, 3,一チォジプロピオネート、ジステアリルルー 3, 3,一チォジプロピオネートな どが挙げられる。
[0238] リン系酸ィ匕防止剤としては、ホスファイト類、ォキサホスファフェナントレンオキサイド類 などが挙げられる。
[0239] ホスファイト類としては、トリフエ-ルホスフアイト、ジフエ-ルイソデシルホスファイト、フ ェ -ルジイソデシルホスフアイト、トリス(ノ -ルフエ-ル)ホスファイト、ジイソデシルぺ ンタエリスリトールホスファイト、トリス(2, 4 ジ一 t—ブチルフエ-ル)ホスファイト、サ イクリックネオペンタンテトライルビス(ォクタデシル)ホスファイト、サイクリックネオペン タンテトライルビ(2, 4 ジー t—ブチルフエ-ル)ホスファイト、サイクリックネオペンタ ンテトライルビ(2, 4 ジ一 t—ブチル 4—メチルフエ-ル)ホスファイト、ビス [2— t ーブチルー 6—メチルー 4 {2 (ォクタデシルォキシカルボ-ル)ェチル }フエ-ル ]ヒドロゲンホスファイトなどが挙げられる。
[0240] ォキサホスファフェナントレンオキサイド類としては、 9, 10 ジヒドロー 9 ォキサー1 0 ホスファフェナントレン一 10—オキサイド、 10— (3, 5 ジ一 t—ブチル 4 ヒド ロキシベンジル) 9, 10 ジヒドロ一 9—ォキサ 10 ホスファフェナントレン一 10 オキサイド、 10 デシロキシ 9, 10 ジヒドロー 9 ォキサ 10 ホスファフェナ ントレン— 10—オキサイドなどが挙げられる。 [0241] これらの酸ィ匕防止剤はそれぞれ単独で使用できるが、フエノール系 Z硫黄系、また は、フエノール系 Zリン系と組み合わせて使用することが特に好ましい。
酸化防止剤の添加量は、表面修飾剤および水添エポキシ榭脂の総量を 100重量部 とした場合に、 0. 01重量部以上かつ 10重量部以下であることが好ましぐ 0. 05重 量部以上かつ 5重量部以下であることがより好ましい。
[0242] 次に、この無機酸化物粒子含有榭脂組成物(ジルコ-ァ含有エポキシ榭脂組成物 )の製造方法につ!、て説明する。
先ず、ォキシ塩化ジルコニウム 8水塩などのジルコニウム塩を純水に溶解させたジ ルコ-ゥム塩溶液に、希アンモニア水を攪拌しながらカ卩え、ジルコユア前駆体スラリー を調製する。
次いで、このスラリーに、硫酸ナトリウムなどの無機塩の水溶液を攪拌しながらカ卩える 。このときの無機塩の添カ卩量は、ジルコニウム塩溶液中のジルコニウムイオンのジル コ-ァ換算値に対して 20〜40重量%とする。
次いで、この混合物を、乾燥器を用いて、大気中、 100〜150°Cにて 24時間〜 36時 間、乾燥させ、固形物を得る。
次いで、この固形物を自動乳鉢などにより粉砕した後、電気炉を用いて、大気中、 50 0°Cにて 1時間〜 5時間焼成する。
次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を 用いて洗浄を行い、添加した無機塩を十分に除去した後、乾燥器にて乾燥させ、ジ ルコユア粒子を作製する。
次いで、このジルコユア粒子に、分散媒として有機溶媒、表面修飾剤を加えて混合 し、その後、 0. 05mm φ〜lmm φのジルコ-ァビーズを用いたビーズミルなどの湿 式混合機により分散処理を行うと同時に、表面修飾剤によるジルコユア粒子の表面 修飾を行い、ジルコユア分散液を調製する。
[0243] 次いで、このジルコユア分散液に、ビスフエノール Α型エポキシ榭脂を直接水素化 した水添エポキシ榭脂、硬化剤、および、硬化促進剤を加え、真空乾燥により脱溶剤 化し、無機酸化物粒子含有榭脂組成物を作製する。
[0244] 本発明の発光素子封止用組成物は、無機酸化物粒子含有榭脂組成物を含有して なり、この無機酸ィ匕物粒子含有榭脂組成物を硬化してなるものである。 この発光素子封止用組成物は、ジルコユア粒子の含有率が 10重量%以上かつ 60 重量%以下であり、波長 350nm以上かつ 800nm以下の光の透過率が 80%以上で ある。
この光の透過率は、発光素子封止用組成物におけるジルコユア粒子の含有率により 異なり、ジルコユア粒子の含有率が 1重量%では 90%以上、ジルコユア粒子の含有 率力 0重量%では 80%以上である。
[0245] ジルコ-ァ粒子として、正方晶ジルコ-ァ粒子を用いた場合、正方晶ジルコ-ァ粒子 の屈折率は 2. 15であるから、この正方晶ジルコ-ァ粒子を、発光素子封止用組成 物をなす水添エポキシ榭脂中に分散させることにより、エポキシ榭脂の屈折率 1. 5程 度と比べて、発光素子封止用組成物の屈折率をそれ以上に向上させることが可能で ある。
また、正方晶ジルコ-ァ粒子は、単斜晶ジルコユア粒子に比べてマルテンサイト変態 による靭性値の向上が期待でき、し力も、靭性、硬度が高ぐ発光素子封止用組成物 の機械的特性向上に適して ヽる。
また、正方晶ジルコ-ァ粒子は、ナノサイズの粒子であるから、榭脂と複合化させた 場合においても、光散乱が小さぐ複合材料の透明性を維持することが可能である。
[0246] 図 2に示す発光ダイオードでは、 LEDチップ 1からメタルケース 5の開口部 7に至る 領域力 LEDチップ 1から放出される光の透過領域とされ、この光透過領域が、分散 粒径が lnm以上かつ 20nm以下のジルコユア粒子を透明な水添エポキシ榭脂中に 分散した発光素子封止用組成物力 なる封止材 4により封止されているので、この光 透過領域は、高光透過率、高屈折率、高い熱安定性、高硬度および耐候性に優れ たものとなる。
したがって、発光ダイオードの光の取り出し効率が向上し、その結果、発光輝度が 向上する。
[0247] 次に、この発光ダイオードの製造方法について説明する。
まず、 LEDチップ 1をリードフレーム 2上の所定位置に搭載し、この LEDチップ 1とリ ードフレーム 2とをワイヤボンディング(図示略)により電気的に接続し、リードフレーム 2のリードの不要部分をカットし、残ったリードに曲げ力卩ェを施し、外部端子 3とする。 次いで、この LEDチップ 1およびリードフレーム 2を分散粒径が lnm以上かつ 20η m以下のジルコニァ粒子を透明な水添エポキシ榭脂中に分散した発光素子封止用 組成物からなる封止材 4により封止する。
この封止材 4をなす発光素子封止用組成物を作製する際に、上述の無機酸化物粒 子含有榭脂組成物を用いる。
上記の無機酸ィ匕物粒子含有榭脂組成物を LEDチップ 1およびリードフレーム 2を 覆うように塗布し、次いで、この塗膜を加熱、あるいは紫外線や赤外線などの照射を 施し、この塗膜を硬化させる。
[0248] 以上により、 LEDチップ 1およびリードフレーム 2を分散粒径が lnm以上かつ 20η m以下のジルコニァ粒子を透明な水添エポキシ榭脂中に分散した発光素子封止用 組成物からなる封止材 4により封止することができる。
この封止後、 LEDチップ 1、リードフレーム 2および封止材 4を覆うように、メタルケ一 ス 5を装着し、外部端子 3を絶縁体 6により絶縁処理する。
以上により、図 2に示す本実施形態の発光ダイオードを作製することができる。
[0249] この発光ダイオードを、 CD、 CD-ROM, CD -Video, MO、 CD-R, DVD等に 用いられる光ピックアップ等の光半導体装置に適用すれば、装置としての性能を向 上させることができ、長期に亘つて装置の信頼性を向上させることができる。
[0250] 以上説明したように、本実施形態の発光ダイオードによれば、分散粒径が lnm以上 かつ 20nm以下のジルコユア粒子を透明な水添エポキシ榭脂中に分散した発光素 子封止用組成物を、保護機能およびレンズ機能を兼ねた封止材 4として用いたので 、光透過率、屈折率、熱安定性、硬度および耐候性を向上させることができる。 したがって、光の取り出し効率を向上させることができ、発光輝度を向上させることが できる。
[0251] 本実施形態の発光ダイオードの製造方法によれば、上述の無機酸化物粒子含有榭 脂組成物を LEDチップ 1およびリードフレーム 2を覆う様に塗布し、この塗膜を硬化さ せるので、光透過率、屈折率、熱安定性、硬度および耐候性が向上した上に、光の 取り出し効率が向上し、発光輝度が向上した発光ダイオードを容易に作製することが できる。
[実施例]
[0252] 以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれら の実施例によって限定されるものではない。
[0253] 「実施例 14」(正方晶ジルコニァ分散液の調製)
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
このジルコユア粒子の結晶系を、 X線回折装置を用いて調べたところ、図 1に示す X 線回折図形 (チャート)から、ジルコユア粒子の結晶系が正方晶系であることが確認さ れた。
次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてトルエンを 80g、表面修飾 剤として「シランカップリング剤系」(KBM— 503、信越ィ匕学 (株)社製)を 10gカロえて 混合し、その後、 0. 1mm φのジルコユアビーズを用いたビーズミルにより分散処理 を行い、正方晶ジルコ-ァ分散液を調製した。
この正方晶ジルコ-ァ分散液の正方晶ジルコ-ァ粒子の分散粒径を、動的光散乱 式粒径分布測定装置(Malvern社製)を用いて測定したところ、 10nmであった。
[0254] (無機酸化物粒子含有榭脂組成物 (ジルコ-ァ含有エポキシ榭脂組成物)の作製) 次いで、この正方晶ジルコ-ァ分散液 100gに、ビスフエノール A型エポキシ榭脂を 直接水素化した水添エポキシ榭脂として、エポキシ榭脂ェピコート YX8000 (水素化 率 100%、ジャパンエポキシレジン (株)社製) 6g、硬化剤として、無水ダルタル酸 (東 京化成工業 (株)社製) 3. 7g、硬化促進剤として、ヒシコ一リン PX—4ET (日本ィ匕学 工業 (株)社製) 0. 15g、および、酸ィ匕防止剤として、 2, 6 ジ一 t—ブチル p—タレ ゾール (関東化学 (株)社製) 0. 15gを加え、真空乾燥により脱溶剤化し、無機酸ィ匕 物粒子含有榭脂組成物を作製した。
次いで、この無機酸ィ匕物粒子含有榭脂組成物を、ガラス板で組み上げた型の中に 厚みが lmmになるように流し込み、次いで、 100°Cにて 30分間、次いで、 140°Cに て 3時間加熱して硬化させ、ジルコユア含有エポキシ榭脂複合体を作製した。このジ ルコユア含有エポキシ榭脂複合体の正方晶ジルコ-ァ粒子の含有率は 50重量%で めつに。 [0255] 「実施例 15」
実施例 14と同様にして、正方晶ジルコ-ァ粒子を調製した。
次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてトルエンを 80g、表面修飾 剤として「シランカップリング剤系」(A— 1504、東京化成工業 (株)社製)を 10g加え て混合し、その後、 0. 1mm φのジルコユアビーズを用いたビーズミルにより分散処 理を行い、正方晶ジルコ-ァ分散液を調製した。
この正方晶ジルコ-ァ分散液の正方晶ジルコ-ァ粒子の分散粒径を、動的光散乱 式粒径分布測定装置(Malvern社製)を用いて測定したところ、 lOnmであった。 次いで、この正方晶ジルコ-ァ分散液 100gを用い、実施例 14と同様にして、無機 酸化物粒子含有榭脂組成物を作製した。
次いで、この無機酸化物粒子含有榭脂組成物を用い、実施例 14と同様にして、ジ ルコユア含有エポキシ榭脂複合体を作製した。このジルコユア含有エポキシ榭脂複 合体の正方晶ジルコ-ァ粒子の含有率は 50重量%であった。
[0256] 「実施例 16」
実施例 14と同様にして、正方晶ジルコ-ァ粒子を調製した。
次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてトルエンを 80g、表面修飾 剤として「シリコーンレジン系」(KR— 213、信越ィ匕学 (株)社製)を 10g加えて混合し 、その後、 0. 1mm φのジルコユアビーズを用いたビーズミルにより分散処理を行い、 正方晶ジルコ-ァ分散液を調製した。
この正方晶ジルコ-ァ分散液の正方晶ジルコ-ァ粒子の分散粒径を、動的光散乱 式粒径分布測定装置(Malvern社製)を用いて測定したところ、 lOnmであった。 次いで、この正方晶ジルコ-ァ分散液 100gを用い、実施例 14と同様にして、無機 酸化物粒子含有榭脂組成物を作製した。
次いで、この無機酸化物粒子含有榭脂組成物を用い、実施例 14と同様にして、ジ ルコユア含有エポキシ榭脂複合体を作製した。このジルコユア含有エポキシ榭脂複 合体の正方晶ジルコ-ァ粒子の含有率は 50重量%であった。
[0257] 「比較例 31」実施例 14と同様にして、正方晶ジルコ-ァ粒子を調製した。
次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてトルエンを 80g、表面修飾 剤として「シランカップリング剤系」(KBM— 503、信越ィ匕学 (株)社製)を 10gカロえて 混合し、その後、 0. 1mm φのジルコユアビーズを用いたビーズミルにより分散処理 を行い、正方晶ジルコ-ァ分散液を調製した。
この正方晶ジルコ-ァ分散液の正方晶ジルコ-ァ粒子の分散粒径を、動的光散乱 式粒径分布測定装置(Malvern社製)を用いて測定したところ、 lOnmであった。 次いで、この正方晶ジルコ-ァ分散液 100gに、ビスフエノール A型エポキシ榭脂( エポキシ榭脂ェピコート 828、ジャパンエポキシレジン (株)社製) 7g、および、硬化剤 (ェピキュア 3080、ジャパンエポキシレジン (株)社製) 3gをカ卩え、真空乾燥により脱溶 剤化し、無機酸化物粒子含有榭脂組成物を作製した。
次いで、この無機酸ィ匕物粒子含有榭脂組成物を、ガラス板で組み上げた型の中に 厚みが lmmになるように流し込み、次いで、 100°Cにて 30分間、次いで、 140°Cに て 3時間加熱して硬化させ、ジルコユア含有エポキシ榭脂複合体を作製した。このジ ルコユア含有エポキシ榭脂複合体の正方晶ジルコ-ァ粒子の含有率は 50重量%で めつに。
[0258] 「比較例 32」実施例 14と同様にして、正方晶ジルコ-ァ粒子を調製した。
次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてトルエンを 90gカ卩えて混合 し、その後、 0. lmm φのジルコユアビーズを用いたビーズミルにより分散処理を行つ た。
分散処理後の処理液は白濁し、ジルコユア粒子は沈降した。
[0259] 「比較例 33」ジルコユア粒子として単斜晶および正方晶ジルコ-ァ粒子を含む RC
- 100 (第一希元素 (株)社製)を用いた。
このジルコユア粒子 10gに、分散媒としてトルエンを 80g、表面修飾剤として「シラン カップリング剤系」(A— 1504、東京化成工業 (株)社製)を 10g加えて混合し、その 後、 0. lmm φのジルコユアビーズを用いたビーズミルにより分散処理を行い、ジル コニァ分散液を調製した。
このジルコユア分散液のジルコユア粒子の分散粒径を、動的光散乱式粒径分布測 定装置(Malvern社製)を用いて測定したところ、 lOOnmであった。
次いで、このジルコユア分散液 100gを用い、実施例 14と同様にして、無機酸化物 粒子含有榭脂組成物を作製した。
次いで、この無機酸化物粒子含有榭脂組成物を用い、実施例 14と同様にして、ジル コ-ァ含有エポキシ榭脂複合体を作製した。このジルコユア含有エポキシ榭脂複合 体のジルコ-ァ粒子の含有率は 50重量%であった。
[0260] 「比較例 34」ジルコユア粒子として単斜晶および正方晶ジルコ-ァ粒子を含む RC
- 100 (第一希元素 (株)社製)を用いた。
このジルコユア粒子 10gに、分散媒としてトルエンを 80g、表面修飾剤として「シラン カップリング剤系」(KBM— 503、信越ィ匕学 (株)社製)を 10g加えて混合し、その後、 0. 1mm φのジルコユアビーズを用いたビーズミルにより分散処理を行い、ジルコ- ァ分散液を調製した。
このジルコユア分散液のジルコユア粒子の分散粒径を、動的光散乱式粒径分布測 定装置(Malvern社製)を用いて測定したところ、 lOOnmであった。
次いで、この正方晶ジルコ-ァ分散液 100gに、ビスフエノール A型エポキシ榭脂( エポキシ榭脂ェピコート 828、ジャパンエポキシレジン (株)社製) 7g、および、硬化剤 (ェピキュア 3080、ジャパンエポキシレジン (株)社製) 3gをカ卩え、真空乾燥により脱溶 剤化し、無機酸化物粒子含有榭脂組成物を作製した。
次いで、この無機酸ィ匕物粒子含有榭脂組成物を、ガラス板で組み上げた型の中に 厚みが lmmになるように流し込み、次いで、 100°Cにて 30分間、次いで、 140°Cに て 3時間加熱して硬化させ、ジルコユア含有エポキシ榭脂複合体を作製した。このジ ルコユア含有エポキシ榭脂複合体のジルコユア粒子の含有率は 50重量%であった
[0261] 「比較例 35」実施例 14と同様にして、正方晶ジルコ-ァ粒子を調製した。
次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてトルエンを 80g、表面修飾 剤として「シランカップリング剤系」(KBM— 503、信越ィ匕学 (株)社製)を 10gカロえて 混合し、その後、 0. lmm φのジルコユアビーズを用いたビーズミルにより分散処理 を行い、正方晶ジルコ-ァ分散液を調製した。
この正方晶ジルコ-ァ分散液の正方晶ジルコ-ァ粒子の分散粒径を、動的光散乱 式粒径分布測定装置(Malvern社製)を用いて測定したところ、 10nmであった。 次いで、この正方晶ジルコ-ァ分散液 lOgに、ビスフエノール A型エポキシ榭脂を 直接水素化した水添エポキシ榭脂として、エポキシ榭脂ェピコート YX8000 (水素化 率 100%、ジャパンエポキシレジン (株)社製) 6g、硬化剤として、無水ダルタル酸 (東 京化成工業 (株)社製) 3. 7g、硬化促進剤として、ヒシコ一リン PX—4ET (日本ィ匕学 工業 (株)社製) 0. 15g、および、酸ィ匕防止剤として、 2, 6 ジ一 t—ブチル p—タレ ゾール (関東化学 (株)社製) 0. 15gを加え、真空乾燥により脱溶剤化し、無機酸ィ匕 物粒子含有榭脂組成物を作製した。
次いで、この無機酸ィ匕物粒子含有榭脂組成物を、ガラス板で組み上げた型の中に 厚みが lmmになるように流し込み、次いで、 100°Cにて 30分間、次いで、 140°Cに て 3時間加熱して硬化させ、ジルコユア含有エポキシ榭脂複合体を作製した。このジ ルコユア含有エポキシ榭脂複合体の正方晶ジルコ-ァ粒子の含有率は 50重量%で あった。
「ジルコ-ァ含有エポキシ榭脂複合体の評価」実施例 14〜11および比較例 31〜3 5それぞれのジルコユア含有エポキシ榭脂複合体について、可視光透過率、ヘーズ および屈折率の 3点について、下記の装置または方法により評価を行った。
(1)可視光透過率分光光度計 V— 570 (日本分光社製)を用いて、波長 350ηπ!〜 8 OOnmの光の透過率を測定した。なお、空気の波長 350nm〜800nmの光の透過率 を 100%とした。
ここでは、測定用試料を 100 X 100 X lmmの大きさのバルタ体とした。
(2)ヘーズ 日本工業規格: JIS K 7136「プラスチック—透明材料のヘーズの求め方 」に準拠し、ヘーズメーター(NDH— 2000、 日本電色工業社製)により、ヘーズ値を 測定した。なお、空気のヘーズ値を 0%とした。
(3)屈折率 日本工業規格: JIS K 7142「プラスチックの屈折率測定方法」に準拠し 、アッベ屈折計により測定した。
ここでは、ジルコユアを添カ卩していない榭脂を基準として、屈折率が 0. 05以上向上 した場合を「〇」、屈折率が 0. 05未満しか向上しな力つた場合を「X」とした。
なお、屈折率の評価の基準となる榭脂として、ビスフエノール A型エポキシ榭脂(ェポ キシ榭脂ェピコート 828、ジャパンエポキシレジン (株)社製) 10g、および、硬化剤(ェ ピキュア 3080、ジャパンエポキシレジン (株)社製) 7gからなるエポキシ榭脂組成物を 硬化したものを用いた。この榭脂の可視光透過率は 75%、ヘーズ値は 0. 20%であ つた o
また、ビスフエノール A型エポキシ榭脂を直接水素化した水添エポキシ榭脂(水素化 率 100%、エポキシ榭脂ェピコート YX8000、ジャパンエポキシレジン (株)社製) 10g 、硬化剤として、無水ダルタル酸 (東京化成工業 (株)社製) 7g、硬化促進剤 (ヒシコ 一リン PX— 4ET、 日本ィ匕学工業 (株)社製) 0. lg、および、酸ィ匕防止剤として、 2, 6 —ジ一 t—ブチル p—タレゾール(関東ィ匕学 (株)社製) 0. lgからなるエポキシ榭脂 組成物を硬化したものの可視光透過率は 85%、ヘーズ値は 0. 20%であった。 以上の評価結果を表 8に示す。
[表 8]
Figure imgf000069_0001
[0264] これらの評価結果によれば、実施例 14〜16のジルコユア含有エポキシ榭脂複合体 では、可視光透過率、ヘーズ、屈折率ともに良好であることが分力つた。
一方、比較例 31〜35のジルコユア含有エポキシ榭脂複合体では、可視光透過率、 ヘーズ、屈折率のいずれかの特性が実施例 14〜16と比べて劣っていた。
[0265] これから、本発明の無機酸ィ匕物粒子含有透明プラスチック部材及び複合プラスチッ ク部材を実施するための最良の形態について説明する。 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するもの であり、特に指定のない限り、本発明を限定するものではない。
[0266] 「無機酸ィ匕物粒子含有透明プラスチック部材」
本発明の無機酸ィ匕物粒子含有透明プラスチック部材は、フィルム状またはシート状 の透明プラスチック部材であって、表面修飾剤により表面が修飾され、かつ、分散粒 径が lnm以上かつ 20nm以下のジルコユア微粒子を含有した透明プラスチック部材 である。
この透明プラスチック部材は、厚みが 10 μ m〜5mmのフィルム状またはシート状の もので、具体的には、透明プラスチックフィルム、透明プラスチックシート、薄厚の透 明プラスチック基板等、様々な厚みや形状のものがあり、用途に応じて適宜選択する ことが可能である。
このジルコユア微粒子は、可視光線に対して透明性を有するプラスチック中に均一 に分散して 、ることが好ま 、。
[0267] ジルコユア微粒子の分散粒径は、 lnm以上かつ 20nm以下が好ましい。
ここで、ジルコユア粒子の分散粒径を lnm以上かつ 20nm以下と限定した理由は、 分散粒径が lnm未満であると、結晶性が乏しくなり、屈折率等の粒子特性を発現す ることが難しくなるからであり、一方、分散粒径が 20nmを超えると、プラスチック部材 の透明性が低下するからである。
このように、ジルコユア粒子はナノサイズの粒子であるから、このジルコユア粒子を プラスチック部材中に分散させた場合においても、光散乱が小さぐ透明性を維持す ることが可能である。
[0268] このジルコニァ微粒子は、表面修飾剤により表面を修飾したものであり、表面修飾 剤としては、親水性であるジルコユア粒子を疎水化し、かつ、複合ィ匕するプラスチック に対して分散性を確保することができるものであれば、特に限定する必要はないが、 例えば、アルコキシシラン、クロロシラン、アルキルアルコキシシラン、アルキルクロロ シラン、シロキサン、界面活性剤の群力も選択された 1種または 2種以上が好ましい。 なかでも、より好ましいのは、耐熱性の点で優れているアルコキシシラン、クロロシラ ン、アルキルアルコキシシラン、アルキルクロロシラン、シロキサン等のシラン化合物 である。
[0269] プラスチックとしては、可視光線に対して透明性を有しかつ厚みが 10 μ m〜5mm のフィルム状またはシート状のものであればよぐフィルム、シート、厚みの極薄い薄 板等、用途に応じて様々な形状のものが選択使用可能である。
[0270] このようなプラスチックとしては、例えば、ポリエチレンテレフタレート(PET)、ポリ力 ーボネート (PC)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、 ポリアリレート(PAR)、芳香族ポリエーテルケトン(PEEK)、ポリオレフイン、トリァセチ ルセルロース(TAC)、アクリロニトリル 'スチレン共重合体 (AS榭脂)、メチルメタタレ ート'スチレン共重合体 (MS榭脂)、ポリ 4ーメチルペンテン (TPX)等が挙げられる また、これら以外にも、可視光線に対して透明性を有するポリエステル榭脂、ポリイミ ド榭脂、エポキシ榭脂、ノルボルネン系ポリマー等も用いることができる。
[0271] この無機酸ィ匕物粒子含有透明プラスチック部材では、ジルコユア微粒子の含有率 は、 10重量%以上かつ 80重量%以下が好ましぐより好ましくは 20重量%以上かつ 80重量%以下である。
ここで、ジルコユア微粒子の含有率を 10重量%以上かつ 80重量%以下と限定した 理由は、下限値の 10重量%はプラスチック部材の屈折率向上が有効となる含有率 の最小値であり、 10重量%を下回ると、プラスチック部材の高屈折率化ができなくな る力らである。一方、上限値の 80重量%はプラスチック部材自体の特性を維持するこ とができる含有率の最大値であり、 80重量%を越えると、プラスチック部材としての特 性を失う虞があるからである。
[0272] この無機酸ィ匕物粒子含有透明プラスチック部材では、ジルコユア微粒子の含有率 を 25重量%とした場合、光路長を 100 mとしたときの可視光透過率は 80%以上が 好ましぐより好ましくは 82%以上である。
この可視光透過率は、透明プラスチック部材におけるジルコユア微粒子の含有率 により異なり、ジルコユア微粒子の含有率が 10重量%では 85%以上、ジルコ -ァ微 粒子の含有率力 0重量%では 80%以上である。
[0273] ジルコユア微粒子の屈折率は、結晶系により若干の違いがあるが 2より大きい値で あることから、このジルコユア微粒子をプラスチック中に分散させることにより、屈折率 を向上させることが可能である。
また、ジルコユア微粒子は、ナノサイズの粒子であるから、プラスチックと複合ィ匕させ た場合においても、光散乱が小さぐプラスチック部材の透明性を維持することが可 能である。
[0274] 「無機酸ィ匕物粒子含有透明プラスチック部材 (ジルコ-ァ微粒子含有透明プラスチッ ク部材)の製造方法」
透明プラスチックフィルム、透明プラスチックシート等の薄厚状のものを製造する場 合、表面修飾剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の ジルコユア微粒子を、複合ィ匕したいプラスチックの原料に均一に分散させて混合物と し、この混合物を重合または縮重合させてジルコユア微粒子含有プラスチック組成物 とし、このプラスチック組成物をフィルム状またはシート状に成形することにより得るこ とがでさる。
[0275] また、表面修飾剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下 のジルコユア微粒子を有機溶媒中に分散してジルコユア微粒子含有分散液とし、こ の分散液に複合ィ匕したいプラスチックの原料を溶解してジルコユア微粒子含有ブラ スチック溶解液とし、このプラスチック溶解液を溶液キャスト法によりフィルム状または シート状に成形することによつても得ることができる。
[0276] 「複合プラスチック部材」
上記の無機酸ィ匕物粒子含有透明プラスチック部材の表面に、反射防止 (AR)膜、 防眩 (AG)膜、ハードコート (HC)膜等の各種機能膜を成膜するか、あるいは、反射 防止(AR)フィルム、防眩 (AG)フィルム、ハードコート(HC)フィルム等の各種プラス チックフィルムを貼り合わせることにより、反射防止 (AR)機能、防眩 (AG)機能、防 傷機能等の各種機能を有する複合プラスチック部材を得ることができる。
この複合プラスチック部材の例としては、機能性フィルム、機能性シート等が挙げら れる。
[実施例]
[0277] 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの 実施例によって限定されるものではない。
「実施例 17」
[0278] 実施例 1に準じて粒子合成を行い、ジルコニァ微粒子を作製した。
(ジルコ-ァ微粒子含有ポリエチレンテレフタレートフィルムの作製)
次いで、このジルコユア微粒子 45gに、分散媒としてエチレングリコールを 50g、表 面修飾剤としてジメチルジクロロシラン (信越化学 (株)社製)を 5g加えて混合し、その 後分散処理を行い、無機酸化物透明分散液を作製した。
この無機酸ィ匕物透明分散液のジルコユア微粒子の分散粒径を、動的光散乱式粒 径分布測定装置 (Malvern社製)を用いて測定したところ、 lOnmであった。
[0279] 次いで、この分散液 100重量部に、ジメチルテレフタレート 50重量部をカ卩え、さらに 触媒として酢酸マグネシウム 0. 05重量部をカ卩えてエステル交換反応を行った。さら に重縮合触媒として酸化アンチモン 0. 02重量部、耐熱安定剤としてトリメチルホスフ エート 0. 02重量部を加え、重縮合反応を行い、ジルコユア微粒子を含有したポリエ チレンテレフタレート組成物を作製した。
次いで、このポリエチレンテレフタレート組成物を 290°Cで溶融押出しし、その後、 9 0°Cにて縦横それぞれを 3倍に延伸し、さらにその後、 220°Cにて 15秒加熱処理し、 厚みが 100 μ mの二軸延伸のジルコ-ァ微粒子含有ポリエチレンテレフタレートフィ ルムを作製した。
[0280] 「実施例 18」
実施例 1に準じて粒子合成を行 、、ジルコニァ微粒子を作製した。
次いで、このジルコユア微粒子 15gに、分散媒として塩化メチレンを 80g、表面修飾 剤としてフエ-ルトリクロロシラン (信越化学工業 (株)製)を 5g加え、ホモジナイザを用 V、て 7000rpmの回転数で 30分攪拌し、ジルコユア分散液を作製した。
この無機酸ィ匕物透明分散液のジルコユア微粒子の分散粒径を、動的光散乱式粒 径分布測定装置 (Malvern社製)を用いて測定したところ、 8nmであった。
[0281] 次いで、この分散液 100重量部に、ポリカーボネート榭脂ペレットパンライト C 14 OOQJ (帝人化成 (株)製) 30重量部を加えて攪拌することにより、ジルコユア微粒子 が分散したポリカーボネート榭脂溶液を作製した。 次いで、このポリカーボネート榭脂溶液を濾過して異物を除去した後、リップダイを 用いて鏡面仕上げしたステンレスベルトに流延し、 60°Cの熱風を用いて 30分間乾燥 し、その後剥離し、厚みが 100 μ mのジルコユア微粒子含有ポリカーボネートフィル ムを作製した。
[0282] 「実施例 19」
実施例 18に準じてジルコユア分散液を作製した。
次いで、このジルコユア分散液 100重量部に、ポリエーテルスルホン榭脂粉末スミ 力エタセル 5200G (住友化学 (株)製) 30重量部を加えて攪拌し、ジルコユア粒子が 分散したポリエーテルスルホン榭脂溶液を作製した。次いで、このポリエーテルスル ホン榭脂溶液を濾過して異物を除去した後、リップダイを用いて鏡面仕上げしたステ ンレスベルトに流延し、 60°Cの熱風を用いて 30分間乾燥し、その後剥離し、厚みが 1 00 μ mのジルコ-ァ含有ポリエーテルスルホン榭脂フィルムを作製した。
[0283] 「比較例 36」
ジルコユア粒子として RC— 100 (第一希元素 (株)社製)を用いた以外は、実施例 1 7に準じて分散処理を行い、ジルコニァ分散液を作製した。この分散液のジルコニァ 粒子の分散粒径を測定したところ、 lOOnmであった。
次いで、この分散液を用い、実施例 17に準じて厚みが 100 mの二軸延伸のジル コ-ァ粒子含有ポリエチレンテレフタレートフィルムを作製した。
[0284] 「比較例 37」
ジルコユア粒子として RC— 100 (第一希元素 (株)社製)を用いた以外は、実施例 1 8に準じて分散処理を行い、ジルコユア分散液を作製した。この分散液のジルコユア 粒子の分散粒径を測定したところ、 lOOnmであった。
次いで、この分散液を用い、実施例 18に準じて厚みが 100 mのジルコユア粒子 含有ポリカーボネートフィルムを作製した。
[0285] 「比較例 38」
ジルコユア粒子として RC— 100 (第一希元素 (株)社製)を用いた以外は、実施例 1 9に準じて分散処理を行い、ジルコニァ分散液を作製した。この分散液のジルコニァ 粒子の分散粒径を測定したところ、 lOOnmであった。 次いで、この分散液を用い、実施例 19に準じて厚みが 100 mのジルコユア粒子 含有ポリエーテルスルホン榭脂フィルムを作製した。
[0286] 「比較例 39」
比較例 36のジルコユア分散液 10重量部に、エチレングリコール 90重量部をカ卩えて 攪拌し、これにジメチルテレフタレート 50重量部をカ卩え、さらに触媒として酢酸マグネ シゥム 0. 05重量部を加えてエステル交換反応を行った。さらに、重縮合触媒として 酸化アンチモン 0. 02重量部、耐熱安定剤としてトリメチルホスフェート 0. 02重量部 を加え、重縮合反応を行い、ジルコユア粒子含有ポリエチレンテレフタレート組成物 を作製した。
次いで、このポリエチレンテレフタレート組成物を用い、実施例 17に準じて厚みが 1 00 μ mのジルコ-ァ粒子含有ポリエチレンテレフタレートフィルムを作製した。
[0287] 「比較例 40」
比較例 37のジルコユア分散液 10重量部に、塩化メチレン 120重量部をカ卩え、さら にポリカーボネート榭脂ペレットパンライト C— 1400QJ (帝人化成 (株)製) 28重量部 を加えて攪拌することにより、ジルコユア粒子含有ポリカーボネート榭脂溶液を作製し た。
次いで、このポリカーボネート榭脂溶液を用い、実施例 18に準じて厚みが 100 /z m のジルコユア粒子含有ポリエーテルスルホン榭脂フィルムを作製した。
[0288] 「比較例 41」
比較例 38のジルコユア分散液 10重量部に、塩化メチレン 120重量部をカ卩え、これ にポリエーテルスルホン榭脂粉末 28重量部を溶解し、ジルコユア粒子含有ポリエー テルスルホン榭脂溶液を作製した。
次いで、ポリエーテルスルホン榭脂溶液を用い、実施例 19に準じて厚みが 100 mのジルコ-ァ粒子含有ポリエーテルスルホン榭脂フィルムを作製した。
[0289] 「フィルムの評価」
実施例 17〜 19及び比較例 36〜41それぞれのフィルムにつ!/、て、可視光透過率、 ヘーズ及び屈折率の 3点につ 、て、下記の装置または方法により評価を行った。 (1)可視光透過率 分光光度計 V— 570 (日本分光社製)を用い、波長 350ηπ!〜 800nmの範囲の可 視光線の透過率を、空気を 100%とした場合について測定した。
[0290] (2) ^ ^一ズ
曰本工業規格: JIS K 7136「プラスチック一透明材料のヘーズの求め方」に準拠し 、ヘーズメータ NDH— 2000 (日本電色社製)を用いて空気を 0%とした場合につい て測定した。
(3)屈折率
日本工業規格: JIS K 7142「プラスチックの屈折率測定方法」に準拠し、アッベ屈 折計により測定した。
ここでは、ジルコユアを添加していないフィルムを基準として、屈折率が 0. 05以上 向上した場合を「〇」、屈折率が 0. 05未満しか向上しな力つた場合を「X」とした。 以上の評価結果を表 9に示す。
[0291] [表 9]
Figure imgf000076_0001
P E T : ポリエチレンテレフタレ一ト
P C : ポリ力一ボネ一ト
P E S : ポリエ一テルスルホン
[0292] これらの評価結果によれば、実施例 17〜19では、可視光透過率、ヘーズ、屈折率 ともに良好であることが分力つた。
一方、比較例 36〜41では、可視光透過率、ヘーズ、屈折率のいずれかの特性が 実施例 17〜 19と比べて劣っていた。
[0293] こらから、本発明のハードコート膜と光学機能膜及び光学レンズ並びに光学部品を 実施するための最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するもの であり、特に指定のない限り、本発明を限定するものではない。
[0294] 図 3は、本発明の一実施形態の光学レンズを示す断面図である。
図において、 1は平板状の発光素子封止用組成物力もなる透明基材、 2は透明基 材 1の表面(一方の面)に形成された略半球状の微小な凸レンズ部、 3は透明基材 1 及び凸レンズ部 2全体を覆うように形成されたノヽードコート膜であり、透明基材 1およ び凸レンズ部 2全体が光透過領域とされて 、る。
[0295] この発光素子封止用組成物は、分散粒径が lnm以上かつ 20nm以下の正方晶ジ ルコユア粒子を透明な榭脂中に分散した発光素子封止用組成物である。
ここで、ジルコユア粒子を正方晶ジルコ-ァ粒子に限定した理由は、微粒子合成の 立場からは微粒子の粒径が 20nm以下のように小さくなると、正方晶の方が従来知ら れている単斜晶よりも安定になることと、硬度が高ぐ発光素子封止用組成物の機械 的特性を向上させることができる上に、ジルコユア粒子を榭脂中に分散させた発光素 子封止用組成物においては、正方晶ジルコ-ァを発光素子封止用組成物の第 2相 として添加すると、単斜晶ジルコユア粒子を添加した場合と比べて、マルテンサイト変 態と称される体積膨張により高い靭性を示す力 である。
[0296] また、正方晶ジルコニァ粒子の分散粒径を lnm以上かつ 20nm以下と限定した理 由は、分散粒径が lnm未満であると、結晶性が乏しくなり、屈折率等の粒子特性を 発現することが難しくなるからであり、一方、分散粒径が 20nmを超えると、分散液や 発光素子封止用組成物とした場合に透明性が低下するからである。
このように、正方晶ジルコ-ァ粒子は、ナノサイズの粒子であるから、榭脂と複合ィ匕 した発光素子封止用組成物においても、光散乱が小さぐ複合体の透明性を維持す ることが可能である。 [0297] ハードコート膜としては、分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ 粒子を、ハードコート基材中に分散したものが好適に用 、られる。
このハードコート膜の膜厚は、ハードコート膜としての機能を十分に発揮するととも に、光学レンズの諸特¾を阻害しないためには、 0. 1 m以上かつ 100 μ m以下が 好ましぐ特に 1 μ m以上かつ 50 μ m以下が好ま ヽ。
[0298] ハードコート基材としては、有機系としてアタリレート系、シリコーン系、才キセタン系 、無機系としてアルコキシシラン ジルコネート系、アルミナ系等が挙げられ、これら の材料のうち 1種または 2種以上が用いられる。
有機系のハードコート基材としては、熱可塑性、熱硬化性、可視光線や紫外線や 赤外線等による光 (電磁波)硬化性、電子線照射による電子線硬化性等の透明な榭 脂が好適に用いられる。
[0299] ここで、上記のハードコート基材のうち、アタリレート系及びシリコーン系それぞれに ついて詳細に説明する。
「アタリレート系ハードコート基材」
アタリレート系ハードコート基材としては、単官能アタリレートおよび Zまたは多官能 アタリレートが用いられ、これらのうち 1種または 2種以上が用いられる。
単官能アタリレート及び多官能アタリレートそれぞれの具体例について次に挙げる
(a)脂肪族単官能 (メタ)アタリレートとしては、
ブチル (メタ)アタリレート、ラウリル (メタ)アタリレート、ステアリル (メタ)アタリレート等 のアルキル (メタ)アタリレート
メトキシプロピレングリコール (メタ)アタリレート、エトキシジエチレングリコール (メタ) アタリレート等のアルコキシアルキレングリコール (メタ)アタリレート
(メタ)アクリルアミド、 N -ブトキシメチル (メタ)アクリルアミド等の N -置換アクリルァ ミド等が挙げられる。
[0300] (b)脂肪族多官能 (メタ)アタリレートとしては、
1, 6 へキサンジオールジ (メタ)アタリレート、 1. 4 ブタンジオールジ (メタ)アタリ レート、エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレ ート、トリエチレングリコールジ (メタ)アタリレート、テトラエチレングリコールジ (メタ)ァ タリレート、トリプロピレングリコールジ (メタ)アタリレート、ネオペンチルグリコールジ (メ タ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、ポリブタンジオールジ(メ タ)アタリレート、等のアルキレングリコールジ (メタ)アタリレート
ペンタエリスリトールトリアタリレート、トリメチロールプロパントリ(メタ)アタリレート、ェ チレンオキサイド、プロピレンオキサイド変性トリメチロールプロパントリアタリレート等 のトリ(メタ)アタリレート
ペンタエリスリトールテトラアタリレート、ジ一トリメチロールプロパンテトラアタリレート 等のテトラ (メタ)アタリレート
ジペンタエリスリトール(モノヒドロキシ)ペンタアタリレート等のペンタ(メタ)アタリレー ト等が挙げられる。
[0301] (c)脂環式 (メタ)アタリレートのうち、単官能型としては、シクロへキシル (メタ)アタリレ ート等が、また、多官能型としては、ジシクロペンタジェニルジ (メタ)アタリレート等が 挙げられる。
(d)芳香族 (メタ)アタリレートのうち、単官能型としては、フ ニル (メタ)アタリレート、 ベンジル (メタ)アタリレート、フエノキシェチル (メタ)アタリレート、フエノキシジェチレ ングリコール (メタ)アタリレート等力 また、多官能型としては、ビスフエノール Aジ (メタ )アタリレート等のジアタリレート類、ビスフエノール Fジ (メタ)アタリレート等が挙げられ る。
[0302] (e)ポリウレタン (メタ)アタリレートとしては、ポリウレタンエーテル (メタ)アタリレート、ポ リエステル (メタ)アタリレート等が挙げられる。
(f)エポキシ (メタ)アタリレートとしては、ビスフエノール A型エポキシアタリレート、ノボ ラック型エポキシアタリレート等が挙げられる。
[0303] 光重合開始剤としては、ァセトフエノン類、ベンゾフエノン類、ケタール類、アントラキ ノン類、チォキサントン類、ァゾィ匕合物、過酸化物類、 2, 3—ジアルキルジオン化合 物類、ジスルフイド化合物類、チウラム化合物類、フルォロアミン化合物等が用いられ る。
[0304] この重合開始剤の具体例としては、以下のものが挙げられる。 2, 2,ージエトキシァセトフエノン、 p ジメチルァセトフエノン、 1ーヒドロキシシクロへ キシルフエ-ルケトン、 1—ヒドロキシジメチルフエ-ルケトン等のァセトフエノン類、ベ ンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテ ノレ等のベンゾイン類、ベンゾフエノン、 2, 4 ジクロロべンゾフエノン、 p クロ口べンゾ フエノン等のベンゾフエノン類、ラウロイルパーオキサイド、ベンゾィルパーオキサイド 、ジー t ブチルパーオキサイド、 t ブチルパーォキシ 2—ェチルへキサノエート 、 tーブチノレパーォキシイソブチレート、 tーブチノレパーォキシピバレート、 tーブチノレ パーォキシベンゾエート、 t ブチルパーォキシアセテート等の過酸化物系、 2, 2, ーァゾビスイソブチロニトリノレ等のァゾ系等がある。
[0305] 「シリコーン系ハードコート基材」
シリコーン系ハードコート基材としては、下記の一般式(1)で示される有機ケィ素化 合物から選択される 1種以上の化合物および Zまたはその部分加水分解縮合物が 用いられる。
R -SiX ……(1)
a 4— a
式中、 Rは炭素数 1〜18の 1価の有機基、 Xは加水分解性基、 aは 0、 1、 2のいず れかである。
[0306] ここで、 Rとしては、例えば、メチル基、ェチル基、プロピル基、ブチル基、へキシル 基、ォクチル基、デシル基、ラウリル基、セチル基、ステアリル基、シクロへキシル基等 の直鎖状、分岐状または環状のアルキル基、フ -ル基等のァリール基、ベンジル 基等のァラルキル基、ビュル基、ァリル基、プロべ-ル基、ブテュル基等のァルケ- ル基等が挙げられる。
また、これらの有機基の水素原子の一部または全部がエポキシ基、アミノ基、メルカ ブト基、(メタ)アタリロキシ基、あるいは塩素原子等のハロゲン原子で置換されたもの ち挙げられる。
Xは、加水分解性を有する基であればよぐ例えば、メトキシ基、エトキシ基、プロボ キシ基、ブトキシ基、フエノキシ基等のアルコキシ基、あるいは塩素原子等のハロゲン 原子等が挙げられる。
[0307] 上記の一般式(1)で示される有機ケィ素化合物としては、例えば、テトラクロロシラ ン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、メチノレトリメトキシ シラン、ジメチノレジメトキシシラン、トリメチルメトキシシラン、 n—プロピルトリメトキシシ ラン、 n—ブチルトリエトキシシラン、 n—へキシルトリメトキシシラン、 n—へキシルトリエ トキシシラン、 n—ォクチルトリエトキシシラン、 n—デシルトリメトキシシラン、ビニルトリ クロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジクロ口 シラン、ビニルメチルジメトキシシラン、ビニルメチルジェトキシシラン、 5—へキセニル トリメトキシシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシプロピ ルトリエトキシシラン、 3—グリシドキシプロピルメチルジメトキシシラン、 3—グリシドキ シプロピルメチルジェトキシシラン、 3— (メタ)アタリロキシプロピルトリメトキシシラン、 3- (メタ)アタリロキシプロピルトリエトキシシラン、 3— (メタ)アタリロキシプロピルメチ ルジメトキシシラン、 3- (メタ)アタリロキシプロピルメチルジェトキシシラン、フエ-ルト リメトキシシラン、ジフエ二ルジメトキシシラン、 p—スチリルトリメトキシシラン、 3— (4— ビニルフエニル)プロピルトリメトキシシラン、 4—ビニルフエニルメチルトリメトキシシラ ン、 4—ビニルフエニルトリメトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァク リロキシプロピルトリメトキシシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—メ ルカプトプロピルトリメトキシシラン、 3—メルカプトプロピルトリエトキシシラン等が挙げ られる。
[0308] 上記の有機ケィ素化合物は、 1種または 2種以上を使用してもよいが、分岐構造を 有する必要がある。従って、 a= 2のもののみを用いた場合は加水分解縮合物は直鎖 状オイルとなって、高硬度、耐擦傷性の劣るものとなり、また、 a=0のみを用いた場合 はクラックが発生しやすくなるため、 a = 0や a = 2のもののみを単独で用 、る場合を除 くのが好ましい。
[0309] すなわち、 a = 0のものと a = 2のものとを組み合わせて用いる力、 a= lのものと a = 0 や a = 2のものとを組み合わせて用いる力、のいずれかであり、少なくとも a= lのもの を含む有機ケィ素化合物が好適に用いられる。
このシリコーン系ハードコート基材については、本発明の目的を損なわないかぎり、 その他任意の成分として、耐熱剤、染料、顔料、難燃性付与剤等を含有してもよい。
[0310] このハードコート膜に対しては、その特性を損なわない範囲において、重合禁止剤 、レべリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防 止剤、接着付与剤、酸化防止剤、離型剤、無機充填剤、耐熱剤、染料、難燃性付与 剤等を添加してもよい。
[0311] このハードコート膜における正方晶ジルコ-ァ粒子の含有率は、 1重量%以上かつ 80重量%以下が好ましぐより好ましくは 10重量%以上かつ 80重量%以下、さらに 好ましくは 10重量%以上かつ 50重量%以下である。
ここで、正方晶ジルコ-ァ粒子の含有率を 1重量%以上かつ 80重量%以下と限定 した理由は、下限値の 1重量%は屈折率及び機械的特性の向上が可能となる添カロ 率の最小値であるからであり、一方、上限値の 80重量%は榭脂自体の特性 (柔軟性 、比重)を維持することができる添加率の最大値であるからである。
[0312] このハードコート膜では、正方晶ジルコ-ァ粒子の含有率を 25重量%とした場合、 光路長を lmmとしたときの可視光透過率は 90%以上が好ましぐより好ましくは 92 %以上である。
この可視光透過率は、ハードコート膜における正方晶ジルコ-ァ粒子の含有率によ り異なり、正方晶ジルコ-ァ粒子の含有率が 1重量%では、 95%以上、正方晶ジル コ-ァ粒子の含有率力 S40重量%では、 80%以上である。
[0313] 正方晶ジルコ-ァ粒子の屈折率は 2. 15であるから、この正方晶ジルコ-ァ粒子を 榭脂中に分散させることにより、アタリレート榭脂、シリコーン榭脂の屈折率 1. 4程度 、エポキシ榭脂の屈折率 1. 5程度と比べて、榭脂の屈折率をそれ以上に向上させる ことが可能である。
また、正方晶ジルコ-ァ粒子は、単斜晶ジルコユア粒子に比べてマルテンサイト変 態による靭性値の向上が期待でき、し力も、靭性、硬度が高ぐ複合体の機械的特性 向上に適している。
また、正方晶ジルコ-ァ粒子は、ナノサイズの粒子であるから、榭脂と複合化させた 場合においても、光散乱が小さぐ複合材料の透明性を維持することが可能である。
[0314] このハードコート膜は、分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ 粒子を透明なハードコート材料中に分散したので、透明性が維持されるとともに、屈 折率及び靭性も向上する。 これにより、透明性、屈折率、熱安定性、硬度および耐候性が向上し、よって、長期 に亘つて信頼性が向上する。
[0315] 次に、このハードコート膜の製造方法について説明する。
このハードコート膜を作製する際に、次に示す無機酸ィ匕物透明分散液を用いる。
「無機酸化物透明分散液 (ジルコニァ透明分散液)」
この無機酸化物透明分散液は、分散粒径が lnm以上かつ 20nm以下の正方晶ジ ルコニァ粒子と、分散媒とを含む分散液である。
分散媒は、基本的には、水、有機溶媒、液状の榭脂モノマー、液状の榭脂オリゴマ 一のうち少なくとも 1種以上を含有したものである。
[0316] 上記の有機溶媒としては、例えば、メタノール、エタノール、 2 プロパノール、ブタ ノール、ォクタノール等のアルコール類、酢酸ェチル、酢酸ブチル、乳酸ェチル、プ ロピレングリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエ 一テルアセテート、 y ブチロラタトン等のエステル類、ジェチルエーテル、エチレン グリコーノレモノメチノレエーテノレ(メチノレセロソノレブ)、エチレングリコーノレモノエチノレエ ーテノレ(ェチノレセロソノレブ)、エチレングリコーノレモノブチノレエーテノレ(ブチノレセロソノレ ブ)、ジエチレングリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエー テル等のエーテル類、アセトン、メチルェチルケトン、メチルイソブチルケトン、ァセチ ルアセトン、シクロへキサノン等のケトン類、ベンゼン、トルエン、キシレン、ェチルベ ンゼン等の芳香族炭化水素、ジメチルホルムアミド、 N, N ジメチルァセトァセトアミ ド、 N—メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒のうち 1種また は 2種以上を用いることができる。
[0317] 上記の液状の榭脂モノマーとしては、アクリル酸メチル、メタクリル酸メチル等のァク リル系またはメタクリル系のモノマー、エポキシ系モノマー等が好適に用いられる。 また、上記の液状の榭脂オリゴマーとしては、ウレタンアタリレート系オリゴマー、ェ ポキシアタリレート系オリゴマー、アタリレート系オリゴマー等が好適に用いられる。
[0318] 正方晶ジルコ-ァ粒子の含有率は、 1重量%以上かつ 70重量%以下が好ましぐ より好ましくは 1重量%以上かつ 50重量%以下、さらに好ましくは 5重量%以上かつ 30重量%以下である。 ここで、正方晶ジルコ-ァ粒子の含有率を 1重量%以上かつ 70重量%以下と限定 した理由は、この範囲が正方晶ジルコニァ粒子が良好な分散状態を取りうる範囲で あり、含有率が 1重量%未満であると、正方晶ジルコ-ァ粒子としての効果が低下し、 また、 70重量%を超えると、ゲルィ匕ゃ凝集沈澱が生じ、分散液としての特徴を消失 するカゝらである。
[0319] この無機酸化物透明分散液は、上記以外に、その特性を損なわない範囲において 、他の無機酸化物粒子、分散剤、分散助剤、カップリング剤、榭脂モノマー等を含有 していてもよい。
正方晶ジルコニァ粒子以外の無機酸ィ匕物粒子としては、単斜晶または立方晶のジ ルコユア粒子、酸化チタン、酸化亜鈴、酸化セリウム、酸化スズ、アンチモン添加酸化 スズ (ATO)、スズ添加酸化インジウム(ITO)等が挙げられる。
分散剤としては、リン酸エステル系分散剤等が挙げられる。
表面処理剤としては、シランカップリング剤、リン酸エステル系分散剤等が挙げられ る。
[0320] この無機酸化物透明分散液は、正方晶ジルコ-ァ粒子の含有率を 5重量%とした 場合、光路長を 10mmとしたときの可視光透過率が 90%以上が好ましぐより好まし くは 95%以上である。
この可視光透過率は、正方晶ジルコ-ァ粒子の含有率により異なり、正方晶ジルコ ユア粒子の含有率が 1重量%では、 95%以上、正方晶ジルコ-ァ粒子の含有率が 4 0重量%では、 80%以上である。
[0321] 「ハードコート膜の製造方法」
上述した無機酸ィ匕物透明分散液と、榭脂のモノマーやオリゴマーを混合し、流動し 易 、状態の樹脂組成物を作製する。
次いで、この榭脂組成物をスピンコート法、バーコート法、フローコート法、ディップ 法等の各種塗布方法により透明基材 1及び凸レンズ部 2全体を覆うように塗布し、ハ ードコート膜を形成する。
[0322] ここで、榭脂のモノマーやオリゴマーが、反応性を有する炭素二重結合 (C = C)を 有する場合、単に混合するだけでも、重合'榭脂化させることができる。 特に、アクリル榭脂等の紫外線 (UV)硬化性榭脂を含む榭脂組成物を硬化させる 方法としては、様々な方法があるが、代表的には、加熱または光照射により開始され るラジカル重合反応等が挙げられる。このラジカル重合反応としては、熱による重合 反応 (熱重合)、紫外線等の光による重合反応 (光重合)、ガンマ線による重合反応、 あるいは、これらの複数を組み合わせた方法等が挙げられる。
[0323] また、シリコーン榭脂を用いた場合、 1種または複数種の有機ケィ素化合物、硬化 剤及び触媒を混合して塗料化し、その後、透明基材 1及び凸レンズ部 2全体を覆うよ うに塗布し、硬化させることにより、ハードコート膜を作製することができる。熱硬化反 応としては、縮合架橋等の反応を用いることができる。
以上により、図 3に示す本実施形態の光学レンズを作製することができる。
[0324] 以上説明したように、本実施形態によれば、分散粒径が lnm以上かつ 20nm以下 の正方晶ジルコ-ァ粒子をノヽードコート基材中に分散したノヽードコート膜 3を備えた ので、光透過率、屈折率、熱安定性、硬度および耐候性を向上させることができる。 したがって、高光透過率、高屈折率、高い熱安定性、高硬度および耐候性に優れ た光学レンズを提供することができる。
[0325] なお、本実施形態では、ハードコート膜 3を、光学レンズの透明基材 1及び凸レンズ 部 2全体を覆うように形成したが、ハードコート膜 3は光学レンズの光透過領域に形成 されて 、ればよぐ凸レンズ部 2のみに形成されて 、てもよ 、。
また、このハードコート膜 3を光学レンズ以外の光学部品、例えばマイクロレンズァ レイに形成してもよい。
[0326] また、このハードコート膜 3を他の機能を有する膜、例えば、反射防止膜や電磁遮 蔽膜と積層することにより、光学機能膜としても大いに利用可能である。
さらに、本実施形態の光学レンズを投光器等の光学部品に適用すれば、光学レン ズの光透過率、屈折率、熱安定性、硬度および耐候性が向上することにより、光学部 品全体の性能を向上させることができ、長期に亘つて光学部品の信頼性を向上させ ることがでさる。
[実施例]
[0327] 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの 実施例によって限定されるものではない。
「実施例 20」(無機酸化物透明分散液 (ジルコニァ透明分散液)の作製)
実施例 1に準じて粒子合成を行 、、ジルコユア粒子を作製した。
このジルコ-ァ粒子の結晶系を、 X線回折装置を用いて調べたところ、図 1に示す X 線回折図形 (チャート)から、ジルコユア粒子の結晶系が正方晶系であることが確認さ れた。
[0328] 次いで、この正方晶ジルコ-ァ粒子 10gに、分散媒としてメチルェチルケトンを 87g 、表面処理剤としてシランカップリング剤 KBM- 503 (信越化学 (株)社製)を 3gカロ え、 0. 1mm φのジルコ-ァビーズを用いたビーズミルにより分散処理を行い、分散 粒径が lnm以上かつ 20nm以下の無機酸ィ匕物透明分散液 (Z14)を作製した。
[0329] (ハードコート膜の作製)
上記の無機酸ィ匕物透明分散液 (Z14) 100gに、 1, 6—へキサンジオールジアタリレ ート 5g、ペンタエリスリトールトリアタリレート 2. 5g、ペンタエリスリトールテトラアタリレ ート 2g、重合開始剤としてベンゾィルパーオキサイド 0. 5g、ジアセトンアルコール 10 gを加え、硬化性アタリレート溶液を作製した。
次いで、この溶液を 100 X 100 X 2mmのアクリル基板にバーコート法にて塗布し、 その後 120°Cにて 2時間加熱して硬化させ、硬化後の膜厚を 3 /z mとし、実施例 20の ハードコート膜を作製した。このハードコート膜のジルコユア粒子の含有率は 50重量 %であった。
[0330] 「実施例 21」
実施例 20の無機酸ィ匕物透明分散液 (Z14) 100gに、メチルトリエトキシシラン 7g、 3 —グリシドキシプロピルトリメトキシシラン 3gをカロえ、 5°Cにて 2時間撹拌し、次いで、 6 0°Cにて 4時間攪拌し、熟成を行った。次いで、この熟成した溶液にジアセトンアルコ ール 10gを加え、硬化性シリコーンィ匕合物溶液を作製した。
次いで、この溶液を 100 X 100 X 2mmのアクリル基板にバーコート法にて塗布し、 その後 120°Cにて 2時間加熱して硬化させ、硬化後の膜厚を 3 /z mとし、実施例 21の ハードコート膜を作製した。このハードコート膜のジルコユア粒子の含有率は 50重量 %であった。 [0331] 「比較例 42」
ジルコユア粒子として単斜晶及び正方晶ジルコ-ァ粒子を含む RC— 100 (第一希 元素 (株)社製)を用いた以外は、実施例 20に準じて分散処理を行い、比較例 42の ジルコユア分散液 (Z 15)を作製した。ちなみに、このジルコユア粒子の平均分散粒 径は lOOnmであった。
このジルコ-ァ分散液 (Z15)に、実施例 20で用いた 1, 6—へキサンジオールジァ タリレート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、 重合開始剤としてベンゾィルパーオキサイド、ジアセトンアルコールをカ卩え、硬化性ァ クリレー卜溶液を作製した。
次いで、この硬化性アタリレート溶液を実施例 20に準じて処理し、比較例 42のハー ドコート膜を作製した。ただし、このハードコート膜のジルコユア粒子の含有率を 50重 量%とした。
[0332] 「比較例 43」
比較例 42のジルコユア分散液 (Z15)に、実施例 21で用いたメチルトリエトキシシラ ン、 3—グリシドキシプロピルトリメトキシシランをカ卩え、 5°Cにて 2時間撹拌し、次いで、 60°Cにて 4時間攪拌し、熟成を行った。次いで、この熟成した溶液にジアセトンアル コールを加え、硬化性シリコーンィ匕合物溶液を作製した。
次いで、この硬化性シリコーンィ匕合物溶液を実施例 21に準じて処理し、比較例 43 のハードコート膜を作製した。ただし、このハードコート膜のジルコユア粒子の含有率 を 50重量%とした。
[0333] 「比較例 44」
比較例 42に準じて硬化性アタリレート溶液を作製した。次いで、この溶液を実施例 20に準じて処理し、比較例 44のハードコート膜を作製した。ただし、このハードコート 膜のジルコユア粒子の含有率を 2重量%とした。
[0334] 「比較例 45」
比較例 43に準じて硬化性シリコーン化合物溶液を作製した。次いで、この溶液を 実施例 21に準じて処理し、比較例 45のハードコート膜を作製した。ただし、このハー ドコート膜のジルコユア粒子の含有率を 2重量%とした。 [0335] 「ハードコート膜の評価」
実施例 20、 2及び比較例 42〜45それぞれのハードコート膜について、可視光透 過率、屈折率および硬度の 3点について、下記の装置または方法により評価を行つ た。
[0336] (1)可視光透過率
分光光度計(日本分光社製)を用いて可視光線の透過率を測定した。
ここでは、 100 X 100 X 2mmのアクリル基板に塗布した厚み 3 μ mのハードコート 膜を測定用試料とし、アクリル基板単体の透過率を 100%としたとき、透過率が 92% 以上を「〇」、 92%未満を「X」とした。
(2)屈折率
実施例 20、 2および比較例 42〜45により得られた硬化性アタリレート溶液または硬 化性シリコーンィ匕合物溶液各々をスピンコート法によりシリコンウェハー上に塗布し、 分光エリプソメーターを用いて測定した。
ここでは、ジルコユア粒子を添カ卩していない榭脂を基準として、屈折率が 0. 05以上 向上した場合を「〇」、屈折率が 0. 05未満しか向上しな力つた場合を「X」とした。
[0337] (3)硬度
日本工業規格: JIS K 5600— 5— 4「塗膜の機械的性質—引つカゝき硬度 (鉛筆法) 」に準拠し、硬度を測定した。
ここでは、比較例 42のジルコユア分散液 (Z15)を用いて作製され、ジルコ-ァ粒子 の含有率が 50重量%である比較例 42、 31のハードコート膜の硬度を基準とし、この 基準値より高い場合を「〇」、この基準値より低い場合を「 X」とした。
以上の評価結果を表 10に示す。
[0338] [表 10] ジルコニァ粒子 可視光
分散液 溶液中の
の含有率 透過率 屈折率 硕度 の種類 組成物の種類
(重量お) (%)
実施例 20 Z14 ァクリレー卜 50 o o o 実施例 21 Z14 シリコーン 50 〇 o 0 比删 42 Z15 ァクリレート 50 X o 基準 比較例 43 Z15 シリコーン 50 X o 基準 比棚 44 Z15 ァクリレー卜 2 o X X 比較例 45 Z15 シリコーン 2 o X X
[0339] これらの評価結果によれば、実施例 20、 2では、可視光透過率、屈折率、硬度とも に良好であることが分力つた。
一方、比較例 42〜45では、可視光透過率、屈折率、硬度のいずれかの特性が実 施例 20、 2と比べて劣っていた。
産業上の利用可能性
[0340] 本発明の無機酸ィ匕物透明分散液は、 1つ以上の反応性官能基を有する表面修飾 剤により表面が修飾されかつ分散粒径が lnm以上かつ 20nm以下の無機酸ィ匕物粒 子を含有したことにより、この無機酸ィ匕物粒子および榭脂を含む発光素子封止用組 成物の屈折率および機械的特性の向上と共に透明性の維持を図ることができるもの であるから、半導体レーザ (LED)の封止材、液晶表示装置用基板、有機 EL表示装 置用基板、カラーフィルター用基板、タツチパネル用基板、太陽電池用基板等の光 学シート、透明板、光学レンズ、光学素子、光導波路等はもちろんのこと、これ以外の 様々な工業分野においても、その効果は大である。
[0341] また、本発明の無機酸化物透明分散液は、表面修飾剤により表面が修飾されかつ 分散粒径が lnm以上かつ 20nm以下の正方晶ジルコ-ァ粒子を含有したことにより 、このジルコユア粒子および榭脂を含む発光素子封止用組成物の屈折率および機 械的特性の向上と共に透明性の維持を図ることができるものであるから、半導体レー ザ (LED)の封止材、液晶表示装置用基板、有機 EL表示装置用基板、カラーフィル ター用基板、タツチパネル用基板、太陽電池用基板等の光学シート、透明板、光学 レンズ、光学素子、光導波路等はもちろんのこと、これ以外の様々な工業分野におい ても、その効果は大である。
[0342] また、本発明の発光素子封止用組成物は、分散粒径が lnm以上かつ 20nm以下 でありかつ屈折率が 1. 8以上である無機酸化物粒子と、シリコーン榭脂とを含有した ことにより、光透過率、屈折率、熱安定性、硬度および耐候性を向上させることができ たものであるから、発光ダイオード (LED)の特性改善の効果は極めて大きなもので あり、この発光ダイオードを用いた各種装置等の分野においてもその効果は大であり 、その工業的効果は極めて大きなものである。
[0343] また、本発明の無機酸ィ匕物粒子含有榭脂組成物は、表面修飾剤により表面が修 飾され、かつ、分散粒径が lnm以上かつ 20nm以下のジルコユア粒子と、芳香族ェ ポキシ榭脂の芳香環を水素化した水添エポキシ榭脂とを含有することにより、光透過 率、屈折率、熱安定性、硬度および耐候性を向上させることができたものであるから、 発光ダイオード (LED)の特性改善の効果はもちろんのこと、上記の物性が要求され る様々な分野においてもその効果は大であり、その工業的効果は極めて大きなもの である。
[0344] また、本発明の無機酸ィ匕物粒子含有透明プラスチック部材は、表面修飾剤により 表面が修飾され、かつ、分散粒径が lnm以上かつ 20nm以下のジルコユア微粒子 をフィルム状またはシート状のプラスチック中に分散したことにより、フィルム状または シート状のプラスチック部材の屈折率および透明性を高めるとともに、機械的特性を 向上させることができるものである力ゝら、複合プラスチック部材を含めて、液晶ディスプ レイ(LCD)、プラズマディスプレイ(PDP)、エレクト口ルミネッセンスディスプレイ(EL )、表面電界ディスプレイ(SED)等のフラットパネルディスプレイ(FPD)の表示基板 あるいは機能性フィルムはもちろんのこと、光学分野のマイクロアレイレンズシート、プ リズムシート、フレネルレンズ、レンチキュラーレンズ等のレンズシート、導光板、拡散 フィルム、ホログラフィック基板、調光フィルム等においても、その効果は大である。
[0345] また、本発明のハードコート膜は、分散粒径が lnm以上かつ 20nm以下の正方晶 ジルコユア粒子を含有したことにより、透明性を維持するとともに、屈折率及び靭性を 向上させることができたものであるから、カメラ、レンズ付フィルム等のフィルム一体型 カメラ、ビデオカメラ等の各種カメラ、 CD、 CD-ROM, MD (MOは誤り)、 CD— R、 CD -Video, DVD等の光ピックアップ、複写機、プリンタ一等の OA機器等の各種 機器はもちろんのこと、ハードコート膜が適用される様々な工業分野においても、そ の効果は大である。

Claims

請求の範囲
[I] 1つ以上の反応性官能基を有する表面修飾剤により表面が修飾されかつ分散粒径 力 Slnm以上かつ 20nm以下の無機酸ィ匕物粒子を含有してなることを特徴とする無機 酸化物透明分散液。
[2] 前記反応性官能基は、炭素 炭素二重結合またはケィ素一水素結合を有することを 特徴とする請求項 1記載の無機酸ィ匕物透明分散液。
[3] 前記反応性官能基は、アルコキシル基、ヒドロキシル基、ビニル基、スチリル基、ァク リル基、メタクリル基、アタリロイル基、およびエポキシ基力 なる群より選択される 1種 または 2種以上であることを特徴とする請求項 1記載の無機酸ィ匕物透明分散液。
[4] 前記表面修飾剤は、アルコキシシランィ匕合物、クロロシランィ匕合物、アルキルアルコ キシシランィ匕合物、アルキルクロロシランィ匕合物、シロキサンィ匕合物、界面活性剤、お よびチタンカップリング剤力もなる群より選択された 1種または 2種以上であることを特 徴とする請求項 1記載の無機酸化物透明分散液。
[5] 前記アルコキシシラン化合物またはクロロシランは、シランカップリング剤であることを 特徴とする請求項 4記載の無機酸ィ匕物透明分散液。
[6] 前記シロキサンィ匕合物は、変性シリコーンまたはシリコーンレジンであることを特徴と する請求項 4記載の無機酸化物透明分散液。
[7] 前記表面の修飾部分の重量比は、前記無機酸化物粒子の 5重量%以上かつ 200重 量%以下であることを特徴とする請求項 1記載の無機酸ィ匕物透明分散液。
[8] 前記無機酸化物粒子は、ジルコユア粒子であることを特徴とする請求項 1記載の無 機酸化物透明分散液。
[9] 前記ジルコユア粒子は正方晶ジルコ-ァ粒子であることを特徴とする請求項 8記載の 無機酸化物透明分散液。
[10] 前記無機酸ィ匕物粒子の含有率は、 1重量%以上かつ 70重量%以下であることを特 徴とする請求項 1記載の無機酸化物透明分散液。
[I I] 請求項 1な ヽし 10の ヽずれか 1項記載の無機酸化物粒子と、榭脂とを含有することを 特徴とする無機酸化物粒子含有榭脂組成物。
[12] 請求項 1ないし 10のいずれ力 1項記載の無機酸ィ匕物透明分散液力も得られた無機 酸化物粒子と、榭脂とを含有することを特徴とする無機酸化物粒子含有榭脂組成物
[13] 前記無機酸ィ匕物粒子を前記榭脂中に分散しかつ当該樹脂と反応してなることを特徴 とする請求項 12記載の無機酸ィ匕物粒子含有榭脂組成物。
[14] 前記榭脂は、シリコーン榭脂、エポキシ榭脂またはアクリル榭脂であることを特徴とす る請求項 12記載の無機酸化物粒子含有榭脂組成物。
[15] 前記エポキシ榭脂は芳香族エポキシ榭脂の芳香環を水素化した水添エポキシ榭脂 である請求項 14記載の無機酸化物粒子含有榭脂組成物。
[16] 無機酸ィ匕物粒子はジルコユア粒子である請求項 15記載の無機酸ィ匕物粒子含有榭 脂組成物。
[17] 前記ジルコユア粒子の含有率は 10重量%以上かつ 60重量%以下であることを特徴 とする請求項 16記載の無機酸ィ匕物含有榭脂組成物。
[18] 前記無機酸ィ匕物粒子の含有率は、 1重量%以上かつ 80重量%以下であることを特 徴とする請求項 12記載の無機酸ィ匕物粒子含有榭脂組成物。
[19] 請求項 11項記載の無機酸化物粒子含有榭脂組成物を含有してなることを特徴とす る発光素子封止用糸且成物。
[20] 請求項 12項記載の無機酸化物粒子含有榭脂組成物を含有してなることを特徴とす る発光素子封止用糸且成物。
[21] 請求項 13な 、し 18の 、ずれか 1項記載の無機酸化物粒子含有榭脂組成物を含有 してなることを特徴とする発光素子封止用組成物。
[22] 前記無機酸化物粒子の屈折率が 1. 8以上であり、前記榭脂はシリコーン榭脂である 請求項 21記載の発光素子封止用組成物。
[23] 前記発光素子封止用組成物において、ジルコユア粒子の含有率が 10重量%以上 かつ 60重量%以下の場合、波長 350nm以上かつ 800nm以下の光の透過率が 80
%以上であることを特徴とする請求項 18記載の発光素子封止用組成物。
[24] 少なくとも光透過領域を、請求項 18ないし 20記載の発光素子封止用組成物により 封止してなることを特徴とする発光素子。
[25] 請求項 21記載の発光素子を備えてなることを特徴とする光半導体装置。
[26] 請求項 1ないし 10のいずれ力 1項記載の無機酸ィ匕物透明分散液と、榭脂とを混合し 、得られた混合物を成形もしくは充填し、次いで、この成形体もしくは充填物を硬化 することを特徴とする無機酸化物粒子含有榭脂組成物の製造方法。
[27] フィルム状またはシート状の透明プラスチック部材であつて、
請求項 1〜10のいずれかの 1項記載の無機酸ィ匕物粒子を含有してなることを特 徴とする無機酸ィ匕物粒子含有透明プラスチック部材。
[28] フィルム状またはシート状の透明プラスチック部材であつて、
請求項 1〜10のいずれかの 1項記載の無機酸ィ匕物透明分散液力も得られた無 機酸化物粒子を含有してなることを特徴とする無機酸化物粒子含有透明プラスチッ ク部材。
[29] 無機酸ィ匕物粒子はジルコユア微粒子である請求項 28項記載の無機酸ィ匕物粒子含 有透明プラスチック部材。
[30] 前記ジルコユア微粒子の含有率は 10重量%以上かつ 80重量%以下であることを特 徴とする請求項 28記載の無機酸ィ匕物粒子含有透明プラスチック部材。
[31] 厚みを 30 μ m以上かつ 300 μ m以下とした場合の可視光透過率が 80%以上である ことを特徴とする請求項 28記載の無機酸ィ匕物粒子含有透明プラスチック部材。
[32] 請求項 28記載の無機酸ィ匕物粒子含有透明プラスチック部材を備えていることを特徴 とする複合プラスチック部材。
[33] 請求項 1〜10のいずれかの 1項記載の無機酸ィ匕物粒子を含有してなることを特徴と するハードコート膜。
[34] 請求項 1〜10のいずれかの 1項記載の無機酸ィ匕物透明分散液力も得られた無機酸 化物粒子を含有してなることを特徴とするハードコート膜。
[35] 無機酸ィ匕物粒子は正方晶ジルコ-ァ粒子である請求項 34記載のハードコート膜。
[36] 前記無機酸ィ匕物粒子は、ハードコート基材中に分散してなることを特徴とする請求項
34記載のハードコート膜。
[37] 前記無機酸化物粒子の含有率は 1重量%以上かつ 80重量%以下であることを特徴 とする請求項 34記載のハードコート膜。
[38] 少なくとも光透過領域に、請求項 34記載のハードコート膜を備えてなることを特徴と する光学機能膜。
[39] 少なくとも光透過領域に、請求項 34記載のハードコート膜を備えてなることを特徴と する光学レンズ。
[40] 請求項 39記載の光学レンズを備えてなることを特徴とする光学部品。
PCT/JP2006/321092 2005-10-28 2006-10-24 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法 WO2007049573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/084,093 US7985476B2 (en) 2005-10-28 2006-10-24 Transparent zirconia dispersion and zirconia particle-containing resin composition, composition for sealing light emitting element and light emitting element, hard coat film and optical functional film and optical component, and method for producing zirconia particle-containing resin
CN200680039934XA CN101296982B (zh) 2005-10-28 2006-10-24 无机氧化物透明分散液和含无机氧化物粒子的树脂组合物、发光元件密封用组合物及发光元件、硬涂膜和光学功能膜及光学部件、以及含无机氧化物粒子的树脂组合物的制备方法
EP06812152.4A EP1950239B1 (en) 2005-10-28 2006-10-24 Transparent inorganic-oxide dispersion, resin composition containing inorganic oxide particles, composition for encapsulating luminescent element, luminescent element, hard coat, optical functional film, optical part, and process for producing resin composition containing inorganic oxide particles
KR1020087009837A KR101302277B1 (ko) 2005-10-28 2006-10-24 무기산화물 투명 분산액과 무기산화물 입자 함유 수지조성물, 발광소자 밀봉용 조성물 및 발광소자,하드코트막과 광학 기능막 및 광학 부품, 그리고무기산화물 입자 함유 수지 조성물의 제조 방법

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2005-314204 2005-10-28
JP2005314204A JP5167582B2 (ja) 2005-10-28 2005-10-28 ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
JP2005-369159 2005-12-22
JP2005369159A JP2007171555A (ja) 2005-12-22 2005-12-22 ハードコート膜と光学機能膜及び光学レンズ並びに光学部品
JP2006-041094 2006-02-17
JP2006041094A JP5540458B2 (ja) 2006-02-17 2006-02-17 無機酸化物透明分散液と樹脂組成物、透明複合体、発光素子封止用組成物及び発光素子並びに透明複合体の製造方法
JP2006089917A JP5167595B2 (ja) 2006-03-29 2006-03-29 ジルコニア微粒子含有透明プラスチック部材及び複合プラスチック部材
JP2006-089917 2006-03-29
JP2006-127565 2006-05-01
JP2006127565A JP2007299981A (ja) 2006-05-01 2006-05-01 発光素子封止用組成物及び発光素子並びに光半導体装置
JP2006140268A JP5453707B2 (ja) 2006-05-19 2006-05-19 ジルコニア含有エポキシ樹脂組成物とこれを含有する透明複合体および発光素子並びに光半導体装置
JP2006-140268 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007049573A1 true WO2007049573A1 (ja) 2007-05-03

Family

ID=37967685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321092 WO2007049573A1 (ja) 2005-10-28 2006-10-24 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US7985476B2 (ja)
EP (1) EP1950239B1 (ja)
KR (1) KR101302277B1 (ja)
TW (1) TWI401287B (ja)
WO (1) WO2007049573A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023612A1 (fr) 2006-08-25 2008-02-28 National University Corporation The University Of Electro-Communications Composition photosensible comprenant une microparticule composite organique/zircone
JP2009162848A (ja) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd 合成樹脂製レンズ用透明被膜形成用塗布液および合成樹脂製レンズ
JP2010085937A (ja) * 2008-10-03 2010-04-15 Nippon Shokubai Co Ltd 無機酸化物微粒子含有組成物及び該組成物を硬化させて得られる無機酸化物微粒子含有硬化組成物
US7864425B2 (en) 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
US7901785B2 (en) 2006-12-28 2011-03-08 Showa Denko K.K. Resin composition for sealing light-emitting device and lamp
US8163205B2 (en) * 2008-08-12 2012-04-24 The Boeing Company Durable transparent conductors on polymeric substrates
US20120193667A1 (en) * 2006-10-28 2012-08-02 Samsung Electro-Mechanics Co., Ltd. Method for Controlling Fluidity of Phosphor, Phosphor and Phosphor Paste
JP2014208735A (ja) * 2012-05-18 2014-11-06 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
WO2015146925A1 (ja) * 2014-03-28 2015-10-01 日本ゼオン株式会社 樹脂組成物、樹脂成形体及び光学部品
WO2015146564A1 (ja) * 2014-03-28 2015-10-01 コニカミノルタ株式会社 光学遮蔽フィルム、光学遮蔽体および光学遮蔽フィルムの製造方法
JP2016155992A (ja) * 2014-06-30 2016-09-01 三星電子株式会社Samsung Electronics Co.,Ltd. 樹脂膜、光学部材および偏光部材
WO2016142992A1 (ja) * 2015-03-06 2016-09-15 住友大阪セメント株式会社 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
WO2016208640A1 (ja) * 2015-06-24 2016-12-29 住友大阪セメント株式会社 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032072A2 (en) * 2007-08-31 2009-03-12 Cabot Corporation Method of preparing a nanoparticle dispersion of a modified metal oxide
EP2075277A3 (en) * 2007-12-25 2012-11-07 Nitto Denko Corporation Silicone resin composition
JP5077950B2 (ja) * 2008-03-19 2012-11-21 大日本塗料株式会社 分散液、透明導電膜形成用組成物、透明導電膜及びディスプレイ
JP5106307B2 (ja) * 2008-08-06 2012-12-26 日東電工株式会社 金属酸化物微粒子を含有してなる樹脂組成物
US8519997B2 (en) 2008-09-23 2013-08-27 Honeywell International Inc. Apparatus and method for display and functionality of a vehicle display system cursor control device
JP2010102106A (ja) * 2008-10-23 2010-05-06 Nitto Denko Corp 光導波路用組成物およびその製造方法、ならびにそれを用いた光導波路、光導波路の製造方法
JP5397829B2 (ja) * 2008-12-04 2014-01-22 堺化学工業株式会社 酸化ジルコニウム分散液の製造方法
TWI423463B (zh) * 2008-12-12 2014-01-11 Sun Well Solar Corp 以溶凝膠法合成半導體化合物薄膜層的製造方法
JP5326994B2 (ja) * 2009-01-20 2013-10-30 信越化学工業株式会社 光硬化性樹脂組成物及びその硬化皮膜を有する物品
DE102009000597B4 (de) * 2009-02-04 2020-10-15 Robert Bosch Gmbh Haltekörper zur spielfreien Montage von Sensoren
US20100213415A1 (en) * 2009-02-26 2010-08-26 Nitto Denko Corporation Metal oxide fine particles, silicone resin composition and use thereof
EP2465880B1 (en) 2009-08-13 2014-11-12 Nissan Chemical Industries, Ltd. Transparent high-refractive-index resin composition
EP2473329B1 (en) * 2009-09-03 2017-01-11 LG Electronics Inc. Method for manufacturing a master mold which is used to form a micropatterned film applied to an exterior of a household appliance and manufacturing apparatus and method of the film using the master mold
TWI408174B (zh) * 2010-02-09 2013-09-11 Nanya Plastics Corp 應用在光學封裝及塗佈之環氧矽氧烷樹脂組成物
CN105931696B (zh) 2010-04-23 2017-07-07 皮瑟莱根特科技有限责任公司 纳米晶体的合成、盖帽和分散
US9228902B2 (en) * 2010-07-08 2016-01-05 Cvg Management Corporation Infrared temperature measurement and stabilization thereof
US10782187B2 (en) * 2010-07-08 2020-09-22 Cvg Management Corporation Infrared temperature measurement and stabilization thereof
JP5273744B2 (ja) * 2010-07-16 2013-08-28 住友大阪セメント株式会社 無機酸化物粒子とシリコーン樹脂との複合組成物の製造方法
TWI417657B (zh) * 2010-09-01 2013-12-01 Daxin Materials Corp 感光性樹脂組成物
CN107416764A (zh) 2010-10-27 2017-12-01 皮瑟莱根特科技有限责任公司 纳米晶体的合成、盖帽和分散
WO2012081247A1 (ja) 2010-12-17 2012-06-21 パナソニック株式会社 Led装置、およびその製造方法
WO2012138709A2 (en) * 2011-04-04 2012-10-11 Wasbbb, Inc. Heavy plastic
WO2013012587A2 (en) * 2011-07-15 2013-01-24 3M Innovative Properties Company Semiconductor package resin composition and usage method thereof
EP2752392A4 (en) * 2011-08-31 2015-04-29 Sumitomo Osaka Cement Co Ltd TRANSPARENT DISPERSION WITH AN INORGANIC OXIDE AND RESIN COMPOSITION FOR THE FORMATION OF A TRANSPARENT COMPOSITE MATERIAL AND TRANSPARENT COMPOSITE MATERIAL AND OPTICAL ELEMENT
US9359689B2 (en) 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
JP5942466B2 (ja) * 2012-02-22 2016-06-29 住友金属鉱山株式会社 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
KR101956112B1 (ko) * 2012-03-23 2019-03-12 엘지이노텍 주식회사 디스플레이 룸미러
CN104271495B (zh) * 2012-05-18 2017-08-25 住友大阪水泥股份有限公司 表面修饰金属氧化物粒子材料、分散液、聚硅氧烷树脂组合物、聚硅氧烷树脂复合体、光半导体发光装置、照明器具及液晶图像装置
JP6003402B2 (ja) * 2012-08-28 2016-10-05 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置
JP6340814B2 (ja) 2013-06-04 2018-06-13 セイコーエプソン株式会社 電気泳動粒子、電気泳動粒子の製造方法、電気泳動分散液、表示装置および電子機器
JP6326856B2 (ja) 2013-06-24 2018-05-23 セイコーエプソン株式会社 電気泳動粒子、電気泳動分散液、表示シート、表示装置および電子機器
JP6326854B2 (ja) 2013-06-24 2018-05-23 セイコーエプソン株式会社 電気泳動粒子、電気泳動分散液、表示シート、表示装置および電子機器
JP6472596B2 (ja) * 2014-02-13 2019-02-20 日亜化学工業株式会社 発光装置及びその製造方法
TWI543938B (zh) 2014-05-13 2016-08-01 國立中央大學 金屬氧化物奈米顆粒材料
KR102237112B1 (ko) * 2014-07-30 2021-04-08 엘지이노텍 주식회사 발광 소자 및 이를 구비한 광원 모듈
TWI680152B (zh) * 2014-10-16 2019-12-21 日商住友大阪水泥股份有限公司 表面改質金屬氧化物粒子分散液及其製造方法、表面改質金屬氧化物粒子-矽酮樹脂複合組成物、表面改質金屬氧化物粒子-矽酮樹脂複合物、光學構件以及發光裝置
WO2016115570A1 (en) * 2015-01-16 2016-07-21 The Board Of Regents For Oklahoma State University Method for fabrication of high dispersion polymer nanocomposites
TWI794143B (zh) 2015-10-14 2023-03-01 美商陶氏全球科技責任有限公司 塗層組成物
DE102016104790A1 (de) 2016-03-15 2017-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Materialien für die LED-Verkapselung
US20190367674A1 (en) 2016-11-22 2019-12-05 Idemitsu Kosan Co., Ltd. Triazine-ring-containing polymer and composition in which same is used
KR102289273B1 (ko) * 2018-08-22 2021-08-12 고려대학교 세종산학협력단 양자점 발광다이오드 패키지 및 그 제조 방법
US11697762B2 (en) 2018-08-22 2023-07-11 Korea University Research And Business Foundation, Sejong Campus Organic-inorganic hybrid coating layer, quantum dot nanocapsule, quantum dot light emitting diode package, and method of fabricating the same
WO2020040508A1 (ko) * 2018-08-22 2020-02-27 고려대학교 세종산학협력단 양자점 발광다이오드 패키지 및 그 제조 방법
JPWO2020250594A1 (ja) * 2019-06-14 2020-12-17
CN114426771B (zh) * 2020-10-29 2023-07-14 广东生益科技股份有限公司 一种氰酸酯体系树脂组合物、包含其的预浸料以及层压板和印制电路板
KR20220077307A (ko) 2020-12-01 2022-06-09 삼성디스플레이 주식회사 표시 장치

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171012A (ja) 1991-12-26 1993-07-09 Toray Ind Inc ポリエステル組成物
JPH11302597A (ja) 1998-04-20 1999-11-02 Asahi Optical Co Ltd ハードコート組成物及び光学部材
JP2000143924A (ja) * 1998-11-06 2000-05-26 Jsr Corp 液状硬化性樹脂組成物、その硬化物および反射防止膜
JP2000186216A (ja) * 1998-12-22 2000-07-04 Jsr Corp 高屈折率材料およびそれを用いた反射防止用積層体
JP2000248198A (ja) * 1999-03-03 2000-09-12 Jsr Corp 架橋性粒子、それを含有する樹脂組成物及びその硬化物
JP2001049077A (ja) * 1999-08-12 2001-02-20 Jsr Corp 樹脂組成物及びその硬化物
JP2001187812A (ja) * 1999-12-28 2001-07-10 Jsr Corp 反応性粒子、これを含有する硬化性組成物及び硬化物
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
JP2003185357A (ja) * 2001-12-12 2003-07-03 Sumitomo Metal Ind Ltd 高温容器内データ採取装置およびデータ採取方法
JP2004001393A (ja) 2002-04-22 2004-01-08 Mitsubishi Gas Chem Co Inc 透明な樹脂積層体及びそれを用いた成形品
JP2004269644A (ja) * 2003-03-07 2004-09-30 Jsr Corp 硬化性組成物、その硬化物及び積層体
JP2004292779A (ja) 2002-04-26 2004-10-21 Kanegafuchi Chem Ind Co Ltd 硬化性組成物、硬化物、その製造方法およびその硬化物により封止された発光ダイオード
JP2005068234A (ja) 2003-08-21 2005-03-17 Japan Epoxy Resin Kk エポキシ樹脂組成物及び発光素子封止材用エポキシ樹脂組成物
JP2005105217A (ja) 2003-10-01 2005-04-21 Dow Corning Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2005161111A (ja) 2003-11-28 2005-06-23 Jsr Corp ジルコニア粒子分散液、その製造方法及び光硬化性組成物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777433A (en) * 1996-07-11 1998-07-07 Hewlett-Packard Company High refractive index package material and a light emitting device encapsulated with such material
EP1165682B1 (en) * 1999-02-15 2006-07-05 DSM IP Assets B.V. Resin composition and cured product
US6376590B2 (en) * 1999-10-28 2002-04-23 3M Innovative Properties Company Zirconia sol, process of making and composite material
JP2003012933A (ja) 2001-06-19 2003-01-15 Three M Innovative Properties Co 保護フィルム、接着シート、及び床面保護構造体
JP3893966B2 (ja) 2001-12-18 2007-03-14 Jsr株式会社 保護膜の形成方法とそのための組成物
US6870311B2 (en) 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
US7074463B2 (en) * 2003-09-12 2006-07-11 3M Innovative Properties Company Durable optical element
US7282272B2 (en) * 2003-09-12 2007-10-16 3M Innovative Properties Company Polymerizable compositions comprising nanoparticles
TW200517437A (en) * 2003-10-16 2005-06-01 Nitto Denko Corp Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP2005120230A (ja) 2003-10-16 2005-05-12 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2005301241A (ja) 2004-03-16 2005-10-27 Fuji Photo Film Co Ltd 反射防止フィルム、その製造方法、偏光板、及び画像表示装置
JP2005307178A (ja) 2004-03-25 2005-11-04 Fuji Photo Film Co Ltd 光学フィルム、偏光板、及び画像表示装置
JP2005288712A (ja) 2004-03-31 2005-10-20 Jsr Corp 帯電防止層を有する積層体及び反射防止膜
BRPI0509889A (pt) 2004-04-15 2007-10-09 Dentofit As material compósito, em particular um material para obturação em odontologia, cura ultrassÈnica de materiais para obturação em odontologia e uma população de partìculas de zircÈnia
JP2005343119A (ja) 2004-06-07 2005-12-15 Sdc Technologies Asia Kk 被覆プラスチック物品の製造方法、被覆プラスチック物品および光硬化性コーティング液組成物
US7491441B2 (en) * 2004-12-30 2009-02-17 3M Innovative Properties Company High refractive index, durable hard coats
WO2006098899A2 (en) 2005-03-11 2006-09-21 3M Innovative Properties Company Light management films with zirconia particles
JP5447916B2 (ja) 2009-02-17 2014-03-19 Dic株式会社 無機酸化物微粒子含有樹脂組成物および該組成物から得られる硬化物

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171012A (ja) 1991-12-26 1993-07-09 Toray Ind Inc ポリエステル組成物
JPH11302597A (ja) 1998-04-20 1999-11-02 Asahi Optical Co Ltd ハードコート組成物及び光学部材
JP2000143924A (ja) * 1998-11-06 2000-05-26 Jsr Corp 液状硬化性樹脂組成物、その硬化物および反射防止膜
JP2000186216A (ja) * 1998-12-22 2000-07-04 Jsr Corp 高屈折率材料およびそれを用いた反射防止用積層体
JP2000248198A (ja) * 1999-03-03 2000-09-12 Jsr Corp 架橋性粒子、それを含有する樹脂組成物及びその硬化物
JP2001049077A (ja) * 1999-08-12 2001-02-20 Jsr Corp 樹脂組成物及びその硬化物
JP2001187812A (ja) * 1999-12-28 2001-07-10 Jsr Corp 反応性粒子、これを含有する硬化性組成物及び硬化物
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
JP2003185357A (ja) * 2001-12-12 2003-07-03 Sumitomo Metal Ind Ltd 高温容器内データ採取装置およびデータ採取方法
JP2004001393A (ja) 2002-04-22 2004-01-08 Mitsubishi Gas Chem Co Inc 透明な樹脂積層体及びそれを用いた成形品
JP2004292779A (ja) 2002-04-26 2004-10-21 Kanegafuchi Chem Ind Co Ltd 硬化性組成物、硬化物、その製造方法およびその硬化物により封止された発光ダイオード
JP2004269644A (ja) * 2003-03-07 2004-09-30 Jsr Corp 硬化性組成物、その硬化物及び積層体
JP2005068234A (ja) 2003-08-21 2005-03-17 Japan Epoxy Resin Kk エポキシ樹脂組成物及び発光素子封止材用エポキシ樹脂組成物
JP2005105217A (ja) 2003-10-01 2005-04-21 Dow Corning Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2005161111A (ja) 2003-11-28 2005-06-23 Jsr Corp ジルコニア粒子分散液、その製造方法及び光硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950239A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864425B2 (en) 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
WO2008023612A1 (fr) 2006-08-25 2008-02-28 National University Corporation The University Of Electro-Communications Composition photosensible comprenant une microparticule composite organique/zircone
US20120193667A1 (en) * 2006-10-28 2012-08-02 Samsung Electro-Mechanics Co., Ltd. Method for Controlling Fluidity of Phosphor, Phosphor and Phosphor Paste
US7901785B2 (en) 2006-12-28 2011-03-08 Showa Denko K.K. Resin composition for sealing light-emitting device and lamp
JP2009162848A (ja) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd 合成樹脂製レンズ用透明被膜形成用塗布液および合成樹脂製レンズ
US8163205B2 (en) * 2008-08-12 2012-04-24 The Boeing Company Durable transparent conductors on polymeric substrates
JP2010085937A (ja) * 2008-10-03 2010-04-15 Nippon Shokubai Co Ltd 無機酸化物微粒子含有組成物及び該組成物を硬化させて得られる無機酸化物微粒子含有硬化組成物
JP2014208735A (ja) * 2012-05-18 2014-11-06 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JPWO2015146925A1 (ja) * 2014-03-28 2017-04-13 日本ゼオン株式会社 樹脂組成物、樹脂成形体及び光学部品
WO2015146925A1 (ja) * 2014-03-28 2015-10-01 日本ゼオン株式会社 樹脂組成物、樹脂成形体及び光学部品
WO2015146564A1 (ja) * 2014-03-28 2015-10-01 コニカミノルタ株式会社 光学遮蔽フィルム、光学遮蔽体および光学遮蔽フィルムの製造方法
US10030123B2 (en) 2014-03-28 2018-07-24 Zeon Corporation Resin composition, resin molded article, and optical component
JP2016155992A (ja) * 2014-06-30 2016-09-01 三星電子株式会社Samsung Electronics Co.,Ltd. 樹脂膜、光学部材および偏光部材
JP2019196488A (ja) * 2014-06-30 2019-11-14 三星電子株式会社Samsung Electronics Co.,Ltd. ハードコート層形成用塗布溶液、ハードコート層の形成方法および光学部材
KR20170127466A (ko) * 2015-03-06 2017-11-21 스미토모 오사카 세멘토 가부시키가이샤 광 산란 복합체 형성용 조성물, 광 산란 복합체 및 그 제조 방법
JPWO2016142992A1 (ja) * 2015-03-06 2017-12-14 住友大阪セメント株式会社 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
WO2016142992A1 (ja) * 2015-03-06 2016-09-15 住友大阪セメント株式会社 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
KR102190051B1 (ko) 2015-03-06 2020-12-11 스미토모 오사카 세멘토 가부시키가이샤 광 산란 복합체 형성용 조성물, 광 산란 복합체 및 그 제조 방법
WO2016208640A1 (ja) * 2015-06-24 2016-12-29 住友大阪セメント株式会社 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JPWO2016208640A1 (ja) * 2015-06-24 2018-04-12 住友大阪セメント株式会社 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
US10269670B2 (en) 2015-06-24 2019-04-23 Sumitomo Osaka Cement Co., Ltd. Curable silicone resin composition, silicone resin composite, photosemiconductor light emitting device, luminaire and liquid crystal imaging device

Also Published As

Publication number Publication date
US7985476B2 (en) 2011-07-26
EP1950239A4 (en) 2010-10-06
EP1950239B1 (en) 2017-01-04
TW200734391A (en) 2007-09-16
US20090140284A1 (en) 2009-06-04
TWI401287B (zh) 2013-07-11
EP1950239A1 (en) 2008-07-30
KR101302277B1 (ko) 2013-09-02
KR20080066692A (ko) 2008-07-16

Similar Documents

Publication Publication Date Title
WO2007049573A1 (ja) 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法
CN101296982B (zh) 无机氧化物透明分散液和含无机氧化物粒子的树脂组合物、发光元件密封用组合物及发光元件、硬涂膜和光学功能膜及光学部件、以及含无机氧化物粒子的树脂组合物的制备方法
JP5034314B2 (ja) 高屈折率透明粒子の製造方法と高屈折率透明粒子及び高屈折率透明複合体並びに発光素子
JP5540458B2 (ja) 無機酸化物透明分散液と樹脂組成物、透明複合体、発光素子封止用組成物及び発光素子並びに透明複合体の製造方法
KR102133239B1 (ko) 신틸레이터 패널, 방사선 검출기 및 그 제조 방법
JP2008120848A (ja) 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子
WO2004076585A1 (ja) 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置
WO2007034919A1 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5018025B2 (ja) 表面修飾酸化ジルコニウム粒子分散液及び透明複合体、光学部材並びに発光素子封止用組成物、発光素子
US20230102420A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing dispersion liquid
JP2007299981A (ja) 発光素子封止用組成物及び発光素子並びに光半導体装置
JP2012124428A (ja) 半導体発光装置用樹脂成形体
JP2007165508A (ja) 発光素子封止用組成物及び発光素子並びに光半導体装置
WO2013172476A1 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP5444315B2 (ja) 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
JP2009173694A (ja) シリコーン系重合体粒子および該粒子を含有する硬化性樹脂組成物
JP2011129901A (ja) 半導体発光装置の製造方法
JP2008137848A (ja) 無機酸化物透明分散液と透明複合体、発光素子封止用組成物および発光素子並びに透明複合体の製造方法
KR20190059970A (ko) 반사 방지재
JP5176380B2 (ja) 表面修飾ジルコニア粒子と表面修飾ジルコニア粒子分散液及び複合体並びに表面修飾ジルコニア粒子の製造方法
JP2010100733A (ja) 蛍光体含有組成物の製造方法
JP2009224754A (ja) 半導体発光装置、照明装置、及び画像表示装置
JP2017168808A (ja) Csp−led用熱硬化性白色インク
JP5982790B2 (ja) 発光装置
JP2015149379A (ja) 複合シートならびにそれを用いたledパッケージおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039934.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12084093

Country of ref document: US

Ref document number: 1020087009837

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3744/DELNP/2008

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2006812152

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006812152

Country of ref document: EP