WO2016142992A1 - 光散乱複合体形成用組成物、光散乱複合体及びその製造方法 - Google Patents

光散乱複合体形成用組成物、光散乱複合体及びその製造方法 Download PDF

Info

Publication number
WO2016142992A1
WO2016142992A1 PCT/JP2015/056643 JP2015056643W WO2016142992A1 WO 2016142992 A1 WO2016142992 A1 WO 2016142992A1 JP 2015056643 W JP2015056643 W JP 2015056643W WO 2016142992 A1 WO2016142992 A1 WO 2016142992A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light scattering
particles
composition
complex
Prior art date
Application number
PCT/JP2015/056643
Other languages
English (en)
French (fr)
Inventor
大塚 剛史
原田 健司
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN201580077495.0A priority Critical patent/CN107431114B/zh
Priority to US15/555,972 priority patent/US20180062049A1/en
Priority to PCT/JP2015/056643 priority patent/WO2016142992A1/ja
Priority to JP2017504317A priority patent/JP6724898B2/ja
Priority to KR1020177026377A priority patent/KR102190051B1/ko
Priority to EP15884490.2A priority patent/EP3267499B1/en
Priority to TW105105199A priority patent/TW201708335A/zh
Publication of WO2016142992A1 publication Critical patent/WO2016142992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a composition for forming a light scattering complex, a light scattering complex, and a method for producing the same.
  • a white light semiconductor light emitting device combining a blue light semiconductor light emitting element and a phosphor is combined with the blue light emitted from the blue light semiconductor light emitting element and the light wavelength-converted by the phosphor to produce white (pseudo white). It will be.
  • This type of white light semiconductor light emitting device includes a combination of a blue light semiconductor light emitting element and a yellow phosphor; a combination of a blue light semiconductor light emitting element and a green phosphor and a red phosphor; Since the light emission color of the optical semiconductor light emitting element is blue light, it becomes white light containing a large amount of blue components.
  • a white light semiconductor light-emitting device in which a blue light semiconductor light-emitting element and a yellow phosphor are combined contains a very large amount of blue components.
  • a white light semiconductor light emitting device combining a blue light semiconductor light emitting element and a phosphor contains a large amount of blue components. Therefore, blue light retinopathy of the eye, physiological damage to the skin, arousal level, autonomic nervous function, Physiological effects on clocks and melatonin secretion have been pointed out.
  • the market for lighting applications of optical semiconductor light-emitting devices has expanded, and the brightness of optical semiconductor light-emitting devices has been increasing. Human bodies are often exposed to blue light.
  • Patent Document 1 discloses that a light scattering layer in which particles having an average particle diameter D of 20 nm ⁇ D ⁇ 0.4 ⁇ ⁇ / ⁇ (where ⁇ is an emission wavelength of a blue light semiconductor light emitting element) is dispersed is a phosphor. By providing it on the light emitting side of the layer, color unevenness and light extraction efficiency are improved.
  • Patent Document 2 discloses that a blue light component is obtained by including particles having an average primary particle size of 3 nm or more and 20 nm or less as light scattering particles in or on a light conversion layer containing a phosphor to form a light scattering layer. To improve luminance.
  • An object of the present invention is to provide a composition for forming a light-scattering complex, a light-scattering complex, and a method for producing the same that can provide a white light-emitting semiconductor light-emitting device.
  • the present inventors have made constant the content of the surface-modified inorganic oxide particles constituting the light scattering particles in the composition for forming the light scattering complex.
  • the light of the light-scattering complex formed by curing the composition for forming the light-scattering complex by reducing the surface modification state and the average dispersed particle size of the inorganic oxide particles whose surface is modified.
  • the present inventors have found that the light scattering property can be enhanced while suppressing the decrease in the transmittance, and have arrived at the present invention. That is, the present invention is as follows.
  • An inorganic oxide particle surface-modified with a surface-modifying material having one or more functional groups selected from an alkenyl group, an H—Si group, and an alkoxy group, and an uncured matrix resin composition And the average dispersed particle size of the surface-modified inorganic oxide particles is 3 nm or more and 150 nm or less, and the content of the inorganic oxide particles is 0.01% by mass or more and 15% by mass or less in the total solid content.
  • a composition for forming a light scattering complex is 3 nm or more and 150 nm or less, and the content of the inorganic oxide particles is 0.01% by mass or more and 15% by mass or less in the total solid content.
  • the transmittance Ta at a wavelength of 550 nm measured with an integrating sphere for the composition before curing and the transmittance Tb at a wavelength of 550 nm measured with an integrating sphere for the cured product after curing satisfy the relationship of the following formula (1).
  • a light-scattering complex in which the part forms aggregated particles, and the average particle diameter of all particles formed of the inorganic oxide particles is 10 nm or more and 1000 nm or less.
  • [6] Contains inorganic oxide particles surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups, and an uncured matrix resin composition And the surface-modified inorganic oxide particles have an average dispersed particle diameter of 3 nm or more and 150 nm or less, and the content of the inorganic oxide particles is 0.01% by mass or more and 15% by mass or less.
  • a method for producing a light scattering composite comprising a step of curing a composition for use, wherein at least a part of dispersed particles in the composition for forming a light scattering composite is associated with each other in the matrix resin during the curing.
  • the average particle diameter of all the particles formed by the surface-modified inorganic oxide particles in the light scattering composite is larger than the average dispersed particle diameter in the light scattering composite forming composition.
  • complex as described in said [6] hardened so that it may become 10 nm or more and 1000 nm or less.
  • the present invention it is possible to provide a composition for forming a light scattering complex having excellent light transmission and scattering properties, a light scattering complex, and a method for producing the same.
  • composition for forming a light-scattering complex of the present invention comprises inorganic oxide particles that have been surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups, And an undispersed matrix resin composition, wherein the surface-modified inorganic oxide particles have an average dispersed particle size of 3 nm to 150 nm, and the content of the inorganic oxide particles is 0. It is 01 mass% or more and 15 mass% or less.
  • the composition for forming a light scattering complex of the present invention may further contain a solvent, a surfactant, a dispersant, a stabilizer, an antioxidant and the like as long as the effects of the present invention are not impaired.
  • a solvent e.g., a solvent, a surfactant, a dispersant, a stabilizer, an antioxidant and the like as long as the effects of the present invention are not impaired.
  • particles made of an organic resin may be included. These internal solvents are volatile components (non-solid content), and the amount of surfactants, dispersants, stabilizers, antioxidants, particles made of organic resin, etc. is used in comparison with the matrix resin composition. Very few.
  • the surface-modified inorganic oxide particles in the present invention are inorganic oxide particles that have been surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups. .
  • the inorganic oxide particles may be further surface-treated with components other than the surface modifying material, for example, a surfactant, an organic acid, etc., but from the inorganic oxide particles surface-modified with the surface modifying material. It is preferable to become.
  • the inorganic oxide particles it is preferable to select particles made of a material that does not absorb light in the wavelength region in which the light scattering composite of the present invention is used.
  • examples of the material that does not absorb light in the near ultraviolet light to visible light region include metal oxides such as ZrO 2 , TiO 2 , ZnO, Al 2 O 3 , SiO 2 , and CeO 2.
  • metal oxides such as ZrO 2 , TiO 2 , ZnO, Al 2 O 3 , SiO 2 , and CeO 2.
  • wavelength characteristics can also be imparted to the light scattering composite by forming inorganic oxide particles using a material having absorption at a specific wavelength.
  • the refractive index of the inorganic oxide particles it is possible to adjust the light scattering property, the light transmittance, and the like.
  • the average primary particle diameter of the inorganic oxide particles is preferably 3 nm or more and 50 nm or less.
  • the average primary particle size is preferably 4 nm or more and 40 nm or less, and more preferably 5 nm or more and 20 nm or less. If the average primary particle diameter is less than 3 nm, the scattering effect is small, and the light scattering composite containing the light scattering particles cannot exhibit sufficient scattering characteristics, and thus the effect of providing the light scattering composite cannot be obtained. There is a fear. On the other hand, when the average primary particle diameter exceeds 50 nm, the scattering becomes too large especially when the later-described associated particles are formed, and multiple scattering is likely to occur in the light scattering complex. Light is confined in the light scattering complex, and the effect of providing the light scattering complex may not be obtained.
  • the average primary particle diameter of the inorganic oxide particles are preferably in the particle diameter range of 1 nm or more and 100 nm or less.
  • the average primary particle diameter of the inorganic oxide particles may be obtained by, for example, selecting 50 or more arbitrary particles from an image obtained by observing the particles with an electron microscope, obtaining the particle diameter, and averaging them.
  • the primary particle diameter of the inorganic oxide particles is nanometer size
  • the average primary particle diameter of the inorganic oxide particles may be the Scherrer diameter obtained by X-ray diffraction. This is because if the primary particle diameter is nanometer size, the possibility that one particle is composed of a plurality of crystallites is reduced, and the average primary particle diameter and the Scherrer diameter are substantially the same. It is.
  • the surface-modified inorganic oxide particles in the composition for forming a light-scattering complex may be dispersed as primary particles alone or as secondary particles in which a plurality of primary particles are aggregated. Or may be dispersed in a mixed state of primary particles and secondary particles.
  • the surface-modified inorganic oxide particles dispersed in such a state may be referred to as “dispersed particles”.
  • the average particle size of the dispersed particles that is, the average dispersed particle size needs to be 3 nm or more and 150 nm or less.
  • the average dispersed particle size is preferably 3 nm or more and 120 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the average dispersed particle diameter of the inorganic oxide particles since the lower limit value of the average primary particle diameter of the inorganic oxide particles is 3 nm, the average dispersed particle diameter never becomes less than 3 nm.
  • the average dispersed particle diameter exceeds 150 nm the surface-modified inorganic oxide particles tend to settle in the composition for forming a light scattering complex, so that the composition for forming a light scattering complex is obtained by curing.
  • various particles formed by the surface-modified inorganic oxide particles do not exist uniformly (uniformly dispersed), or the particle size of the associated particles formed by the inorganic oxide particles is There is a risk of exceeding 1200 nm.
  • the average dispersed particle size by setting the average dispersed particle size to 150 nm or less, light scattering in the particles can be suppressed, and thus transparency in the composition for forming a light scattering complex can be maintained.
  • the transmittance Ta at a wavelength of 550 nm measured with an integrating sphere of the composition for forming a light scattering complex and the integrating sphere of a cured product obtained by curing the composition for forming a light scattering complex. It is preferable that the relationship of the transmittance Tb at the wavelength of 550 nm has the relationship of the formula (1). Tb / Ta ⁇ 0.90 (1)
  • the average dispersed particle size of the inorganic oxide particles 3 nm or more and 150 nm or less 98% or more of the inorganic oxide particles are preferably in the particle size range of 1 nm or more and 200 nm or less.
  • the average dispersed particle size of the inorganic oxide particles is obtained, for example, by measuring the composition for forming a light scattering complex containing the particles by a dynamic light scattering method to obtain a particle size distribution, and obtaining the particle size distribution from the value by an arithmetic average. Can do.
  • the light-scattering composite of the present invention emits blue or near-ultraviolet light in an optical semiconductor light-emitting device, particularly an optical semiconductor light-emitting element, and wavelength-converts a part of this blue or near-ultraviolet to yellow by a phosphor. It can be suitably used for a white light semiconductor light emitting device.
  • the light scattering composite emits light from the optical semiconductor light-emitting element, and returns blue or near-ultraviolet emission light components that have passed through the phosphor layer without being converted in wavelength to the phosphor layer by scattering,
  • Two actions are required, that is, the action of taking out the converted light component such as yellow light whose wavelength has been converted by the phosphor layer as it is without being scattered as much as possible.
  • the average primary particle diameter of the inorganic oxide particles is preferably 3 nm or more and 50 nm or less. That is, when the average primary particle diameter of the surface-modified inorganic oxide particles is less than 3 nm, the scattering characteristics for blue or near-ultraviolet emission light components are insufficient, and thus the blue or near-ultraviolet emission color components remain as they are. Radiated outside (without scattering). For this reason, since the amount of light incident on the phosphor decreases and the amount of light of the light component wavelength-converted by the phosphor does not increase, the luminance of the white light semiconductor light emitting device cannot be improved. Furthermore, a physiological effect due to blue light tends to occur.
  • the average primary particle diameter exceeds 50 nm, particularly when the associated particles described later are formed, the blue or near-ultraviolet light component is not only sufficiently scattered but also wavelength-converted in the phosphor layer. Since the converted light component is also scattered and hardly emitted from the white light semiconductor light emitting device, the luminance is also lowered. That is, even when the light scattering composite of the present invention is applied to a white light semiconductor light-emitting device, if the average primary particle diameter of the surface-modified inorganic oxide particles is 3 nm or more and 50 nm or less, the white light semiconductor light-emitting device The luminance can be improved and the emission color component of blue or near ultraviolet can be reduced, which can be preferably used.
  • the average dispersed particle diameter of the surface-modified inorganic oxide particles in the composition for forming a light scattering complex is 3 nm or more and 150 nm or less, it can be suitably used for a white light semiconductor light emitting device.
  • the content of the surface-modified inorganic oxide particles in the composition for forming a light scattering complex is 0.01% by mass to 15% by mass with respect to the total amount of the composition for forming a light scattering complex.
  • the content of the surface-modified inorganic oxide particles is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 5% by mass with respect to the total amount of the composition for forming a light scattering complex. The following is more preferable.
  • the content of the surface-modified inorganic oxide particles in the composition for forming a light scattering complex is less than 0.01% by mass, in the light scattering complex obtained by curing the composition for forming a light scattering complex The amount of the surface-modified inorganic oxide particles, that is, light scattering particles is too small, and the light scattering effect cannot be obtained.
  • the content of the surface-modified inorganic oxide particles in the composition for forming a light-scattering complex exceeds 15% by mass, the surface-modified inorganic oxide particles ( Since the amount of the light scattering particles) is too large, the scattering becomes excessive, and the light incident on the light scattering complex is confined in the light scattering complex, and the effect of providing the light scattering complex cannot be obtained. That is, when the content of the surface-modified inorganic oxide particles in the composition for forming a light-scattering complex is 0.01% by mass or more and 15% by mass or less, light scattering having a good balance between scattering and light transmittance is achieved. A complex can be obtained.
  • a light scattering composite obtained from such a composition for forming a light scattering composite is applied to a white light semiconductor light-emitting device, the light extraction efficiency from the white light semiconductor light-emitting element is improved, thereby further increasing the luminance.
  • An optical semiconductor light emitting device can be obtained.
  • the surface-modified inorganic oxide particles in the present invention are present as dispersed particles having an average dispersed particle diameter of 3 nm or more and 150 nm or less in an uncured composition for forming a light scattering composite. This is because, as described above, in the light scattering composite obtained by curing the composition for forming a light scattering composite, the uniformity of various particles formed by the surface-modified inorganic oxide particles is ensured, or the associated particles This is to prevent the particle diameter of the glass from exceeding 1200 nm.
  • the surface-modified inorganic oxide particles are associated with each other by forming a plurality of particles.
  • the associated particles may be formed by associating a plurality of primary particles in the composition for forming a light scattering complex, and a plurality of secondary particles in the composition for forming a light scattering complex may be associated. It may be formed by a plurality of primary particles and secondary particles in the composition for forming a light scattering complex.
  • the surface-modified inorganic oxide particles in the light scattering composite include primary particles in which the primary particles in the light scattering composite forming composition are maintained as they are, and secondary particles in the light scattering composite forming composition.
  • Secondary particles in which the secondary particles are maintained as they are, primary particles in the composition for forming a light scattering complex, and associated particles formed by associating secondary particles may be included.
  • all the particles formed of these surface-modified inorganic oxide particles may be collectively referred to as “light scattering particles”.
  • the average particle diameter of all the particles (light scattering particles) formed by these surface-modified inorganic oxide particles is 10 nm or more and 1000 nm or less.
  • the average particle size is more preferably 50 nm or more and 1000 nm or less, and further preferably 80 nm or more and 1000 nm or less.
  • the average particle size of the light scattering particles needs to be larger than the average dispersed particle size of the dispersed particles in the composition for forming a light scattering complex.
  • the light scattering particles are uniformly dispersed in the matrix resin, and it is particularly preferable that the associated particles are uniformly dispersed in the matrix resin.
  • uniformly dispersed means that when an arbitrary portion of the formed light-scattering complex is observed, the number of light-scattering particles and the average particle diameter in the portion show a substantially constant value. That is. The same applies hereinafter.
  • This “uniformly dispersed” can be evaluated as follows. That is, since the number and average particle diameter of the light scattering particles to be evaluated are both factors that affect the light scattering state, the light scattering characteristics change as these values change. Therefore, if the integral transmittance, which is a method for evaluating the light scattering property, is measured at a plurality of portions of the light scattering complex and the value falls within a certain range, the light scattering particles in the light scattering complex Can be judged to be “uniformly dispersed”.
  • the sheet-like light scattering complex may be divided into a front surface side and a back surface side, and each may be used as a measurement sample.
  • the measurement wavelength is not particularly limited, but is preferably a wavelength that more reflects the light scattering characteristics.
  • blue light having a wavelength of about 460 nm, which is the light emission wavelength of the light semiconductor light emitting element, and yellow light having a wavelength of about 550 nm, which is the emitted light of the phosphor, are used as the measurement wavelengths.
  • blue light having a wavelength of about 460 nm, which is the light emission wavelength of the light semiconductor light emitting element
  • yellow light having a wavelength of about 550 nm which is the emitted light of the phosphor
  • the fluctuation range of the integrated transmittance in an arbitrary part measured in this way is within 10%, it can be determined that the light scattering particles in the light scattering composite are “uniformly dispersed”. More preferably, the fluctuation range is within 5%.
  • the dispersion state in the matrix resin composition and the interface affinity with the matrix resin composition are controlled, and the dispersion state and matrix in the matrix resin are controlled. It is also necessary to control the interface affinity with the resin.
  • the matrix resin composition it is important to improve the compatibility by surface-treating the inorganic oxide particles with a surface modifying material having a skeleton and functional group similar to the matrix resin composition. .
  • the inorganic oxide particles can be dispersed in the matrix resin composition so that the average dispersed particle diameter is 150 nm or less. Become.
  • the matrix resin composition that is in a low molecular weight and oligomer state when uncured is also subjected to molecular weight increase and crosslinking during the curing reaction. Progresses. If the surface modification is inappropriate at the time of this curing reaction, the inorganic oxide particles are excluded from the resin component as a foreign substance and cause phase separation. As a result, inorganic oxide particles associate and aggregate to form coarse particles, resulting in white turbidity.
  • the surface modified inorganic oxide particles In order to prevent this phase separation and the formation of coarse particles (white turbidity) and to disperse all the particles formed by the surface modified inorganic oxide particles in the light scattering composite in the matrix resin, the surface modified It is necessary to ensure the interface affinity between the surface of the inorganic oxide particles and the matrix resin. For this reason, it is preferable that the surface of the inorganic oxide particles (unmodified particles) is coated with a surface modifying material having a structure that is compatible with the structure of the matrix resin. Specifically, it is a resin monomer or oligomer for forming a matrix resin, and a reaction used for polymerization of resin monomers or oligomers when a matrix resin composition that is a liquid uncured material forms a matrix resin.
  • the group may be included in the surface modifying material.
  • the silicone-based sealing material that is the matrix resin composition preferably has at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group. Therefore, a surface modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups is used as the surface modifying material, and the surface of the light scattering particle is modified by the surface modifying material. .
  • At least a part of the surface of the inorganic oxide particle is surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups, and the surface-modified inorganic Oxide particles are formed. That is, at least a part of the surface of the inorganic oxide particle is covered with the surface modifying material having such a functional group.
  • Surface modification materials having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups include vinyltrimethoxysilane, alkoxy one end vinyl one end dimethyl silicone, alkoxy one end vinyl one end methyl Phenyl silicone, alkoxy one-end vinyl one-end phenyl silicone, methacryloxypropyltrimethoxysilane, acryloxypropyltrimethoxysilane, methacrylic acid-containing fatty acid containing carbon-carbon unsaturated bond, dimethylhydrogensilicone, methylphenylhydrogensilicone, phenyl Hydrogen silicone, dimethylchlorosilane, methyldichlorosilane, diethyl, chlorosilane, ethyldichlorosilane, methylphenylchlorosilane, diphenylchlorosilane, phenyldi Examples include lorosilane, trimethoxysilane, dimethoxysilane
  • the surface modification amount of the surface modification material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups on the surface of the inorganic oxide particles is the metal oxide particles as the inorganic oxide particles. Is preferably 1% by mass or more and 50% by mass or less based on the mass. By setting the surface modification amount in the range of 1% by mass or more and 50% by mass, the surface-modified inorganic oxide particles are uniformly dispersed with a mean dispersed particle size of 150 nm or less with respect to the matrix resin composition. On the other hand, in the light-scattering composite after curing, the surface-modified inorganic oxide particles are at least partially formed as aggregated particles with respect to the matrix resin, and the surface modification is performed.
  • a light-scattering complex having high scattering characteristics can be obtained by using surface-modified inorganic oxide particles whose surface modification amount is in the above range.
  • the surface modification amount is less than 1% by mass, the bonding points of the functional groups between the surface modification material and the matrix resin composition are insufficient, so that the light scattering particles are well dispersed in the matrix resin composition.
  • the light scattering particles separate from the matrix resin phase and agglomerate in the process of curing the light scattering composite, resulting in a decrease in light transmission and hardness of the light scattering composite. There is a risk.
  • the surface modification amount exceeds 50% by mass, there are many bonding points between the surface modification material and the functional group between the matrix resin composition, so that the light scattering particles are primary particles for the matrix resin composition.
  • the monodispersion of the light scattering particles is maintained even in the process of curing the light scattering composite, and partial association does not occur. is there. For this reason, the improvement of the light scattering ability (the effect of having a sufficient scattering ability with a smaller amount of light scattering particles) due to the formation of associated particles in the light scattering conversion layer or the light scattering layer cannot be expected.
  • the surface modification amount exceeds 50% by mass and 80% by mass or less, although the effect due to the formation of associated particles is difficult to expect, the bonding state between the light scattering particles and the matrix resin is kept good, The properties as a light scattering complex are maintained.
  • the surface modification amount exceeds 80% by mass, the bonding points of the functional groups between the surface modification material and the matrix resin composition are excessive, and the cured body may become brittle and cracks may occur.
  • the surface modification amount is more preferably 3% by mass or more and 50% by mass or less, and further preferably 5% by mass or more and 40% by mass or less.
  • a polymer type surface modifying material or an oligomer type surface modifying material can be used.
  • the polymer type surface modifying material and the oligomer type surface modifying material include a polymer surface modifying material and an oligomer surface modifying material having a skeleton similar to a matrix resin.
  • the polymer surface modifying material may be a silicone polymer having a methyl group or a phenyl group; the oligomer surface modifying material may be an alkoxy both-end phenyl silicone, an alkoxy both-end methyl phenyl silicone, or an alkoxy group-containing dimethyl. Silicone resin, alkoxy group-containing phenyl silicone resin, alkoxy group-containing methyl phenyl silicone resin, and the like can be suitably used.
  • the molecular weight of the polymer type surface modifying material or oligomer type surface modifying material is preferably 0.1 to 50 times the molecular weight of the matrix resin.
  • the treatment amount of the polymer type surface modifying material and the oligomer type surface modifying material is preferably 0.1% by mass or more and 10% by mass or less with respect to the mass of the inorganic oxide particles. Even when a polymer type surface modifying material and an oligomer type surface modifying material are used together, the total amount of the surface modifying material, that is, one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups are used.
  • the total amount of the surface-modifying material having a group, the polymer-type surface-modifying material, and the oligomer-type surface-modifying material is 1 with respect to the mass of the inorganic oxide particles when metal oxide particles are used as the inorganic oxide particles.
  • the mass is preferably from 50% by mass to 50% by mass, more preferably from 3% by mass to 50% by mass, and still more preferably from 5% by mass to 40% by mass.
  • the inorganic oxide during the curing reaction is adjusted.
  • the association state of the particles at least a part of the surface-modified inorganic oxide particles can be dispersed in the light-scattering complex in a state where associated particles in which a plurality of particles are associated are formed.
  • the associated particle diameter of the associated particles is preferably 1200 nm or less.
  • the method of modifying the surface modifying material on the surface of the inorganic oxide particles is selected from a dry method in which the surface modifying material is directly mixed and sprayed on the inorganic oxide particles, water in which the surface modifying material is dissolved, and an organic solvent 1
  • a dry method in which the surface modifying material is directly mixed and sprayed on the inorganic oxide particles, water in which the surface modifying material is dissolved, and an organic solvent 1
  • Examples thereof include a wet method in which unmodified particles are introduced into more than one type of solvent and the surface is modified in the solvent.
  • it is preferable to use a wet method in view of excellent controllability of the surface modification amount and high uniformity of the surface modification.
  • the matrix resin composition is a resin monomer or oligomer that constitutes a matrix resin including surface-modified inorganic oxide particles when the light scattering complex forming composition is cured to form a light scattering complex. It is a liquid matrix resin uncured body.
  • the matrix resin applied to the light scattering composite is not particularly limited as long as it is a material that does not absorb light in the wavelength region in which the light scattering composite of the present invention is used, but is basically an optical material. It is preferable to have resistance to light (light resistance). Further, as described above, the light scattering composite of the present invention can be suitably used for a white light semiconductor light emitting device.
  • the visible light region (when a near ultraviolet light semiconductor light emitting element is used as the light semiconductor light emitting element) is used. It is preferable to be transparent in the near ultraviolet light region to the visible light region, and not to impair the reliability (required various performances such as durability) of the optical semiconductor light emitting device. Furthermore, in consideration of increasing the output of the optical semiconductor light emitting element and applying it to lighting applications, it is preferable to use a resin that has been conventionally used as an optical semiconductor light emitting element sealing material.
  • the matrix resin composition is a silicone-based resin monomer or oligomer of dimethyl silicone resin, a resin monomer or oligomer of methyl phenyl silicone resin, a resin monomer or oligomer of phenyl silicone resin, a resin monomer or oligomer of organically modified silicone resin, etc. It preferably contains a resin monomer or oligomer of the resin.
  • a silicone resin When a silicone resin is used as the matrix resin of the light scattering composite, it is obtained by polymerizing and curing each silicone resin composition that is a liquid uncured material by, for example, an addition reaction, a condensation reaction, a radical polymerization reaction, or the like. be able to. In particular, it is preferable to select a silicone resin composition having at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group.
  • the surface-modified inorganic oxide particles are preferably present in an average dispersed particle size of 150 nm or less.
  • the matrix is uniformly uniform as a whole in a state in which at least a part of the surface-modified inorganic oxide particles form associated particles. It is preferable that it is dispersed in the resin. And in order to disperse
  • the structure of the surface modifying material is compatible with the structure of the matrix resin. That is, it is preferable to select a silicone-based sealing material having at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group as the matrix resin composition.
  • a surface modifying material having one or more functional groups selected from a group, an H—Si group, and an alkoxy group is used.
  • the surface modification material has an alkenyl group, an H—Si group, And the alkoxy group is bonded to the matrix resin composition as follows.
  • the alkenyl group of the surface modifying material is crosslinked by reacting with the H—Si group in the matrix resin composition.
  • the H—Si group of the surface modifying material is crosslinked by reacting with the alkenyl group in the matrix resin composition.
  • the alkoxy group of the surface modifying material is condensed with the alkoxy group in the matrix resin composition through hydrolysis.
  • the matrix resin and the surface modification material are integrated, so that the light scattering particles are not completely separated in the process of forming the matrix resin by curing the matrix resin composition.
  • the dispersed state can be maintained and immobilized in the matrix resin, and the denseness of these layers can be improved.
  • the surface modification material composition molecular structure and reactive group components
  • the amount of surface modification to the inorganic oxide particles are adjusted, and further, a polymer type surface modification material or an oligomer type surface modification material is used.
  • a known surface modifying material other than the surface modifying material having the functional group can be used in combination.
  • the matrix resin uncured product contained in the matrix resin composition may be used alone or in combination of two or more.
  • content of the matrix resin composition in the composition for light-scattering complex formation is the remainder except content of the surface modification inorganic oxide particle in a light-scattering composition.
  • the composition for forming a light scattering complex can be obtained by mixing particles containing inorganic oxide particles whose surface has been modified as described above and a matrix resin composition.
  • the surface-modified inorganic oxide particles serving as the light scattering body are uniformly dispersed in the matrix resin.
  • the surface-modified inorganic oxide particles in the composition for forming a light-scattering complex are preferably present in an average dispersed particle size of 150 nm or less.
  • the surface-modified inorganic oxide particles and the matrix resin composition are mixed by a mechanical method such as a biaxial kneader. And a method in which the organic solvent is dried and removed after mixing the dispersion liquid in which the surface-modified inorganic oxide particles are dispersed in the organic solvent and the matrix resin composition.
  • the light-scattering composite of the present invention emits blue or near-ultraviolet light in an optical semiconductor light-emitting device, particularly an optical semiconductor light-emitting element, and wavelength-converts a part of this blue or near-ultraviolet to yellow by a phosphor. It can be suitably used for a white light semiconductor light emitting device.
  • the transmittance at a wavelength of 460 nm measured with an integrating sphere of the composition for forming a light scattering complex is 40% or more and 95% or less when the sample thickness is 1 mm. It is preferable to do.
  • the transmittance at a wavelength of 460 nm is 40% or more, it is possible to prevent a decrease in the translucency of the entire light and improve the luminance of the optical semiconductor light emitting device. Further, if the transmittance is 95% or less, it is possible to prevent the emission color component of the optical semiconductor light emitting element that has not been wavelength-converted by the phosphor from being emitted to the external air phase, and to scatter in a direction different from the external air phase. The color rendering properties of the optical semiconductor light emitting device can be improved.
  • the transmittance at a wavelength of 460 nm is more preferably 50% or more and 90% or less, and further preferably 60% or more and 85% or less.
  • transmittance measured with an integrating sphere may be referred to as “integrated transmittance”.
  • transmittance measured with linear light which is a general transmittance measurement method”, is sometimes referred to as “linear transmittance”.
  • the transmittance at a wavelength of 550 nm is preferably 75% or more.
  • the transmissivity is 75% or more to prevent a decrease in translucency of white light in which the light emission color of the optical semiconductor light emitting element and the light of which the light emission color is wavelength-converted by the phosphor are synthesized, and the optical semiconductor The luminance of the light emitting device can be improved.
  • the transmittance at a wavelength of 550 nm is more preferably 80% or more, and still more preferably 90% or more. In order to obtain the transmittance as described above, a known amount other than the surface modifying material on the surface of the surface-modified inorganic oxide particles may be adjusted.
  • the light scattering composite of the present invention is obtained by curing the composition for forming a light scattering composite of the present invention, and at least a part of the surface-modified inorganic oxide particles form associated particles, and the inorganic oxide
  • the average particle diameter of all the particles formed by the product particles, that is, the light scattering particles is 10 nm or more and 1000 nm or less.
  • the light scattering composite of the present invention includes surface-modified inorganic oxide particles that are surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups, A matrix resin, and the content of the surface-modified inorganic oxide particles is 0.01% by mass or more and 15% by mass or less with respect to the total amount of the light scattering composite.
  • the contents and preferred embodiments of the surface-modified inorganic oxide particles are the same as the contents and preferred embodiments of the surface-modified inorganic oxide particles contained in the composition for forming a light scattering complex.
  • the matrix resin is a resin obtained by curing the matrix resin composition contained in the composition for forming a light scattering complex, and is preferably a transparent resin.
  • the contents and preferred embodiments of the matrix resin composition are the same as the contents and preferred embodiments of the matrix resin composition contained in the composition for forming a light scattering complex.
  • the surface-modified inorganic oxide particles are dispersed in the matrix resin in a state where at least a part thereof forms associated particles.
  • the associated particles are formed by associating a plurality of dispersed particles in the composition for forming a light scattering complex. That is, the associated particles are formed by association of a plurality of primary particles in the composition for forming a light scattering complex, or a plurality of secondary particles in the composition for forming a light scattering complex. Are formed, and a plurality of primary particles and secondary particles in the composition for forming a light scattering complex are associated with each other, and one or more of these three types are considered. It only has to be included.
  • the particle diameter of the associated particles is preferably 1200 nm or less. If the particle size of the associated particles exceeds 1200 nm, scattering becomes too large, and multiple scattering is likely to occur in the light scattering complex. This is because the effect of providing the scattering complex may not be obtained.
  • the lower limit value of the particle diameter of the associated particles may be larger than the primary particle diameter in terms of definition, but it is preferable that the lower limit value of the average particle diameter of the light scattering particles shown below is effectively defined. .
  • the surface-modified inorganic oxide particles in the light scattering composite are formed by associating one or two kinds selected from the primary particles and the secondary particles in the light scattering composite forming composition.
  • Primary particles in which the primary particles in the composition for forming a light scattering complex are maintained as they are, and secondary particles in which the secondary particles in the composition for forming a light scattering complex are maintained as they are Particles may be included.
  • the average particle diameter of all the particles formed by these surface-modified inorganic oxide particles in the light-scattering composite, that is, the light-scattering particles is 10 nm or more and 1000 nm or less.
  • the average particle diameter of the light scattering particles is more preferably 20 nm or more and 1000 nm or less, and further preferably 50 nm or more and 800 nm or less.
  • the average particle diameter of the light scattering particles is less than 10 nm, the light scattering ability is low due to the low light scattering ability, and the effect of containing the light scattering particles may not be obtained.
  • the average particle diameter exceeds 1000 nm, the scattering ability as particles becomes too strong, so that the light incident on the light scattering complex is confined in the light scattering complex, and the effect of providing the light scattering complex is obtained. May not be obtained.
  • each light scattering particle is the same as the particle size of the light scattering particle as it is for the surface-modified inorganic oxide particles that are individually present, while a plurality of surface-modified inorganic oxidation particles When physical particles appear to overlap or appear to be continuous, it is determined that the entire plurality of particles are secondary particles or associated particles, and the particle size of the secondary particles or the entire associated particles is determined as the particle size of the light scattering particles. do it.
  • the average particle size of the light scattering particles is larger than the average dispersed particle size of the dispersed particles in the composition for forming a light scattering complex. This is because the associated particles are formed by associating primary particles and secondary particles in the composition for forming a light scattering complex.
  • the upper limit value of the average dispersed particle diameter is 150 nm. Therefore, if the average particle diameter of the light scattering particles in the light scattering composite of the present invention exceeds 150 nm. Therefore, it can be clearly determined that the associated particles are formed.
  • the average particle diameter of the light scattering particles in the light scattering composite becomes larger than the average dispersed particle diameter of the dispersed particles in the composition for forming a light scattering composite.
  • Scattering ability is also increased, and therefore, sufficient scattering ability can be expressed with a smaller amount of light scattering particles than when no associated particles are formed. That is, sufficient light scattering characteristics can be obtained even when the ratio of the light scattering particles in the light scattering composite formed by molding the composition for forming a light scattering composite of the present invention is 10% by mass or less.
  • the integrated transmittance can be made higher than the linear transmittance.
  • the measurement wavelength of the transmittance may be selected according to the conditions under which the light scattering composite is used. However, as will be described later, when the light scattering composite of the present invention is used in a white light semiconductor light emitting device, it is white.
  • the emission wavelength (460 nm) of the blue light semiconductor light emitting element in the optical semiconductor light emitting device is preferable.
  • the integrated transmittance is higher than the linear transmittance, and the difference (integrated transmittance ⁇ linear transmittance) is preferably 25 points or more, and more preferably 40 points or more.
  • the light scattering particles are uniformly dispersed in the matrix resin, and it is particularly preferable that the associated particles are uniformly dispersed in the matrix resin. If the light scattering particles are localized in a part of the matrix resin, the required light scattering characteristics may not be obtained. Thus, in order to uniformly disperse the light scattering particles, particularly the associated particles, in the matrix resin, as described later, the associated particles are not formed in the state of the composition for forming the light scattering complex. It is preferably formed at the stage where the composition for forming a scattering complex is cured to form a light scattering complex.
  • the method for producing a light-scattering composite of the present invention comprises an inorganic oxide particle surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups, and a matrix
  • the surface-modified inorganic oxide particles are dispersed particles having a dispersed particle diameter of 3 nm or more and 150 nm or less, and the content of the inorganic oxide particles is 0.01% by mass or more and 15% by mass or less.
  • the surface-modified inorganic oxide particles are uniformly dispersed in an uncured matrix resin composition in the form of dispersed particles having an average dispersed particle size of 3 nm to 150 nm. ing.
  • the matrix resin hardens, it is preferable that a plurality of dispersed particles are associated with the matrix resin (composition) by causing local phase separation in an extremely small region to form associated particles. In addition, this local phase separation occurs throughout the matrix resin composition (light scattering complex-forming composition) and is held in a local region without the associated particles being bonded to each other. It is preferable.
  • the dispersion state of the surface-modified inorganic oxide particles in the matrix resin composition and the relationship with the matrix resin composition In addition to controlling the interface affinity, the dispersion state in the matrix resin and the interface affinity with the matrix resin may be controlled.
  • the light scattering composite of the present invention can take a form in which the light scattering particles, particularly the associated particles are uniformly dispersed in the matrix resin. Even if the amount of the light scattering particles contained is as small as 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, high light scattering properties can be exhibited. On the other hand, when the associated particles are not formed when the composition for forming the light scattering complex is cured, that is, the dispersed particle size of the surface-modified inorganic oxide particles in the composition for forming the light scattering complex is light scattering.
  • the particle diameter is 10 to 1000 nm, which is the same as the particle diameter, the dispersed particle diameter is too large, so that the surface-modified inorganic oxide particles easily settle in the uncured matrix resin. For this reason, in the light-scattering composite obtained by curing the composition for forming a light-scattering composite, the light-scattering particles are unevenly distributed in a specific direction, that is, in the direction of the bottom surface at the time of curing. Cannot take form.
  • the integrated transmittance Td at a wavelength of 550 nm of the light scattering complex and the wavelength of the composition for forming the light scattering complex for forming the light scattering complex can satisfy the relationship of Expression (2). Td / Tc ⁇ 0.90 (2)
  • the average dispersed particle diameter of the dispersed particles is as small as 3 nm or more and 150 nm or less. Since it is small, it shows high light transmittance.
  • associated particles are formed in the light scattering composite, the average particle diameter of the light scattering particles is 10 nm or more and 1000 nm or less, and the average particle diameter of the light scattering particles is larger than the average dispersed particle diameter of the dispersed particles, The scattering ability by the particles also increases, and the light transmittance decreases.
  • Td / Tc the effect of forming associated particles (the effect of making the average particle size of the light scattering particles larger than the average particle size of the dispersed particles) can be sufficiently obtained.
  • a light scattering composite having high light scattering characteristics can be obtained.
  • the curing method of the composition for forming a light scattering complex is not particularly limited, and for example, it may be cured by applying external energy such as light or heat to the composition for forming a light scattering complex. Moreover, you may make it harden
  • the light scattering composite of the present invention may be a molded body formed by coating a solution-like composition for forming a light scattering complex on a substrate, putting it in a mold, and then curing it. It may be a molded body obtained by melt-kneading the composition for forming a scattering complex using an extruder or the like and then pouring it into a mold and cooling it.
  • the light scattering composite of the present invention may be a laminate in which plate-like bodies obtained by curing the composition for forming a light scattering composite of the present invention are stacked.
  • the matrix resin composition is assumed to be “resin monomer or oligomer for forming the matrix resin”, and the formation of the matrix resin is basically performed by polymerization and curing of the composition. It is not limited to.
  • the matrix resin composition may be formed of a solvent-soluble resin and a solvent, and the formation of the matrix resin may be performed by removing (drying) the solvent.
  • the surface modifying material for the oxide particles it is preferable to select a material that is partially solvent-soluble.
  • the surface modification of the inorganic oxide particles is controlled so that the associated particles are uniformly formed in the matrix resin, there is no particular limitation on the curing method and curing conditions. However, if a method for uniformly curing the composition for forming a light scattering complex is taken, uniform dispersion of associated particles can be further assisted.
  • composition for forming a light scattering complex and the light scattering complex of the present invention are excellent in light scattering and transparency, they can be applied to various applications that require scattering while transmitting light.
  • a device including a light source that emits a highly directional light beam for example, an optical semiconductor light emitting device.
  • the photosemiconductor light emitting device is a photosemiconductor light emitting device that has a photosemiconductor light emitting element, phosphor particles, and a light scattering complex containing light scattering particles and a matrix resin, and emits white light.
  • the light scattering particles are inorganic oxide particles surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups, and at least A part of the surface-modified inorganic oxide particles are formed of particles having associated particles, and the light scattering particles have an average particle diameter of 10 nm to 1000 nm.
  • the inorganic oxide particles are particles made of a material that does not absorb light in the emission wavelength region of the optical semiconductor light emitting device. And it is the optical semiconductor light-emitting device which has the above structure, Comprising: The said light-scattering composite body forms the light-scattering conversion layer by including the said fluorescent substance particle, The said light-scattering particle in the said light-scattering conversion layer of The optical semiconductor light emitting device having a content of 15% by mass or less is hereinafter referred to as “optical semiconductor light emitting device A”.
  • optical semiconductor light emitting device B a light conversion layer is formed by the layer containing the phosphor particles, and a light scattering layer made of the light scattering composite is provided on the light conversion layer.
  • optical semiconductor light emitting device B The optical semiconductor light emitting device in which the content of the light scattering particles in the light scattering layer is 15% by mass or less is hereinafter referred to as “optical semiconductor light emitting device B”.
  • optical semiconductor light emitting device simply refers to both “optical semiconductor light emitting device A” and “optical semiconductor light emitting device B”.
  • the “optical semiconductor light emitting device” may have a structure in which “optical semiconductor light emitting device A” and “optical semiconductor light emitting device B” are combined.
  • the light scattering composite may include the phosphor particles to form a light scattering conversion layer, and a light scattering layer made of the light scattering composite may be further provided on the light scattering conversion layer.
  • a device having such a configuration is also referred to as an “optical semiconductor light emitting device” in the following description.
  • the white light semiconductor light-emitting device combining the blue light semiconductor light-emitting element and the phosphor is combined with the blue light emitted from the blue light semiconductor light-emitting element and the light wavelength-converted by the phosphor to generate white ( (Pseudo white).
  • a white light semiconductor light-emitting device in which a blue light semiconductor light-emitting element and a yellow phosphor are combined has a very large blue component in the emitted light, and physiological effects have been pointed out.
  • the market for lighting applications of optical semiconductor light-emitting devices has expanded, and the brightness of optical semiconductor light-emitting devices has been increasing. Human bodies are often exposed to blue light.
  • the light scattering composite of the present invention is used for the light scattering conversion layer or the light scattering layer of the white light semiconductor light emitting device (the light scattering conversion of the white light semiconductor light emitting device using the composition for forming a light scattering composite of the present invention).
  • a blue light component emitted together with white light can be reduced and luminance can be improved.
  • the color rendering properties can be improved by reducing the blue light component.
  • the optical semiconductor light emitting element and the phosphor in the optical semiconductor light emitting device for example, a combination of a blue light semiconductor light emitting element and a yellow phosphor having an emission wavelength of about 460 nm; a blue light semiconductor light emitting element and a red light having an emission wavelength of about 460 nm A combination of a phosphor and a green phosphor; a combination of a near-ultraviolet semiconductor light-emitting device having an emission wavelength of 340 nm to 410 nm and a red phosphor, a green phosphor and a blue phosphor; In this case, known optical semiconductor light-emitting elements and various phosphors can be used.
  • various types of optical semiconductor light-emitting elements, sealing resins for sealing various phosphors, and the like can be used.
  • the light having each emission wavelength emitted from the semiconductor light emitting element used in the combination of the above optical semiconductor light emitting element and the phosphor is referred to as “light emitting color component” of the optical semiconductor light emitting element. May be called.
  • light emitting color component of the optical semiconductor light emitting element.
  • light emitted from the phosphor when the phosphor color component is irradiated to the phosphor that is, light whose wavelength is converted by the phosphor is referred to as “converted light component” from the phosphor. There is.
  • the optical semiconductor light emitting element 10 is disposed in the concave portion of the substrate, and the light scattering containing the light scattering particles and the matrix resin is covered so as to cover the optical semiconductor light emitting element 10.
  • a light scattering conversion layer 14 containing phosphor particles 13 in the composite 12 is provided.
  • the light scattering particles may be present uniformly in the matrix resin, but it is preferable that the light scattering particles are present more on the outer air phase interface (interface with the outer air layer) 18 side.
  • the surface shape of the external air phase interface 18 is not particularly limited, and may be any of a flat shape, a convex shape, and a concave shape.
  • the second mode of the optical semiconductor light emitting device A is that phosphor particles 13 in the light scattering conversion layer 14 are present closer to the optical semiconductor light emitting element 10 than in the case of FIG.
  • the light scattering particles are present more on the outer air phase interface 18 side than the phosphor particles.
  • the optical semiconductor light emitting device B is an embodiment in which a layer containing phosphor particles (light conversion layer) and a layer containing light scattering particles (light scattering layer) are arranged separately.
  • the optical semiconductor light emitting element 10 is disposed in the concave portion of the substrate, and the phosphor particles 13 are contained in the matrix material 15 so as to cover the optical semiconductor light emitting element 10.
  • the light-scattering layer 16 is provided, and on the light-conversion layer 16, that is, on the side of the external air phase interface 18 of the light-conversion layer 16, the light-scattering layer comprising the light-scattering composite 12 containing light-scattering particles and a matrix resin.
  • the blue light component emitted with white light And the luminance can be further improved.
  • the second mode of the optical semiconductor light emitting device B is provided with a sealing resin layer 11 made of a sealing resin so as to cover the optical semiconductor light emitting element 10, and on the sealing resin layer 11, A light conversion layer 16 and a light scattering layer 17 are sequentially stacked.
  • the thicknesses of the light conversion layer and the light scattering layer are not particularly limited as long as the effects of the present invention can be obtained. However, if the blue component is to be reduced, the thickness of the light scattering layer is increased. It is preferable to design the thickness of the light scattering layer in view of the wavelength conversion efficiency and the addition amount of the phosphor used when the optical semiconductor light emitting device is adjusted to a desired color rendering property.
  • the content of the light scattering particles is 0.01% by mass or more and 15% by mass or less with respect to the total amount of the light scattering conversion layer in the optical semiconductor light emitting device A, and the total amount of the light scattering layer in the optical semiconductor light emitting device B. On the other hand, it is 0.01 mass% or more and 15 mass% or less.
  • the content of the light scattering particles in the light conversion layer or the light scattering layer is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 5% by mass or less.
  • the content of the light scattering particles in each layer exceeds 15% by mass, the amount of the light scattering particles is too large, and the amount of the associated particles having a large particle diameter and a high light scattering ability is also increased.
  • the emission color component from the optical semiconductor light emitting element does not appear in the external air phase, and the luminance of the optical semiconductor light emitting device decreases.
  • the content of the light scattering particles in each layer is less than 0.01% by mass, the amount of the light scattering particles is too small to obtain the light scattering effect, and the luminance of the optical semiconductor light emitting device cannot be improved.
  • the content of the light scattering particles in each layer is 0.01% by mass or more and 15% by mass or less, the light scattering property of the emission color component from the optical semiconductor light emitting element and the conversion of the emission color component in each layer. It is possible to obtain a high-brightness optical semiconductor light-emitting device that has a good balance with the light transmittance of the combined light components.
  • the scattering rate of blue light can be increased by setting the content of the light scattering particles in each layer to 0.01% by mass or more and 15% by mass or less. That is, the integrated transmittance value in the light having a wavelength of 460 nm can be made larger than the linear transmittance value.
  • the difference (integral transmittance ⁇ linear transmittance) can be 25 points or more, and further 40 points or more. As a result, it is possible to reduce blue light and improve luminance in the optical semiconductor light emitting device.
  • An optical semiconductor light-emitting device is formed by applying or injecting the composition for forming a light scattering complex of the present invention onto a light conversion layer, or mixing phosphor particles in the composition for forming a light scattering complex, thereby forming an optical semiconductor.
  • An optical semiconductor light emitting device is manufactured by applying or injecting onto the light emitting element and then curing.
  • the composition for forming a light scattering complex of the present invention is applied or injected onto a light conversion layer and then cured to form a light scattering layer composed of the light scattering complex, thereby forming the light semiconductor light emitting device B. Is produced.
  • a phosphor particle is mixed in a composition for forming a light scattering complex, applied or injected onto the optical semiconductor light emitting device, and then cured to form a light scattering conversion layer comprising a light scattering complex containing the phosphor.
  • the optical semiconductor light emitting device A By forming the optical semiconductor light emitting device A, the optical semiconductor light emitting device A is manufactured.
  • polymerization hardening reaction by addition type reaction, condensation type reaction, radical polymerization reaction, etc. can be mentioned. This polymerization reaction can be performed by applying external energy such as heating and light irradiation, adding a catalyst (polymerizing agent), and the like.
  • the formation of the associated particles can be achieved by controlling the affinity between the matrix resin (composition) and the surface-modified inorganic oxide particles. That is, (1) a surface modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups is used as the surface modifying material in the surface-modified inorganic oxide particles. ) The amount of surface modification is 1% by mass or more and 50% by mass or less.
  • Polymer type surface modification material and oligomer type surface modification material are used appropriately, and this polymer type surface modification material and oligomer type surface modification are used.
  • the molecular weight of the material is 0.1 to 50 times the molecular weight of the matrix resin.
  • the treatment amount of the polymer type surface modifying material or oligomer type surface modifying material is set to 0. 0 to the mass of the inorganic oxide particles. Control such as 1 mass% or more and 10 mass% or less may be performed. By these controls, the interaction between the surface-modified inorganic oxide particles is relatively enhanced with respect to the affinity between the matrix resin (composition) and the surface-modified inorganic oxide particles. Formation of associated particles can be achieved.
  • the cohesive force between the inorganic oxide particles and One or both of the exclusion forces of other components in the matrix resin may be used to increase the degree of association of the inorganic oxide particles and form appropriate associated particles.
  • the associated particles thus formed preferably have a particle size of 1200 nm or less.
  • the average particle diameter of all the particles including the associated particles and the dispersed particles maintained in a non-associated state that is, the average particle diameter of the light scattering particles is preferably 10 nm or more and 1000 nm or less, and 20 nm or more and 1000 nm or less. It is more preferable if it is 50 nm or more and 800 nm or less.
  • the method for measuring the average particle diameter of the light scattering particles is as described above.
  • the composition for forming a light scattering complex of the present invention is applied or injected onto the light conversion layer, or phosphor particles are mixed in the composition for forming a light scattering complex to produce light.
  • 1 shows an optical semiconductor light emitting device manufactured by coating or injecting on a semiconductor light emitting element and then curing.
  • the form and manufacturing method of the optical semiconductor light emitting device are not limited to this.
  • the light-scattering composite of the present invention previously formed into a sheet shape may be attached to a substantially flat element in which an optical semiconductor light-emitting element is disposed on a substrate and a light conversion layer is formed thereon.
  • what mixed the fluorescent substance particle in the composition for light-scattering complex formation of this invention, and was hardened in the sheet form may be affixed on the optical semiconductor light-emitting device arrange
  • the said optical semiconductor light-emitting device can be utilized for each use using the outstanding characteristic.
  • Examples of the effects of the present invention that are particularly prominent are various lighting fixtures and display devices including the same.
  • Examples of the lighting fixture include general lighting devices such as an indoor lamp and an outdoor lamp.
  • the present invention can also be applied to lighting of a switch unit of an electronic device such as a mobile phone or an OA device.
  • a display device for example, a mobile phone, a portable information terminal, an electronic dictionary, a digital camera, a computer, a thin TV, a lighting device, and peripheral devices thereof are reduced in size, reduced in weight, reduced in thickness, reduced in power consumption, and Examples thereof include a light-emitting device in a display device of a device that is particularly required to have high luminance and good color rendering such that good visibility can be obtained even in sunlight.
  • a display device that is visible for a long time such as a computer display device (display), a flat-screen television, or the like is particularly suitable because the influence on the human body, particularly the eyes, can be suppressed.
  • the size can be reduced by reducing the distance between the first light emitting element and the second light emitting element to 3 mm or less, and further to 1 mm or less, it is also suitable for a small display device of 15 inches or less.
  • the integral transmittance of the composition for forming a light scattering complex was obtained by using a spectrophotometer (V-570, JASCO Corporation) with a sample obtained by sandwiching a composition for forming a light scattering complex between 1.0 mm thin-layer quartz cells. ) And using an integrating sphere.
  • the transmittance at a wavelength ( ⁇ ) of 460 nm was 40% or more and 95% or less and the transmittance at a wavelength ( ⁇ ) of 550 nm was 75% or more as “good”.
  • a thin-layer quartz cell sandwiching the composition for forming the light scattering complex was placed, and the reflection spectrum returned to the integrating sphere was measured. Since the decrease in the brightness corresponded to the increase in reflectance, it was confirmed that light absorption by particles did not occur and backscattering by particles occurred.
  • the average primary particle diameter of the inorganic oxide particles was the Scherrer diameter obtained by X-ray diffraction.
  • the average dispersed particle size of the surface-modified inorganic oxide particles in the composition for forming a light-scattering complex is a particle size distribution measuring device (based on the measurement principle of the light-scattering complex-forming composition based on a dynamic light scattering method). (Nano Partica SZ-100, manufactured by HORIBA, Ltd.). From the result of the particle size distribution of the surface-modified inorganic oxide particles obtained by measurement, the volume average particle size (MV value) was calculated, and the value was taken as the average dispersed particle size.
  • the dispersion state of the light-scattering particles in the light-scattering complex can be determined by measuring an integrating sphere by measuring an integrating sphere at a wavelength of 460 nm using a spectrophotometer (V-570, manufactured by JASCO Corporation). evaluated.
  • V-570 spectrophotometer
  • As the measurement sample a light scattering composite formed into a substrate having a thickness of 1 mm was divided into a front side and a back side, and the samples were adjusted to have the same thickness.
  • the dispersion state is uniform when the difference in integrated transmittance between the two samples is within 10%, and non-uniform when the difference exceeds 10%.
  • the average particle diameter of the light scattering particles in the light scattering composite was observed with a field emission transmission electron microscope (JEM-2100F, manufactured by JEOL Ltd.) using a sample obtained by slicing the light scattering composite in the thickness direction. Then, the particle diameter of 50 arbitrary light scattering particles was measured, and the average value was calculated.
  • the light scattering particles were defined as follows. That is, for the surface-modified inorganic oxide particles that exist individually (without associating), the particles themselves were regarded as one light scattering particle, and the particle diameter was defined as the light scattering particle diameter.
  • association particle the whole of the plurality of particles is regarded as one light scattering particle (association particle), and the particles of the entire portion determined to be light scattering particles The diameter was taken as the particle diameter of the light scattering particles.
  • the emission spectrum of the optical semiconductor light emitting device was measured using a spectrophotometric device (PMA-12, manufactured by Hamamatsu Photonics).
  • PMA-12 manufactured by Hamamatsu Photonics
  • the emission spectrum peak area from a wavelength of 400 nm to 480 nm was set as a
  • the emission spectrum peak area from a wavelength of 480 nm to 800 nm was set as b
  • the evaluation was performed based on the value of a / b.
  • Comparative Examples 1 and 2 that do not contain light scattering particles in Examples 1 to 16, 19, 21, 22 and Comparative Examples 3 to 7, the value of a / b is smaller than that of Comparative Example 1 The thing was made "good” and the same value or more was made "bad". In Examples 17, 18, and 20 and Comparative Example 8, comparison was made with the a / b value of Comparative Example 2.
  • the luminance of the optical semiconductor light emitting device was measured using a luminance meter (LS-110, manufactured by Konica Minolta Sensing). Based on Comparative Examples 1 and 2 that do not contain light scattering particles, in Examples 1 to 16, 19, 21, 22 and Comparative Examples 3 to 7, those having a luminance greater than that of Comparative Example 1 were defined as “good”. The equivalence value was “possible”, and the lower value was “bad”. In Examples 17, 18, and 20 and Comparative Example 8, the luminance was compared with that of Comparative Example 2.
  • the amount of sodium sulfate added at this time was 30% by mass with respect to the zirconia-converted value of zirconium ions in the zirconium salt solution.
  • This mixture was dried in the air at 130 ° C. for 24 hours using a dryer to obtain a solid.
  • the solid was pulverized in an automatic mortar and then baked in the atmosphere at 520 ° C. for 1 hour using an electric furnace. Next, the fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, sufficiently removed the added sodium sulfate, and then dried in a dryer. Zirconia particles 1 were obtained.
  • the average primary particle diameter of the zirconia particles 1 was 5.5 nm.
  • Zirconia particles 2 were produced in the same manner as the production of zirconia particles 1 except that the firing temperature in the electric furnace in the production of zirconia particles 1 was changed from 520 ° C. to 500 ° C.
  • the average primary particle diameter of the zirconia particles 2 was 2.1 nm.
  • Zirconia particles 3 were produced in the same manner as in the production of zirconia particles 1 except that the firing temperature in the electric furnace in the production of zirconia particles 1 was changed from 520 ° C. to 650 ° C.
  • the average primary particle diameter of the zirconia particles 3 was 42.1 nm.
  • silica particles containing silica sol (manufactured by Nissan Chemical Industries, Snowtex OS, 20% by mass as SiO 2 ) were used as they were. Since X-ray diffraction measurement cannot be performed in a sol state, and the sol is simply dried and solidified, handling at the time of measurement is inconvenient. Therefore, actual measurement was performed with a silica particle-containing dry powder described later. The average primary particle size was 9.5 nm.
  • Preparation of surface-modified zirconia dispersion (Preparation of surface-modified zirconia particle dispersion 1) After 10 g of zirconia particles 1 are added, 86 g of toluene and 2 g of methoxy group-containing methylphenyl silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., KR9218) are mixed, stirred for 6 hours in a bead mill, and subjected to surface modification treatment. The beads were removed.
  • Surface-modified zirconia particles from which the remaining methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane (surface modification material) were removed were obtained. After taking a part of the obtained surface-modified zirconia particles and measuring the amount of surface modification, toluene is again added to the remainder so as to be 10% by mass as zirconia particles and redispersed to obtain a surface-modified zirconia particle dispersion 1 Was made. The obtained surface-modified zirconia particle dispersion 1 was transparent. Moreover, the surface modification amount by the surface modification material in the surface-modified zirconia particles was 40% by mass with respect to the mass of the zirconia particles.
  • the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 14% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • (Preparation of surface-modified zirconia particle dispersion 2) In the preparation of the surface-modified zirconia particle dispersion 1, the stirring time in the bead mill after the addition of the methoxy group-containing methylphenyl silicone resin was 2 hours, and the reflux time after the addition of vinyltrimethoxysilane was 3 hours. A surface-modified zirconia particle dispersion 2 was prepared. The obtained surface-modified zirconia particle dispersion 2 was transparent. Moreover, the surface modification amount by the surface modification material in the surface-modified zirconia particles was 40% by mass with respect to the mass of the zirconia particles.
  • the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 14% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 12.5% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 14% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the surface modification amount by the surface modification material was 30% by mass with respect to the mass of the zirconia particles. Therefore, the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 13% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • a surface-modified zirconia particle dispersion 6 was produced in the same manner except that the zirconia particles 3 were used as the inorganic oxide particles.
  • the obtained surface-modified zirconia particle dispersion 6 was slightly cloudy.
  • the surface modification amount by the surface modification material was 40% by mass with respect to the mass of the zirconia particles. Accordingly, the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 14% by mass.
  • the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the surface modification amount by the surface modification material was 35% by mass with respect to the mass of the zirconia particles. Therefore, the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 13.5% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • Preparation of surface-modified silica particle dispersion 8 50 g of a methanol solution in which 5 g of hexanoic acid was dissolved was mixed with 50 g of silica sol (manufactured by Nissan Chemical Industries, Snowtex OS, 20% by mass as SiO 2 ) to prepare a slurry. The resulting slurry is centrifuged to remove the supernatant, and then methanol is added again, followed by centrifugation to remove the supernatant to remove excess hexanoic acid, and then the solvent of the precipitate is removed by drying with an evaporator. A particle-containing dry powder was obtained.
  • surface-modified silica particle dispersion 8 After taking a part of the obtained surface-modified silica particles and measuring the amount of surface modification, toluene is added to the remainder so as to be 10% by mass as silica particles and redispersed to prepare surface-modified silica particle dispersion 8 did.
  • the obtained surface-modified silica particle dispersion 8 was transparent.
  • the surface modification amount by the surface modification material in the surface-modified silica particles was 40% by mass with respect to the mass of the silica particles. Therefore, the amount of surface-modified silica particles in the surface-modified silica particle dispersion is 14% by mass.
  • the mass ratio of the one-end epoxy-modified silicone and vinyltrimethoxysilane was 1: 1.
  • a surface-modified silica particle dispersion 9 was produced in the same manner except that the reflux time after addition of the one-end epoxy-modified silicone and vinyltrimethoxysilane was 3 hours.
  • the obtained surface-modified silica particle dispersion 2 was transparent.
  • the surface modification amount by the surface modification material in the surface-modified silica particles was 40% by mass with respect to the mass of the silica particles. Therefore, the amount of surface-modified silica particles in the surface-modified silica particle dispersion is 14% by mass.
  • the mass ratio of the one-end epoxy-modified silicone and vinyltrimethoxysilane was 1: 1.
  • the surface modification amount by the surface modification material was 40% by mass with respect to the mass of the zirconia particles. Therefore, the amount of surface-modified silica particles in the surface-modified silica particle dispersion is 14% by mass.
  • the mass ratio of the methoxy group-containing methylphenyl silicone resin and methyldichlorosilane was 1: 1.
  • the surface modification amount by the surface modification material was 40% by mass with respect to the mass of the zirconia particles. Therefore, the amount of surface-modified silica particles in the surface-modified silica particle dispersion is 14% by mass. Moreover, the mass ratio of the methoxy group-containing methylphenyl silicone resin and tetraethoxysilane was 1: 1.
  • Preparation of surface-modified zirconia particle dispersion 12 In preparation of the surface-modified zirconia particle dispersion 1, zirconia particles 2 were used as inorganic oxide particles, and the amount of toluene was 89 g, the amount of methoxy group-containing methylphenylsilicone resin was 0.5 g, and the amount of vinyltrimethoxysilane. A surface-modified zirconia particle dispersion 12 was prepared in the same manner as the surface-modified zirconia particle dispersion 1 except that the amount was changed to 0.5 g. The obtained surface-modified zirconia particle dispersion 12 was transparent.
  • the surface modification amount by the surface modification material in the surface-modified zirconia particles was 10% by mass with respect to the mass of the zirconia particles. Therefore, the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 11% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 18% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • a surface-modified zirconia particle dispersion 14 was prepared in the same manner as the surface-modified zirconia particle dispersion 1, except that the zirconia particles 2 were used as the inorganic oxide particles.
  • the obtained surface-modified zirconia particle dispersion 14 was transparent.
  • the surface modification amount by the surface modification material was 40% by mass with respect to the mass of the zirconia particles.
  • the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 14% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the surface modification amount by the surface modification material was 20% by mass with respect to the mass of the zirconia particles. Accordingly, the amount of surface-modified zirconia particles in the surface-modified zirconia particle dispersion is 12% by mass. Further, the mass ratio of the methoxy group-containing methylphenyl silicone resin to vinyltrimethoxysilane was 1: 1.
  • the surface-modified silica particle dispersion 8 was prepared in the same manner as the surface-modified silica particle dispersion 8 except that the reflux time after addition of one-end epoxy-modified silicone and vinyltrimethoxysilane was 1 hour. Liquid 16 was produced. The obtained surface-modified silica particle dispersion 16 was cloudy. Moreover, the surface modification amount by the surface modification material in the surface modified silica particles was 35% by mass with respect to the mass of the silica particles. Therefore, the amount of surface-modified silica particles in the surface-modified silica particle dispersion is 13.5% by mass. Moreover, the mass ratio of the one-end epoxy-modified silicone and vinyltrimethoxysilane was 1: 1.
  • stearic acid is a saturated fatty acid and its carboxyl group is used for bonding with zirconia particles
  • stearic acid after modification with zirconia particles has no groups other than alkyl groups.
  • the obtained surface-modified zirconia particle dispersion 17 was transparent. Further, in the surface-modified zirconia particles in the surface-modified zirconia particle dispersion 17, the surface modification amount by the surface modification material was 40% by mass with respect to the mass of the zirconia particles. Therefore, the amount of surface-modified silica particles in the surface-modified silica particle dispersion is 14% by mass.
  • the mass ratio of the methoxy group-containing methylphenyl silicone resin and stearic acid was 1: 1.
  • a composition 1 for forming a light scattering complex that does not contain a phosphor is combined with a composition 1 for forming a light scattering complex that contains a phosphor on the composition 1 for forming a light scattering complex that contains a phosphor.
  • the mixture was heated at 150 ° C. for 2 hours to cure the light scattering complex forming composition 1 and the light scattering complex forming composition 1 containing phosphor.
  • the optical semiconductor of Example 1 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element.
  • the light emitting device 1 was produced.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
  • the emission spectrum and luminance of the obtained optical semiconductor light emitting device 1 were measured and evaluated as described above. The results are shown in Table 2 below.
  • Example 2 In the preparation of the composition for forming a light-scattering complex, the light-scattering complex, and the optical semiconductor light emitting device of Example 1, except that the surface-modified zirconia particle dispersion 2 was used instead of the surface-modified zirconia particle dispersion 1, respectively.
  • a composition 2 for forming a light scattering complex, a light scattering complex 2, and an optical semiconductor light emitting device 2 were produced.
  • about the obtained composition 2 for light-scattering complex formation, light-scattering complex 2, and optical semiconductor light-emitting device 2, evaluation similar to Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 3 In the preparation of the composition for forming a light scattering complex, the light scattering complex, and the optical semiconductor light emitting device of Example 1, the surface-modified zirconia particle dispersion 3 was used instead of the surface-modified zirconia particle dispersion 1, respectively, phenyl Except that the amount of the silicone resin was 98.75 g (A liquid 24.69 g, B liquid 74.06 g), in the same manner as in Example 1, the composition 3 for forming the light scattering complex, the light scattering complex 3 and An optical semiconductor light emitting device 3 was produced. About the obtained composition 3 for light-scattering complex formation, light-scattering complex 3, and optical semiconductor light-emitting device 3, evaluation similar to Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 4 Except for using the surface-modified zirconia particle dispersion 4 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the composition for forming a light scattering complex, the light scattering complex, and the optical semiconductor light-emitting device of Example 1, respectively.
  • a composition 4 for forming a light scattering complex, a light scattering complex 4, and an optical semiconductor light emitting device 4 were produced.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 5 In the production of the composition for forming a light scattering complex, the light scattering complex, and the optical semiconductor light emitting device of Example 1, the surface-modified zirconia particle dispersion 5 was used instead of the surface-modified zirconia particle dispersion 1, respectively, phenyl Except that the amount of the silicone resin was 98.7 g (A liquid 24.68 g, B liquid 74.02 g), the same procedures as in Example 1 were performed, except that the composition 5 for forming a light scattering complex, the light scattering complex 5 and An optical semiconductor light emitting device 5 was produced.
  • Example 2 About the obtained composition 5 for light-scattering complex formation, light-scattering complex 5, and optical semiconductor light-emitting device 5, the same evaluation as Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 6 Except for using the surface-modified zirconia particle dispersion 6 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the composition for forming a light scattering complex, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, respectively.
  • a composition 6 for forming a light scattering complex, a light scattering complex 6, and an optical semiconductor light emitting device 6 were produced.
  • the obtained light scattering composite forming composition 6, light scattering composite 6 and optical semiconductor light emitting device 6 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 7 In the preparation of the composition for forming a light scattering complex, the light scattering complex, and the optical semiconductor light emitting device of Example 1, the surface-modified zirconia particle dispersion 7 was used instead of the surface-modified zirconia particle dispersion 1, respectively, phenyl Except that the amount of the silicone resin was 98.65 g (A liquid 24.66 g, B liquid 73.99 g), in the same manner as in Example 1, the composition 7 for forming the light scattering complex, the light scattering complex 7 and An optical semiconductor light emitting device 7 was produced. About the obtained composition 7 for light-scattering complex formation, the light-scattering complex 7, and the optical semiconductor light-emitting device 7, evaluation similar to Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 8 Except for using the surface-modified silica particle dispersion 8 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the composition for forming a light-scattering complex, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, respectively.
  • a composition 8 for forming a light scattering complex, a light scattering complex 8, and a light semiconductor light emitting device 8 were produced.
  • about the obtained composition 8 for light-scattering complex formation, the light-scattering complex 8, and the optical semiconductor light-emitting device 8, evaluation similar to Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 9 Except for using the surface-modified silica particle dispersion 9 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the composition for forming a light-scattering complex, the light-scattering complex, and the optical semiconductor light emitting device of Example 1, respectively.
  • a light scattering complex forming composition 9, a light scattering complex 9, and a light semiconductor light emitting device 9 were produced.
  • the obtained light scattering complex forming composition 9, light scattering complex 9, and optical semiconductor light emitting device 9 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 10 Except for using the surface-modified zirconia particle dispersion 10 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the light-scattering complex forming composition, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, respectively.
  • a light scattering complex forming composition 10 a light scattering complex 10
  • a light semiconductor light emitting device 10 were produced.
  • the obtained composition 10 for light-scattering complex formation, light-scattering complex 10, and optical semiconductor light-emitting device 10 evaluation similar to Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 11 Except for using the surface-modified zirconia particle dispersion 11 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the composition for forming the light-scattering complex, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, respectively.
  • a composition 11 for forming a light scattering complex, a light scattering complex 11, and an optical semiconductor light emitting device 11 were produced.
  • about the obtained composition 11 for light-scattering complex formation, the light-scattering complex 11, and the optical semiconductor light-emitting device 11, evaluation similar to Example 1 was performed.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 12 In the preparation of the composition for forming a light-scattering complex, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, the surface-modified zirconia particle dispersion 2 was used instead of the surface-modified zirconia particle dispersion 1, and the amount thereof was changed. Except that it was 1 g, and the amount of phenyl silicone resin was 99.86 g (A liquid 24.97 g, B liquid 74.89 g), in the same manner as in Example 1, the composition 12 for forming a light scattering complex, The light scattering composite 12 and the optical semiconductor light emitting device 12 were produced.
  • the obtained light scattering complex forming composition 12, light scattering complex 12, and optical semiconductor light emitting device 12 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.08% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 13 In the preparation of the composition for forming a light-scattering complex, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, the surface-modified zirconia particle dispersion 2 was used instead of the surface-modified zirconia particle dispersion 1, and the amount thereof was Except that the amount of the phenyl silicone resin was 86.7 g (A liquid 21.68 g, B liquid 65.02 g), the composition 13 for forming a light scattering complex, The light scattering composite 13 and the optical semiconductor light emitting device 13 were produced. About the obtained composition 13 for light-scattering complex formation, light-scattering complex 13, and the optical semiconductor light-emitting device 13, evaluation similar to Example 1 was performed.
  • the content of the light scattering particles in the light scattering conversion layer was 7.6% by mass, and the content of the yellow phosphor was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 14 In the preparation of the composition for forming a light-scattering complex, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, the surface-modified zirconia particle dispersion 2 was used instead of the surface-modified zirconia particle dispersion 1, and the amount thereof was changed. Except that the amount of the phenyl silicone resin was 80.4 g (A solution 20.1 g, B solution 60.3 g), the light-scattering complex-forming composition 14, The light scattering composite 14 and the optical semiconductor light emitting device 14 were produced. The obtained light scattering composite forming composition 14, light scattering composite 14 and optical semiconductor light emitting device 14 were evaluated in the same manner as in Example 1.
  • the content of light scattering particles in the light scattering conversion layer was 11.2% by mass, and the content of yellow phosphor was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 15 In the preparation of the light scattering complex forming composition, the light scattering complex, and the optical semiconductor light emitting device of Example 1, the surface modified zirconia particle dispersion 12 was used instead of the surface modified zirconia particle dispersion 1, respectively, phenyl Except that the amount of the silicone resin was 98.9 g (A solution 24.73 g, B solution 74.17 g), in the same manner as in Example 1, the composition 15 for forming the light scattering complex, the light scattering complex 15 and An optical semiconductor light emitting device 15 was produced. The obtained light scattering complex forming composition 15, light scattering complex 15, and optical semiconductor light emitting device 15 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 16 In the production of the composition for forming a light scattering complex, the light scattering complex, and the optical semiconductor light emitting device of Example 1, the surface-modified zirconia particle dispersion 13 was used instead of the surface-modified zirconia particle dispersion 1, respectively, phenyl Except that the amount of the silicone resin was 98.2 g (A liquid 24.55 g, B liquid 73.65 g), in the same manner as in Example 1, the light scattering complex forming composition 16, the light scattering complex 16, and An optical semiconductor light emitting device 16 was produced. The obtained light scattering complex forming composition 16, light scattering complex 16, and optical semiconductor light emitting device 16 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • the obtained light scattering composite forming composition 17, light scattering composite 17 and optical semiconductor light emitting device 17 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • the obtained light scattering complex forming composition 18, light scattering complex 18, and optical semiconductor light emitting device 18 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 19 In the production of the light scattering complex forming composition, the light scattering complex, and the optical semiconductor light emitting device of Example 1, the amount of the surface-modified zirconia particle dispersion 1 was 50 g, and the amount of phenyl silicone resin was 93 g ( Except for using A liquid 23.25 g and B liquid 69.75 g), a light scattering complex forming composition 19, a light scattering complex 19, and an optical semiconductor light emitting device 19 were fabricated in the same manner as in Example 1. The obtained light scattering complex forming composition 19, light scattering complex 19, and optical semiconductor light emitting device 19 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 4% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 20 In the preparation of the composition for forming a light scattering complex, the light scattering complex, and the optical semiconductor light emitting device of Example 1, a surface-modified silica particle dispersion 8 was used instead of the surface-modified zirconia particle dispersion 1, and the amount thereof was changed.
  • composition 20 for forming a light scattering complex, the light scattering complex 20, and the optical semiconductor optical device 20 were produced in the same manner as in Example 1 except that 49.65 g and 49.65 g of the B liquid were used.
  • the obtained light scattering complex forming composition 20, light scattering complex 20, and optical semiconductor light emitting device 20 were evaluated in the same manner as in Example 1.
  • the content of the light scattering particles in the light scattering conversion layer was 0.4% by mass, and the content of the yellow phosphor was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 21 In the same manner as in Example 2, a light scattering composite forming composition 21 and a light scattering composite 21 were produced. Accordingly, the light scattering complex forming composition 21 is the same as the light scattering complex forming composition 2, and the light scattering complex 21 is the same as the light scattering complex 2.
  • composition 21 for forming a light scattering complex was obtained.
  • a light scattering complex-forming composition 21 containing a phosphor is dropped on a light emitting element of a package including an unsealed blue light semiconductor light emitting element, and then heated at 150 ° C. for 2 hours, The composition 21 for forming a light scattering complex was cured.
  • the optical semiconductor light emitting device 21 of Example 21 in which the light scattering conversion layer including the light scattering particles and the phosphor was formed on the optical semiconductor light emitting element was produced.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer.
  • the same evaluation as Example 1 was performed. The results are shown in Table 2 below.
  • Example 22 In the same manner as in Example 2, a light scattering composite forming composition 22 and a light scattering composite 22 were produced. Therefore, the light scattering complex forming composition 22 is the same as the light scattering complex forming composition 2, and the light scattering complex 22 is the same as the light scattering complex 2.
  • the phosphor-containing resin composition 22 is dropped on the light-emitting element of the package including the unsealed blue light semiconductor light-emitting element, the phosphor-containing resin composition 22 is cured by heating at 150 ° C. for 30 minutes.
  • the light scattering composite forming composition 22 is dropped on the cured phosphor-containing resin composition 22 in the same amount as the phosphor-containing resin composition 22, and then heated at 150 ° C. for 90 minutes to form a light scattering composite. While the body forming composition 22 was cured, the phosphor-containing resin composition 22 was completely cured. Thereby, the optical semiconductor light-emitting device 22 of Example 22 in which the light conversion layer containing the phosphor was formed on the optical semiconductor light-emitting element and the light scattering layer containing the light scattering particles was formed thereon was produced. did.
  • a phenyl silicone resin composition containing a phosphor is dropped onto a light emitting element of a package having an unsealed blue light semiconductor light emitting element, and the phenyl silicone resin composition not containing the phosphor is further fluorescent.
  • the same amount as that of the phenyl silicone resin composition containing the body was dropped and cured at 150 ° C. for 2 hours.
  • the optical semiconductor light-emitting device 101 of the comparative example 1 by which the light conversion layer containing a fluorescent substance was formed on the optical semiconductor light-emitting element was produced.
  • the content of the yellow phosphor in the light conversion layer was 20% by mass.
  • the obtained light conversion layer was convex with respect to the external air layer.
  • the emission spectrum and luminance of the obtained optical semiconductor light emitting device 101 were measured as described above and used as reference values. The results are shown in Table 2 below.
  • Example 3 Except for using the surface-modified zirconia particle dispersion 14 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the light-scattering complex forming composition, the light-scattering complex, and the optical semiconductor light-emitting device of Example 1, respectively.
  • a light scattering complex forming composition 103, a light scattering complex 103, and an optical semiconductor light emitting device 103 were produced.
  • the obtained light scattering complex forming composition 103, light scattering complex 103, and optical semiconductor light emitting device 103 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • the surface-modified zirconia particle dispersion 15 was used instead of the surface-modified zirconia particle dispersion 1, respectively, phenyl Except that the amount of the silicone resin was 98.8 g (A solution 24.8 g, B solution 74.1 g), the light scattering complex forming composition 104, the light scattering complex 104, and An optical semiconductor light emitting device 104 was produced.
  • the surface-modified zirconia particle dispersion 15 is used in a state containing precipitated particles.
  • the obtained light scattering composite forming composition 104, light scattering composite 104, and optical semiconductor light emitting device 104 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • Example 6 Except for using the surface-modified zirconia particle dispersion 17 in place of the surface-modified zirconia particle dispersion 1 in the preparation of the light-scattering complex forming composition, the light-scattering complex, and the optical semiconductor light emitting device of Example 1, respectively.
  • the light scattering composite forming composition 106, the light scattering composite 106, and the optical semiconductor light emitting device 106 were produced.
  • the light scattering composite forming composition 106 was transparent, but the cured light scattering composite 106 was cloudy.
  • the obtained light scattering composite forming composition 106, light scattering composite 106, and optical semiconductor light emitting device 106 were evaluated in the same manner as in Example 1.
  • the light scattering particle content in the light scattering conversion layer was 0.8% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • the viscosity of the phosphor-containing light scattering composition 107 obtained by adding yellow phosphor particles to the light scattering composite forming composition 107 is very high, and the phosphor-containing light scattering composition 107 is completely defoamed. I could not. For this reason, the light scattering conversion layer is in a state in which bubbles are mixed.
  • the obtained light scattering complex forming composition 107, light scattering complex 107, and optical semiconductor light emitting device 107 were evaluated in the same manner as in Example 1.
  • the content of the light scattering particles in the light scattering conversion layer was 16% by mass, and the content of the yellow phosphor was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • the viscosity of the phosphor-containing light scattering composition 108 obtained by adding yellow phosphor particles to the light scattering complex-forming composition 108 is very high, and the phosphor-containing light scattering composition 108 is completely defoamed. I could not. For this reason, the light scattering conversion layer is in a state in which bubbles are mixed.
  • the obtained light scattering composite forming composition 108, light scattering composite 108, and optical semiconductor light emitting device 108 were evaluated in the same manner as in Example 1.
  • the content of the light scattering particles in the light scattering conversion layer was 16% by mass, and the content of the yellow phosphor was 20% by mass.
  • the obtained light-scattering conversion layer was convex with respect to the external air layer. The results are shown in Tables 1 and 2 below.
  • compositions 1 to 22 for forming a light-scattering complex used in each example had good transmittance characteristics. That is, in the integrated transmittance of a sample having a thickness of 1.0 mm, the transmittance at a wavelength of 460 nm was 40% or more and 95% or less, and the transmittance at a wavelength of 550 nm was 70% or more. Moreover, it was transparent or close to transparency visually, and a good result was obtained.
  • each of the light scattering composites 1 to 22 of each example has a high integrated transmittance value itself, a higher integrated transmittance than a linear transmittance, and an integrated transmittance at a wavelength of 460 nm.
  • the integrated transmittance at a wavelength of 550 nm was higher. Accordingly, these light scattering composites 1 to 19 are used in a white light semiconductor light emitting device in which a blue light semiconductor light emitting element and a phosphor are combined, particularly in a white light semiconductor light emitting device in which a blue light semiconductor light emitting element and a yellow phosphor are combined. By applying it to the light scattering layer or the light scattering conversion layer, it is possible to obtain the effects of suppressing blue light emission and improving white light luminance.
  • the light scattering composites 1 to 22 are materials that can be suitably used for a light scattering layer and a light scattering conversion layer of a white light semiconductor light emitting device in which a blue light semiconductor light emitting element and a phosphor are combined.
  • the average particle diameter of the light scattering particles (inorganic oxide particles) in the light scattering composites 1 to 22 was in the range of 10 nm to 1000 nm, which was suitable as the average particle diameter for obtaining the above optical characteristics. . Further, the average dispersed particle diameter of the surface-modified inorganic oxide particles in the light scattering composite forming compositions 1 to 22 used in each example, and the light scattering particles in the light scattering composites 1 to 22 that are cured products ( When the average particle diameter of the inorganic oxide particles) was compared, the average particle diameter of the light scattering particles in the light scattering composites 1 to 22 was larger in all cases.
  • the light scattering particles in the light scattering composites 1 to 22 were uniformly dispersed. This is because the dispersed particles that were uniformly dispersed in the light-scattering complex-forming compositions 1 to 22 cause the associated particles when the light-scattering complex-forming composition is cured to form the light-scattering complex. It can be said that it is a proof of formation.
  • the emission spectrum peak area ratio was superior to that of Comparative Example 1 or 2 having a reference value. That is, the blue light component emitted together with white light having a ratio a / b between the emission spectrum peak area a of wavelengths 400 nm to 480 nm and the emission spectrum peak area b of wavelengths 480 nm to 800 nm is smaller than 0.3. Was reduced.
  • the optical semiconductor light emitting devices 1 to 22 all had high luminance, and the luminance was 60500 cd / cm 2 or more. Therefore, it was confirmed that each of the optical semiconductor light emitting devices 1 to 22 of each example had good characteristics.
  • Comparative Example 3 the characteristics of the composition 103 for forming a light scattering complex are not substantially different from those of the matrix resin alone, and the characteristics of the light scattering complex 103 are close to those of the matrix resin alone. there were. This is because, when the light scattering complex forming composition 103 is cured to form the light scattering complex 103, the zirconia particles hardly associate, and therefore the average particle diameter of the light scattering particles in the light scattering complex 103 is reduced. This is considered to be because light scattering ability is hardly expressed because of a too small value. For this reason, the characteristics of the optical semiconductor light emitting device 103 are almost the same as the characteristics of the optical semiconductor light emitting device 101 which is the reference value.
  • the surface modifier does not have a functional group capable of binding to the matrix resin
  • the surface-modified zirconia particles undergo phase separation with the matrix resin and aggregate to form coarse particles. It is thought that the light scattering ability has become excessive. As described above, since the light scattering ability of the light scattering composite 106 is excessive, the brightness of the optical semiconductor light emitting device 106 is particularly lowered.
  • Comparative Example 7 the amount of zirconia particles (light scattering particles) in the light scattering complex forming composition 107 and the light scattering complex 107 was large. For this reason, the light scattering ability becomes excessive, and as a result, it is considered that the characteristics of the light scattering complex forming composition 107 and the light scattering complex 107 are deteriorated. Further, the composition 107 for forming a light scattering complex had a high viscosity due to a high content of zirconia particles (light scattering particles), and was difficult to handle.
  • the phosphor-containing light scattering composition 107 since the yellow phosphor particles are added in addition to the zirconia particles, the viscosity becomes very high, and defoaming is impossible and handling is more difficult. For these reasons, in the optical semiconductor light emitting device 107, good characteristics were not obtained for both the emission spectrum peak area ratio and the luminance.
  • Comparative Example 8 the amount of silica particles (light scattering particles) used as in Comparative Example 7 is large. For this reason, as in Comparative Example 7, it is considered that the light scattering ability was excessive, insufficient defoaming due to high viscosity and difficulty in handling occurred, and good characteristics could not be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

 アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、未硬化のマトリックス樹脂組成物と、を含有し、前記表面修飾された無機酸化物粒子の平均分散粒子径が3nm以上150nm以下であり、該無機酸化物粒子の含有量が全固形分中の0.01質量%以上15質量%以下である光散乱複合体形成用組成物を用いることにより、光散乱粒子の含有量を低減しても、光の透過性及び散乱性に優れ、その結果、青色光放射をより抑制し、かつ白色光輝度を向上させるとともに、演色性も向上した白色光半導体発光装置を得ることが可能な光散乱複合体を提供することができる。

Description

光散乱複合体形成用組成物、光散乱複合体及びその製造方法
 本発明は、光散乱複合体形成用組成物、光散乱複合体及びその製造方法に関する。
  青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色光半導体発光素子から発光された青色光と蛍光体によって波長変換された光とが合成されて白色(疑似白色)になるものである。このタイプの白色光半導体発光装置には、青色光半導体発光素子と黄色蛍光体とを組み合わせたもの;青色光半導体発光素子に緑色蛍光体と赤色蛍光体とを組み合わせたもの;があるが、光源(光半導体発光素子の発光色)が青色光のため青色成分を多く含んだ白色光となる。特に青色光半導体発光素子と黄色蛍光体とを組み合わせた白色光半導体発光装置は青色成分が非常に多く含まれている。
  青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色成分が多く含まれるため、眼の青色光網膜障害、皮膚への生理的ダメージや、覚醒レベル、自律神経機能、体内時計、メラトニン分泌等への生理的影響が指摘されている。そして、近年、光半導体発光装置の照明用途の市場が拡大し、光半導体発光装置の高輝度化が進んでおり、人体が青色光に曝されることが多くなっている。
 ここで、白色光半導体発光装置からの青色光放射を抑制し、かつ白色光輝度を向上させるために、白色光半導体発光装置内に光散乱粒子を分散させることが行われている(例えば、特許文献1、2)。
 この内、特許文献1は、平均粒径Dが20nm<D≦0.4×λ/π(ただし、λは青色光半導体発光素子の発光波長)の粒子を分散させた光散乱層を蛍光体層の光出射側に設けることで、色ムラと光取り出し効率の改善を図るものである。また、特許文献2は、蛍光体を含有する光変換層中やその上に、光散乱粒子として平均一次粒径3nm以上20nm以下の粒子を含有させ、光散乱層とすることにより、青色光成分を低減させ、輝度を向上させるものである。
特開2011-129661号公報 特開2014-45140号公報
 しかしながら、特許文献1、2に記載の散乱粒子としては通常の酸化物粒子が用いられており、また光散乱は主としてレイリー散乱に因ると推測されることから、光散乱能は光散乱粒子の含有量に比例する。このため、青色光放射をより抑制し、かつ白色光輝度を向上させるためには、光散乱層における光散乱粒子の含有量を増加させる必要があった。
 また、特に特許文献1においては、個々の光散乱粒子における光散乱能を高めるために光散乱粒子の粒子径を大きくした場合に、光散乱層を形成する原料となる未硬化の樹脂中で、光散乱粒子の沈降が生じるために、均一な散乱層が得られないという問題があった。
 本発明は、光散乱粒子の含有量を低減しても、光の透過性及び散乱性に優れ、その結果、青色光放射をより抑制し、かつ白色光輝度を向上させるとともに、演色性も向上した白色光半導体発光装置を得ることが可能な光散乱複合体形成用組成物、並びに光散乱複合体及びその製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意研究を行った結果、光散乱複合体形成用組成物中において、光散乱粒子を構成する表面修飾された無機酸化物粒子の含有量を一定値以下に減らすとともに、その表面修飾された無機酸化物粒子の表面修飾状態及び平均分散粒子径を制御することにより、当該光散乱複合体形成用組成物を硬化してなる光散乱複合体の光透過性低下を抑制しつつ光散乱性を高めることができることを見出し、本発明に想到した。すなわち、本発明は下記の通りである。
[1] アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、未硬化のマトリックス樹脂組成物と、を含有し、前記表面修飾された無機酸化物粒子の平均分散粒子径が3nm以上150nm以下であり、該無機酸化物粒子の含有量が全固形分中の0.01質量%以上15質量%以下である光散乱複合体形成用組成物。
[2] 硬化前の組成物について積分球で測定した波長550nmにおける透過率Taと、硬化後の硬化物について積分球で測定した波長550nmにおける透過率Tbとが、下記式(1)の関係を有する上記[1]に記載の光散乱複合体形成用組成物。
    Tb/Ta≦0.90  ・・・ 式(1)
[3] さらに蛍光体粒子を含有する上記[1]または[2]に記載の光散乱複合体形成用組成物。
[4] 上記[1]ないし[3]のいずれかに記載の光散乱複合体形成用組成物を硬化してなる光散乱複合体であって、前記表面修飾された無機酸化物粒子の少なくとも一部が会合粒子を形成しており、該無機酸化物粒子により形成された全ての粒子の平均粒子径が10nm以上1000nm以下である光散乱複合体。
[5] 前記表面修飾された無機酸化物粒子により形成された全ての粒子が、前記光散乱複合体中で均一に分散している上記[4]に記載の光散乱複合体。
[6] アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、未硬化のマトリックス樹脂組成物とを含有し、前記表面修飾された無機酸化物粒子の平均分散粒子径が3nm以上150nm以であり、該無機酸化物粒子の含有量が0.01質量%以上15質量%以下である光散乱複合体形成用組成物を硬化する工程を有する光散乱複合体の製造方法であって、前記硬化時において、前記光散乱複合体形成用組成物中の分散粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する光散乱複合体の製造方法。
[7] 前記光散乱複合体中における前記表面修飾された無機酸化物粒子により形成された全ての粒子の平均粒子径が、前記光散乱複合体形成用組成物中における平均分散粒子径よりも大きく、かつ、10nm以上1000nm以下となるように硬化させる上記[6]に記載の光散乱複合体の製造方法。
 本発明によれば、光の透過性及び散乱性に優れる光散乱複合体形成用組成物、並びに光散乱複合体及びその製造方法を提供することができる。
本発明の光散乱組成物を用いて作製された光半導体発光装置の一例を示す概略断面図である。 本発明の光散乱組成物を用いて作製された光半導体発光装置の他の一例を示す概略断面図である。 本発明の光散乱組成物を用いて作製された光半導体発光装置の他の一例を示す概略断面図である。 本発明の光散乱組成物を用いて作製された光半導体発光装置の他の一例を示す概略断面図である。
[光散乱複合体形成用組成物]
 本発明の光散乱複合体形成用組成物は、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、未硬化のマトリックス樹脂組成物とを含有し、前記表面修飾された無機酸化物粒子の平均分散粒子径が3nm以上150nm以下であり、該無機酸化物粒子の含有量が全固形分中の0.01質量%以上15質量%以下である。
 本発明の光散乱複合体形成用組成物は、本発明の効果を損なわない限度において、溶剤、界面活性剤、分散剤、安定化剤、酸化防止剤等を更に含有していてもよい。また、無機酸化物粒子以外に、有機樹脂からなる粒子等を含むものであってもよい。
 なお、これらの内溶剤は揮発成分(非固形分)であり、また界面活性剤、分散剤、安定化剤、酸化防止剤、有機樹脂からなる粒子等の使用量はマトリックス樹脂組成物に比べて非常に少ない。従って、表面修飾された無機酸化物粒子の含有量は、光散乱複合体形成用組成物中の当該無機酸化物粒子及びマトリックス樹脂組成物の合計量に対する含有率で近似しても、実質的な差異は無く問題はない。
〔表面修飾された無機酸化物粒子〕
 本発明における表面修飾された無機酸化物粒子は、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子である。該無機酸化物粒子は、更に、当該表面修飾材料以外の成分、例えば、界面活性剤、有機酸等により表面処理されていてもよいが、当該表面修飾材料で表面修飾された無機酸化物粒子からなることが好ましい。
 無機酸化物粒子としては、本発明の光散乱複合体が使用される波長域において光吸収が無い材質からなる粒子を選択することが好ましい。例えば、近紫外光~可視光域において光吸収が無い材質としては、ZrO2、TiO2、ZnO、Al23、SiO2、CeO2等の金属酸化物を挙げることができ、これらの粒子を光散乱粒子として含む光散乱複合体は、白色光半導体発光装置(白色発光ダイオード)に好適に使用できる。
 一方、特定の波長に吸収を有する材質を用いて無機酸化物粒子を形成することにより、光散乱複合体に波長特性を付与することもできる。また、無機酸化物粒子の屈折率を選択することで、光散乱性や光透過性等の調節を行うこともできる。
 無機酸化物粒子の平均一次粒子径は、3nm以上50nm以下であることが好ましい。また当該平均一次粒子径は、4nm以上40nm以下であることが好ましく、5nm以上20nm以下であることがより好ましい。平均一次粒子径が3nm未満では、散乱効果が小さいため、当該光散乱粒子を含有する光散乱複合体において十分な散乱特性を発現し得ないために、光散乱複合体を設ける効果が得られないおそれがある。一方、平均一次粒子径が50nmを超えると、特に後述の会合粒子が形成された場合に散乱が大きくなり過ぎ、光散乱複合体内において多重散乱が起こりやすくなることから、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、やはり光散乱複合体を設ける効果が得られないおそれがある。
 なお、無機酸化物粒子の平均一次粒子径を3nm以上50nm以下とするためには、無機酸化物粒子の98%以上が、1nm以上100nm以下の粒子径範囲にあることが好ましい。
 また、無機酸化物粒子の平均一次粒子径は、例えば、当該粒子を電子顕微鏡観察して得られる画像から、任意の粒子を50個以上選択してその粒子径を求め、平均すればよい。一方、無機酸化物粒子の一次粒子径がナノメートルサイズであれば、無機酸化物粒子の平均一次粒子径を、X線回折によって得られるシェラー径としてもよい。これは、一次粒子径がナノメートルサイズであれば、1粒子が複数個の結晶子で構成される可能性が低くなることで、平均一次粒子径とシェラー径とが実質的に同一となるからである。
 次に、光散乱複合体形成用組成物中における表面修飾された無機酸化物粒子は、一次粒子単独の状態で分散していてもよく、複数個の一次粒子が凝集した二次粒子として分散していてもよく、一次粒子と二次粒子の混合状態で分散していてもよい。以下、このような状態で分散している表面修飾された無機酸化物粒子のことを「分散粒子」と称する場合がある。
 この分散粒子の平均粒子径、すなわち平均分散粒子径は、3nm以上150nm以下である必要がある。また平均分散粒子径は3nm以上120nm以下であることが好ましく、5nm以上100nm以下であることがより好ましい。上記の通り、無機酸化物粒子の平均一次粒子径の下限値が3nmであることから、平均分散粒子径が3nm未満となることはない。一方、平均分散粒子径が150nmを超えると、光散乱複合体形成用組成物中で表面修飾無機酸化物粒子が沈降しやすくなるために、当該光散乱複合体形成用組成物を硬化して得られる光散乱複合体において、表面修飾された無機酸化物粒子により形成される各種の粒子が均質に存在(均一に分散)しなくなったり、当該無機酸化物粒子により形成される会合粒子の粒子径が1200nmを超えるおそれがある。また、平均分散粒子径を150nm以下とすることにより、当該粒子における光散乱を抑制することができ、よって光散乱複合体形成用組成物における透明性を維持することができる。
 このように、光散乱複合体形成用組成物における透明性が維持されている一方で、後述のように、この光散乱複合体形成用組成物を硬化してなる硬化物(すなわち光散乱複合体)においては、会合粒子が形成される等により光散乱特性が高くなるようにしている。すなわち、本発明においては、光散乱複合体形成用組成物の積分球で測定した波長550nmにおける透過率Taと、光散乱複合体形成用組成物を硬化してなる硬化物の積分球で測定した波長550nmにおける透過率Tbの関係が、式(1)の関係をもつようになることが好ましい。
   Tb/Ta≦0.90 ・・・ 式(1)
 なお、無機酸化物粒子の平均分散粒子径を3nm以上150nm以下とするためには、無機酸化物粒子の98%以上が、1nm以上200nm以下の粒子径範囲にあることが好ましい。
 また、無機酸化物粒子の平均分散粒子径は、例えば、当該粒子を含む光散乱複合体形成用組成物を動的光散乱法により測定して粒度分布を求め、その値から算術平均により求めることができる。
 後述の通り、本発明の光散乱複合体は、光半導体発光装置、特に光半導体発光素子で青色ないしは近紫外光を発光し、この青色ないしは近紫外の一部を蛍光体により黄色に波長変換させる白色光半導体発光装置に好適に用いることができる。
 この場合における光散乱複合体は、光半導体発光素子で発光し、蛍光体層で波長変換されずにそのまま通過してきた青色ないしは近紫外の発光光成分を、散乱により蛍光体層へ戻す作用と、蛍光体層で波長変換された黄色光等の変換光成分を、できるだけ散乱させずにそのまま外部に取り出す作用の、2つの作用が要求される。
 この場合においても、無機酸化物粒子の平均一次粒子径は、3nm以上50nm以下であることが好ましい。すなわち、表面修飾された無機酸化物粒子の平均一次粒子径が3nm未満の場合、青色ないしは近紫外の発光光成分に対する散乱特性が不十分となるために、青色ないしは近紫外の発光色成分がそのまま(散乱せずに)外部に放射される。このため、蛍光体への入射光量が低下して蛍光体により波長変換された光成分の光量も増加しないため、白色光半導体発光装置の輝度向上が図れない。更には、青色光による生理的影響が発生しやすくなる。一方、平均一次粒子径が50nmを超えると、特に後述の会合粒子が形成された場合において、青色ないしは近紫外の発光光成分が十分に散乱されるだけでなく、蛍光体層で波長変換された変換光成分も散乱されて白色光半導体発光装置から放射されにくくなるため、やはり輝度が低下する。
 すなわち、本発明の光散乱複合体を白色光半導体発光装置に適用した場合においても、表面修飾された無機酸化物粒子の平均一次粒子径が3nm以上50nm以下であれば、白色光半導体発光装置の輝度向上と青色ないしは近紫外の発光色成分の低減を図ることができ、好適に用いることができる。同様に、光散乱複合体形成用組成物中における表面修飾された無機酸化物粒子の平均分散粒子径も3nm以上150nm以下であれば、白色光半導体発光装置に好適に用いることができる。
 光散乱複合体形成用組成物中の表面修飾された無機酸化物粒子の含有量は、光散乱複合体形成用組成物全量に対して0.01質量%以上15質量%以下である。表面修飾された無機酸化物粒子の含有量は、光散乱複合体形成用組成物全量に対して0.01質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましい。
 光散乱複合体形成用組成物中の表面修飾された無機酸化物粒子の含有量が0.01質量%未満では、この光散乱複合体形成用組成物を硬化して得られる光散乱複合体中の表面修飾された無機酸化物粒子すなわち光散乱粒子の量が少なすぎて、光散乱効果が得られない。一方、光散乱複合体形成用組成物中の表面修飾された無機酸化物粒子の含有量が15質量%を超えると、特に後述の会合粒子が形成した場合において表面修飾された無機酸化物粒子(光散乱粒子)の量が多すぎるために散乱が過大になり、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、光散乱複合体を設ける効果が得られない。すなわち、光散乱複合体形成用組成物中の表面修飾無機酸化物粒子の含有量が0.01質量%以上15質量%以下であることで、散乱性と光透過性とのバランスが良い光散乱複合体を得ることができる。
 また、このような光散乱複合体形成用組成物から得られる光散乱複合体を白色光半導体発光装置に適用すれば、白色光半導体発光素子からの光取出効率が向上することでさらに高輝度の光半導体発光装置とすることができる。
(無機酸化物粒子の表面修飾)
 本発明における表面修飾された無機酸化物粒子は、未硬化である光散乱複合体形成用組成物中において、平均分散粒子径が3nm以上150nm以下の状態である分散粒子として存在している。これは、上記の通り、当該光散乱複合体形成用組成物を硬化して得られる光散乱複合体において、表面修飾無機酸化物粒子により形成される各種粒子の均一性を確保したり、会合粒子の粒子径が1200nmを超えるのを防ぐためである。
 一方、後述のように、光散乱複合体中においては、表面修飾された無機酸化物粒子の少なくとも一部は複数個の粒子が会合して会合粒子を形成していることが好ましい。この会合粒子は、光散乱複合体形成用組成物中における複数個の一次粒子が会合して形成されたものでも良く、光散乱複合体形成用組成物中における複数個の二次粒子が会合して形成されたものでも良く、光散乱複合体形成用組成物中における複数個の一次粒子と二次粒子が会合して形成されたものでも良い。従って、光散乱複合体中における表面修飾された無機酸化物粒子には、光散乱複合体形成用組成物中における一次粒子がそのまま維持された一次粒子、光散乱複合体形成用組成物中における二次粒子がそのまま維持された二次粒子、光散乱複合体形成用組成物中における一次粒子や二次粒子が会合して形成された会合粒子が含まれていてよい。以後、光散乱複合体中において、これら表面修飾された無機酸化物粒子により形成された全ての粒子を総称して「光散乱粒子」と称する場合がある。
 そして、これら表面修飾された無機酸化物粒子により形成された全ての粒子(光散乱粒子)の平均粒子径は10nm以上1000nm以下であることが好ましい。平均粒子径は50nm以上1000nm以下であればより好ましく、80nm以上1000nm以下であればさらに好ましい。
 また、光散乱粒子の平均粒子径は、光散乱複合体形成用組成物における分散粒子の平均分散粒子径よりも大きい必要がある。
 さらにまた、この光散乱粒子は、マトリックス樹脂中に均一に分散していることが好ましく、特に会合粒子がマトリックス樹脂中に均一に分散していることが好ましい。ここで「均一に分散」とは、形成された光散乱複合体の任意の部分を観察した際に、当該部分における光散乱粒子の個数と平均粒子径とが実質的に一定の値を示すということである。本明細書において、以下同様である。
 この「均一に分散」は、次のようにして評価できる。
 すなわち、評価対象である光散乱粒子の個数と平均粒子径は、ともに光の散乱状態に影響を与える因子であるから、これらの値が変化すれば光散乱特性も変化する。従って、光散乱特性の評価方法である積分透過率を、光散乱複合体の複数の部分で測定し、その値が一定の範囲内に収まっていれば、当該光散乱複合体中の光散乱粒子は「均一に分散」していると判断できる。
 ここで、測定試料としては、光散乱複合体を薄片化したものを使用することが好ましい。例えば、光散乱複合体がシート状であれば、その面方向に薄片化した試料を用いることができる。より簡易的には、シート状の光散乱複合体を表面側と裏面側に二分し、それぞれを測定試料としてもよい。
 また、測定波長には特段の限定はないが、光散乱特性がより反映される波長とすることが好ましい。例えば、白色光半導体発光装置に用いる光散乱複合体では、光半導体発光素子の発光波長である波長460nm付近の青色光や、蛍光体の放射光である波長550nm付近の黄色光を測定波長とすることができ、特に青色光を用いることが好ましい。
 そして、このようにして測定した任意の部分における積分透過率の変動幅が10%以内であれば、当該光散乱複合体中の光散乱粒子は「均一に分散」していると判断できる。変動幅は5%以内であることがより好ましい。
 表面修飾された無機酸化物粒子がこのような挙動を示すためには、マトリックス樹脂組成物中の分散状態やマトリックス樹脂組成物との界面親和性を制御すると共に、マトリックス樹脂中の分散状態やマトリックス樹脂との界面親和性も制御する必要がある。
 具体的には、まずマトリックス樹脂組成物に対しては、マトリックス樹脂組成物と類似した骨格、官能基を有する表面修飾材料で無機酸化物粒子を表面処理し、相溶性を高めることが重要となる。このように相溶性を高めた表面修飾された無機酸化物粒子を用いることにより、無機酸化物粒子を平均分散粒子径が150nm以下となるようにマトリックス樹脂組成物に対して分散させることが可能になる。
 次に、光散乱複合体形成用組成物を硬化して光散乱複合体を形成するに際しては、未硬化時は低分子、オリゴマーの状態であるマトリックス樹脂組成物も、硬化反応に際して分子量増大と架橋が進行する。この硬化反応時に、表面修飾が不適切であると、無機酸化物粒子は異物として樹脂成分から排除され、相分離を起こす。その結果、無機酸化物粒子が会合、凝集して粗大粒子が形成し、白濁化が生じる。この相分離と粗大粒子の形成は、特にマトリックス樹脂の加熱硬化において系の粘性が低下することで顕著に見られ、樹脂の架橋密度にも寄るが、無機酸化物粒子の会合・凝集速度が速まり、結果的にマトリックス樹脂硬化物から排除され白濁化する。
 この相分離と粗大粒子の形成(白濁化)を防ぎ、光散乱複合体中における表面修飾された無機酸化物粒子により形成された全ての粒子をマトリックス樹脂中に分散させるには、表面修飾された無機酸化物粒子表面とマトリックス樹脂との界面親和性を確保する必要がある。このため、無機酸化物粒子(非修飾粒子)の表面は、マトリックス樹脂の構造と相性の良い構造の表面修飾材料によって被覆されることが好ましい。
 具体的には、マトリックス樹脂を形成するための樹脂モノマーないしはオリゴマーであり、液状の未硬化体であるマトリックス樹脂組成物がマトリックス樹脂を形成する際に、樹脂モノマーないしはオリゴマー同士の重合に用いられる反応基を、表面修飾材料にも有させればよい。ここで、マトリックス樹脂組成物であるシリコーン系の封止材は、反応基としてH-Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有することが好ましい。従って、表面修飾材料には、アルケニル基、H-Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料を用い、この表面修飾材料により光散乱粒子の表面を修飾する。
 すなわち、無機酸化物粒子の表面の少なくとも一部は、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、表面修飾された無機酸化物粒子が構成されている。すなわち、無機酸化物粒子の表面の少なくとも一部が、このような官能基を有する表面修飾材料によって被覆されている。
 アルケニル基、H-Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料としては、ビニルトリメトキシシラン、アルコキシ片末端ビニル片末端ジメチルシリコーン、アルコキシ片末端ビニル片末端メチルフェニルシリコーン、アルコキシ片末端ビニル片末端フェニルシリコーン、メタクリロキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、メタクリル酸等炭素-炭素不飽和結合含有脂肪酸、ジメチルハイドロジェンシリコーン、メチルフェニルハイドロジェンシリコーン、フェニルハイドロジェンシリコーン、ジメチルクロロシラン、メチルジクロロシラン、ジエチル、クロロシラン、エチルジクロロシラン、メチルフェニルクロロシラン、ジフェニルクロロシラン、フェニルジクロロシラン、トリメトキシシラン、ジメトキシシラン、モノメトキシシラン、トリエトキシシラン、ジエトキシモノメチルシラン、モノエトキシジメチルシラン、メチルフェニルジメトキシシラン、ジフェニルモノメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルモノエトキシシラン等が挙げられる。
 アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料の、無機酸化物粒子表面への表面修飾量としては、無機酸化物粒子として金属酸化物粒子を用いた場合、その質量に対して1質量%以上50質量%以下が好ましい。表面修飾量を1質量%以上50質量%の範囲とすることにより、表面修飾された無機酸化物粒子はマトリックス樹脂組成物に対しては平均分散粒子径が150nm以下の状態で均一に分散した分散粒子として存在することが可能となり、一方硬化後の光散乱複合体においては、マトリックス樹脂に対して、表面修飾された無機酸化物粒子の少なくとも一部が会合粒子を形成した状態で、かつ表面修飾された無機酸化物粒子により形成された全ての粒子、特に会合粒子が均一に分散することが可能となる。従って、表面修飾量を上記範囲とした表面修飾された無機酸化物粒子を用いることにより、高い散乱特性を有する光散乱複合体を得ることができる。
 一方、表面修飾量が1質量%未満では、表面修飾材料とマトリックス樹脂組成物間での官能基の結合点が不足するために、光散乱粒子がマトリックス樹脂組成物に対して良好に分散することが難しく、たとえ分散していたとしても、光散乱複合体が硬化する過程で光散乱粒子がマトリックス樹脂相から分離して凝集するために、光散乱複合体の光透過性低下や硬度低下が発生するおそれがある。
 また、表面修飾量が50質量%を超えた場合、表面修飾材料とマトリックス樹脂組成物間での官能基との結合点が多いことから、光散乱粒子はマトリックス樹脂組成物に対しては一次粒子の状態が維持された単分散状態での均一な分散が可能となるだけでなく、光散乱複合体が硬化する過程でも光散乱粒子の単分散が維持されて部分的な会合が発生しないことがある。このため、光散乱変換層や光散乱層おける会合粒子の形成による光散乱能の向上(より少量の光散乱粒子で十分な散乱能を有する効果)が期待できなくなる。なお、表面修飾量が50質量%を超えかつ80質量%以下の範囲では、会合粒子形成による効果は期待しにくくなるものの、光散乱粒子とマトリックス樹脂間の結合状態は良好に保たれており、光散乱複合体としての特性は維持される。一方、表面修飾量が80質量%を超えると、表面修飾材料とマトリックス樹脂組成物間での官能基の結合点が多くなり過ぎ、硬化体が脆くなってクラックが発生するおそれがある。
 表面修飾量は、より好ましくは3質量%以上50質量%以下であり、さらに好ましくは5質量%以上40質量%以下である。
 また、樹脂硬化時の相分離、すなわち表面修飾された無機酸化物粒子の会合・凝集状態を制御・調整するために、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料と併せて、ポリマー型の表面修飾材料、オリゴマー型の表面修飾材料を用いることができる。
 このポリマー型の表面修飾材料、オリゴマー型の表面修飾材料としては、マトリックス樹脂と類似骨格を有するポリマー表面修飾材料、オリゴマー表面修飾材料を挙げることができる。例えばマトリックス樹脂がシリコーン樹脂であれば、前記ポリマー表面修飾材料として、メチル基、フェニル基を有するシリコーンポリマー;オリゴマー表面修飾材料として、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーンレジン、アルコキシ基含有フェニルシリコーンレジン樹脂、アルコキシ基含有メチルフェニルシリコーンレジン等が好適に使用できる。
 このポリマー型の表面修飾材料、オリゴマー型の表面修飾材料の分子量は、マトリックス樹脂分子量の0.1~50倍が好ましい。また、ポリマー型の表面修飾材料、オリゴマー型の表面修飾材料の処理量は、無機酸化物粒子の質量に対して0.1質量%以上かつ10質量%以下が好ましい。
 なお、ポリマー型の表面修飾材料、オリゴマー型の表面修飾材料を併せて用いる場合においても、表面修飾材料の全量、すなわちアルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料とポリマー型の表面修飾材料、オリゴマー型の表面修飾材料との総量は、無機酸化物粒子として金属酸化物粒子を用いた場合において、無機酸化物粒子の質量に対して1質量%以上50質量%以下が好ましく、より好ましくは3質量%以上50質量%以下、さらに好ましくは5質量%以上40質量%以下である。
 このように、本発明においては、この、表面修飾材料の組成(分子構造や反応基の成分)及び成分、並びに無機酸化物粒子に対する表面修飾量を調整することにより、硬化反応時における無機酸化物粒子の会合状態を制御することにより、光散乱複合体中において、表面修飾された無機酸化物粒子の少なくとも一部を、複数個の粒子が会合した会合粒子を形成した状態で分散させることができる。この会合粒子の会合粒子径は1200nm以下であることが好ましい。
 無機酸化物粒子表面への表面修飾材料の修飾方法は、無機酸化物粒子に直接、表面修飾材料を混合、噴霧等する乾式方法、表面修飾材料を溶解させた水及び有機溶剤から選択される1種類以上の溶媒に非修飾粒子を投入し、溶媒中で表面修飾する湿式方法等が挙げられる。本発明においては、表面修飾量の制御性に優れること、表面修飾の均一性が高い点等から、湿式方式を用いることが好ましい。
〔マトリックス樹脂組成物〕
 マトリックス樹脂組成物は、光散乱複合体形成用組成物が硬化して光散乱複合体となったときに、表面修飾された無機酸化物粒子を包含するマトリックス樹脂を構成する樹脂モノマーないしはオリゴマー等の、液状のマトリックス樹脂未硬化体である。
 ここで光散乱複合体に適用されるマトリックス樹脂は、本発明の光散乱複合体が使用される波長域において光吸収が無い材質であれば特に限定はされないが、基本的に光学材料であるので、光に対する耐性(耐光性)を有するものであることが好ましい。また既述のように、本発明の光散乱複合体は白色光半導体発光装置に好適に使用できるが、この場合には、可視光域(光半導体発光素子として近紫外光半導体発光素子を用いる場合には近紫外光域~可視光域)において透明であって、光半導体発光装置の信頼性(要求される各種性能、例えば、耐久性)を損なわないものであることが好ましい。更に、光半導体発光素子の高出力化及び照明用途への適用を考慮した場合には、従来から光半導体発光素子封止材として用いられている樹脂を用いることが好ましい。特に光散乱複合体の耐久性の観点から、マトリックス樹脂は、シリコーン系の封止材を用いることが好ましく、例えば、ジメチルシリコーン樹脂、メチルフェニルシリコーン樹脂、フェニルシリコーン樹脂、有機変性シリコーン樹脂等が挙げられる。
 従って、マトリックス樹脂組成物は、ジメチルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、メチルフェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、フェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、有機変性シリコーン樹脂の樹脂モノマー若しくはオリゴマー等の、シリコーン系樹脂の樹脂モノマー若しくはオリゴマーを含有することが好ましい。
 光散乱複合体のマトリックス樹脂としてシリコーン樹脂を用いる場合は、液状の未硬化体である各シリコーン樹脂組成物を、例えば、付加型反応、縮合型反応、ラジカル重合反応等によって重合硬化させることで得ることができる。特に、反応基としてH-Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有するシリコーン樹脂組成物を選択することが好ましい。
 前述の通り、光散乱複合体形成用組成物中においては、表面修飾された無機酸化物粒子は、平均分散粒子径が150nm以下の状態で存在することが好ましい。一方、光散乱複合体形成用組成物を硬化して得られる光散乱複合体においては、表面修飾された無機酸化物粒子の少なくとも一部が会合粒子を形成した状態で、全体としては均一にマトリックス樹脂中に分散していることが好ましい。そして、表面修飾された無機酸化物粒子を均一にマトリックス樹脂中に分散させるには、光散乱粒子表面とマトリックス樹脂との界面親和性を確保するように制御されていることが好ましい。
 本発明においては、前記の通り、表面修飾材料の構造をマトリックス樹脂の構造と相性の良いものとしている。すなわち、マトリックス樹脂組成物として、H-Si基、アルケニル基、及びアルコキシ基の少なくとも1つを反応基として有するシリコーン系の封止材を選択することが好ましく、従って、表面修飾材料には、アルケニル基、H-Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料を用いることとしている。
 このように、マトリックス樹脂組成物として、H-Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有するシリコーン系の封止材を用いる場合、表面修飾材料が有するアルケニル基、H-Si基、及びアルコキシ基は、マトリックス樹脂組成物と次のように結合する。
 表面修飾材料のアルケニル基は、マトリックス樹脂組成物中のH-Si基と反応することにより架橋する。表面修飾材料のH-Si基は、マトリックス樹脂組成物中のアルケニル基と反応することにより架橋する。表面修飾材料のアルコキシ基は、マトリックス樹脂組成物中のアルコキシ基と加水分解を経て縮合する。このような結合により、マトリックス樹脂と表面修飾材料とが一体化することから、マトリックス樹脂組成物が硬化しマトリックス樹脂を形成する過程で光散乱粒子が完全には相分離することなく、全体としての分散状態を維持してマトリックス樹脂中に固定化でき、また、これらの層の緻密性を向上させることができる。
 そして、表面修飾材料の組成(分子構造や反応基の成分)及び無機酸化物粒子に対する表面修飾量を調整したり、さらには、ポリマー型の表面修飾材料、オリゴマー型の表面修飾材料を用い、その分子量をマトリックス樹脂分子量の0.1~50倍の範囲で調整することで、表面修飾材料と樹脂との相溶性を制御し、よって樹脂硬化時の会合粒子径を制御・調整することができる。
 また、表面修飾された無機酸化物粒子表面とマトリックス樹脂との界面親和性をより高めるため、及び、無機酸化物粒子を表面修飾するプロセスにおいてより効率的に上記官能基を有する表面修飾材料を修飾するため、の一方又は両方の効果を得るために、上記官能基を有する表面修飾材料以外の公知の表面修飾材料を併用することができる。
 マトリックス樹脂組成物が含有するマトリックス樹脂未硬化体は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 また、光散乱複合体形成用組成物中のマトリックス樹脂組成物の含有量は、光散乱組成物中の表面修飾無機酸化物粒子の含有量を除いた残部であることが好ましい。
(光散乱複合体形成用組成物の調製)
 光散乱複合体形成用組成物は、上記のようにして表面修飾された無機酸化物粒子を含む粒子とマトリックス樹脂組成物とを混合することにより得られる。この光散乱複合体形成用組成物を硬化してなる光散乱複合体において、光散乱体となる表面修飾された無機酸化物粒子はマトリックス樹脂中に均一に分散していることが好ましいことから、光散乱複合体形成用組成物中の表面修飾された無機酸化物粒子は、平均分散粒子径が150nm以下の状態で存在することが好ましい。
 表面修飾された無機酸化物粒子をマトリックス樹脂組成物中に均一に分散させる方法としては、表面修飾された無機酸化物粒子とマトリックス樹脂組成物とを二軸混錬機等の機械的方法によって混合して分散させる方法や、表面修飾された無機酸化物粒子を有機溶媒中に分散させた分散液とマトリックス樹脂組成物を混合した後、有機溶媒を乾燥除去する方法がある。
 後述の通り、本発明の光散乱複合体は、光半導体発光装置、特に光半導体発光素子で青色ないしは近紫外光を発光し、この青色ないしは近紫外の一部を蛍光体により黄色に波長変換させる白色光半導体発光装置に好適に用いることができる。
 この白色光半導体発光装置への適用を考慮すると、光散乱複合体形成用組成物の積分球で測定した波長460nmにおける透過率は、試料厚さを1mmとした場合において40%以上95%以下とすることが好ましい。波長460nmにおける透過率が40%以上であることで光全体の透光性の低下を防ぎ光半導体発光装置の輝度を向上させることができる。また、透過率が95%以下であれば蛍光体によって波長変換されなかった光半導体発光素子の発光色成分が外部空気相に多く出てしまうことを防ぎ、外部空気相とは異なる方向への散乱を多くして、光半導体発光装置の演色性を向上させることができる。波長460nmにおける透過率は、より好ましくは50%以上90%以下であり、さらに好ましくは60%以上85%以下である。
 なお、以下の説明では「積分球で測定した透過率」のことを「積分透過率」と称する場合がある。また、「一般的な透過率測定法である直線光で測定した透過率」のことを「直線透過率」と称する場合がある。
 また、波長550nmにおける透過率は75%以上であることが好ましい。透過率が75%以上であることで光半導体発光素子の発光色とその発光色が蛍光体によって波長変換された光とが合成された白色光の透光性が低下するのを防ぎ、光半導体発光装置の輝度を向上させることができる。波長550nmにおける透過率は、より好ましくは80%以上であり、さらに好ましくは90%以上である。
 上記のような透過率を得るには、表面修飾された無機酸化物粒子表面における表面修飾材料以外の公知量を調整すればよい。
[光散乱複合体]
 本発明の光散乱複合体は、本発明の光散乱複合体形成用組成物を硬化してなり、表面修飾された無機酸化物粒子の少なくとも一部が会合粒子を形成しており、該無機酸化物粒子により形成された全ての粒子、すなわち光散乱粒子の平均粒子径が10nm以上1000nm以下である。
 従って、本発明の光散乱複合体は、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された表面修飾無機酸化物粒子と、マトリックス樹脂と、を含有し、表面修飾無機酸化物粒子の含有量が、光散乱複合体全量に対して0.01質量%以上15質量%以下である。
 表面修飾された無機酸化物粒子の内容及び好ましい態様は、光散乱複合体形成用組成物が含有する表面修飾された無機酸化物粒子の内容及び好ましい態様と同様である。
 マトリックス樹脂は、光散乱複合体形成用組成物が含有するマトリックス樹脂組成物が硬化して得られる樹脂であり、好ましくは透明の樹脂である。マトリックス樹脂組成物の内容及び好ましい態様は、光散乱複合体形成用組成物が含有するマトリックス樹脂組成物の内容及び好ましい態様と同様である。
 本発明の光散乱複合体においては、散乱性の観点から、表面修飾された無機酸化物粒子は、少なくともその一部が会合粒子を形成した状態で、マトリックス樹脂中に分散している。この会合粒子は、光散乱複合体形成用組成物中における複数個の分散粒子が会合して形成されたものである。すなわち当該会合粒子には、光散乱複合体形成用組成物中における複数個の一次粒子が会合して形成されたもの、光散乱複合体形成用組成物中における複数個の二次粒子が会合して形成されたもの、光散乱複合体形成用組成物中における複数個の一次粒子と二次粒子が会合して形成されたもの、の3種類が考えられ、この3種類のうち1種類以上が含まれていればよい。
 ここで、会合粒子の粒子径は1200nm以下であることが好ましい。会合粒子の粒子径が1200nmを超えると散乱が大きくなり過ぎ、光散乱複合体内において多重散乱が起こりやすくなることから、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、光散乱複合体を設ける効果が得られないおそれがあるためである。なお、会合粒子の粒子径の下限値は、定義上からは一次粒子径を超えていれば良いが、実効的には次に示す光散乱粒子の平均粒子径の下限値で規定することが好ましい。
 このように、光散乱複合体中における表面修飾された無機酸化物粒子は、光散乱複合体形成用組成物中における一次粒子と二次粒子から選択される1種ないし2種が会合して形成された会合粒子が含まれる他、さらに光散乱複合体形成用組成物中における一次粒子がそのまま維持された一次粒子、光散乱複合体形成用組成物中における二次粒子がそのまま維持された二次粒子が含まれていてよい。そして、光散乱複合体中におけるこれら表面修飾された無機酸化物粒子により形成された全ての粒子、すなわち光散乱粒子の平均粒子径は10nm以上1000nm以下であることが好ましい。光散乱粒子の平均粒子径は20nm以上1000nm以下であることがより好ましく、50nm以上800nm以下であることがさらに好ましい。
 ここで、光散乱粒子の平均粒子径が10nm未満では、光の散乱能が低いために光散乱性が低下し、光散乱粒子を含有させる効果が得られないおそれがある。一方、平均粒子径が1000nmを超えると、粒子としての散乱能が強くなりすぎるために、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、光散乱複合体を設ける効果が得られないおそれがある。
 なお、光散乱粒子の平均粒子径の測定方法であるが、光散乱複合体が硬化物であるために、動的光散乱法による測定は困難である。このため、例えば、光散乱複合体の薄片化試料を透過型電子顕微鏡(TEM)で観察して任意の光散乱粒子50個以上を選び、これら各光散乱粒子の粒子径を画面上で測定した上で、その平均値を求めることにより得ることができる。各光散乱粒子の粒子径としては、個別に存在している表面修飾された無機酸化物粒子についてはその粒子径をそのまま光散乱粒子の粒子径とし、一方、複数個の表面修飾された無機酸化物粒子が重なるか、ないしは連なって見える場合には、その複数個の粒子全体をもって二次粒子ないしは会合粒子と判断し、当該二次粒子ないしは会合粒子全体の粒子径を光散乱粒子の粒子径とすればよい。
 また、光散乱粒子の平均粒子径は、光散乱複合体形成用組成物における分散粒子の平均分散粒子径よりも大きくなる。これは、会合粒子が、光散乱複合体形成用組成物における一次粒子や二次粒子が会合して形成するからである。なお、本発明の光散乱複合体形成用組成物では、平均分散粒子径の上限値を150nmとしているから、本発明の光散乱複合体における光散乱粒子の平均粒子径が150nmを超えていれば、会合粒子が形成していると明確に判断できる。
 このように、会合粒子を形成することにより、光散乱複合体中の光散乱粒子の平均粒子径は、光散乱複合体形成用組成物における分散粒子の平均分散粒子径より大きくなるから、光に対する散乱能も高くなり、よって会合粒子が形成されない場合に比べ、より少量の光散乱粒子で十分な散乱能を発現することができるようになる。すなわち、本発明の光散乱複合体形成用組成物を成形してなる光散乱複合体中における光散乱粒子の割合を10質量%以下としても、十分な光散乱特性を得ることができる。
 例えば、本発明の光散乱複合体では、光散乱特性が高いことから、積分透過率を直線透過率よりも高くすることができる。透過率の測定波長は、光散乱複合体が使用される条件に合わせて選択すればよいが、後述するように、本発明の光散乱複合体を白色光半導体発光装置に用いる場合には、白色光半導体発光装置における青色光半導体発光素子の発光波長(460nm)とすることが好ましい。積分透過率が直線透過率よりも高く、かつその差(積分透過率-直線透過率)が25ポイント以上であればより好ましく、40ポイント以上であればさらに好ましい。
 さらにまた、光散乱粒子は、マトリックス樹脂中に均一に分散していることが好ましく、特に会合粒子がマトリックス樹脂中に均一に分散していることが好ましい。光散乱粒子がマトリックス樹脂中の一部に局在化している場合には、必要とする光散乱特性が得られないおそれがある。このように、光散乱粒子、特に会合粒子をマトリックス樹脂中に均一に分散させるためには、後述のように、会合粒子が光散乱複合体形成用組成物の状態では形成されておらず、光散乱複合体形成用組成物が硬化して光散乱複合体となる段階において、形成されることが好ましい。
[光散乱複合体の製造方法]
 本発明の光散乱複合体の製造方法は、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、マトリックス樹脂組成物とを含有し、該表面修飾された無機酸化物粒子が分散粒子径3nm以上150nm以下の分散粒子であり、該無機酸化物粒子の含有量が0.01質量%以上15質量%以下である光散乱複合体形成用組成物を硬化する工程を有し、当該光散乱複合体形成用組成物の硬化時において、光散乱複合体形成用組成物中に分散されてなる分散粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成するものである。
 すなわち、この会合粒子は、光散乱複合体形成用組成物の状態では形成されておらず、光散乱複合体形成用組成物が硬化して光散乱複合体となる段階において、形成されるものである。
 上記光散乱複合体形成用組成物においては、未硬化のマトリックス樹脂組成物中に、表面修飾された無機酸化物粒子が平均分散粒子径が3nm以上150nm以下の分散粒子の状態で均一に分散している。そして、マトリックス樹脂が硬化するにつれて、複数個の分散粒子が極微小の領域でマトリックス樹脂(組成物)と局所的な相分離を起こして会合し、会合粒子が形成されることが好ましい。また、この局所的な相分離は、マトリックス樹脂組成物(光散乱複合体形成用組成物)内の全体で発生するとともに、各会合粒子が相互に結合することなく局所的な領域内で保持されることが好ましい。表面修飾された無機酸化物粒子がこのような挙動を示すためには、上述のように、表面修飾された無機酸化物粒子のマトリックス樹脂組成物中での分散状態や、マトリックス樹脂組成物との界面親和性を制御すると共に、マトリックス樹脂中の分散状態やマトリックス樹脂との界面親和性も制御すればよい。
 このような形態で会合粒子が形成されることにより、本発明の光散乱複合体は、光散乱粒子、特に会合粒子がマトリックス樹脂中に均一に分散した形態を取ることができる。そして、含まれる光散乱粒子の量が10質量%以下、好ましくは5質量%以下,より好ましくは1質量%以下といった少量であっても、高い光散乱性を発現することができる。
 これに対して、光散乱複合体形成用組成物の硬化時に会合粒子が形成されない場合、すなわち、光散乱複合体形成用組成物中における表面修飾された無機酸化物粒子の分散粒子径が光散乱粒子径と同等の10~1000nmである場合には、分散粒子径が大きすぎるために、表面修飾された無機酸化物粒子が未硬化のマトリックス樹脂中で沈降しやすくなる。このため、当該光散乱複合体形成用組成物を硬化して得られた光散乱複合体では、光散乱粒子が特定方向、すなわち硬化時における底面の方向に偏在してしまうため、均一に分散した形態を取ることができない。
 また、このような形態で会合粒子が形成されることにより、光散乱複合体の波長550nmにおける積分透過率Tdと、当該光散乱複合体を形成するための光散乱複合体形成用組成物の波長550nmにおける積分透過率Tcとの関係は、式(2)の関係を満たすことが可能となる。
  Td/Tc≦0.90 ・・・ 式(2)
 すなわち、光散乱複合体形成用組成物においては、表面修飾された無機酸化物粒子からなる会合粒子は形成されておらず、また分散粒子の平均分散粒子径も3nm以上150nm以下と小さく、散乱能も小さいことから、高い光透過率を示す。一方、光散乱複合体では会合粒子が形成されており、光散乱粒子の平均粒子径は10nm以上1000nm以下であり、該光散乱粒子の平均粒子径は分散粒子の平均分散粒子径より大きいから、粒子による散乱能も大きくなり、光透過率が低下する。そして、Td/Tcの値が0.90以下であれば、会合粒子を形成する効果(光散乱粒子の平均粒子径を分散粒子の平均分散粒子径より大きくする効果)を十分に得ることができ、高い光散乱特性を有する光散乱複合体を得ることができる。
 光散乱複合体形成用組成物の硬化方法は、特に制限されず、例えば光散乱複合体形成用組成物に光、熱等の外部エネルギーを与えて硬化すればよい。また、重合触媒を添加することで硬化させてもよい。
 本発明の光散乱複合体は、溶液状の光散乱複合体形成用組成物を基板上に塗布したり、型に入れた後、硬化して成型された成型体であってもよいし、光散乱複合体形成用組成物を、押出機等を用いて溶融混練した後、金型に注入し、冷却して得られた成型体であってもよい。また、本発明の光散乱複合体は、本発明の光散乱複合体形成用組成物を硬化して得られる板状体を積層した積層体であってもよい。
 また、以上の説明においては、マトリックス樹脂組成物を「マトリックス樹脂を形成するための樹脂モノマーないしはオリゴマー」とし、マトリックス樹脂の形成は組成物の重合硬化で行われることを基本としているが、必ずしもこれに限定されるものではない。例えば、マトリックス樹脂組成物が溶媒可溶性樹脂と溶媒により形成され、マトリックス樹脂の形成が溶媒の除去(乾燥)で行われてもよい。この場合、酸化物粒子の表面修飾材料としては、その一部が溶媒可溶性を示す材料を選択することが好ましい。
 なお、本発明では、会合粒子がマトリックス樹脂中に均一に形成されるように無機酸化物粒子の表面修飾等を制御していることから、硬化方法や硬化条件には特段の制限は無い。しかしながら、光散乱複合体形成用組成物の硬化を均一に行うような方法を取れば、会合粒子の均一な分散をより助けることができる。
 本発明の光散乱複合体形成用組成物及び光散乱複合体は、光の散乱性及び透過性に優れるため、光を透過しつつ散乱させる必要のある種々の用途に適用することができる。特に、指向性の強い光線を発する光源を備える装置、例えば、光半導体発光装置に好適である。
[光半導体発光装置]
 光半導体発光装置は、光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体とを有し、白色光を発する光半導体発光装置である。また、前記光散乱粒子は、アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子であって、かつ少なくとも該表面修飾された無機酸化物粒子の一部が会合粒子を形成した粒子からなり、前記光散乱粒子の平均粒子径が10nm以上1000nm以下である。また、前記無機酸化物粒子は、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなる粒子である。
 そして、以上の構成を有する光半導体発光装置であって、前記光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成しており、前記光散乱変換層における前記光散乱粒子の含有量が15質量%以下である光半導体発光装置を、以下、「光半導体発光装置A」という。また、以上の構成を有する光半導体発光装置であって、前記蛍光体粒子を含む層により光変換層が形成され、前記光変換層上に、前記光散乱複合体からなる光散乱層が設けられてなり、前記光散乱層における前記光散乱粒子の含有量が15質量%以下である光半導体発光装置を、以下、「光半導体発光装置B」という。なお、以下に示す説明において、単に、「光半導体発光装置」という場合は、「光半導体発光装置A」及び「光半導体発光装置B」の両者を指す。
 また、「光半導体発光装置」は、「光半導体発光装置A」と「光半導体発光装置B」を組み合わせた構造であってもよい。すなわち、光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成し、この光散乱変換層上に、さらに光散乱複合体からなる光散乱層が設けられたものでもよい。このような構成を有するものも、以下の説明では「光半導体発光装置」という。
 前記の通り、青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色光半導体発光素子から発光された青色光と蛍光体によって波長変換された光とが合成されて白色(疑似白色)になるものである。そして、特に青色光半導体発光素子と黄色蛍光体とを組み合わせた白色光半導体発光装置は、出射光に青色成分が非常に多く含まれており、生理的影響が指摘されている。また、近年、光半導体発光装置の照明用途の市場が拡大し、光半導体発光装置の高輝度化が進んでおり、人体が青色光に曝されることが多くなっている。
 しかしながら、白色光半導体発光装置の光散乱変換層ないしは光散乱層に本発明の光散乱複合体を用いる(本発明の光散乱複合体形成用組成物を用いて白色光半導体発光装置の光散乱変換層ないしは光散乱層を形成する)ことで、白色光とともに発せられる青色光成分を低減させ、輝度を向上させることができる。また、青色光成分が低減されることで、演色性をも向上させることができる。
 光半導体発光装置における光半導体発光素子と蛍光体との組み合わせとしては、例えば、発光波長460nm前後の青色光半導体発光素子と黄色蛍光体との組み合わせ;発光波長460nm前後の青色光半導体発光素子と赤色蛍光体及び緑色蛍光体との組み合わせ;発光波長340nm以上410nm以下付近の近紫外光半導体発光素子と赤色蛍光体、緑色蛍光体及び青色蛍光体の三原色蛍光体との組み合わせ;等が挙げられる。この場合の各種光半導体発光素子及び各種蛍光体は公知のものを使用することができる。
 また、各種光半導体発光素子、各種蛍光体を封止するための封止樹脂等も公知のものを使用することができる。
 なお、以下の説明においては、上記光半導体発光素子と蛍光体との組み合わせにおいて使用される半導体発光素子で発光される各発光波長を有する光のことを、光半導体発光素子の「発光色成分」と称する場合がある。また、当該発光色成分が蛍光体に照射されることにより蛍光体が発する光、すなわち発光色成分が蛍光体により波長変換された光のことを、蛍光体からの「変換光成分」と称する場合がある。
 光半導体発光装置A及びBについての態様を図1~図4を用いて説明する。
 まず、光半導体発光装置Aの第1の態様は、図1に示すように基板の凹部に光半導体発光素子10が配置され、これを覆うように、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体12中に蛍光体粒子13を含有させた光散乱変換層14が設けられている。このとき、光散乱粒子はマトリックス樹脂中に均一に存在していてもよいが、外部空気相界面(外部空気層との界面)18側により多く存在することが好ましい。光散乱粒子が外部空気相界面18側により多く存在することにより、蛍光体粒子13間を透過して蛍光体粒子13に照射されなかった青色光成分の多くを散乱させて蛍光体粒子13へ戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。
 なお、以下の形態・態様を含むいずれの光半導体発光装置においても、外部空気相界面18の表面形状は特に制約はなく、平坦状、凸状、及び凹状のいずれでもよい。
 光半導体発光装置Aの第2の態様は、図2に示すように、光散乱変換層14中の蛍光体粒子13を、図1の場合よりも光半導体発光素子10の近傍に存在させることで、光散乱粒子が蛍光体粒子より外部空気相界面18側により多く存在するようにしたものである。このような態様とすることで、蛍光体粒子13の存在領域を透過した青色光成分の多くを蛍光体粒子13の存在領域へ散乱させて戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。
 光半導体発光装置Bは、蛍光体粒子を含有する層(光変換層)と光散乱粒子を含有する層(光散乱層)とを分けて配置した態様である。光半導体発光装置Bの第1の態様としては、図3に示すように、基板の凹部に光半導体発光素子10が配置され、これを覆うように、蛍光体粒子13をマトリックス材15中に含有する光変換層16が設けられ、この光変換層16上、すなわち光変換層16の外部空気相界面18側に、光散乱粒子とマトリックス樹脂とを含有する光散乱複合体12からなる光散乱層17が設けられている。
 このような態様とすることで、光変換層16を透過した青色光成分の多くを、光散乱層17により散乱させて光変換層16へ戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。
 光半導体発光装置Bの第2の態様は、図4に示すように、光半導体発光素子10を覆うように封止樹脂からなる封止樹脂層11が設けられ、封止樹脂層11上に、光変換層16及び光散乱層17が順次積層されている。
 光半導体発光装置Bにおいて、光変換層と光散乱層との厚みについては、本発明の効果が得られれば特に制約はないが、青色成分をより低減したい場合は光散乱層の厚みをより厚くすることが好ましく、光半導体発光装置を所望の演色性に調整する場合に用いる蛍光体の波長変換効率、添加量を鑑みて光散乱層の厚さを設計すればよい。
 光散乱粒子の含有量は、光半導体発光装置Aにおいては、光散乱変換層全量に対して0.01質量%以上15質量%以下であり、光半導体発光装置Bにおいては、光散乱層全量に対して0.01質量%以上15質量%以下である。光変換層又は光散乱層中における光散乱粒子の含有量は、0.01質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましい。
 各層中の光散乱粒子の含有量が15質量%を超えると、光散乱粒子の量が多すぎる上、特に粒子径が大きく光散乱能の高い会合粒子の量も増えるために散乱が過大になり、光半導体発光素子からの発光色成分のみならず蛍光体からの変換光成分も外部空気相に出ず、光半導体発光装置の輝度が低下してしまう。一方、各層中の光散乱粒子の含有量が0.01質量%未満では、光散乱粒子の量が少なすぎて光散乱効果が得られず、光半導体発光装置の輝度向上が図れない。すなわち、各層中の光散乱粒子の含有量が0.01質量%以上15質量%以下であることで、各層において、光半導体発光素子からの発光色成分の光散乱性と、発光色成分と変換光成分を合わせての光透過性とのバランスが良く、高輝度の光半導体発光装置とすることができる。
 更に、各層中の光散乱粒子の含有量を0.01質量%以上15質量%以下とすることで、青色光の散乱率を高くすることができる。すなわち、波長460nmの光における積分透過率の値を、直線透過率の値よりも大きくすることができる。さらには、例えばその差(積分透過率-直線透過率)を25ポイント以上、さらには40ポイント以上とすることができる。これにより、光半導体発光装置における青色光の低減と輝度向上を図ることができる。
 光半導体発光装置は、本発明の光散乱複合体形成用組成物を光変換層の上に塗布又は注入するか、あるいは光散乱複合体形成用組成物中に蛍光体粒子を混合し、光半導体発光素子の上に塗布又は注入し、次いで硬化することで、光半導体発光装置が作製される。
 例えば、本発明の光散乱複合体形成用組成物を光変換層の上に塗布又は注入し、次いで硬化して、光散乱複合体からなる光散乱層を形成することで、光半導体発光装置Bが作製される。あるいは、光散乱複合体形成用組成物中に蛍光体粒子を混合し、光半導体発光素子の上に塗布又は注入し、次いで硬化して、蛍光体を含む光散乱複合体からなる光散乱変換層を形成することで、光半導体発光装置Aが作製される。本発明の光散乱複合体形成用組成物の硬化方法には特に制限は無いが、例えば、付加型反応、縮合型反応、ラジカル重合反応等による重合硬化反応を挙げることができる。この重合反応は、加熱、光照射等の外部エネルギーの付与、触媒(重合剤)の添加等により行うことができる。
 この硬化時において、光散乱複合体形成用組成物に分散している表面修飾された無機酸化物粒子(分散粒子)の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する。
 会合粒子の形成は、前記の通り、マトリックス樹脂(組成物)と表面修飾された無機酸化物粒子間の親和性を制御することで達成できる。すなわち、(1)表面修飾された無機酸化物粒子における表面修飾材料として、アルケニル基、H-Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料を用いる、(2)表面修飾量を1質量%以上50質量%以下とする、(3)ポリマー型の表面修飾材料、オリゴマー型の表面修飾材料を適宜使用し、このポリマー型の表面修飾材料、オリゴマー型の表面修飾材料の分子量を、マトリックス樹脂分子量の0.1~50倍とする、(4)ポリマー型の表面修飾材料、オリゴマー型の表面修飾材料の処理量を、無機酸化物粒子の質量に対して0.1質量%以上10質量%以下とする、等の制御を行えばよい。これらの制御により、マトリックス樹脂(組成物)と表面修飾された無機酸化物粒子間の親和性に対して、表面修飾された無機酸化物粒子同士の相互作用性を相対的に強めることで、適切な会合粒子の形成を達成できる。
 また、光散乱組成物の硬化速度を遅くし、硬化途中の光散乱組成物中で表面修飾された無機酸化物粒子が移動できる状態を維持することにより、当該無機酸化物粒子同士の凝集力とマトリックス樹脂における他成分の排斥力の一方ないしは両方を使用して、当該無機酸化物粒子の会合度を高め、適切な会合粒子を形成してもよい。
 このようにして形成された会合粒子の粒子径は1200nm以下であることが好ましい。また、会合粒子と、非会合状態で維持された分散粒子とを合わせた全ての粒子の平均粒子径、すなわち光散乱粒子の平均粒子径は10nm以上1000nm以下であることが好ましく、20nm以上1000nm以下であればより好ましく、50nm以上800nm以下であればさらに好ましい。
 なお、光散乱粒子の平均粒子径の測定方法は、前述の通りである。
 なお、以上の説明では、本発明の光散乱複合体形成用組成物を光変換層の上に塗布または注入するか、あるいは光散乱複合体形成用組成物中に蛍光体粒子を混合し、光半導体発光素子の上に塗布または注入し、次いで硬化することで作製された光半導体発光装置を示している。しかしながら、光半導体発光装置の形態や作製方法は、これに限定されるものではない。
 例えば、基板上に光半導体発光素子が配置され、その上に光変換層が形成された略平板状の素子に、予めシート状に成形した本発明の光散乱複合体を貼り付けるものでもよい。また、本発明の光散乱複合体形成用組成物中に蛍光体粒子を混合した後シート状に硬化させたものを、基板上に配置された光半導体発光素子の上に貼り付けるものでもよい。
[照明器具及び表示装置]
 前記光半導体発光装置は、その優れた特性を生かして各用途に利用することができる。本発明の効果が特に顕著に認められるものとしては、これを具備する各種の照明器具及び表示装置である。
 照明器具としては、室内灯、室外灯等の一般照明装置が挙げられる。その他、携帯電話、OA機器等の電子機器のスイッチ部の照明にも適用できる。
 表示装置としては、例えば携帯電話、携帯情報端末、電子辞書、デジタルカメラ、コンピュータ、薄型テレビ、照明機器及びこれらの周辺機器等のように、小型化、軽量化、薄型化、省電力化、及び太陽光の中でも良好な視認性が得られるような高輝度ならびに良好な演色性が特に求められる機器の表示装置、における発光装置等を挙げることができる。特にコンピュータの表示装置(ディスプレイ)、薄型テレビ等のように長時間にわたって視認する表示装置においては、人体、特に眼に対しての影響を抑えることができるので特に好適である。また、第一の発光素子と第二の発光素子の距離を3mm以下、さらには1mm以下と近づけることにより小型化が可能となることから、15インチ以下の小型表示装置においても好適である。
 本実施例に係る各種測定方法及び評価方法は下記の通りである。
(分散液中の表面修飾された無機酸化物粒子における表面修飾量)
 表面修飾された無機酸化物粒子における表面修飾量は、熱重量分析による測定を基に算出した。後述のようにして、表面修飾された無機酸化物粒子の分散液から取り出した表面修飾された無機酸化物粒子をエバポレータで乾燥し、分散媒を除去して試料を作製した。得られた試料を熱重量分析し、115℃から500℃までの重量減少量を測定した。なお、115℃未満の重量減少は残留していた分散媒(トルエン)に起因するものとした。得られた115℃から500℃までの重量減少量と、表面修飾材料中の揮発成分(C、H、O、及びN)並びに不揮発成分(Si)の含有量を基に、表面修飾量を算出した。
(光散乱複合体形成用組成物の積分透過率の測定)
 光散乱複合体形成用組成物の積分透過率は、光散乱複合体形成用組成物を1.0mmの薄層石英セルに挟んだものを試料とし、分光光度計(V-570、日本分光社製)にて積分球を用いて測定した。波長(λ)460nmにおける透過率が40%以上95%以下、かつ波長(λ)550nmにおける透過率が75%以上を「良好」とし、この範囲から外れるものを「不良」とした。
 なお、分光光度計の反射板の代わりにこの光散乱複合体形成用組成物を挟んだ薄層石英セルを設置し、積分球に戻った反射スペクトルを測定した結果、短波長側での透過率の低下が反射率の増大に対応していたことから、粒子による光の吸収は起こっておらず、粒子による後方散乱が起こっていることを確認した。
(光散乱複合体の透過率の測定:積分透過率と直線透過率との比較)
 光散乱複合体の透過率は、厚さ1mmの基板状に成形した光散乱複合体を試料とし、分光光度計(V-570、日本分光社製)にて積分球測定および直線測定を行い、波長460nm及び550nmにおける積分透過率及び直線透過率を求めた。
 なお、前記の通り「積分透過率」とは「積分球で測定した透過率」であり、「直線透過率」とは「一般的な透過率測定法である直線光で測定した透過率」のことである。
(無機酸化物粒子の平均一次粒子径の測定)
 無機酸化物粒子の平均一次粒子径は、X線回折によって得られるシェラー径とした。
(光散乱複合体形成用組成物中の平均分散粒子径の測定)
 光散乱複合体形成用組成物中の表面修飾された無機酸化物粒子の平均分散粒子径は、当該光散乱複合体形成用組成物を動的光散乱法を測定原理とする粒度分布測定装置(nano Partica SZ-100、堀場製作所社製)により測定して求めた。測定で得られた表面修飾された無機酸化物粒子の粒度分布の結果から、体積平均粒子径(MV値)を計算し、その値を平均分散粒子径とした。
(光散乱複合体中の光散乱粒子の分散状態)
 光散乱複合体中の光散乱粒子の分散状態は、測定試料を、分光光度計(V-570、日本分光社製)を用いて波長460nmで積分球測定を行い、積分透過率を求めることで評価した。測定試料は、厚さ1mmの基板状に成形した光散乱複合体を表面側と裏面側に二分した上で、両試料の厚さが同一になるように調整したものを用いた。そして、両試料における積分透過率の差が10%以内であれば分散状態は均一であり、10%を超えた場合には不均一であるとした。
(光散乱複合体中の光散乱粒子の平均粒子径の測定)
 光散乱複合体中の光散乱粒子の平均粒子径は、光散乱複合体を厚さ方向に薄片化したものを試料とし、電解放出型透過電子顕微鏡(JEM-2100F、日本電子社製)で観察して、任意の光散乱粒子50個の粒子径を測定し、その平均値を算出することで求めた。
 ここで、光散乱粒子は次のように規定した。すなわち、個別に(会合せずに)存在している表面修飾された無機酸化物粒子については、その粒子自体をもって1個の光散乱粒子とし、その粒子径を光散乱粒子径とした。また、複数個の光散乱粒子が重なるか、ないしは連なって見える場合には、その複数個の粒子全体をもって1個の光散乱粒子(会合粒子)とし、光散乱粒子と判断された部分全体の粒子径を光散乱粒子の粒子径とした。
(光半導体発光装置の発光スペクトル評価)
 光半導体発光装置の発光スペクトルを、分光測光装置(PMA-12、浜松ホトニクス社製)を用いて測定した。ここでは、波長400nmから480nmの発光スペクトルピーク面積をaとし、波長480nmから波長800nmの発光スペクトルピーク面積をbとして、a/bの値により評価した。光散乱粒子を含有しない比較例1及び2を基準とし、実施例1~16、19、21、22及び比較例3~7においては、a/bの値が比較例1のa/bより小さいものを「良好」とし、同値以上を「不良」とした。実施例17、18、20及び比較例8においては、比較例2のa/b値と比較した。
(光半導体発光装置の輝度評価)
 光半導体発光装置の輝度を、輝度計(LS-110、コニカミノルタセンシング社製)を用いて測定した。光散乱粒子を含有しない比較例1及び2を基準とし、実施例1~16、19、21、22及び比較例3~7において、輝度が比較例1の輝度より大きいものを「良好」とし、同値を「可」、低いものを「不良」とした。実施例17、18、20及び比較例8においては、比較例2の輝度と比較した。
<非修飾粒子の作製>
 光散乱粒子を構成する非修飾の無機酸化物粒子(非修飾粒子)として、次のジルコニア粒子1~3及びシリカ粒子を作製した。
(ジルコニア粒子1の作製)
 オキシ塩化ジルコニウム8水塩2615gを純水40L(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水344gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調製した。
 このスラリーに、硫酸ナトリウム300gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えて混合物を得た。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
 この混合物を、乾燥器を用いて、大気中、130℃にて24時間乾燥させ、固形物を得た。この固形物を自動乳鉢で粉砕した後、電気炉を用いて、大気中、520℃にて1時間焼成した。
 次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、ジルコニア粒子1を得た。ジルコニア粒子1の平均一次粒子径は5.5nmであった。
(ジルコニア粒子2の作製)
 ジルコニア粒子1の作製における電気炉での焼成温度を520℃から500℃にした以外は、ジルコニア粒子1の作製と同様にして、ジルコニア粒子2を作製した。ジルコニア粒子2の平均一次粒子径は2.1nmであった。
(ジルコニア粒子3の作製)
 ジルコニア粒子1の作製における電気炉での焼成温度を520℃から650℃にした以外は、ジルコニア粒子1の作製と同様にして、ジルコニア粒子3を作製した。ジルコニア粒子3の平均一次粒子径は42.1nmであった。
(シリカ粒子の作製)
 シリカゾル(日産化学工業製、スノーテックスOS、SiO2として20質量%)含有のシリカ粒子をそのまま使用した。なお、X線回折測定はゾル状態ではできないこと、また単にゾルを乾燥固化したものでは測定時の取り扱いが不便なことから、実際の測定は後述のシリカ粒子含有乾燥粉体で行った。平均一次粒子径は9.5nmであった。
<表面修飾ジルコニア分散液の作製>
(表面修飾ジルコニア粒子分散液1の作製)
 10gのジルコニア粒子1に、トルエン86g、及びメトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製、KR9218)2gを加えて、混合し、ビーズミルで6時間撹拌して、表面修飾処理を行った後、ビーズを除去した。次いで、アルケニル基(ビニル基)基含有表面修飾材料としてビニルトリメトキシシラン(信越化学工業社製、KBM1003)を2g添加し、130℃にて8時間還流下で修飾及び分散を行った。得られた分散液を遠心分離して上澄みを除去した後、再度トルエンを加えて遠心分離して表面修飾ジルコニア粒子を取り出すことにより、トルエン(分散媒)及びジルコニア粒子を修飾せず分散媒中に残留しているメトキシ基含有メチルフェニルシリコーンレジン及びビニルトリメトキシシラン(表面修飾材料)が除去された表面修飾ジルコニア粒子を得た。得られた表面修飾ジルコニア粒子の一部を取り表面修飾量を測定した後、残部に、再度トルエンを、ジルコニア粒子として10質量%となるように加えて再分散させ、表面修飾ジルコニア粒子分散液1を作製した。
 得られた表面修飾ジルコニア粒子分散液1は透明であった。また、表面修飾ジルコニア粒子における表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液2の作製)
 表面修飾ジルコニア粒子分散液1の作製において、メトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を2時間とし、ビニルトリメトキシシラン添加後の還流時間を3時間とした以外は同様にして、表面修飾ジルコニア粒子分散液2を作製した。
 得られた表面修飾ジルコニア粒子分散液2は透明であった。また、表面修飾ジルコニア粒子における表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液3の作製)
 表面修飾ジルコニア粒子分散液1の作製において、メトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を0.5時間とし、ビニルトリメトキシシラン添加後の還流時間を0.5時間とした以外は同様にして、表面修飾ジルコニア粒子分散液3を作製した。
 得られた表面修飾ジルコニア粒子分散液3はやや白濁していた。また、表面修飾ジルコニア粒子における表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して25質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は12.5質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液4の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子2用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を2時間とし、ビニルトリメトキシシラン添加後の還流時間を3時間としたこと以外はと同様にして、表面修飾ジルコニア粒子分散液4を作製した。
 得られた表面修飾ジルコニア粒子分散液4は透明であった。また、表面修飾ジルコニア粒子分散液4中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液5の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子2用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を0.5時間とし、ビニルトリメトキシシラン添加後の還流時間を0.5時間とした以外は同様にして、表面修飾ジルコニア粒子分散液5を作製した。
 得られた表面修飾ジルコニア粒子分散液5はほぼ透明であった。また、表面修飾ジルコニア粒子分散液5中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して30質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は13質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液6の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子3用いた以外は同様にして、表面修飾ジルコニア粒子分散液6を作製した。
 得られた表面修飾ジルコニア粒子分散液6はやや白濁していた。また、表面修飾ジルコニア粒子分散液6中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液7の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子3用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を2時間とし、ビニルトリメトキシシラン添加後の還流時間を3時間としたこと以外は同様にして、表面修飾ジルコニア粒子分散液7を作製した。
 得られた表面修飾ジルコニア粒子分散液7は白濁していた。また、表面修飾ジルコニア粒子分散液7中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して35質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は13.5質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾シリカ粒子分散液8の作製)
 シリカゾル(日産化学工業製、スノーテックスOS、SiO2として20質量%)50gに、ヘキサン酸5gを溶解させたメタノール溶液50gを混合撹拌してスラリー化した。得られたスラリーを遠心分離して上澄みを除去した後、再度メタノールを加えて遠心分離して上澄みを除去して過剰のヘキサン酸を除去した後、沈降物の溶媒をエバポレータで乾燥除去してシリカ粒子含有乾燥粉体を得た。得られたシリカ粒子含有乾燥粉体10gをトルエン85gに混合した。次いで、片末端エポキシ変性シリコーン(信越化学工業社製、X-22-173DX)を2.5gとアルケニル基(ビニル基)含有修飾材料としてビニルトリメトキシシラン(信越化学工業社製、KBM1003)を2.5g加え、130℃にて6時間還流下で表面修飾及び分散を行った。得られたシリカ粒子分散液100gにメタノールを100g投入し、得られた沈降物を回収し、メタノールで洗浄して乾燥した。得られた表面修飾シリカ粒子の一部を取り表面修飾量を測定した後、残部に、トルエンを、シリカ粒子として10質量%となるよう加えて再分散させ、表面修飾シリカ粒子分散液8を作製した。
 得られた表面修飾シリカ粒子分散液8は透明であった。また、表面修飾シリカ粒子における表面修飾材料による表面修飾量は、シリカ粒子の質量に対して40質量%であった。従って、表面修飾シリカ粒子分散液における表面修飾シリカ粒子量は14質量%となる。また、片末端エポキシ変性シリコーンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾シリカ粒子分散液9の作製)
 表面修飾シリカ粒子分散液8の作製において、片末端エポキシ変性シリコーン及びビニルトリメトキシシラン添加後の還流時間を3時間とした以外は同様にして、表面修飾シリカ粒子分散液9を作製した。
 得られた表面修飾シリカ粒子分散液2は透明であった。また、表面修飾シリカ粒子における表面修飾材料による表面修飾量は、シリカ粒子の質量に対して40質量%であった。従って、表面修飾シリカ粒子分散液における表面修飾シリカ粒子量は14質量%となる。また、片末端エポキシ変性シリコーンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液10の作製)
 表面修飾ジルコニア粒子分散液1の作製において、アルケニル基含有表面修飾材料に代えてH-Si基含有表面修飾材料であるメチルジクロロシラン(信越化学工業社製、LS-50)を用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を2時間とし、メチルジクロロシラン添加後の還流時間を2時間とした以外は同様にして、表面修飾ジルコニア粒子分散液10を作製した。
 得られた表面修飾ジルコニア粒子分散液10は透明であった。また、表面修飾ジルコニア粒子分散液10中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾シリカ粒子分散液における表面修飾シリカ粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとメチルジクロロシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液11の作製)
 表面修飾ジルコニア粒子分散液1の作製において、アルケニル基含有表面修飾材料に代えてアルコキシ基含有表面修飾材料であるテトラエトキシシラン(信越化学工業社製、KBE-04)を用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を2時間とし、テトラエトキシシラン添加後の還流時間を2時間とした以外は同様にして、表面修飾ジルコニア粒子分散液11を作製した。
 得られた表面修飾ジルコニア粒子分散液11は透明であった。また、表面修飾ジルコニア粒子分散液11中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾シリカ粒子分散液における表面修飾シリカ粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとテトラエトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液12の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子2用いたこと、並びにトルエンの量を89g、メトキシ基含有メチルフェニルシリコーンレジンの量を0.5g及びビニルトリメトキシシランの量を0.5gとした以外は表面修飾ジルコニア粒子分散液1と同様にして、表面修飾ジルコニア粒子分散液12を作製した。
 得られた表面修飾ジルコニア粒子分散液12は透明であった。また、表面修飾ジルコニア粒子における表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して10質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は11質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液13の作製)
 表面修飾ジルコニア粒子分散液1の作製において、トルエンの量を82g、メトキシ基含有メチルフェニルシリコーンレジンの量を4g及びビニルトリメトキシシランの量を4gとした以外は、表面修飾ジルコニア粒子分散液1と同様にして、表面修飾ジルコニア粒子分散液13を作製した。
 得られた表面修飾ジルコニア粒子分散液13は透明であった。また、表面修飾ジルコニア粒子における表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して80質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は18質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液14の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子2用いた以外は、表面修飾ジルコニア粒子分散液1と同様にして、表面修飾ジルコニア粒子分散液14を作製した。
 得られた表面修飾ジルコニア粒子分散液14は透明であった。また、表面修飾ジルコニア粒子分散液14中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液15の作製)
 表面修飾ジルコニア粒子分散液1の作製において、無機酸化物粒子としてジルコニア粒子3用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を0.5時間とし、ビニルトリメトキシシラン添加後の還流時間を0.5時間としたこと以外は、表面修飾ジルコニア粒子分散液1と同様にして、表面修飾ジルコニア粒子分散液15を作製した。
 得られた表面修飾ジルコニア粒子分散液15は白濁しており、ジルコニア粒子の沈降も生じていた。また、表面修飾ジルコニア粒子分散液15中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して20質量%であった。従って、表面修飾ジルコニア粒子分散液における表面修飾ジルコニア粒子量は12質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾シリカ粒子分散液16の作製)
 表面修飾シリカ粒子分散液8の作製において、片末端エポキシ変性シリコーン及びビニルトリメトキシシラン添加後の還流時間を1時間とした以外は表面修飾シリカ粒子分散液8と同様にして、表面修飾シリカ粒子分散液16を作製した。
 得られた表面修飾シリカ粒子分散液16は白濁していた。また、表面修飾シリカ粒子における表面修飾材料による表面修飾量は、シリカ粒子の質量に対して35質量%であった。従って、表面修飾シリカ粒子分散液における表面修飾シリカ粒子量は13.5質量%となる。また、片末端エポキシ変性シリコーンとビニルトリメトキシシランとの質量比は1対1であった。
(表面修飾ジルコニア粒子分散液17の作製)
 表面修飾ジルコニア粒子分散液1の作製において、アルケニル基含有修飾材料に代えて飽和脂肪酸であるステアリン酸(アルキル基含有修飾材料)を用いたこと、及びメトキシ基含有メチルフェニルシリコーンレジン添加後のビーズミルでの撹拌時間を2時間とし、ステアリン酸添加後の還流時間を3時間とした以外は、表面修飾ジルコニア粒子分散液1と同様にして、表面修飾ジルコニア粒子分散液17を作製した。なお、ステアリン酸は飽和脂肪酸であり、そのカルボキシル基はジルコニア粒子との結合に使用されてしまうため、ジルコニア粒子修飾後のステアリン酸はアルキル基以外の基は有していない。
 得られた表面修飾ジルコニア粒子分散液17は透明であった。また、表面修飾ジルコニア粒子分散液17中の表面修飾ジルコニア粒子において、表面修飾材料による表面修飾量は、ジルコニア粒子の質量に対して40質量%であった。従って、表面修飾シリカ粒子分散液における表面修飾シリカ粒子量は14質量%となる。また、メトキシ基含有メチルフェニルシリコーンレジンとステアリン酸との質量比は1対1であった。
[実施例1]
(光散乱複合体形成用組成物1の作製)
 10gの表面修飾ジルコニア粒子分散液1に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6635、屈折率1.54、A液/B液配合比=1/3)98.6g(A液24.65g、B液73.95g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱複合体形成用組成物1を作製した。
 得られた光散乱複合体形成用組成物1の透明性を目視観察で評価した結果、透明であった。この光散乱複合体形成用組成物1中の表面修飾ジルコニア粒子の平均分散粒子径、並びに光散乱複合体形成用組成物1の透明性及び透過率を前記の通り測定し評価した。結果を下記表1に示す。
(光散乱複合体1の作製)
 光散乱複合体形成用組成物1を深さ1mmの凹状の型に流し込み、150℃で2時間加熱硬化させて、厚さ1mmの光散乱複合体1を作製した。得られた光散乱複合体1の透過率を、前記の通り測定し評価した。結果を下記表2に示す。
(光半導体発光装置1の作製)
 15gの光散乱複合体形成用組成物1に、10gの黄色蛍光体(Genelite製 GLD(Y)-550A)を添加し、その後、自公転式ミキサーで混合・脱泡し、蛍光体を含有させた光散乱複合体形成用組成物1を得た。次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体を含有させた光散乱複合体形成用組成物1を滴下した。さらに蛍光体を含有しない光散乱複合体形成用組成物1を、蛍光体を含有させた光散乱複合体形成用組成物1上に蛍光体を含有させた光散乱複合体形成用組成物1と同量滴下した後、150℃で2時間加熱し、蛍光体を含有させた光散乱複合体形成用組成物1及び光散乱複合体形成用組成物1を硬化させた。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例1の光半導体発光装置1を作製した。
 なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
 得られた光半導体発光装置1の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表2に示す。
[実施例2]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液2を用いた以外は、実施例1と同様にして、光散乱複合体形成用組成物2、光散乱複合体2及び光半導体発光装置2を作製した。
 得られた光散乱複合体形成用組成物2、光散乱複合体2及び光半導体発光装置2について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例3]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液3を用いたこと、フェニルシリコーン樹脂の量を98.75g(A液24.69g、B液74.06g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物3、光散乱複合体3及び光半導体発光装置3を作製した。
 得られた光散乱複合体形成用組成物3、光散乱複合体3及び光半導体発光装置3について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例4]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液4を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物4、光散乱複合体4及び光半導体発光装置4を作製した。
 得られた光散乱複合体形成用組成物4、光散乱複合体4及び光半導体発光装置4について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例5]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液5を用いたこと、フェニルシリコーン樹脂の量を98.7g(A液24.68g、B液74.02g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物5、光散乱複合体5及び光半導体発光装置5を作製した。
 得られた光散乱複合体形成用組成物5、光散乱複合体5及び光半導体発光装置5について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例6]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液6を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物6、光散乱複合体6及び光半導体発光装置6を作製した。
 得られた光散乱複合体形成用組成物6、光散乱複合体6及び光半導体発光装置6について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例7]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液7を用いたこと、フェニルシリコーン樹脂の量を98.65g(A液24.66g、B液73.99g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物7、光散乱複合体7及び光半導体発光装置7を作製した。
 得られた光散乱複合体形成用組成物7、光散乱複合体7及び光半導体発光装置7について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例8]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾シリカ粒子分散液8を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物8、光散乱複合体8及び光半導体発光装置8を作製した。
 得られた光散乱複合体形成用組成物8、光散乱複合体8及び光半導体発光装置8について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例9]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾シリカ粒子分散液9を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物9、光散乱複合体9及び光半導体発光装置9を作製した。
 得られた光散乱複合体形成用組成物9、光散乱複合体9及び光半導体発光装置9について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例10]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液10を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物10、光散乱複合体10及び光半導体発光装置10を作製した。
 得られた光散乱複合体形成用組成物10、光散乱複合体10及び光半導体発光装置10について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例11]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液11を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物11、光散乱複合体11及び光半導体発光装置11を作製した。
 得られた光散乱複合体形成用組成物11、光散乱複合体11及び光半導体発光装置11について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例12]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液2を用いるとともにその量を1gとしたこと、フェニルシリコーン樹脂の量を99.86g(A液24.97g、B液74.89g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物12、光散乱複合体12及び光半導体発光装置12を作製した。
 得られた光散乱複合体形成用組成物12、光散乱複合体12及び光半導体発光装置12について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.08質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例13]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液2を用いるとともにその量を95gとしたこと、フェニルシリコーン樹脂の量を86.7g(A液21.68g、B液65.02g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物13、光散乱複合体13及び光半導体発光装置13を作製した。
 得られた光散乱複合体形成用組成物13、光散乱複合体13及び光半導体発光装置13について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は7.6質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例14]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液2を用いるとともにその量を140gとしたこと、フェニルシリコーン樹脂の量を80.4g(A液20.1g、B液60.3g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物14、光散乱複合体14及び光半導体発光装置14を作製した。
 得られた光散乱複合体形成用組成物14、光散乱複合体14及び光半導体発光装置14について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は11.2質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例15]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液12を用いたこと、フェニルシリコーン樹脂の量を98.9g(A液24.73g、B液74.17g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物15、光散乱複合体15及び光半導体発光装置15を作製した。
 得られた光散乱複合体形成用組成物15、光散乱複合体15及び光半導体発光装置15について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例16]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液13を用いたこと、フェニルシリコーン樹脂の量を98.2g(A液24.55g、B液73.65g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物16、光散乱複合体16及び光半導体発光装置16を作製した。
 得られた光散乱複合体形成用組成物16、光散乱複合体16及び光半導体発光装置16について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例17]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液2を用いたこと、フェニルシリコーン樹脂に代えてメチルシリコーン樹脂(東レ・ダウコーニング社製、OE-6336、屈折率1.41、A液/B液配合比=1/1)98.6g(A液49.3g、B液49.3g)を用いたことの他は実施例1と同様にして、光散乱複合体形成用組成物17、光散乱複合体17及び光半導体発光装置17を作製した。
 得られた光散乱複合体形成用組成物17、光散乱複合体17及び光半導体発光装置17について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例18]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液6を用いたこと、フェニルシリコーン樹脂に代えてメチルシリコーン樹脂(東レ・ダウコーニング社製、OE-6336、屈折率1.41、A液/B液配合比=1/1)98.6g(A液49.3g、B液49.3g)を用いたことの他は実施例1と同様にして、光散乱複合体形成用組成物18、光散乱複合体18及び光半導体発光装置18を作製した。
 得られた光散乱複合体形成用組成物18、光散乱複合体18及び光半導体発光装置18について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例19]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1の量を50gにしたこと、フェニルシリコーン樹脂の量を93g(A液23.25g、B液69.75g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物19、光散乱複合体19及び光半導体発光装置19を作製した。
 得られた光散乱複合体形成用組成物19、光散乱複合体19及び光半導体発光装置19について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は4質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例20]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾シリカ粒子分散液8を用いるとともにその量を5gとしたこと、フェニルシリコーン樹脂に代えてメチルシリコーン樹脂(東レ・ダウコーニング社製、OE-6336、屈折率1.41、A液/B液配合比=1/1)99.3g(A液49.65g、B液49.65g)を用いたことの他は実施例1と同様にして、光散乱複合体形成用組成物20、光散乱複合体20及び光半導体光装置20を作製した。
 得られた光散乱複合体形成用組成物20、光散乱複合体20及び光半導体発光装置20について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.4質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[実施例21]
 実施例2と同様にして、光散乱複合体形成用組成物21及び光散乱複合体21を作製した。従って、光散乱複合体形成用組成物21は光散乱複合体形成用組成物2と、光散乱複合体21は光散乱複合体2と同一である。
(光半導体発光装置21の作製)
 20gの光散乱複合体形成用組成物21に、5gの黄色蛍光体(Genelite製 GLD(Y)-550A)を添加し、その後、自公転式ミキサーで混合・脱泡し、蛍光体を含有させた光散乱複合体形成用組成物21を得た。次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体を含有させた光散乱複合体形成用組成物21を滴下した後、150℃で2時間加熱し、当該光散乱複合体形成用組成物21を硬化させた。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含む光散乱変換層が形成された、実施例21の光半導体発光装置21を作製した。
 なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
 得られた光半導体発光装置21について、実施例1と同様の評価を行った。結果を下記表2に示す。
[実施例22]
 実施例2と同様にして、光散乱複合体形成用組成物22及び光散乱複合体22を作製した。従って、光散乱複合体形成用組成物22は光散乱複合体形成用組成物2と、光散乱複合体22は光散乱複合体2と同一である。
(光半導体発光装置22の作製)
 フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE-6635、屈折率1.54、A液/B液配合比=1/3)15g(A液3.75g、B液11.25g)に、黄色蛍光体(Genelite製 GLD(Y)-550A)を10g加え、その後、自公転式ミキサーで混合・脱泡し、蛍光体含有樹脂組成物22を得た。
 次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体含有樹脂組成物22を滴下した後、150℃で30分間加熱し、蛍光体含有樹脂組成物22を硬化した。次いで、光散乱複合体形成用組成物22を、硬化後の蛍光体含有樹脂組成物22上に蛍光体含有樹脂組成物22と同量滴下した後、150℃で90分間加熱し、光散乱複合体形成用組成物22を硬化させると共に、蛍光体含有樹脂組成物22を完全に硬化させた。これにより、光半導体発光素子上に、蛍光体を含有する光変換層が形成され、その上に光散乱粒子を含有する光散乱層が形成された、実施例22の光半導体発光装置22を作製した。
 なお、光変換層における黄色蛍光体の含有量は40質量%であり、光散乱層における光散乱粒子の含有量は1質量%であった。また、得られた光散乱層は外部空気層に対して凸状であった。
 得られた光半導体発光装置22について、実施例1と同様の評価を行った。結果を下記表2に示す。
[比較例1]
(マトリックス樹脂の評価)
 フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE-6635、屈折率1.54、A液/B液配合比=1/3)10g(A液2.5g、B液7.5g)を自公転式ミキサーで混合、脱泡した後、得られたマトリックス樹脂組成物を、各実施例の光散乱組成物と同様に測定し評価した。また、得られたマトリックス樹脂組成物を深さ1mmの凹状の型に流し込み、150℃で2時間加熱硬化させて、厚さ1mmのマトリックス樹脂硬化体を作製し、このマトリックス樹脂硬化体を、実施例の光散乱複合体と同様に測定し評価した。結果を下記表1に示す。
(光半導体発光装置の作製)
 フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE-6635、屈折率1.54、A液/B液配合比=1/3)15g(A液3.75g、B液11.25g)に、黄色蛍光体(Genelite製 GLD(Y)-550A)を10g加え、その後、自公転式ミキサーで混合、脱泡し、蛍光体を含有させたフェニルシリコーン樹脂組成物を得た。次いで未封止の青色光半導体発光素子を備えたパッケージの発光素子上に蛍光体を含有させたフェニルシリコーン樹脂組成物を滴下し、さらに蛍光体を含有していない当該フェニルシリコーン樹脂組成物を蛍光体を含有させたフェニルシリコーン樹脂組成物と同量滴下し、150℃で2時間、加熱硬化させた。これにより、光半導体発光素子上に、蛍光体を含有する光変換層が形成された、比較例1の光半導体発光装置101を作製した。
 なお、光変換層における黄色蛍光体の含有量は20質量%であった。また、得られた光変換層は外部空気層に対して凸状であった。
 得られた光半導体発光装置101の発光スペクトル及び輝度を、前記の通り測定し、基準値とした。結果を下記表2に示す。
[比較例2]
(マトリックス樹脂の評価)
 比較例1のマトリックス樹脂の評価において、フェニルシリコーン樹脂の代わりにジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE-6336、屈折率1.41 A液/B液配合比=1/1)10g(A液5g、B液5g)を用いた以外は、比較例1と同様にして、マトリックス樹脂組成物及びマトリックス樹脂硬化体の特性を測定し評価した。結果を下記表1に示す。
(光半導体発光装置の作製)
 比較例1の光半導体発光装置の作製において、フェニルシリコーン樹脂に代えてジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE-6336、屈折率1.41 A液/B液配合比=1/1)15g(A液7.5g、B液7.5g)を用いた以外は、比較例1と同様にして、光半導体発光装置102を作製した。
 なお、光変換層における黄色蛍光体の含有量は20質量%であった。また、得られた光変換層は外部空気層に対して凸状であった。
 得られた光半導体発光装置102の発光スペクトル及び輝度を、前記の通り測定し、基準値とした。結果を下記表2に示す。
[比較例3]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液14を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物103、光散乱複合体103及び光半導体発光装置103を作製した。
 得られた光散乱複合体形成用組成物103、光散乱複合体103及び光半導体発光装置103について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[比較例4]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液15を用いたこと、フェニルシリコーン樹脂の量を98.8g(A液24.8g、B液74.1g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物104、光散乱複合体104及び光半導体発光装置104を作製した。なお、表面修飾ジルコニア粒子分散液15は沈降粒子を含む状態で用いている。
 得られた光散乱複合体形成用組成物104、光散乱複合体104及び光半導体発光装置104について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[比較例5]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾シリカ粒子分散液16を用いたこと、フェニルシリコーン樹脂の量を98.65g(A液24.66g、B液73.99g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物105、光散乱複合体105及び光半導体発光装置105を作製した。
 得られた光散乱複合体形成用組成物105、光散乱複合体105及び光半導体発光装置105について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[比較例6]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液17を用いたこと以外は、実施例1と同様にして、光散乱複合体形成用組成物106、光散乱複合体106及び光半導体発光装置106を作製した。なお、光散乱複合体形成用組成物106は透明であったが、硬化した光散乱複合体106は白濁していた。
 得られた光散乱複合体形成用組成物106、光散乱複合体106及び光半導体発光装置106について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は0.8質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[比較例7]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾ジルコニア粒子分散液2を用いるとともにその量を200gとしたこと、フェニルシリコーン樹脂の量を72g(A液18g、B液54g)とした以外は、実施例1と同様にして、光散乱複合体形成用組成物107、光散乱複合体107及び光半導体発光装置107を作製した。なお、光散乱複合体形成用組成物107は粘度が高かった。また、光散乱複合体形成用組成物107に黄色蛍光体粒子を加えた蛍光体含有光散乱組成物107の粘度は非常に高く、蛍光体含有光散乱組成物107では脱泡を完全に行うことができなかった。このため、光散乱変換層は気泡が混入した状態となっている。
 得られた光散乱複合体形成用組成物107、光散乱複合体107及び光半導体発光装置107について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は16質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。
[比較例8]
 実施例1の光散乱複合体形成用組成物、光散乱複合体及び光半導体発光装置の作製において、各々表面修飾ジルコニア粒子分散液1に代えて表面修飾シリカ粒子分散液9を用いるとともにその量を200gとしたこと、フェニルシリコーン樹脂に代えてメチルシリコーン樹脂(東レ・ダウコーニング社製、OE-6336、屈折率1.41、A液/B液配合比=1/1)72g(A液36g、B液36g)を用いたことの他は実施例1と同様にして、光散乱複合体形成用組成物108、光散乱複合体108及び光半導体発光装置108を作製した。なお、光散乱複合体形成用組成物108に黄色蛍光体粒子を加えた蛍光体含有光散乱組成物108の粘度は非常に高く、蛍光体含有光散乱組成物108では脱泡を完全に行うことができなかった。このため、光散乱変換層は気泡が混入した状態となっている。
 得られた光散乱複合体形成用組成物108、光散乱複合体108及び光半導体発光装置108について、実施例1と同様の評価を行った。なお、光散乱変換層における光散乱粒子の含有量は16質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。結果を下記表1、2に示す。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 上記の通り、各実施例(実施例1~22)に用いた光散乱複合体形成用組成物1~22は、いずれも透過率特性が良好であった。すなわち、厚さ1.0mmの試料における積分透過率において、波長460nmにおける透過率が40%以上かつ95%以下、かつ波長550nmにおける透過率が70%以上であった。また目視上も透明ないしは透明に近く、良好な結果が得られた。
 また、各実施例の光散乱複合体1~22は、いずれも、積分透過率の値自体が高い、直線透過率に比べて積分透過率の方が高い、波長460nmの積分透過率に比べて波長550nmの積分透過率の方が高い、という特性を有していた。従って、これら光散乱複合体1~19を、青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置、特に青色光半導体発光素子と黄色蛍光体とを組み合わせた白色光半導体発光装置における光散乱層や光散乱変換層に適用することにより、青色光放射を抑制し、かつ白色光輝度を向上させる効果を得ることができる。すなわち、光散乱複合体1~22は、青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置の光散乱層や光散乱変換層に対して、好適に使用できる材料である。
 また、光散乱複合体1~22における光散乱粒子(無機酸化物粒子)の平均粒子径は、10nm~1000nmの範囲内にあり、上記の光学特性を得るための平均粒子径として好適であった。
 さらに、各実施例に用いた光散乱複合体形成用組成物1~22における表面修飾無機酸化物粒子の平均分散粒子径と、その硬化物である光散乱複合体1~22における光散乱粒子(無機酸化物粒子)の平均粒子径を比較すると、いずれも、光散乱複合体1~22における光散乱粒子の平均粒子径の方が大きくなっていた。また、光散乱複合体形成用組成物1~19の波長550nmにおける積分透過率Taと、光散乱複合体1~22の波長550nmにおける積分透過率Tbの比:Tb/Taの値は、全て0.9以下であった。これらのことから、光散乱複合体形成用組成物を硬化させて光散乱複合体を形成する際に、光散乱複合体形成用組成物中に分散していた分散粒子(表面修飾無機酸化物粒子)の少なくとも一部が会合し、光散乱複合体のマトリックス樹脂中で会合粒子を形成すること、その結果、光散乱複合体における光散乱能が増大することが確認された。
 さらにまた、光散乱複合体1~22中の光散乱粒子は均一に分散していた。これは、光散乱複合体形成用組成物1~22中で均一に分散していた分散粒子が、光散乱複合体形成用組成物を硬化させて光散乱複合体を形成する際に会合粒子を形成することの証左である と言える。
 また、各実施例の光半導体発光装置1~22では、いずれも、発光スペクトルピーク面積比が基準値の比較例1または2に比べて優れていた。すなわち、波長400nmから480nmの発光スペクトルピーク面積aと、波長480nmから波長800nmの発光スペクトルピーク面積bとの比a/bの値が、0.3よりも小さく、白色光とともに発せられる青色光成分が低減されていた。
 また、光半導体発光装置1~22はいずれも高輝度であり、その輝度は60500cd/cm2以上であった。
 従って、各実施例の光半導体発光装置1~22は、いずれも良好な特性を有していることが確認された。
 一方、比較例3では、光散乱複合体形成用組成物103の特性はマトリックス樹脂単体のものと実質的な差異が無く、また光散乱複合体103の特性もマトリックス樹脂単体のものに近い値であった。これは光散乱複合体形成用組成物103を硬化して光散乱複合体103を形成する際に、ジルコニア粒子の会合がほとんど起こらず、従って光散乱複合体103中の光散乱粒子の平均粒子径が小さすぎるために、光散乱能がほとんど発現しないためと考えられる。このため、光半導体発光装置103の特性も、基準値である光半導体発光装置101の特性とほとんど同一であった。
 比較例4では、表面修飾ジルコニア粒子分散液104及び光散乱複合体形成用組成物104においてジルコニア粒子の沈降が見られるように、光散乱粒子の分散粒子径が過大であり、その結果、光散乱能が非常に大きかった。このため、光散乱複合体形成用組成物104及び光散乱複合体104の特性は低下しており、また光半導体発光装置104も、特に輝度の低下が著しかった。
 比較例5では、光散乱複合体形成用組成物105におけるシリカ粒子(光散乱粒子)の分散粒子径が過大であった。ただし、シリカ粒子とマトリックス樹脂の屈折率との差異が小さいことから、光散乱能はジルコニア粒子に比べて小さく、このため、光散乱複合体形成用組成物105及び光散乱複合体105の特性には大きな問題は生じなかった。しかしながら、光半導体発光装置105においては、発光スペクトルピーク面積比及び輝度とも、良好な特性は得られなかった。
 比較例6では、光散乱複合体形成用組成物106の特性は良好であったが、硬化させた光散乱複合体106は白濁し、光散乱粒子の分散も不均一であり、特性も低下していた。この理由は、ジルコニア粒子(光散乱粒子)の表面修飾剤として、表面修飾後は官能基を有さないステアリン酸を用いたためと考えられる。すなわち、表面修飾ジルコニア粒子分散液106及び光散乱複合体形成用組成物106においては、ジルコニア粒子に十分な表面修飾が行われているため、表面修飾ジルコニア粒子は良好な分散状態が維持されているが、一方、表面修飾剤はマトリックス樹脂と結合できる官能基を有さないため、マトリックス樹脂を硬化させると、表面修飾ジルコニア粒子がマトリックス樹脂と相分離を起こして凝集して粗大粒子が形成し、光散乱能が過大になったと考えられる。
 このように、光散乱複合体106における光散乱能が過大なため、光半導体発光装置106においては、特に輝度の低下が著しかった。
 比較例7では、光散乱複合体形成用組成物107及び光散乱複合体107におけるジルコニア粒子(光散乱粒子)の量が多かった。このために光散乱能が過大となり、その結果、光散乱複合体形成用組成物107及び光散乱複合体107の特性が低下したと考えられる。また、光散乱複合体形成用組成物107はジルコニア粒子(光散乱粒子)の含有量が多いために粘度が高く、ハンドリングが難しかった。さらに蛍光体含有光散乱組成物107では、ジルコニア粒子に加えて黄色蛍光体粒子を加えているために粘度が非常に高くなり、脱泡できない上にハンドリングもより困難であった。これらのため、光半導体発光装置107においては、発光スペクトルピーク面積比及び輝度とも、良好な特性は得られなかった。
 比較例8では、比較例7と同様に使用したシリカ粒子(光散乱粒子)の量が多い。このため、比較例7と同様に、光散乱能の過大、高粘度化による不十分な脱泡やハンドリングの困難性が生じ、良好な特性が得られなかったと考えられる。
10 光半導体発光素子
11 封止樹脂層
12 光散乱複合体
13 蛍光体粒子
14 光散乱変換層
15 マトリックス材
16 光変換層
17 光散乱層
18 外部空気相界面

Claims (7)

  1.  アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、未硬化のマトリックス樹脂組成物と、を含有し、
     前記表面修飾された無機酸化物粒子の平均分散粒子径が3nm以上150nm以下であり、該無機酸化物粒子の含有量が全固形分中の0.01質量%以上15質量%以下である光散乱複合体形成用組成物。
  2.  硬化前の組成物について積分球で測定した波長550nmにおける透過率Taと、硬化後の硬化物について積分球で測定した波長550nmにおける透過率Tbとが、下記式(1)の関係を有する請求項1に記載の光散乱複合体形成用組成物。
       Tb/Ta≦0.90 ・・・ 式(1)
  3.  さらに蛍光体粒子を含有する請求項1または2に記載の光散乱複合体形成用組成物。
  4.  請求項1ないし3のいずれか1項に記載の光散乱複合体形成用組成物を硬化してなる光散乱複合体であって、
     前記表面修飾された無機酸化物粒子の少なくとも一部が会合粒子を形成しており、該無機酸化物粒子により形成された全ての粒子の平均粒子径が10nm以上1000nm以下である光散乱複合体。
  5.  前記表面修飾された無機酸化物粒子により形成された全ての粒子が、前記光散乱複合体中で均一に分散している請求項4に記載の光散乱複合体。
  6.  アルケニル基、H-Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子と、未硬化のマトリックス樹脂組成物とを含有し、前記表面修飾された無機酸化物粒子の平均分散粒子径が3nm以上150nm以であり、該無機酸化物粒子の含有量が0.01質量%以上15質量%以下である光散乱複合体形成用組成物を硬化する工程を有する光散乱複合体の製造方法であって、
     前記硬化時において、前記光散乱複合体形成用組成物中の分散粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する光散乱複合体の製造方法。
  7.  前記光散乱複合体中における前記表面修飾された無機酸化物粒子により形成された全ての粒子の平均粒子径が、前記光散乱複合体形成用組成物中における平均分散粒子径よりも大きく、かつ、10nm以上1000nm以下となるように硬化させる請求項6に記載の光散乱複合体の製造方法。
PCT/JP2015/056643 2015-03-06 2015-03-06 光散乱複合体形成用組成物、光散乱複合体及びその製造方法 WO2016142992A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580077495.0A CN107431114B (zh) 2015-03-06 2015-03-06 光散射复合体形成用组合物、光散射复合体及其制造方法
US15/555,972 US20180062049A1 (en) 2015-03-06 2015-03-06 Composition for forming light scattering composite body, light scattering composite body and method for producing same
PCT/JP2015/056643 WO2016142992A1 (ja) 2015-03-06 2015-03-06 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
JP2017504317A JP6724898B2 (ja) 2015-03-06 2015-03-06 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
KR1020177026377A KR102190051B1 (ko) 2015-03-06 2015-03-06 광 산란 복합체 형성용 조성물, 광 산란 복합체 및 그 제조 방법
EP15884490.2A EP3267499B1 (en) 2015-03-06 2015-03-06 Composition for forming light scattering composite body, light scattering composite body and method for producing the same
TW105105199A TW201708335A (zh) 2015-03-06 2016-02-23 光散射複合體形成用組成物、光散射複合體及其製造方法、以及光半導體發光裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056643 WO2016142992A1 (ja) 2015-03-06 2015-03-06 光散乱複合体形成用組成物、光散乱複合体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016142992A1 true WO2016142992A1 (ja) 2016-09-15

Family

ID=56878600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056643 WO2016142992A1 (ja) 2015-03-06 2015-03-06 光散乱複合体形成用組成物、光散乱複合体及びその製造方法

Country Status (7)

Country Link
US (1) US20180062049A1 (ja)
EP (1) EP3267499B1 (ja)
JP (1) JP6724898B2 (ja)
KR (1) KR102190051B1 (ja)
CN (1) CN107431114B (ja)
TW (1) TW201708335A (ja)
WO (1) WO2016142992A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033256A (ja) * 2017-08-04 2019-02-28 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具および表示装置
JP2019050363A (ja) * 2017-08-27 2019-03-28 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 半導体パッケージ構造
JP2020002305A (ja) * 2018-06-29 2020-01-09 住友大阪セメント株式会社 組成物、封止部材、発光装置、照明器具および表示装置
WO2020203462A1 (ja) 2019-03-29 2020-10-08 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021034426A (ja) * 2019-08-19 2021-03-01 日亜化学工業株式会社 発光装置及びその製造方法
WO2021193727A1 (ja) 2020-03-26 2021-09-30 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021155245A (ja) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021155261A (ja) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置
WO2022071385A1 (ja) 2020-09-30 2022-04-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
WO2022071360A1 (ja) 2020-09-30 2022-04-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
WO2022071384A1 (ja) 2020-09-30 2022-04-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
JP2022057531A (ja) * 2020-09-30 2022-04-11 住友大阪セメント株式会社 無機粒子の表面修飾方法および分散液の製造方法
JP7248379B2 (ja) 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法
WO2023190495A1 (ja) 2022-03-31 2023-10-05 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107939A1 (de) * 2017-04-12 2018-10-18 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
EP3765896A1 (en) 2018-03-13 2021-01-20 Apple Inc. Displays with direct-lit backlight units
US11526051B2 (en) 2021-04-16 2022-12-13 Apple Inc. Displays with direct-lit backlight units
US11592706B2 (en) 2021-04-16 2023-02-28 Apple Inc. Displays with direct-lit backlight units
DE102021113047A1 (de) 2021-05-19 2022-11-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Anzeigeelement und verfahren
US11874559B2 (en) 2021-09-23 2024-01-16 Apple Inc. Display modules with direct-lit backlight units

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252222A (ja) * 2004-02-03 2005-09-15 Matsushita Electric Ind Co Ltd 半導体発光装置、照明モジュール、照明装置、表示素子、および半導体発光装置の製造方法
WO2007049573A1 (ja) * 2005-10-28 2007-05-03 Sumitomo Osaka Cement Co., Ltd. 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法
JP2008120848A (ja) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子
WO2013172476A1 (ja) * 2012-05-18 2013-11-21 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503814B2 (ja) * 1999-04-30 2004-03-08 冨士色素株式会社 変性シリカ被覆金属酸化物、その製法およびそれを含有する組成物
EP1658642B1 (en) * 2003-08-28 2014-02-26 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
JP5167582B2 (ja) * 2005-10-28 2013-03-21 住友大阪セメント株式会社 ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
US7972691B2 (en) * 2006-12-22 2011-07-05 Nanogram Corporation Composites of polymers and metal/metalloid oxide nanoparticles and methods for forming these composites
JP5707697B2 (ja) 2009-12-17 2015-04-30 日亜化学工業株式会社 発光装置
JP5273744B2 (ja) * 2010-07-16 2013-08-28 住友大阪セメント株式会社 無機酸化物粒子とシリコーン樹脂との複合組成物の製造方法
JP5472543B2 (ja) * 2012-03-09 2014-04-16 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
CN104271495B (zh) * 2012-05-18 2017-08-25 住友大阪水泥股份有限公司 表面修饰金属氧化物粒子材料、分散液、聚硅氧烷树脂组合物、聚硅氧烷树脂复合体、光半导体发光装置、照明器具及液晶图像装置
JP6003402B2 (ja) * 2012-08-28 2016-10-05 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置
JP6079334B2 (ja) * 2013-03-15 2017-02-15 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置、並びに演色性制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252222A (ja) * 2004-02-03 2005-09-15 Matsushita Electric Ind Co Ltd 半導体発光装置、照明モジュール、照明装置、表示素子、および半導体発光装置の製造方法
WO2007049573A1 (ja) * 2005-10-28 2007-05-03 Sumitomo Osaka Cement Co., Ltd. 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法
JP2008120848A (ja) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子
WO2013172476A1 (ja) * 2012-05-18 2013-11-21 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7248379B2 (ja) 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法
JP7087796B2 (ja) 2017-08-04 2022-06-21 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具および表示装置
JP2019033256A (ja) * 2017-08-04 2019-02-28 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具および表示装置
JP2019050363A (ja) * 2017-08-27 2019-03-28 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 半導体パッケージ構造
JP2020002305A (ja) * 2018-06-29 2020-01-09 住友大阪セメント株式会社 組成物、封止部材、発光装置、照明器具および表示装置
WO2020203462A1 (ja) 2019-03-29 2020-10-08 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
KR20210146334A (ko) 2019-03-29 2021-12-03 스미토모 오사카 세멘토 가부시키가이샤 분산액, 조성물, 밀봉 부재, 발광 장치, 조명 기구, 표시 장치 및 분산액의 제조 방법
JP2021034426A (ja) * 2019-08-19 2021-03-01 日亜化学工業株式会社 発光装置及びその製造方法
JP7277760B2 (ja) 2019-08-19 2023-05-19 日亜化学工業株式会社 発光装置及びその製造方法
US11456402B2 (en) 2019-08-19 2022-09-27 Nichia Corporation Light-emitting device and method of manufacturing the light-emitting device
WO2021193727A1 (ja) 2020-03-26 2021-09-30 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021155256A (ja) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021155261A (ja) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置
JP2021155245A (ja) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP7363634B2 (ja) 2020-03-26 2023-10-18 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP7413881B2 (ja) 2020-03-26 2024-01-16 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
WO2022071360A1 (ja) 2020-09-30 2022-04-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
WO2022071384A1 (ja) 2020-09-30 2022-04-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
JP2022057531A (ja) * 2020-09-30 2022-04-11 住友大阪セメント株式会社 無機粒子の表面修飾方法および分散液の製造方法
WO2022071385A1 (ja) 2020-09-30 2022-04-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
JP7505355B2 (ja) 2020-09-30 2024-06-25 住友大阪セメント株式会社 無機粒子の表面修飾方法および分散液の製造方法
WO2023190495A1 (ja) 2022-03-31 2023-10-05 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Also Published As

Publication number Publication date
KR102190051B1 (ko) 2020-12-11
EP3267499A1 (en) 2018-01-10
EP3267499A4 (en) 2018-08-01
JPWO2016142992A1 (ja) 2017-12-14
CN107431114B (zh) 2020-05-22
US20180062049A1 (en) 2018-03-01
KR20170127466A (ko) 2017-11-21
TW201708335A (zh) 2017-03-01
EP3267499B1 (en) 2019-09-04
JP6724898B2 (ja) 2020-07-15
CN107431114A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2016142992A1 (ja) 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
JP6003402B2 (ja) 光半導体発光装置、照明器具、及び表示装置
JP6344190B2 (ja) 光半導体発光装置、照明器具、表示装置、及び光半導体発光装置の製造方法
JP6079334B2 (ja) 光半導体発光装置、照明器具、及び表示装置、並びに演色性制御方法
TWI746876B (zh) 分散液、組成物、密封構件、發光裝置、照明器具、顯示裝置及發光裝置的製造方法
JP2008120848A (ja) 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子
WO2013172476A1 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP6287747B2 (ja) 光散乱組成物、光散乱複合体及びその製造方法
CN110785859B (zh) 分散液、组合物、密封构件、发光装置、照明器具、显示装置及发光装置的制造方法
JP2018056588A (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP6115611B2 (ja) 光半導体発光装置、照明器具、及び表示装置
JP6354119B2 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP7087796B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026377

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015884490

Country of ref document: EP