WO2022071384A1 - 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法 - Google Patents

分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法 Download PDF

Info

Publication number
WO2022071384A1
WO2022071384A1 PCT/JP2021/035829 JP2021035829W WO2022071384A1 WO 2022071384 A1 WO2022071384 A1 WO 2022071384A1 JP 2021035829 W JP2021035829 W JP 2021035829W WO 2022071384 A1 WO2022071384 A1 WO 2022071384A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
metal oxide
silane compound
mass
dispersion
Prior art date
Application number
PCT/JP2021/035829
Other languages
English (en)
French (fr)
Inventor
健司 原田
智海 伊藤
怜 武田
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to EP21875684.9A priority Critical patent/EP4223698A1/en
Priority to CN202180067126.9A priority patent/CN116249741A/zh
Priority to US18/029,101 priority patent/US20230365787A1/en
Publication of WO2022071384A1 publication Critical patent/WO2022071384A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a dispersion liquid containing metal oxide particles surface-modified with a silane compound and a silicone compound, a composition, a sealing member, a light emitting device, a lighting fixture, a display device, a method for producing a dispersion liquid, and metal oxide particles.
  • a dispersion liquid containing metal oxide particles surface-modified with a silane compound and a silicone compound
  • a composition containing metal oxide particles surface-modified with a silane compound and a silicone compound
  • a composition a sealing member
  • a light emitting device a lighting fixture
  • a display device a method for producing a dispersion liquid, and metal oxide particles.
  • LEDs Light emitting diodes
  • the LED chip in the LED package is generally sealed with a sealing material containing a resin in order to prevent contact with deterioration factors existing in the external environment such as oxygen and moisture. Therefore, the light emitted from the LED chip passes through the sealing material and is emitted to the outside. Therefore, in order to increase the luminous flux emitted from the LED package, it is important to efficiently take out the light emitted from the LED chip to the outside of the LED package.
  • a metal surface-modified with a surface-modifying material containing at least one functional group selected from an alkenyl group, an H—Si group and an alkoxy group As a sealing material for improving the extraction efficiency of the light emitted from the LED chip, a metal surface-modified with a surface-modifying material containing at least one functional group selected from an alkenyl group, an H—Si group and an alkoxy group.
  • a composition for forming a light scattering complex containing an oxide particle and a matrix resin composition is known (see, for example, Patent Document 1).
  • a dispersion liquid containing metal oxide particles is mixed with a silicone resin in a state where transparency is relatively maintained.
  • the metal oxide particles those having a small dispersed particle diameter and a high refractive index are used.
  • the silicone resin used as a sealing material for an LED generally contains a methyl group and a phenyl group, which are hydrocarbon groups, and the ratio of functional groups is adjusted depending on the application.
  • the structure contains a large amount of phenyl groups having a high refractive index.
  • the structure contains a large amount of highly heat-resistant methyl groups. Therefore, it is necessary to modify the surface of the metal oxide particles for each type of silicone-sealed resin and for each application.
  • surface-modified metal that can be dispersed in a methyl-based silicone resin by directly dispersing metal oxide particles in a silane compound and performing primary modification, and then secondary modifying the silicone compound.
  • a method for obtaining oxide particles is being studied.
  • surface-modified metal oxide particles may be abbreviated as “surface-modified metal oxide particles”.
  • the surface-modified metal oxide particles obtained by the above method could not be dispersed in a phenyl-based silicone resin containing a large amount of phenyl groups. Therefore, there has been a demand for surface-modified metal oxide particles that can be dispersed in both methyl-based silicone resins and phenyl-based silicone resins.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to disperse surface-modified metal oxide particles regardless of whether it is a methyl-based silicone resin or a phenyl-based silicone resin.
  • the first aspect of the present invention is a dispersion liquid containing metal oxide particles surface-modified with at least one silane compound, at least one silicone compound, and a solvent.
  • the silane compound contains a methyl group and a hydrocarbon group having 2 or more carbon atoms.
  • the molar ratio of the methyl group to the hydrocarbon group is 0.01 or more and 10 or less.
  • the transmission spectrum in the wave number range of 800 cm -1 or more and 3800 cm -1 or less is measured by a Fourier transform infrared spectrophotometer, and the transmission spectrum is measured in the above range.
  • a dispersion liquid satisfying the following formula (1) when the value of the transmission spectrum is standardized so that the maximum value of the transmission spectrum is 100 and the minimum value is 0.
  • IA / IB ⁇ 3.5 (1) (In the formula, "IA” indicates a normalized spectral value at 3500 cm -1 , and “IB” indicates a normalized spectral value at 1100 cm -1 .)
  • the hydrocarbon group having 2 or more carbon atoms may be an aromatic hydrocarbon group.
  • the second aspect of the present invention provides a composition containing the above-mentioned dispersion liquid and a silicone resin component.
  • a third aspect of the present invention provides a sealing member which is a cured product of the above composition.
  • a fourth aspect of the present invention provides a light emitting device including the sealing member and a light emitting element sealed by the sealing member.
  • the fifth aspect of the present invention provides a lighting fixture provided with the above light emitting device.
  • the sixth aspect of the present invention provides a display device including the above light emitting device.
  • the seventh aspect of the present invention provides the method for producing the dispersion liquid of the first aspect.
  • the eighth aspect of the present invention provides a method for surface modification of metal oxide particles.
  • a dispersion liquid containing surface-modified metal oxide particles capable of being dispersed regardless of whether it is a methyl-based silicone resin or a phenyl-based silicone resin, a composition containing the dispersion liquid, and the like.
  • a sealing member formed by using the composition, a light emitting device having the sealing member, a lighting device provided with the light emitting device, a display device, a method for producing a dispersion liquid, and a method for surface modification of metal oxide particles. can be provided.
  • the dispersion liquid of the present invention the composition containing the dispersion liquid, the sealing member formed by using the composition, the light emitting device having the sealing member, the lighting equipment and the display device provided with the light emitting device, and the dispersion.
  • Examples of preferred embodiments of a method for producing a liquid and a method for modifying the surface of metal oxide particles will be described. It should be noted that the present embodiment is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. For example, unless otherwise specified, conditions such as material, quantity, type, number, size, ratio, order, time, and temperature may be changed, added, and omitted as necessary.
  • a sealing material which is a raw material for a sealing member
  • metal oxide particles are modified by a surface modifying material and dispersed in a resin such as a silicone resin.
  • a resin such as a silicone resin.
  • the methyl-based silicone resin has a large content of methyl groups and a high degree of hydrophobicity as compared with conventionally generally used phenyl-based silicone resins and the like. Therefore, even when the metal oxide particles modified with the surface modifying material are used as described above, it is difficult for the metal oxide particles to be uniformly dispersed in the methyl silicone resin.
  • the present inventors have diligently studied to solve the problem. As a result, it was found that the dispersibility of the metal oxide particles in the methyl silicone resin is not significantly improved even if the amount of the surface modifying material used is simply increased.
  • the present inventors further investigated and focused on the modified state of the surface modifying material on the surface of the metal oxide particles. Then, the examination was conducted based on the following ideas. That is, even if the metal oxide particles are modified using a large amount of surface modifying material, if only a small amount of the surface modifying material adheres to the surface of the metal oxide particles, the surface of the metal oxide particles Is not sufficiently hydrophobic. On the other hand, even if the metal oxide particles are modified using a small amount of the surface modifying material, the adhesion ratio of the surface modifying material to the surface of the metal oxide particles is high, and a large amount is applied to the surface of the metal oxide particles. When the surface modification material is attached to the metal oxide particles, the surface of the metal oxide particles is sufficiently hydrophobic.
  • the present inventors have determined the degree of adhesion of the surface modifying material to the metal oxide particles as described above by Fourier transform infrared spectrophotometer. It was found that it can be measured and observed by a meter (FT-IR). Then, they have found that if the metal oxide particles are surface-modified with a silane compound and a silicone compound, the metal oxide particles can be dispersed in a methyl-based silicone resin, which has been difficult to disperse in the past.
  • FT-IR Fourier transform infrared spectrophotometer
  • the metal oxide particles are secondarily modified with a silane compound instead of being secondarily modified with a silicone compound, they can be dispersed in a methyl silicone resin and further in a phenyl silicone resin. Furthermore, it has been found that by tertiary modification with a silicone compound, an increase in the viscosity of the composition described later can be suppressed and the brightness of the LED can also be improved. It was also found that the silane compound can be sufficiently adhered to the surface of the metal oxide particles by the method described later.
  • the functional group ratio of the silane compound and the silicone compound is adjusted so that the molar ratio of the methyl group to the hydrocarbon group (methyl group / hydrocarbon group) in the metal oxide particles is 0.01 or more and 10 or less. Therefore, it has been found that highly versatile surface-modified metal oxide particles capable of dispersion can be obtained regardless of whether it is a methyl-based silicone resin or a phenyl-based silicone resin. After that, the combination of the secondary modification and the tertiary modification may be simply described as the secondary modification.
  • the dispersion liquid according to this embodiment contains at least one silane compound, metal oxide particles surface-modified with at least one silicone compound, and a solvent, and the silane compound has a methyl group and a carbon number of carbon atoms. It contains 2 or more hydrocarbon groups, and the ratio of the methyl group to the hydrocarbon group (methyl group / hydrocarbon group) in the metal oxide particles is 0.01 or more and 10 or less.
  • a transmission spectrum in a wave number range of 800 cm -1 or more and 3800 cm -1 or less is obtained by a Fourier transform infrared spectrophotometer.
  • the dispersion liquid according to the present embodiment can be dispersed in both a methyl silicone resin and a phenyl silicone resin. In addition, it is possible to suppress an increase in the viscosity of the dispersed methyl-based silicone resin or phenyl-based silicone resin. Then, the brightness of the LED can be improved.
  • the position of wave number 1100 cm -1 belongs to the siloxane bond (Si—O—Si bond), and the position of wave number 3500 cm -1 is. , Belongs to the silanol group (Si-OH group).
  • the silane compound and the silicone compound each contain a Si—OH group capable of forming a Si—O—Si bond and a group capable of forming a Si—OH group. Therefore, Si—OH and Si—OH groups of silane compounds and silicone compounds can be formed by comparing the spectral value (IA) at 3500 cm -1 with the spectral value (IB) at 1100 cm -1 . It becomes possible to observe the degree of reaction of the group.
  • the present inventors have found that when the IA / IB is 3.5 or less, the silane compound is sufficiently adhered to the surface of the metal oxide particles. Due to this feature, the metal oxide particles can be dispersed in the methyl silicone resin without agglomeration when mixed with the methyl silicone resin.
  • the IA / IB is 3.5 or less as described above, but is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.0 or less.
  • the measurement of the transmission spectrum of the metal oxide particles by the Fourier transform infrared spectrophotometer can be performed as follows.
  • the dispersion liquid of this embodiment is dried by vacuum drying.
  • the drying conditions may be appropriately adjusted according to the amount and concentration of the dispersion. For example, if 10 g of the dispersion liquid has a solid content of 30% by mass, it may be dried at 100 ° C. and 20 hPa or less for 2 hours or more.
  • the vacuum dryer for example, VACUUM OVEN VOS-201SD manufactured by EYELA Tokyo University of Science can be used.
  • a Fourier transform infrared spectrophotometer for example, manufactured by JASCO Corporation, model number: FT / IR-670 Plus
  • FT / IR-670 Plus Fourier transform infrared spectrophotometer
  • the conventional surface-modified metal oxide particles can be dispersed in the methyl-based silicone resin even if the surface-modified metal oxide particles have an IA / IB of 3.5 or less, but they are phenyl-based. It was difficult to disperse in silicone resin.
  • the metal oxide particles are surface-modified by the surface modification method described later using a silane compound containing a methyl group and a hydrocarbon group having 2 or more carbon atoms, the present inventors can use a phenyl-based methyl silicone resin as well. It has been found that highly versatile surface-modified metal oxide particles that can be dispersed even in silicone resins can be obtained. Furthermore, it has also been found that by surface-modifying the surface with silicone, it is possible to suppress an increase in the viscosity of the composition described later and improve the brightness of the LED.
  • the first surface modification (primary modification) of the metal oxide particles is performed in a high concentration silane compound.
  • both the silane compound of the primary modification and the surface modification material of the surface modification (secondary modification) to be performed next are sufficiently adhered to the surface of the metal oxide particles.
  • a silicone compound is selected as the surface modifying material for the secondary modification, many silicone chains that can cause steric hindrance are present on the surface of the metal oxide particles. Therefore, it is presumed that such metal oxide particles are not subjected to a fine surface treatment, and as a result, the metal oxide particles secondarily modified with the silicone compound are difficult to disperse in the silicone resin.
  • the silane compound when the secondary modification is performed with the silane compound, the silane compound does not have steric hindrance like the silicone compound and is easily adhered by the metal oxide particles. Therefore, it is presumed that the metal oxide particles are finely surface-modified with the silane compound. That is, it is presumed that the metal oxide particles of the present embodiment are more easily dispersed in the silicone resin for LEDs because more silane compounds are attached to the metal oxide particles and the surface is finely modified.
  • the present inventors have considered that it is essential to surface-modify with a silane compound and a silicone compound in order to disperse the metal oxide particles in the silicone resin for LEDs. Therefore, it was unexpected that it is easier to mix with various silicone resins by performing primary modification and secondary modification with only a specific silane compound to surface-modify.
  • the present embodiment it is preferable to perform primary modification and secondary modification only with the silane compound, and further perform tertiary modification with the silicone compound.
  • the details of the mechanism that can suppress the increase in the viscosity of the composition and improve the brightness of the LED when the secondary modification is further performed with the silicone compound after the secondary modification are unknown, but are presumed as follows.
  • Ru The present inventors have metal oxide particles surface-modified by primary modification and secondary modification with a silane compound containing a methyl group and a hydrocarbon group having 2 or more carbon atoms, and a metal tertiary-modified with a silicone compound. The oxide particles were observed with a transmission electron microscope.
  • metal oxide particles modified only with a silane compound are in close contact with each other, whereas metal oxide particles modified with a silane compound and a silicone compound are metal oxide particles and metal oxidation. Gap was sometimes observed between the particles. That is, it is presumed that the silicone chain of the silicone compound causes steric hindrance and loosens the adhesion between the particles. Therefore, the metal oxide particles surface-modified with the silane compound and the silicone compound suppress the aggregation of the particles. As a result, it is presumed that even when the particles are mixed with the silicone resin for LED, the increase in the viscosity of the composition is suppressed because the particles are less likely to aggregate with each other. Further, since the particles are not in close contact with each other, it is presumed that the light emitted from the light emitting element is easily transmitted, and as a result, it contributes to the improvement of the brightness of the LED.
  • the molar ratio of the methyl group to the hydrocarbon group (methyl group / hydrocarbon group) in the metal oxide particles is 0.01 or more and 10 or less, and 0.03 or more and 8 or less. It is more preferably 0.05 or more and 5 or less, and further preferably 0.1 or more and 3 or less. If necessary, the molar ratio may be 0.2 to 0.8, 0.8 to 2, 2 to 6, 6 to 9, or the like.
  • the metal oxide particles can be transparently dispersed regardless of whether it is a methyl silicone resin or a phenyl silicone resin.
  • the molar ratio is less than 0.01, the number of methyl groups is too small to disperse in the methyl silicone resin. On the other hand, if the molar ratio exceeds 10, it cannot be dispersed in the phenyl silicone resin.
  • the molar ratio in the metal oxide particles means the ratio measured by the following method by NMR (nuclear magnetic resonance spectroscopy). That is, it means the molar ratio of the methyl group and the hydrocarbon group having 2 or more carbon atoms contained in the surface-modified metal oxide particles. Therefore, it substantially means the molar ratio of the methyl group and the hydrocarbon group having 2 or more carbon atoms contained in the silane compound and the silicone compound.
  • 15 g of the dispersion liquid having a solid content adjusted to 30% by mass and 15 g of methanol are mixed to precipitate surface-modified metal oxide particles. This mixture is solid-liquid separated by a centrifuge, and the solid portion (surface-modified metal oxide particles) is recovered.
  • an NMR device for example, a desktop NMR device (manufactured by Nanarysis, model number NMReady60Pro ( 1 H / 19 F)), is used to generate 1 H of a hydrocarbon group having 2 or more carbon atoms and a methyl group. -Measure the liquid NMR spectrum. From the obtained spectrum, the spectral area (integral value) of the hydrocarbon group having 2 or more carbon atoms and the methyl group is calculated, and the integrated value of the methyl group / the integrated value of the hydrocarbon group having 2 or more carbon atoms is calculated.
  • the solid content of the dispersion liquid does not have to be 30% by mass, and it is sufficient that the amount required for measurement by NMR can be collected.
  • the silicone compound does not contain a methyl group and a hydrocarbon group having 2 or more carbon atoms
  • the molar ratio of the methyl group contained in the silane compound to the hydrocarbon group having 2 or more carbon atoms may be adjusted.
  • the silicone compound contains a methyl group or a hydrocarbon group having 2 or more carbon atoms
  • the molar ratio of the total methyl group contained in the silane compound and the silicone compound to the hydrocarbon group having 2 or more carbon atoms is within a predetermined range. It should be adjusted so as to be.
  • the metal oxide particles scatter the light emitted from the light emitting element in the sealing member described later. Further, the metal oxide particles improve the refractive index of the sealing member depending on the type. As a result, the metal oxide particles contribute to the improvement of the brightness of light in the light emitting device.
  • the metal oxide particles are not particularly limited.
  • the metal oxide particles include, for example, zirzyl oxide particles, titanium oxide particles, zinc oxide particles, iron oxide particles, copper oxide particles, tin oxide particles, cerium oxide particles, tantalum oxide particles, niobium oxide particles, and the like.
  • Yttria-stabilized zirconia particles potassium niobate particles, lithium niobate particles, calcium-tungstate particles, yttria-stabilized zirconia particles, alumina-stabilized zirconia particles, calcia-stabilized zirconia particles, magnesia-stabilized zirconia particles, scandia-stabilized zirconia particles , Hafnia-stabilized zirconia particles, yttria-stabilized zirconia particles, ceria-stabilized zirconia particles, india-stabilized zirconia particles, strontium-stabilized zirconia particles, samarium oxide-stabilized zirconia particles, gadrinium oxide-stabilized zirconia particles, antimon-added tin oxide particles , And metal oxide particles containing at least one selected from the group consisting of yttria-stabilized tin oxide particles are preferably used.
  • the metal oxide particles are selected from the group consisting of zirconium oxide particles and titanium oxide particles at least from the viewpoint of improving transparency and compatibility (affinity) with the sealing resin (resin component). It is preferably one kind. Further, the metal oxide particles preferably have a refractive index of 1.7 or more from the viewpoint of improving the refractive index of the sealing member.
  • the upper limit of the refractive index can be arbitrarily selected, and may be, for example, 3.0 or less or 2.5 or less, but is not limited to this.
  • the metal oxide particles are more preferably at least one of zirconium oxide particles and titanium oxide particles, and particularly preferably zirconium oxide particles.
  • the average primary particle diameter of the metal oxide particles is preferably 1 nm or more and 200 nm or less, more preferably 3 nm or more and 150 nm or less, and further preferably 10 nm or more and 100 nm or less. If necessary, it may be 5 to 30 nm, 30 to 50 nm, 50 to 80 nm, 80 to 130 nm, or the like.
  • the average primary particle diameter of the metal oxide particles is in the above range, it is possible to suppress a decrease in the transparency of the sealing member. As a result, the brightness of the light of the light emitting device can be further improved.
  • the average primary particle size of the metal oxide particles can be measured, for example, by observing with a transmission electron microscope. First, the inorganic oxide particles are observed with a transmission electron microscope to obtain a transmission electron microscope image. Next, a predetermined number, for example, 100 of the inorganic oxide particles in the transmission electron microscope image is selected. Then, the longest linear component (maximum major axis) of each of these inorganic oxide particles is measured, and these measured values are calculated by arithmetic mean.
  • the agglomerated particle diameter of the agglomerates is not measured.
  • the maximum major axis of the particles (primary particles) of the metal oxide particles constituting this agglomerate is measured by a predetermined number and used as the average primary particle diameter.
  • the average dispersed particle size of the metal oxide particles in the dispersion liquid of the present embodiment is not particularly limited, but is, for example, 10 nm or more and 300 nm or less, preferably 20 nm or more and 250 nm or less, and 30 nm or more and 200 nm or less. More preferred. If necessary, it may be 50 nm or more and 180 nm or less, or 100 nm or more and 150 nm or less.
  • the average dispersed particle diameter of the metal oxide particles is 10 nm or more, the brightness of the light of the light emitting device manufactured by using this dispersion liquid, which will be described later, is improved.
  • the average dispersed particle diameter of the metal oxide particles is 300 nm or less, it is possible to suppress a decrease in the light transmittance of the dispersion liquid, the composition described later, and the sealing member produced by using the dispersion liquid. .. As a result, the brightness of the light of the light emitting device is improved.
  • the average dispersed particle size of the metal oxide particles can be the particle size D50 of the metal oxide particles when the cumulative percentage of the scattering intensity distribution obtained by the dynamic light scattering method is 50%, and the dynamic light can be obtained. It can be measured by a scattering type particle size distribution meter (for example, manufactured by HORIBA, model number: SZ-100SP). The measurement can be performed using a quartz cell having an optical path length of 10 mm ⁇ 10 mm, using a dispersion liquid having a solid content adjusted to 5% by mass as a measurement target.
  • a "solid content” means a residue when a volatile component is removed in a dispersion liquid.
  • the average dispersed particle size of the metal oxide particles is the diameter of the dispersed metal oxide particles regardless of whether the metal oxide particles are dispersed in the primary particles or the secondary particles. Measured and calculated based on. Further, in the present embodiment, the average dispersed particle size of the metal oxide particles may be measured as the average dispersed particle size of the metal oxide particles to which the surface modifying material is attached. In the dispersion liquid, there may be metal oxide particles to which the surface modifying material is attached and metal oxide particles to which the surface modifying material is not attached. Therefore, the average dispersed particle size of the metal oxide particles is usually measured as a value in a mixed state thereof.
  • the surface modification material described below is attached to the surface of the metal oxide particles described above. As a result, the metal oxide particles are stably dispersed in the dispersion liquid produced by using the metal oxide particles and in the composition.
  • the metal oxide particles are surface-modified with at least one silane compound and at least one silicone compound.
  • the at least one silane compound contains a methyl group and a hydrocarbon group having 2 or more carbon atoms, and sufficiently adheres to the metal oxide particles.
  • a silane compound containing a methyl group and a hydrocarbon group having two or more carbon atoms may be used, and a silane compound containing a methyl group, that is, a methyl group is contained, but the number of carbon atoms is included.
  • a silane compound containing no hydrocarbon group of 2 or more may be used in combination with a silane compound containing a hydrocarbon group having 2 or more carbon atoms.
  • Silane compounds containing at least a methyl group are preferably used in this embodiment.
  • a silane compound containing a methyl group and a silane compound containing a hydrocarbon group having 2 or more carbon atoms may be used in combination, and a silane containing a methyl group and a hydrocarbon group having 2 or more carbon atoms may be used in combination.
  • the compound may be used in combination with a silane compound containing a methyl group, or a silane compound containing a methyl group, a hydrocarbon group having 2 or more carbon atoms and a hydrocarbon group having 2 or more carbon atoms may be used in combination.
  • a silane compound containing a group and a hydrocarbon group having 2 or more carbon atoms and a silane compound containing a hydrocarbon group having 2 or more carbon atoms may be used in combination, and a silane compound containing a methyl group and a silane compound having 2 or more carbon atoms may be used in combination.
  • a silane compound containing a hydrocarbon group may be used in combination.
  • the number (type) of the silane compound used in the present embodiment is not particularly limited, but may be, for example, 1 to 10, 2 to 8, 3 to 6, 4 to 5, or the like.
  • the silane compound having a functional group compatible with the functional group of the silicone resin is not particularly limited.
  • Silicone resins for LEDs generally contain a methyl group and a phenyl group, which are hydrocarbon groups, as functional groups. Therefore, the silane compound in the present embodiment is primarily modified with a silane compound containing a methyl group, and is secondarily modified with a silane compound containing a hydrocarbon group having 2 or more carbon atoms, which is more hydrophobic than the methyl group.
  • At least a part of these silane compounds adheres to the surface of the metal oxide particles and modifies the surface to prevent aggregation of the metal oxide particles. Further, the compatibility with the silicone resin component for LED, in other words, the silicone resin component containing a methyl group and a phenyl group is improved.
  • adhering to the metal oxide particles means that the silane compound contacts or bonds to the metal oxide particles by the interaction or reaction between them.
  • Examples of the contact include physical adsorption.
  • examples of the bond include an ionic bond, a hydrogen bond, a covalent bond and the like.
  • the silane compound containing a methyl group is not particularly limited as long as it can adhere to the surface of the metal oxide particles.
  • a silane compound containing a methyl group and an alkoxy group a silane compound containing a methyl group and an H—Si group, and a silane compound containing a methyl group, an alkoxy group and an H—Si group shall be used. Can be done.
  • the silane compound containing a methyl group one type may be used alone, or two or more types may be used in combination.
  • an alkoxy group particularly a compound containing a methoxy group, is preferable because it easily adheres to the metal oxide particles.
  • Examples of the silane compound containing a methyl group and an alkoxy group include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, and methoxydimethyl.
  • At least one selected from the group of (phenyl) silane, ethoxydimethyl (phenyl) silane, dimethyl (methoxy) phenylsilane, and dimethyl (ethoxy) phenylsilane can be used.
  • the silane compound containing a methyl group and an H—Si group at least one selected from the group of dimethylchlorosilane, methyldichlorosilane, and methylphenylchlorosilane can be used.
  • an alkoxy group and an H—Si group for example, diethoxymethylsilane or ethoxydimethylsilane can be used.
  • the silane compound containing a methyl group preferably contains a silane compound containing a methyl group and an alkoxy group from the viewpoint of having a low viscosity and facilitating the dispersion of metal oxide particles in the dispersion step described later.
  • the number of alkoxy groups in the silane compound containing such a methyl group and an alkoxy group is preferably 1 or more and 3 or less, and the number of alkoxy groups is more preferably 3.
  • the number of carbon atoms of the alkoxy group is preferably 1 or more and 5 or less, and preferably 2 or more and 4 or less.
  • the number of methyl groups in the silane compound containing a methyl group and an alkoxy group is preferably 1 or more and 3 or less, and more preferably 1.
  • the total number of alkoxy groups and methyl groups in the silane compound containing a methyl group and an alkoxy group is 2 or more and 4 or less, preferably 4.
  • Such a silane compound containing a methyl group includes, for example, at least one selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, and methyltripropoxysilane. From the viewpoint of easily adhering to the surface of the metal oxide particles, methyltrimethoxysilane is preferable, methyltriethoxysilane is preferable, and methyltrimethoxysilane is more preferable.
  • the hydrocarbon group having 2 or more carbon atoms contained in the silane compound is not particularly limited as long as it is easily compatible with the silicone resin for LEDs.
  • it may be an aliphatic hydrocarbon group having 2 or more carbon atoms, or it may be an aromatic hydrocarbon group.
  • the number of carbon atoms of the hydrocarbon group may be appropriately selected according to the type of the functional group contained in the silicone resin for LED. Considering that the silicone resin for LED usually contains a methyl group and a phenyl group, the carbon number is preferably 2 or more and 20 or less, more preferably 3 or more and 16 or less, and 4 or more. It is more preferably 12 or less, and even more preferably 5 or more and 9 or less.
  • an alkyl group an alkenyl group and an alkynyl group can be used. It may be a chain-type aliphatic hydrocarbon group or a cyclic-type aliphatic hydrocarbon group.
  • an alkyl group for example, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and the like can be used.
  • an alkenyl group for example, a vinyl group, an allyl group, a propenyl group, a butenyl group and the like can be used.
  • alkynyl group an ethynyl group, a propynyl group, a butynyl group and the like can be used.
  • aromatic hydrocarbon group an aryl group or an aralkyl group can be used.
  • aryl group for example, a phenyl group, a tolyl group, a xsilyl group, a biphenyl group, a 1-naphthyl group, a 2-naphthyl group, a phenanthryl group and the like can be used.
  • aralkyl group for example, a trityl group, a benzyl group, a phenylethyl group, a phenylpropyl group, a styryl group, a benzylidene group and the like can be used.
  • the hydrocarbon group having 2 or more carbon atoms is preferably a phenyl group or a xsilyl group, and more preferably a phenyl group, in terms of excellent compatibility with a silicone resin for LEDs.
  • silane compound containing a hydrocarbon group having 2 or more carbon atoms examples include phenyltrimethoxysilane, phenyltriethoxysilane, methylphenylchlorosilane, diphenylchlorosilane, phenyldichlorosilane, methylphenyldimethoxysilane, diphenylmonomethoxysilane, and methyl. At least one selected from the group of phenyldiethoxysilane and diphenylmonoethoxysilane can be used. Among these, it is preferable to use phenyltrimethoxysilane because it is easy to adjust to improve the compatibility with the silicone resin for LED.
  • the content of the silane compound in the dispersion is not particularly limited, but is preferably 100% by mass or more and 700% by mass or less, and 150% by mass or more and 600% by mass or less, with respect to the amount of the metal oxide particles. It is more preferably 190% by mass or more and 500% by mass or less. If necessary, it may be 200 to 450% by mass, 250 to 400% by mass, or the like.
  • the silane compound can be densely adhered to the surface of the metal oxide particles, the dispersion stability of the metal oxide particles is improved, and the dispersibility in the methyl silicone resin and the phenyl silicone resin is improved. Can be made to.
  • the surface-modified metal oxide particles according to the present embodiment may be a silane compound containing a methyl group or a silane compound other than a silane compound containing a hydrocarbon group having 2 or more carbon atoms, as long as the object of the present invention is not impaired.
  • a surface modifying material commonly used for surface modification of metal oxide particles may be included.
  • the silicone compound has a relatively large molecular weight and contributes to improving the affinity with the silicone resin component described later.
  • the silicone compound is present near the surface of the metal oxide particles surface-modified with the silane compound.
  • the silicone compound plays a role of mediating the metal oxide particles surface-modified with the silane compound and the silicone resin component described later. Therefore, the silicone compound is not particularly limited as long as it is compatible with the metal oxide particles surface-modified with the silane compound and the silicone resin component.
  • the number (types) of the silicone compounds used in the present embodiment is not particularly limited, but may be, for example, 1 to 10, 2 to 8, 3 to 6, 4 to 5, and the like.
  • silicone compound may be present between the metal oxide particles surface-modified with the silane compound and the silicone resin component, it is sufficient if the silicone compound is present near the surface of the metal oxide particles surface-modified with the silane compound. Often, it may or may not be attached to the metal oxide particles surface-modified with the silane compound. That is, "surface-modified with the silane compound and the silicone compound" in the present embodiment means that the silane compound adheres to the metal oxide particles and the silicone compound exists in the vicinity of the surface of the metal oxide particles to which the silane compound is attached. Means the state of being.
  • the silicone compound of this embodiment has a methyl group and a hydrocarbon having 2 or more carbon atoms. It preferably contains a hydrogen group, or both a methyl group and a hydrocarbon group having 2 or more carbon atoms.
  • the type of hydrocarbon group having 2 or more carbon atoms the same silane compound as described above can be used.
  • the silicone compound used in the present embodiment is not limited to the above compound, and may or may not contain a methyl group, and may or may not contain a hydrocarbon group having 2 or more carbon atoms. good.
  • silicone compound examples include alkoxy group-containing phenyl silicone, dimethyl silicone, methylphenyl silicone, methylhydrogen silicone, methylphenylhydrogen silicone, diphenylhydrogen silicone, alkoxy double-ended phenyl silicone, alkoxy double-ended methylphenyl silicone, and alkoxy.
  • examples thereof include group-containing methylphenyl silicone, alkoxy group-containing dimethyl silicone, alkoxy one-terminal trimethyl one-terminal (methyl group end) dimethyl silicone, and alkoxy group-containing phenyl silicone.
  • These silicone compounds may be used alone or in combination of two or more.
  • the silicone compound may be a monomer, an oligomer, or a resin (polymer). It is preferable to use a monomer or an oligomer because surface modification is easy.
  • the silicone compound is preferably an alkoxy group-containing phenyl silicone, dimethyl silicone, methyl phenyl silicone, alkoxy double-ended phenyl silicone, alkoxy double-ended methyl phenyl silicone, and the like. It contains at least one selected from the group consisting of an alkoxy group-containing methylphenyl silicone, an alkoxy group-containing dimethyl silicone, an alkoxy one-ended trimethyl one-ended (methyl group end) dimethyl silicone, and an alkoxy group-containing phenyl silicone, and more preferably methoxy. It contains at least one selected from the group consisting of group-containing phenyl silicone, dimethyl silicone, and methoxy group-containing dimethyl silicone.
  • the content of the silicone compound in the dispersion is not particularly limited, but is preferably, for example, 10% by mass or more and 500% by mass or less, and 15% by mass or more and 400% by mass or less with respect to the metal oxide particles. More preferably, it is more preferably 100% by mass or more and 300% by mass or less. If necessary, it may be 20% by mass or more and 250% by mass or less, 30% by mass or more and 200% by mass or less, or 50% by mass or more and 100% by mass or less.
  • a sufficient amount of the silicone compound can be adhered to the surface of the metal oxide particles, the dispersion stability of the metal oxide particles can be improved, and the dispersibility in the methyl silicone resin can be improved. can. Further, the amount of the liberated silicone compound can be reduced, and the unintentional aggregation of the metal oxide particles in the methyl silicone resin and the phenyl silicone resin can be suppressed.
  • the dispersion liquid may contain a general surface modification material, a dispersant and the like other than the above silane compound and the above silicone compound as the surface modification material.
  • the total content of the silane compound and the silicone compound with respect to the amount of the metal oxide particles is not particularly limited, and is, for example, preferably 100% by mass or more and 1000% by mass or less, and 150% by mass or more and 800% by mass or less. More preferably, it is more preferably 190% by mass or more and 600% by mass or less. If necessary, it may be 250 to 500% by mass, 300 to 400% by mass, or the like.
  • the dispersibility of the metal oxide particles can be sufficiently improved while reducing the amount of the liberated silane compound and the silicone compound.
  • the dispersion liquid according to the present embodiment contains a solvent for dispersing the metal oxide particles as a dispersion medium.
  • the solvent is not particularly limited as long as it can disperse the metal oxide particles surface-modified with the silane compound and the silicone compound and can be mixed with the silicone resin component described later, but the hydrophobic solvent may be used. preferable. Examples of such a hydrophobic solvent include aromatics, saturated hydrocarbons, unsaturated hydrocarbons and the like. These hydrophobic solvents may be used alone or in combination of two or more.
  • the hydrophobic solvent is preferably an aromatic, particularly an aromatic hydrocarbon.
  • Aromatic compounds have excellent compatibility with silicone resins for LEDs, and contribute to the improvement of the viscosity characteristics of the resulting composition and the improvement of the quality (transparency, shape, etc.) of the sealing member formed therein.
  • aromatic hydrocarbons examples include benzene, toluene, ethylbenzene, 1-phenylpropane, isopropylbenzene, n-butylbenzene, tert-butylbenzene, sec-butylbenzene, o-xylene, m-xylene, and p.
  • -Xylene, 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene and the like can be mentioned.
  • These aromatic hydrocarbons may be used alone or in combination of two or more.
  • the hydrophobic solvents are toluene, o-xylene, and m-xylene from the viewpoint of the stability of the dispersion liquid and the ease of handling in removing the hydrophobic solvent medium at the time of producing the composition described later.
  • P-xylene, and at least one selected from the group consisting of benzene are preferably used, and toluene is more preferably used.
  • the content of the solvent contained in the dispersion liquid may be appropriately adjusted so as to have a desired solid content.
  • the content of the solvent is, for example, preferably 40% by mass or more and 95% by mass or less, more preferably 50% by mass or more and 90% by mass or less, and further preferably 60% by mass or more and 80% by mass or less. preferable. This makes it easier to mix the dispersion liquid with the resin component described later, particularly the silicone resin for LEDs.
  • the dispersion liquid of this embodiment may contain a hydrophilic solvent.
  • the hydrophilic solvent can be contained in the dispersion, for example, due to the method described below.
  • examples of such a hydrophilic solvent include alcohol-based solvents, ketone-based solvents, nitrile-based solvents and the like. These hydrophilic solvents may be used alone or in combination of two or more.
  • the alcohol solvent examples include branched or linear alcohol compounds having 1 to 4 carbon atoms and ether condensates thereof. These alcohol solvents may be used alone or in combination of two or more. Further, the alcohol compound contained in the alcohol solvent may be any of a primary alcohol, a secondary alcohol and a tertiary alcohol. Further, the alcohol compound contained in the alcohol solvent may be any of a monohydric alcohol, a divalent alcohol and a trihydric alcohol. More specifically, examples of the alcohol solvent include, for example, methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butyl alcohol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, methanediol, 1,2-ethane.
  • Diol 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-butene-1
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like.
  • Examples of the nitrile-based solvent include acetonitrile and the like.
  • the hydrophilic solvent preferably contains an alcohol-based solvent from the viewpoint of having excellent affinity with both water and the hydrophobic solvent and promoting miscibility thereof.
  • the carbon number of the alcohol compound constituting the alcohol solvent is preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
  • methanol and ethanol, particularly methanol can be preferably used because the effects of the above alcohol-based solvent can be sufficiently exhibited.
  • the content of the hydrophilic solvent in the dispersion is, for example, preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, and 3% by mass. % Or less is particularly preferable. It may be 1% by mass or less, 0.5% by mass or less, or 0.1% by mass.
  • the content of the hydrophilic solvent may be 0% by mass.
  • the dispersion liquid according to this embodiment may contain components other than those described above.
  • the dispersion liquid according to the present embodiment may contain components other than those described above, such as a dispersant, a dispersion aid, an antioxidant, a flow regulator, a thickener, a pH regulator, and a preservative, if necessary. It may contain general additives and the like. Further, the dispersion liquid according to the present embodiment may contain components that may be contained due to the method described later, for example, acid, water, alcohol and the like.
  • the dispersion liquid according to the present embodiment is distinguished from the composition according to the present embodiment, which contains a resin component and can form a sealing member by curing. That is, the dispersion liquid according to the present embodiment does not contain the resin component described later to the extent that a sealing member can be formed even if it is simply cured. More specifically, the mass ratio of the resin component and the metal oxide particles in the dispersion liquid according to the present embodiment may be in the range of 0: 100 to 40:60 for the resin component: inorganic oxide particles. It is preferably in the range of 0: 100 to 20:80, more preferably.
  • the dispersion liquid according to the present embodiment is more preferably essentially free of the resin component described later, and particularly preferably completely free of the resin component described later.
  • the dispersion liquid according to the present embodiment is a dispersion liquid containing a predetermined silane compound, metal oxide particles surface-modified with a silicone compound, and a solvent, and is a dispersion liquid satisfying the above formula (1). Therefore, it can be dispersed in both a methyl silicone resin and a phenyl silicone resin. Therefore, the generation of turbidity such as cloudiness is suppressed regardless of whether the dispersion liquid according to the present embodiment is also dispersed in the methyl silicone resin or the phenyl silicone resin. Further, the change in viscosity of the silicone resin for LED containing the surface-modified metal oxide particles is also suppressed.
  • the method for producing a dispersion liquid according to the present embodiment includes a step B of mixing a first surface modifying material and metal oxide particles to obtain a mixed liquid, and a step of dispersing the metal oxide particles in the mixed liquid. It has C and a step F of adding a second surface modifying material to the mixed liquid to obtain a dispersion liquid.
  • the content of the metal oxide particles in the mixed solution is 10% by mass or more and 49% by mass or less, and the total content of the first surface modifying material and the metal oxide particles in the mixed solution is It is 65% by mass or more and 98% by mass or less.
  • the first surface modifying material is a silane compound containing a methyl group
  • the second surface modifying material contains a silane compound containing a hydrocarbon group having 2 or more carbon atoms and a silicone compound.
  • the content of the metal oxide particles in the mixed solution is, if necessary, 15% by mass or more and 45% by mass or less, 20% by mass or more and 40% by mass or less, 25% by mass or more and 35% by mass or less, and so on. It may be 30% by mass or more and 33% by mass or less.
  • the total content of the first surface modifying material and the metal oxide particles in the mixed solution may be 68% by mass or more and 97% by mass or less, 69% by mass or more and 96% by mass or less, if necessary. , 70% by mass or more and 95% by mass or less, 75% by mass or more and 90% by mass or less, or 80% by mass or more and 85% by mass or less.
  • the method for producing a dispersion liquid according to the present embodiment includes step B in which a silane compound containing a methyl group and metal oxide particles are mixed to obtain a mixed liquid, and the metal oxide particles are dispersed in the mixed liquid.
  • a silane compound containing a hydrocarbon group having 2 or more carbon atoms and a silicone compound are added to the dispersion liquid. It has a step F for obtaining (third dispersion liquid).
  • the method for producing the dispersion liquid according to the present embodiment is also a method for surface modification of metal oxide particles. Therefore, it can be paraphrased as follows. That is, the method for surface-modifying the metal oxide particles according to the present embodiment includes step B in which the first surface-modifying material and the metal oxide particles are mixed to obtain a mixed liquid, and the metal oxide in the mixed liquid. It has a step C of dispersing particles and a step F of adding a second surface modifying material to the mixed solution.
  • the content of the metal oxide particles in the mixed solution is 10% by mass or more and 49% by mass or less, and the total content of the first surface modifying material and the metal oxide particles in the mixed solution is It is 65% by mass or more and 98% by mass or less.
  • the first surface modifying material is a silane compound containing a methyl group
  • the second surface modifying material contains a silane compound containing a hydrocarbon group having 2 or more carbon atoms and a silicone compound.
  • the total content of the silane compound containing a methyl group, the silane compound containing a hydrocarbon group having 2 or more carbon atoms, and the metal oxide particles can also be evaluated by the solid content. Further, the total content of the silane compound containing a methyl group, the silane compound containing a hydrocarbon group having 2 or more carbon atoms, the silicone compound, and the metal oxide particles can also be evaluated by the solid content. can. Further, the total content of the silane compound containing the methyl group, the silane compound containing the hydrocarbon group having 2 or more carbon atoms, and the metal oxide particles includes the alcohol generated by the hydrolysis of the silane compound described later. Not included.
  • the total content of the silane compound containing the methyl group, the silane compound containing the hydrocarbon group having 2 or more carbon atoms, and the metal oxide particles is the silane compound, the hydrolyzed silane compound, and the like. It means the total content with the metal oxide particles.
  • the total content is a value including the content of the silane compound containing the methyl group, the silane compound containing the hydrocarbon group having 2 or more carbon atoms, and the metal oxide particles attached to the silicone compound. Needless to say.
  • a silane compound containing a methyl group or a silane compound containing a hydrocarbon group having 2 or more carbon atoms is mixed with water. It has a step A (hydrolysis step) for obtaining a hydrolyzed solution containing a silane compound containing a hydrolyzed methyl group or a hydrolyzed solution containing a hydrolyzed silane compound containing a hydrocarbon group having 2 or more carbon atoms. May be good.
  • each step will be described in detail.
  • the step of hydrolyzing the silane compound containing a methyl group will be described as a first hydrolysis step, and the step of hydrolyzing a silane compound containing a hydrocarbon group having 2 or more carbon atoms will be described as a second hydrolysis step. ..
  • Step A (first hydrolysis step)
  • a silane compound containing a methyl group (first silane compound) and water are mixed to obtain a hydrolyzed solution containing a silane compound containing a hydrolyzed methyl group.
  • a mixed solution in which at least a part of the silane compound containing a methyl group is hydrolyzed in advance in this way the silane compound containing a methyl group easily adheres to the metal oxide particles in the dispersion step C described later.
  • the silane compound containing a methyl group does not contain a hydrocarbon group having 2 or more carbon atoms.
  • the content of the silane compound containing a methyl group in the hydrolyzed solution is not particularly limited and may be the balance of other components in the hydrolyzed solution, but is, for example, 60% by mass or more and 99% by mass or less. It is more preferable, it is more preferably 70% by mass or more and 97% by mass or less, and further preferably 80% by mass or more and 95% by mass or less.
  • a surface modification material other than the silane compound containing a methyl group may be contained in the hydrolysis solution.
  • the hydrolyzed solution contains water.
  • Water serves as a substrate for the hydrolysis reaction of surface modifying materials such as silane compounds containing a methyl group.
  • the content of water in the hydrolyzed solution is not particularly limited, and can be appropriately set, for example, according to the amount of the silane compound containing a methyl group.
  • the amount of water added to the hydrolyzed solution is preferably 0.5 mol or more and 5 mol or less, more preferably 0.6 mol or more and 3 mol or less, with respect to 1 mol of the silane compound containing a methyl group. It is more preferably 0.7 mol or more and 2 mol or less. This makes it possible to sufficiently proceed the hydrolysis reaction of the silane compound containing a methyl group and more reliably prevent the aggregation of the inorganic oxide particles in the dispersion liquid produced by the excess amount of water.
  • the content of water in the hydrolyzed solution is, for example, preferably 1% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 15% by mass or less, and 1% by mass or more and 10% by mass. % Or less is more preferable. If necessary, it may be 2% by mass or more and 8% by mass or less, 3% by mass or more and 7% by mass or less, or 4% by mass or more and 6% by mass or less.
  • a catalyst may be added to the hydrolyzed solution together with a silane compound containing a methyl group and water.
  • a catalyst for example, an acid or a base can be used.
  • the acid catalyzes the hydrolysis reaction of the silane compound containing a methyl group in the hydrolysis solution.
  • the base catalyzes a condensation reaction between a silane compound containing a hydrolyzed methyl group and a functional group on the surface of the metal oxide particles, for example, a hydroxyl group or a silanol group.
  • the silane compound containing a methyl group easily adheres to the metal oxide particles in the dispersion step (step C) described later, and the dispersion stability of the metal oxide particles is improved.
  • the above-mentioned “acid” refers to an acid based on the definition of so-called Bronsted-Lori, and refers to a substance that gives a proton in the hydrolysis reaction of a surface modification material such as a silane compound containing a methyl group.
  • base refers to a base based on the definition of so-called Bronsted-Lorry, and here, refers to a substance that accepts protons in a hydrolysis reaction such as a silane compound containing a methyl group and a subsequent condensation reaction. ..
  • the acid is not particularly limited as long as it can supply protons in the hydrolysis reaction of a silane compound containing a methyl group, and is, for example, hydrochloric acid, hydrobromic acid, hydroiodide, sulfuric acid, nitric acid, boric acid, and phosphoric acid.
  • examples thereof include inorganic acids such as acetic acid, citric acid, and organic acids such as formic acid. These organic acids may be used alone or in combination of two or more.
  • the base is not particularly limited as long as it can accept protons in the hydrolysis reaction of a silane compound containing a methyl group, and examples thereof include sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, ammonia, and amines. Can be mentioned. One of these bases may be used alone, or two or more of these bases may be used in combination.
  • an acid as the catalyst.
  • an inorganic acid is preferable, and hydrochloric acid is more preferable, from the viewpoint of acidity.
  • the content of the catalyst in the hydrolyzed solution is not particularly limited, but is preferably 10 ppm or more and 1000 ppm or less, more preferably 20 ppm or more and 800 ppm or less, and further preferably 30 ppm or more and 600 ppm or less. This makes it possible to sufficiently promote the hydrolysis of the silane compound containing a methyl group while suppressing the side reaction of the silane compound containing a methyl group.
  • the hydrolyzed solution may contain a hydrophilic solvent.
  • the hydrophilic solvent promotes the mixing of water and the silane compound in the hydrolyzed solution, and further promotes the hydrolysis reaction of these silane compounds.
  • hydrophilic solvent examples include various hydrophilic solvents that can be contained in the dispersion liquid described later.
  • the hydrophilic solvent preferably contains at least one selected from the group consisting of alcohol-based solvents, and more preferably, from the viewpoint of having excellent affinity with both water and hydrophobic solvents and promoting their miscibility. It preferably contains at least one of methanol and ethanol.
  • the content of the hydrophilic solvent in the hydrolyzed solution is not particularly limited, but is preferably 60% by mass or less, more preferably 50% by mass or less, for example. This makes it possible to sufficiently increase the content of the silane compound and water in the hydrolyzed solution.
  • the content of the hydrophilic solvent in the hydrolyzed solution is, for example, preferably 10% by mass or more, and more preferably 15% by mass or more. As a result, the mixing of the silane compound containing a methyl group with water can be further promoted, and as a result, the hydrolysis reaction of the silane compound containing a methyl group can be efficiently promoted.
  • the hydrolysis solution may not contain a hydrophilic solvent other than the compound derived from the hydrolysis reaction.
  • the hydrolysis step after preparing the hydrolyzed solution, it may be held at a constant temperature for a predetermined time. Thereby, the hydrolysis of the silane compound can be further promoted.
  • the temperature of the hydrolyzed solution is not particularly limited and can be appropriately changed depending on the type of the silane compound, but for example, it is preferably 5 ° C. or higher and 65 ° C. or lower, and 30 ° C. or higher and 60 ° C. or lower. More preferred.
  • the holding time is not particularly limited, but is preferably 10 minutes or more and 180 minutes or less, and more preferably 30 minutes or more and 120 minutes or less.
  • the hydrolyzed liquid may be appropriately stirred.
  • Step A (second hydrolysis step)
  • a silane compound containing a hydrocarbon group having 2 or more carbon atoms (second silane compound) and water are mixed to obtain a hydrolyzed hydrocarbon group having 2 or more carbon atoms.
  • a hydrolyzate containing the containing silane compound is obtained.
  • the silane compound containing a hydrocarbon group having 2 or more carbon atoms may or may not have a methyl group.
  • the silane compound containing a methyl group in the first hydrolysis step can be replaced with a silane compound containing a hydrocarbon group having 2 or more carbon atoms in the same manner.
  • Step B mixing step: primary modification
  • a silane compound containing a methyl group (first silane compound) and metal oxide particles are mixed to obtain a mixed solution.
  • the silane compound containing a methyl group may be a compound treated in the first hydrolysis step.
  • water or a catalyst may be mixed in addition to the silane compound containing a methyl group and the metal oxide particles.
  • the content of the metal oxide particles in the mixed solution is 10% by mass or more and 49% by mass or less, and the total content of the silane compound containing a methyl group and the inorganic oxide particles is 65% by mass or more and 98% by mass or less.
  • Mixing is done as follows.
  • the total content of the silane compound containing a methyl group and the metal oxide particles in the mixed solution is very large.
  • the dispersion medium such as an organic solvent and water, which has been conventionally considered to be indispensable, is not contained in the mixed solution or is mixed only in a very small amount. Alternatively, it contains only a small amount of unavoidable alcohol compounds due to hydrolysis. Even in such a case, the metal oxide particles can be uniformly dispersed in the mixed solution by going through the dispersion step, and the silane compound containing a methyl group can be uniformly dispersed in the metal oxide particles. Adhesion (surface modification) is achieved.
  • metal oxide particles are surface-modified in a liquid phase with a surface-modifying material such as a silane compound, not only the metal oxide particles and the surface-modifying material but also a dispersion medium are mixed to prepare a mixed solution. It is common to obtain and disperse the mixed solution using a disperser.
  • the metal oxide particles surface-modified by such a method cannot be sufficiently dispersed in the methyl-based silicone resin and aggregate when mixed with the methyl-based silicone resin, and as a result, the methyl-based silicone is aggregated. There is a problem that turbidity such as white turbidity occurs in the resin. In such a case, the added metal oxide particles do not sufficiently exhibit the desired performance.
  • the methyl group-containing silane compound used in the present invention is a small molecule and has a relatively low viscosity. Further, since it is hydrolyzed in the above-mentioned hydrolysis step, the adhesion to the metal oxide particles is good. Therefore, the silane compound containing a methyl group is extremely suitable for dispersing the metal oxide particles in the high-concentration silane compound.
  • the total content of the silane compound containing a methyl group and the metal oxide particles is less than 65% by mass, the amount of components other than the above two components, for example, the dispersion medium becomes too large. Therefore, in the dispersion step (step C) described later, there is a tendency that the silane compound containing a methyl group cannot be sufficiently adhered to the surface of the metal oxide particles. As a result, many hydroxyl groups remain on the surface of the metal oxide particles, and when the obtained dispersion is mixed with the hydrophobic material, the metal oxide particles aggregate and the hydrophobic material becomes turbid. ..
  • the total content of the silane compound containing a methyl group and the metal oxide particles may be 65% by mass or more, preferably 70% by mass or more, and more preferably 75% by mass or more.
  • the total content of the silane compound containing a methyl group and the metal oxide particles exceeds 98% by mass, the viscosity of the mixed solution becomes too high, and methyl is obtained in the dispersion step (step C) described later.
  • the silane compound containing a group cannot be sufficiently adhered to the surface of the metal oxide particles.
  • the total content of the silane compound containing a methyl group and the metal oxide particles may be 98% by mass or less, preferably 97% by mass or less, and more preferably 95% by mass or less.
  • the content of the metal oxide particles in the mixed liquid is 10% by mass or more and 49% by mass or less.
  • the amount of the silane compound containing a methyl group with respect to the metal oxide particles can be set within an appropriate range, and the silane compound containing a methyl group can be uniformly adhered to the surface of the metal oxide particles. It is possible to suppress an increase in the viscosity of the mixed solution.
  • the content of the metal oxide particles in the mixed solution is less than 10% by mass, the amount of the silane compound containing a methyl group is excessive with respect to the metal oxide particles, and the resulting dispersion is excessive.
  • the silane compound containing the methyl group of the metal oxide particles induces aggregation of the metal oxide particles.
  • the content of the metal oxide particles in the mixed solution is preferably 20% by mass or more, more preferably 30% by mass or more.
  • the content of the metal oxide particles exceeds 49% by mass, the amount of the silane compound containing a methyl group is insufficient with respect to the metal oxide particles, and the metal oxide particles contain a sufficient amount of methyl groups. The compound does not adhere. Further, as a result of the content of the metal oxide particles becoming too large, the viscosity of the mixed solution becomes too large, and the metal oxide particles cannot be sufficiently dispersed in the dispersion step (step C) described later.
  • the content of the metal oxide particles in the mixed solution is preferably 45% by mass or less, more preferably 40% by mass or less.
  • the content of the silane compound containing a methyl group with respect to the content of the metal oxide particles in the mixed solution is not particularly limited, but is preferably 100% by mass or more and 800% by mass or less, and is preferably 140% by mass or more and 600% by mass or more. % Or less, more preferably 180% by mass or more and 400% by mass or less. If necessary, it may be 200% by mass or more and 300% by mass or less.
  • the amount of the silane compound containing a methyl group with respect to the metal oxide particles can be set within an appropriate range, and the silane compound containing a methyl group can be uniformly adhered to the surface of the metal oxide particles.
  • an organic solvent may be further mixed with the mixed liquid.
  • the organic solvent By mixing the organic solvent with the mixed solution, it is possible to control the reactivity of the silane compound, and it is possible to control the degree of adhesion of the silane compound to the surface of the metal oxide particles. Further, the organic solvent makes it possible to adjust the viscosity of the mixed solution.
  • organic solvent examples include the hydrophobic solvent and the hydrophilic solvent mentioned as the dispersion medium of the dispersion liquid according to the present embodiment described above. These organic solvents may be used alone or in combination of two or more.
  • the content of the organic solvent in the mixed solution is not particularly limited as long as it satisfies the content of the above-mentioned metal oxide particles and the silane compound containing a methyl group. Needless to say, the mixed solution does not have to contain an organic solvent.
  • the metal oxide particles are dispersed in the mixed liquid obtained in the mixing step to obtain a first dispersion liquid in which the metal oxide particles are dispersed.
  • the metal oxide particles are dispersed in a silane compound containing a hydrolyzed high concentration of methyl groups. Therefore, in the obtained first dispersion liquid, the silane compound containing a methyl group is relatively uniformly attached to the surface of the metal oxide particles, and the metal oxide particles are relatively uniformly dispersed. Obtain the dispersion liquid of 1.
  • Dispersion of metal oxide particles can be performed by a known disperser.
  • a disperser for example, a bead mill, a ball mill, a homogenizer, a disper, a stirrer and the like are preferably used.
  • the dispersion step excessive energy is not applied but the minimum necessary energy is applied so that the particle size (dispersed particle size) of the metal oxide particles in the dispersion liquid becomes almost uniform, and the mixture is mixed. It is preferable to disperse the metal oxide particles in the liquid.
  • a solvent addition step D (first addition step) in which a hydrophobic solvent is added to the first dispersion liquid to obtain a second dispersion liquid.
  • a hydrophobic solvent include the hydrophobic solvents mentioned as the dispersion medium of the dispersion liquid according to the present embodiment described above. These hydrophobic solvents may be used alone or in combination of two or more.
  • Step D (first addition step)
  • a hydrophobic solvent is added to the first dispersion to obtain a second dispersion adjusted to a desired solid content (concentration). Since the first dispersion liquid obtained in the dispersion step C has a high solid content (concentration), it has a high viscosity and poor handleability. However, when a hydrophobic solvent is added to the obtained first dispersion in order to reduce the solid content, the particles are aggregated due to the low hydrophobicity of the particle surface, and a uniform dispersion cannot be obtained. ..
  • the present inventors have also found that the obtained first dispersion can be heated and gradually added with a hydrophobic solvent to prepare a dispersion having a low solid content.
  • the mechanism is presumed as follows.
  • the polymerization of the silane compound containing a methyl group attached to the metal oxide particles proceeds, and the hydrophobicity of the particle surface is improved. Even if the polymerization reaction proceeds too much, the metal oxide particles aggregate. Therefore, by gradually adding the hydrophobic solvent to the first dispersion liquid in which the polymerization reaction is in progress, the surface is gradually made hydrophobic while suppressing the excessive polymerization reaction. As a result, the hydrophobic solvent can be gradually mixed with the first dispersion liquid.
  • an amount of the hydrophobic solvent that does not agglomerate the metal oxide particles can be added, and the polymerization reaction of the silane compound containing a methyl group can be allowed to proceed to the extent that it can be compatible with the added amount of the hydrophobic solvent. This makes it possible to obtain a dispersion liquid adjusted to a desired solid content.
  • the hydrophobic solvent may be added gradually so that the metal oxide particles do not aggregate. Therefore, the solvent may be added after heating the first dispersion liquid, or the first dispersion liquid may be heated after adding the hydrophobic solvent, and the heating and hydrophobicity of the first dispersion liquid may be performed.
  • the solvent may be added at the same time. That is, the first addition step may be the step d1 in which the hydrophobic solvent is added at a rate at which the metal oxide particles do not aggregate after heating the first dispersion.
  • the step d2 may be a step d2 in which the hydrophobic solvent is added at a rate at which the above metal oxide particles do not agglomerate while heating the dispersion, or the hydrophobic solvent is added at a rate at which the above metal oxide particles do not agglomerate.
  • the step d3 may be performed in which the above-mentioned first dispersion is heated.
  • the speed at which the metal oxide particles do not aggregate is not particularly limited.
  • the hydrophobic solvent may be continuously added at a rate such that the solid content becomes low in the range of 3% by mass or more and 20% by mass or less in 1 hour.
  • the amount of the hydrophobic solvent added may be appropriately adjusted so that the amount of the hydrophobic solvent added is large when the heating temperature is high and the amount of the hydrophobic solvent is small when the heating temperature is low.
  • the hydrophobic solvent may be added stepwise every 30 minutes, every 1 hour, or every 2 hours so that the solid content is low in the range of 3% by mass or more and 20% by mass or less.
  • the heating temperature is high, the amount of the hydrophobic solvent added at one time is large, and when the heating temperature is low, the amount of the hydrophobic solvent added at one time is small. Should be adjusted as appropriate.
  • the heating temperature is not particularly limited as long as the polymerization reaction of the silane compound containing a methyl group proceeds.
  • the heating temperature is preferably, for example, 35 ° C. or higher and 80 ° C. or lower. When the heating temperature is 35 ° C. or higher, the polymerization reaction of the silane compound containing a methyl group can proceed. On the other hand, when the heating temperature is 80 ° C. or lower, aggregation of metal oxide particles due to a rapid reaction of the silane compound containing a methyl group can be suppressed.
  • the heating time may be appropriately carried out until the adjustment of the solid content is completed, and is preferably 4 hours or more and 12 hours or less, for example.
  • the heating time is 4 hours or more, the polymerization reaction of the silane compound containing a methyl group proceeds, and it becomes possible to mix with the solvent.
  • the heating time is 12 hours or less, it is possible to suppress the aggregation of the metal oxide particles due to the excessive progress of the polymerization reaction of the silane compound containing a methyl group.
  • the hydrophobic solvent is at least selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene and benzene from the viewpoint of ease of handling in removing the dispersion medium during the production of the composition described later.
  • One is preferably used, and toluene is more preferably used.
  • the content of the hydrophobic solvent contained in the final second dispersion liquid may be appropriately adjusted so as to have a desired solid content.
  • the content of the hydrophobic solvent is, for example, preferably 40% by mass or more and 95% by mass or less, more preferably 50% by mass or more and 90% by mass or less, and 60% by mass or more and 80% by mass or less. Is even more preferable.
  • the first addition step gives a second dispersion adjusted to the desired solid content. By using the second dispersion liquid, the handleability of the dispersion liquid in the following steps is improved.
  • Step E (removal step)
  • a step E for removing the alcohol generated by hydrolysis may be provided after the step D. It is presumed that the production efficiency of the composition described below is improved by providing the removal step.
  • the method of removal is not particularly limited, but an evaporator can be used, for example.
  • the removal step may be performed until the alcohol is completely removed, or about 5% by mass may remain.
  • Step F secondary modification, or secondary modification and tertiary modification
  • a silane compound (second silane compound) containing a hydrocarbon group having 2 or more carbon atoms and a silicone compound are added to the second dispersion liquid to obtain a third dispersion liquid.
  • a hydrolyzed solution of a silane compound containing a hydrocarbon group having 2 or more carbon atoms is obtained by the above-mentioned hydrolysis step (second hydrolysis step)
  • the second dispersion solution and the hydrolyzed solution having 2 carbon atoms are obtained.
  • a third dispersion can be obtained by mixing the hydrolyzed solution of the silane compound containing the above hydrocarbon group with the silicone compound.
  • the silane compound containing a methyl group is relatively uniformly adhered to the surface of the metal oxide particles. Therefore, in the third dispersion, the silane compound and the silicone compound newly added in the second addition step are attached to the surface of the metal oxide particles via the silane compound containing the above-mentioned methyl group which has already been attached. It is presumed that they are attached relatively uniformly.
  • a mixed liquid (third dispersion liquid) in which a predetermined silane compound and a silicone compound are mixed with the second dispersion liquid may be held at a predetermined temperature for a predetermined time.
  • the silane compound and the silicone compound may be added at the same time, the silicone compound may be added after the silane compound is added, or the silane compound may be added after the silicone compound is added. From the viewpoint of achieving excellent dispersibility, it is preferable to add the silicone compound after adding the silane compound.
  • the holding temperature is not particularly limited and can be appropriately changed depending on the type of the silane compound, but for example, it is preferably 40 ° C. or higher and 150 ° C. or lower, and more preferably 50 ° C. or higher and 140 ° C. or lower. preferable.
  • the holding time is not particularly limited, and is preferably 1 hour or more and 24 hours or less, and more preferably 2 hours or more and 20 hours or less.
  • the second dispersion may be appropriately stirred.
  • surface modification with one or more kinds of the above silane compounds may be performed once or a plurality of times.
  • different types of silane compounds may be used one or more times, or the same silane compound may be used for surface modification multiple times.
  • surface modification with one or more kinds of the above-mentioned silicone compounds may be performed once or a plurality of times.
  • different types of silicone compounds may be used more than once, or the same silicone compound may be surface-modified multiple times.
  • the above solvent may be added to adjust the solid content of the third dispersion liquid.
  • the amount of the silane compound added in the second addition step is, for example, 100% by mass or more with respect to the amount of the metal oxide particles. It may be added so as to be 700% by mass or less. Further, the molar ratio of the methyl group (methyl group / hydrocarbon group having 2 or more carbon atoms) to the hydrocarbon group having 2 or more carbon atoms in the surface-modified metal oxide particles is 0.01 or more and 10 or less. ,Added.
  • the silane compound can be densely adhered to the surface of the metal oxide particles, the dispersion stability of the metal oxide particles is improved, and the dispersibility in the methyl silicone resin and the phenyl silicone resin is improved. Can be made to.
  • the silicone compound added in the second addition step can be added to the second dispersion liquid so as to be, for example, preferably 10% by mass or more and 500% by mass or less with respect to the metal oxide particles.
  • the added silicone compound contains at least one of a methyl group and a hydrocarbon group having 2 or more carbon atoms
  • the number of the methyl group / the hydrocarbon group having 2 or more carbon atoms is 0.01 or more and 10 or less.
  • a sufficient amount of the silicone compound can be adhered to the surface of the metal oxide particles, the dispersion stability of the metal oxide particles can be improved, and the dispersibility in the silicone resin for LED can be improved. can. Further, the amount of the liberated silicone compound can be reduced, and the unintentional aggregation of the metal oxide particles in the silicone resin for LED can be suppressed.
  • the surface of the metal oxide particles is a hydrocarbon having a methyl group and two or more carbon atoms. It is densely and sufficiently modified by the silane compound containing a group, and the silicone compound is present near the surface of the metal oxide particles. Further, in the method for surface modification of metal oxide particles according to the present embodiment, a silane compound containing a methyl group and a hydrocarbon group having 2 or more carbon atoms is densely and sufficiently modified on the surface of the metal oxide particles, and further. The silicone compound can be present near the surface of the metal oxide particles.
  • the surface-modified metal oxide particles thus surface-modified have excellent compatibility with both methyl-based silicone resins for LEDs and phenyl-based silicone resins, and are relatively uniformly dispersed in both resins. can do. Therefore, regardless of whether it is a methyl-based silicone resin or a phenyl-based silicone resin, when the surface-modified metal oxide particles are dispersed, the generation of turbidity such as cloudiness is suppressed. Further, the change in viscosity of the silicone resin for LED containing the surface-modified metal oxide particles is also suppressed.
  • the composition according to this embodiment contains a dispersion liquid containing the above-mentioned surface-modified metal oxide particles and a silicone resin component. That is, the composition according to this embodiment is a mixture of the above-mentioned dispersion liquid and the silicone resin component. Therefore, in the composition according to the present embodiment, in addition to the above-mentioned methyl group or the metal oxide particles and the solvent surface-modified with the silane compound containing the methyl group and the hydrocarbon group having 2 or more carbon atoms, the silicone resin component is added. including.
  • the silicone resin component means that the silicone resin is in a state of having fluidity before being cured.
  • composition according to this embodiment is cured as described later and used as a sealing member for a light emitting element.
  • the composition according to the present embodiment contains the metal oxide particles that contribute to the improvement of the refractive index and the transparency described above, thereby improving the brightness of the light of the light emitting device when used for the sealing member. can.
  • the above-mentioned silane compound and silicone compound in which the molar ratios of the methyl group and the hydrocarbon group having 2 or more carbon atoms are adjusted to a predetermined range satisfy the above formula (1). It contains surface-modified metal oxide particles sufficiently attached to the metal oxide particles. Therefore, even when the silicone resin component is contained or after the silicone resin component is cured, the aggregation of the metal oxide particles is suppressed, and the decrease in the transparency of the composition is suppressed. Therefore, when the composition according to the present embodiment is used for the sealing member, the brightness of the light of the light emitting device can be improved.
  • the content of the metal oxide particles in the composition of the present embodiment is preferably 5% by mass or more and 50% by mass or less, preferably 5% by mass or more and 40% by mass or less, from the viewpoint of obtaining a highly transparent composition. It is more preferably 10% by mass or more and 35% by mass or less.
  • the content of the silane compound containing a methyl group and a hydrocarbon group having 2 or more carbon atoms and the silicone compound can correspond to the content in the surface-modified metal oxide particles according to the present embodiment.
  • the silicone resin component is the main component in the composition according to this embodiment.
  • the silicone resin component is cured to seal the light emitting element, so that deterioration factors from the external environment such as moisture and oxygen reach the light emitting element. To prevent that.
  • the cured product obtained from the silicone resin component is basically transparent and can transmit the light emitted from the light emitting element.
  • the silicone resin component is not particularly limited as long as it is a silicone resin component for LEDs for sealing the LED.
  • the silicone resin component preferably contains a methyl group and a phenyl group.
  • the silicone resin component may be a methyl-based silicone resin component or a phenyl-based silicone resin component.
  • the methyl-based silicone resin component means a silicone resin component containing a large amount of methyl groups.
  • the methyl-based silicone resin component may be a methyl group-containing silicone resin component, a methylphenyl silicone resin component, or a dimethyl silicone resin component. From the viewpoint of high versatility, the methylphenyl silicone resin component is preferable.
  • the phenyl-based silicone resin component means a silicone resin component containing a large amount of phenyl groups.
  • the phenyl-based silicone resin component may be a phenyl group-containing silicone resin component, a methylphenyl silicone resin component, or a diphenyl silicone resin. From the viewpoint of high versatility, the methylphenyl silicone resin component is preferable.
  • the content of the silicone resin component in the composition according to the present embodiment can be the balance of other components, but is preferably 10% by mass or more and 70% by mass or less, for example.
  • the content of the silicone resin component may be 20% by mass or more and 60% by mass or less, 30% by mass or more and 50% by mass or less, or 35% by mass or more and 45% by mass or less.
  • the mass ratio of the silicone resin component to the surface-modified metal oxide particles in the composition according to the present embodiment is preferably in the range of 50:50 to 90:10 for the silicone resin: surface-modified metal oxide particles. , 60:40 to 80:20, more preferably.
  • the composition according to the present embodiment may contain a solvent derived from the dispersion liquid according to the present embodiment, or may be removed. That is, the solvent derived from the dispersion liquid may be completely removed, 1% by mass or more and 10% by mass or less may remain in the composition, or 2% by mass or more and 5% by mass or less may remain. good.
  • the composition according to the present embodiment may contain phosphor particles as long as the object of the present invention is not impaired.
  • the phosphor particles absorb the light of a specific wavelength emitted from the light emitting element and emit the light of a predetermined wavelength. That is, the phosphor particles can convert the wavelength of light and adjust the color tone.
  • the phosphor particles are not particularly limited as long as they can be used in a light emitting device as described later, and can be appropriately selected and used so that the light emitting color of the light emitting device becomes a desired color.
  • the content of the phosphor particles in the composition of the present embodiment can be appropriately adjusted and used so as to obtain a desired brightness.
  • composition according to the present embodiment contains commonly used additives such as preservatives, polymerization initiators, polymerization inhibitors, curing catalysts, photodiffusing agents, etc., as long as the object of the present invention is not impaired. It may be contained.
  • the light diffusing agent it is preferable to use silica particles having an average particle diameter of 1 ⁇ m or more and 30 ⁇ m or less.
  • the above-mentioned silane compound and silicone compound containing a methyl group and a hydrocarbon group having 2 or more carbon atoms in a predetermined ratio are sufficiently formed into metal oxide particles so as to satisfy the above formula (1).
  • the method for producing a composition according to the present embodiment includes a step H of adding a silicone resin component to the third dispersion obtained by the above-mentioned method for producing surface-modified metal oxide particles to obtain a composition.
  • Step G (third addition step)
  • the silicone resin component is added to the third dispersion liquid to adjust the composition to a desired solid content (concentration).
  • the content of the silicone resin component contained in the final composition may be appropriately adjusted so as to have a desired solid content.
  • the content of the silicone resin component is preferably, for example, 10% by mass or more and 70% by mass or less.
  • Step H (removal step)
  • a step H for removing the solvent contained in the third dispersion liquid may be provided.
  • the method of removal is not particularly limited, but an evaporator can be used, for example.
  • the removal step may be performed until the solvent is completely removed, or about 5% by mass may remain.
  • the sealing member according to the present embodiment is a cured product of the composition according to the present embodiment.
  • the sealing member according to the present embodiment is usually used as a sealing member or a part thereof arranged on the light emitting element.
  • the thickness and shape of the sealing member according to the present embodiment can be appropriately adjusted according to desired applications and characteristics, and are not particularly limited.
  • the sealing member according to the present embodiment can be manufactured by curing the composition according to the present embodiment as described above.
  • the curing method of the composition can be selected according to the characteristics of the silicone resin in the composition according to the present embodiment, and examples thereof include thermosetting and electron beam curing. More specifically, the sealing member of the present embodiment can be obtained by curing the silicone resin in the composition of the present embodiment by an addition reaction or a polymerization reaction.
  • the average dispersed particle diameter of the metal oxide particles in the sealing member is preferably 10 nm or more and 300 nm or less, more preferably 20 nm or more and 250 nm or less, and further preferably 30 nm or more and 200 nm or less.
  • the average dispersed particle diameter of the metal oxide particles in the sealing member is the average particle diameter (median diameter) based on the number distribution measured by the transmission electron microscope observation (TEM) of the sealing member.
  • the average dispersed particle size of the metal oxide particles in the sealing member according to the present embodiment is a value measured and calculated based on the dispersed particle size of the metal oxide particles in the sealing member.
  • the average dispersed particle size is measured and calculated based on the diameter of the dispersed metal oxide particles regardless of whether the metal oxide particles are dispersed in the primary particles or the secondary particles. ..
  • the average particle size of the metal oxide particles in the sealing member may be measured as the average particle size of the metal oxide particles surface-modified with the silane compound and the silicone compound.
  • the metal oxide particles surface-modified to the silane compound and the silicone compound and the metal oxide particles not surface-modified to the silane compound and the silicone compound may be present. Therefore, the average particle size of the metal oxide particles in the sealing member is usually measured as a value in a mixed state thereof.
  • the sealing member according to the present embodiment is a cured product of the composition according to the present embodiment, it is excellent in refractive index and transparency. Therefore, according to the present embodiment, it is possible to obtain a sealing member having excellent extraction efficiency that improves the brightness of the light of the light emitting device.
  • the light emitting device according to the present embodiment includes the above-mentioned sealing member and a light emitting element sealed in the sealing member.
  • the light emitting element examples include a light emitting diode (LED) and an organic light emitting diode (OLED).
  • the sealing member according to this embodiment is suitable for sealing a light emitting diode.
  • the light emitting device is a light emitting diode on a chip, that is, an LED chip, and the light emitting device is an LED package.
  • 1 to 4 are schematic views (cross-sectional views) showing an example of a light emitting device according to an embodiment of the present invention, respectively.
  • the size of each member in the figure is appropriately emphasized for ease of explanation, and does not indicate the actual size or the ratio between the members.
  • components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
  • the light emitting device (LED package) 1A shown in FIG. 1 covers a substrate 2 having a recess 21, a light emitting element (LED chip) 3 arranged on the bottom surface of the recess 21 of the substrate 2, and a light emitting element 3 in the recess 21. It is provided with a sealing member 4A for sealing as described above.
  • the sealing member 4A is composed of the sealing member according to the present embodiment described above. Therefore, the metal oxide particles derived from the composition according to the present embodiment described above are dispersed in the sealing member 4A, and as a result, the light extraction efficiency in the light emitting device 1A is improved. Further, the fluorescent substance particles 5 are dispersed in the sealing member 4A.
  • the phosphor particles 5 convert the wavelength of at least a part of the light emitted from the light emitting element 3.
  • the light emitting device 1B shown in FIG. 2 is different from the light emitting device 1A in that the sealing member 4B has two layers. That is, the sealing member 4B has a first layer 41B that directly covers the light emitting element 3, and a second layer 43B that covers the first layer 41B. Both the first layer 41B and the second layer 43B are sealing members according to the present embodiment. In the first layer 41B, the fluorophore particles 5 are dispersed. On the other hand, the second layer 43B does not contain the fluorescent particle 5. In the light emitting device 1B, the metal oxide particles derived from the composition according to the present embodiment described above are dispersed in the first layer 41B and the second layer 43B constituting the sealing member 4B, whereby light is emitted. Brightness is improving.
  • the light emitting device 1C shown in FIG. 3 is also different from the light emitting device 1A in that the configuration of the sealing member 4C is different from that of the sealing member 4A.
  • the sealing member 4C has a first layer 41C that directly covers the light emitting element 3 and a second layer 43C that covers the first layer 41C.
  • the first layer 41C is not the sealing member according to the present embodiment, but the above-mentioned resin sealing member containing no metal oxide particles, and is made of a resin or the like that can be used for the sealing member. ..
  • the fluorescent substance particles 5 are dispersed.
  • the second layer 43C is a sealing member according to the present embodiment.
  • the metal oxide particles derived from the composition according to the present embodiment described above are dispersed in the second layer 43C constituting the sealing member 4C, so that the light extraction efficiency is improved. ing.
  • the sealing member 4D further covers the first layer 41D that directly covers the light emitting element 3, the second layer 43D that covers the first layer 41D, and the second layer 43D. It has a third layer 45D.
  • the first layer 41D and the second layer 43D are not the sealing members according to the present embodiment, but the above-mentioned resin sealing members containing no metal oxide particles, and can be used for the sealing members. It is composed of such things.
  • the fluorescent substance particles 5 are dispersed.
  • the third layer 45D is a sealing member according to the present embodiment. In the light emitting device 1D, the brightness of light is improved by dispersing the metal oxide particles derived from the composition according to the present embodiment described above in the third layer 45D constituting the sealing member 4D. ing.
  • the light emitting device according to the present embodiment is not limited to the illustrated embodiment.
  • the light emitting device according to the present embodiment does not have to contain fluorescent particles in the sealing member.
  • the sealing member according to the present embodiment can exist at an arbitrary position in the sealing member.
  • the light emitting element is sealed by the sealing member of the present embodiment, so that the brightness of the light is improved.
  • the present invention also relates to a method for manufacturing a light emitting device having a step of sealing a light emitting element using the composition according to the present embodiment.
  • the production method may include a step of mixing the dispersion liquid and the resin component according to the present embodiment to obtain the composition.
  • the light emitting element can be sealed by applying the composition according to the present embodiment onto the light emitting element by, for example, a dispenser or the like, and then curing the composition.
  • the light emitting device according to the present embodiment as described above can be used for, for example, a lighting fixture and a display device. Therefore, in one aspect, the present invention relates to a luminaire or a display device provided with a light emitting device according to the present embodiment.
  • the lighting equipment include general lighting devices such as indoor lights and outdoor lights, and lighting of switch portions of electronic devices such as mobile phones and OA devices. Since the lighting fixture according to the present embodiment includes the light emitting device according to the present embodiment, the luminous flux emitted is larger than that in the conventional case even if the same light emitting element is used, and the surrounding environment can be made brighter. can.
  • Examples of the display device include a mobile phone, a personal digital assistant, an electronic dictionary, a digital camera, a computer, a television, and peripheral devices thereof. Since the display device according to the present embodiment includes the light emitting device according to the present embodiment, the luminous flux emitted is larger than that in the conventional case even if the same light emitting element is used, and for example, it is clearer and has higher brightness. Can be displayed.
  • Example 1 (Preparation of dispersion) (1) First hydrolysis step As the first silane compound, 90.78 parts by mass of methyltrimethoxysilane (product name: KBM-13, manufactured by Shinetsu Kogyo Kagaku Co., Ltd.), 9.21 parts by mass of water, and hydrochloric acid. (1N) 0.01 part by mass was added and mixed to obtain a hydrolyzed solution. Next, this hydrolyzed solution was stirred at 60 ° C. for 30 minutes to hydrolyze methyltrimethoxysilane to obtain a hydrolyzed solution.
  • methyltrimethoxysilane product name: KBM-13, manufactured by Shinetsu Kogyo Kagaku Co., Ltd.
  • 1N 0.01 part by mass was added and mixed to obtain a hydrolyzed solution.
  • this hydrolyzed solution was stirred at 60 ° C. for 30 minutes to hydrolyze methyltrimethoxysilane to obtain a hydrolyzed solution.
  • FT-IR analysis A part of the second dispersion was separated and dried in a vacuum dryer. Using the obtained surface-modified zirconium oxide particles 0.01 g to 0.05 g, a Fourier transform infrared spectrophotometer (model number: FT / IR-670 Plus, manufactured by Nippon Spectroscopy Co., Ltd.), 800 cm -1 or more and 3800 cm. The transmission spectrum in the range of wavenumbers of -1 or less was measured. The value of the transmission spectrum was standardized so that the maximum value of the transmission spectrum in this measurement range was 100 and the minimum value was 0, and the standardized spectrum value (IA) of 3500 cm -1 and the standardized value of 1100 cm -1 were standardized. The spectral value (IB) was determined. As a result, the IA / IB was 7.
  • Second hydrolysis step As the second silane compound, 91.66 parts by mass of phenyltrimethoxysilane (product name: KBM-103, manufactured by Shinetsu Kogyo Kagaku Co., Ltd.), 8.33 parts by mass of water, and hydrochloric acid. (1N) 0.01 part by mass was added and mixed to obtain a hydrolyzed solution. Next, this hydrolyzed solution was stirred at 60 ° C. for 30 minutes to hydrolyze phenyltrimethoxysilane to obtain a hydrolyzed solution.
  • phenyltrimethoxysilane product name: KBM-103, manufactured by Shinetsu Kogyo Kagaku Co., Ltd.
  • 1N 0.01 part by mass was added and mixed to obtain a hydrolyzed solution.
  • this hydrolyzed solution was stirred at 60 ° C. for 30 minutes to hydrolyze phenyltrimethoxysilane to obtain a hydrolyzed solution.
  • Second addition step 62.5 parts by mass of the second dispersion whose solid content was adjusted to 15% by mass, 6.3 parts by mass of the phenyltrimethoxysilane hydrolysis solution obtained in the second hydrolysis step, and a methyl group.
  • the dispersion according to Example 1 was mixed with 31.2 parts by mass of a silicone compound containing a phenyl group (trade name: KR213 (containing high phenyl), manufactured by Shin-Etsu Chemical Industry Co., Ltd.) and stirred at 100 ° C. for 3 hours. (Third dispersion) was obtained.
  • composition A 16.7 g of the dispersion liquid according to Example 1 in which the solid content was adjusted to 30% by mass with toluene and 95 g of a methyl silicone resin component (trade name: KER-2500-A / B, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed. bottom. Then, toluene was removed from this mixed solution by an evaporator to obtain the composition A according to Example 1 containing a methyl-based silicone resin component.
  • a methyl silicone resin component trade name: KER-2500-A / B, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the viscosity of the obtained composition A was measured using a leometer (trade name: Leostress RS-6000, manufactured by HAAKE) under the conditions of 25 ° C. and a shear rate of 1 (1 / s). As a result, the viscosity A of the composition A was 21 Pa ⁇ s. The results are shown in Table 1.
  • the transmittance of the cured product A taken out from the container was measured using an integrating sphere with a spectrophotometer (manufactured by JASCO Corporation, model number: V-770).
  • the transmittance A of the cured product A containing the methyl silicone resin was 72%. The results are shown in Table 1.
  • composition B and cured product B 16.7 g of the dispersion liquid according to Example 1 in which the solid content was adjusted to 30% by mass with toluene was mixed with 95 g of a phenyl-based silicone resin component (trade name: OE-6520, manufactured by Toray Dow Corning Co., Ltd.). Then, toluene was removed from this mixed solution by an evaporator to obtain the composition B according to Example 1 containing a phenyl-based silicone resin component.
  • Table 1 shows the viscosity B of the composition B measured in the same manner as the composition A. Then, by curing in the same manner as in composition A, a cured product B according to Example 1 was obtained. The thickness of the cured product B taken out from the container was about 1 mm. Table 1 shows the transmittance B measured in the same manner as the cured product A.
  • Example 2 In Example 1, instead of mixing 62.5 parts by mass of the second dispersion, 6.3 parts by mass of the phenyltrimethoxysilane hydrolysis solution, and 31.2 parts by mass of a silicone compound containing a methyl group and a phenyl group. Example except that 60.6 parts by mass of the second dispersion, 9.1 parts by mass of the hydrolysis solution of phenyltrimethoxysilane, and 30.3 parts by mass of a silicone compound containing a methyl group and a phenyl group were mixed. In the same manner as in No. 1, the dispersion liquid according to Example 2 was obtained.
  • the IA / IB and the methyl group / phenyl group of the dispersion liquid according to Example 2 were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 Composition A and Composition B according to Example 2 and Example 2 in the same manner as in Example 1 except that the dispersion according to Example 2 was used instead of using the dispersion according to Example 1.
  • a cured product A and a cured product B were obtained.
  • Table 1 shows the results of measuring the viscosity of the composition and the transmittance of the cured product in the same manner as in Example 1.
  • Example 1 instead of using the dispersion liquid according to Example 1, the composition C according to Example 2 and the LED package according to Example 2 are prepared in the same manner as in Example 1 except that the dispersion liquid according to Example 2 is used. Obtained. Table 1 shows the results of the evaluation in the same manner as in Example 1.
  • Example 3 In Example 1, instead of mixing 62.5 parts by mass of the second dispersion, 6.3 parts by mass of the phenyltrimethoxysilane hydrolysis solution, and 31.2 parts by mass of a silicone compound containing a methyl group and a phenyl group. Example except that 64.5 parts by mass of the second dispersion, 3.2 parts by mass of the hydrolysis solution of phenyltrimethoxysilane, and 32.3 parts by mass of a silicone compound containing a methyl group and a phenyl group were mixed. In the same manner as in No. 1, the dispersion liquid according to Example 3 was obtained.
  • Example 2 In the same manner as in Example 1, the IA / IB and the methyl group / phenyl group of the dispersion liquid according to Example 3 were measured. The results are shown in Table 1.
  • Table 1 shows the results of measuring the viscosity of the composition and the transmittance of the cured product in the same manner as in Example 1.
  • Example 1 instead of using the dispersion liquid according to Example 1, the composition C according to Example 3 and the LED package according to Example 3 are prepared in the same manner as in Example 1 except that the dispersion liquid according to Example 3 is used. Obtained. Table 1 shows the results of the evaluation in the same manner as in Example 1.
  • Example 4 In Example 1, 62.5 parts by mass of the second dispersion, 6.3 parts by mass of the phenyltrimethoxysilane hydrolysis solution, and 31.2 parts by mass of a silicone compound containing a methyl group and a phenyl group are mixed. Instead, 65.4 parts by mass of the second dispersion, 2.0 parts by mass of the phenyltrimethoxysilane hydrolyzate, and 32.6 parts by mass of the silicone compound containing a methyl group and a phenyl group were mixed.
  • the dispersion liquid according to Example 4 was obtained in the same manner as in Example 1.
  • the IA / IB and the methyl group / phenyl group of the dispersion liquid according to Example 4 were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Table 1 shows the results of measuring the viscosity of the composition and the transmittance of the cured product in the same manner as in Example 1.
  • Example 1 instead of using the dispersion liquid according to Example 1, the composition C according to Example 4 and the LED package according to Example 4 are prepared in the same manner as in Example 1 except that the dispersion liquid according to Example 4 is used. Obtained. Table 1 shows the results of the evaluation in the same manner as in Example 1.
  • Example 5 In Example 1, instead of mixing 62.5 parts by mass of the second dispersion, 6.3 parts by mass of the phenyltrimethoxysilane hydrolysis solution, and 31.2 parts by mass of the silicone compound containing a methyl group and a phenyl group. The same as in Example 1 except that 62.9 parts by mass of the second dispersion, 5.7 parts by mass of phenyltrimethoxysilane, and 31.4 parts by mass of a silicone compound containing a methyl group and a phenyl group were mixed. The dispersion liquid according to Example 5 was obtained.
  • Example 1 In the same manner as in Example 1, the IA / IB and the methyl group / phenyl group of the dispersion liquid according to Example 5 were measured. The results are shown in Table 1.
  • Table 1 shows the results of measuring the viscosity of the composition and the transmittance of the cured product in the same manner as in Example 1.
  • Example 1 instead of using the dispersion liquid according to Example 1, the composition C according to Example 5 and the LED package according to Example 5 are prepared in the same manner as in Example 1 except that the dispersion liquid according to Example 5 is used. Obtained. Table 1 shows the results of the evaluation in the same manner as in Example 1.
  • Example 1 In Example 1, 62.5 parts by mass of a second dispersion whose solid content was adjusted to 15% by mass with toluene, 6.3 parts by mass of a hydrolysis solution of phenyltrimethoxysilane, and a methyl group and a phenyl group were added. Instead of mixing 31.2 parts by mass of the containing silicone compound, the second dispersion was mixed with 95.5 parts by mass and 4.5 parts by mass of the above silicone compound in exactly the same manner as in Example 1 for comparison. The dispersion liquid of Example 1 (third dispersion liquid) was obtained.
  • Example 1 the composition A according to Comparative Example 1 and the cured product A according to Comparative Example 1 were prepared in the same manner as in Example 1 except that the dispersion liquid according to Comparative Example 1 was used. Obtained. Table 1 shows the results of measuring the viscosity of the composition and the transmittance of the cured product in the same manner as in Example 1. In the same manner as in Example 1, an attempt was made to obtain a composition B and a cured product B using the dispersion liquid according to Comparative Example 1. However, the dispersion liquid of Comparative Example 1 could not be dispersed in the phenyl-based silicone resin component, and the composition B was cloudy and aggregated, so that the cured product B could not be produced.
  • Example 1 instead of using the dispersion liquid according to Example 1, the composition C according to Comparative Example 1 and the LED package according to Comparative Example 1 were prepared in the same manner as in Example 1 except that the dispersion liquid according to Comparative Example 1 was used. Obtained. Table 1 shows the results of the evaluation in the same manner as in Example 1.
  • Example 2 In the mixing step of Example 1, instead of mixing 70 parts by mass of the hydrolyzed solution of methyltrimethoxysilane, 20 parts by mass of the above hydrolyzed solution and 50 parts by mass of isopropyl alcohol (IPA) were used. A mixing step and a dispersion step were carried out in the same manner as in Example 1 to obtain a dispersion liquid (first dispersion liquid). As a result of measuring the solid content of the dispersion liquid (1 hour at 100 ° C.), it was 38% by mass.
  • IPA isopropyl alcohol
  • Second addition step 89 parts by mass of the second dispersion whose solid content is adjusted to 15% by mass, a silicone compound containing a methyl group and a phenyl group (trade name: KR213 (containing high phenyl), Shin-Etsu Chemical). (Manufactured by Kogyo Co., Ltd.) 11 parts by mass was mixed and heated at 110 ° C. for 1 hour to obtain a dispersion liquid (third dispersion liquid) of Comparative Example 2.
  • Example 1 the composition B and the cured product B according to Comparative Example 1 were obtained in the same manner as in Example 1 except that the dispersion liquid according to Comparative Example 2 was used.
  • Table 1 shows the results of viscosity and transmittance measured in the same manner as in Example 1.
  • the composition A and the cured product A were attempted to be obtained by using the dispersion liquid according to Comparative Example 2.
  • the dispersion liquid of Comparative Example 2 could not be dispersed in the methyl silicone resin component, and the composition A was cloudy and aggregated, so that the cured product A could not be produced.
  • Example 3 In the mixing step of Example 1, instead of using 70 parts by mass of the hydrolyzed solution of methyltrimethoxysilane, 70 parts by mass of the hydrolyzed solution of phenyltrimethoxysilane obtained in the hydrolysis step of Example 1 was used. In the same manner as in Example 1, a mixing step, a dispersion step, and a first addition step were performed to obtain a dispersion liquid (second dispersion liquid).
  • Example 1 the composition B and the cured product B according to Comparative Example 1 were obtained in the same manner as in Example 1 except that the dispersion liquid according to Comparative Example 3 was used.
  • Table 1 shows the results of viscosity and transmittance measured in the same manner as in Example 1.
  • the composition A and the cured product A were tried to be obtained by using the dispersion liquid according to Comparative Example 3.
  • the dispersion liquid of Comparative Example 3 could not be dispersed in the methyl silicone resin component, and the composition A was cloudy and aggregated, so that the cured product A could not be produced.
  • Example 4 In the mixing step of Example 1, instead of using 70 parts by mass of the hydrolyzed solution of methyltrimethoxysilane, 70 parts by mass of the hydrolyzed solution of phenyltrimethoxysilane was used, and the mixture was mixed in the same manner as in Example 1. The step, the dispersion step, and the first addition step were performed to obtain a dispersion liquid (second dispersion liquid). 91 parts by mass of the second dispersion liquid having a solid content adjusted to 15% by mass and 9 parts by mass of the hydrolyzed liquid of methyltrimethoxysilane obtained in the hydrolysis step of Example 1 were mixed and heated at 130 ° C. By stirring for 3 hours, the dispersion liquid of Comparative Example 4 (third dispersion liquid) was obtained.
  • second dispersion liquid 91 parts by mass of the second dispersion liquid having a solid content adjusted to 15% by mass and 9 parts by mass of the hydrolyzed liquid of methyltrimethoxysilane obtained in the hydrolysis step of Example 1 were
  • the ratio of the methyl group / phenyl group is 0.01 or more and 10 or less, and the silane compound containing a methyl group and the silane containing a phenyl group.
  • the surface-modified zirconium oxide particles sufficiently surface-modified with the compound and the silicone compound so as to satisfy IA / IB ⁇ 3.5 are phenyl-based silicones containing a large amount of phenyl groups even in the methyl-based phenylsilicone resin containing a large amount of methyl groups. It was confirmed that it was well dispersed in the resin.
  • compositions containing the surface-modified zirconium oxide particles of Examples 1 to 5 had a low viscosity. Further, it was confirmed that the brightness of the LED package containing the surface-modified zirconia particles of Examples 1 to 5 was improved.
  • the present invention is formed by using a dispersion liquid containing surface-modified metal oxide particles capable of dispersing in both a methyl silicone resin and a phenyl silicone resin, a composition containing the dispersion liquid, and the composition. It is possible to provide a sealing member to be formed, a light emitting device having the sealing member, a luminaire and a display device provided with the light emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明に係る分散液は、メチル基と炭素数が2以上の炭化水素基を含む少なくとも1種のシラン化合物と少なくとも1種のシリコーン化合物で表面修飾された金属酸化物粒子を含む分散液を真空乾燥して得られる金属酸化物粒子について、FT-IRにより800cm-1以上3800cm-1以下の波数の範囲の透過スペクトルを測定し、前記透過スペクトルの値を規格化した場合に、以下の式(1)を満足する。IA/IB≦3.5 (1)(「IA」は3500cm-1の規格化されたスペクトル値、「IB」は1100cm-1の規格化されたスペクトル値。)。

Description

分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
 本発明は、シラン化合物およびシリコーン化合物で表面修飾された金属酸化物粒子を含む分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法に関する。
 本願は、2020年9月30日に、日本に出願された特願2020-165259号に基づき優先権を主張し、その内容をここに援用する。
 小型、長寿命化、低電圧駆動等の長所を有する光源として、発光ダイオード(LED)が広く用いられている。LEDパッケージ中のLEDチップは、一般に、酸素、水分等の外部環境に存在する劣化因子との接触を防止するために、樹脂を含む封止材料で封止されている。したがって、LEDチップにおいて発した光は、封止材料を透過して外部に向かって出射される。そのため、LEDパッケージから放出される光束を増大させるためには、LEDチップにおいて放出された光をLEDパッケージ外部に効率よく取り出すことが重要となる。
 LEDチップから放出された光の取り出し効率を向上させるための封止材料としては、アルケニル基、H-Si基およびアルコキシ基から選ばれる少なくとも1つの官能基を含む表面修飾材料によって表面修飾された金属酸化物粒子と、マトリックス樹脂組成物とを含有する光散乱複合体形成用組成物が知られている(例えば、特許文献1参照)。
 この光散乱複合体形成用組成物では、透明性が比較的維持された状態で、シリコーン樹脂に、金属酸化物粒子を含む分散液が混合されている。金属酸化物粒子としては、分散粒子径が小さく、かつ屈折率が高いものが用いられている。この構成により、光散乱複合体形成用組成物を硬化して得られる光散乱複合体は、光透過性の低下が抑制されており、かつ、光散乱性が向上している。
国際公開第2016/142992号
 ところで、LEDの封止材料として使用されるシリコーン樹脂は、炭化水素基であるメチル基とフェニル基を含有していることが一般的であり、用途によって官能基の比率が調整されている。例えば、照明用途では、LEDチップからの光取り出し量を増やすため、屈折率の高いフェニル基を多く含む構造となっている。一方、車載用途では、高出力LEDによるシリコーン封止樹脂の劣化を抑制するために、耐熱性の高いメチル基を多く含む構造となっている。
 そのため、シリコーン封止樹脂の品種毎や用途毎に金属酸化物粒子表面の修飾設計が必要であった。
 また、近年、LEDの高寿命化のために、耐熱性の高いメチル基を多く含むメチル系シリコーン樹脂の需要が高まっている。メチル系シリコーン樹脂は、従来、一般的に使用されていたフェニル系シリコーン樹脂等と比較して、メチル基の含有量が大きく、疎水性の度合いが大きい。そのため、特許文献1に記載されている発明のように、表面が疎水化された金属酸化物粒子であっても、メチル系シリコーン樹脂と混合した場合に、金属酸化物粒子同士が凝集して、透明な組成物が得られないという課題があった。
 上記のような課題を解決するために、シラン化合物に金属酸化物粒子を直接分散させて一次修飾した後、シリコーン化合物を二次修飾することによって、メチル系シリコーン樹脂に分散できる表面修飾された金属酸化物粒子を得る方法が検討されている。以下、「表面修飾された金属酸化物粒子」を「表面修飾金属酸化物粒子」と略記する場合がある。
 しかしながら、上記の方法で得られた表面修飾金属酸化物粒子は、フェニル基を多く含むフェニル系シリコーン樹脂に分散させることができなかった。
 そのため、メチル系シリコーン樹脂にもフェニル系シリコーン樹脂にも分散することができる表面修飾金属酸化物粒子が求められていた。
 本発明は、上記の課題を解決するためになされたものであって、メチル系シリコーン樹脂であっても、フェニル系シリコーン樹脂であっても、分散することが可能な表面修飾金属酸化物粒子を含む分散液、前記分散液を含有する組成物、前記組成物を用いて形成される封止部材、前記封止部材を有する発光装置、前記発光装置を備えた照明器具および表示装置、前記分散液の製造方法、および前記金属酸化物粒子の表面修飾方法を提供することを目的とする。
 上記課題を解決するために、本発明の第一の態様は、少なくとも1種のシラン化合物と少なくとも1種のシリコーン化合物により表面修飾された金属酸化物粒子と、溶媒と、を含む分散液であって、
 上記シラン化合物は、メチル基および炭素数が2以上の炭化水素基を含み、
 前記金属酸化物粒子における、上記炭化水素基に対する前記メチル基のモル比率(メチル基/炭化水素基)が0.01以上10以下であり、
 上記分散液を真空乾燥により乾燥して得られる上記金属酸化物粒子について、フーリエ変換式赤外分光光度計により800cm-1以上3800cm-1以下の波数の範囲の透過スペクトルを測定し、前記範囲における前記透過スペクトルの最大値が100、最小値が0となるように、前記透過スペクトルの値を規格化した場合に、下記の式(1)を満足する、分散液を提供する。
 IA/IB≦3.5    (1)
(式中、「IA」は、3500cm-1における規格化されたスペクトル値、「IB」は、1100cm-1における規格化されたスペクトル値をそれぞれ示す。)
 本発明の第一の態様においては、上記炭素数が2以上の炭化水素基が、芳香族炭化水素基であってもよい。
 上記課題を解決するために、本発明の第二の態様は、上記分散液と、シリコーン樹脂成分と、を含む、組成物を提供する。
 上記課題を解決するために、本発明の第三の態様は、上記組成物の硬化物である、封止部材を提供する。
 上記課題を解決するために、本発明の第四の態様は、上記封止部材と、上記封止部材により封止された発光素子と、を備える発光装置を提供する。
 上記課題を解決するために、本発明の第五の態様は、上記発光装置を備える、照明器具を提供する。
 上記課題を解決するために、本発明の第六の態様は、上記発光装置を備える、表示装置を提供する。
 上記課題を解決するために、本発明の第七の態様は、第一の態様の分散液の製造方法を提供する。
 上記課題を解決するために、本発明の第八の態様は、金属酸化物粒子の表面修飾方法を提供する。
 本発明によれば、メチル系シリコーン樹脂であっても、フェニル系シリコーン樹脂であっても、分散することが可能な表面修飾金属酸化物粒子を含む分散液、前記分散液を含有する組成物、前記組成物を用いて形成される封止部材、前記封止部材を有する発光装置、前記発光装置を備えた照明器具、表示装置、分散液の製造方法、および、金属酸化物粒子の表面修飾方法を提供することができる。
本発明の実施形態に係る発光装置の好ましい一例を示す概略模式図である。 本発明の実施形態に係る発光装置の他の好ましい一例を示す概略模式図である。 本発明の実施形態に係る発光装置の他の好ましい一例を示す概略模式図である。 本発明の実施形態に係る発光装置の他の好ましい一例を示す概略模式図である。
 本発明の分散液、前記分散液を含有する組成物、前記組成物を用いて形成される封止部材、前記封止部材を有する発光装置、前記発光装置を備えた照明器具および表示装置、分散液の製造方法、および、金属酸化物粒子の表面修飾方法の、好ましい実施の形態の例について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。例えば、特に制限の無い限り、材料、量、種類、数、サイズ、比率、順番、時間、温度などの条件などを、必要に応じて変更、追加、および省略してもよい。
<1.本発明者等の着想>
 まず、本発明の詳細な説明に先立ち、本発明者等による本発明に至るまでの着想について説明する。
 一般に、封止部材の原料となる封止材料(組成物)の製造において、金属酸化物粒子は、表面修飾材料により修飾され、シリコーン樹脂等の樹脂に分散される。しかしながら、メチル系シリコーン樹脂は、従来、一般的に使用されていたフェニル系シリコーン樹脂等と比較して、メチル基の含有量が大きく、疎水性の度合いが大きい。そのため、上述したように表面修飾材料により修飾した金属酸化物粒子を用いた場合であっても、金属酸化物粒子は、メチル系シリコーン樹脂中に均一に分散することが困難であった。
 そこで、本発明者等は、問題を解決すべく鋭意検討した。その結果、単純に表面修飾材料の使用量を増加させても金属酸化物粒子のメチル系シリコーン樹脂への分散性は大きくは向上しないことを知見した。
 この結果を受け、本発明者等はさらに検討を行い、金属酸化物粒子の表面における表面修飾材料の修飾状態について着目した。そして次のような考えのもとに、検討を行った。すなわち、仮に多量の表面修飾材料を使用して金属酸化物粒子を修飾した場合であっても、金属酸化物粒子の表面に少量しか表面修飾材料が付着していない場合、金属酸化物粒子の表面は充分には疎水化されない。一方、仮に少量の表面修飾材料を使用して金属酸化物粒子を修飾した場合であっても、表面修飾材料の金属酸化物粒子の表面への付着割合が高く、金属酸化物粒子の表面に多量に表面修飾材料が付着している場合、金属酸化物粒子の表面は充分に疎水化される。
 そして、本発明者等は、表面修飾材料としてシラン化合物やシリコーン化合物を用いている場合において、上記のような金属酸化物粒子への表面修飾材料の付着の度合いが、フーリエ変換式赤外分光光度計(FT-IR)により測定・観察できることを見出した。そして、シラン化合物とシリコーン化合物で金属酸化物粒子を表面修飾すれば、従来分散させることが困難であったメチル系シリコーン樹脂に金属酸化物粒子を分散できることを見出した。さらに、シリコーン化合物で二次修飾する替わりに、シラン化合物で金属酸化物粒子を二次修飾すれば、メチル系シリコーン樹脂にも分散でき、さらにフェニル系シリコーン樹脂にも分散できることを見出した。さらに、シリコーン化合物で三次修飾することにより、後述する組成物の粘度の上昇を抑制でき、LEDの明るさも向上できることを見出した。そして、後述する方法により、シラン化合物を金属酸化物粒子の表面に充分に付着させることができることも見出した。そして、金属酸化物粒子における、炭化水素基に対するメチル基のモル比率(メチル基/炭化水素基)が0.01以上10以下となるように、シラン化合物とシリコーン化合物の官能基比率を調整することで、メチル系シリコーン樹脂であっても、フェニル系シリコーン樹脂であっても、分散が可能な汎用性の高い表面修飾金属酸化物粒子が得られることを見出した。なおこの後、二次修飾と三次修飾の組み合わせを、単に二次修飾と記載する場合がある。
<2.分散液>
 本実施形態に係る分散液について説明する。
 本実施形態に係る分散液は、少なくとも1種のシラン化合物と少なくとも1種のシリコーン化合物により表面修飾された金属酸化物粒子と、溶媒と、を含み、上記シラン化合物は、メチル基および炭素数が2以上の炭化水素基を含み、前記金属酸化物粒子における、上記炭化水素基に対する上記メチル基の比率(メチル基/炭化水素基)が0.01以上10以下である。
 本実施形態においては、上記分散液を真空乾燥により乾燥して得られる上記金属酸化物粒子について、フーリエ変換式赤外分光光度計により800cm-1以上3800cm-1以下の波数の範囲の透過スペクトルを測定し、前記範囲における透過スペクトルの最大値が100、最小値が0となるように、測定した透過スペクトルの値を規格化した場合に、下記の式(1)を満足する。
 IA/IB≦3.5    (1)
(式中、「IA」は、3500cm-1における規格化したスペクトル値、「IB」は、1100cm-1における規格化したスペクトル値をそれぞれ示す。)
 以上の条件を満足することにより、本実施形態に係る分散液は、メチル系シリコーン樹脂にもフェニル系シリコーン樹脂にも分散することができる。また、分散したメチル系シリコーン樹脂やフェニル系シリコーン樹脂の粘度の上昇も抑制することができる。そして、LEDの明るさを向上させることができる。
 詳しく説明すると、フーリエ変換式赤外分光光度計により測定される透過スペクトルのうち、波数1100cm-1の位置は、シロキサン結合(Si-O-Si結合)に帰属し、波数3500cm-1の位置は、シラノール基(Si-OH基)に帰属する。シラン化合物およびシリコーン化合物は、それぞれ、Si-O-Si結合を形成可能なSi-OH基や、Si-OH基を形成可能な基を含む。したがって、3500cm-1における前記スペクトル値(IA)と、1100cm-1における前記スペクトル値(IB)とを比較することにより、シラン化合物およびシリコーン化合物のSi-OHや、Si-OH基を形成可能な基の反応度合いを観察することが可能となる。
 そして、本発明者等は、IA/IBが3.5以下である場合、シラン化合物が金属酸化物粒子の表面に充分に付着していることを見出した。この特徴により、金属酸化物粒子は、メチル系シリコーン樹脂と混合した際において、凝集することなく、メチル系シリコーン樹脂中に分散することが可能となる。
 これに対して、IA/IBが3.5を超える場合、シラン化合物およびシリコーン化合物が金属酸化物粒子の表面に充分には付着しておらず、金属酸化物粒子のメチル系シリコーン樹脂中の分散性を優れたものとすることができない。この結果、分散液とメチル系シリコーン樹脂とを混合した際に、金属酸化物粒子の凝集が生じ、得られる組成物に濁りが生じてしまう傾向がある。IA/IBは、上述したように3.5以下であるが、3.0以下であることが好ましく、2.5以下であることがより好ましく、2.0以下であることがさらに好ましい。
 また、IA/IBの下限値は、IA=0が好ましいため、0である。しかし、シラノール基(Si-OH基)が少量残存していてもメチル系シリコーン樹脂に混合することはできるため、IA/IBの下限値は0であってもよく、0.1であってもよく、0.2であってもよく、0.5であってもよく、0.8であってもよく、1.0であってもよく、1.5であってもよい。
 なお、金属酸化物粒子のフーリエ変換式赤外分光光度計(FT-IR)による透過スペクトルの測定は、具体的には以下のように行うことができる。
 本実施形態の分散液を真空乾燥で乾燥する。乾燥条件は分散液の量と濃度により適宜調整すればよい。例えば、固形分が30質量%の分散液10gであれば、100℃、20hPa以下で2時間以上乾燥すればよい。真空乾燥機としては、例えば、EYELA東京理科器械株式会社製のVACUUM OVEN VOS-201SDを用いることができる。
 次いで、乾燥により得られた金属酸化物粒子0.01g~0.05gを用いることにより、フーリエ変換式赤外分光光度計(例えば、日本分光株式会社製、型番:FT/IR-670 Plus)で測定することができる。
 しかし、従来の表面修飾金属酸化物粒子は、IA/IBが3.5以下である表面修飾金属酸化物粒子であっても、メチル系シリコーン樹脂に分散することは可能であったが、フェニル系シリコーン樹脂に分散することが困難であった。
 本発明者等は、メチル基と炭素数が2以上の炭化水素基を含むシラン化合物を用いて、後述する表面修飾方法で金属酸化物粒子を表面修飾すれば、メチル系シリコーン樹脂にもフェニル系シリコーン樹脂にも分散が可能な、汎用性の高い表面修飾金属酸化物粒子が得られることを知得した。さらに、シリコーンで表面修飾することにより、後述する組成物の粘度の上昇を抑制し、LEDの明るさを向上できることも知得した。
 メチル基と炭素数が2以上の炭化水素基を含むシラン化合物のみで表面修飾された金属酸化物粒子が、メチル系シリコーン樹脂にもフェニル系シリコーン樹脂にも分散が可能となるメカニズムの詳細は不明であるが、次のように推測される。
 本実施形態では、後述するように、金属酸化物粒子の最初の表面修飾(一次修飾)を、高濃度のシラン化合物中で行う。二次修飾の前に、このような一次修飾を行うことで、一次修飾のシラン化合物も、次に行う表面修飾(二次修飾)の表面修飾材料も、金属酸化物粒子の表面に充分に付着される。ここで、二次修飾の表面修飾材料としてシリコーン化合物を選択すると、金属酸化物粒子の表面に立体障害となりうるシリコーン鎖が多く存在することとなる。そのため、そのような金属酸化物粒子には緻密な表面処理がされておらず、その結果、シリコーン化合物で二次修飾した金属酸化物粒子は、シリコーン樹脂に分散し難いと推測される。
 それに対して、二次修飾をシラン化合物で行った場合には、シラン化合物はシリコーン化合物のような立体障害がなく、金属酸化物粒子により付着し易い。このため、金属酸化物粒子がシラン化合物によって緻密に表面修飾されていると推測される。すなわち、本実施形態の金属酸化物粒子は、従来よりもシラン化合物が多く付着しており、かつ緻密な表面修飾がされているため、LED用のシリコーン樹脂に分散し易いと推測される。
 LED用のシリコーン樹脂に金属酸化物粒子を分散させるためには、シラン化合物とシリコーン化合物で表面修飾することが必須であると本発明者等は考えていた。そのため、特定のシラン化合物のみで、一次修飾および二次修飾を行って、表面修飾した方が、種々のシリコーン樹脂に混ざり易くなるとの結果は予想外であった。
 本実施形態では、シラン化合物のみで、一次修飾や二次修飾を行い、さらに、シリコーン化合物で三次修飾することを、好ましく行うことができる。
 前記二次修飾の後に、さらに、シリコーン化合物で三次修飾した場合に、組成物の粘度の上昇を抑制でき、LEDの明るさを向上できるメカニズムの詳細は不明であるが、次のように推測される。本発明者等は、メチル基および炭素数が2以上の炭化水素基を含むシラン化合物で一次修飾および二次修飾を行い表面修飾された金属酸化物粒子と、さらにシリコーン化合物で三次修飾された金属酸化物粒子と、を透過型電子顕微鏡で観察した。シラン化合物のみで修飾された金属酸化物粒子は、金属酸化物粒子同士が密着しているのに対して、シラン化合物とシリコーン化合物で修飾された金属酸化物粒子は、金属酸化物粒子と金属酸化物粒子の間に、隙間が観察されることがあった。すなわち、シリコーン化合物のシリコーン鎖が立体障害となり、粒子同士の密着を緩やかにしていると推測される。そのため、シラン化合物とシリコーン化合物で表面修飾された金属酸化物粒子は、粒子同士の凝集が抑制される。その結果、LED用のシリコーン樹脂に混合された場合でも、粒子同士が凝集し難いために組成物の粘度の上昇が抑制されると推測される。また、粒子同士が密着し過ぎていないため、発光素子から放出される光を透過し易く、結果としてLEDの明るさの向上に寄与していると推測される。
 本実施形態において、金属酸化物粒子における、上記炭化水素基に対する上記メチル基のモル比率(メチル基/炭化水素基)は0.01以上10以下であり、0.03以上8以下であることが好ましく、0.05以上5以下であることがより好ましく、0.1以上3以下であることがさらに好ましい。必要に応じて、前記モル比率は、0.2~0.8や、0.8~2や、2~6や、6~9などであってもよい。
 上記のモル比率が0.01以上10以下であることにより、メチル系シリコーン樹脂であっても、フェニル系シリコーン樹脂であっても、金属酸化物粒子を透明に分散することが可能となる。上記モル比率が0.01未満の場合、メチル基が少な過ぎて、メチル系シリコーン樹脂に分散させることができない。一方、上記モル比率が10を超えると、フェニル系シリコーン樹脂に分散させることができない。
 金属酸化物粒子における、上記モル比率は、NMR(核磁気共鳴分光法)で、以下の方法で測定した比率を意味する。すなわち、表面修飾された金属酸化物粒子に含まれるメチル基と炭素数が2以上の炭化水素基のモル比率を意味する。そのため、実質的には、シラン化合物とシリコーン化合物に含まれるメチル基と炭素数が2以上の炭化水素基のモル比率を意味する。
 固形分が30質量%に調整された分散液15gと、メタノール15gとを混合し、表面修飾金属酸化物粒子を沈殿させる。この混合液を遠心分離機で固液分離し、固体部分(表面修飾金属酸化物粒子)を回収する。回収した表面修飾金属酸化物粒子を数mg採取し、重クロロホルムに1質量%となるように溶解させる。この溶解液を用いて、NMR装置、例えば、卓上型NMR装置(Nanalysis社製、型番NMReady60Pro(1H/19F))を用いて、炭素数が2以上の炭化水素基とメチル基のH-液体NMRスペクトルを測定する。得られたスペクトルから炭素数が2以上の炭化水素基とメチル基のスペクトル面積(積分値)を算出し、メチル基の積分値/炭素数が2以上の炭化水素基の積分値を算出する。これにより、炭素数が2以上の炭化水素基に対するメチル基のモル比率を算出することができる。
 なお、分散液の固形分は30質量%である必要はなく、NMRで測定するのに必要な量を採取できればよい。
 シリコーン化合物がメチル基および炭素数が2以上の炭化水素基を含まない場合には、シラン化合物に含まれるメチル基と炭素数が2以上の炭化水素基のモル比率を調整すればよい。シリコーン化合物がメチル基や炭素数が2以上の炭化水素基を含む場合には、シラン化合物とシリコーン化合物に含まれる合計のメチル基と炭素数が2以上の炭化水素基のモル比率が所定の範囲となるように調整すればよい。
(2.1金属酸化物粒子)
 金属酸化物粒子は、後述する封止部材中において発光素子から放出される光を散乱させる。また、金属酸化物粒子は、その種類によっては封止部材の屈折率を向上させる。これらにより、金属酸化物粒子は、発光装置において光の明るさの向上に寄与する。
 金属酸化物粒子としては、特に限定されない。本実施形態において、金属酸化物粒子としては、例えば、酸化ジルコニウム粒子、酸化チタン粒子、酸化亜鉛粒子、酸化鉄粒子、酸化銅粒子、酸化スズ粒子、酸化セリウム粒子、酸化タンタル粒子、酸化ニオブ粒子、酸化タングステン粒子、酸化ユーロピウム粒子、酸化イットリウム粒子、酸化モリブデン粒子、酸化インジウム粒子、酸化アンチモン粒子、酸化ゲルマニウム粒子、酸化亜鉛粒子、酸化ビスマス粒子、および酸化ハフニウム粒子並びにチタン酸カリウム粒子、チタン酸バリウム粒子、チタン酸ストロンチウム粒子、ニオブ酸カリウム粒子、ニオブ酸リチウム粒子、タングステン酸カルシウム粒子、イットリア安定化ジルコニア粒子、アルミナ安定化ジルコニア粒子、カルシア安定化ジルコニア粒子、マグネシア安定化ジルコニア粒子、スカンジア安定化ジルコニア粒子、ハフニア安定化ジルコニア粒子、イッテルビア安定化ジルコニア粒子、セリア安定化ジルコニア粒子、インジア安定化ジルコニア粒子、ストロンチウム安定化ジルコニア粒子、酸化サマリウム安定化ジルコニア粒子、酸化ガドリニウム安定化ジルコニア粒子、アンチモン添加酸化スズ粒子、およびインジウム添加酸化スズ粒子からなる群から選択される少なくとも1種を含む金属酸化物粒子が好適に用いられる。
 上述した中でも、透明性や封止樹脂(樹脂成分)との相溶性(親和性)を向上させる観点から、金属酸化物粒子としては、酸化ジルコニウム粒子および酸化チタン粒子からなる群から選択される少なくとも1種であることが好ましい。
 また、金属酸化物粒子は、封止部材の屈折率を向上させる観点から、屈折率が1.7以上であることが好ましい。屈折率の上限は任意に選択でき、例えば、3.0以下や,2.5以下であってもよいが、これのみに限定されない。
 金属酸化物粒子は、より好ましくは酸化ジルコニウム粒子および酸化チタン粒子の少なくとも一方であり、特に好ましくは、酸化ジルコニウム粒子である。
 金属酸化物粒子の平均一次粒子径は、1nm以上200nm以下であることが好ましく、3nm以上150nm以下であることがより好ましく、10nm以上100nm以下であることがさらに好ましい。必要に応じて、5~30nmや、30~50nmや、50~80nmや、80~130nmなどであってもよい。金属酸化物粒子の平均一次粒子径が上記範囲であることにより、封止部材の透明性の低下を抑制することができる。この結果、発光装置の光の明るさをより一層向上させることができる。
 金属酸化物粒子の平均一次粒子径の測定は、例えば、透過型電子顕微鏡での観察により行うことができる。まず、透過型電子顕微鏡により、無機酸化物粒子を観察し、透過型電子顕微鏡画像を得る。次いで、透過型電子顕微鏡画像中の無機酸化物粒子を所定数、例えば、100個を選び出す。そして、これらの無機酸化物粒子各々の最長の直線分(最大長径)を測定し、これらの測定値を算術平均して求める。
 ここで、金属酸化物粒子同士が凝集している場合には、この凝集体の凝集粒子径を測定するのではない。この凝集体を構成している金属酸化物粒子の粒子(一次粒子)の最大長径を所定数測定し、平均一次粒子径とする。
 本実施形態の分散液における金属酸化物粒子の平均分散粒子径は、特に限定されないが、例えば、10nm以上300nm以下であり、20nm以上250nm以下であることが好ましく、30nm以上200nm以下であることがより好ましい。必要に応じて、50nm以上180nm以下や、100nm以上150nm以下であってもよい。金属酸化物粒子の平均分散粒子径が10nm以上であることにより、この分散液を用いて製造される後述する発光装置の光の明るさが向上する。また、金属酸化物粒子の平均分散粒子径が300nm以下であることにより、分散液やこれを用いて製造される後述する組成物、封止部材の光の透過率の低下を抑制することができる。その結果、発光装置の光の明るさが向上する。
 なお、金属酸化物粒子の平均分散粒子径は、動的光散乱法により得られる散乱強度分布の累積百分率が50%のときの金属酸化物粒子の粒子径D50であることができ、動的光散乱式の粒度分布計(例えば、HORIBA社製、型番:SZ-100SP)により測定することができる。測定は、固形分を5質量%に調整した分散液を測定対象として、光路長10mm×10mmの石英セルを用いて行うことができる。なお、本明細書において「固形分」とは、分散液において揮発可能な成分を除去した際の残留物をいう。例えば、分散液1.2gを磁性るつぼに入れて、ホットプレートで、150℃で1時間加熱した時に、揮発せずに残留する成分(金属酸化物粒子や表面修飾材料等)を固形分とすることができる。
 また、金属酸化物粒子の平均分散粒子径は、金属酸化物粒子が一次粒子または二次粒子のいずれの状態で分散しているかに関わらず、分散している状態の金属酸化物粒子の径に基づいて測定、算出される。また、本実施形態において、金属酸化物粒子の平均分散粒子径は、表面修飾材料が付着した金属酸化物粒子の平均分散粒子径として測定されてもよい。分散液中には、表面修飾材料が付着した金属酸化物粒子と、表面修飾材料が付着していない金属酸化物粒子とが存在し得る。そのため、通常、金属酸化物粒子の平均分散粒子径は、これらの混合状態における値として測定される。
 以上説明した金属酸化物粒子の表面には、以下に説明する表面修飾材料が付着している。これにより、前記金属酸化物粒子を用いて製造される分散液中および組成物中において安定して金属酸化物粒子が分散する。
(2.2シラン化合物)
 本実施形態に係る表面修飾金属酸化物粒子は、金属酸化物粒子が少なくとも1種のシラン化合物と少なくとも1種のシリコーン化合物により、表面修飾されている。上記少なくとも1種のシラン化合物は、メチル基および炭素数が2以上の炭化水素基を含み、金属酸化物粒子に充分に付着する。
 本実施形態におけるシラン化合物としては、例えば、メチル基と炭素数が2以上の炭化水素基を含むシラン化合物を用いてもよく、メチル基を含むシラン化合物、すなわち、メチル基を含むが、炭素数が2以上の炭化水素基を含まないシラン化合物を、炭素数が2以上の炭化水素基を含むシラン化合物と組み合わせて使用しても良い。メチル基を少なくとも含むシラン化合物は、本実施形態で好ましく使用される。組み合わせの例としては、例えば、メチル基を含むシラン化合物と炭素数が2以上の炭化水素基を含むシラン化合物を併用してもよく、メチル基と炭素数が2以上の炭化水素基を含むシラン化合物と、メチル基を含むシラン化合物を併用してもよく、メチル基と炭素数が2以上の炭化水素基と炭素数が2以上の炭化水素基を含むシラン化合物を併用してもよく、メチル基と炭素数が2以上の炭化水素基を含むシラン化合物と炭素数が2以上の炭化水素基を含むシラン化合物を併用しても良く、メチル基を含むシラン化合物と、炭素数が2以上の炭化水素基を含むシラン化合物を併用してもよい。本実施形態で用いられるシラン化合物の数(種類)は特に限定されないが、例えば、1~10種や、2~8種や、3~6種や、4~5種などであってもよい。
 金属酸化物粒子により多くのシラン化合物を付着させる観点において、メチル基を含むシラン化合物で金属酸化物粒子の表面を修飾することは必須となる。そして、二次修飾はシリコーン樹脂との相溶性を高めるためになされるので、シリコーン樹脂の官能基と相溶できる官能基を有したシラン化合物であれば特に限定されない。LED用のシリコーン樹脂は、炭化水素基であるメチル基とフェニル基を官能基として含むのが一般的である。そのため、本実施形態におけるシラン化合物は、メチル基を含むシラン化合物で一次修飾を行い、メチル基よりも疎水性が高い炭素数が2以上の炭化水素基を含むシラン化合物で二次修飾を行う。
 これらシラン化合物は、少なくともその一部が金属酸化物粒子の表面に付着して、前記表面を修飾することにより、金属酸化物粒子の凝集を防止する。さらに、LED用のシリコーン樹脂成分、換言すれば、メチル基とフェニル基を含むシリコーン樹脂成分との相溶性を向上させる。
 ここで、シラン化合物が金属酸化物粒子に「付着する」とは、シラン化合物が金属酸化物粒子に対し、これらの間の相互作用や反応により接触または結合することをいう。接触としては、例えば、物理吸着が挙げられる。また、結合としては、例えば、イオン結合、水素結合、共有結合等が挙げられる。
 メチル基を含むシラン化合物としては、金属酸化物粒子の表面に付着できるものであれば特に限定されない。メチル基を含むシラン化合物としては、メチル基とアルコキシ基を含むシラン化合物や、メチル基とH-Si基を含むシラン化合物や、メチル基とアルコキシ基とH-Si基を含むシラン化合物を用いることができる。
 メチル基を含むシラン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。メチル基を含むシラン化合物は、アルコキシ基、特にメトキシ基を含むものが、金属酸化物粒子に付着し易いため好ましい。
 メチル基とアルコキシ基を含むシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、メトキシジメチル(フェニル)シラン、エトキシジメチル(フェニル)シラン、ジメチル(メトキシ)フェニルシラン、およびジメチル(エトキシ)フェニルシランの群から選択される少なくとも1種を用いることができる。
 メチル基とH-Si基を含むシラン化合物としては、ジメチルクロロシラン、メチルジクロロシラン、およびメチルフェニルクロロシランの群から選択される少なくとも1種を用いることができる。
 メチル基とアルコキシ基とH-Si基を含むシラン化合物としては、例えば、ジエトキシメチルシランやエトキシジメチルシランを用いることができる。
 上述した中でも、メチル基を含むシラン化合物は、粘度が低く、後述する分散工程における金属酸化物粒子の分散が容易となる観点から、好ましくはメチル基およびアルコキシ基を含むシラン化合物を含む。
 このようなメチル基およびアルコキシ基を含むシラン化合物中のアルコキシ基の数は1以上3以下であることが好ましく、アルコキシ基の数は3であることがより好ましい。アルコキシ基の炭素数は1以上5以下であることが好ましく、2以上4以下であることも好ましい。
 メチル基およびアルコキシ基を含むシラン化合物中のメチル基の数は、1以上3以下であることが好ましく、1であることがより好ましい。
 メチル基およびアルコキシ基を含むシラン化合物中のアルコキシ基とメチル基の総数は2以上4以下であり、4であることが好ましい。
 このようなメチル基を含むシラン化合物は、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、およびメチルトリプロポキシシランからなる群から選択される少なくとも1種を含む。金属酸化物粒子の表面に付着し易い観点から、メチルトリメトキシシランが好ましく、メチルトリエトキシシランが好ましく、メチルトリメトキシシランを用いることがより好ましい。
 シラン化合物に含まれる、炭素数が2以上の炭化水素基としては、LED用のシリコーン樹脂と相溶し易いものであれば特に限定されない。例えば、炭素数が2以上の脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。
 炭化水素基の炭素数は、LED用シリコーン樹脂に含まれる官能基の種類に応じて適宜選択すればよい。LED用シリコーン樹脂には、通常メチル基とフェニル基が含まれていることに鑑みれば、上記炭素数は2以上20以下であることが好ましく、3以上16以下であることがより好ましく、4以上12以下であることがさらに好ましく、5以上9以下であることがよりさらに好ましい。
 脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基を用いることができる。鎖式の脂肪族炭化水素基であってもよく、環式の脂肪族炭化水素基であってもよい。アルキル基としては、例えば、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等を用いることができる。アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基等を用いることができる。アルキニル基としては、エチニル基、プロピニル基、ブチニル基等を用いることができる。
 芳香族炭化水素基としては、アリール基やアラルキル基を用いることができる。
 アリール基としては、例えば、フェニル基、トリル基、キシリル基、ビフェニル基、1-ナフチル基、2-ナフチル、フェナントリル基等を用いることができる。
 アラルキル基としては、例えば、トリチル基、ベンジル基、フェニルエチル基、フェニルプロピル基、スチリル基、ベンジリデン基等を用いることができる。
 上述した中でも、LED用のシリコーン樹脂との相溶性に優れる点において、炭素数が2以上の炭化水素基としては、フェニル基やキシリル基が好ましく、フェニル基がより好ましい。
 炭素数が2以上の炭化水素基を含むシラン化合物としては、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルフェニルクロロシラン、ジフェニルクロロシラン、フェニルジクロロシラン、メチルフェニルジメトキシシラン、ジフェニルモノメトキシシラン、メチルフェニルジエトキシシラン、およびジフェニルモノエトキシシランの群から選択される少なくとも1種を用いることができる。これらの中でも、LED用のシリコーン樹脂との相溶性を向上させる調整が容易な点でフェニルトリメトキシシランを用いることが好ましい。
 分散液中におけるシラン化合物の含有量は、特に限定されないが、金属酸化物粒子の量に対して、例えば、100質量%以上700質量%以下であることが好ましく、150質量%以上600質量%以下であることがより好ましく、190質量%以500質量%以下であることがさらに好ましい。必要に応じて、200~450質量%や、250~400質量%などであってもよい。これにより、金属酸化物粒子の表面に、シラン化合物を緻密に付着させることができ、金属酸化物粒子の分散安定性を向上させるとともに、メチル系シリコーン樹脂とフェニル系シリコーン樹脂への分散性を向上させることができる。
 本実施形態に係る表面修飾金属酸化物粒子は、本発明の目的を阻害しない範囲であれば、メチル基を含むシラン化合物や炭素数が2以上の炭化水素基を含むシラン化合物以外のシラン化合物や、金属酸化物粒子の表面修飾に一般的に使用される表面修飾材料を含んでもよい。
(2.3シリコーン化合物)
 シリコーン化合物は、比較的大きな分子量を有し、後述するシリコーン樹脂成分との親和性向上に寄与する。シリコーン化合物は、シラン化合物で表面修飾された金属酸化物粒子の表面近傍に存在している。シリコーン化合物は、シラン化合物で表面修飾された金属酸化物粒子と、後述するシリコーン樹脂成分を媒介する役割を果たしている。そのため、シリコーン化合物は、シラン化合物で表面修飾された金属酸化物粒子と、シリコーン樹脂成分と相溶できるものであれば特に限定されない。本実施形態で用いられるシリコーン化合物の数(種類)は特に限定されないが、例えば、1~10種や、2~8種や、3~6種や、4~5種などであってもよい。
 シリコーン化合物は、シラン化合物で表面修飾された金属酸化物粒子と、シリコーン樹脂成分との間に存在すればよいため、シラン化合物で表面修飾された金属酸化物粒子の表面近傍に存在していればよく、シラン化合物で表面修飾された金属酸化物粒子に付着していてもよく、付着していなくてもよい。
 すなわち、本実施形態の「シラン化合物とシリコーン化合物により表面修飾された」とは、シラン化合物は金属酸化物粒子に付着し、シリコーン化合物はシラン化合物が付着した金属酸化物粒子の表面近傍に存在している状態を意味する。
 本実施形態のシラン化合物も、LED用シリコーン樹脂も、メチル基と炭素数が2以上の炭化水素基を含んでいるため、本実施形態のシリコーン化合物は、メチル基、炭素数が2以上の炭化水素基、またはメチル基および炭素数が2以上の炭化水素基の両方、を含んでいることが好ましい。炭素数が2以上の炭化水素基の種類については、上記シラン化合物と同じものを使用できる。なお、本実施形態で使用されるシリコーン化合物は、上記化合物のみに限定されず、メチル基を含んでも、含まなくても良く、炭素数が2以上の炭化水素基を含んでも、含まなくてもよい。
 シリコーン化合物としては、例えば、アルコキシ基含有フェニルシリコーン、ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーン、メチルフェニルハイドロジェンシリコーン、ジフェニルハイドロジェンシリコーン、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーン、アルコキシ片末端トリメチル片末端(メチル基片末端)ジメチルシリコーンおよびアルコキシ基含有フェニルシリコーン等が挙げられる。これらのシリコーン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリコーン化合物は、モノマーであってもよく、オリゴマーであってもよく、レジン(ポリマー)であってもよい。表面修飾が容易であることより、モノマーかオリゴマーを用いることが好ましい。
 上述した中でも、反応のし易さと疎水性の高さの観点から、シリコーン化合物は、好ましくはアルコキシ基含有フェニルシリコーン、ジメチルシリコーン、メチルフェニルシリコーン、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーン、アルコキシ片末端トリメチル片末端(メチル基片末端)ジメチルシリコーンおよびアルコキシ基含有フェニルシリコーンからなる群から選択される少なくとも1種を含み、より好ましくはメトキシ基含有フェニルシリコーン、ジメチルシリコーン、メトキシ基含有ジメチルシリコーンからなる群から選択される少なくとも1種を含む。
 分散液中におけるシリコーン化合物の含有量は、特に限定されないが、金属酸化物粒子に対して、例えば、10質量%以上500質量%以下であることが好ましく、15質量%以上400質量%以下であることがより好ましく、100質量%以上300質量%以下であることがさらに好ましい。必要に応じて、20質量%以上250質量%以下や、30質量%以上200質量%以下や、50質量%以上100質量%以下であってもよい。これにより、金属酸化物粒子の表面に、充分な量のシリコーン化合物を付着させることができ、金属酸化物粒子の分散安定性を向上させるとともに、メチル系シリコーン樹脂への分散性を向上させることができる。さらに、遊離したシリコーン化合物の量を減らすことができ、メチル系シリコーン樹脂中とフェニル系シリコーン樹脂中における金属酸化物粒子の不本意な凝集を抑制することができる。
 また、分散液は、表面修飾材料として上記シラン化合物および上記シリコーン化合物以外の一般的な表面修飾材料や分散剤等を含んでもよい。
 金属酸化物粒子の量に対するシラン化合物とシリコーン化合物の合計の含有量は、特に限定されず、例えば、100質量%以上1000質量%以下であることが好ましく、150質量%以上800質量%以下であることがより好ましく、190質量%以上600質量%以下であることがさらに好ましい。必要に応じて、250~500質量%や、300~400質量%などであってもよい。シラン化合物とシリコーン化合物の合計の量が上述した範囲内であると、遊離するシラン化合物やシリコーン化合物の量を低減しつつ、金属酸化物粒子の分散性を充分に向上させることができる。
(2.4溶媒)
 本実施形態に係る分散液は、金属酸化物粒子を分散する溶媒を分散媒として含む。この溶媒は、シラン化合物とシリコーン化合物により表面修飾された金属酸化物粒子を分散させることができ、後述するシリコーン樹脂成分と混合することができるものであれば、特に限定されないが、疎水性溶媒が好ましい。
 このような疎水性溶媒としては、例えば、芳香族類、飽和炭化水素類、不飽和炭化水素類等が挙げられる。これらの疎水性溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述した中でも、疎水性溶媒は、芳香族類、特に芳香族炭化水素が好ましい。芳香族類は、LED用シリコーン樹脂との相溶性に優れ、これにより得られる組成物の粘度特性の向上および形成される封止部材の品質(透明性、形状等)の向上に資する。
 このような芳香族炭化水素としては、例えば、ベンゼン、トルエン、エチルベンゼン、1-フェニルプロパン、イソプロピルベンゼン、n-ブチルベンゼン、tert-ブチルベンゼン、sec-ブチルベンゼン、o-キシレン、m-キシレン、p-キシレン、2-エチルトルエン、3-エチルトルエン、4-エチルトルエン等が挙げられる。これらの芳香族炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述した中でも、分散液の安定性や、後述する組成物製造時における疎水性溶媒媒の除去等における取り扱い性の容易性の観点からは、疎水性溶媒は、トルエン、o-キシレン、m-キシレン、p-キシレン、ベンゼンからなる群から選択される少なくとも1種が好ましく用いられ、トルエンがより好ましく用いられる。
 分散液に含まれる溶媒の含有量は、所望の固形分となるように適宜調整すればよい。溶媒の含有量は、例えば、40質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、60質量%以上80質量%以下であることがさらに好ましい。これにより、分散液と後述する樹脂成分、特にLED用のシリコーン樹脂との混合がより容易となる。
 本実施形態の分散液は、親水性溶媒を含んでいてもよい。親水性溶媒は、例えば、後述する方法に起因して、分散液中に含まれ得る。このような親水性溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒、ニトリル系溶媒等が挙げられる。これらの親水性溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アルコール系溶媒としては、例えば、炭素数1~4の分岐または直鎖状アルコール化合物およびそのエーテル縮合物が挙げられる。これらのアルコール系溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、アルコール系溶媒に含まれるアルコール化合物は、第1級アルコール、第2級アルコールおよび第3級アルコールのいずれであってもよい。また、アルコール系溶媒に含まれるアルコール化合物は、一価アルコール、二価アルコールおよび三価アルコールのいずれであってもよい。より具体的には、アルコール系溶媒としては、例えば、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブチルアルコール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、メタンジオール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-ブテン-1,4-ジオール、1,4-ブチンジオール、グリセリン、ジエチレングリコール、3-メトキシ-1,2-プロパンジオール等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
 ニトリル系溶媒としては、例えば、アセトニトリル等が挙げられる。
 水と疎水性溶媒双方との親和性に優れ、これらの混和を促進させる観点から、親水性溶媒は、好ましくはアルコール系溶媒を含む。この場合において、アルコール系溶媒を構成するアルコール化合物の炭素数は、1以上3以下であることが好ましく、1以上2以下であることがより好ましい。
 上述した中でも、メタノールおよびエタノール、特にメタノールは、上記のアルコール系溶媒の効果を充分に発現することができるために好適に用いることができる。
 また、分散液中における親水性溶媒の含有量は、例えば、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。1質量%以下や、0.5質量%以下や、0.1質量%であってもよい。親水性溶媒の含有量は0質量%であってもよい。
(2.5その他の成分)
 本実施形態に係る分散液は、上述した以外の成分を含んでもよい。例えば、本実施形態に係る分散液は、必要に応じて上述した以外の成分、例えば、分散剤、分散助剤、酸化防止剤、流動調整剤、増粘剤、pH調整剤、防腐剤等の一般的な添加剤等を含んでいてもよい。
 また、本実施形態に係る分散液は、後述する方法に起因して含まれ得る成分、例えば、酸、水、アルコール等を含んでもよい。
 なお、本明細書において、本実施形態に係る分散液は、樹脂成分を含み、かつ硬化により封止部材を形成可能な本実施形態に係る組成物とは、区別される。すなわち、本実施形態に係る分散液は、単純に硬化させても封止部材を形成可能な程度には後述する樹脂成分を含まない。より具体的には、本実施形態に係る分散液における、樹脂成分と金属酸化物粒子との質量比率は、樹脂成分:無機酸化物粒子で、0:100~40:60の範囲にあることが好ましく、0:100~20:80の範囲にあることがより好ましい。必要に応じて、0:100~10:90の範囲や、0:100~5:95の範囲や、0:100~2:98の範囲であってもよい。本実施形態に係る分散液は、さらに好ましくは後述する樹脂成分を本質的に含まず、特に好ましくは後述する樹脂成分を完全に含まない。
 本実施形態に係る分散液では、所定のシラン化合物と、シリコーン化合物により表面修飾された金属酸化物粒子と、溶媒と、を含む分散液であって、上記式(1)を満足する分散液であるため、メチル系シリコーン樹脂にも、フェニル系シリコーン樹脂にも分散することができる。したがって、本実施形態に係る分散液をメチル系シリコーン樹脂にも分散させた場合であっても、フェニル系シリコーン樹脂に分散させた場合であっても、白濁等の濁りの発生が抑制される。さらに、表面修飾金属酸化物粒子を含むLED用のシリコーン樹脂の粘度変化も抑制される。
<3.分散液の製造方法>
 次に、本実施形態に係る分散液の製造方法について説明する。
 本実施形態に係る分散液の製造方法は、第1の表面修飾材料と金属酸化物粒子とを混合して混合液を得る工程Bと、前記混合液中において前記金属酸化物粒子を分散する工程Cと、前記混合液に第2の表面修飾材料を添加して分散液を得る工程Fと、を有する。前記混合液中における前記金属酸化物粒子の含有量が10質量%以上49質量%以下であり、前記混合液中における前記第1の表面修飾材料と前記金属酸化物粒子との合計の含有量が65質量%以上98質量%以下である。前記第1の表面修飾材料がメチル基を含むシラン化合物であり、前記第2の表面修飾材料が、炭素数が2以上の炭化水素基を含むシラン化合物とシリコーン化合物を含む。
 前記混合液中における前記金属酸化物粒子の含有量は、必要に応じて、15質量%以上45質量%以下や、20質量%以上40質量%以下や、25質量%以上35質量%以下や、30質量%以上33質量%以下であってもよい。前記混合液中における前記第1の表面修飾材料と前記金属酸化物粒子との合計の含有量は、必要に応じて、68質量%以上97質量%以下や、69質量%以上96質量%以下や、70質量%以上95質量%以下や、75質量%以上90質量%以下や、80質量%以上85質量%以下であってもよい。
 すなわち、本実施形態に係る分散液の製造方法は、メチル基を含むシラン化合物と金属酸化物粒子とを混合して混合液を得る工程Bと、上記混合液中において上記金属酸化物粒子を分散して分散液(第1の分散液)を得る工程Cと、上記金属酸化物粒子を含む分散液に、炭素数が2以上の炭化水素基を含むシラン化合物とシリコーン化合物を添加して分散液(第3の分散液)を得る工程Fと、を有する。
 また、本実施形態に係る分散液の製造方法は、金属酸化物粒子の表面修飾方法でもある。その為、以下のように言い換えることもできる。
 すなわち、本実施形態に係る金属酸化物粒子の表面修飾方法は、第1の表面修飾材料と金属酸化物粒子とを混合して混合液を得る工程Bと、前記混合液中において前記金属酸化物粒子を分散する工程Cと、前記混合液に第2の表面修飾材料を添加する工程Fと、を有する。前記混合液中における前記金属酸化物粒子の含有量が10質量%以上49質量%以下であり、前記混合液中における前記第1の表面修飾材料と前記金属酸化物粒子との合計の含有量が65質量%以上98質量%以下である。前記第1の表面修飾材料がメチル基を含むシラン化合物であり、前記第2の表面修飾材料が、炭素数が2以上の炭化水素基を含むシラン化合物とシリコーン化合物を含む。
 なお、上記メチル基を含むシラン化合物および上記炭素数が2以上の炭化水素基を含むシラン化合物と上記金属酸化物粒子の合計の含有量は、固形分により評価することもできる。また、上記メチル基を含むシラン化合物および上記炭素数が2以上の炭化水素基を含むシラン化合物と、上記シリコーン化合物と、上記金属酸化物粒子の合計の含有量も、固形分により評価することができる。
 また、上記メチル基を含むシラン化合物および上記炭素数が2以上の炭化水素基を含むシラン化合物と上記金属酸化物粒子との合計含有量には、後述するシラン化合物の加水分解で発生するアルコールは含まない。すなわち、上記メチル基を含むシラン化合物および上記炭素数が2以上の炭化水素基を含むシラン化合物と上記金属酸化物粒子との合計含有量とは、シラン化合物と、加水分解されたシラン化合物と、金属酸化物粒子との合計含有量を意味する。なお、上記合計含有量が上記メチル基を含むシラン化合物、上記炭素数が2以上の炭化水素基を含むシラン化合物、およびシリコーン化合物に付着された金属酸化物粒子の含有量を含めた値であることは言うまでもない。
 また、本実施形態においては、上記の工程Bに先立ち、必要に応じて、メチル基を含むシラン化合物または、炭素数が2以上の炭化水素基を含むシラン化合物と、水とを混合して、加水分解されたメチル基を含むシラン化合物を含む加水分解液または加水分解された炭素数2以上の炭化水素基を含むシラン化合物を含む加水分解液を得る工程A(加水分解工程)を有してもよい。
 以下、各工程について詳細に説明する。なおメチル基を含むシラン化合物を加水分解する工程を第1の加水分解工程、および炭素数が2以上の炭化水素基を含むシラン化合物を加水分解する工程を、第2の加水分解工程として説明する。
(工程A(第1の加水分解工程))
 第1の加水分解工程では、メチル基を含むシラン化合物(第1のシラン化合物)と水とを混合して、加水分解されたメチル基を含むシラン化合物を含む加水分解液を得る。このように予めメチル基を含むシラン化合物の少なくとも一部が加水分解した混合液を用いることにより、後述する分散工程Cにおいて金属酸化物粒子にメチル基を含むシラン化合物が付着し易くなる。前記メチル基を含むシラン化合物は、炭素数が2以上の炭化水素基を含まない。
 加水分解液中におけるメチル基を含むシラン化合物の含有量は、特に限定されず、加水分解液中の他の成分の残部とすることができるが、例えば、60質量%以上99質量%以下であることが好ましく、70質量%以上97質量%以下であることがより好ましく、80質量%以上95質量%以下であることがさらに好ましい。
 なお、第1の加水分解工程において、メチル基を含むシラン化合物以外の表面修飾材料を加水分解液に含有させてもよい。
 第1の加水分解工程において、加水分解液は水を含む。水は、メチル基を含むシラン化合物等の表面修飾材料の加水分解反応の基質となる。
 加水分解液中における水の含有量は、特に限定されず、例えば、メチル基を含むシラン化合物の量に対応して適宜設定できる。例えば、加水分解液に添加される水の量が、メチル基を含むシラン化合物1molに対して、0.5mol以上5mol以下であることが好ましく、0.6mol以上3mol以下であることがより好ましく、0.7mol以上2mol以下であることがさらに好ましい。これにより、メチル基を含むシラン化合物の加水分解反応を充分に進行させつつ、過剰量の水により製造される分散液において無機酸化物粒子の凝集が生じることをより確実に防止することができる。
 あるいは、加水分解液中における水の含有量は、例えば、1質量%以上20質量%以下であることが好ましく、1質量%以上15質量%以下であることがより好ましく、1質量%以上10質量%以下であることがさらに好ましい。必要に応じて、2質量%以上8質量%以下や、3質量%以上7質量%以下や、4質量%以上6質量%以下であってもよい。
 また、加水分解液には、メチル基を含むシラン化合物および水とともに触媒が添加されてもよい。触媒としては、例えば、酸または塩基を用いることができる。
 酸は、加水分解液中においてメチル基を含むシラン化合物の加水分解反応を触媒する。一方、塩基は、加水分解されたメチル基を含むシラン化合物と金属酸化物粒子表面の官能基、例えば、水酸基やシラノール基との縮合反応を触媒する。これにより、後述する分散工程(工程C)においてメチル基を含むシラン化合物が金属酸化物粒子に付着し易くなり、金属酸化物粒子の分散安定性が向上する。
 ここで、上記の「酸」とは、いわゆるブレンステッド-ローリの定義に基づく酸をいい、メチル基を含むシラン化合物等の表面修飾材料の加水分解反応においてプロトンを与える物質をいう。また、上記の「塩基」とは、いわゆるブレンステッド-ローリの定義に基づく塩基をいい、ここでは、メチル基を含むシラン化合物等の加水分解反応およびその後の縮合反応においてプロトンを受容する物質をいう。
 酸としては、メチル基を含むシラン化合物の加水分解反応においてプロトンを供給可能であれば特に限定されず、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、ホウ酸、リン酸等の無機酸や酢酸、クエン酸、ギ酸等の有機酸が挙げられる。これらの有機酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 塩基としては、メチル基を含むシラン化合物の加水分解反応においてプロトンを受容可能であれば特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム、アンモニア、アミン等が挙げられる。これらの塩基は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述した中でも、触媒としては、酸を用いることが好ましい。酸としては、酸性度の観点から、無機酸が好ましく、また、塩酸がより好ましい。
 加水分解液中における触媒の含有量は、特に限定されないが、例えば、10ppm以上1000ppm以下であることが好ましく、20ppm以上800ppm以下であることがより好ましく、30ppm以上600ppm以下であることがさらに好ましい。これにより、メチル基を含むシラン化合物の加水分解を充分に促進させつつ、メチル基を含むシラン化合物の副反応を抑制することができる。
 また、加水分解液は、親水性溶媒を含んでいてもよい。親水性溶媒は、加水分解液中において、水とシラン化合物の混和を促進させ、これらのシラン化合物の加水分解反応をより一層促進させる。
 このような親水性溶媒としては、例えば、後述する分散液に含まれ得る各種親水性溶媒が挙げられる。
 上述した中でも、水と疎水性溶媒双方との親和性に優れ、これらの混和を促進させる観点から、親水性溶媒は、好ましくはアルコール系溶媒からなる群から選択される少なくとも1種を含み、より好ましくはメタノールおよびエタノールの少なくとも1種を含む。
 また、加水分解液中における親水性溶媒の含有量は、特に限定されないが、例えば、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。これにより、加水分解液中におけるシラン化合物および水の含有量を充分に大きくすることができる。また、加水分解液中における親水性溶媒の含有量は、例えば、10質量%以上であることが好ましく、15質量%以上であることがより好ましい。これにより、メチル基を含むシラン化合物と水との混和をより一層促進することができ、この結果、メチル基を含むシラン化合物の加水分解反応を効率よく進行させることができる。なお、加水分解液中において、加水分解反応由来の化合物を除く親水性溶媒が含まれなくてもよい。
 加水分解工程では、加水分解液を調製後、一定の温度で所定の時間保持してもよい。これにより、シラン化合物の加水分解をより一層促進させることができる。
 この処理において、加水分解液の温度は、特に限定されず、シラン化合物の種類によって適宜変更できるが、例えば、5℃以上65℃以下であることが好ましく、30℃以上60℃以下であることがより好ましい。
 また、保持時間は、特に限定されないが、例えば、10分以上180分以下であることが好ましく、30分以上120分以下であることがより好ましい。
 なお、上記の加水分解液の保持において、加水分解液を適宜撹拌してもよい。
(工程A(第2の加水分解工程))
 第2の加水分解工程では、炭素数が2以上の炭化水素基を含むシラン化合物(第2のシラン化合物)と水とを混合して、加水分解された炭素数が2以上の炭化水素基を含むシラン化合物を含む加水分解液を得る。このように予め炭素数が2以上の炭化水素基を含むシラン化合物の少なくとも一部が加水分解した混合液を用いることにより、後述する添加工程Fにおいて金属酸化物粒子に炭素数が2以上の炭化水素基を含むシラン化合物が付着し易くなる。前記炭素数が2以上の炭化水素基を含むシラン化合物は、メチル基を有していても、有していなくてもよい。
 第2の加水分解工程では、第1の加水分解工程におけるメチル基を含むシラン化合物を、炭素数が2以上の炭化水素基を含むシラン化合物に替えて、同様に行うことができる。
(工程B(混合工程):一次修飾)
 混合工程では、メチル基を含むシラン化合物(第1のシラン化合物)と金属酸化物粒子とを混合して混合液を得る。メチル基を含むシラン化合物は、第1の加水分解工程で処理された化合物であってよい。混合工程では、メチル基を含むシラン化合物と金属酸化物粒子の他に、水や触媒を混合してもよい。なお、上述した第1の加水分解工程により加水分解液を得ている場合、加水分解液と金属酸化物粒子とを混合することにより、混合液が得られる。
 そして、混合液中における金属酸化物粒子の含有量が10質量%以上49質量%以下であり、メチル基を含むシラン化合物と無機酸化物粒子との合計の含有量が65質量%以上98質量%以下であるように、混合が行われる。
 このように、本実施形態においては、混合液中のメチル基を含むシラン化合物と金属酸化物粒子との合計の含有量が非常に大きい。そして、従来、必須であると考えられていた有機溶媒、水等の分散媒は、混合液中に含まれないか、あるいは非常に少量のみ混合される。あるいは、加水分解により、不可避的なアルコール化合物が少量含まれる程度である。このような場合であっても、分散工程を経ることにより、混合液中において、金属酸化物粒子の均一な分散が可能であるとともに、メチル基を含むシラン化合物の金属酸化物粒子への均一な付着(表面修飾)が達成される。
 詳しく説明すると、一般に金属酸化物粒子を液相中にてシラン化合物等の表面修飾材料により表面修飾する場合には、金属酸化物粒子と表面修飾材料のみならず分散媒を混合して混合液を得て、前記混合液について分散機を用いて分散処理することが一般的である。しかしながら、このような方法で表面修飾された金属酸化物粒子は、メチル系シリコーン樹脂と混合した際に、充分に前記メチル系シリコーン樹脂中に分散できず凝集してしまい、結果として、メチル系シリコーン樹脂に白濁等の濁りが生じるという問題がある。このような場合、添加される金属酸化物粒子は、目的とする性能が充分に発揮されない。
 一方、本発明で使用されるメチル基を含むシラン化合物は、低分子であり、粘度が比較的小さい。さらに、上述した加水分解工程において加水分解されていることにより、金属酸化物粒子への付着性が良好である。このため、メチル基を含むシラン化合物は、高濃度のシラン化合物中での金属酸化物粒子の分散に極めて好適である。
 メチル基を含むシラン化合物と金属酸化物粒子との合計の含有量が65質量%未満である場合、上記2成分以外の成分、例えば、分散媒が多くなり過ぎる。その為、後述する分散工程(工程C)においてメチル基を含むシラン化合物を充分に金属酸化物粒子の表面に付着させることができない傾向がある。その結果、金属酸化物粒子表面に水酸基が多く残存し、得られる分散液を疎水性の材料と混合した際に、金属酸化物粒子が凝集してしまい、疎水性の材料に濁りが生じてしまう。メチル基を含むシラン化合物と金属酸化物粒子との合計の含有量は、65質量%以上であればよいが、70質量%以上であることが好ましく、75質量%以上であることがより好ましい。
 これに対して、メチル基を含むシラン化合物と金属酸化物粒子との合計の含有量が98質量%を超えると、混合液の粘度が高くなり過ぎて、後述する分散工程(工程C)においてメチル基を含むシラン化合物を充分に金属酸化物粒子の表面に付着させることができない。メチル基を含むシラン化合物と金属酸化物粒子との合計の含有量は、98質量%以下であればよいが、97質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 また、上述したように、混合液中における金属酸化物粒子の含有量が10質量%以上49質量%以下である。これにより、金属酸化物粒子に対するメチル基を含むシラン化合物の量を適切な範囲内とすることができ、金属酸化物粒子の表面に均一にメチル基を含むシラン化合物を付着させることができるとともに、混合液の粘度の上昇を抑制することができる。
 これに対して、混合液中における金属酸化物粒子の含有量が10質量%未満である場合、金属酸化物粒子に対してメチル基を含むシラン化合物の量が過剰となり、得られる分散液において過剰のメチル基を含むシラン化合物が金属酸化物粒子の凝集を誘発する。混合液中における金属酸化物粒子の含有量は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。
 また、金属酸化物粒子の含有量が49質量%を超えると、金属酸化物粒子に対してメチル基を含むシラン化合物の量が不足し、金属酸化物粒子に充分な量のメチル基を含むシラン化合物が付着しない。また、金属酸化物粒子の含有量が多くなり過ぎる結果、混合液の粘度が大きくなり過ぎ、後述する分散工程(工程C)において、金属酸化物粒子を充分に分散できない。混合液中における金属酸化物粒子の含有量は、45質量%以下であることが好ましく、40質量%以下であることがより好ましい。
 混合液中における金属酸化物粒子の含有量に対するメチル基を含むシラン化合物の含有量は、特に限定されないが、例えば、100質量%以上800質量%以下であることが好ましく、140質量%以上600質量%以下であることがより好ましく、180質量%以上400質量%以下であることがさらに好ましい。必要に応じて、200質量%以上300質量%以下であってもよい。これにより、金属酸化物粒子に対するメチル基を含むシラン化合物の量を適切な範囲内とすることができ、金属酸化物粒子の表面に均一にメチル基を含むシラン化合物を付着させることができる。
 また、混合工程では、混合液にさらに有機溶媒を混合してもよい。混合液に有機溶媒を混合することにより、シラン化合物の反応性を制御することが可能となり、金属酸化物粒子表面へのシラン化合物の付着の程度を制御することが可能となる。さらに、有機溶媒により、混合液の粘度の調節が可能となる。
 このような有機溶媒としては、上述した本実施形態に係る分散液の分散媒として挙げた疎水性溶媒や親水性溶媒が挙げられる。これらの有機溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 混合液中における有機溶媒の含有量は、上述した金属酸化物粒子およびメチル基を含むシラン化合物の含有量を満足するものであれば特に限定されない。なお、混合液中に有機溶媒が含まれなくてもよいことはいうまでもない。
(工程C(分散工程))
 分散工程では、混合工程で得た混合液中において金属酸化物粒子を分散して、金属酸化物粒子が分散した第1の分散液を得る。本実施形態において、金属酸化物粒子は、加水分解された高濃度のメチル基を含むシラン化合物中において分散される。したがって、得られる第1の分散液においては、金属酸化物粒子の表面に比較的均一にメチル基を含むシラン化合物が付着しており、かつ、金属酸化物粒子が比較的均一に分散した、第1の分散液を得る。
 金属酸化物粒子の分散は、公知の分散機により行うことができる。分散機としては、例えば、ビーズミル、ボールミル、ホモジナイザー、ディスパー、撹拌機等が好適に用いられる。
 ここで、分散工程では、分散液中における金属酸化物粒子の粒子径(分散粒子径)がほぼ均一となるように、過剰なエネルギーは付与せず、必要最低限のエネルギーを付与して、混合液中において金属酸化物粒子を分散させることが好ましい。
 また、分散工程の後、第1の分散液に、疎水性溶媒を添加して、第2の分散液を得る溶媒添加工程D(第1の添加工程)を有していてもよい。
 疎水性溶媒としては、前述した本実施形態に係る分散液の分散媒として挙げた疎水性溶媒が挙げられる。これらの疎水性溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(工程D(第1の添加工程))
 第1の添加工程では、上記第1の分散液に疎水性溶媒を添加し、所望の固形分(濃度)に調整された第2の分散液を得る。
 分散工程Cで得られた第1の分散液は、固形分(濃度)が高いため、粘度が高く、ハンドリング性が悪い。しかし、固形分を低くするために、得られた第1の分散液に疎水性溶媒を添加すると、粒子表面の疎水性が低いため、粒子が凝集してしまい、均一な分散液が得られない。
 そこで、本発明者等は、得られた第1の分散液を加熱し、疎水性溶媒を徐々に添加することで、固形分の低い分散液に調整できることも見出した。
 そのメカニズムは以下のように推測される。
 第1の分散液を加熱することにより、金属酸化物粒子に付着したメチル基を含むシラン化合物の重合が進行し、粒子表面の疎水性が向上する。重合反応が進行し過ぎても金属酸化物粒子は凝集する。そのため、重合反応が進行中の第1の分散液に疎水性溶媒を徐々に添加することにより、過剰な重合反応を抑制しつつ、表面が徐々に疎水化される。これにより、第1の分散液に、疎水性の溶媒を徐々に混合することができる。
 すなわち、金属酸化物粒子が凝集しない程度の量の疎水性溶媒を添加し、添加した量の疎水性溶媒と相溶できる程度に、メチル基を含むシラン化合物の重合反応を進行させることができる。これにより、所望の固形分に調整された分散液を得ることができる。
 上述の通り、疎水性溶媒は、金属酸化物粒子が凝集しないように、徐々に添加すればよい。そのため、第1の分散液を加熱してから溶媒を添加してもよく、疎水性溶媒を添加してから第1の分散液を加熱してもよく、第1の分散液の加熱と疎水性溶媒の添加を同時に行ってもよい。
 すなわち、第1の添加工程は、上記の第1の分散液を加熱した後に、疎水性溶媒を上記の金属酸化物粒子が凝集しない速度で加える工程d1であってもよく、上記の第1の分散液を加熱しながら、疎水性溶媒を上記の金属酸化物粒子が凝集しない速度で加える工程d2であってもよく、または、疎水性溶媒を上記の金属酸化物粒子が凝集しない速度で加えた後に、上記の第1の分散液を加熱する工程d3であってもよい。
 金属酸化物粒子が凝集しない速度は、特に限定されない。例えば、1時間で3質量%以上20質量%以下の範囲で固形分が低くなるような速度で連続的に疎水性溶媒を添加すればよい。加熱温度が高い場合には疎水性溶媒の添加量を多くし、加熱温度が低い場合には疎水性溶媒の添加量を少なくするように、疎水性溶媒の添加量を適宜調整すればよい。
 例えば、30分毎、1時間毎、または2時間毎に、3質量%以上20質量%以下の範囲で固形分が低くなるように、疎水性溶媒を段階的に添加すればよい。加熱温度が高い場合には一度に添加する疎水性溶媒の添加量を多めにし、加熱温度が低い場合には一度に添加する疎水性溶媒の添加量を少なくするように、疎水性溶媒の添加量を適宜調整すればよい。
 加熱温度は、メチル基を含むシラン化合物の重合反応が進行する温度であれば特に限定されない。加熱温度は、例えば、35℃以上80℃以下であることが好ましい。加熱温度が35℃以上であることにより、メチル基を含むシラン化合物の重合反応を進行させることができる。一方、加熱温度が80℃以下であることにより、メチル基を含むシラン化合物の急激な反応による金属酸化物粒子の凝集を抑制することができる。
 加熱時間は、固形分の調整が終わるまで適宜実施すればよく、例えば、4時間以上12時間以下であることが好ましい。加熱時間が4時間以上であることにより、メチル基を含むシラン化合物の重合反応が進行し、溶媒と混合することが可能となる。一方、加熱時間が12時間以下であることにより、メチル基を含むシラン化合物の重合反応の進行し過ぎによる金属酸化物粒子の凝集を抑制することができる。
 疎水性溶媒は、後述する組成物製造時における分散媒の除去等における取り扱い性の容易性の観点から、トルエン、o-キシレン、m-キシレン、p-キシレンおよびベンゼンからなる群から選択される少なくとも1種が好ましく用いられ、トルエンがより好ましく用いられる。
 最終的な第2の分散液に含まれる疎水性溶媒の含有量は、所望の固形分となるように適宜調整すればよい。疎水性溶媒の含有量は、例えば、40質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、60質量%以上80質量%以下であることがさらに好ましい。
 第1の添加工程により、所望の固形分に調整された第2の分散液が得られる。第2の分散液を用いることにより、以下の工程における分散液のハンドリング性が向上する。
(工程E(除去工程))
 本実施形態では、工程Dの後に、加水分解により生じたアルコールを除去する工程Eを設けてもよい。
 除去工程を設けることにより、以下に説明する組成物の生産効率が向上すると推測される。
 除去する方法は特に限定されないが、例えば、エバポレータを用いることができる。除去工程は、アルコールが完全に除去されるまで行ってもよく、5質量%程度残存していてもよい。
(工程F(第2の添加工程):二次修飾、または、二次修飾および三次修飾)
 第2の添加工程では、第2の分散液に、炭素数が2以上の炭化水素基を含むシラン化合物(第2のシラン化合物)と、シリコーン化合物とを添加して、第3の分散液を得る。なお、上述した加水分解工程(第2の加水分解工程)により炭素数が2以上の炭化水素基を含むシラン化合物の加水分解液を得ている場合、第2の分散液と、炭素数が2以上の炭化水素基を含むシラン化合物の加水分解液と、シリコーン化合物とを混合することにより、第3の分散液が得られる。上述したように、分散工程Cを行うことにより、メチル基を含むシラン化合物が、金属酸化物粒子の表面に比較的均一に付着している。したがって、第3の分散液では、第2の添加工程で新たに添加されるシラン化合物とシリコーン化合物は、既に付着している上記メチル基を含むシラン化合物を介して、金属酸化物粒子の表面に比較的均一に付着されていると推測される。
 第2の添加工程では、第2の分散液に所定のシラン化合物とシリコーン化合物を混合した混合液(第3の分散液)を所定の温度で所定時間保持してもよい。これにより、シラン化合物とシリコーン化合物の金属酸化物粒子への付着をより一層促進させることができる。
 なお、シラン化合物とシリコーン化合物は同時に添加してもよく、シラン化合物を添加した後にシリコーン化合物を添加してもよく、シリコーン化合物を添加した後にシラン化合物を添加してもよい。優れた分散性を達成する点からは、シラン化合物を添加した後に、シリコーン化合物を添加することが好ましい。
 第2の添加工程では、保持温度は特に限定されず、シラン化合物の種類によって適宜変更できるが、例えば、40℃以上150℃以下であることが好ましく、50℃以上140℃以下であることがより好ましい。
 保持時間は特に限定されず、例えば、1時間以上24時間以下であることが好ましく、2時間以上20時間以下であることがより好ましい。なお、上記の保持において、第2の分散液を適宜撹拌してもよい。
 また、第2の添加工程では、1回、又は複数回、1種類以上の上記シラン化合物による表面修飾を行ってもよい。例えば、異なる種類のシラン化合物を1回以上用いてもよく、同じシラン化合物で複数回表面修飾してもよい。
 また、第2の添加工程では、1回、又は複数回、1種類以上の上記シリコーン化合物による表面修飾を行ってもよい。例えば、異なる種類のシリコーン化合物を1回以上用いてもよく、同じシリコーン化合物で複数回表面修飾してもよい。
 また、第2の添加工程では、所定温度で所定時間保持した後に、上記溶媒を添加して、第3の分散液の固形分を調整してもよい。溶媒を添加して分散液の固形分を小さくすることで、後述するシリコーン樹脂成分との混合がより容易になる。
 第2の添加工程で添加されるシラン化合物の量は、混合工程Bで混合されたメチル基を含むシラン化合物の量も含めて、金属酸化物粒子の量に対して、例えば、100質量%以上700質量%以下となるように、添加すればよい。
 また、表面修飾金属酸化物粒子中の炭素数が2以上の炭化水素基に対するメチル基のモル比率(メチル基/炭素数が2以上の炭化水素基)が0.01以上10以下となるように、添加する。
 これにより、金属酸化物粒子の表面に、シラン化合物を緻密に付着させることができ、金属酸化物粒子の分散安定性を向上させるとともに、メチル系シリコーン樹脂とフェニル系シリコーン樹脂への分散性を向上させることができる。
 第2の添加工程で添加されるシリコーン化合物は、金属酸化物粒子に対して、例えば、好ましくは10質量%以上500質量%以下となるように第2の分散液に添加することができる。
 添加されるシリコーン化合物がメチル基および炭素数が2以上の炭化水素基の少なくとも一方を含む場合には、メチル基/炭素数が2以上の炭化水素基が0.01以上10以下となるように添加する。
 これにより、金属酸化物粒子の表面に、充分な量のシリコーン化合物を付着させることができ、金属酸化物粒子の分散安定性を向上させるとともに、LED用シリコーン樹脂への分散性を向上させることができる。さらに、遊離したシリコーン化合物の量を減らすことができ、LED用シリコーン樹脂中における金属酸化物粒子の不本意な凝集を抑制することができる。
 以上により、金属酸化物粒子をメチル基および炭素数が2以上の炭化水素基を含むシラン化合物とシリコーン化合物により表面修飾した第3の分散液を得ることができる。
 本実施形態に係る表面修飾金属酸化物粒子の製造方法を用いて製造された表面修飾金属酸化物粒子を含む分散液は、金属酸化物粒子の表面がメチル基および炭素数が2以上の炭化水素基を含むシラン化合物により緻密かつ充分に修飾され、さらにシリコーン化合物が金属酸化物粒子の表面近傍に存在している。また、本実施形態に係る金属酸化物粒子の表面修飾方法は、メチル基および炭素数が2以上の炭化水素基を含むシラン化合物を、金属酸化物粒子の表面に緻密かつ十分に修飾し、さらにシリコーン化合物を、金属酸化物粒子の表面近傍に存在させることができる。そして、このように表面修飾された表面修飾金属酸化物粒子は、LED用のメチル系シリコーン樹脂にも、フェニル系シリコーン樹脂にも相溶性に優れ、双方の樹脂に対して、比較的均一に分散することができる。したがって、メチル系シリコーン樹脂であっても、フェニル系シリコーン樹脂であっても、表面修飾金属酸化物粒子を分散させた場合、白濁等の濁りの発生が抑制される。さらに、表面修飾金属酸化物粒子を含むLED用のシリコーン樹脂の粘度変化も抑制される。
<4.組成物>
 次に、本実施形態に係る組成物について説明する。
 本実施形態に係る組成物は、上述した表面修飾金属酸化物粒子を含む分散液と、シリコーン樹脂成分と、を含む。すなわち、本実施形態に係る組成物は、上述した分散液とシリコーン樹脂成分との混合物である。したがって、本実施形態に係る組成物は、上述したメチル基、またはメチル基および炭素数が2以上の炭化水素基を含むシラン化合物により表面修飾された金属酸化物粒子と溶媒に加え、シリコーン樹脂成分を含む。
 ここで、シリコーン樹脂成分とは、シリコーン樹脂が硬化する前の流動性を有する状態であることを意味する。
 本実施形態に係る組成物は、後述するように硬化させて発光素子の封止部材として用いられる。本実施形態に係る組成物は、上述した屈折率と透明性の向上に寄与する金属酸化物粒子を含むことにより、封止部材に用いた際に発光装置の光の明るさを向上させることができる。
 さらに、本実施形態に係る組成物は、上述したメチル基および炭素数が2以上の炭化水素基のモル比率が所定範囲に調整されたシラン化合物とシリコーン化合物が、上記式(1)を満たすほど充分に金属酸化物粒子に付着した表面修飾金属酸化物粒子を含む。そのため、シリコーン樹脂成分が含まれる場合であっても、シリコーン樹脂成分が硬化した後であっても、金属酸化物粒子の凝集が抑制され、組成物の透明性の低下が抑制されている。このため、本実施形態に係る組成物を封止部材に用いた際に発光装置の光の明るさを向上させることができる。
 本実施形態の組成物における、金属酸化物粒子の含有量は、透明性の高い組成物を得る観点においては、5質量%以上50質量%以下であることが好ましく、5質量%以上40質量%以下であることがより好ましく、10質量%以上35質量%以下であることがさらに好ましい。
 また、メチル基および炭素数が2以上の炭化水素基を含むシラン化合物と、シリコーン化合物の含有量は、本実施形態に係る表面修飾金属酸化物粒子における含有量に対応することができる。
 シリコーン樹脂成分は、本実施形態に係る組成物における主成分である。シリコーン樹脂成分は、本実施形態に係る組成物を封止材料として用いた際において硬化して発光素子を封止することにより、発光素子に水分、酸素等の外部環境からの劣化因子が到達することを防止する。また、本実施形態において、シリコーン樹脂成分より得られる硬化物は、基本的に透明であり、発光素子から放出される光を透過させることができる。
 シリコーン樹脂成分としては、LEDを封止するためのLED用シリコーン樹脂成分であれば特に限定されない。シリコーン樹脂成分は、メチル基とフェニル基を含むことが好ましい。シリコーン樹脂成分は、メチル系シリコーン樹脂成分であってもよく、フェニル系シリコーン樹脂成分であってもよい。メチル系シリコーン樹脂成分とは、メチル基を多く含むシリコーン樹脂成分を意味する。メチル系シリコーン樹脂成分は、メチル基含有シリコーン樹脂成分であってもよく、メチルフェニルシリコーン樹脂成分であってもよく、ジメチルシリコーン樹脂成分であってもよい。汎用性の高さの観点より、メチルフェニルシリコーン樹脂成分が好ましい。
 フェニル系シリコーン樹脂成分とは、フェニル基を多く含むシリコーン樹脂成分を意味する。フェニル系シリコーン樹脂成分は、フェニル基含有シリコーン樹脂成分であってもよく、メチルフェニルシリコーン樹脂成分であってもよく、ジフェニルシリコーン樹脂であってもよい。汎用性の高さの観点より、メチルフェニルシリコーン樹脂成分が好ましい。
 本実施形態に係る組成物中におけるシリコーン樹脂成分の含有量は、他の成分の残部とすることができるが、例えば、10質量%以上70質量%以下であることが好ましい。シリコーン樹脂成分の含有量は、20質量%以上60質量%以下や、30質量%以上50質量%以下や、35質量%以上45質量%以下であってもよい。
 本実施形態に係る組成物中におけるシリコーン樹脂成分と表面修飾金属酸化物粒子との質量比は、シリコーン樹脂:表面修飾金属酸化物粒子で、50:50~90:10の範囲にあることが好ましく、60:40~80:20の範囲にあることがより好ましい。
 本実施形態に係る組成物は、本実施形態に係る分散液由来の溶媒を含んでいてもよく、除去されていてもよい。すなわち、分散液由来の溶媒を完全に除去してもよく、組成物中に1質量%以上10質量%以下程度残存していてもよく、2質量%以上5質量%以下程度残存していてもよい。
 本実施形態に係る組成物には、本発明の目的を阻害しない範囲で、蛍光体粒子を含んでいてもよい。蛍光体粒子は、発光素子から放出される特定の波長の光を吸収し、所定の波長の光を放出する。すなわち、蛍光体粒子により光の波長の変換ひいては色調の調整が可能となる。
 蛍光体粒子は、後述するような発光装置に使用できるものであれば、特に限定されず、発光装置の発光色が所望の色となるように、適宜選択して用いることができる。
 本実施形態の組成物中における蛍光体粒子の含有量は、所望の明るさが得られるように、適宜調整して用いることができる。
 また、本実施形態に係る組成物には、本発明の目的を阻害しない範囲で、防腐剤、重合開始剤、重合禁止剤、硬化触媒、光拡散剤等の、一般的に用いられる添加剤が含有されていてもよい。光拡散剤としては、平均粒子径が1μm以上30μm以下のシリカ粒子を用いることが好ましい。
 本実施形態に係る組成物は、上述したメチル基および炭素数が2以上の炭化水素基を所定比率で含むシラン化合物およびシリコーン化合物が、上記式(1)を満たすほど充分に金属酸化物粒子に付着した表面修飾金属酸化物粒子を含む。そのため、シリコーン樹脂成分がメチル系シリコーン樹脂成分であっても、フェニル系シリコーン樹脂成分であっても、金属酸化物粒子の凝集が抑制され、透明性の低下が抑制される。このため、本実施形態に係る組成物を用いて、発光装置の光の明るさを向上させる封止部材を形成することができる。
<5.組成物の製造方法>
 次に、本実施形態に係る組成物の製造方法について説明する。
 本実施形態に係る組成物の製造方法は、上述の表面修飾金属酸化物粒子の製造方法で得られた第3の分散液にシリコーン樹脂成分を添加して、組成物を得る工程Hを有する。
(工程G(第3の添加工程))
 第3の添加工程では、上記第3の分散液にシリコーン樹脂成分を添加し、組成物を所望の固形分(濃度)に調整する。
 最終的な組成物に含まれるシリコーン樹脂成分の含有量は、所望の固形分となるように適宜調整すればよい。シリコーン樹脂成分の含有量は、例えば、10質量%以上70質量%以下であることが好ましい。
 第3の添加工程により、所望の固形分に調整された組成物が得られる。
(工程H(除去工程))
 本実施形態では、工程Gの後に、第3の分散液に含まれる溶媒を除去する工程Hを設けてもよい。
 除去する方法は特に限定されないが、例えば、エバポレータを用いることができる。 除去工程は、溶媒が完全に除去されるまで行ってもよく、5質量%程度残存していてもよい。
 以上により、本実施形態に係る組成物を得ることができる。
<6.封止部材>
 本実施形態に係る封止部材は、本実施形態に係る組成物の硬化物である。本実施形態に係る封止部材は、通常、発光素子上に配置される封止部材またはその一部として用いられる。
 本実施形態に係る封止部材の厚みや形状は、所望の用途や特性に応じて適宜調整することができ、特に限定されるものではない。
 本実施形態に係る封止部材は、上述したように本実施形態に係る組成物を硬化することにより製造することができる。組成物の硬化方法は、本実施形態に係る組成物中のシリコーン樹脂の特性に応じて選択することができ、例えば、熱硬化や電子線硬化等が挙げられる。より具体的には、本実施形態の組成物中のシリコーン樹脂を付加反応や重合反応により硬化することにより、本実施形態の封止部材が得られる。
 封止部材中における金属酸化物粒子の平均分散粒子径は、10nm以上300nm以下であることが好ましく、20nm以上250nm以下であることがより好ましく、30nm以上200nm以下であることがさらに好ましい。
 なお、封止部材中の金属酸化物粒子の平均分散粒子径は、封止部材の透過型電子顕微鏡観察(TEM)により測定される、個数分布基準の平均粒子径(メジアン径)である。また、本実施形態に係る封止部材中の金属酸化物粒子の平均分散粒子径は、封止部材中における金属酸化物粒子の分散粒子径に基づいて測定、算出される値である。平均分散粒子径は、金属酸化物粒子が一次粒子または二次粒子のいずれの状態で分散しているかに関わらず、分散している状態の金属酸化物粒子の径に基づいて測定、算出される。また、本実施形態において、封止部材中の金属酸化物粒子の平均粒子径は、上記シラン化合物およびシリコーン化合物に表面修飾された金属酸化物粒子の平均粒子径として測定されてもよい。封止部材中には、上記シラン化合物およびシリコーン化合物に表面修飾された金属酸化物粒子と、シラン化合物およびシリコーン化合物に表面修飾されていない金属酸化物粒子とが存在し得る。そのため、通常、封止部材中の金属酸化物粒子の平均粒子径は、これらの混合状態における値として測定される。
 本実施形態に係る封止部材は、本実施形態に係る組成物の硬化物であるので、屈折率と透明性とに優れている。そのため、本実施形態によれば、発光装置の光の明るさを向上させる取り出し効率に優れる封止部材を得ることができる。
<7.発光装置>
 次に、本実施形態に係る発光装置について説明する。本実施形態に係る発光装置は、上述した封止部材と、前記封止部材に封止された発光素子とを備える。
 発光素子としては、例えば、発光ダイオード(LED)、有機発光ダイオード(OLED)等が挙げられる。特に、本実施形態に係る封止部材は、発光ダイオードの封止に適している。
 以下、発光素子が、チップ上の発光ダイオード、すなわちLEDチップであり、発光装置がLEDパッケージである例を挙げて、本実施形態に係る発光装置を説明する。
 図1~図4は、それぞれ、本発明の実施形態に係る発光装置の一例を示す模式図(断面図)である。
 なお、図中の各部材の大きさは、説明を容易とするため適宜強調されており、実際の寸法、部材間の比率を示すものではない。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1に示す発光装置(LEDパッケージ)1Aは、凹部21を有する基板2と、基板2の凹部21の底面上に配置される発光素子(LEDチップ)3と、凹部21において発光素子3を覆うように封止する封止部材4Aとを備えている。
 封止部材4Aは、上述した本実施形態に係る封止部材により構成されている。したがって、封止部材4A中においては、上述した本実施形態に係る組成物由来の金属酸化物粒子が分散されており、この結果、発光装置1Aにおける光の取出し効率が向上している。また、封止部材4A内においては、蛍光体粒子5が分散している。蛍光体粒子5は、発光素子3より出射される光の少なくとも一部の波長を変換する。
 図2に示す発光装置1Bは、封止部材4Bが2層となっている点で発光装置1Aと異なる。すなわち、封止部材4Bは、発光素子3を直接覆う第1の層41Bと、第1の層41Bを覆う第2の層43Bとを有している。第1の層41Bと第2の層43Bとは、共に本実施形態に係る封止部材である。第1の層41B内においては、蛍光体粒子5が分散している。一方、第2の層43Bは、蛍光体粒子5を含まない。発光装置1Bは、封止部材4Bを構成する第1の層41Bおよび第2の層43B内において、上述した本実施形態に係る組成物由来の金属酸化物粒子が分散されていることにより、光の明るさが向上している。
 図3に示す発光装置1Cも、封止部材4Cの構成が封止部材4Aのものと異なる点で、発光装置1Aと異なっている。封止部材4Cは、発光素子3を直接覆う第1の層41Cと、第1の層41Cを覆う第2の層43Cとを有している。第1の層41Cは、本実施形態に係る封止部材ではなく、上述した金属酸化物粒子を含まない樹脂の封止部材であり、封止部材に用いることのできる樹脂等により構成されている。また、第1の層41C内においては、蛍光体粒子5が分散している。一方、第2の層43Cは、本実施形態に係る封止部材である。発光装置1Cは、封止部材4Cを構成する第2の層43C内において、上述した本実施形態に係る組成物由来の金属酸化物粒子が分散されていることにより、光の取出し効率が向上している。
 図4に示す発光装置1Dでは、封止部材4Dは、発光素子3を直接覆う第1の層41Dと、第1の層41Dを覆う第2の層43Dと、第2の層43Dをさらに覆う第3の層45Dとを有している。第1の層41Dおよび第2の層43Dは、本実施形態に係る封止部材ではなく、上述した金属酸化物粒子を含まない樹脂の封止部材であり、封止部材に用いることのできる樹脂等により構成されている。また、第2の層43D内においては、蛍光体粒子5が分散している。一方、第3の層45Dは、本実施形態に係る封止部材である。発光装置1Dは、封止部材4Dを構成する第3の層45D内において、上述した本実施形態に係る組成物由来の金属酸化物粒子が分散されていることにより、光の明るさが向上している。
 なお、本実施形態に係る発光装置は、図示の態様に限定されるものではない。例えば、本実施形態に係る発光装置は、封止部材中に蛍光体粒子を含まなくてもよい。また、本実施形態に係る封止部材は、封止部材中の任意の位置に存在することができる。
 以上、本実施形態に係る発光装置は、発光素子が本実施形態の封止部材により封止されているため、光の明るさが向上している。
 また、本実態に係る発光装置は、上述したような本実施形態に係る組成物により発光素子が封止される。したがって、本発明は、一側面において、本実施形態に係る組成物を用いて発光素子を封止する工程を有する発光装置の製造方法にも関する。同側面において、上記製造方法は、本実施形態に係る分散液と樹脂成分とを混合して上記組成物を得る工程を有していてもよい。
 なお、発光素子の封止は、例えば、ディスペンサー等により、本実施形態に係る組成物を発光素子上に付与し、その後前記組成物を硬化させることにより行うことができる。
<8.照明器具、表示装置>
 上述したような本実施形態に係る発光装置は、例えば、照明器具および表示装置に用いることができる。したがって、本発明は、一側面において、本実施形態に係る発光装置を備える照明器具または表示装置に関する。
 照明器具としては、例えば、室内灯、室外灯等の一般照明装置、携帯電話やOA機器等の、電子機器のスイッチ部の照明等が挙げられる。
 本実施形態に係る照明器具は、本実施形態に係る発光装置を備えるため、同一の発光素子を使用しても従来と比較して放出される光束が大きくなり、周囲環境をより明るくすることができる。
 表示装置としては、例えば、携帯電話、携帯情報端末、電子辞書、デジタルカメラ、コンピュータ、テレビ、およびこれらの周辺機器等が挙げられる。
 本実施形態に係る表示装置は、本実施形態に係る発光装置を備えるため、同一の発光素子を使用しても従来と比較して放出される光束が大きくなり、例えば、より鮮明かつ明度の高い表示を行うことができる。
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下に説明する実施例は、あくまでも本発明の一例であって、本発明を限定するものではない。
[実施例1]
(分散液の作製)
(1)第1の加水分解工程
 第1のシラン化合物として、メチルトリメトキシシラン(製品名:KBM-13、信越工業化学社製)90.78質量部と、水9.21質量部と、塩酸(1N)0.01質量部とを添加して混合し、加水分解液を得た。次いで、この加水分解液を60℃で30分撹拌し、メチルトリメトキシシランの加水分解処理を行い、加水分解液を得た。
(2)混合工程(一次修飾)
 平均一次粒子径が12nmの酸化ジルコニウム(ZrO)粒子(住友大阪セメント社製)30質量部と、上記加水分解液70質量部とを混合して、混合液を得た。混合液中の酸化ジルコニウム粒子の含有量は30質量%、メチルトリメトキシシランの含有量は63.5質量%、酸化ジルコニウム粒子とメチルトリメトキシシランの合計の含有量は93.5質量%であった。
(3)分散工程
 この混合液をビーズミルで6時間分散処理した後、ビーズを除去し、第1の分散液を得た。
 第1の分散液の固形分(100℃で1時間)を測定した結果、70質量%であった。
(4)第1の添加工程
 得られた第1の分散液を60℃で2時間加熱した。次いで、固形分が40質量%となるように分散液にトルエンを添加し、60℃で2時間加熱した。
 次いで、固形分が30質量%となるように分散液にトルエンを添加し、60℃で1時間加熱した。
 次いで、固形分が20質量%となるように分散液にトルエンを添加し、60℃で1時間加熱することで、第2の分散液を得た。
(FT-IR分析)
 第2の分散液の一部を分取し、真空乾燥機で乾燥した。得られた表面修飾酸化ジルコニウム粒子0.01g~0.05gを用いて、フーリエ変換式赤外分光光度計(型番:FT/IR-670 Plus、日本分光株式会社製)で、800cm-1以上3800cm-1以下の波数の範囲の透過スペクトルを測定した。この測定範囲における透過スペクトルの最大値を100、最小値を0となるように透過スペクトルの値を規格化し、3500cm-1の規格化されたスペクトル値(IA)と1100cm-1の規格化されたスペクトル値(IB)を求めた。この結果、IA/IBは7であった。
(5)第2の加水分解工程
 第2のシラン化合物として、フェニルトリメトキシシラン(製品名:KBM-103、信越工業化学社製)91.66質量部と、水8.33質量部と、塩酸(1N)0.01質量部とを添加して混合し、加水分解液を得た。次いで、この加水分解液を60℃で30分撹拌し、フェニルトリメトキシシランの加水分解処理を行い、加水分解液を得た。
(6)第2の添加工程(二次修飾)
 固形分が15質量%に調整された第2の分散液62.5質量部と、第2の加水分解工程で得た上記フェニルトリメトキシシランの加水分解液6.3質量部と、メチル基とフェニル基を含むシリコーン化合物(商品名:KR213(高フェニル含有)、信越化学工業社製)31.2質量部とを混合し、100℃で3時間撹拌することで、実施例1に係る分散液(第3の分散液)を得た。
(分散液の評価)
(1)FT-IR分析
 トルエンで固形分を30質量%に調整した実施例1に係る分散液10gを真空乾燥機(EYELA東京理化器機社製、装置名:VACUUM OVEN VOS-201SD)を用いて、100℃、20hPaの条件下で2時間乾燥した。次いで、得られた金属酸化物粒子0.01g~0.05gを用いて、フーリエ変換式赤外分光光度計(型番:FT/IR-670 Plus、日本分光株式会社製)で、800cm-1以上3800cm-1以下の波数の範囲の透過スペクトルを測定した。この測定範囲におけるスペクトルの最大値を100、最小値を0となるようにスペクトルの値を規格化し、3500cm-1の値(IA)と1100cm-1の値(IB)を求めた。この結果、IA/IBは1.0であった。結果を表1に示す。
(2)NMR測定
 トルエンで固形分を30質量%に調整した実施例1に係る分散液15gと、メタノール15gとを混合し、表面修飾酸化ジルコニウム粒子を沈殿させた。この混合液を遠心分離機で固液分離し、固体部分(表面修飾酸化ジルコニウム粒子)を回収した。回収後の表面修飾酸化ジルコニウム粒子を数mg採取し、重クロロホルムに1質量%となるように溶解させる。この溶解液を用いて、卓上型NMR装置(Nanalysis社製、型番NMReady60Pro(1H/19F))を用いて、フェニル基とメチル基のH-液体NMRスペクトルを測定した。得られたスペクトルから、フェニル基とメチル基のピーク面積(積分値)をそれぞれ算出し、メチル基の積分値/フェニル基の積分値を算出することで、フェニル基に対するメチル基のモル比率を算出した。結果を表1に示す。
 フェニル基に対するメチル基のモル比率(メチル基/フェニル基)は0.63であった。結果を表1に示す。
(組成物Aの作製)
 トルエンで固形分を30質量%に調整した実施例1に係る分散液16.7gと、メチル系シリコーン樹脂成分(商品名:KER-2500-A/B、信越化学工業社製)95gとを混合した。次いで、この混合液をエバポレータによりトルエンを除去することで、メチル系シリコーン樹脂成分を含む実施例1に係る組成物Aを得た。
 得られた組成物Aの粘度を、レオメーター(商品名:レオストレスRS-6000、HAAKE社製)を用い、25℃、剪断速度1(1/s)の条件で測定した。
 その結果、組成物Aの粘度Aは、21Pa・sであった。結果を表1に示す。
(硬化物Aの作製)
 この組成物を、テフロン(登録商標)コートされた1mm厚のSUS容器に、1mm厚となるように充填した。次いで、100℃で2時間加熱した後、150℃で4時間加熱することで、実施例1に係る硬化物Aを得た。容器から取り出した硬化物Aの厚みは約1mmであった。
 容器から取り出した硬化物Aの透過率を、分光光度計(日本分光社製、型番:V-770)で積分球を用いて測定した。メチル系シリコーン樹脂を含む硬化物Aの透過率Aは72%だった。結果を表1に示す。
(組成物Bと硬化物Bの作製)
 トルエンで固形分を30質量%に調整した実施例1に係る分散液16.7gと、フェニル系シリコーン樹脂成分(商品名:OE-6520、東レ・ダウコーニング社製)95gとを混合した。次いで、この混合液をエバポレータによりトルエンを除去することで、フェニル系シリコーン樹脂成分を含む実施例1に係る組成物Bを得た。組成物Aと同様にして測定した組成物Bの粘度Bを表1に示す。
 次いで、組成物Aと同様に硬化させることで、実施例1に係る硬化物Bを得た。容器から取り出した硬化物Bの厚みは約1mmであった。硬化物Aと同様に測定した透過率Bを表1に示す。
(LEDパッケージの作製と明るさの評価)
(1)組成物の作製
 トルエンで固形分を30質量%に調整した実施例1に係る分散液5.0gと、メチル系シリコーン樹脂成分(商品名:KER-2500-B、信越化学工業社製)3.5gとを混合した。すなわち、ジルコニアおよび表面修飾材料の合計質量と、メチル系シリコーン樹脂成分とが、質量比で30:70となるように混合した。
 次いで、この混合液をエバポレータによりトルエンを除去することで、封止部材作製のための実施例1に係る組成物Cを得た。
(2)LEDパッケージの作製
 得られた組成物C1質量部に、メチル系シリコーン樹脂成分(商品名:KER-2500-A/B、信越化学工業社製)を14質量部加えて、組成物中に表面修飾酸化ジルコニウム粒子が2質量%となるように調整し、混合した。この組成物1質量部に蛍光体粒子(イットリウム・アルミニウム・ガーネット:YAG)を0.38質量部混合した組成物(表面修飾酸化ジルコニウム粒子と樹脂の合計量:蛍光体粒子=100:38)を、LEDリードフレーム内に300μmの厚みで充填した。その後、室温で3時間保持した。次いで、ゆっくりと組成物を加熱硬化させて封止部材を形成し、実施例1に係る白色LEDパッケージを作製した。
(3)評価
 得られた白色LEDパッケージについて、全光束測定システム(大塚電子社製)にて、LEDパッケージに電圧3V、電流150mAを印加し測光することにより明るさを測定した。この結果、この白色LEDパッケージの明るさは、75.0lmであった。結果を表1に示す。
[実施例2]
 実施例1において、第2の分散液62.5質量部と、フェニルトリメトキシシランの加水分解液6.3質量部と、メチル基とフェニル基を含むシリコーン化合物を31.2質量部混合する替わりに、第2の分散液60.6質量部と、フェニルトリメトキシシランの加水分解液9.1質量部と、メチル基とフェニル基を含むシリコーン化合物を30.3質量部混合した以外は実施例1と同様にして、実施例2に係る分散液を得た。
 実施例1と同様にして、実施例2に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例2に係る分散液を用いた以外は実施例1と同様にして、実施例2に係る組成物Aと組成物B、実施例2に係る硬化物Aと硬化物Bを得た。実施例1と同様に組成物の粘度と硬化物の透過率を測定した結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例2に係る分散液を用いた以外は実施例1と同様にして、実施例2に係る組成物Cと、実施例2に係るLEDパッケージを得た。実施例1と同様に評価した結果を表1に示す。
[実施例3]
 実施例1において、第2の分散液62.5質量部と、フェニルトリメトキシシランの加水分解液6.3質量部と、メチル基とフェニル基を含むシリコーン化合物を31.2質量部混合する替わりに、第2の分散液64.5質量部と、フェニルトリメトキシシランの加水分解液3.2質量部と、メチル基とフェニル基を含むシリコーン化合物を32.3質量部混合した以外は実施例1と同様にして、実施例3に係る分散液を得た。
 実施例1と同様にして、実施例3に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例3に係る分散液を用いた以外は実施例1と同様にして、実施例3に係る組成物Aと組成物B、実施例3に係る硬化物Aと硬化物Bを得た。実施例1と同様に組成物の粘度と硬化物の透過率を測定した結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例3に係る分散液を用いた以外は実施例1と同様にして、実施例3に係る組成物Cと、実施例3に係るLEDパッケージを得た。実施例1と同様に評価した結果を表1に示す。
[実施例4]
 実施例1において、第2の分散液62.5質量部と、フェニルトリメトキシシランの加水分解液6.3質量部と、メチル基とフェニル基を含むシリコーン化合物を31.2質量部とを混合する替わりに、第2の分散液65.4質量部と、フェニルトリメトキシシランの加水分解液2.0質量部と、メチル基とフェニル基を含むシリコーン化合物を32.6質量部混合した以外は実施例1と同様にして、実施例4に係る分散液を得た。
 実施例1と同様にして、実施例4に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例4に係る分散液を用いた以外は実施例1と同様にして、実施例4に係る組成物Aと組成物B、実施例4に係る硬化物Aと硬化物Bを得た。実施例1と同様に組成物の粘度と硬化物の透過率を測定した結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例4に係る分散液を用いた以外は実施例1と同様にして、実施例4に係る組成物Cと、実施例4に係るLEDパッケージを得た。実施例1と同様に評価した結果を表1に示す。
[実施例5]
 実施例1において、第2の分散液62.5質量部と、フェニルトリメトキシシランの加水分解液6.3質量部と、メチル基とフェニル基を含むシリコーン化合物を31.2質量部混合する替わりに、第2の分散液62.9質量部と、フェニルトリメトキシシラン5.7質量部と、メチル基とフェニル基を含むシリコーン化合物を31.4質量部混合した以外は実施例1と同様にして、実施例5に係る分散液を得た。
 実施例1と同様にして、実施例5に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例5に係る分散液を用いた以外は実施例1と同様にして、実施例5に係る組成物Aと組成物B、実施例5に係る硬化物Aと硬化物Bを得た。実施例1と同様に組成物の粘度と硬化物の透過率を測定した結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、実施例5に係る分散液を用いた以外は実施例1と同様にして、実施例5に係る組成物Cと、実施例5に係るLEDパッケージを得た。実施例1と同様に評価した結果を表1に示す。
[比較例1]
 実施例1において、トルエンで固形分が15質量%に調整された第2の分散液62.5質量部と、フェニルトリメトキシシランの加水分解液6.3質量部と、メチル基とフェニル基を含むシリコーン化合物31.2質量部を混合する替わりに、第2の分散液を95.5質量部と、上記シリコーン化合物4.5質量部を混合した以外は実施例1と全く同様にして、比較例1の分散液(第3の分散液)を得た。
 実施例1と同様にして、比較例1に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、比較例1に係る分散液を用いた以外は実施例1と同様にして、比較例1に係る組成物Aと比較例1に係る硬化物Aを得た。実施例1と同様に組成物の粘度と硬化物の透過率を測定した結果を表1に示す。
 実施例1と同様にして、比較例1に係る分散液を用いて組成物Bと硬化物Bを得ようとした。しかし、比較例1の分散液は、フェニル系シリコーン樹脂成分に分散することができず、組成物Bは白濁凝集したため、硬化物Bは作製できなかった。
 実施例1に係る分散液を用いる替わりに、比較例1に係る分散液を用いた以外は実施例1と同様にして、比較例1に係る組成物Cと、比較例1に係るLEDパッケージを得た。実施例1と同様に評価した結果を表1に示す。
[比較例2]
 実施例1の混合工程において、メチルトリメトキシシランの加水分解液70質量部を混合する替わりに、上記加水分解液20質量部と、イソプロピルアルコール(IPA)50質量部とを用いたこと以外は、実施例1と同様にして、混合工程と分散工程を行い、分散液(第1の分散液)を得た。
 分散液の固形分(100℃で1時間)を測定した結果、38質量%であった。
(4)第1の添加工程
 得られた分散液(第1の分散液)に、固形分が20質量%となるようにトルエンを添加し、60℃で2時間加熱した。次いで、揮発した量と同程度のトルエンを分散液に添加し、60℃で2時間加熱した。次いで、揮発した量と同程度のトルエンを分散液に添加し、60℃で1時間加熱した。次いで、揮発した量と同程度のトルエンを分散液に添加し、60℃で1時間加熱することで、表面修飾が促進され、イソプロピルアルコールがトルエンに置換された分散液(第2の分散液)を得た。
(5)第2の添加工程
 固形分が15質量%に調整された第2の分散液89質量部と、メチル基とフェニル基を含むシリコーン化合物(商品名:KR213(高フェニル含有)、信越化学工業社製)11質量部とを混合して110℃で1時間加熱し、比較例2の分散液(第3の分散液)を得た。
 実施例1と同様にして、比較例2に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、比較例2に係る分散液を用いた以外は実施例1と同様にして、比較例1に係る組成物Bと硬化物Bを得た。実施例1と同様にして測定した粘度と透過率の結果を表1に示す。
 実施例1と同様にして、比較例2に係る分散液を用いて組成物Aと硬化物Aを得ようとした。しかし、比較例2の分散液は、メチル系シリコーン樹脂成分に分散することができず、組成物Aは白濁凝集したため、硬化物Aは作製できなかった。
[比較例3]
 実施例1の混合工程において、メチルトリメトキシシランの加水分解液70質量部を用いる替わりに、実施例1の加水分解工程で得られたフェニルトリメトキシシランの加水分解液70質量部を用いた以外は実施例1と同様にして、混合工程と分散工程と第1の添加工程を行い、分散液(第2の分散液)を得た。
 固形分が15質量%に調整された第2の分散液89質量部と、メチル基とフェニル基を含むシリコーン化合物(商品名:KR213(高フェニル含有)、信越化学工業社製)11質量部とを混合して110℃で1時間加熱し、比較例3の分散液(第3の分散液)を得た。
 実施例1と同様にして、比較例3に係る分散液のIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、比較例3に係る分散液を用いた以外は実施例1と同様にして、比較例1に係る組成物Bと硬化物Bを得た。実施例1と同様にして測定した粘度と透過率の結果を表1に示す。
 実施例1と同様にして、比較例3に係る分散液を用いて組成物Aと硬化物Aを得ようとした。しかし、比較例3の分散液は、メチル系シリコーン樹脂成分に分散することができず、組成物Aは白濁凝集したため、硬化物Aは作製できなかった。
[比較例4]
 実施例1の混合工程において、メチルトリメトキシシランの加水分解液70質量部を用いる替わりに、上記フェニルトリメトキシシランの加水分解液70質量部を用いた以外は実施例1と同様にして、混合工程と分散工程と第1の添加工程を行い、分散液(第2の分散液)を得た。
 固形分が15質量%に調整された第2の分散液91質量部と、実施例1の加水分解工程で得られたメチルトリメトキシシランの加水分解液9質量部とを混合し、130℃で3時間撹拌することで、比較例4の分散液(第3の分散液)を得た。
 実施例1と同様にして、比較例4に係るIA/IBと、メチル基/フェニル基を測定した。結果を表1に示す。
 実施例1に係る分散液を用いる替わりに、比較例4に係る分散液を用いた以外は実施例1と同様にして、比較例4に係る組成物と硬化物を得ようとした。しかし、比較例4の分散液は、メチル系シリコーン樹脂にも、フェニル系シリコーン樹脂にも分散させることができず、組成物A、Bともに白濁凝集した。そのため、硬化物Aも硬化物Bも作製できなかった。
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例5、比較例1~比較例4を比較することにより、メチル基/フェニル基の比が0.01以上10以下で、メチル基を含むシラン化合物と、フェニル基を含むシラン化合物と、シリコーン化合物で、IA/IB≦3.5を満たすほど、充分に表面修飾された酸化ジルコニウム粒子は、メチル基を多く含むメチル系フェニルシリコーン樹脂にも、フェニル基を多く含むフェニル系シリコーン樹脂にも、良好に分散することが確認された。
 また、実施例1~実施例5の表面修飾酸化ジルコニウム粒子を含む組成物は、粘度が低いことが確認された。また、実施例1~実施例5の表面修飾されたジルコニア粒子を含むLEDパッケージは、明るさが向上することが確認された。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明は、メチル系シリコーン樹脂にもフェニル系シリコーン樹脂にも、分散することが可能な表面修飾金属酸化物粒子を含む分散液、前記分散液を含有する組成物、前記組成物を用いて形成される封止部材、前記封止部材を有する発光装置、前記発光装置を備えた照明器具および表示装置を提供できる。
 1A、1B、1C、1D 発光装置
 2 基板
 2a 基板上面
 2b 基板下面
 21 凹部
 21a 凹部底面
 3 発光素子
 4A、4B、4C、4D 封止部材
 41B、41C、41D 第1の層
 43B、43C、43D 第2の層
 45D 第3の層
 5 蛍光体粒子

Claims (17)

  1.  少なくとも1種のシラン化合物と少なくとも1種のシリコーン化合物により表面修飾された金属酸化物粒子と、溶媒と、を含む分散液であって、
     前記シラン化合物は、メチル基および炭素数が2以上の炭化水素基を含み、
     前記金属酸化物粒子における、前記炭化水素基に対する前記メチル基のモル比率(メチル基/炭化水素基)が0.01以上10以下であり、
     前記分散液を真空乾燥により乾燥して得られる前記金属酸化物粒子について、フーリエ変換式赤外分光光度計により800cm-1以上3800cm-1以下の波数の範囲の透過スペクトルを測定し、前記範囲における前記透過スペクトルの最大値が100、最小値が0となるように、前記透過スペクトルの値を規格化した場合に、下記の式(1)を満足する、分散液。
     IA/IB≦3.5    (1)
    (式中、「IA」は、3500cm-1における規格化されたスペクトル値、「IB」は、1100cm-1における規格化されたスペクトル値をそれぞれ示す。)
  2.  前記炭素数が2以上の炭化水素基が芳香族炭化水素基である請求項1に記載の分散液。
  3.  請求項1または2に記載の分散液とシリコーン樹脂成分との混合物である、組成物。
  4.  請求項3に記載の組成物の硬化物である、封止部材。
  5.  請求項4に記載の封止部材と、前記封止部材により封止された発光素子と、を備える発光装置。
  6.  請求項5に記載の発光装置を備える、照明器具。
  7.  請求項5に記載の発光装置を備える、表示装置。
  8.  第1の表面修飾材料と金属酸化物粒子とを混合して混合液を得る工程と、
     前記混合液中において前記金属酸化物粒子を分散する工程と、
     前記混合液に第2の表面修飾材料を添加して分散液を得る工程と、を有し、
     前記混合液中における前記金属酸化物粒子の含有量が10質量%以上49質量%以下であり、
     前記混合液中における前記第1の表面修飾材料と前記金属酸化物粒子との合計の含有量が65質量%以上98質量%以下であり、
     前記第1の表面修飾材料がメチル基を含むシラン化合物であり、
     前記第2の表面修飾材料が、炭素数が2以上の炭化水素基を含むシラン化合物とシリコーン化合物を含む、請求項1または2に記載の分散液の製造方法。
  9.  第1の表面修飾材料と金属酸化物粒子とを混合して混合液を得る工程と、
     前記混合液中において前記金属酸化物粒子を分散する工程と、
     前記混合液に第2の表面修飾材料を添加する工程と、を有し、
     前記混合液中における前記金属酸化物粒子の含有量が10質量%以上49質量%以下であり、
     前記混合液中における前記第1の表面修飾材料と前記金属酸化物粒子との合計の含有量が65質量%以上98質量%以下であり、
     前記第1の表面修飾材料がメチル基を含むシラン化合物であり、
     前記第2の表面修飾材料が、炭素数が2以上の炭化水素基を含むシラン化合物とシリコーン化合物を含む、金属酸化物粒子の表面修飾方法。
  10.  前記少なくとも1種のシラン化合物と少なくとも1種のシリコーン化合物により表面修飾された金属酸化物粒子が、
     金属酸化物粒子を、メチル基を含み、かつ炭素数が2以上の炭化水素基を含まないシラン化合物からなる、第1の表面修飾材料で一次修飾し、
     前記一次修飾した金属酸化物粒子を、
    メチル基と炭素数が2以上の炭化水素基とを含む第2のシラン化合物、および、メチル基を含まず、かつ炭素数が2以上の炭化水素基を含む第2のシラン化合物の一方又は両方、および、シリコーン化合物からなる、第2の表面修飾材料で、二次修飾した、二次修飾された金属酸化物粒子である、
    請求項1に記載の分散液。
  11.  前記金属酸化物粒子が、酸化ジルコニウム粒子または酸化チタン粒子である、請求項1に記載の分散液。
  12.  前記金属酸化物粒子と混合する前に、前記第1のシラン化合物を加水分解する工程と、
     前記混合液に添加する前に、前第2のシラン化合物を加水分解する工程と、を更に含み、
     前記分散する工程が分散機を用いて行われる、
    請求項8に記載の分散液の製造方法。
  13.  前記分散する工程と前記分散液を得る工程との間に、前記分散された混合液に疎水性溶媒を加える工程と、前記加水分解をする工程で生じたアルコールを除去する工程の、一方または両方を含む、
    請求項12に記載の分散液の製造方法。
  14.  前記金属酸化物粒子と混合する前に、前記第1のシラン化合物を加水分解する工程と、
     前記混合液に添加する前に、前第2のシラン化合物を加水分解する工程と、を更に含み、
     前記分散する工程が分散機を用いて行われる、
    請求項9に記載の金属酸化物粒子の表面修飾方法。
  15.  前記分散する工程と前記分散液を得る工程との間に、前記分散された混合液に疎水性溶媒を加える工程と、前記加水分解をする工程で生じたアルコールを除去する工程の、一方または両方を含む、
    請求項14に記載の金属酸化物粒子の表面修飾方法。
  16.  前記メチル基を含むシラン化合物が、炭素数が2以上の炭化水素基を含まない、請求項8に記載の分散液の製造方法。
  17.  前記メチル基を含むシラン化合物が、炭素数が2以上の炭化水素基を含まない、請求項9に記載の金属酸化物粒子の表面修飾方法。
PCT/JP2021/035829 2020-09-30 2021-09-29 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法 WO2022071384A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21875684.9A EP4223698A1 (en) 2020-09-30 2021-09-29 Dispersion solution, composition, sealing member, light-emitting device, lighting device, display device, method for producing dispersion solution, and method for modifying surface of metal oxide particles
CN202180067126.9A CN116249741A (zh) 2020-09-30 2021-09-29 分散液、组合物、密封部件、发光装置、照明器具、显示装置、分散液的制造方法及金属氧化物粒子的表面修饰方法
US18/029,101 US20230365787A1 (en) 2020-09-30 2021-09-29 Dispersion liquid, composition, sealing member, light-emitting device, llumination tool, display device, method for producing dispersion solution, and method for modifying surfaces of metal oxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165259A JP2022057148A (ja) 2020-09-30 2020-09-30 分散液、組成物、封止部材、発光装置、照明器具、表示装置
JP2020-165259 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071384A1 true WO2022071384A1 (ja) 2022-04-07

Family

ID=80950605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035829 WO2022071384A1 (ja) 2020-09-30 2021-09-29 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法

Country Status (5)

Country Link
US (1) US20230365787A1 (ja)
EP (1) EP4223698A1 (ja)
JP (1) JP2022057148A (ja)
CN (1) CN116249741A (ja)
WO (1) WO2022071384A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439824B2 (ja) * 2019-03-29 2024-02-28 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049121A1 (ja) * 2009-10-20 2011-04-28 株式会社日本触媒 非晶質シリカおよびその製造方法
WO2016142992A1 (ja) 2015-03-06 2016-09-15 住友大阪セメント株式会社 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
JP2016175804A (ja) * 2015-03-20 2016-10-06 住友大阪セメント株式会社 無機酸化物粒子分散液、樹脂組成物、マスターバッチ、樹脂複合体、及び光半導体発光装置
JP2017193631A (ja) * 2016-04-20 2017-10-26 住友大阪セメント株式会社 表面修飾無機粒子含有分散液、シリコーン樹脂組成物、硬化体、光学部材、発光装置、及び表示装置
JP2020165259A (ja) 2019-03-29 2020-10-08 住友重機械工業株式会社 ショベル
WO2021193727A1 (ja) * 2020-03-26 2021-09-30 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049121A1 (ja) * 2009-10-20 2011-04-28 株式会社日本触媒 非晶質シリカおよびその製造方法
WO2016142992A1 (ja) 2015-03-06 2016-09-15 住友大阪セメント株式会社 光散乱複合体形成用組成物、光散乱複合体及びその製造方法
JP2016175804A (ja) * 2015-03-20 2016-10-06 住友大阪セメント株式会社 無機酸化物粒子分散液、樹脂組成物、マスターバッチ、樹脂複合体、及び光半導体発光装置
JP2017193631A (ja) * 2016-04-20 2017-10-26 住友大阪セメント株式会社 表面修飾無機粒子含有分散液、シリコーン樹脂組成物、硬化体、光学部材、発光装置、及び表示装置
JP2020165259A (ja) 2019-03-29 2020-10-08 住友重機械工業株式会社 ショベル
WO2021193727A1 (ja) * 2020-03-26 2021-09-30 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Also Published As

Publication number Publication date
JP2022057148A (ja) 2022-04-11
US20230365787A1 (en) 2023-11-16
EP4223698A1 (en) 2023-08-09
CN116249741A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2021193727A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
CN110785860B (zh) 分散液、组合物、密封构件、发光装置、照明器具、显示装置及发光装置的制造方法
JP7439824B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
WO2022071384A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
WO2022071385A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
CN110785859B (zh) 分散液、组合物、密封构件、发光装置、照明器具、显示装置及发光装置的制造方法
WO2022071360A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置、分散液の製造方法、および金属酸化物粒子の表面修飾方法
JP2021155261A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置
JP7363634B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
WO2023190493A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021155248A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP7215198B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置ならびに分散液の製造方法
JP7243388B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置ならびに分散液の製造方法
JP2023149933A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
WO2023190495A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP7087796B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置
JP2023149441A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875684

Country of ref document: EP

Effective date: 20230502