WO2007037331A1 - 電子写真感光体、これを用いた画像形成装置、及びカートリッジ - Google Patents

電子写真感光体、これを用いた画像形成装置、及びカートリッジ Download PDF

Info

Publication number
WO2007037331A1
WO2007037331A1 PCT/JP2006/319308 JP2006319308W WO2007037331A1 WO 2007037331 A1 WO2007037331 A1 WO 2007037331A1 JP 2006319308 W JP2006319308 W JP 2006319308W WO 2007037331 A1 WO2007037331 A1 WO 2007037331A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive layer
general formula
weight
electrophotographic
substituent
Prior art date
Application number
PCT/JP2006/319308
Other languages
English (en)
French (fr)
Inventor
Teruyuki Mitsumori
Masayuki Hiroi
Hiroaki Takamura
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US12/088,322 priority Critical patent/US8663882B2/en
Priority to CN200680035249XA priority patent/CN101273305B/zh
Priority to EP06810755A priority patent/EP1930778A1/en
Publication of WO2007037331A1 publication Critical patent/WO2007037331A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061446Amines arylamine diamine terphenyl-diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • G03G5/061473Amines arylamine alkenylarylamine plural alkenyl groups linked directly to the same aryl group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0657Heterocyclic compounds containing two or more hetero rings in the same ring system containing seven relevant rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/102Bases for charge-receiving or other layers consisting of or comprising metals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Definitions

  • Electrophotographic photosensitive member image forming apparatus using the same, and cartridge
  • the present invention relates to an electrophotographic photosensitive member having a photosensitive layer formed on a conductive support. More specifically, the present invention relates to an electrophotographic photosensitive member having good electrical characteristics, stability, and durability, an image forming apparatus using the photosensitive member, and an electrophotographic cartridge.
  • photoconductors that are the core of electrophotographic technology, as photoconductive materials, inorganic photoconductors such as conventional selenium, arsenic-selenium alloys, cadmium sulfate, and zinc oxide have recently been used.
  • the mainstream is the use of photoconductors that use organic photoconductive materials that have the advantages of pollution-free, easy film formation, and easy manufacturing! /
  • a charge generating material is dispersed in a binder resin! /
  • a so-called single layer type photoreceptor a laminated type photoreceptor in which a charge generation layer and a charge transfer layer are laminated.
  • Multilayer photoconductors can provide highly sensitive and stable photoconductors by combining highly efficient charge generating materials and charge transfer materials into separate layers, and combining them with the most suitable materials. It is often used because it is easy to adjust.
  • Single-layer type photoreceptors are used in a limited manner because they are slightly inferior to multilayer-type photoreceptors in terms of electrical characteristics and their material selectivity is narrow.
  • the electrophotographic photosensitive member is repeatedly used in an electrophotographic process, that is, a cycle such as charging, exposure, development, transfer, cleaning, and static elimination, it is deteriorated by various stresses during that time.
  • chemical degradation includes, for example, the strong acidity of ozone and NOx generated by the corona charger that is commonly used as a charger, and damages the photosensitive layer.
  • Deterioration of electrical properties, deterioration of electrical stability such as increase of residual potential, and accompanying image defects may occur. These are due to chemical degradation of charge transport materials that are abundant in the photosensitive layer. large.
  • Patent Document 1 JP-A-60-175052
  • Patent Document 2 JP-A-10-312071
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-302032
  • the present invention has been made in view of the above problems. That is, the present invention provides an electrophotographic photoreceptor excellent in electrical characteristics and various characteristics and capable of forming a uniform photosensitive layer and having excellent repeatability, and an image using the electrophotographic photoreceptor. It is to provide a forming apparatus and an electrophotographic cartridge.
  • the present invention has the following gist.
  • the photosensitive layer contains a compound represented by the following general formula (1), and is contained in the photosensitive layer.
  • the ratio of the weight of the compound represented by the formula (1) to the total weight of the binder resin is 0.15 to 0.6, and the weight of the compound represented by the general formula (1) is the largest among all the charge transport materials.
  • Ar 2 and Ar 3 each represent an aryl group that may have a substituent
  • Ar 4 and Ar 5 each independently represent an arylene group that may have a substituent
  • n 1 and n 2 each represent Independently represents an integer of 1 to 3.
  • the photosensitive layer contains a compound represented by the general formula (1), and is contained in the photosensitive layer.
  • the ratio of the weight of the compound represented by the general formula (1) to the total weight of the binder resin is 0.15 to 0.9, and the weight of the compound represented by the general formula (1)
  • An electrophotographic photosensitive member which is the largest and contains oxytitanium phthalocyanine in a light-sensitive layer.
  • the photosensitive layer contains a compound represented by the general formula (1), and the general formula ( 1.
  • the photosensitive layer contains a compound represented by the general formula (1), and the general formula (1)
  • the compound represented by 1), wherein Ar 3 has an alkyl group having 2 or more carbon atoms as a substituent, and oxytitanium phthalocyanine is contained in the photosensitive layer. body.
  • An electrophotographic photosensitive member in which a photosensitive layer is formed on a conductive support, wherein the photosensitive layer contains the compound represented by the general formula (1) and polyarylate.
  • An electrophotographic photoreceptor An electrophotographic photoreceptor.
  • the photosensitive layer comprises a compound represented by the above general formula (1) and the following structural unit (p-1):
  • An electrophotographic photosensitive member comprising a polycarbonate having the same.
  • the photosensitive layer comprises a compound represented by the above general formula (1) and the following structural unit (p-2):
  • the ratio of the weight of the compound represented by the general formula (1) to the weight of the total binder resin in the photosensitive layer is 0.15 to 0.9.
  • the photosensitive layer contains the compound represented by the general formula (1), and the conductive support is aluminum or An aluminum alloy having an anodic acid coating Child photoconductor.
  • the photosensitive layer contains the compound represented by the general formula (1), and the conductive support and An electrophotographic photosensitive member comprising an undercoat layer between photosensitive layers.
  • the photosensitive layer is represented by the compound represented by the general formula (1) and the following formula (r):
  • An electrophotographic photoreceptor characterized in that it contains a charge transport material.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group or a phenyl group, which may be different from each other.
  • the photosensitive layer is a compound represented by the above general formula (1), and the following formulas (p) and (q The ratio of the weight of the compound represented by the general formula (1) to the total weight of the binder resin in the photosensitive layer is 0.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group, or a phenyl group, which may be different from each other.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group, or a phenyl group, which may be different from each other.
  • an electrophotographic photosensitive member that can be adapted to an electrophotographic apparatus such as a high-quality printer, facsimile, or copying machine.
  • an electrophotographic apparatus such as a high-quality printer, facsimile, or copying machine.
  • electrical characteristics due to environmental fluctuations, especially at high temperatures and high humidity.It is possible to obtain a photoconductor with excellent repetitive characteristics, mechanical strength and mechanical durability, and excellent printing durability. it can. It is also characterized by high mobility.
  • FIG. 1 is a diagram illustrating an example of an image forming apparatus according to the present invention.
  • the structure of the electrophotographic photoreceptor of the present invention is not particularly limited as long as a photosensitive layer is provided on a conductive support.
  • the photosensitive layer is composed of a so-called laminated photoconductor in which the functions of charge generation and charge transport are separated and the charge generation layer and charge transport layer are stacked, and the charge generation material and charge transport material are combined in the same layer.
  • a so-called single-layer type photoreceptor containing the material is generally used.
  • As a layer structure of the multilayer photosensitive member a normal multilayer photosensitive layer in which a charge transport layer and a charge generation layer are stacked in this order from the conductive support side, and a reverse multilayer photosensitive layer in which layers are reversed are known. However, any of these photosensitive layers can be used in the electrophotographic photoreceptor of the present invention.
  • the film thickness of the photosensitive layer is usually 5 to 50 ⁇ m, preferably 10 to 45 111 from the viewpoint of extending the life and image stability, and 10 to 30 / ⁇ ⁇ from the viewpoint of increasing the resolution. Is more preferable.
  • the electrophotographic photosensitive member of the present invention has a photosensitive layer formed on a conductive support, and the photosensitive layer contains a compound represented by the following general formula (1).
  • the photosensitive layer contains a compound represented by the following general formula (1).
  • the photosensitive layer when the photosensitive layer is formed of a plurality of layers, it does not matter which one of these layers contains, and other layers Each contains a different compound
  • the compound represented by the general formula (1) since the compound represented by the general formula (1) usually has a charge transporting ability, these compounds usually contain a layer that needs a function of transporting a charge.
  • Ar 1 Ar 2 and ⁇ ⁇ ⁇ represent an aryl group which may have a substituent
  • Ar 4 and Ar 5 each independently have an arylene which may have a substituent
  • n 1 and n 2 each independently represents an integer of 1 to 3.
  • the specific weight of the compound represented by the general formula (1) contained in the photosensitive layer is 0.15 to 0.9 relative to the total weight of the binder resin.
  • the Ariru group Ai ⁇ Ar 3 is not particularly limited as long as it is a ring having aromaticity, phenyl group, indenyl group, naphthyl group, Asenafuchiru group, Fuenantoriru Group, pyrenyl group and the like. Of these, a phenyl group or a naphthyl group is preferred from the viewpoint of intramolecular conjugation extension and reduction of the permanent dipole moment of the molecule.
  • the aryl group of 3 may have a substituent, but the substituent is not particularly limited, but an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an aryl group; a methoxy group, Alkoxy groups such as ethoxy and propoxy groups; aryl groups such as phenol, indur, naphthyl, acenaphthyl, phenanthryl and pyrenyl; heterocyclic groups such as indolyl, quinolyl and carbazolyl Is mentioned.
  • these substituents may be linked to each other to form a ring.
  • these substituents have the effect of increasing charge mobility by improving the intramolecular charge balance by adopting those having a large number of carbon atoms.
  • the charge mobility is lowered by the distortion of the inner conjugate surface and the intermolecular steric repulsion. Therefore, it preferably has 2 or more carbon atoms, more preferably 3 or more, preferably 10 or less carbon atoms, more preferably 6 or less carbon atoms, particularly 4 or less carbon atoms. is there.
  • a substituent when it has a substituent, it is preferable to have a plurality of substituents, which is preferably a larger number. However, if the amount is too large, the charge mobility is lowered due to the distortion of the conjugated surface in the molecule and the intermolecular steric repulsion. Then, in order to improve the stability in the photosensitive layer and prevent the turbidity of the photosensitive layer, a substituent having a structure having a branched chain rather than a linear structure in which a sterically bulky one is preferred. Is preferred. More specifically, a methyl group, an ethyl group, a butyl group, an isopropyl group or a methoxy group is preferable.
  • a Ar 2 does not have a substituent, and Ar 3 preferably has a substituent, more preferably Ar 3 has a plurality of substituents.
  • an alkyl group is preferred, and a branched chain alkyl group or carbon atom is preferred in order to improve the stability of the compound represented by the general formula (1) in the photosensitive layer.
  • the number of carbon atoms is preferably 3 or more, and preferably 7 or less. More preferably, the number of carbon atoms is 4 or less, and isopropyl is preferred.
  • Ar 4 and Ar 5 are each independently an arylene group which may have a substituent, and the arylene group is not particularly limited as long as it is a ring having an aromatic attribute. Examples thereof include a phenylene group, an indenylene group, a naphthylene group, a acenaphthylene group, a phenanthrylene group, and a pyrenylene group. Furthermore, there is no restriction on the bonding position, but p-phenylene, m-fullerene, 1,3-naphthylene, 1 from the viewpoint of making the molecular size as compact as possible and reducing intramolecular steric repulsion. The 4-naphthylene group is preferred, and the p-phenylene group is particularly preferred.
  • Ar 4 to Ar 5 may have any substituents, but alkyl groups such as methyl, ethyl, propyl, isopropyl, and aryl groups; methoxy groups, ethoxy groups And alkoxy groups such as propoxy group; aryl groups such as phenyl group, indur group, naphthyl group, acenaphthyl group, phenanthryl group and pyrenyl group; and heterocyclic groups such as indolyl group, quinolyl group and carbazolyl group . These substituents may be linked to each other to form a ring.
  • substituents have the effect of increasing the charge mobility due to the electron donating effect, when the substituent size becomes too large, the charge is changed due to distortion of the conjugate plane in the molecule and intermolecular steric repulsion.
  • Reduce mobility therefore, it preferably has 10 or less carbon atoms, more preferably 6 or less carbon atoms, and particularly preferably a methyl group or a methoxy group.
  • Increasing the number of substituents has the effect of increasing the charge mobility, but if it is too large, the charge mobility is lowered due to distortion of the conjugated surface in the molecule and intermolecular steric repulsion. Or less, more preferably 2 or less.
  • n 1 and n 2 each independently represent an integer of 1 to 3, but at least n 1 and n 2 are considered from the viewpoints of production stability, electrical property stability, etc.
  • One is preferably 1.
  • at least one of n 1 and n 2 is preferably 2 or more.
  • the compound represented by the general formula (1) has a stereoisomer in a portion having a double bond.
  • the stereoisomer of the part whether it is a mixture of isomers or a single stereostructural force, it is regarded as a single compound in the present invention, and the weight ratio to the binder fat or the like. Calculate the weight ratio of to the charge transport material.
  • the compound represented by the general formula (1) has four double bonds (a) to (d) or a double bond group.
  • one of the isomer components is preferably 80 mol% or more based on the total stereoisomers. More preferably, it is 90 mol% or more.
  • any isomer component is 30 mol% or more and 80% mol or less with respect to all stereoisomers. % To 70 mol% is more preferable. In view of electrical characteristics, it is preferable that there are many transformer bodies.
  • (a) is the sum of the isomer components in the trans isomer
  • (b) is the isomer in the trans isomer.
  • the sum and strength of the components are each preferably 40 mol% or more, particularly 50 mol% or more.
  • 98 mol% or less is preferable, 90 mol% or less is more preferable, and 80 mol% or less is particularly preferable. It is. In this case, it is preferable to use a charge transport material different from the compound represented by the general formula (1).
  • n 1 and n 2 are both 1 and Ar 3 has a substituent
  • (c) is the sum of isomeric components in the trans isomer
  • (d ) Is the trans isomer and the sum of the isomer components is preferably 90 mol% or more, particularly 95 mol% or more.
  • the sum of the isomer components in which (a) is a trans isomer and the sum of the isomer components in which (b) is a trans isomer are each preferably 70 mol% or more, particularly preferably 80 mol% or more. .
  • the substituent of Ar 3 is an alkyl group
  • (a) is the sum of isomer components in the trans isomer
  • (b) is the sum of isomer components in the trans isomer, respectively.
  • 85 mol% or more is preferred, particularly 90 mol% or more.
  • the sum of the isomer components in which (a) is a trans isomer and the sum of the isomer components in which (b) is a trans isomer are each preferably 90 mol% or more. In particular, 95 mol% or more is preferable.
  • the compound represented by the general formula (1) exhibits charge transporting ability and can be used as a charge transporting material for an electrophotographic photoreceptor.
  • the exemplified compounds 1 to 20 are shown below.
  • the photosensitive layer of the electrophotographic photoreceptor of the present invention is usually bound by a binder resin.
  • the photosensitive layer can be obtained by applying and drying a coating solution obtained by dissolving or dispersing the general formula (1) and the binder resin in a solvent.
  • Noinda rosin include polymers or copolymers of butadiene, styrene, vinyl acetate, vinyl chloride, acrylic acid esters, methacrylate esters, butyl alcohol, ethyl vinyl ether, and other butyl compounds, polybutyl butyral, and polyvinyl formal.
  • polycarbonate polyester, polyarylate, polyamide, polyurethane, cellulose ether, phenoxy resin, key resin, epoxy resin, and poly-N-vinylcarbazole resin.
  • polycarbonate and polyarylate are preferred, and polycarbonate and polyarylate having the following structural units are particularly preferred. Of these, polycarbonates having the following structural units on the right are more preferred.
  • the ratio of the weight of the compound represented by the general formula (1) to the weight of the total binder resin in the photosensitive layer is 0.15 to 0. 9 is more preferred.
  • binder resins can be used in combination of two or more.
  • the binder resin can be crosslinked with heat, light or the like using an appropriate curing agent or the like.
  • the weight ratio between the binder resin and the compound represented by the general formula (1) is represented by the general formula (1) contained in the photosensitive layer.
  • the ratio of the compound weight to the total binder resin content that is, the value of the compound weight represented by the general formula (1) in the photosensitive layer divided by the total binder resin content is 0.15. ⁇ 0.9 is preferred.
  • 0.20 or more is preferable.
  • 0.25 or more is more preferable.
  • the thermal stability of the photosensitive layer it is usually 0.9 or less from the viewpoint of the thermal stability of the photosensitive layer, and is preferable from the viewpoint of the stability of the compound of the general formula (1) in the photosensitive layer. 0.8 or less, more preferably 0.65 or less, further preferably 0.6 or less from the viewpoint of durability during image formation, and 0.4 or less from the viewpoint of scratch resistance. Is particularly preferred.
  • the photosensitive layer of the electrophotographic photoreceptor of the present invention contains polyarylate.
  • the polyarylate functions as a binding rosin.
  • Polyarylate is a kind of polyester, and is formed by the condensation of a dihydric alcohol having an aromatic ring and a divalent carboxylic acid having an aromatic ring.
  • the weight ratio of Noinda rosin and the compound represented by the general formula (1) can be any ratio. I do not care.
  • the ratio of the weight of the compound represented by the general formula (1) contained in the photosensitive layer to the total weight of the binder resin that is, the value of the compound weight represented by the general formula (1) in the photosensitive layer.
  • a value of 0.15 to 0.9 divided by the total weight of binder resin is preferred. From the viewpoint of lowering the residual potential of the electrophotographic photosensitive member, it is preferably 0.20 or more, and more preferably 0.25 or more from the viewpoint of stability in repeated use and charge mobility.
  • the photosensitive layer from the viewpoint of thermal stability of the photosensitive layer, it is usually 0.9 or less, and from the viewpoint of stability of the compound of the general formula (1) in the photosensitive layer, preferably 0.8 or less. In addition, from the viewpoint of durability during image formation, it is more preferably 0.65 or less, still more preferably 0.6 or less, and from the viewpoint of scratch resistance, 0.4 or less. Is particularly preferred.
  • the viscosity average molecular weight of the polyarylate is not particularly limited, but usually 10,000 or more, preferably ⁇ 15,000 or more, more preferably ⁇ 20,000 or more, 300,000 or less, It is preferably 200,000 or less, more preferably 100,000 or less. If the viscosity average molecular weight is too small, the mechanical strength of the photosensitive layer is lowered, which is not practical. On the other hand, if the viscosity average molecular weight is excessively large, it is difficult to coat and form the photosensitive layer to an appropriate thickness.
  • any force usually used in the production of polyarylate can be used.
  • Bisphenols, and Z or biphenols are preferably used. These bisphenols and biphenols may each independently have a substituent on the aromatic ring, more specifically, an alkyl group, an aryl group, a halogen group, or an alkoxy group. It is a group.
  • Photosensitive layer binder Mechanical properties as a resin and solubility in the solvent when preparing the coating solution for forming the photosensitive layer.
  • the alkyl group is preferably an alkyl group having 6 or less carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group.
  • the aryl group is preferably an aryl group having an aromatic ring number of 3 or less, more preferably a phenyl group or a naphthyl group.
  • a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like are preferable.
  • the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms in the alkyl group in the alkoxy group, more preferably an alkoxy group having 1 to 8 carbon atoms, and particularly preferably 1 carbon atom. ⁇ 2 alkoxy groups. Of these, a methoxy group, an ethoxy group, a butoxy group and the like are preferable.
  • divalent carboxylic acid having an aromatic ring any of those usually used for producing polyarylate can be used. More specifically, phthalic acid, isophthalic acid, naphthalene 1,1,4 dicarboxylic acid, naphthalene 1,2,6 dicarboxylic acid, biphenyl 1,2,2, dicarboxylic acid, biphenyl 4,4, dicarboxylic acid, diphenol -Luether 2, 2, -dicarboxylic acid, diphenyl ether 2, 3, -dicarboxylic acid, diphenyl ether 2,4, -dicarboxylic acid, diphenyl ether—3, 3, -dicarboxylic acid, diphenyl ether 3, 4′— Examples include dicarboxylic acid and diphenyl ether 4,4'-dicarboxylic acid.
  • Preferred examples include isophthalic acid, terephthalic acid, diphenyl ether 2,2′-dicarboxylic acid, diphenyl ether 2,4′-dicarboxylic acid, diphenyl ether 4,4′-dicarboxylic acid, and particularly preferred is isophthalic acid.
  • examples include acids, terephthalic acid, diphenyl ether 4,4'-dicarboxylic acid, biphenyl 4,4'-dicarboxylic acid. These dicarboxylic acids can be used in combination.
  • the method for producing the polyarylate according to the present invention is not particularly limited, and for example, a known polymerization method such as an interfacial polymerization method, a melt polymerization method, or a solution polymerization method can be used.
  • a known polymerization method such as an interfacial polymerization method, a melt polymerization method, or a solution polymerization method can be used.
  • a solution in which a divalent phenol component is dissolved in an alkaline aqueous solution and a halogenated hydrocarbon solution in which an aromatic dicarboxylic acid chloride component is dissolved are mixed.
  • a quaternary ammonium salt or a quaternary phosphonium salt may be present as a catalyst.
  • the polymerization temperature is preferably in the range of 0 to 40 ° C., and the polymerization time is preferably in the range of 2 to 20 hours from the viewpoint of productivity.
  • Examples of the alkali component used in the interfacial polymerization method include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide.
  • the amount of alkali used is preferably in the range of 1.01 to 3 equivalents of the phenolic hydroxyl group contained in the reaction system.
  • Examples of the halogenated hydrocarbon include dichloromethane, chloroform, 1,2-dichloroethane, trichloroethane, tetrachloroethane, dichlorobenzene and the like.
  • Examples of the quaternary ammonium salt or quaternary phosphonium salt used as the catalyst include, for example, salts of tertiary alkylamines such as tributylamine and trioctylamine, such as hydrochloric acid, bromic acid, and iodic acid; Benzyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltributylammonium chloride, tetraethylammonium chloride, tetraptylammonium chloride, tetraptylammonium bromide, trioctylmethylammonium chloride, tetrabutylphospho- Examples thereof include umbromide, triethyloctadecylphospho-umbromide, N-lauryl pyridinium chloride, and lauryl picolium chloride.
  • a molecular weight regulator in the interfacial polymerization method, can be used.
  • Molecular weight regulators include, for example, phenol, o, m, p-cresol monole, o, m, p-ethinorephenol, o, m, ⁇ -propyl phenol, ⁇ , m, p— (tert —Butyl) phenol, pentylphenol, hexylphenol, octylphenol, norphenol, 2,6-dimethylphenol derivatives, alkylphenols such as 2-methylphenol derivatives; o, m, p-phenol etc.
  • Monofunctional phenols such as acetic acid chloride, butyric acid chloride, octyl acid chloride, benzoyl chloride, benzenesulfur chloride, benzenesulfuryl chloride, sulfier chloride, benzenephosphoryl chloride or their substitutes
  • Examples include functional acid halides.
  • molecular weight regulators o, m, p- (tert-butyl) phenol, 2,6-dimethylphenol derivatives, 2-methylphenol are preferred because of their high molecular weight controllability and solution stability. Is a derivative. Particularly preferred are p- (tert-butyl) phenol, 2,3,6-tetramethylphenol, and 2,3,5-tetramethylphenol.
  • the polyarylate is used as a binder in the photosensitive layer according to the present invention, It can be obtained by applying and drying a coating solution obtained by dissolving or dispersing the compound of the formula (1), polyarylate, and, if necessary, other binder resin in a solvent.
  • binder resin examples include butadiene, styrene, butyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, butyl alcohol, ethyl vinyl ether, and other butadiene polymer and copolymer, polybutyl butyral, Polybulformal, partially modified polyvinylinoleacetanole, polycarbonate, polyesterolate, polyarylate, polyamide, polyurethane, cellulose ether, phenoxy resin, keyen resin, epoxy resin, poly-N-butylcarbazole resin Is mentioned.
  • polyarylate and polycarbonate are copolymerized or blended.
  • these coconut resins can be used by crosslinking with heat, light, etc. using an appropriate curing agent or the like. Two or more of these binders can be blended and used.
  • the weight ratio between the binder resin and the compound represented by the general formula (1) is included in the photosensitive layer.
  • the ratio of the weight of the compound represented by the general formula (1) to the total weight of the binder resin, that is, the value of the weight of the compound represented by the general formula (1) in the photosensitive layer is the weight of the total binder resin.
  • the value divided by is more preferably 0.5 or less, particularly preferably 0.4 or less, more preferably 0.20 to 0.7.
  • the photosensitive layer preferably contains (in combination with) a known charge transport material in addition to the compound represented by the general formula (1).
  • the sum of the compound represented by the general formula (1) and the total amount of the charge transport material contained in the photosensitive layer is 25 parts by weight or more with respect to 100 parts by weight of the binder resin, and further reduces the residual potential. From the viewpoint, 35 parts by weight or more is preferable, and from the viewpoint of stability and charge mobility when repeatedly used, 40 parts by weight or more is more preferable.
  • the photosensitive layer it is usually 100 parts by weight or less, more preferably from the viewpoint of compatibility between the charge transport material and the binder resin, preferably 75 parts by weight or less, and printing durability. From the viewpoint of scratch resistance, where the viewpoint power is more preferably 60 parts by weight or less, 50 parts by weight or less is most preferable.
  • charge transporting substances are those having charge transporting ability. Anything can be used.
  • the weight capacity of the compound represented by the general formula (1) is the weight ratio in comparison with the maximum amount of force in all charge transport materials and the maximum content of charge transport materials in the photoconductor. 90% or more is preferably contained.
  • the geometric isomers are regarded as the same compound.
  • Preferred examples of the charge transport material that can be used in combination are the following compounds S, and are not limited to these exemplified compounds as long as they do not exceed the gist of the present invention.
  • R represents a hydrogen atom or a substituent which may be different in one formula.
  • substituent an alkyl group, an alkoxy group, a phenyl group and the like are preferable. Particularly preferred is a methyl group.
  • a compound having a benzidine structure and a compound having a butadiene skeleton are very effective because they exhibit excellent performance when used in combination with the compound represented by the general formula (1).
  • Examples of the conductive support according to the electrophotographic photosensitive member of the present invention include metal materials such as aluminum, aluminum alloy, stainless steel, copper and nickel; and conductive powder such as metal, carbon and tin oxide.
  • a resin material imparted with electrical conductivity; resin, glass, paper, etc., on which a conductive material such as aluminum, nickel, ITO (indium oxide-tin oxide alloy) is deposited or applied on the surface thereof are mainly used.
  • a drum shape, a sheet shape, a belt shape or the like is used.
  • a conductive material having an appropriate resistance value may be coated on a conductive support made of a metal material for control of conductivity, surface property, etc. or for defect coating.
  • the surface of the support may be smooth, or may be roughened by using a special cutting method or by performing a polishing treatment. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support. In order to reduce the cost, it is possible to use the drawn tube as it is without cutting.
  • a metal material such as an aluminum alloy
  • it is preferably used after being anodized.
  • the anodizing treatment it is preferable to perform a sealing treatment by a known method.
  • the anodizing treatment can be carried out by any method, but is usually carried out by energizing in an acidic bath using the conductive support as an electrode.
  • acidic baths such as chromic acid, sulfuric acid, oxalic acid, boric acid, and sulfamic acid. Of these, anodizing in sulfuric acid gives the best results.
  • the sulfuric acid concentration is 100 gZL to 300 gZL
  • the dissolved aluminum-concentration concentration is 2 gZL to 15GZL
  • the electrolysis voltage is 10V to 20V
  • current density is preferably set in the range of 0. 5AZdm 2 ⁇ 2AZdm 2.
  • the treatment conditions for the positive electrode oxidation treatment are not limited to this.
  • the conductive support of the present invention is subjected to a sealing treatment after an anodized film is formed on the surface by an anodizing treatment.
  • the sealing treatment can be carried out by any method. Usually, the sealing is carried out by immersing the conductive support in a sealing agent aqueous solution (sealing solution) containing a sealing agent.
  • a typical example is a low-temperature sealing treatment in which a conductive support is immersed in a sealing agent aqueous solution at a low temperature, or a high-temperature sealing in which a conductive support is immersed in a sealing agent aqueous solution at a high temperature. Processing.
  • the low temperature sealing treatment is performed by immersing the conductive support in the sealing agent aqueous solution at a low temperature.
  • nickel fluoride is usually used as a main component as a sealing agent.
  • concentration of the sealing agent in the aqueous sealing agent solution used in the case of the low temperature sealing treatment is an arbitrary force. Usually, it is most effective in the range of 3 gZL to 6 gZL.
  • the treatment temperature is usually 25 ° C or higher, preferably 30 ° C or higher, and usually 40 ° C or lower, preferably 35 ° C or lower.
  • the pH of the aqueous sealant solution is usually 4.5 or more, preferably 5.5 or more, and usually 6.
  • pH regulator used to adjust the pH
  • any force can be used.
  • oxalic acid, boric acid, formic acid, acetic acid, sodium hydroxide, sodium acetate, aqueous ammonia, etc. are used. be able to.
  • the treatment time is optional, but it is preferable to carry out the treatment within a range of usually 1 minute to 3 minutes per 1 ⁇ m of film thickness.
  • the sealing agent aqueous solution may contain substances other than the sealing agent!
  • a metal salt such as cobalt fluoride, cobalt acetate, nickel sulfate, or a surfactant may be mixed into the aqueous additive solution.
  • the high temperature sealing treatment is performed by immersing the conductive support in a sealing agent aqueous solution at a high temperature.
  • the concentration of the sealing agent in the aqueous sealing agent solution used in the case of high-temperature sealing treatment is an arbitrary force. Usually, it is most effective to carry out in the range of 5 gZL to 20 gZL.
  • the treatment temperature is usually 80 ° C or higher, preferably 85 ° C or higher, and usually 100 ° C or lower, preferably 98 ° C or lower.
  • the pH of the aqueous sealant solution is usually 4.5 or more, preferably 5.0 or more, and usually 6.
  • the treatment time is also optional, but it is usually preferred to treat for 1 second or more, preferably 2 seconds or more, per 1 ⁇ m of film thickness.
  • substances other than the sealing agent may be contained.
  • sodium acetate, organic carboxylate, etc., or a ionic or nonionic surfactant may be mixed in the additive aqueous solution.
  • the high-temperature sealing treatment is completed by washing with water and drying.
  • the average film thickness of the anodic acid coating is thick, strong sealing conditions are required by increasing the concentration of the sealing liquid and performing high-temperature / long-time treatment. Therefore, productivity is reduced, and surface defects such as blots, dirt, and dusting are likely to occur on the film surface.
  • the average thickness of the anodized film is 20 m or less, preferably 7 m or less.
  • the surface of the conductive support may be smooth, but may be roughened in advance before the anodizing treatment.
  • the surface roughening method is arbitrary, but the surface can be roughened by, for example, using a special cutting method or performing a polishing process. It is also possible to roughen the surface by mixing particles having an appropriate particle diameter with the material constituting the conductive support.
  • the cutting tube is not cut and It can be used as a conductive support as it is.
  • the process eliminates dirt, foreign matter, and other fouling on the surface, small scratches, etc., and a uniform and clean conductive support. Is preferable.
  • An undercoat layer may be provided between the conductive support and the photosensitive layer in order to improve adhesion and blocking properties.
  • the undercoat layer is provided between the conductive support and the photosensitive layer, improves adhesion between the conductive support and the photosensitive layer, conceals dirt and scratches on the conductive support, impurities and surface properties. Functions such as prevention of carrier injection due to inhomogeneity of the surface, improvement of non-uniformity of electrical characteristics, prevention of lowering of surface potential due to repeated use, and prevention of local surface potential fluctuations that cause image quality defects. It is a layer that has at least one of them and is not essential for the development of photoelectric properties.
  • a resin, a resin in which particles of a metal oxide, etc. are dispersed in a resin is used.
  • metal oxide particles used in the undercoat layer include metal oxide particles containing one kind of metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, and iron oxide, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as calcium oxide, strontium titanate, and barium titanate. You can use only one type of particle V, or you can use a mixture of multiple types of particles. Among these metal oxide particles, acid titanium and acid aluminum are preferable, and acid titanium is particularly preferable.
  • the surface of the titanium oxide particles is treated with inorganic substances such as tin oxide, acid aluminum, acid antimony, acid zirconium, silicon oxide, or organic substances such as stearic acid, polyol, and silicone. Also good. Any of rutile, anatase, brookite, and amorphous can be used as the crystal form of the titanium oxide particles. A plurality of crystalline states may be included.
  • the average temporary particle size is preferably lOnm or more and lOOnm or less from the viewpoint of characteristics and liquid stability. Particularly preferred is lOnm or more and 50 nm or less.
  • the undercoat layer is preferably formed in a form in which metal oxide particles are dispersed in a binder resin. That's right.
  • binder resin used in the undercoat layer phenoxy, epoxy, polyvinyl pyrrolidone, polybutyl alcohol, casein, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, polyamide, etc. are used alone or with a curing agent. Can be used in hardened form.
  • alcohol-soluble copolymerized polyamide, modified polyamide, and the like are preferable because they exhibit good dispersibility and coatability.
  • the addition ratio of the inorganic particles to the Noinda rosin used in the undercoat layer can be arbitrarily selected. Use in the range of 10 wt% to 500 wt%. This is preferable in terms of stability of the dispersion and coatability.
  • the thickness of the undercoat layer can be arbitrarily selected, but is preferably 0.1 ⁇ m to 20 m in view of the photoreceptor characteristics and coating properties.
  • a known anti-oxidation agent or the like may be added to the undercoat layer.
  • the photosensitive layer formed on the conductive support includes a charge generation layer in which a charge generation material is dispersed in a binder resin, and a charge transport layer in which a charge transport material is dispersed in a binder resin.
  • a laminated type consisting of two layers is preferred.
  • charge generating substances include selenium and its alloys, cadmium sulfate, other organic photoconductive materials, phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene pigments, quinacridone pigments, and indigo pigments.
  • various photoelectric materials such as organic pigments such as perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments can be used, and organic pigments, and phthalocyanine pigments and azo pigments are particularly preferable.
  • These fine particles are, for example, polyester resin, polyvinyl acetate, polyacrylic acid ester, polymethacrylic acid ester, polyester, polycarbonate, polybulassetacetal, polybulupropional, polybutyral, phenoxy resin, epoxy resin, urethane resin.
  • binders such as fat, cellulose ester, and cellulose ether.
  • the usage ratio is from 30 to 500 parts by weight, preferably from 40 to 200 parts by weight, based on 100 parts by weight of the binder resin.
  • the film thickness is usually 0.1 m to l m, preferably 0.15 ⁇ to 0.6! ! One child is suitable.
  • a phthalocyanine compound is used as the charge generation material, specifically, a metal-free lid Russianine; various crystal forms of metals such as copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, or coordinated phthalocyanines such as oxides, halides, hydroxides, alkoxides, etc. used.
  • X-type, ⁇ -type metal-free phthalocyanine which is a highly sensitive crystal type
  • Titanium phthalocyanine also known as ⁇ type (also known as
  • vertical gallium phthalocyanine such as V type
  • hydroxygallium phthalocyanine such as V type
  • oxo-gallium such as G type and I type Phthalocyanine dimer
  • ⁇ oxoaluminum phthalocyanine dimer such as type II is preferred.
  • 8 type), ⁇ type) and powder X-ray diffraction angle 20 have a clear peak at 27.3 °.
  • D-type (Y-type) titanyl phthalocyanine, cage-type black gallium phthalocyanine, V-type hydroxygallium phthalocyanine, and G-type oxogallium phthalocyanine dimer are particularly preferred.
  • the crystalline oxytitanium phthalocyanine it is particularly preferable to use a product prepared after acid paste treatment with sulfuric acid. Chlorine-substituted tital phthalocyanine may be contained, but a mass ratio less than 0.005 is preferred for titanyl phthalocyanine in terms of a mass spectrum intensity ratio.
  • the ratio of the compound weight represented by the general formula (1) to the total binder resin content is preferably 0.15 to 0.9. 0.2 to 0.6 force S is particularly preferable, and 0.3 to 0.5 is more preferable.
  • the ratio of the compound weight represented by the general formula (1) to the total binder resin content is 0.15 to 0.00. 6 is preferred, 0.2 to 0.55 force is particularly preferred, 0.3 to 0.5 force is more preferred! / ,.
  • the phthalocyanine compound only a single compound may be used!
  • V may be in some mixed or mixed crystal state.
  • the phthalocyanine compound here may be used as a mixed state in which it can be placed in a crystalline state, and each constituent element may be used after mixing, or a phthalocyanine compound such as synthesis, pigmentation, or crystallization. It may be a mixture produced in the manufacturing and processing steps.
  • acid paste treatment, “grinding treatment”, solvent treatment and the like are known.
  • solvent treatment solvent treatment.
  • two kinds of crystals are mixed, mechanically ground and made amorphous, and then a specific crystal is obtained by solvent treatment. There is a method of converting to a state.
  • a azo pigment is used as the charge generating substance, various known bisazo pigments and trisazo pigments are preferably used.
  • the photosensitive layer of the electrophotographic photosensitive member of the present invention preferably contains an antioxidant.
  • the antioxidant is added to prevent acidification of the material contained in the photosensitive layer.
  • the antioxidant are those having a function as a radical scavenger, such as phenol derivatives, amine compounds, phosphonates, sulfur compounds, vitamins, vitamin derivatives, and the like. Of these, phenol derivatives, amine compounds, vitamins and the like are preferably used. More preferably, a hindered phenol or trialkylamine derivative having a bulky substituent near the hydroxy group is used.
  • aryl derivatives having a t-butyl group at the 2-position in terms of hydroxy group power are preferably used, and in particular, aryl derivatives having two t-butyl groups at the 2-position in terms of hydroxy group power.
  • Object induction is preferred.
  • a compound having a molecular weight of 1500 or less is preferable, and a compound having a molecular weight of 1000 or less is more preferable.
  • a compound having a molecular weight of 100 or more is preferred, more preferably a molecular weight of 150 or more, and particularly preferably a molecular weight of 200 or more.
  • Antioxidants that can be used in the present invention include those known as antioxidants, ultraviolet absorbers, and light stabilizers for plastics, rubber, petroleum, and fats and oils.
  • a material selected from the group of compounds shown below can be preferably used.
  • the anti-oxidation agent usable for the body is not limited to these examples.
  • Phenolic compounds described in JP-A-57-122444, phenol derivatives described in JP-A-60-188956, and hindered phenols described in JP-A-63-18356 are described in JP-A-57-122444, phenol derivatives described in JP-A-60-188956, and hindered phenols described in JP-A-63-18356.
  • hindered phenols having a bulky substituent near the hydroxyl group as shown below.
  • octadecyl-3,5-dibutyl 4-hydroxyhydrocinnamate (manufactured by Ciba Geigy Co., Ltd., trade name: Irganoxl076) is preferable.
  • the amount of the anti-oxidation agent in the surface layer is not particularly limited.
  • the amount is preferably 0.1 parts by weight or more and 20 parts by weight or less per 100 parts by weight of the binder resin. Outside this range, good electrical characteristics may not be obtained.
  • it is particularly preferably 1 part by weight or more. Further, if the amount is too large, there may be an adverse effect on the printing durability as well as only the electrical characteristics, so the amount is preferably 15 parts by weight or less, and more preferably 10 parts by weight or less.
  • the photosensitive layer has well-known plasticizers, ultraviolet absorbers, electron-withdrawing compounds, levels to improve film-forming properties, flexibility, coating properties, stain resistance, gas resistance, light resistance, etc.
  • An additive such as a ring agent may be contained.
  • a protective layer may be provided on the photosensitive layer for the purpose of preventing the photosensitive layer from being worn out or preventing or reducing the deterioration of the photosensitive layer due to a discharge product generated by a charger or the like.
  • the surface layer may contain fluorine-based resin, silicone resin, or the like. Further, it may contain particles of these resins and particles of inorganic compounds.
  • Each layer constituting these photoreceptors is formed by immersing, coating, spraying, nozzle coating, bar coating, roll coating, blade coating, etc., a coating solution obtained by dissolving or dispersing a substance to be contained in a solvent.
  • a coating solution obtained by dissolving or dispersing a substance to be contained in a solvent are formed by sequential application by the known method.
  • Examples of the solvent or dispersion medium used for preparing the coating solution include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol; ethers such as tetrahydrofuran, 1,4 dioxane and dimethoxyethane; Such as methyl formate and ethyl acetate Steals; Ketones such as acetone, methyl ethyl ketone, and cyclohexanone; Aromatic hydrocarbons such as benzene, toluene, and xylene; Dichloromethane, chloroform, 1,2-dichloroolefin, 1, 1, Chlorinated hydrocarbons such as 2-trichloro-orchid ethane, 1, 1, 1 triclo-oral ethane, tetra-chloro-orchid ethane, 1,2-dichloropropane, trichloroethylene; n-butylamine, isopropanolamine, jetyl
  • the solid content concentration is preferably 15% by weight or less, more preferably 1 to: LO weight%, and the viscosity is preferably. Is 0.1 to: LOm Pa's, more preferably 1 to 5 mPa's.
  • the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further includes a transfer device 5, a cleaning device as necessary.
  • a fixing device 6 and a fixing device 7 are provided.
  • the electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention.
  • the above-described photosensitive layer is formed on the surface of a cylindrical conductive support. Shows a drum-shaped photoconductor.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5 and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photosensitive member 1, respectively.
  • the charging device 2 charges the electrophotographic photoreceptor 1, and uniformly charges the surface of the electrophotographic photoreceptor 1 to a predetermined potential.
  • a roller-type charging device (charging roller) is used.
  • a corona charging device such as a corotron and a scorotron
  • a contact charging device such as a charging brush, and the like are used. If charged with a contact-type charging device Force that can reduce the generation of acidic gases such as ozone. Cracks of the photosensitive layer are likely to occur.
  • the compound represented by the general formula (1) is contained in the photosensitive layer, even if the photosensitive layer is charged by a contact type charging device (contact charging type charger), the photosensitive layer is hardly cracked. , And especially preferred in terms of.
  • the electrophotographic photosensitive member 1 and the charging device 2 are designed to be removable from the main body of the image forming apparatus as a cartridge including both of them (hereinafter, referred to as a photosensitive member cartridge as appropriate).
  • a photosensitive member cartridge as appropriate.
  • the photoreceptor cartridge can be removed from the image forming apparatus main body, and another new photosensitive cartridge can be mounted on the image forming apparatus main body.
  • the toner described later is often stored in a toner cartridge and designed to be removable from the image forming apparatus main body. When the toner in the used toner cartridge runs out, the toner cartridge is also removed from the main body of the image forming apparatus, and another new toner cartridge can be mounted. Further, a cartridge equipped with all of the electrophotographic photosensitive member 1, the charging device 2, and the toner may be used.
  • the type of exposure apparatus 3 is not particularly limited as long as it can expose the electrophotographic photosensitive member 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photosensitive member 1.
  • Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He-Ne lasers, and LEDs.
  • exposure may be performed by a photoconductor internal exposure method.
  • the light used for exposure is arbitrary power.For example, exposure is possible with monochromatic light with a wavelength of 700 nm to 850 nm, monochromatic light with a wavelength slightly shorter than 600 nm to 700 nm, or monochromatic light with a short wavelength of 300 nm to 500 nm If you do.
  • the wavelength is 700 ⁇ !
  • an electrophotographic photoreceptor using an azo compound which preferably uses monochromatic light of 850 nm it is preferred to use monochromatic light having a wavelength of 700 nm or less.
  • an electrophotographic photosensitive member using the azo compound represented by the general formula (4) according to the present invention as a charge generation material sufficient sensitivity can be obtained as monochromatic light having a wavelength of 500 nm or less as a light input light source. Therefore, the wavelength is 300 ⁇ !
  • the developing device 4 can use any device such as cascade development, one-component conductive toner image, two-component magnetic brush development, or other dry development methods, or a wet development method that is not particularly limited in type.
  • the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41.
  • a replenishing device (not shown) for replenishing toner T may be attached to the developing device 4 as necessary. This replenishing device is configured to replenish toner T from a container such as a bottle or a cartridge.
  • the supply roller 43 is formed of a conductive sponge or the like.
  • the developing roller 44 is made of a metal roll such as iron, stainless steel, aluminum, or nickel, or a resin roll obtained by coating such a metal roll with silicone resin, urethane resin, fluorine resin, or the like. If necessary, the surface of the developing roller 44 may be smoothed or roughened.
  • the developing roller 44 is disposed between the electrophotographic photosensitive member 1 and the supply roller 43 and is in contact with the electrophotographic photosensitive member 1 and the supply roller 43, respectively.
  • the supply roller 43 and the developing roller 44 are rotated by a rotation drive mechanism (not shown).
  • the supply roller 43 carries the stored toner T and supplies it to the developing roller 44.
  • the developing roller 44 carries the toner T supplied by the supply roller 43 and contacts the surface of the electrophotographic photoreceptor 1.
  • the regulating member 45 is made of a resin blade made of silicone resin, urethane resin, etc., a metal blade such as stainless steel, aluminum, copper, brass, phosphor bronze, etc., or such metal blade is coated with resin. Formed by a blade or the like.
  • the regulating member 45 is in contact with the developing roller 44 and is pressed against the developing roller 44 side with a predetermined force by a spring or the like (a general blade linear pressure is 5 to 500 gZcm 2 ). If necessary, the regulating member 45 may be provided with a function of imparting charge to the toner T by frictional charging with the toner T.
  • Each agitator 42 is rotated by a rotation drive mechanism, and agitates the toner T and conveys the toner T to the supply roller 43 side.
  • Multiple agitators 42 may be provided with different blade shapes and sizes.
  • the type of toner T is arbitrary, and in addition to powdered toner, polymerized toner using suspension polymerization method or emulsion polymerization method can be used.
  • polymerized toners those with a small particle size of about ⁇ 8 / zm are preferred, and the toner particles have a nearly spherical shape.
  • the force can also be used in a variety of ways, including those that deviate from the spherical force on the potato.
  • the polymerized toner is excellent in charging uniformity and transferability, and is suitably used for high image quality.
  • the transfer device 5 uses an apparatus using any method such as electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer method, and adhesive transfer method, which are not particularly limited in type. Can do.
  • electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer method, and adhesive transfer method, which are not particularly limited in type.
  • the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like that are arranged to face the electrophotographic photoreceptor 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 onto the recording paper (paper, medium) P.
  • transfer voltage transfer voltage
  • the cleaning device 6 there are no particular restrictions on the cleaning device 6, and any arbitrary tung device such as a brush cleaner, magnetic brush cleaner, electrostatic brush cleaner, magnetic roller cleaner, blade cleaner, etc. can be used.
  • the cleaning device 6 scrapes off residual toner adhering to the photoreceptor 1 with a cleaning member and collects the residual toner. However, if there is little or almost no toner remaining on the surface of the photoreceptor, the cleaning device 6 may be omitted.
  • the fixing device 7 includes an upper fixing member (pressure roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside the fixing member 71 or 72.
  • FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71.
  • the upper and lower fixing members 71 and 72 there are known a fixing roll in which a silicon rubber tube is coated with a silicone rubber, a fixing roll in which Teflon (registered trademark) resin is coated, a fixing sheet, and the like.
  • a heat fixing member can be used. Furthermore, each fixing member 71, 7
  • a release agent such as silicone oil in order to improve releasability, or may be configured to forcibly apply pressure to each other using a panel or the like.
  • the fixing device is not particularly limited in its type, and fixing devices of any type such as heat roller fixing, flash fixing, oven fixing, pressure fixing, etc. can be provided.
  • a predetermined potential for example, ⁇ 600 V
  • charging may be performed by superimposing AC voltage on DC voltage, which may be charged by DC voltage.
  • the charged photosensitive surface of the photoreceptor 1 is exposed by the exposure device 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface.
  • the developing device 4 develops the electrostatic latent image formed on the photosensitive surface of the photoreceptor 1.
  • the developing device 4 thins the toner T supplied by the supply roller 43 with a regulating member (developing blade) 45 and has a predetermined polarity (here, the same potential as the charged potential of the photoreceptor 1). And negatively charged), transported while being carried on the developing roller 44, and brought into contact with the surface of the photoreceptor 1.
  • the final image is obtained by passing the fixing device 7 and thermally fixing the toner image onto the recording paper P.
  • the image forming apparatus may have a configuration capable of performing, for example, a static elimination process.
  • the neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, LED, or the like is used as the neutralizing device.
  • the light used in the static elimination process is often light having an exposure energy that is at least three times that of the exposure light.
  • the image forming apparatus may be further modified.
  • the image forming apparatus may be configured to perform a pre-exposure process, an auxiliary charging process, or the like, or may be configured to perform offset printing. Further, a full color tandem system configuration using a plurality of types of toners may be used.
  • Exemplified compound 2 was prepared in the same manner as in Production Example 1A, except that 4,4, -diformyl-4,-methylformylamine was used instead of 4,4, -diformyl-phenylamine.
  • general formula (2) 99 mol% or more of the geometric isomers (a), (b), (c), and (d) were all trans isomers.
  • Exemplified compound 2 was prepared in the same manner as in Production Example 1B, except that 4,4, -diformyl-4,-methylformylamine was used instead of 4,4, -diformyl-phenylamine.
  • the geometric isomers of (a) and (b) are 85 mol% on average in the trans isomer, and the geometric isomer of (c) and (d) is 98 mol% on average. The above was the trans form.
  • Exemplified compound 3 was prepared in the same manner as in Production Example 1A except that 4,4′-diformyltriphenylamine was used instead of 4,4′-diformyltriphenylamine.
  • General formula (2) In (a), (b), (c), and (d), 99 mol% of the geometric isomers were all trans isomers. [0130] Production Example 3B (Production of Exemplified Compound 3)
  • Exemplified Compound 3 was prepared in the same manner as in Production Example 1A, and in the general formula (2), the geometric isomers of (a) and (b) averaged 89 mol%. Is a trans isomer, and (c) (d) geometric isomers were trans isomer on an average of 98 mol% or more.
  • a charge transport material composition was produced (hereinafter sometimes abbreviated as charge transport material X).
  • the charge transport material X contains about 30% of the total composition in terms of the peak area it rate by gel permeation chromatography using a UV detector with a wavelength of 254 nm.
  • the peak area ratio of the compound represented by Example Compound 2 to the maximum amount of the compound contained in the charge transport material X was about 60%.
  • J8 type oxytitanium phthalocyanine was produced according to the description in “Examples of production of crude TiOPc” and “Example 1” in JP-A-10-7925. 18 parts by weight of the obtained ⁇ -type titanium phthalocyanine and 720 parts by weight of 95% concentrated sulfuric acid cooled to ⁇ 10 ° C. or lower were mixed. At this time, j8 type oxytitanium phthalocyanine was slowly added so that the temperature of the sulfuric acid solution did not exceed 5 ° C. After mixing, the concentrated sulfuric acid solution was stirred at -5 ° C or lower for 2 hours. After stirring, the concentrated sulfuric acid solution was filtered through a sintered glass filter, and the insoluble matter was filtered off.
  • oxytitanium phthalocyanine was precipitated and stirred for 1 hour after dispersion. After stirring, the solution was separated by filtration, and the obtained wet cake and 900 parts by weight of water were mixed for 1 hour, followed by filtration. By repeating this operation until the ionic conductivity of the filtrate reached 0.5 mSZm, 185 parts by weight of a low crystalline oxytitanium phthalocyanine wet cake was obtained (oxytitanium phthalocyanine content 9.5% by weight). . [0133] 93 parts by weight of the obtained low crystalline oxytitanium phthalocyanine wet cake and 190 parts by weight of water were mixed and stirred at room temperature for 30 minutes.
  • charge generation material 1 The content of black oxytitanium phthalocyanine contained in the obtained oxytitanium phthalocyanine
  • the intensity ratio was 0.003 or less with respect to oxytitanium phthalocyanine.
  • the content of black oxytitanium phthalocyanine contained in the obtained oxytitanium phthalocyanine was measured using the technique (mass spectrum) described in JP-A-2001-115054.
  • the strength ratio of titanium phthalocyanine was 0.003 or less.
  • polyvinyl butyral manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Butyral # 600
  • concentration of 1 to 5 wt%, 2-dimethoxy E tan solution 100 parts by weight of 0C), phenoxy ⁇ (Union Carbide Corp., 1 concentration of 5 weight 0/0 trade name PKHH), 2 dimethoxyethane down solution 100 parts by weight was mixed to prepare a binder resin solution.
  • the obtained dispersion for forming a charge generation layer was applied onto a 75 ⁇ m-thick polyethylene terephthalate film with aluminum deposited on the surface so that the film thickness after drying was 0.3 / zm. Thus, a charge generation layer was provided.
  • Example 40 was used in the same manner as in Example 1 except that 40 parts by weight of Exemplified Compound 1 produced in Production Example (1B) was used instead of Exemplified Compound 1 produced in Production Example (1A) used in Example 1. An electrophotographic photoreceptor A3 was obtained.
  • Example Compound 1 produced in Production Example (1A) used in Example 1 15 parts by weight of Example Compound 2 produced in Production Example (2A) was used, and instead of Compound (A) The electrophotographic photoreceptor A5 was obtained in the same manner as in Example 1 except that 15 parts by weight of the compound (B) was used.
  • Exemplified Compound 2 produced in Production Example (2A) used in Example 5 20 parts by weight of Exemplified Compound 2 produced in Production Example (2B) was used, and the amount of Compound (B) used was 20 An electrophotographic photosensitive member A6 was obtained in the same manner as in Example 5 except for using parts by weight.
  • Example Compound 1 produced in Production Example (1A) used in Example 1 20 parts by weight of Example Compound 3 produced in Production Example (3A) was used, and instead of Compound (A) An electrophotographic photoreceptor A7 was obtained in the same manner as in Example 1 except that 20 parts by weight of the following compound (C) was used.
  • An electrophotographic photoreceptor A8 was obtained in the same manner as in Example 7 except that 20 parts by weight of the compound (A) was used instead of the compound (C) used in Example 7.
  • An electrophotographic photoreceptor A9 was obtained in the same manner as in Example 8, except that the compound (B) was used instead of the compound (A) used in Example 8.
  • Example 10 An electrophotographic photoreceptor A10 was obtained in the same manner as in Example 7 except that the amount of Exemplified Compound 3 used in Example 7 was changed to 50 parts by weight.
  • An electrophotographic photoreceptor A12 was obtained in the same manner as in Example 7 except that the amount of compound (C) used in Example 7 was changed to 50 parts by weight.
  • Example Compound 3 used in Example 7 was 45 parts by weight, and instead of using Compound (C), 50 parts by weight of Compound (B) was used. A photoconductor A13 was obtained.
  • An electrophotographic photoreceptor A14 was obtained in the same manner as in Example 13 except that the compound (A) was used instead of the compound (B) used in Example 13.
  • Example Compound 1 produced in Production Example (1A) used in Example 1 50 parts by weight of Example Compound 3 produced in Production Example (3B) was used, and Compound (A) was not used. Except for this, an electrophotographic photoreceptor A15 was obtained in the same manner as in Example 1.
  • Example Compound 1 produced in Production Example (1A) used in Example 1
  • 20 parts by weight of Example Compound 3 produced in Production Example (3B) was used, and instead of Compound (A)
  • An electrophotographic photoreceptor A16 was obtained in the same manner as in Example 1 except that the compound (C) was used.
  • Example 17
  • Example 16 The same procedure as in Example 16 was used except that instead of the charge generation material 1 prepared in Example 1 of charge generation material used in Example 16, the charge generation material 2 prepared in Example 2 of charge generation material was used. Thus, an electrophotographic photoreceptor A17 was obtained.
  • Example 18 The same procedure as in Example 16 was used except that charge generation material 1 manufactured in charge generation material preparation example 3 was used instead of charge generation material 1 manufactured in charge generation material manufacturing example 1 used in Example 16. Thus, an electrophotographic photoreceptor A18 was obtained.
  • An electrophotographic photoreceptor A19 was obtained in the same manner as in Example 7 except that the following binder resin (B2) (viscosity average molecular weight 40,000) was used instead of the binder resin used in Example 7. .
  • An electrophotographic photoreceptor A20 was obtained.
  • Example 16 instead of using the oxytitanium phthalocyanine obtained in the charge generation material production example 1 used in Example 16, the oxytitanium obtained by the method described in the production example of JP-A-8-123052 was used. An electrophotographic photoreceptor A21 was obtained in the same manner as in Example 16 except that phthalocyanine (hereinafter sometimes abbreviated as charge generating material 4) was used.
  • phthalocyanine hereinafter sometimes abbreviated as charge generating material 4
  • Example 16 The amount of Exemplified Compound 3 produced in Production Example (3B) used in Example 16 was 90 wt.
  • the electrophotographic photosensitive member A22 was obtained in the same manner as in Example 16, except that the amount of the compound (C) used was 10 parts by weight.
  • An electrophotographic photoreceptor A23 was obtained in the same manner as in Example 22 except that the amount of Example Compound 3 produced in Production Example (3B) used in Example 22 was 65 parts by weight.
  • Example 13 Similar to Example 13 except that 40 parts by weight of Exemplified Compound 1 produced in Production Example (1 A) was used instead of Exemplified Compound 3 produced in Production Example (3A) used in Example 13. Thus, an electrophotographic photoreceptor A24 was obtained.
  • Example 15 In the same manner as in Example 15, except that 100 parts by weight of Exemplified Compound 1 produced in Production Example (1 A) was used instead of Exemplified Compound 3 produced in Production Example (3B) used in Example 15. As a result, an electrophotographic photosensitive member P1 was obtained, and precipitation of crystals was observed on the entire surface of the photosensitive member.
  • An electrophotographic photosensitive member P2 was obtained in the same manner as in Example 15 except that 100 parts by weight of Exemplified Compound 2 produced in A) was used. Crystal precipitation was observed on the entire surface of the photosensitive member.
  • An electrophotographic photosensitive member P4 was obtained in the same manner as in Example 15 except that 100 parts by weight of Exemplified Compound 1 produced in B) was used, but precipitation of crystals was observed at the end of the photosensitive member.
  • An electrophotographic photoreceptor P6 was obtained in the same manner as in Example 1 except that instead of using 20 parts by weight of Exemplified Compound 1 prepared in Production Example (1A) used in Example 1, 100 parts by weight was used. Force Crystal precipitation was observed on a part of the edge of the photoreceptor.
  • An electrophotographic photosensitive member P7 was obtained in the same manner as in Example 5 except that 100 parts by weight of the exemplified compound 2 produced in Production Example (2A) used in Example 5 was used instead of 15 parts by weight. However, crystal precipitation was observed at a part of the edge of the photoreceptor.
  • the electrophotographic photosensitive member P8 was prepared in the same manner as in Example 5 except that 10 parts by weight of Example Compound 2 produced in Production Example (2A) used in Example 5 was used instead of 15 parts by weight. Obtained.
  • An electrophotographic photosensitive member P10 was obtained in the same manner as in Example 15 except that the following compound (D) was used instead of the exemplified compound 3 produced in Production Example (3B) used in Example 15.
  • An electrophotographic photoreceptor P11 was obtained in the same manner as in Example 15 except that the following compound (E) was used in place of the exemplified compound 3 produced in Production Example (3B) used in Example 15.
  • An electrophotographic photoreceptor P12 was obtained in the same manner as in Example 15 except that the following compound (F) was used in place of the exemplified compound 3 produced in Production Example (3B) used in Example 15.
  • An electrophotographic photoreceptor P13 was obtained in the same manner as in Example 15 except that the following compound (G) was used in place of the exemplified compound 3 produced in Production Example (3B) used in Example 15.
  • An electrophotographic photoreceptor P14 was obtained in the same manner as in Example 15, except that the compound (C) was used instead of the exemplified compound 3 produced in Production Example (3B) used in Example 15.
  • Example 15 An electrophotograph was obtained in the same manner as in Example 15 except that the charge transport material X produced in Comparative Production Example 1 was used in place of the Exemplified Compound 3 produced in Production Example (3B) used in Example 15. The power to obtain photoconductor P16 When the photoconductor was allowed to stand at room temperature for 1 day, precipitation of crystals was observed.
  • the electrophotographic characteristic evaluation device (according to electrophotographic technology basics and application, edited by the Electrophotographic Society, Corona, page 404-405) manufactured according to the Electrophotographic Society measurement standard, After a week), it was affixed to an aluminum drum to form a cylinder. Next, after conducting the electrical connection between the aluminum drum and the aluminum substrate of the photosensitive member, the drum was rotated at a constant rotational speed, and an electrical property evaluation test was performed by a cycle of charging, exposure, potential measurement, and static elimination. At that time, the initial surface potential was set to -700 V, monochromatic light of 780 nm was used for exposure, and 660 nm was used for charge removal.
  • a liquid obtained in the same manner as in the photoreceptor M1 was applied except that the amount of the compound (C) used was 40 parts by weight, to obtain a photoreceptor MP1.
  • the electrophotographic photosensitive member of the present invention has a low temperature and low humidity environmental condition. However, it can be seen that it shows good electrical characteristics with high sensitivity and low VL. It can also be seen that it has excellent compatibility with various binder resins. It can also be seen that the photoconductor is very fast in mobility.
  • the surface was anodized by anodizing in sulfuric acid aqueous solution and subjected to low-temperature sealing at 90 ° C in a nickel acetate aqueous solution.
  • the coating solution for forming the charge generation layer and the coating solution for forming the charge transport layer which were prepared in the same manner as described above, were sequentially applied by a dip coating method and dried to obtain a film having a thickness of 0.3 ⁇ m and a charge transport layer of 25 m.
  • An electrophotographic photosensitive drum was produced.
  • LaserJet 4 manufactured by Hewlett Packard, an image test was performed, and a good image free from image defects and noise was obtained. Next, 10,000 sheets were printed continuously, but no image degradation such as ghost and capri was observed, and there was no image defect due to leakage.
  • the surface was anodized by anodizing in an aqueous sulfuric acid solution and subjected to low-temperature sealing at 90 ° C in a nickel acetate aqueous solution.
  • the coating solution for forming the charge generation layer and the coating solution for forming the charge transport layer which were prepared in the same manner as described above, were sequentially applied by a dip coating method and dried to obtain a film having a thickness of 0.3 ⁇ m and a charge transport layer of 15 m.
  • An electrophotographic photosensitive drum was produced.
  • Comparative Example 8 was carried out on an aluminum tube with a diameter of 20 mm and a length of 251 mm, which was anodized in an aqueous sulfuric acid solution and anodized on the surface and then subjected to low-temperature sealing at 90 ° C in a nickel acetate aqueous solution.
  • Coating solution for forming charge generation layer and charge transport layer prepared in the same manner The forming coating solution was sequentially applied by a dip coating method and dried to prepare an electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ m and a charge transport layer of 15 m.
  • Example 13 After preparing a subbing on an aluminum tube having a diameter of 20 mm and a length of 251 mm using the method described in JP-A-2005-99791, Example 13, a coating solution for a charge generation layer prepared in the same manner as in Example 8 and The coating solution for forming a charge transport layer was sequentially applied by a dip coating method and dried to produce an electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ ⁇ and a charge transport layer of 15 m.
  • Four of these drums were installed in Fuji Xerox's tandem color laser printer, C161 6, and when an image test was performed at a temperature of 35 ° C and humidity of 85% (sometimes referred to as an HZH environment) A good image without noise was obtained.
  • 1000 sheets were printed continuously, but no image deterioration such as leakage, ghost, capri, or density reduction was observed, and it was stable.
  • An electrophotographic photoreceptor A29 was obtained in the same manner as in Example 7 except that the following binder (B5) (viscosity average molecule 40,000) was used instead of the binder used in Example 7.
  • Example 60 was used in the same manner as in Example 1 except that 60 parts by weight of Exemplified Compound 15 was used instead of Exemplified Compound 1 produced in Production Example (1 A) used in Example 1, and Compound (A) was not used. An electrophotographic photoreceptor A31 was obtained.
  • Example 1 was used except that 30 parts by weight of Exemplified Compound 17 and 30 parts by weight of Compound (A) were used instead of Exemplified Compound 1 produced in Production Example (1 A) used in Example 1. Similarly, an electrophotographic photoreceptor A32 was obtained.
  • An electrophotographic photoreceptor A33 was obtained in the same manner as in Example 1 except that 20 parts by weight of Exemplified Compound 18 was used instead of Exemplified Compound 1 produced in Production Example (1 A) used in Example 1.
  • Example 1 The same as Example 1 except that 30 parts by weight of Exemplified Compound 8 and 30 parts by weight of Exemplified Compound 18 were used instead of Exemplified Compound 1 produced in Production Example (1 A) used in Example 1 Thus, an electrophotographic photoreceptor A34 was obtained.
  • Example 90 was used in the same manner as in Example 1 except that 90 parts by weight of Exemplified Compound 15 was used instead of Exemplified Compound 1 produced in Production Example (1 A) used in Example 1 and that Compound (A) was not used. An electrophotographic photoreceptor A35 was obtained.
  • Example 37 Diameter obtained by anodizing the surface of the coating solution for forming the charge generation layer used in Example 1 in an aqueous sulfuric acid solution and performing a low-temperature sealing treatment in an aqueous nickel acetate solution at 90 ° C.
  • a charge generation layer was formed by dip-coating on an aluminum tube (conductive support) 30 mm long and 254 mm long so that the film thickness after drying was 0.4 m, followed by drying.
  • a charge transport layer was prepared in the same manner as in Example 31 to prepare an electrophotographic photosensitive drum. When this drum was mounted on a Hewlett Packard laser printer, LaserJet 4 (LJ4), and an image test was performed, a good image free from image defects and noise was obtained. Next, 10,000 sheets were printed continuously, but no image degradation such as ghost or capri was observed, and there was no image defect due to leakage. [0197]
  • Example 37 Example 37
  • Rutile-type titanium oxide with an average primary particle size of 40 nm (Ishihara Sangyo Co., Ltd., “TT055N”) and 3% by weight of methyldimethoxysilane (Toshiba Silicone Co., Ltd., “TSL 8117”) 1 kg of raw material slurry made by mixing 50 parts of surface-treated titanium oxide obtained by mixing with a Henschel mixer and 120 parts of methanol, and zirconia beads having a diameter of about 100 m (YTZ manufactured by Nitsukato Co., Ltd.)
  • UAM-015 type ultra apex mill manufactured by Kotobuki Kogyo Co., Ltd. with a mill volume of approximately 0.15L is used.
  • a titanium oxide dispersion was prepared.
  • ultrasonic dispersion with an 1200W ultrasonic transmitter was performed for 1 hour, filtered through a PTFE membrane filter (Advantech's Mytex LC) with a pore size of 5 ⁇ m, and surface-treated acid-titanium Z copolymer.
  • Polyamide has a weight ratio of 3Z1
  • methanol Z1-propanol / toluene mixed solvent has a weight ratio of 7/1/2, and contains 18.0% by weight of solid content.
  • a coating solution A was obtained.
  • Undercoat layer forming coating solution A was dip-coated on an aluminum cutting tube with a diameter of 30 mm, a length of 285 mm, and a wall thickness of 0.8 mm, resulting in a film thickness of 2.4 m after drying.
  • the undercoat layer was formed by coating and drying. When the surface of the undercoat layer was observed with a scanning electron microscope, almost no aggregates were observed.
  • On the undercoat layer a charge generation layer and a charge transport layer were prepared in the same manner as in Example 36.
  • the produced photoconductor was mounted on a cartridge of a color printer (product name: InterColor LP-1500C) manufactured by Seiko Epson Corporation. When a full color image was formed, a good image could be obtained.
  • a color printer product name: InterColor LP-1500C
  • concentration of 1 to 5 wt%, 2-dimethoxy E tan solution 100 parts by weight of 0C), phenoxy ⁇ (Union Carbide Corp., 1 concentration of 5 weight 0/0 trade name PKHH), 2 dimethoxyethane down solution 100 parts by weight was mixed to prepare a binder resin solution.
  • the obtained dispersion for forming a charge generation layer was applied on a 75 ⁇ m thick polyethylene terephthalate film having aluminum deposited on the surface so that the film thickness after drying was 0.3 / zm. Thus, a charge generation layer was provided.
  • An electrophotographic photoreceptor A42 was obtained.
  • An electrophotographic photoreceptor A46 was obtained in the same manner as in Example 41 except that 20 parts by weight of Exemplified Compound 2 produced in A) was used and 20 parts by weight of Compound (A) was used.
  • An electrophotographic photoreceptor A47 was obtained in the same manner as in Example 46 except that the exemplified compound 2 produced in B) was used.
  • An electrophotographic photoreceptor A48 was obtained in the same manner as in Example 41 except that 40 parts by weight of Exemplified Compound 1 produced in A) was used and 20 parts by weight of Compound (C) was used.
  • An electrophotographic photoreceptor A49 was obtained in the same manner as in Example 48 except that the exemplified compound 1 produced in B) was used.
  • Example 41 The same procedure as in Example 41 was used, except that the charge generation material 1 prepared in charge generation material production example 2 was used instead of the charge generation material 1 manufactured in charge generation material production example 1 used in Example 41. Thus, an electrophotographic photoreceptor A50 was obtained.
  • Example 52 The same procedure as in Example 41 was used except that the charge generation material 3 prepared in Charge Generation Material Production Example 3 was used in place of the charge generation material 1 manufactured in Example 1 of Charge Generation Material Production Example 1 used in Example 41. Thus, an electrophotographic photoreceptor A51 was obtained.
  • Example 52 The same procedure as in Example 41 was used except that the charge generation material 3 prepared in Charge Generation Material Production Example 3 was used in place of the charge generation material 1 manufactured in Example 1 of Charge Generation Material Production Example 1 used in Example 41. Thus, an electrophotographic photoreceptor A51 was obtained.
  • Example 52 The same procedure as in Example 41 was used except that the charge generation material 3 prepared in Charge Generation Material Production Example 3 was used in place of the charge generation material 1 manufactured in Example 1 of Charge Generation Material Production Example 1 used in Example 41. Thus, an electrophotographic photoreceptor A51 was obtained.
  • An electrophotographic photoreceptor A52 was obtained in the same manner as in Example 41 except that 50 parts by weight was used.
  • Example 41 Instead of using the oxytitanium phthalocyanine obtained in the charge generation material production example 1 used in Example 41, the electrophotographic photosensitization was performed in the same manner as in Example 41 except that the charge generation material 4 was used. Body A53 was obtained.
  • An electrophotographic photosensitive member P27 was obtained in the same manner as in Example 41 except that the compound (C) was used instead of the exemplified compound 3 produced in Production Example (3A) used in Example 41.
  • An electrophotographic photosensitive member P28 was obtained in the same manner as in Example 41 except that the compound (E) was used instead of the exemplified compound 3 produced in Production Example (3A) used in Example 41. Comparative Example 29
  • An electrophotographic photosensitive member P29 was obtained in the same manner as in Example 41 except that the compound (F) was used instead of the exemplified compound 3 produced in Production Example (3A) used in Example 41.
  • An electrophotographic photosensitive member P30 was obtained in the same manner as in Example 41 except that the compound (G) was used instead of the exemplified compound 3 produced in Production Example (3A) used in Example 41.
  • An electrophotographic photoreceptor P31 was obtained in the same manner as in Example 41 except that the compound (H) was used in place of the exemplified compound 3 produced in Production Example (3A) used in Example 41. However, precipitation was observed on the photoreceptor, and the characteristics could not be evaluated.
  • a coating solution for forming a charge generation layer and a coating solution for forming a charge transport layer prepared in the same manner as in Example 47 are immersed on an aluminum tube having a diameter of 30 mm and a length of 254 mm that has been anodized and sealed.
  • the electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ m and a charge transport layer of 25 m was prepared by sequentially applying and drying by a coating method. When this drum was mounted on a laser printer, Laser Jet 4 (LJ4) manufactured by Huette Packard, an image test was performed, and a good image free from image defects and noise was obtained. Next, 10,000 sheets were printed continuously, but no image degradation such as ghost and capri was observed, and there was no image defect due to leakage.
  • LJ4 Laser Jet 4
  • a coating solution for forming a charge generation layer and a coating solution for forming a charge transport layer prepared in the same manner as in Example 48 are immersed on an aluminum tube having a diameter of 20 mm and a length of 251 mm that has been anodized and sealed.
  • the electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ m and a charge transport layer of 15 m was prepared by coating and drying sequentially by a coating method.
  • an image test was conducted at an ambient temperature of 35 ° C and a humidity of 85% (sometimes called an HZH environment), image defects were detected. And noise A good image with no image was obtained.
  • 1000 sheets were printed continuously, but there was no image degradation such as leakage, ghost, capri, etc., and the image was stable.
  • a coating solution for forming a charge generation layer and a coating solution for forming a charge transport layer were prepared in the same manner as in Comparative Example 28 on an aluminum tube having a diameter of 20 mm and a length of 25 lmm that was anodized and sealed.
  • An electrophotographic photosensitive drum having a charge generation layer of 0.3 ⁇ m and a charge transport layer of 15 m was prepared by sequentially applying and drying by a dip coating method. When four drums were mounted on a Fuji Xerox tandem color laser printer, C1616, and an image test was performed in an HZH environment, good images without image defects and noise were obtained. Next, when 1000 sheets were continuously printed, image deterioration due to capri was observed.
  • a subbing was produced on an aluminum tube having a diameter of 20 mm and a length of 251 mm using the method described in Example 13 of JP-A-2005-99791. Thereafter, the charge generation layer coating solution and the charge transport layer formation coating solution prepared in the same manner as in Example 48 were sequentially applied by a dip coating method and dried to form a charge generation layer 0.3 111, charge transport layer.
  • An electrophotographic photosensitive drum having a layer of 15 / zm was produced. Four of these drums were installed in Fuji Xerox's tandem color laser printer, C1616, and an image test was conducted at an ambient temperature of 35 ° C and humidity of 85% (sometimes called an HZH environment). A good image without noise was obtained. Next, continuous printing of 1 000 sheets was performed, but there was no image deterioration such as leakage, ghost, capri, or density reduction, and it was stable.
  • the mobility of the charge transport layers of the obtained photoconductors A41 and A44 was determined by the same method as that of the electrophotographic photoconductors M1 and MP1, and by the charge generation material excitation by 780 nm exposure based on the TOF method, 21 ⁇ The measurement was performed at 0.5 ° C. and 2.0 ⁇ 10 5 (V / cm). The results are shown in Table 7.
  • Exemplified Compound 3 produced in Production Example (3A) used in Example 41 40 parts by weight of Exemplified Compound 15 was used, and Compound (A) was not used. An electrophotographic photoreceptor A57 was obtained.
  • Exemplified Compound 3 produced in Production Example (3A) used in Example 41 40 parts by weight of Exemplified Compound 16 was used, and Compound (A) was not used. An electrophotographic photoreceptor A58 was obtained.
  • Exemplified Compound 3 produced in Production Example (3A) used in Example 41 40 parts by weight of Exemplified Compound 18 was used, and Compound (A) was not used. An electrophotographic photoreceptor A59 was obtained.
  • the electrophotographic photoreceptor of the present invention has high sensitivity, low VL, and good electrical properties.
  • the film thickness after drying is 1. O using the technique described in Example 13 of JP-A-2005-099791. A subbing layer was provided by dip coating and drying so as to be / zm.
  • an electrophotographic characteristic evaluation device manufactured according to the Electrophotographic Society measurement standard (Continuing Electrophotographic Technology Basics and Applications, edited by the Electrophotographic Society, Corona, pages 404-405) It was rotated at 60 rpm, and electrical characteristics evaluation tests were carried out by charging, exposure, potential measurement, and static elimination cycles. At that time, was charged to an initial surface potential of the photosensitive member is + 900 V, post-exposure surface potential upon exposure to light of a halogen lamp with interference filter to those with 780nm monochromatic light at 1. 0 jZcm 2 (Hereinafter sometimes referred to as VL +). In the VL + measurement, the exposure time was also set to 100 ms. The measurement environment was a temperature of 25 ° C and a relative humidity of 50%.
  • VL + showed a sufficiently low surface potential of +65 V, and was found to be extremely suitable as a photoreceptor for electrophotography.
  • the image density is equivalent to that of the standard drum, and it has been proved that the image forming apparatus can suitably operate as a black spot.
  • a charge transporting material having a specific structure excellent in electrical characteristics and other characteristics has been found, and formation of an electrophotographic photosensitive member having improved electrical characteristics, stability and durability using the same. Became possible.
  • the electrophotographic photosensitive member can be used as an image forming apparatus and an electrophotographic cartridge.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 電気特性、諸特性に優れ、かつ、均一な感光層を形成可能であり、繰返し特性にも優れた電子写真感光体、それを用いた画像形成装置、及び電子写真カートリッジを提供する。  導電性支持体上に感光層が形成された積層型電子写真感光体において、該感光層が下記一般式(1)で表される化合物を含有し、該感光層に含まれる、一般式(1)で表される化合物重量の、全バインダー樹脂の含有重量に対する比が0.15~0.6であり、一般式(1)で表される化合物重量が全電荷輸送物質中最大であることを特徴とする。 (式中、Ar1、Ar2及びAr3は置換基を有してもよいアリール基を表わし、Ar4及びAr5はそれぞれ独立に置換基を有してもよいアリーレン基を表し、n1及びn2はそれぞれ独立に1~3の整数を表す。)

Description

明 細 書
電子写真感光体、これを用いた画像形成装置、及びカートリッジ 技術分野
[0001] 本発明は、導電性支持体上に感光層が形成された電子写真感光体に関する。より 詳しくは、電気特性、安定性、耐久性の良好な電子写真感光体、該感光体を用いた 画像形成装置、及び電子写真カートリッジに関するものである。
背景技術
[0002] 電子写真技術は、即時性、高品質の画像が得られること等から、近年では複写機 の分野にとどまらず、各種プリンター、印刷機の分野でも広く使われ応用されてきて いる。
電子写真技術の中核となる感光体にっ 、ては、その光導電材料として従来力 の セレン、ヒ素一セレン合金、硫ィ匕カドミウム、酸ィ匕亜鉛といった無機系の光導電体から 、最近では、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光 導電材料を使用した感光体の使用が主流となって!/、る。
[0003] 有機感光体の層構成としては、電荷発生物質をバインダー榭脂中に分散させた!/ヽ わゆる単層型感光体、電荷発生層及び電荷移動層を積層した積層型感光体が知ら れている。積層型感光体は、効率の高い電荷発生物質、及び電荷移動物質を別々 の層に分けて、最適なものを組み合わせることにより高感度かつ安定な感光体が得 られること、材料選択範囲が広く特性の調整が容易なことから多く使用されている。単 層型感光体は、電気特性面では積層型感光体にやや劣り、材料選択性も狭いことか ら、限定的に使用されている。また、電子写真感光体は、電子写真プロセスすなわち 帯電、露光、現像、転写、クリーニング、除電等のサイクルで繰り返し使用されるため その間様々なストレスを受け劣化する。この内、化学的劣化としては例えば帯電器と して普通用いられるコロナ帯電器力 発生する強酸ィ匕性のオゾンや NOxが感光層 にダメージを与えることが挙げられ、繰り返し使用する場合に、帯電性の低下、残留 電位の上昇等の電気的安定性の悪化、及びそれに伴う画像不良が起きることがある 。これらは、感光層中に多く含まれる電荷輸送物質の化学的劣化に由来するところが 大きい。
[0004] さらには、近年の電子写真プロセスの高速ィ匕に伴い、高感度化、高速応答化が必 要となっている。このうち、高感度化のためには、電荷発生物質の最適化だけでなく 、電荷発生物質と組み合わせた際に良好な特性を示す電荷輸送物質の開発が必要 であり、高速応答化のためには、高移動度かつ露光時に十分な低残留電位を示す 電荷輸送物質の開発が必要である。高感度化、高速応答化に有効な電荷輸送物質 として、各種のブタジエン骨格を使用した電荷輸送物質が知られている(例えば、特 許文献 1〜3参照)。
特許文献 1 :特開昭 60— 175052号公報
特許文献 2 :特開平 10— 312071号公報
特許文献 3:特開 2004 - 302032号公報
発明の開示
発明が解決しょうとする課題
[0005] バインダー榭脂に対する電荷輸送材料の含有量を増やせば、高感度化、高速応 答化が可能となることが多いが、機械的強度が低下することが多ぐ耐刷性、耐傷性 等の耐久性を低下させる事になる。従って、耐久性を低下させない程度の電荷輸送 材料の含有量であっても、高感度化、高速応答化に耐えうるような電子写真感光体 が望まれており、前記文献に記載の電荷輸送物質を適用する技術が知られていた。 しかしながら、それらの技術では均一な感光層を形成することが困難であるという問 題点があり、感光体の長期保存、寒冷地保存、長期使用等において、感光層が不溶 成分により濁り、電気特性が悪ィ匕するという問題があった。そして、前記文献で開示さ れる技術による感光体は、オゾン等の酸ィ匕性物質に弱ぐ画像形成装置 (電子写真 装置)内部で繰返し使用した場合に特性が劣化してしまうという問題があった。
[0006] 本発明は、前記課題を鑑みてなされたものである。すなわち、本発明は、電気特性 、諸特性に優れ、かつ、均一な感光層を形成することが可能であって、繰返し特性に も優れた電子写真感光体、該電子写真感光体を用いた画像形成装置、及び電子写 真カートリッジを提供することにある。
課題を解決するための手段 [0007] そこで本発明者らは、上記の要求を満たす電荷輸送物質にっ 、て鋭意検討した結 果、特定の構造式を有する電荷輸送物質をある一定の部数で使用することにより、 電子写真感光体の電気特性、安定性、耐久性を改良することを見出し、本発明に至 つた o
[0008] すなわち、本発明は以下の要旨を有する。
(1)導電性支持体上に感光層が形成された積層型電子写真感光体において、該 感光層が下記一般式(1)で表される化合物を含有し、該感光層に含まれる、一般式 (1)で表される化合物重量の、全バインダー榭脂の含有重量に対する比が 0. 15〜 0. 6であり、一般式(1)で表される化合物重量が全電荷輸送物質中最大であること を特徴とする電子写真感光体。
[化 1]
Figure imgf000005_0001
(一般式(1)において、
Figure imgf000005_0002
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[0009] (2)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物を含有し、該感光層に含まれる、一般式(1)で 表される化合物重量の、全バインダー榭脂の含有重量に対する比が 0. 15〜0. 9で あり、一般式(1)で表される化合物重量が全電荷輸送物質中最大であり、かつ、感 光層中にォキシチタニウムフタロシアニンを含有することを特徴とする電子写真感光 体。
[0010] (3)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物を含有するものであって、一般式(1)で表される 化合物の Ar3が、複数のアルキル置換基を有するものであり、かつ、感光層中にォキ シチタニウムフタロシアニンを含有することを特徴とする電子写真感光体。 [0011] (4)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物を含有するものであって、一般式(1)で表される 化合物の Ar3が、炭素数 2以上のアルキル基を置換基として有するものであり、かつ、 感光層中にォキシチタニウムフタロシアニンを含有することを特徴とする電子写真感 光体。
[0012] (5)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物、及びポリアリレートを含有することを特徴とする 電子写真感光体。
[0013] (6)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物、及び下記構造単位 (p— 1)を有するポリカーボ ネートを含有することを特徴とする電子写真感光体。
[化 2]
Figure imgf000006_0001
[0014] (7)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物、及び下記構造単位 (p— 2)を有するポリカーボ ネートを含有し、前記一般式(1)で表される化合物重量の、該感光層中の全バイン ダー榭脂の含有重量に対する比が 0. 15〜0. 9であることを特徴とする電子写真感 光体。
[化 3]
Figure imgf000006_0002
(8)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物を含有し、かつ、該導電性支持体がアルミニウム 又はアルミニウム合金であって陽極酸ィ匕皮膜を有するものであることを特徴とする電 子写真感光体。
[0016] (9)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物を含有し、かつ、導電性支持体と感光層の間に 下引き層を有するものであることを特徴とする電子写真感光体。
[0017] (10)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物、及び、下記式 (r)で表される電荷輸送物質を 含有するものであることを特徴とする電子写真感光体。
[化 4]
Figure imgf000007_0001
(式 (r)中、 Rは、互いに異なっていてもよい、水素原子、アルキル基、アルコキシ基 又はフエ-ル基を示す。 )
[0018] (11)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物、並びに、下記式 (p)及び (q)からなる群から選 ばれた少なくとも 1つの電荷輸送物質を含有し、前記一般式(1)で表される化合物重 量の、該感光層中の全バインダー榭脂の含有重量に対する比が 0. 15〜0. 9である ことを特徴とする電子写真感光体。
[化 5]
Figure imgf000007_0002
(式 (P)及び式 (q)中、 Rは、互いに異なっていてもよい、水素原子、アルキル基、ァ ルコキシ基又はフエ-ル基を示す。) [0019] (12)導電性支持体上に感光層が形成された電子写真感光体において、該感光層 が上記一般式(1)で表される化合物を含有し、かつ、接触帯電方式の帯電器により 帯電されるものであることを特徴とする電子写真感光体。
[0020] ( 13)上記( 1 )〜( 12)の 、ずれかに記載の電子写真感光体を用 、た画像形成装 置。
[0021] (14)上記(1)〜(12)のいずれかに記載の電子写真感光体を有する電子写真力 ートリッジ。
発明の効果
[0022] 本発明の電荷輸送物質を用いることにより、電気特性に優れ、安定性、耐久性の良 好な電子写真感光体、該感光体を用いた画像形成装置、及び電子写真カートリッジ を提供することが可能となる。
より具体的には、高画質のプリンター、ファクシミリ、複写機等の電子写真装置に適 応可能な電子写真感光体を提供することができる。そして、環境変動による電気特性 の変動が小さぐ特に、高温、高湿度下で、繰り返し特性に優れ、し力も機械的な耐 久性に優れる上、耐刷性の優れた感光体を得る事ができる。また、移動度が速いこと が特徴である。
図面の簡単な説明
[0023] [図 1]本発明の画像形成装置の一例を示す図である。
符号の説明
[0024] 1. 電子写真感光体
2. 帯電装置 (帯電ローラ)
3. 露光装置
4. 現像装置
5. 転写装置
6. クリーニング装置
7. 定着装置
41.現像槽
42.アジテータ 43.供給ローラ
44.現像ロータ
45.規制部材
71.上部定着部材
72.下部定着部材
73.加熱装置
T トナー
P 記録媒体
発明を実施するための最良の形態
[0025] 以下、本発明の実施の形態につき詳細に説明するが、本発明は以下の説明に限 定されるものではなぐ本発明の要旨を逸脱しない範囲において適宜実施することが できる。
<電子写真感光体 >
本発明の電子写真感光体は、導電性支持体上に感光層を設けたものであれば、 その構造は特に制限されない。感光層の構成としては、電荷発生と電荷輸送の機能 を分離して電荷発生層と電荷輸送層を積層した、いわゆる積層型感光体と、電荷発 生材料と電荷輸送材料とを同一の層に含有した、いわゆる単層型感光体が、一般に 用いられている。そして、積層型感光体の層構成として、電荷輸送層と電荷発生層を 導電性支持体側カゝらこの順に積層した順積層型感光層と、逆に積層にした逆積層 型感光層が知られているが、本発明の電子写真感光体ではこれらのどのような感光 層ち採用することがでさる。
[0026] 感光層の膜厚は、通常 5〜50 μ m、長寿命化、画像安定性の観点からは、好ましく は10〜45 111、高解像度化の観点からは、 10〜30 /ζ πιがより好ましい。
[0027] <一般式(1)の化合物 >
本発明の電子写真感光体は、導電性支持体上に感光層が形成されたものであつ て、該感光層が下記一般式(1)で表される化合物を含有する。本発明に係る一般式 (1)で表される化合物は、感光層が複数の層により形成されている場合にはそれらの 層のうちどの層が含有していても力まわず、別の層がそれぞれ別の化合物を含有し ていてもかまわないが、一般式(1)で表される化合物は、通常電荷輸送能を有する ため、これらの化合物は、通常電荷を輸送する機能が必要とされる層が含有している
[0028] [化 6]
Figure imgf000010_0001
[0029] 一般式(1)において、 Ar1 Ar2及び ΑΓΊま置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。そして、該感光層に含まれる、一般式(1) で表される化合物重量の、全バインダー榭脂の含有重量に対する比力 0. 15〜0. 9である。
[0030] 一般式(1)中、 Ai^ Ar3のァリール基としては、芳香属性を有する環であれば特に 制限されるものではないが、フエニル基、インデニル基、ナフチル基、ァセナフチル 基、フエナントリル基、ピレニル基等が挙げられる。このうち、分子内共役拡張、分子 の永久双極子モーメント低減の観点から、フエ-ル基、又はナフチル基が好ましい。 八 〜八!:3のァリール基が有して 、てもよ 、置換基に特に制限はな 、が、メチル基、 ェチル基、プロピル基、イソプロピル基、ァリル基等のアルキル基;メトキシ基、ェトキ シ基、プロポキシ基等のアルコキシ基;フエ-ル基、インデュル基、ナフチル基、ァセ ナフチル基、フエナントリル基、ピレニル基等のァリール基;インドリル基、キノリル基、 カルバゾリル基等の複素環基が挙げられる。また、これら置換基は、連結基、又は直 接結合して環を形成してもよ 、。
[0031] また、これらの置換基は、炭素数が大きなものを採用することで、分子内電荷バラン スを改善することにより電荷移動度を増大させる効果がある一方で、大きくなりすぎる と、分子内の共役面の歪み、分子間立体反発によって力えって電荷移動度を下げる 。そのため、好ましくは炭素原子数 2以上、より好ましくは 3以上であって、好ましくは 炭素原子数 10以下、より好ましくは炭素原子数 6以下、特には炭素原子数 4以下で ある。
[0032] また、置換基を有する場合はその数が多いほうが好ましぐ複数の置換基を有する のがよい。しかし、多すぎると分子内の共役面の歪み、分子間立体反発によってかえ つて電荷移動度を下げるため、好ましくは 4個以下、より好ましくは 3個以下である。そ して、感光層中における安定性を向上させ、感光層の濁り現象を防止するため、立 体的に嵩高いものが好ましぐ直鎖構造のものよりも分岐鎖を有する構造の置換基が 好ましい。より具体的には、メチル基、ェチル基、ブチル基、イソプロピル基又はメトキ シ基が好ましい。
[0033] 更に、 A Ar2は置換基を有さず、 Ar3は置換基を有することが好ましぐより好ま しくは、 Ar3は複数の置換基を有することである。また、 Ar3が有する置換基としては、 感光層中での一般式(1)で表わされる化合物の安定性向上の為、アルキル基が好 ましぐより好ましくは分岐鎖を有するアルキル基、炭素原子数 2以上のアルキル基、 及び Z又は複数個のアルキル基である。更に、分岐鎖を有するアルキルの場合の炭 素原子数は 3以上が好ましぐ 7以下が好ましい。より好ましくは、炭素原子数は 4以 下であり、イソプロピルが好ましい。
[0034] Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基であり、ァリーレ ン基としては、芳香属性を有する環であれば特に制限されるものではない。例えば、 フエ-レン基、インデニレン基、ナフチレン基、ァセナフチレン基、フエナントリレン基、 ピレニレン基等が挙げられる。さらに、結合位置にも制限は無いが、分子サイズをな るべくコンパクトにし、分子内立体反発を少なくする観点から、 p—フエ-レン、 m—フ ェ-レン、 1, 3—ナフチレン、 1, 4—ナフチレン基が好ましぐ特には p—フエ-レン 基が好ましい。
[0035] Ar4〜Ar5が有してもょ 、置換基としては特に制限はな ヽが、メチル基、ェチル基、 プロピル基、イソプロピル基、ァリル基等のアルキル基;メトキシ基、エトキシ基、プロ ポキシ基等のアルコキシ基;フエ-ル基、インデュル基、ナフチル基、ァセナフチル 基、フエナントリル基、ピレニル基等のァリール基;インドリル基、キノリル基、カルバゾ リル基等の複素環基が挙げられる。また、これら置換基は、連結基、又は直接結合し て環を形成してもよい。 [0036] これらの置換基は、電子供与性効果により電荷移動度を増大させる効果はあるもの の、あまり置換基サイズが大きくなると、分子内の共役面の歪み、分子間立体反発に よってかえって電荷移動度を減少させる。そのため、好ましくは炭素原子数 10以下、 より好ましくは炭素原子数 6以下であり、特にはメチル基又はメトキシ基が好ましい。 置換基の数も、多くすることにより電荷移動度を増大させる効果はあるものの、多すぎ ると分子内の共役面の歪み、分子間立体反発によって電荷移動度を下げるので、好 ましくは 3個以下、さらに好ましくは 2個以下である。
[0037] 一般式(1)中、 n1及び n2はそれぞれ独立に 1〜3の整数を表すが、製造の安定性、 電気特性の安定性等の点から、 n1及び n2の少なくとも一方は、 1である事が好ましい 。また、移動度を上げる観点から、 n1及び n2の少なくとも一方は、 2以上が好ましい。 また、一般式(1)で表される化合物は、二重結合を有する部分において立体異性 体が存在する。しかし、当該部分の立体異性体に関しては、異性体の混合物であつ ても単独の立体構造力もなつていても、本発明においては 1種の化合物とみなし、バ インダー榭脂に対する重量比率や、他の電荷輸送物質に対する重量比率を算出す る。
[0038] 一般式(1)で表される化合物には下記一般式(2)であらわされるように、(a)〜(d) の 4箇所の二重結合、又は二重結合群が存在する。しかし、 n1及び n2がともに 1であ る場合、又は、 n1と n2とが異なる場合には、いずれかの異性体成分が全立体異性体 に対して、 80モル%以上が好ましぐより好ましくは 90モル%以上である。また、 n1及 び n2が同じであり、且つ 2〜3の場合は、いずれかの異性体成分が全立体異性体に 対して、 30モル%以上 80%モル以下が好ましぐ 40モル%以上 70モル%以下が更 に好ましい。電気特性を鑑みた場合、トランス体が多いことが好ましい。
[0039] [化 7]
Figure imgf000012_0001
[0040] n1及び n2の数、並びに Ar3の置換基の有無及び種類によらず、(a)がトランス体で ある異性体成分の和と、 (b)がトランス体である異性体成分の和と力 それぞれ 40モ ル%以上が好ましぐ特には 50モル%以上が好ましい。また、感光層中での一般式( 1)で表される化合物の安定性の観点から、それぞれ 98モル%以下が好ましぐより 好ましくは 90モル%以下であり、特に好ましくは 80モル%以下である。この場合、一 般式(1)で表される化合物とは異なる電荷輸送物質を併用することが好ましい。
より具体的には、 n1及び n2がともに 1である場合であって、 Ar3が置換基を有する場 合には、(c)がトランス体である異性体成分の和と、(d)がトランス体である異性体成 分の和とが、それぞれ 90モル%以上が好ましぐ特には 95モル%以上が好ましい。 また、(a)がトランス体である異性体成分の和と、(b)がトランス体である異性体成分 の和とが、それぞれ 70モル%以上が好ましぐ特には 80モル%以上が好ましい。
[0041] Ar3の有する置換基がアルキル基である場合には、(a)がトランス体である異性体 成分の和と、 (b)がトランス体である異性体成分の和とが、それぞれ 85モル%以上が 好ましぐ特には 90モル%以上が好ましい。分岐鎖を有するアルキル基である場合 には、(a)がトランス体である異性体成分の和と、(b)がトランス体である異性体成分 の和とが、それぞれ 90モル%以上が好ましぐ特には 95モル%以上が好ましい。
[0042] Ar3が置換基を有さない場合には、(c)がトランス体である異性体成分の和と、 (d) 力 Sトランス体である異性体成分の和とが、それぞれ 85モル%以上トランス体が好まし ぐ特には 90モル%以上が更に好ましい。
[0043] 以下に、本発明に係る一般式(1)で表される化合物の具体例を示す。一般式(1) で表される化合物は電荷輸送能を示し、電子写真感光体の電荷輸送物質として使 用できる。以下に、例示化合物 1〜20を示す。
[0044] [化 8]
Figure imgf000014_0001
[0045] [化 9]
Figure imgf000015_0001
[0046] [化 10]
Figure imgf000016_0001
[0047] 本発明の電子写真感光体が有する感光層は、通常バインダー榭脂により結着され てなる。この場合、感光層は前記一般式(1)とバインダー榭脂を、溶剤に溶解あるい は分散して得られる塗布液を塗布、乾燥して得ることができる。ノインダー榭脂として は、例えばブタジエン、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタ クリル酸エステル、ビュルアルコール、ェチルビ-ルエーテル等のビュル化合物の重 合体又は共重合体、ポリビュルブチラール、ポリビニルホルマール、部分変性ポリビ 二ルァセタール、ポリカーボネート、ポリエステル、ポリアリレート、ポリアミド、ポリウレタ ン、セルロースエーテル、フエノキシ榭脂、ケィ素榭脂、エポキシ榭脂、ポリ N ビ 二ルカルバゾール榭脂等が挙げられる。このうちポリカーボネート、ポリアリレートが好 ましぐ特には下記構造単位を有するポリカーボネート、ポリアリレートが好ましい。そ のうち、下記右側の構造単位を有するポリカーボネートが更に好ましい。また、下記 左側の構造単位を有するポリカーボネートを含有し、かつ、前記一般式(1)で表され る化合物重量の、該感光層中の全バインダー榭脂の含有重量に対する比が 0. 15 〜0. 9が更に好ましい。
[化 11]
Figure imgf000017_0001
[0048] これらのバインダー榭脂は 2種類以上を混合して用いることもできる。また、適当な 硬化剤等を用いて熱、光等によりバインダー榭脂を架橋させて用いる事もできる。
[0049] 本発明の電子写真感光体が有する感光層において、バインダー榭脂と一般式(1) で表される化合物との重量割合は、感光層に含まれる、一般式(1)で表される化合 物重量の、全バインダー榭脂の含有重量に対する比、すなわち感光層における一般 式(1)で表される化合物重量の値を全バインダー榭脂の含有重量で除した値が、 0. 15〜0. 9が好ましい。なかでも、電子写真感光体の残留電位を下げる観点からすれ ば、 0. 20以上が好ましぐ繰り返し使用した際の安定性と、電荷移動度の観点から すれば、 0. 25以上がより好ましい。また、一方で感光層の熱安定性の観点から、通 常は 0. 9以下であって、感光層中での一般式(1)の化合物の安定性の観点から、好 ましくは 0. 8以下、さらに画像形成の際の耐久性の観点から、より好ましくは 0. 65以 下で、更に好ましくは 0. 6以下で、耐傷性の観点からは、 0. 4以下が特に好ましい。
[0050] 本発明の電子写真感光体が有する感光層は、ポリアリレートを含有していることも好 ましい。該ポリアリレートは結着榭脂として機能する。ポリアリレートはポリエステルの 一種であり、芳香族性を有する環を持つ 2価アルコールと、芳香族性を有する環を持 つ 2価カルボン酸との縮合により形成される。
本発明の電子写真感光体が有する感光層がポリアリレートを含有している場合には 、ノインダー榭脂と一般式(1)で表される化合物との重量割合はどのような比であつ ても構わない。通常、感光層に含まれる、一般式(1)で表される化合物重量の、全バ インダー榭脂の含有重量に対する比、すなわち感光層における一般式(1)で表され る化合物重量の値を全バインダー榭脂の含有重量で除した値力 0. 15〜0. 9が好 ましい。電子写真感光体の残留電位を下げる観点からすれば、 0. 20以上が好ましく 、繰り返し使用した際の安定性と、電荷移動度の観点力 すれば、 0. 25以上がより 好ましい。また、一方で感光層の熱安定性の観点から、通常は 0. 9以下であって、感 光層中での一般式(1)の化合物の安定性の観点から、好ましくは 0. 8以下であり、さ らに画像形成の際の耐久性の観点から、より好ましくは 0. 65以下であり、更に好まし くは 0. 6以下であり、耐傷性の観点からは、 0. 4以下が特に好ましい。
[0051] 該ポリアリレートの粘度平均分子量は、特に限定されないが、通常、 10, 000以上、 好まし <は 15, 000以上、さらに好まし <は 20, 000以上であり、 300, 000以下、好 ましくは 200, 000以下、より好ましくは 100, 000以下である。粘度平均分子量が過 度に小さいと、感光層の機械的強度が低下し実用的ではない。また、粘度平均分子 量が過度に大きいと、感光層を適当な膜厚に塗布形成する事が困難である。
[0052] 芳香族性を有する環を持つ 2価アルコールとしては、通常ポリアリレートの製造に用 いられる如何なるものも使用可能である力 好ましくはビスフ ノール類、及び Z又は ビフヱノール類が用いられる。これらのビスフ ノール類、及びビフヱノール類はそれ らが有する芳香族環上に各々独立に置換基を有していてもよぐより具体的には、ァ ルキル基、ァリール基、ハロゲン基、又はアルコキシ基である。感光層用バインダー 榭脂としての機械的特性と、感光層形成用塗布液を調製する際の溶媒に対する溶 解性を勘案すると、アルキル基としては炭素数 6以下のアルキル基が好ましぐより好 ましくはメチル基、ェチル基、プロピル基が挙げられる。ァリール基としては芳香族環 数が 3以下のァリール基が好ましぐより好ましくはフエニル基、ナフチル基が挙げら れる。ハロゲン基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子等が好ましい。 アルコキシ基としては、アルコキシ基中のアルキル基部分の炭素数が 1〜10のアル コキシ基が好ましぐさらに好ましくは炭素数が 1〜8のアルコキシ基であり、特に好ま しくは炭素数が 1〜2のアルコキシ基である。なかでも、メトキシ基、エトキシ基、ブトキ シ基等が好ましい。
具体的には、ビス(4 ヒドロキシフエ-ル)メタン、 (2 ヒドロキシフエ-ル)(4 ヒド ロキシフエ-ル)メタン、ビス(2 ヒドロキシフエ-ル)メタン、ビス(4 ヒドロキシ一 3— メチルフエ-ル)メタン、ビス(4—ヒドロキシ一 3—ェチルフエ-ル)メタン、ビス(4—ヒ ドロキシ一 3, 5 ジメチルフエ-ル)メタン; 1, 1—ビス(4 ヒドロキシフエ-ル)ェタン 、 1— (2 ヒドロキシフエ-ル)一 1— (4 ヒドロキシフエ-ル)ェタン、 1, 1—ビス(2 —ヒドロキシフエ-ル)ェタン、 1, 1—ビス(4 ヒドロキシ一 3—メチルフエ-ル)ェタン 、 1, 1—ビス(4 ヒドロキシ一 3 ェチルフエ-ル)ェタン、 1, 1—ビス(4 ヒドロキシ —3, 5 ジメチルフエ-ル)ェタン、 1, 1—ビス(4 ヒドロキシ一 3—メチルフエ-ル) ェタン、 1, 1—ビス(4 ヒドロキシ一 3, 5 ジメチルフエ-ル)ェタン; 3, 3' , 5, 5, 一 テトラメチルー 4, 4'ージヒドロキシビフエニル、 2, 2 ビス(4ーヒドロキシ 3, 5 ジ メチルフエ-ル)プロパン、 2, 2 ビス(4ーヒドロキシー3 メチルフエ-ル)プロパン 、 2, 2 ビス(4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス(4 ヒドロキシ一 3, 5— ジメチルフエ-ル)プロパン; 1, 1—ビス(4 ヒドロキシ— 3, 5 ジメチルフエ-ル)シ クロへキサン、 1, 1—ビス(4 ヒドロキシ一 3—メチルフエ-ル)シクロへキサン、 1, 1 -ビス(4 -ヒドロキシフエ-ル)シクロへキサン;ビス(4 -ヒドロキシフエ-ル)ケトン;ビ ス(4—ヒドロキシフエ-ル)エーテル、ビス(4—ヒドロキシ一 3, 5—ジメチルフエ-ル) エーテル、 (2 ヒドロキシフエ-ル)(4 ヒドロキシフエ-ル)エーテル、ビス(2 ヒド ロキシフエ-ル)エーテル、ビス(4ーヒドロキシー 3—メチルフエ-ル)エーテル、ビス( 4 -ヒドロキシ 3—ェチルフエ-ル)エーテル;が好まし 、。これらの二価フエノール 成分は、複数組み合わせて用いることも可能である。 [0054] これらの中でも特に、下記構造の 2価アルコールを繰り返し単位構造として有する ポリアリレートである事が好まし 、。
[0055] [化 12]
Figure imgf000020_0001
[0056] 芳香族性を有する環を持つ 2価カルボン酸としては、通常ポリアリレートの製造に用 いられる如何なるものも使用可能である。より具体的には、フタル酸、イソフタル酸、 ナフタレン一 1, 4 ジカルボン酸、ナフタレン一 2, 6 ジカルボン酸、ビフエ-ル一 2 , 2,ージカルボン酸、ビフエ-ルー 4, 4,ージカルボン酸、ジフエ-ルエーテル 2, 2,ージカルボン酸、ジフエ-ルエーテル 2, 3,ージカルボン酸、ジフエ-ルエーテ ルー 2, 4,ージカルボン酸、ジフエ-ルエーテル—3, 3,ージカルボン酸、ジフエ-ル エーテル 3, 4'—ジカルボン酸、ジフエ-ルエーテル 4, 4'ージカルボン酸が挙 げられる。好ましくは、イソフタル酸、テレフタル酸、ジフヱ-ルエーテル 2, 2'ージ カルボン酸、ジフエ-ルエーテル 2, 4'—ジカルボン酸、ジフエ-ルエーテル 4, 4'ージカルボン酸が挙げられ、特に好ましくは、イソフタル酸、テレフタル酸、ジフエ -ルエーテル 4, 4'ージカルボン酸、ビフエ-ルー 4, 4'ージカルボン酸が挙げら れる。これらのジカルボン酸は、複数組み合わせて用いることも可能である。
[0057] 本発明に係るポリアリレートの製造方法としては、特に限定されず、例えば、界面重 合法、溶融重合法、溶液重合法等の公知の重合方法を用いることができる。
界面重合法による製造の場合は、例えば、二価フエノール成分をアルカリ水溶液に 溶解した溶液と、芳香族ジカルボン酸クロライド成分を溶解したハロゲンィ匕炭化水素 の溶液とを混合する。この際、触媒として、四級アンモ-ゥム塩もしくは四級ホスホ- ゥム塩を存在させることも可能である。重合温度は 0〜40°Cの範囲、重合時間は 2〜 20時間の範囲であるのが生産性の点で好ましい。重合終了後、水相と有機相を分 離し、有機相中に溶解しているポリマーを公知の方法で、洗浄、回収することにより、 目的とするポリアリレートを得られる。
[0058] 界面重合法で用いられるアルカリ成分としては、例えば、水酸化ナトリウム、水酸ィ匕 カリウム等のアルカリ金属の水酸ィ匕物等を挙げることができる。アルカリの使用量とし ては、反応系中に含まれるフエノール性水酸基の 1. 01〜3倍当量の範囲が好ましい 。ハロゲン化炭化水素としては、例えば、ジクロロメタン、クロ口ホルム、 1, 2—ジクロ口 ェタン、トリクロロェタン、テトラクロロェタン、ジクロルベンゼン等を挙げることができる 。触媒として用いられる四級アンモ-ゥム塩もしくは四級ホスホ-ゥム塩としては、例 えば、トリブチルァミンやトリオクチルァミン等の三級アルキルァミンの塩酸、臭素酸、 ヨウ素酸等の塩;ベンジルトリェチルアンモ -ゥムクロライド、ベンジルトリメチルアンモ -ゥムクロライド、ベンジルトリブチルアンモ -ゥムクロライド、テトラエチルアンモ-ゥ ムクロライド、テトラプチルアンモニゥムクロライド、テトラプチルアンモニゥムブロマイド 、トリオクチルメチルアンモ -ゥムクロライド、テトラブチルホスホ-ゥムブロマイド、トリ ェチルォクタデシルホスホ -ゥムブロマイド、 N—ラウリルピリジ-ゥムクロライド、ラウリ ルピコリュウムクロライド等が挙げられる。
[0059] また、界面重合法では、分子量調節剤を使用することができる。分子量調節剤とし ては、例えば、フエノーノレ、 o, m, p—クレゾ一ノレ、 o, m, p—ェチノレフエノーノレ、 o, m , ρ—プロピルフエノール、 ο, m, p— (tert—ブチル)フエノール、ペンチルフエノール 、へキシルフェノール、ォクチルフエノール、ノ-ルフエノール、 2, 6—ジメチルフエノ ール誘導体、 2—メチルフエノール誘導体等のアルキルフエノール類; o, m, p—フエ ユルフェノール等の一官能性のフエノール;酢酸クロリド、酪酸クロリド、ォクチル酸ク 口リド、塩化べンゾィル、ベンゼンスルフォ-ルクロリド、ベンゼンスルフィエルクロリド、 スルフィエルクロリド、ベンゼンホスホ-ルクロリド又はそれらの置換体等の一官能性 酸ハロゲンィ匕物等が挙げられる。これら分子量調節剤の中でも、分子量調節能が高 く、かつ溶液安定性の点で好ましいのは、 o, m, p—(tert—ブチル)フエノール、 2, 6—ジメチルフエノール誘導体、 2—メチルフエノール誘導体である。特に好ましくは、 p—(tert—ブチル)フエノール、 2, 3, 6—テトラメチルフエノール、 2, 3, 5—テトラメ チルフエノールである。
[0060] 本発明に係る感光層は、ポリアリレートをバインダーとして用いるときは、前記一般 式(1)の化合物と、ポリアリレートと、必要に応じて他のバインダー榭脂とを、溶剤に 溶解あるいは分散して得られる塗布液を塗布、乾燥して得ることができる。バインダー 榭脂としては、例えばブタジエン、スチレン、酢酸ビュル、塩化ビニル、アクリル酸エス テル、メタクリル酸エステル、ビュルアルコール、ェチルビ-ルエーテル等のビュル化 合物の重合体及び共重合体、ポリビュルブチラール、ポリビュルホルマール、部分変 '性ポリビニノレアセターノレ、ポリカーボネート、ポリエステノレ、ポリアリレート、ポリアミド、 ポリウレタン、セルロースエーテル、フエノキシ榭脂、ケィ素榭脂、エポキシ榭脂、ポリ N ビュルカルバゾール榭脂等が挙げられる。
[0061] また、ポリアリレートとポリカーボネートが、共重合したものや、ブレンドしたものも好 ましい。さら〖こ、これらの榭脂を適当な硬化剤等を用いて熱、光等により架橋させて用 いる事もできる。これらのバインダーは 2種類以上をブレンドして用いることもできる。
[0062] 一般式(1)で表される化合物の Ar3が置換基を有する場合には、バインダー榭脂と 一般式(1)で表される化合物との重量割合は、感光層に含まれる、一般式(1)で表さ れる化合物重量の、全バインダー榭脂の含有重量に対する比、すなわち感光層に おける一般式(1)で表される化合物重量の値を全バインダー榭脂の含有重量で除し た値が、 0. 20〜0. 7が好ましぐより好ましくは 0. 5以下であり、特に好ましくは 0. 4 以下である。
[0063] 良好な画像形成の目的にぉ 、て、一般式(1)で示される化合物は複数種類用いる ことも好ましい。また、同様の目的で、感光層中には、一般式(1)で示される化合物 の他に、公知の電荷輸送物質を含有する(併用する)ことが好ましい。この場合、感光 層中に含まれる、一般式(1)で示される化合物と電荷輸送物質の総量との和は、バ インダー榭脂 100重量部に対して 25重量部以上、さらに残留電位低減の観点から 3 5重量部以上が好ましぐさらに繰り返し使用した際の安定性、電荷移動度の観点か ら、 40重量部以上がより好ましい。また、一方で感光層の熱安定性の観点から、通常 は 100重量部以下、さらに電荷輸送材料とバインダー榭脂の相溶性の観点カゝら好ま しくは 75重量部以下、さらに耐刷性の観点力も 60重量部以下がより好ましぐ耐傷性 の観点からは、 50重量部以下が最も好ましい。
[0064] 使用可能な (併用されうる)電荷輸送物質としては、電荷輸送能を有するものであれ ば、どのようなものでも構わない。この場合、一般式(1)で表される化合物の含有重 量力 全電荷輸送物質中、最大量となる力、感光体に含まれる電荷輸送物質の最大 含有成分と比較して、重量比にして 90%以上含まれていることが好ましい。ここで、 上記含有重量の算定において、幾何異性体は同一化合物とみなす。
[0065] なお、併用可能な電荷輸送物質の、好ましい例としては、以下の化合物が挙げられ る力 S、本発明の要旨を超えない限りこれらの例示化合物に制限されるものではない。
[0066] [化 13]
Figure imgf000024_0001
Figure imgf000024_0002
式中、 Rは、 1つの式中で異なっていてもよぐ水素原子又は置換基を示す。置換 基としては、アルキル基、アルコキシ基、フエニル基等が好ましい。特に好ましくは、メ チル基である。この中でも特に、ベンジジン構造を有する化合物、ブタジエン骨格を 有する化合物は、一般式 (1)で表される化合物と併用した際に優れた性能を発揮す るため、非常に有効である。 [0068] <導電性支持体 >
本発明の電子写真感光体に係る導電性支持体としては、例えばアルミニウム、アル ミニゥム合金、ステンレス鋼、銅、ニッケル等の金属材料;金属、カーボン、酸化錫等 の導電性粉体を添加して導電性を付与した榭脂材料;アルミニウム、ニッケル、 ITO ( 酸化インジウム酸化錫合金)等の導電性材料をその表面に蒸着又は塗布した榭脂、 ガラス、紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状等の ものが用いられる。金属材料の導電性支持体の上に、導電性.表面性等の制御のた めや欠陥被覆のため、適当な抵抗値を持つ導電性材料を塗布したものでもよい。
[0069] 支持体表面は、平滑であってもよ 、し、特別な切削方法を用いたり、研磨処理を施 したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当 な粒径の粒子を混合することによって、粗面化されたものでもよい。また、安価化のた めには、切削処理を施さず、引き抜き管をそのまま使用することも可能である。
[0070] 導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化処理 を施してカゝら用いることが好ましい。陽極酸化処理を施した場合、公知の方法により 封孔処理を施すのが好ましい。これによつて、本発明の電子写真感光体を用いて画 像形成を行なう際、画像特性の改良や電気特性の安定ィ匕を行なうことができるように なる。
[0071] 陽極酸化処理は、任意の方法により行なうことができるが、通常は、導電性支持体 を電極として酸性浴中で通電することにより行なう。酸性浴について特に制限はない 力 例えば、クロム酸、硫酸、シユウ酸、ホウ酸、スルファミン酸等の酸性浴が挙げられ る。この中でも、硫酸中での陽極酸ィ匕を行なうことが最も良好な結果を与える。
[0072] 例えば、硫酸中で、アルミニウム製の導電性支持体に対して陽極酸ィヒ処理を行なう 場合について処理条件を挙げると、硫酸濃度は 100gZL〜300gZL、溶存アルミ -ゥム濃度は 2gZL〜15gZL、液温は 15°C〜30°C、電解電圧は 10V〜20V、電 流密度は 0. 5AZdm2〜2AZdm2の範囲内に設定されるのが好ましい。ただし、陽 極酸化処理時の処理条件は、これに限られるものではない。
このように陽極酸ィ匕処理を行なうことによって、導電性支持体の表面には、陽極酸 化被膜が形成される。 [0073] 本発明の導電性支持体には、陽極酸化処理によって表面に陽極酸化被膜が形成 された後で、封孔処理が施される。封孔処理は任意の方法により行なうことができる 力 通常は、封孔剤を含有した封孔剤水溶液 (封孔液)中に導電性支持体を浸潰さ せることにより行なう。その代表的なものとしては、低温下で導電性支持体を封孔剤 水溶液中に浸漬させる低温封孔処理、あるいは、高温下で導電性支持体を封孔剤 水溶液中に浸漬させる高温封孔処理が挙げられる。
[0074] (低温封孔処理)
低温封孔処理は、上記のように、導電性支持体を低温下で封孔剤水溶液中に浸 漬することにより行なう。
低温封孔処理では、封孔剤としては、通常、フッ化ニッケルを主成分として用いる。 この際、低温封孔処理の場合に使用される封孔剤水溶液中の封孔剤の濃度は任 意である力 通常は、 3gZL〜6gZLの範囲で行なうことが最も効果的である。
また、封孔処理をスムーズに進めるために、処理温度としては、通常 25°C以上、好 ましくは 30°C以上、また、通常 40°C以下、好ましくは 35°C以下である。
[0075] さらに、封孔剤水溶液の pHは、通常 4. 5以上、好ましくは 5. 5以上、また、通常 6.
5以下、好ましくは 6. 0以下である。なお、 pHを調整する際に用いる pH調節剤に制 限はなく任意のものを用いることができる力 例えば、シユウ酸、ホウ酸、ギ酸、酢酸、 水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることができる。
また、処理時間も任意であるが、被膜の膜厚 1 μ m当り通常 1分〜 3分の範囲内で 処理するのが好ましい。
[0076] ただし、封孔剤水溶液は、封孔剤以外の物質を含有して!/ヽてもよ ヽ。例えば、被膜 物性を更に改良するため、フッ化コバルト、酢酸コバルト、硫酸ニッケル等の金属塩 や、界面活性剤等を添加剤水溶液に混合してぉ 、てもよ 、。
浸漬を行なった後、水洗、乾燥して低温封孔処理を終える。
[0077] (高温封孔処理)
一方、高温封孔処理は、導電性支持体を高温下で封孔剤水溶液中に浸漬すること により行なう。
低温封孔処理では、封孔剤としては酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸二 ッケルーコバルト、硝酸バリウム等の金属塩を用いることができる力 通常は、酢酸- ッケルを主成分として用いる。
この際、高温封孔処理の場合に使用される封孔剤水溶液中の封孔剤の濃度は任 意である力 通常は、 5gZL〜20gZLの範囲で行なうことが最も効果的である。 また、封孔処理をスムーズに進めるために、処理温度としては、通常 80°C以上、好 ましくは 85°C以上、また、通常 100°C以下、好ましくは 98°C以下である。
[0078] さらに、封孔剤水溶液の pHは、通常 4. 5以上、好ましくは 5. 0以上、また、通常 6.
5以下、好ましくは 6. 0以下である。なお、 pHを調整する際に用いる pH調節剤に制 限はなく任意のものを用いることができるが、例えば、低温封孔処理の場合と同様の ものを用いることができる。
また、処理時間も任意であるが、被膜の膜厚 1 μ m当り通常 1秒以上、好ましくは 2 秒以上処理するのが好ま 、。
[0079] ただし、低温封孔処理の場合と同様、高温封孔処理にお!、ても、封孔剤水溶液は
、封孔剤以外の物質を含有していてもよい。例えば、被膜物性を更に改良するため、 酢酸ナトリウム、有機カルボン酸塩等や、ァ-オン系又はノ-オン系の界面活性剤等 を添加剤水溶液に混合してぉ 、てもよ 、。
浸漬を行なった後、水洗、乾燥して高温封孔処理を終える。
[0080] なお、陽極酸ィ匕被膜の平均膜厚が厚い場合には、封孔液の高濃度化、高温'長時 間処理により強い封孔条件を必要とする。したがって、生産性が低下すると共に、被 膜表面にしみ、汚れ、粉ふきといつた表面欠陥が生じやすくなる。このような点から、 陽極酸ィ匕被膜の平均膜厚は通常 20 m以下、好ましくは 7 m以下で形成されるこ とが望ましい。
[0081] (粗面化)
また、導電性支持体の表面は、平滑であってもよいが、陽極酸化処理の前に、予め 粗面化しておいてもよい。粗面化の方法は任意であるが、例えば、特別な切削方法 を用いたり、研磨処理を施したりすることにより、粗面化することができる。また、導電 性支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化する ことも可能である。さらに、安価化のためには、切削処理を施さず、引き抜き管をその まま導電性支持体として使用することも可能である。特に、引抜き加工、インパクトカロ ェ、しごき加工等の非切削アルミニウム基体を用いる場合、処理により、表面に存在 した汚れや異物等の付着物、小さな傷等がなくなり、均一で清浄な導電性支持体が 得られるので好ましい。
[0082] <下引き層 >
導電性支持体と感光層との間には、接着性'ブロッキング性等の改善のため、下引 き層を設けてもよい。下引き層とは、導電性支持体と感光層との間に設けられ、導電 性支持体と感光層との接着性の改善、導電性支持体の汚れや傷等の隠蔽、不純物 や表面物性の不均質ィ匕によるキヤリャ注入の防止、電気特性の不均一性の改良、繰 り返し使用による表面電位低下の防止、画質欠陥の原因となる局所的な表面電位変 動の防止等の機能の少なくとも何れか 1つを有し、光電特性の発現に必須ではな!/、 層である。
[0083] 下引き層としては、榭脂、榭脂に金属酸ィ匕物等の粒子を分散したもの等が用いられ る。下引き層に用いる金属酸ィ匕物粒子の例としては、酸化チタン、酸ィ匕アルミニウム、 酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の 1種の金属元素を含む金属酸 化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数 の金属元素を含む金属酸ィ匕物粒子が挙げられる。一種類の粒子のみを用いてもよ V、し複数の種類の粒子を混合して用いてもょ 、。これらの金属酸化物粒子の中で、 酸ィ匕チタン及び酸ィ匕アルミニウムが好ましぐ特に酸ィ匕チタンが好ましい。酸化チタン 粒子は、その表面に、酸化錫、酸ィ匕アルミニウム、酸ィ匕アンチモン、酸ィ匕ジルコニウム 、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコーン等の有機物による 処理を施されていてもよい。酸ィ匕チタン粒子の結晶型としては、ルチル、アナターゼ、 ブルッカイト、アモルファスのいずれも用いることができる。複数の結晶状態のものが 含まれていてもよい。
[0084] また、金属酸ィ匕物粒子の粒径としては、種々のものが利用できるが、中でも特性及 び液の安定性の面から、平均一時粒径として lOnm以上 lOOnm以下が好ましぐ特 に好ましいのは、 lOnm以上 50nm以下である。
[0085] 下引き層は、金属酸ィ匕物粒子をバインダー榭脂に分散した形で形成するのが望ま しい。下引き層に用いられるバインダー榭脂としては、フエノキシ、エポキシ、ポリビニ ルピロリドン、ポリビュルアルコール、カゼイン、ポリアクリル酸、セルロース類、ゼラチ ン、デンプン、ポリウレタン、ポリイミド、ポリアミド等が単独あるいは硬化剤とともに硬 化した形で使用できる。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド 等は良好な分散性、塗布性を示し好ましい。
[0086] 下引き層に用いられるノインダー榭脂に対する無機粒子の添加比は任意に選べる 力 10wt%から 500wt%の範囲で使用すること力 分散液の安定性、塗布性の面 で好ましい。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性及び塗布性から 0. 1 μ mから 20 mが好ましい。また下引き層には、公知の酸ィ匕防止剤等を添加しても よい。前記導電性支持体上に形成された感光層としては、電荷発生物質がバインダ ー榭脂中に分散された電荷発生層と、電荷輸送物質がバインダー榭脂中に分散さ れた電荷輸送層の二層からなる積層型が好ましい。
[0087] <電荷発生物質 >
電荷発生物質としては例えばセレニウム及びその合金、硫ィ匕カドミウム、その他無 機系光導電材料、フタロシアニン顔料、ァゾ顔料、ジチオケトビロロピロール顔料、ス クアレン (スクァリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キ ノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等の有機顔料等各種光導 電材料が使用でき、特に有機顔料、更にはフタロシアニン顔料、ァゾ顔料が好ましい 。これらの微粒子をたとえばポリエステル榭脂、ポリビニルアセテート、ポリアクリル酸 エステル、ポリメタクリル酸エステル、ポリエステル、ポリカーボネート、ポリビュルァセト ァセタール、ポリビュルプロピオナール、ポリビュルブチラール、フエノキシ榭脂、ェポ キシ榭脂、ウレタン榭脂、セルロースエステル、セルロースエーテル等の各種バイン ダー榭脂で結着した形で使用される。積層型感光体の場合の使用比率はバインダ ー榭脂 100重量部に対して 30〜500重量部の範囲より使用され、好ましくは 40〜2 00重量部の範囲で使用される。また、その膜厚は通常 0. 1 m〜l m、好ましくは 0. 15 πι〜0. 6 !!1カ 子適でぁる。
[0088] 電荷発生物質としてフタロシア-ンィ匕合物を用いる場合、具体的には、無金属フタ ロシアニン;銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、ケィ素、ゲルマ ユウム等の金属、又はその酸化物、ハロゲン化物、水酸化物、アルコキシド等の配位 したフタロシアニン類の各種結晶型が使用される。特に、感度の高い結晶型である X 型、 τ型無金属フタロシアニン; Α型 (別称 |8型)、 B型 (別称 a型)、 D型 (別称 Υ型) 等のチタ-ルフタロシアニン(別称:ォキシチタニウムフタロシアニン)、バナジルフタ ロシア-ン、クロ口インジウムフタロシア-ン; Π型等のクロ口ガリウムフタロシア-ン; V 型等のヒドロキシガリウムフタロシアニン; G型, I型等の ーオキソ一ガリウムフタロシ ァニン二量体; II型等の μ ォキソ アルミニウムフタロシア-ンニ量体が好適である 。なお、これらのフタロシアニンのうち、 Α型( |8型)、 Β型 型)、及び粉末 X線回折 の回折角 2 0 ( ± 0. 2° )が 27. 3°に明瞭なピークを示すことを特徴とする D型 (Y型) チタニルフタロシアニン、 Π型クロ口ガリウムフタロシアニン、 V型ヒドロキシガリウムフタ ロシアニン、 G型 ォキソ ガリウムフタロシア-ンニ量体等が特に好ましい。
[0089] このなかでも、 CuK a特性 X線による X線回折スペクトルにお 、て、ブラッグ角(2 Θ
± 0. 2° ) 27. 3° にピークを有する結晶型ォキシチタニウムフタロシアニンを含有す ることが好ましぐブラッグ角(2 0 ± 0. 2° ) 9. 5° 、24. 1° 及び 27. 3° にピークを 有する結晶型ォキシチタニウムフタロシアニンを含有することが好まし 、。該結晶型 ォキシチタニウムフタロシアニンとしては、特に硫酸による酸ペースト処理を経て、作 成されたものを使用することが好ま 、。塩素置換チタ-ルフタロシアニンを含有して いても構わないが、少ないものが好ましぐマススペクトルの強度比で、チタニルフタ口 シァニンに対して、 0. 005以下にあるもの力 好ましい。また、非ハロゲン化合物を 使用して、合成された原料を使用することが好ましい。結晶性安定の観点からは、ジ フエニルメタンを反応溶媒として合成された原料を使用することが好ましい。
[0090] 感光層中にォキシチタニウムフタロシアニンを含有する場合には、一般式(1)で表 される化合物重量の全バインダー榭脂の含有重量に対する比率は、 0. 15〜0. 9が 好ましく、 0. 2〜0. 6力 S特に好ましく、 0. 3〜0. 5が更に好ましい。感光層中にォキ シチタニウムフタロシアニンを含有しない積層型感光層の場合には、一般式(1)で表 される化合物重量の全バインダー榭脂の含有重量に対する比率は、 0. 15〜0. 6が 好ましく、 0. 2〜0. 55力特に好ましく、 0. 3〜0. 5力更に好まし!/、。 [0091] フタロシアニン化合物は単一の化合物のもののみを用いてもよ!、し、 V、くつかの混 合あるいは混晶状態でもよい。ここでのフタロシア-ンィ匕合物は結晶状態に置ける混 合状態として、それぞれの構成要素を後から混合して用いてもよいし、合成、顔料ィ匕 、結晶化等のフタロシア-ンィ匕合物の製造.処理工程において混合状態を生じせし めたものでもよい。このような処理としては、酸ペースト処理'磨砕処理'溶剤処理等 が知られている。混晶状態を生じさせるためには、特開平 10— 48859号公報記載の ように、 2種類の結晶を混合後に機械的に摩砕、不定形化した後に、溶剤処理によつ て特定の結晶状態に変換する方法が挙げられる。
[0092] 電荷発生物質としてァゾ顔料を使用する場合には、各種公知のビスァゾ顔料、トリ スァゾ顔料が好適に用いられる。
[0093] <酸化防止剤 >
本発明の電子写真感光体が有する感光層は、酸化防止剤を含有していることも好 ましい。酸化防止剤は、感光層が含有する材料の酸ィ匕を防止するために添加される 。酸ィ匕防止剤は、ラジカル捕捉剤としての機能があるものが好ましぐ具体的には、フ ェノール誘導体、アミンィ匕合物、ホスホン酸エステル、硫黄化合物、ビタミン、ビタミン 誘導体等が挙げられる。これらの中でも、フ ノール誘導体、アミンィ匕合物、ビタミン 等が好ましく用いられる。更に好ましくは、嵩高い置換基をヒドロキシ基近辺に有する 、ヒンダードフエノール、又はトリアルキルアミン誘導体が用いられる。中でも、ヒドロキ シ基力 見て 2—位に t ブチル基を有するァリールイ匕合物誘導体が好ましく用いら れ、特にはヒドロキシ基力 見て 2—位に t—ブチル基を 2つ有するァリールイ匕合物誘 導体が好ましい。
[0094] また、酸ィ匕防止剤の分子量は大きすぎると、酸ィ匕防止の機能に問題が生じることが あるため、分子量 1500以下の化合物が好ましぐ分子量 1000以下の化合物が更に 好ましい。また同様の理由により、分子量 100以上の化合物が好ましぐ更に好ましく は分子量 150以上、特には分子量 200以上が好ましい。
[0095] 本発明に使用できる酸ィ匕防止剤としては、プラスチック、ゴム、石油、油脂類の酸化 防止剤、紫外線吸収剤、光安定剤として公知のものを用いる事ができる。とりわけ次 に示す化合物群より選ばれる材料が好ましく使用できるが、本発明の電子写真感光 体に使用可能な酸ィ匕防止剤は、これらの例示に限るものではない。
(1)特開昭 57— 122444号公報に記載のフ ノール類、特開昭 60— 188956号公 報に記載のフエノール誘導体及び特開昭 63— 18356号公報に記載のヒンダードフ エノーノレ類。
(2)特開昭 57— 122444号公報に記載のパラフエ-レンジアミン類、特開昭 60— 18 8956号公報に記載のパラフエ-レンジァミン誘導体及び特開昭 63— 18356号公 報に記載のパラフエ-レンジアミン類。
(3)特開昭 57— 122444号公報に記載のハイドロキノン類、特開昭 60— 188956号 公報に記載のハイドロキノン誘導体及び特開昭 63— 18356号公報に記載のハイド ロキノン類。
(4)特開昭 57— 188956号公報に記載のィォゥ化合物及び特開昭 63— 18356号 公報に記載の有機ィォゥ化合物類。
(5)特開昭 57— 122444号公報に記載の有機リンィ匕合物及び特開昭 63— 18356 号公報に記載の有機リン化合物類。
(6)特開昭 57— 122444号公報に記載のヒドロキシァ-ソール類。
(7)特開昭 63— 18355号公報に記載の特定の骨格構造を有するピぺリジン誘導体 及びォキソピペラジン誘導体。
(8)特開昭 60— 188956号公報に記載のカロチン類、アミン類、トコフエロール類、 N i (II)錯体、スルフイド類等。
また、特に好ましくは、以下に示すような、嵩高い置換基をヒドロキシル基近辺に有 するヒンダードフエノール類が好ましい。ジブチルヒドロキシトルエン、 2, 2,ーメチレン ビス(6— t—ブチルー 4 メチルフエノール)、 4, 4,ーブチリデンビス(6— t—ブチル 3—メチルフエノール)、 4, 4'ーチォビス(6— t ブチルー 3—メチルフエノール)、 2, 2,ーブチリデンビス(6— t—ブチルー 4 メチルフエノール)、 α—トコフエノール 、 β トコフエノール、 2, 2, 4 トリメチルー 6 ヒドロキシー7 t—ブチルクロマン、 ペンタエリスチルテトラキス [3— (3, 5—ジ tーブチルー 4ーヒドロキシフエ-ル)プ 口ピオネート]、 2, 2,ーチオジェチレンビス [3—(3, 5 ジー tーブチノレー 4ーヒドロ キシフエ-ル)プロピオネート]、 1, 6 へキサンジオールビス [3—(3, 5 ジ—tーブ チルー 4ーヒドロキシフエ-ル)プロピオネート]、ブチルヒドロキシァ-ソール、ジブチ ルヒドロキシァ-ソール。
[0097] また、ヒンダードフエノール類の中でも、特には、ォクタデシルー 3, 5 ジ tーブチ ルー 4 ヒドロキシヒドロシンナメート(チバガイギ一社製、商品名:Irganoxl076)力 S 好ましい。
これらの化合物はゴム、プラスチック、油脂類等の酸ィ匕防止剤として知られており、 市販品として手に入るものもある。
[0098] 本発明の感光体において表面層中の前記酸ィ匕防止剤の量は、特に制限されない 力 バインダー榭脂 100重量部当り 0. 1重量部以上、 20重量部以下が好ましい。こ の範囲以外の場合、良好な電気特性が得られない場合がある。酸化防止剤の効果 を充分得るために、特に好ましくは、 1重量部以上である。また、多すぎると、電気特 性だけでなぐ耐刷性に対しても悪影響がある場合があるので、好ましくは、 15重量 部以下であり、更に好ましくは、 10重量部以下である。
[0099] <添加物 >
なお、感光層には成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向 上させるために周知の可塑剤、紫外線吸収剤、電子吸引性化合物、レべリング剤等 の添加物を含有させてもよい。感光層の上に、感光層の損耗を防止したり、帯電器 等力 発生する放電生成物等による感光層の劣化を防止,軽減する目的で保護層を 設けてもよい。また、感光体表面の摩擦抵抗や、摩耗を軽減する目的で、表面の層 にはフッ素系榭脂、シリコーン榭脂等を含んでいてもよい。また、これらの榭脂からな る粒子や無機化合物の粒子を含んで 、てもよ 、。
[0100] <感光層の形成方法 >
これらの感光体を構成する各層は、含有させる物質を溶剤に溶解又は分散させて 得られた塗布液を、支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、 ロールコート、ブレード塗布等の公知の方法により順次塗布して形成される。
[0101] 塗布液の作製に用いられる溶媒あるいは分散媒としては、例えば、メタノール、エタ ノール、プロパノール、 2—メトキシエタノール等のアルコール類;テトラヒドロフラン、 1 , 4 ジォキサン、ジメトキシェタン等のエーテル類;ギ酸メチル、酢酸ェチル等のェ ステル類;アセトン、メチルェチルケトン、シクロへキサノン等のケトン類;ベンゼン、ト ルェン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロ口ホルム、 1, 2—ジクロ 口エタン、 1, 1, 2—トリクロ口エタン、 1, 1, 1 トリクロ口エタン、テトラクロ口エタン、 1 , 2—ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類; n—ブチルァミン、 イソプロパノールァミン、ジェチルァミン、トリエタノールァミン、エチレンジァミン、トリ エチレンジァミン等の含窒素化合物類;ァセトニトリル、 N—メチルピロリドン、 N, N— ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げら れる。これらは単独で又は 2種以上を併用して用いられる。なお、塗布液あるいは分 散液の作製において、積層型感光層の電荷発生層の場合には、固形分濃度を好ま しくは 15重量%以下、さらに好ましくは 1〜: LO重量%、粘度を好ましくは 0. 1〜: LOm Pa' s、更に好ましくは l〜5mPa' sとする。
[0102] <画像形成装置 >
次に、本発明の電子写真感光体を用いた画像形成装置の実施の形態について、 装置の要部構成を示す図 1を用いて説明する。但し、実施の形態は以下の説明に限 定されるものではなぐ本発明の要旨を逸脱しない限り任意に変形して実施すること ができる。
[0103] 図 1に示すように、画像形成装置は、電子写真感光体 1,帯電装置 2,露光装置 3 及び現像装置 4を備えて構成され、更に、必要に応じて転写装置 5,クリーニング装 置 6及び定着装置 7が設けられる。
電子写真感光体 1は、上述した本発明の電子写真感光体であれば特に制限はな いが、図 1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を 形成したドラム状の感光体を示して 、る。この電子写真感光体 1の外周面に沿って、 帯電装置 2,露光装置 3,現像装置 4,転写装置 5及びクリーニング装置 6がそれぞれ 配置されている。
[0104] 帯電装置 2は、電子写真感光体 1を帯電させるもので、電子写真感光体 1の表面を 所定電位に均一帯電させる。図 1では帯電装置 2の一例としてローラ型の帯電装置( 帯電ローラ)を示している力 他にもコロトロンゃスコロトロン等のコロナ帯電装置、帯 電ブラシ等の接触型帯電装置等が用いられる。接触型帯電装置により帯電させれば 、オゾン等の酸ィ匕性ガスの発生を低減させることが可能となる力 感光層のひび割れ 等が発生しやすくなる。前記一般式 (1)で表される化合物を感光層中に含有する場 合は、接触型帯電装置 (接触帯電方式の帯電器)により帯電した場合でも、感光層の ひび割れ等が発生し難!、と 、う点で特に好ま 、。
なお、電子写真感光体 1及び帯電装置 2は、多くの場合、この両方を備えたカートリ ッジ (以下適宜、感光体カートリッジという)として、画像形成装置の本体から取り外し 可能に設計されている。そして、例えば電子写真感光体 1や帯電装置 2が劣化した 場合に、この感光体カートリッジを画像形成装置本体から取り外し、別の新しい感光 体カートリッジを画像形成装置本体に装着することができるようになって!/、る。また、 後述するトナーについても、多くの場合、トナーカートリッジ中に蓄えられて、画像形 成装置本体から取り外し可能に設計されている。使用しているトナーカートリッジ中の トナーが無くなった場合に、このトナーカートリッジを画像形成装置本体力も取り外し 、別の新しいトナーカートリッジを装着することができるようになつている。更に、電子 写真感光体 1,帯電装置 2,トナーが全て備えられたカートリッジを用いることもある。
[0105] 露光装置 3は、電子写真感光体 1に露光を行なって電子写真感光体 1の感光面に 静電潜像を形成することができるものであれば、その種類に特に制限はない。具体 例としては、ハロゲンランプ、蛍光灯、半導体レーザーや He— Neレーザー等のレー ザ一、 LED等が挙げられる。また、感光体内部露光方式によって露光を行なうように してもよい。露光を行なう際の光は任意である力 例えば、波長が 700nm〜850nm の単色光、波長 600nm〜700nmのやや短波長寄りの単色光、波長 300nm〜500 nmの短波長の単色光等で露光を行なえばょ 、。
[0106] 特に、電荷発生物質としてフタロシアニン化合物を使用する電子写真感光体の場 合には、波長 700ηπ!〜 850nmの単色光を用いることが好ましぐァゾィ匕合物を用い る電子写真感光体の場合には、波長 700nm以下の単色光を用いることが好ま 、。 電荷発生物質として本発明に係る一般式 (4)で表されるァゾィ匕合物を用いる電子写 真感光体の場合には、波長 500nm以下の単色光を光入力用光源としても充分な感 度を有するため、波長 300ηπ!〜 500nmの単色光を光入力用光源として用いること は、特に好適である。 [0107] 現像装置 4は、その種類に特に制限はなぐカスケード現像、一成分導電トナー現 像、二成分磁気ブラシ現像等の乾式現像方式や、湿式現像方式等の任意の装置を 用いることができる。図 1では、現像装置 4は、現像槽 41、アジテータ 42、供給ローラ 43、現像ローラ 44、及び、規制部材 45からなり、現像槽 41の内部にトナー Tを貯留 している構成となっている。また、必要に応じ、トナー Tを補給する補給装置(図示せ ず)を現像装置 4に付帯させてもよい。この補給装置は、ボトル、カートリッジ等の容器 からトナー Tを補給することが可能に構成される。
[0108] 供給ローラ 43は、導電性スポンジ等から形成される。現像ローラ 44は、鉄,ステン レス鋼,アルミニウム,ニッケル等の金属ロール、又はこうした金属ロールにシリコーン 榭脂,ウレタン榭脂,フッ素榭脂等を被覆した榭脂ロール等カゝらなる。この現像ローラ 44の表面には、必要に応じて、平滑力卩ェゃ粗面カ卩ェをカ卩えてもよい。
現像ローラ 44は、電子写真感光体 1と供給ローラ 43との間に配置され、電子写真 感光体 1及び供給ローラ 43に各々当接している。供給ローラ 43及び現像ローラ 44 は、回転駆動機構(図示せず)によって回転される。供給ローラ 43は、貯留されてい るトナー Tを担持して、現像ローラ 44に供給する。現像ローラ 44は、供給ローラ 43に よって供給されるトナー Tを担持して、電子写真感光体 1の表面に接触させる。
[0109] 規制部材 45は、シリコーン榭脂ゃウレタン榭脂等の榭脂ブレード、ステンレス鋼,ァ ルミ-ゥム,銅,真鍮,リン青銅等の金属ブレード、又はこうした金属ブレードに榭脂 を被覆したブレード等により形成されている。この規制部材 45は、現像ローラ 44に当 接し、ばね等によって現像ローラ 44側に所定の力で押圧 (一般的なブレード線圧は 5〜500gZcm2)される。必要に応じて、この規制部材 45に、トナー Tとの摩擦帯電 によりトナー Tに帯電を付与する機能を具備させてもよい。
[0110] アジテータ 42は、回転駆動機構によってそれぞれ回転されており、トナー Tを攪拌 するとともに、トナー Tを供給ローラ 43側に搬送する。アジテータ 42は、羽根形状、大 きさ等を違えて複数設けてもょ ヽ。
トナー Tの種類は任意であり、粉状トナーのほか、懸濁重合法や乳化重合法等を用 いた重合トナー等を用いることができる。特に、重合トナーを用いる場合には径力 〜 8 /z m程度の小粒径のものが好ましぐまた、トナーの粒子の形状も球形に近いもの 力もポテト上の球形力 外れたものまで様々に使用することができる。重合トナーは、 帯電均一性、転写性に優れ、高画質化に好適に用いられる。
[0111] 転写装置 5は、その種類に特に制限はなぐコロナ転写、ローラ転写、ベルト転写等 の静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用する ことができる。ここでは、転写装置 5が電子写真感光体 1に対向して配置された転写 チャージヤー,転写ローラ,転写ベルト等から構成されるものとする。この転写装置 5 は、トナー Tの帯電電位とは逆極性で所定電圧値 (転写電圧)を印加し、電子写真感 光体 1に形成されたトナー像を記録紙 (用紙,媒体) Pに転写するものである。
[0112] クリーニング装置 6について特に制限はなぐブラシクリーナー、磁気ブラシクリーナ 一、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナー等、任意のタリ 一ユング装置を用いることができる。クリーニング装置 6は、感光体 1に付着している 残留トナーをクリーニング部材で搔き落とし、残留トナーを回収するものである。但し、 感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置 6は 無くても構わない。
[0113] 定着装置 7は、上部定着部材 (加圧ローラ) 71及び下部定着部材 (定着ローラ) 72 から構成され、定着部材 71又は 72の内部には加熱装置 73がそなえられている。な お、図 1では、上部定着部材 71の内部に加熱装置 73がそなえられた例を示す。上 部及び下部の各定着部材 71, 72は、ステンレス,アルミニウム等の金属素管にシリコ ンゴムを被覆した定着ロール、更にテフロン (登録商標)榭脂で被覆した定着ロール、 定着シート等が公知の熱定着部材を使用することができる。更に、各定着部材 71, 7
2は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としても よぐパネ等により互いに強制的に圧力を加える構成としてもよい。
[0114] 記録紙 P上に転写されたトナーは、所定温度に加熱された上部定着部材 71と下部 定着部材 72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却さ れて記録紙 P上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなぐここで用いたものをはじめ 、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着等、任意の方式による定 着装置を設けることができる。 [0115] 以上のように構成された電子写真装置では、次のようにして画像の記録が行なわれ る。即ち、まず感光体 1の表面 (感光面)力 帯電装置 2によって所定の電位 (例えば -600V)に帯電される。この際、直流電圧により帯電させてもよぐ直流電圧に交流 電圧を重畳させて帯電させてもょ ヽ。
続いて、帯電された感光体 1の感光面を、記録すべき画像に応じて露光装置 3によ り露光し、感光面に静電潜像を形成する。そして、その感光体 1の感光面に形成され た静電潜像の現像を、現像装置 4で行なう。
[0116] 現像装置 4は、供給ローラ 43により供給されるトナー Tを、規制部材 (現像ブレード) 45により薄層化するとともに、所定の極性 (ここでは感光体 1の帯電電位と同極性で あり、負極性)に摩擦帯電させ、現像ローラ 44に担持しながら搬送して、感光体 1の 表面に接触させる。
現像ローラ 44に担持された帯電トナー Tが感光体 1の表面に接触すると、静電潜像 に対応するトナー像が感光体 1の感光面に形成される。そしてこのトナー像は、転写 装置 5によって記録紙 Pに転写される。この後、転写されずに感光体 1の感光面に残 留しているトナーが、クリーニング装置 6で除去される。
[0117] トナー像の記録紙 P上への転写後、定着装置 7を通過させてトナー像を記録紙 P上 へ熱定着することで、最終的な画像が得られる。
なお、画像形成装置は、上述した構成に加え、例えば除電工程を行なうことができ る構成としてもよい。除電工程は、電子写真感光体に露光を行なうことで電子写真感 光体の除電を行なう工程であり、除電装置としては、蛍光灯、 LED等が使用される。 また除電工程で用いる光は、強度としては露光光の 3倍以上の露光エネルギーを有 する光である場合が多い。
[0118] また、画像形成装置は更に変形して構成してもよぐ例えば、前露光工程、補助帯 電工程等の工程を行なうことができる構成としたり、オフセット印刷を行なう構成とした り、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。 実施例
[0119] 以下、実施例により、本発明を具体的に説明するが、本発明はその要旨を越えな い限り、以下の実施例に限定されるものではない。 [0120] 製造例 1A (例示化合物 1の製造)
4, 4,—ジホルミルトリフエ-ルァミン 15. lgと、 1, 1—ジフエ-ルメチルホスホン酸 ジェチル 30. 4gを、ジメチルホルムアミド(以下、 DMFと略記することがある) 0. 1L に溶解し、これにカリウム t—ブトキシド 16. 8gを 25°C〜35°Cで添カ卩した。添加後、 室温で 3時間攪拌した。反応液を、メタノール 0. 2L中に分散することにより析出した 固体を濾過し、得られた個体を DMFに再度溶解し、シリカゲルカラムクロマトグラフィ 一により精製し、例示化合物 1を 28g得た。
[0121] 高速液体クロマトグラフ (移動相:ァセトニトリル、カラム:ジーエルサイエンス社製、 I nertsil ODS— 3V)にて分析したところ、一般式(2)で示した(a) (b) (c) (d)の二重 結合における立体異性体は、 、ずれもモル 99%以上がトランス体であった。
[0122] 製造例 1B (例示化合物 1の製造)
4, 4,—ジホルミルトリフエ-ルァミン 15. lgと、 1, 1—ジフエ-ルメチルホスホン酸 ジェチル 25g、シンナミルトリフエ-ルホスフォ-ゥムクロライド 10gを DMF1Lに溶解 し、これにカリウム t—ブトキシド 16. 8gを 25°C〜35°Cで添カ卩した。添加後、室温で 3 時間攪拌した。反応液を、メタノール 2L中に分散することにより析出した固体を濾過 し、得られた個体を DMFに再度溶解し、シリカゲルカラムクロマトグラフィーにより精 製し、例示化合物 1を 25g得た。
[0123] 高速液体クロマトグラフ (移動相:ァセトニトリル、カラム:ジーエルサイエンス社製、 I nertsil ODS 3V)にて分析したところ、一般式(2)で示した(a) (b)の二重結合に おける立体異性体は、 74モル%がトランス体であり、(c) (d)の二重結合における立 体異性体は、 98モル%以上がトランス体であった。
[0124] 製造例 1C (例示化合物 1の製造)
4, 4,ージホルミルトリフエ-ルァミン 15. lgと、シンナミルトリフエ-ルホスフォ-ゥム クロライド 40gを DMFZトルエン混合溶液(DMF:トルエン = 2 : 1) 0. 1Lに溶解し、 これにナトリウムメトキシドメタノール溶液を 25°C〜35°Cで添加した。添加後、室温で 3時間攪拌した。反応液を、メタノール 2L中に分散することにより析出した固体を濾 過し、得られた個体を DMFに再度溶解し、シリカゲルカラムクロマトグラフィーにより 精製し、例示化合物 1を 25g得た。 [0125] 高速液体クロマトグラフ (移動相:ァセトニトリル、カラム:ジーエルサイエンス社製、 I nertsil ODS 3V)にて分析したところ、一般式(2)で示した(a) (b)の二重結合に おける立体異性体は、 45モル%がトランス体であり、(c) (d)の二重結合における立 体異性体は、 98モル%以上がトランス体であった。
[0126] 製造例 1D (例示化合物 1の製造)
4, 4,ージホルミルトリフエ-ルァミン 15. lgと、シンナミルトリフエ-ルホスフォ-ゥム クロライド 40gを DMFO. 1Lに溶解し、これにナトリウムメトキシドメタノール溶液を 25 °C〜35°Cで添加した。添加後、室温で 3時間攪拌した。反応液を、メタノール 2L中 に分散し、析出した固体を濾過しょうとしたところハルツイ匕した為、クルード (未精製物 )をそのまま、シリカゲルカラムクロマトグラフィーにより精製し、例示化合物 1を 20g得 た。高速液体クロマトグラフ (移動相:ァセトニトリル、カラム ODS— 3V)にて分析した ところ、一般式(2)において、(a) (b)の幾何異性体は、平均して 24モル%がトランス 体であり、(c) (d)の幾何異性体は、平均して 98モル%以上がトランス体であった。
[0127] 製造例 2A (例示化合物 2の製造)
4, 4,—ジホルミル卜リフエ-ルァミンの代わりに、 4, 4,—ジホルミル— 4,,—メチル卜 リフエ-ルァミンを使用する以外は製造例 1Aと同様にして例示化合物 2を作製した。 一般式(2)において、(a) (b) (c) (d)の幾何異性体は、いずれも 99モル%以上がト ランス体であった。
[0128] 製造例 2B (例示化合物 2の製造)
4, 4,—ジホルミル卜リフエ-ルァミンの代わりに、 4, 4,—ジホルミル— 4,,—メチル卜 リフエ-ルァミンを使用する以外は製造例 1Bと同様にして例示化合物 2を作製した。 一般式(2)において、(a) (b)の幾何異性体は、平均して 85モル%がトランス体であ り、(c) (d)の幾何異性体は、平均して 98モル%以上がトランス体であった。
[0129] 製造例 3A (例示化合物 3の製造)
4, 4'ージホルミルトリフエニルァミンの代わりに、 4, 4'ージホルミル 4" イソプロ ピルトリフヱ -ルァミンを使用する以外は製造例 1Aと同様にして例示化合物 3を作製 した。一般式(2)において、(a) (b) (c) (d)の幾何異性体は、いずれも 99モル%が 以上トランス体であった。 [0130] 製造例 3B (例示化合物 3の製造)
4, 4'ージホルミルトリフエニルァミンの代わりに、 4, 4'ージホルミル 4" イソプロ ピルトリフエ-ルァミンを使用し、 DMFZトルエン = 2Zl (重量比)混合溶液の代わり に、 DMFZトルエン =1Z2(重量比)混合溶液を使用する以外は、製造例 1Aと同 様にして例示化合物 3を作製した。一般式 (2)において、 (a) (b)の幾何異性体は、 平均して 89モル%がトランス体であり、(c) (d)の幾何異性体は、平均して 98モル% 以上がトランス体であった。
[0131] 比較製造例 1
特開 2005— 134709号公報に記載の合成例(3)に従って、電荷輸送物質組成物 を製造した (以下、電荷輸送物質 Xと略記することがある)。電荷輸送物質 X中には、 例示化合物 2で表される化合物力 波長 254nmの UV検出器によるゲルパーミエ一 シヨンクロマトグラフィ (gel permeation chromatography)によるピーク面積 it率で、 全組成物に対して約 30%含まれており、電荷輸送物質 X中に含まれる最大量の化 合物に対する例示化合物 2で表される化合物のピーク面積比率は、約 60%であった
[0132] 電荷発生物質製造例 1
特開平 10— 7925号公報の「粗 TiOPcの製造例」、及び「実施例 1」の記載に従つ て j8型ォキシチタニウムフタロシアニンを製造した。得られた β型ォキシチタニウムフ タロシアニン 18重量部と、 - 10°C以下に冷却した 95%濃硫酸 720重量部とを混合 した。このとき硫酸溶液の温度が 5°Cを超えな 、ように、 j8型ォキシチタニウムフタ ロシアニンを、ゆっくりと添加した。混合終了後、濃硫酸溶液を— 5°C以下で 2時間撹 拌し、撹拌後、該濃硫酸溶液を焼結ガラスフィルターで濾過し、不溶分を濾別後、氷 水 10800重量部中に分散することにより、ォキシチタニウムフタロシアニンを析出さ せ、分散後 1時間撹拌した。撹拌後、溶液を濾別し、得られたウエットケーキと水 900 重量部とを 1時間時間混合した後に、濾過を行った。この操作を濾液のイオン伝導度 が 0. 5mSZmになるまで繰り返すことにより、低結晶性ォキシチタニウムフタロシア ニンのウエットケーキ 185重量部を得た(ォキシチタニウムフタロシアニン含有率 9. 5 重量%)。 [0133] 得られた低結晶性ォキシチタニウムフタロシアニンのウエットケーキ 93重量部と水 1 90重量部とを混合し、室温で 30分撹拌した。その後、該混合溶媒に。—ジクロ口ベン ゼン 39重量部をカ卩え、さらに室温で lh撹拌した。撹拌後、水を分離し、 MeOH134 重量部を添加し、室温で 1時間撹拌洗浄した。洗浄後、濾別し、再度 MeOH134重 量部を用いて 1時間撹拌洗浄後、濾別し、真空乾燥機で加熱乾燥することにより、 C uK o;特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 9. 5° 、 24. 1 ° 及び 27. 2° に主たる回折ピークを有するォキシチタニウムフタロシアニンを 7. 8 重量部得た(以下、電荷発生物質 1と略記することがある)。得られたォキシチタ-ゥ ムフタロシアニンに含まれるクロ口ォキシチタニウムフタロシアニンの含有量を、特開 2
001 - 115054号公報に記載の手法 (マススペクトル)を用いて測定したところ、ォキ シチタニウムフタロシアニンに対し、強度比 0. 003以下であった。
[0134] 電荷発生物質製造例 2
電荷発生物質製造例 1で得られた低結晶性ォキシチタニウムフタロシアニンのゥェ ットケーキ 50重量部を、テトラヒドロフラン (以下、 THFと略記することがある) 500重 量部中に分散し、室温で lh攪拌する以外は、電荷発生物質製造例 1と同様にして、 CuK o;特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 9. 5° 、 24. 1 ° 及び 27. 2° に主たる回折ピークを有するォキシチタニウムフタロシアニンを 3重量 部得た (以下、電荷発生物質 2と略記することがある)。
[0135] 得られたォキシチタニウムフタロシアニンに含まれるクロ口ォキシチタニウムフタロシ ァニンの含有量を、特開 2001— 115054号公報に記載の手法 (マススペクトル)を 用いて測定したところ、ォキシチタニウムフタロシアニンに対し、強度比 0. 003以下 であった。
[0136] 電荷発生物質製造例 3
j8型ォキシチタニウムフタロシアニンとして、特開 2001— 115054号公報の、実施 例 1に記載の方法で製造された β型ォキシチタニウムフタロシアニンを使用する以外 は、電荷発生物質製造例 1と同様にして CuK a特性 X線 (波長 1. 541A)に対する ブラッグ角(2 0 ±0. 2° ) 9. 5° 、 24. 1° 及び 27. 2° に主たる回折ピークを有す るォキシチタニウムフタロシアニンを 3重量部得た (以下、電荷発生物質 3と略記する ことがある)。
[0137] 得られたォキシチタニウムフタロシアニンに含まれるクロ口ォキシチタニウムフタロシ ァニンの含有量を、特開 2001— 115054号公報に記載の手法 (マススペクトル)を 用いて測定したところ、ォキシチタニウムフタロシアニンに対し、強度比 0. 05であつ た。
[0138] <感光体 A1〜A23, P1〜P16の作製 >
実施例 1
電荷発生物質製造例 1で得られたォキシチタニウムフタロシアニン 10重量部と、 4
—メトキシ一 4—メチル 2 ペンタノン 150重量部とを混合し、サンドグラインドミル により 1時間粉砕分散処理を行 ヽ、顔料分散液を作製した。
[0139] また、ポリビニルブチラール (電気化学工業社製、商品名デンカブチラール # 600
0C)の濃度が 5重量%の 1, 2 ジメトキシェタン溶液 100重量部と、フエノキシ榭脂( ユニオンカーバイド社製、商品名 PKHH)の濃度が 5重量0 /0の 1, 2 ジメトキシエタ ン溶液 100重量部とを混合して、バインダー榭脂溶液を作製した。
先に作製した顔料分散液 160重量部と、バインダー榭脂溶液 100重量部と、適量 の 1, 2 ジメトキシェタンとを混合し、最終的に固形分濃度 4. 0%の電荷発生層形 成用塗布液を調製した。
[0140] 得られた電荷発生層形成用分散液を、表面にアルミを蒸着した厚さ 75 μ mのポリ エチレンテレフタレートフィルム上に、乾燥後の膜厚が 0. 3 /z mになるように塗布して 電荷発生層を設けた。
次にこのフィルム上に、製造例(1A)で作製された例示化合物 1の化合物を 20重量 部、下記構造の化合物 (A)を 20重量部、
[0141] [化 14]
Figure imgf000043_0001
[0142] 下記バインダー榭脂(Bl) (m:n= 51 :49,粘度平均分子量 30, 000) 100重
[0143] [化 15]
Figure imgf000044_0001
[0144] 酸化防止剤(チバガイギ一社製、商品名 IRGANOX 1076) 8重量部、及びレべリング 剤としてシリコーンオイル 0. 03重量部を、 THFZトルエン =8Z2 (混合重量比) 64 0重量部に溶解させた液 (以下、電荷輸送層形成用塗布液ということがある)を塗布し 、 125°Cで 20分間乾燥して乾燥後の膜厚が 20 mとなるように電荷輸送層を設け、 電子写真感光体 A1を得た。
[0145] 実施例 2
実施例 1で使用した製造例(1A)で製造された例示化合物 1に代えて、製造例(1B )で製造された例示化合物 1を使用した以外は、実施例 1と同様にして電子写真感光 体 A2を得た。
実施例 3
実施例 1で使用した製造例(1A)で製造された例示化合物 1に代えて、製造例(1B )で製造された例示化合物 1を 40重量部使用した以外は、実施例 1と同様にして電 子写真感光体 A3を得た。
[0146] 実施例 5
実施例 1で使用した製造例(1A)で製造された例示化合物 1に代えて、製造例(2A )で製造された例示化合物 2を 15重量部使用し、かつ、化合物 (A)の代わりに、化合 物(B) 15重量部を使用する以外は、実施例 1と同様にして電子写真感光体 A5を得 た。
[0147] [化 16] 化合物 ( B )
Figure imgf000045_0001
[0148] 実施例 6
実施例 5で使用した製造例(2A)で製造された例示化合物 2に代えて、製造例(2B )で製造された例示化合物 2を 20重量部使用し、化合物(B)の使用量を 20重量部と する以外は、実施例 5と同様にして電子写真感光体 A6を得た。
実施例 7
実施例 1で使用した製造例(1A)で製造された例示化合物 1に代えて、製造例(3A )で製造された例示化合物 3を 20重量部使用し、かつ、化合物 (A)の代わりに、下記 化合物 (C) 20重量部を使用する以外は、実施例 1と同様にして電子写真感光体 A7 を得た。
[0149] [化 17]
Figure imgf000045_0002
[0150] 実施例 8
実施例 7で使用したィ匕合物(C)の代わりに、化合物 (A) 20重量部を使用する以外 は、実施例 7と同様にして電子写真感光体 A8を得た。
実施例 9
実施例 8で使用した、化合物 (A)のかわりに、化合物(B)を使用する以外は、実施 例 8と同様にして電子写真感光体 A9を得た。
[0151] 実施例 10 実施例 7で使用した、例示化合物 3の使用量を 50重量部とする以外は、実施例 7と 同様にして電子写真感光体 A10を得た。
実施例 11
実施例 7で使用した、例示化合物 3の使用量を 40重量部とし、化合物(C)の使用 量を 40重量部とする以外は、実施例 7と同様にして電子写真感光体 Al lを得た。
[0152] 実施例 12
実施例 7で使用した、化合物(C)の使用量を 50重量部とする以外は、実施例 7と同 様にして電子写真感光体 A12を得た。
実施例 13
実施例 7で使用した、例示化合物 3の使用量を 45重量部とし、化合物(C)を使用 する代わりに、化合物(B)を 50重量部使用する以外は、実施例 7と同様にして電子 写真感光体 A13を得た。
[0153] 実施例 14
実施例 13で使用した、化合物(B)の代わりに、化合物 (A)を使用する以外は、実 施例 13と同様にして電子写真感光体 A14を得た。
実施例 15
実施例 1で使用した製造例(1A)で製造された例示化合物 1に代えて、製造例(3B )で製造された例示化合物 3を 50重量部使用し、かつ、化合物 (A)を使用しない以 外は、実施例 1と同様にして電子写真感光体 A15を得た。
[0154] 実施例 16
実施例 1で使用した製造例(1A)で製造された例示化合物 1に代えて、製造例(3B )で製造された例示化合物 3を 20重量部使用し、かつ、化合物 (A)の代わりに化合 物 (C)を使用する以外は、実施例 1と同様にして電子写真感光体 A16を得た。 実施例 17
実施例 16で使用した電荷発生物質製造例 1で製造された電荷発生物質 1に代え て、電荷発生物質製造例 2で製造された電荷発生物質 2を使用する以外は、実施例 16と同様にして電子写真感光体 A17を得た。
[0155] 実施例 18 実施例 16で使用した電荷発生物質製造例 1で製造された電荷発生物質 1に代え て、電荷発生物質製造例 3で製造された電荷発生物質 3を使用する以外は、実施例 16と同様にして電子写真感光体 A18を得た。
実施例 19
実施例 7で使用したバインダー榭脂の代わりに、下記バインダー榭脂 (B2) (粘度平 均分子量 40, 000)を使用する以外は、実施例 7と同様にして電子写真感光体 A19 を得た。
[0156] [化 18]
Figure imgf000047_0001
[0157] 実施例 20
実施例 7で使用したバインダー榭脂の代わりに、下記バインダー榭脂 (B3) (粘度平 均分子量 40, 000、 m:n= 9 : l)を使用する以外は、実施例 7と同様にして電子写真 感光体 A20を得た。
[0158] [化 19]
Figure imgf000047_0002
[0159] 実施例 21
実施例 16で使用した、電荷発生物質製造例 1で得られたォキシチタニウムフタロシ ァニンを使用する代わりに、特開平 8— 123052号公報の製造例に記載の方法で得 られたォキシチタニウムフタロシアニン (以下、電荷発生物質 4と略記することがある) 、を使用する以外は、実施例 16と同様にして電子写真感光体 A21を得た。
[0160] 実施例 22
実施例 16で使用した製造例(3B)で製造された例示化合物 3の使用量を 90重量 部とし、化合物(C)の使用量を 10重量部とする以外は、実施例 16と同様にして電子 写真感光体 A22を得た。
実施例 23
実施例 22で使用した製造例(3B)で製造された例示化合物 3の使用量を 65重量 部とする以外は、実施例 22と同様にして電子写真感光体 A23を得た。
実施例 24
実施例 13で使用した、製造例(3A)で製造された例示化合物 3の代わりに、製造 例( 1 A)で製造された例示化合物 1を 40重量部使用する以外は、実施例 13と同様 にして電子写真感光体 A24を得た。
[0161] 比較例 1
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、製造例(1 A)で製造された例示化合物 1を 100重量部使用する以外は、実施例 15と同様にし て電子写真感光体 P1を得たが、感光体全面に結晶の析出が認められた。
比較例 2
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、製造例(2
A)で製造された例示化合物 2を 100重量部使用する以外は、実施例 15と同様にし て電子写真感光体 P2を得たが、感光体全面に結晶の析出が認められた。
[0162] 比較例 4
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、製造例(1
B)で製造された例示化合物 1を 100重量部使用する以外は、実施例 15と同様にし て電子写真感光体 P4を得たが、感光体端に結晶の析出が認められた。
[0163] 比較例 5
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、製造例(1 D)で製造された例示化合物 1を 100重量部使用する以外は、実施例 15と同様にし て電子写真感光体 P5を得た。
比較例 6
実施例 1で使用した製造例(1A)で製造した例示化合物 1を 20重量部使用する代 わりに、 100重量部使用する以外は実施例 1と同様にして電子写真感光体 P6を得た 力 感光体の端の一部に結晶の析出が認められた。
[0164] 比較例 7
実施例 5で使用した、製造例(2A)で製造された例示化合物 2を 15重量部使用す る代わりに、 100重量部使用する以外は実施例 5と同様にして電子写真感光体 P7を 得たが、感光体の端の一部に結晶の析出が認められた。
比較例 8
実施例 5で使用した、製造例(2A)で製造された例示化合物 2を 15重量部使用す る代わりに、 10重量部使用する以外は、実施例 5と同様にして電子写真感光体 P8を 得た。
[0165] 比較例 10
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、下記化合 物 (D)を使用する以外は、実施例 15と同様にして電子写真感光体 P10を得た。
[0166] [化 20]
Figure imgf000049_0001
比較例 11
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、下記化合 物 (E)を使用する以外は、実施例 15と同様にして電子写真感光体 P11を得た。
[0167] [化 21]
Figure imgf000049_0002
比較例 12
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、下記化合 物 (F)を使用する以外は、実施例 15と同様にして電子写真感光体 P12を得た。
[化 22]
Figure imgf000050_0001
比較例 13
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、下記化合 物 (G)を使用する以外は、実施例 15と同様にして電子写真感光体 P13を得た。
[化 23]
Figure imgf000050_0002
比較例 14
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、化合物 (C )を使用する以外は、実施例 15と同様にして電子写真感光体 P14を得た。
[0170] 比較例 15
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、化合物 (H )を使用する以外は、実施例 15と同様にして電子写真感光体 P15を得ようとしたが、 感光体上に析出が認められた。
[0171] [化 24]
Figure imgf000051_0001
[0172] 比較例 16
実施例 15で使用した製造例(3B)で製造された例示化合物 3に代えて、比較製造 例 1で製造された電荷輸送物質 Xを使用する以外は、実施例 15と同様にして電子写 真感光体 P16を得た力 感光体を室温にて 1日放置したところ、結晶の析出が認めら れた。
[0173] <感光体の電気特性の評価 >
電子写真学会測定標準に従って作製された電子写真特性評価装置 (続電子写真 技術の基礎と応用、電子写真学会編、コロナ社、 404〜405頁記載)を使用し、上記 感光体を (作製後 1週間後に)、アルミニウム製ドラムに貼り付けて円筒状にした。次 いで、アルミニウム製ドラムと感光体のアルミニウム基体との導通を取った上で、ドラム を一定回転数で回転させ、帯電、露光、電位測定、除電のサイクルによる電気特性 評価試験を行った。その際、初期表面電位を— 700Vとし、露光には 780nmの、除 電には 660nmの単色光を用いた。 780nmの光を 1. O /z jZcm2照射した時点の表 面電位 (VL)、及び感度を表す指標として、表面電位を 350Vとするまでに必要な 露光量(半減露光量)を測定した。半減露光量及び VL測定に際しては、露光 電位 測定に要する時間を 100msとした。測定環境は、温度 25°C、相対湿度 50%下 (環 境 NZN)及び、温度 5°C、相対湿度 10%下 (環境 LZL)で行った。感度(半減露光 量)及び VLの値の絶対値が小さ 、ほど電気特性が良好であることを示す。結果を表 1 (環境 NZN)、表 2 (環境 LZL)に示す。
[0174] <移動度の評価 >
実施例 15と同様にして、電荷発生層を作製した。次にこのフィルム上に、製造例(3 A)で作製された例示化合物 3を 20重量部、化合物(C)を 20重量部、前記ポリカー ボネート榭脂(Bl) (m:n=51 :49、粘度平均分子量 30, 000)を 100重量部、及び レべリング剤としてシリコーンオイル 0. 03重量部を、 THF640重量部に溶解させた 電荷輸送層形成用塗布液を塗布した。次いで、 125°Cで 20分間乾燥し、乾燥後の 膜厚が 20 mとなるように電荷輸送層を設け、電子写真感光体 Mlを得た。
[0175] また、電荷輸送層として、化合物(C)の使用量を 40重量部とする以外は、感光体 M 1と同様にして得られた液を塗布し、感光体 MP 1を得た。
[0176] 得られた感光体の電荷輸送層の移動度を、 TOF (Time of flight)法に基づいて、 780nm露光による電荷発生物質励起により、 21 ±0. 5°C、 2. 0 X 105 (V/cm)で 、測定した。得られた結果を表 3に示す。
[0177] [表 1] 表 1
環境 N / N
Figure imgf000052_0001
[0178] [表 2] 表 1 (つづき)
Figure imgf000053_0001
[0179] [表 3] 表 2
¾¼ L / し
Figure imgf000053_0002
[0180] [表 4] 表 3
Figure imgf000053_0003
[0181] 表の結果より、本発明の電子写真感光体は、低温且つ低湿度の環境条件におい ても、高感度でし力も VLが低ぐ良好な電気特性を示すことが分かる。また、種々の バインダー榭脂に対する相溶性にも優れる事がわかる。また、移動度も非常に速い 感光体である事がわかる。
[0182] <画像形成試験、及び感光体の安定性、耐久性試験 >
実施例 25
硫酸水溶液中で陽極酸化することで表面に陽極酸化処理を施し、酢酸ニッケル水 溶液中で 90°Cで低温封孔処理を施した直径 30mm、長さ 254mmのアルミニウムチ ユーブ上に、実施例 7と同様に作製した電荷発生層形成用塗布液及び電荷輸送層 形成用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 μ m、電荷輸送層 25 mの電子写真感光体ドラムを作製した。このドラムを、ヒユーレツ トパッカード社製レーザープリンタ、レーザージェット 4 (LJ4)に搭載し画像試験を行 つたところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで、 1万枚連続 プリントを行ったが、ゴースト、カプリ等の画像劣化は見られず、また、リークによる画 像欠陥も発生していな力つた。
[0183] 実施例 26
硫酸水溶液中で陽極酸化することで表面に陽極酸化処理を施し、酢酸ニッケル水 溶液中で 90°Cで低温封孔処理を施した直径 20mm、長さ 251mmのアルミニウムチ ユーブ上に、実施例 8と同様に作製した電荷発生層形成用塗布液及び電荷輸送層 形成用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 μ m、電荷輸送層 15 mの電子写真感光体ドラムを作製した。このドラムを、富士ゼロ ックス社製タンデムカラーレーザープリンタ、 C1616に 4本搭載し、温度 35°C、湿度 8 5%下 (以下、 HZH環境ということがある)で、画像試験を行ったところ、画像欠陥や ノイズの無い、良好な画像が得られた。次いで、 1000枚連続プリントを行った力 リ →、ゴースト、カプリ等の画像劣化は見られず、安定していた。
[0184] 比較例 17
硫酸水溶液中で陽極酸化することで表面に陽極酸化処理を施し、酢酸ニッケル水 溶液中で 90°Cで低温封孔処理を施した直径 20mm、長さ 251mmのアルミニウムチ ユーブ上に、比較例 8と同様に作製した電荷発生層形成用塗布液及び電荷輸送層 形成用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 μ m、電荷輸送層 15 mの電子写真感光体ドラムを作製した。このドラムを、富士ゼロ ックス社製タンデムカラーレーザープリンタ、 C1616に 4本搭載し、 HZH環境にて、 画像試験を行ったところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで 、 1000枚連続プリントを行ったところ、濃度低下による画像劣化が見られた。
[0185] 実施例 27
直径 20mm、長さ 251mmのアルミニウムチューブ上に、特開 2005— 99791 実 施例 13に記載の手法を用いて下引きを作製した後、実施例 8と同様に作製した電荷 発生層用塗布液及び電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥 して、膜厚が電荷発生層 0. 3 ^ πι,電荷輸送層 15 mの電子写真感光体ドラムを 作製した。このドラムを、富士ゼロックス社製タンデムカラーレーザープリンタ、 C161 6に 4本搭載し、温度 35°C、湿度 85%下 (HZH環境ということがある)で、画像試験 を行ったところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで、 1000枚 連続プリントを行ったが、リーク、ゴースト、カプリ、濃度低下等の画像劣化は見られず 、安定していた。
[0186] 実施例 28
実施例 7で使用したバインダーの代わりに、下記バインダー(B4) (粘度平均分子量 70, 000 ; m : n= 9 : l)を使用する以外は、実施例 7と同様にして電子写真感光体 A 28を得た。
[化 25]
Figure imgf000055_0001
実施例 29
実施例 7で使用したバインダーの代わりに、下記バインダー(B5) (粘度平均分子 40, 000)を使用する以外は、実施例 7と同様にして電子写真感光体 A29を得た。
[化 26]
Figure imgf000056_0001
実施例 30
実施例 7で使用したバインダーの代わりに、下記バインダー(B6) (粘度平均分子 60, 000 ;m:n=6 :4)を使用する以外は、実施例 7と同様にして電子写真感光体 A 30を得た。
[化 27]
Figure imgf000056_0002
[0189] 実施例 31
実施例 1で使用した製造例( 1 A)で製造された例示化合物 1に代えて、例示化合物 15を 60重量部使用し、化合物 (A)を使用しない以外は、実施例 1と同様にして電子 写真感光体 A31を得た。
[0190] 実施例 32
実施例 1で使用した製造例( 1 A)で製造された例示化合物 1に代えて、例示化合物 17を 30重量部使用し、化合物 (A)を 30重量部使用する以外は、実施例 1と同様に して電子写真感光体 A32を得た。
[0191] 実施例 33
実施例 1で使用した製造例( 1 A)で製造された例示化合物 1に代えて、例示化合物 18を 20重量部使用する以外は、実施例 1と同様にして電子写真感光体 A33を得た
[0192] 実施例 34
実施例 1で使用した製造例( 1 A)で製造された例示化合物 1に代えて、例示化合物 8を 30重量部使用し、例示化合物 18を 30重量部使用する以外は、実施例 1と同様 にして電子写真感光体 A34を得た。
[0193] 実施例 35
実施例 1で使用した製造例( 1 A)で製造された例示化合物 1に代えて、例示化合物 15を 90重量部使用し、化合物 (A)を使用しない以外は、実施例 1と同様にして電子 写真感光体 A35を得た。
[0194] 感光体 A1〜A24、 P1〜P16と同様にして、環境 NZNの半減露光量及び VLを測 定した。結果を表 4に示す。
[0195] [表 5]
表 4
環境 N Z N
Figure imgf000057_0001
[0196] <実写評価 >
実施例 36
実施例 1で使用した電荷発生層形成用塗布液を、硫酸水溶液中で陽極酸化するこ とで表面に陽極酸化処理を施し、酢酸ニッケル水溶液中で 90°Cで低温封孔処理を 施した直径 30mm、長さ 254mmのアルミニウムチューブ(導電性支持体)上に、乾 燥後の膜厚が 0. 4 mとなるように浸漬塗布し、乾燥させて電荷発生層を形成した。 この上に、実施例 31と同様に、電荷輸送層を作成し、電子写真感光体ドラムを作成 した。このドラムを、ヒューレットパッカード社製レーザープリンタ、レーザージェット 4 ( LJ4)に搭載し画像試験を行ったところ、画像欠陥やノイズの無い、良好な画像が得 られた。次いで、 1万枚連続プリントを行ったが、ゴースト、カプリ等の画像劣化は見ら れず、また、リークによる画像欠陥も発生していな力つた。 [0197] 実施例 37
平均一次粒子径 40nmのルチル型酸ィ匕チタン (石原産業社製、「TT055N」)と、 該酸ィ匕チタンに対して 3重量%のメチルジメトキシシラン (東芝シリコーン社製、「TSL 8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタン 50部と 、メタノール 120部を混合してなる原料スラリー lkgを、直径約 100 mのジルコ-ァ ビーズ (ニツカトー社製 YTZ)を分散メディアとして、ミル容積約 0. 15Lの寿工業社 製のウルトラァペックスミル(UAM— 015型)を用い、ロータ周速 10mZ秒、液流量 1 OkgZ時間の液循環状態で 1 間分散処理し、酸化チタン分散液を作製した。
[0198] 前記酸化チタン分散液と、メタノール Z1—プロパノール Zトルエンの混合溶媒、及 び、 ε一力プロラタタム([下記式 (Α)で表わされる化合物] Ζビス (4 アミノー 3—メ チルシクロへキシル)メタン [下記式 (B)で表わされる化合物] Zへキサメチレンジアミ ン [下記式 (C)で表わされる化合物] Zデカメチレンジカルボン酸 [下記式 (D)で表 わされる化合物] Zォクタデカメチレンジカルボン酸 [下記式 (E)で表わされる化合物 ]の組成モル比率力 60%Z15%Z5%Z15%Z5%からなる共重合ポリアミド)の ペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた。その後、出 力 1200Wの超音波発信器による超音波分散処理を 1時間行い、更 孔径 5 μ mの PTFE製メンブレンフィルター(アドバンテック社製 マイテックス LC)〖こより濾過し、 表面処理酸ィヒチタン Z共重合ポリアミドを重量比が 3Z1であり、メタノール Z1—プ ロパノール/トルエンの混合溶媒の重量比が 7/1/2であって、含有する固形分の 濃度が 18. 0重量%の下引き層形成用塗布液 Aを得た。
[0199] [化 28]
Figure imgf000058_0001
C D E
Figure imgf000058_0002
[0200] 下引き層形成用塗布液 Aを、径 30mm、長さ 285mm、肉厚 0. 8mmのアルミ-ゥ ム切削管上に、浸漬塗布により、乾燥後の膜厚が 2. 4 mとなるように塗布し、乾燥 させて下引き層を形成した。下引き層の表面を走査型電子顕微鏡により観察をしたと ころ、凝集物は殆ど観察されなカゝつた。この下引き層の上に、電荷発生層、電荷輸送 層を実施例 36と同様に作成した。
[0201] 作製した感光体を、セイコーエプソン社製カラープリンター (製品名: InterColor LP— 1500C)のカートリッジに装着し、フルカラー画像を形成したところ、良好な画 像を得ることができた。
[0202] 実施例 41
電荷発生物質製造例 1で得られたォキシチタニウムフタロシアニン 10重量部と、 4
—メトキシ一 4—メチル 2 ペンタノン 150重量部とを混合し、サンドグラインドミル により 1時間粉砕分散処理を行 ヽ、顔料分散液を作製した。
[0203] また、ポリビニルブチラール (電気化学工業社製、商品名デンカブチラール # 600
0C)の濃度が 5重量%の 1, 2 ジメトキシェタン溶液 100重量部と、フエノキシ榭脂( ユニオンカーバイド社製、商品名 PKHH)の濃度が 5重量0 /0の 1, 2 ジメトキシエタ ン溶液 100重量部とを混合して、バインダー榭脂溶液を作製した。
先に作製した顔料分散液 160重量部と、バインダー榭脂溶液 100重量部と、適量 の 1, 2 ジメトキシェタンとを混合し、最終的に固形分濃度 4. 0%の電荷発生層形 成用塗布液を調製した。
[0204] 得られた電荷発生層形成用分散液を、表面にアルミを蒸着した厚さ 75 μ mのポリ エチレンテレフタレートフィルム上に、乾燥後の膜厚が 0. 3 /z mになるように塗布して 電荷発生層を設けた。
次にこのフィルム上に、製造例(3A)で作製された例示化合物 3の化合物を 40重量 部、下記構造のポリアリレー HBA1) (粘度平均分子量 40, 000) 100重量部、
[0205] [化 29]
Figure imgf000059_0001
[0206] 及びレべリング剤としてシリコーンオイル 0. 03重量部を THFZトルエン =8Z2 (混 合重量比) 640重量部に溶解させた液 (以下、電荷輸送層形成用塗布液ということが ある)を塗布し、 125°Cで 20分間乾燥して乾燥後の膜厚が 20 mとなるように電荷輸 送層を設け、電子写真感光体 A41を得た。
実施例 42
実施例 41で使用したポリアリレー HBA1)に代えて、下記構造のポリアリレー HBA 2) (粘度平均分子量 40, 000、 n:m= l : l)を使用した以外は、実施例 41と同様に して電子写真感光体 A42を得た。
[0207] [化 30]
Figure imgf000060_0001
[0208] 実施例 43
実施例 42で使用したポリアリレー HBA2)に代えて、下記構造のポリアリレート榭脂 (BA3) (粘度平均分子量 40, 000、 n:m=7: 3)を使用した以外は、実施例 41と同 様にして電子写真感光体 A43を得た。
[0209] [化 31]
Figure imgf000060_0002
[0210] 実施例 44
実施例 41で使用したバインダー(BA1)に代えて、下記構造のポリアリレート榭脂( BA4) (粘度平均分子量 40, 000、 n:m=7: 3)を使用した以外は、実施例 1と同様 にして電子写真感光体 A44を得た。
[0211] [化 32]
Figure imgf000060_0003
[0212] 実施例 45
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、製造例(3 B)で製造された例示化合物 3を使用する以外は、実施例 41と同様にして電子写真 感光体 A45を得た。
実施例 46
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、製造例(2
A)で製造された例示化合物 2を 20重量部使用し、さらに、前記化合物 (A)を 20重 量部使用する以外は、実施例 41と同様にして電子写真感光体 A46を得た。
[0213] 実施例 47
実施例 46で使用した製造例(2A)で製造された例示化合物 2に代えて、製造例(2
B)で製造された例示化合物 2を使用する以外は、実施例 46と同様にして電子写真 感光体 A47を得た。
実施例 48
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、製造例(1
A)で製造された例示化合物 1を 40重量部使用し、さらに、前記化合物 (C)を 20重 量部使用する以外は、実施例 41と同様にして電子写真感光体 A48を得た。
[0214] 実施例 49
実施例 48で使用した製造例( 1 A)で製造された例示化合物 1に代えて、製造例( 1
B)で製造された例示化合物 1を使用する以外は、実施例 48と同様にして電子写真 感光体 A49を得た。
実施例 50
実施例 41で使用した電荷発生物質製造例 1で製造された電荷発生物質 1に代え て、電荷発生物質製造例 2で製造された電荷発生物質 2を使用する以外は、実施例 41と同様にして電子写真感光体 A50を得た。
[0215] 実施例 51
実施例 41で使用した電荷発生物質製造例 1で製造された電荷発生物質 1に代え て、電荷発生物質製造例 3で製造された電荷発生物質 3を使用する以外は、実施例 41と同様にして電子写真感光体 A51を得た。 実施例 52
実施例 41で使用したポリアリレー HBAl)を 50重量部使用し、かつ、前記ポリカー ボネート (B3) (粘度平均分子量 40, 000、 m:n= 9 : l) (前記バインダー榭脂(B3) ) を 50重量部使用する以外は、実施例 41と同様にして電子写真感光体 A52を得た。
[0216] 実施例 53
実施例 41で使用した、電荷発生物質製造例 1で得られたォキシチタニウムフタロシ ァニンを使用する代わりに、電荷発生物質 4を使用する以外は、実施例 41と同様に して電子写真感光体 A53を得た。
[0217] 比較例 27
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、前記化合 物 (C)を使用する以外は、実施例 41と同様にして電子写真感光体 P27を得た。
[0218] 比較例 28
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、前記化合 物 (E)を使用する以外は、実施例 41と同様にして電子写真感光体 P28を得た。 比較例 29
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、前記化合 物 (F)を使用する以外は、実施例 41と同様にして電子写真感光体 P29を得た。
[0219] 比較例 30
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、前記化合 物 (G)を使用する以外は、実施例 41と同様にして電子写真感光体 P30を得た。
[0220] 比較例 31
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、前記化合 物 (H)を使用する以外は、実施例 41と同様にして電子写真感光体 P31を得ようとし たが、感光体上に析出が認められ、特性評価はできな力つた。
[0221] 比較例 32
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、比較製造 例 1で製造された電荷輸送物質 Xを使用する以外は、実施例 41と同様にして電子写 真感光体 P32を得た。 [0222] 感光体 A1〜A24、 P1〜P16と同様に感光体の電気特性の評価を行い、半減露 光量及び VLを測定した。結果を表 5 (環境 NZN)、表 6 (環境 LZL)に示す。
[0223] [表 6] 表 5
環境 N/N
Figure imgf000063_0001
[0224] 表 5の結果より、本発明の電子写真感光体は、高感度かつ低 VLで、良好な電気特 性を示すことが分かる。また、種々のバインダーに対する相溶性にも優れる事がわか る。
[0225] [表 7] 表 6
環境 L / L
Figure imgf000064_0001
[0226] 表 6の結果より、本発明の電子写真感光体は、低温且つ低湿度の環境条件におい ても、高感度でし力も VLが低ぐ良好な電気特性を示すことが分かる。また、種々の ノ インダー榭脂に対する相溶性にも優れる事がわかる。
[0227] <画像形成試験、及び感光体の安定性、耐久性試験 >
実施例 54
表面を陽極酸化し、封孔処理を施した直径 30mm、長さ 254mmのアルミニウムチ ユーブ上に、実施例 47と同様に作製した電荷発生層形成用塗布液及び電荷輸送層 形成用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 μ m、電荷輸送層 25 mの電子写真感光体ドラムを作製した。このドラムを、ヒユーレツ トパッカード社製レーザープリンタ、レーザージェット 4 (LJ4)に搭載し画像試験を行 つたところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで、 1万枚連続 プリントを行ったが、ゴースト、カプリ等の画像劣化は見られず、また、リークによる画 像欠陥も発生していな力つた。
[0228] 実施例 55
表面を陽極酸化し、封孔処理を施した直径 20mm、長さ 251mmのアルミニウムチ ユーブ上に、実施例 48と同様に作製した電荷発生層形成用塗布液及び電荷輸送層 形成用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3 μ m、電荷輸送層 15 mの電子写真感光体ドラムを作製した。このドラムを、富士ゼロ ックス社製タンデムカラーレーザープリンタ、 C1616に 4本搭載し、気温 35°C、湿度 8 5%下 (HZH環境ということがある)で、画像試験を行ったところ、画像欠陥やノイズ の無い、良好な画像が得られた。次いで、 1000枚連続プリントを行ったが、リーク、ゴ 一スト、カプリ等の画像劣化は見られず、安定していた。
[0229] 比較例 33
表面を陽極酸化し、封孔処理を施した直径 20mm、長さ 25 lmmのアルミニウムチ ユーブ上に、比較例 28と同様に作製した電荷発生層形成用塗布液及び電荷輸送層 形成用塗布液を浸漬塗布法により順次塗布、乾燥して、膜厚が電荷発生層 0. 3μ m、電荷輸送層 15 mの電子写真感光体ドラムを作製した。このドラムを、富士ゼロ ックス社製タンデムカラーレーザープリンタ、 C1616に 4本搭載し、 HZH環境にて、 画像試験を行ったところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで 、 1000枚連続プリントを行ったところ、カプリによる画像劣化が見られた。
[0230] 実施例 56
直径 20mm、長さ 251mmのアルミニウムチューブ上に、特開 2005— 99791 実 施例 13に記載の手法を用いて下引きを作製した。その後、実施例 48と同様に作製 した電荷発生層用塗布液及び電荷輸送層形成用塗布液を浸漬塗布法により順次塗 布、乾燥して、膜厚が電荷発生層 0. 3 111、電荷輸送層 15 /zmの電子写真感光体 ドラムを作製した。このドラムを、富士ゼロックス社製タンデムカラーレーザープリンタ、 C1616に 4本搭載し、気温 35°C、湿度 85%下(HZH環境ということがある)で、画 像試験を行ったところ、画像欠陥やノイズの無い、良好な画像が得られた。次いで、 1 000枚連続プリントを行ったが、リーク、ゴースト、カプリ、濃度低下等の画像劣化は 見られず、安定していた。
[0231] <移動度の評価 >
得られた感光体 A41及び A44の電荷輸送層の移動度を、前記電子写真感光体 M 1、 MP1と同様の方法で、 TOF法に基づいて、 780nm露光による電荷発生物質励 起により、 21±0. 5°C、 2. 0X105(V/cm)で、測定した。結果を表 7に示す。
[0232] [表 8] 表 7
感光体 N o . 移 動 度
A 4 1 4. 2 X 1 0 - 6 ( c m2/V s )
A 44 4. 6 X 1 0—6 ( c m2/V s ) [0233] 実施例 57
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、例示化合 物 15を 40重量部使用し、化合物 (A)を使用しない以外は、実施例 41と同様にして 電子写真感光体 A57を得た。
[0234] 実施例 58
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、例示化合 物 16を 40重量部使用し、化合物 (A)を使用しない以外は、実施例 41と同様にして 電子写真感光体 A58を得た。
[0235] 実施例 59
実施例 41で使用した製造例(3A)で製造された例示化合物 3に代えて、例示化合 物 18を 40重量部使用し、化合物 (A)を使用しない以外は、実施例 41と同様にして 電子写真感光体 A59を得た。
[0236] 感光体 A1〜A24、 P1〜P16と同様に感光体の電気特性の評価を行い、環境 NZ Nの半減露光量及び VLを測定した。結果を表 8に示す。
[0237] [表 9]
表 8
環境 N / N
Figure imgf000066_0001
表 8の結果より、本発明の電子写真感光体は、高感度かつ低 VLで、良好な電気特 性を
示すことが分かる。
[0238] 実施例 60
外径 30mm、長さ 244mm、肉厚 0. 75mmのアルミニウム合金よりなるシリンダー 上に、特開 2005— 099791号公報の実施例 13に記載の手法を用いて、乾燥後の 膜厚が 1. O /z mになるように浸漬塗布、乾燥して下引き層を設けた。
[0239] 次に、 5重量部の電荷発生物質 4をトルエン 70重量部と共にサンドグラインドミルに より分散し、分散液を得た。同様にして、下記構造で示される電子輸送物質 8重量部 をトルエン 112重量部と共にサンドグラインドミルにより分散し、分散液を得た。一方 で、製造例 3Aで作製された得た例示化合物 3の化合物を 30重量部、実施例 1で用 いたィ匕合物 (A)を 30重量部、バインダー榭脂 (B1) 100重量部、酸化防止剤 (チバ ガイギ一社製、商品名 IRGANOX1076) 8重量部、およびレべリング剤としてシリコーン オイル 0. 05部を、トルエン 420重量部に溶解し、該溶液と前記の 2種の分散液とを、 ホモジナイザーにより混合した。このように調製した塗布液を、前記下引き層上に、乾 燥後の膜厚が 25 μ mになるように浸漬塗布し、正帯電単層型の電子写真感光体 A6 0を得た。
[0240] [化 33]
(電子輸送物質)
Figure imgf000067_0001
[0241] <電気特性の評価 >
電子写真学会測定標準に従って製造された電子写真特性評価装置 (続電子写真 技術の基礎と応用、電子写真学会編、コロナ社、 404〜405頁記載)を使用し、上記 感光体ドラムを一定回転数 60rpmで回転させ、帯電、露光、電位測定、除電のサイ クルによる電気特性評価試験を行なった。その際、感光体の初期表面電位が + 900 Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで 780nmの単色光と したものを 1. 0 jZcm2で露光したときの露光後表面電位(以下、 VL+と呼ぶことが ある)を測定した。 VL+測定に際しては、露光力も電位測定に要する時間を 100msと した。測定環境は、温度 25°C、相対湿度 50%で行なった。
その結果、 VL+は + 65Vという十分に低い表面電位を示し、電子写真用の感光体 として極めて好適であることがわかった。
[0242] <画像形成試験 >
上記電子写真感光体 A60を、正帯電で使用される市販のレーザープリンタ HL— 5 140 (ブラザ一社製)のドラムカートリッジ (DR510)に装着し、ハーフトーン画像を出 力し、標準ドラム (DR510純正)を用いた画像との濃度差と黒点発生の有無を確認し た。
その結果、画像濃度は標準ドラムと同等であり、また、黒点が発生することもなぐ画 像形成装置として好適に作動することがわ力つた。
産業上の利用可能性
本発明により、電気特性、その他の諸特性に優れた特定の構造を有する電荷輸送 物質が見出され、これを用いた電気特性、安定性、耐久性の改良された電子写真感 光体の形成が可能となった。該電子写真感光体は画像形成装置、電子写真カートリ ッジとしての利用が可能である。 なお、 2005年 9月 28曰に出願された曰本特許出願 2005— 282810号及び 2005 年 9月 28日に出願された日本特許出願 2005— 282811号の明細書、特許請求の 範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り 人れるものである。

Claims

請求の範囲
導電性支持体上に感光層が形成された積層型電子写真感光体において、該感光 層が下記一般式(1)で表される化合物を含有し、該感光層に含まれる、一般式(1) で表される化合物重量の、全バインダー榭脂の含有重量に対する比が 0. 15〜0. 6 であり、一般式(1)で表される化合物重量が全電荷輸送物質中最大であることを特 徴とする電子写真感光体。
[化 1]
Figure imgf000069_0001
(一般式(1)において、
Figure imgf000069_0002
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
感光層中にォキシチタニウムフタロシアニンを含有する請求項 1に記載の電子写真 感光体。
導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物を含有し、該感光層に含まれる、一般式(1)で表され る化合物重量の、全バインダー榭脂の含有重量に対する比が 0. 15〜0. 9であり、 一般式(1)で表される化合物重量が全電荷輸送物質中最大であり、かつ、感光層中 にォキシチタニウムフタロシアニンを含有することを特徴とする電子写真感光体。
[化 2]
Figure imgf000069_0003
(一般式(1)において、
Figure imgf000069_0004
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び nはそれぞれ独立に 1〜3の整数を表す。 )
導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物を含有するものであって、一般式(1)で表される化合 物の Ar3が、複数のアルキル置換基を有するものであり、かつ、感光層中にォキシチ タ -ゥムフタロシアニンを含有することを特徴とする電子写真感光体。
[化 3]
Figure imgf000070_0001
(一般式(1)において、
Figure imgf000070_0002
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[5] 導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物を含有するものであって、一般式(1)で表される化合 物の Ar3が、炭素数 2以上のアルキル基を置換基として有するものであり、かつ、感光 層中にォキシチタニウムフタロシアニンを含有することを特徴とする電子写真感光体
[化 4]
Figure imgf000070_0003
(一般式(1)において、
Figure imgf000070_0004
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[6] 前記一般式(1)で表される化合物の Ar3が、分岐アルキル基を置換基として有する 、請求項 5に記載の電子写真感光体。 導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物、及びポリアリレートを含有することを特徴とする電子 写真感光体。
[化 5]
Figure imgf000071_0001
(一般式(1)において、
Figure imgf000071_0002
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[8] 前記一般式(1)で表される化合物重量の、該感光層中の全バインダー榭脂の含有 重量に対する比が 0. 15〜0. 9である請求項 7に記載の電子写真感光体。
[9] 導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物、及び下記構造単位 (P— 1)を有するポリカーボネー トを含有することを特徴とする電子写真感光体。
Figure imgf000071_0003
(一般式(1)において、
Figure imgf000071_0004
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[化 7]
Figure imgf000071_0005
[10] 前記一般式(1)で表される化合物重量の、該感光層中の全バインダー榭脂の含有 重量に対する比が 0. 15〜0. 9である請求項 9に記載の電子写真感光体。
[11] 導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物、及び下記構造単位 (P— 2)を有するポリカーボネー トを含有し、一般式(1)で表される化合物重量の、該感光層中の全バインダー榭脂 の含有重量に対する比が 0. 15〜0. 9であることを特徴とする電子写真感光体。
[化 8]
Figure imgf000072_0001
(一般式(1)において、
Figure imgf000072_0002
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[化 9]
Figure imgf000072_0003
導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物を含有し、かつ、該導電性支持体がアルミニウム又 はアルミニウム合金であって陽極酸ィ匕皮膜を有するものであることを特徴とする電子 写真感光体。
[化 10]
Figure imgf000072_0004
(一般式(1)において、
Figure imgf000073_0001
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式 (1)で表される化合物を含有し、かつ、導電性支持体と感光層の間に下引 き層を有するものであることを特徴とする電子写真感光体。
[化 11]
Figure imgf000073_0002
(一般式(1)において、
Figure imgf000073_0003
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物、及び、下記式 (r)で表される電荷輸送物質を含有 するものであることを特徴とする電子写真感光体。
[化 12]
Figure imgf000073_0004
(一般式(1)において、
Figure imgf000073_0005
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[化 13]
Figure imgf000074_0001
(式 (r)中、 Rは、互いに異なっていてもよい、水素原子、アルキル基、アルコキシ基 又はフエ-ル基を示す。 )
導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物、並びに、下記式 (p)及び (q)からなる群力 選ばれ た少なくとも 1つの電荷輸送物質を含有し、一般式(1)で表される化合物重量の、該 感光層中の全バインダー榭脂の含有重量に対する比が 0. 15〜0. 9であることを特 徴とする電子写真感光体。
[化 14]
Figure imgf000074_0002
(一般式(1)において、
Figure imgf000074_0003
Ar2及び Ar3は置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[化 15]
Figure imgf000074_0004
(式 (P)及び式 (q)中、 Rは、互いに異なっていてもよい、水素原子、アルキル基、ァ ルコキシ基又はフエ-ル基を示す。) [16] 導電性支持体上に感光層が形成された電子写真感光体において、該感光層が下 記一般式(1)で表される化合物を含有し、かつ、接触帯電方式の帯電器により帯電 されるものであることを特徴とする電子写真感光体。
[化 16]
Figure imgf000075_0001
(一般式(1)において、
Figure imgf000075_0002
Ar2及び ΑΓΊま置換基を有してもよいァリール基を表わ し、 Ar4及び Ar5はそれぞれ独立に置換基を有してもよいァリーレン基を表し、 n1及び n2はそれぞれ独立に 1〜3の整数を表す。 )
[17] 該感光層に含まれる、前記一般式(1)で表される化合物の含有重量の、全バイン ダー榭脂の含有重量に対する比が 0. 15〜0. 9である請求項 16に記載の電子写真 感光体。
[18] 該感光層が酸化防止剤を含有することを特徴とする請求項 1〜17の何れかに記載 の電子写真感光体。
[19] 前記ォキシチタニウムフタロシアニン力 CuK a特性 X線による X線回折スペクトル において、ブラッグ角(2 Θ ± 0. 2° ) 27. 3° にピークを有する結晶型ォキシチタ-ゥ ムフタロシアニンである請求項 2〜6の何れかに記載の電子写真感光体。
[20] 更に、感光層中にォキシチタニウムフタロシアニンを含有する請求項 7〜 17の何れ かに記載の電子写真感光体。
[21] 該感光層に含まれる、前記一般式(1)で表される化合物の含有重量の、全電荷輸 送物質の含有重量に対する比が 0. 25〜1である請求項 1〜17の何れかに記載の 電子写真感光体。
[22] 請求項 1〜21の何れかに記載の電子写真感光体を用いた画像形成装置。
[23] 請求項 1〜21の何れかに記載の電子写真感光体を有する電子写真カートリッジ。
PCT/JP2006/319308 2005-09-28 2006-09-28 電子写真感光体、これを用いた画像形成装置、及びカートリッジ WO2007037331A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/088,322 US8663882B2 (en) 2005-09-28 2006-09-28 Electrophotographic photosensitive body, image-forming device using same and cartridge
CN200680035249XA CN101273305B (zh) 2005-09-28 2006-09-28 电子照相感光体、使用该电子照相感光体的成像装置以及处理盒
EP06810755A EP1930778A1 (en) 2005-09-28 2006-09-28 Electrophotographic photosensitive body, image-forming device using same and cartridge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005282811 2005-09-28
JP2005-282810 2005-09-28
JP2005282810 2005-09-28
JP2005-282811 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007037331A1 true WO2007037331A1 (ja) 2007-04-05

Family

ID=37899755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319308 WO2007037331A1 (ja) 2005-09-28 2006-09-28 電子写真感光体、これを用いた画像形成装置、及びカートリッジ

Country Status (6)

Country Link
US (1) US8663882B2 (ja)
EP (1) EP1930778A1 (ja)
JP (2) JP4983993B2 (ja)
KR (1) KR20080049062A (ja)
CN (2) CN101273305B (ja)
WO (1) WO2007037331A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063230A (ja) * 2006-09-04 2008-03-21 Kyocera Mita Corp トリフェニルアミン誘導体および電子写真感光体
CN101852995A (zh) * 2009-03-31 2010-10-06 京瓷美达株式会社 单层型电子照相感光体和图像形成装置
CN101661230B (zh) * 2009-09-24 2011-09-14 杭州科雷机电工业有限公司 外鼓式制版机铝合金光鼓的磨削加工工艺
JP2017125878A (ja) * 2016-01-12 2017-07-20 京セラドキュメントソリューションズ株式会社 電子写真感光体

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887220B (zh) * 2009-05-12 2012-08-22 株式会社理光 电子照相光电导体和包含该电子照相光电导体的电子照相方法、电子照相装置和印刷墨盒
CN102667634B (zh) * 2009-12-22 2016-02-24 佳能株式会社 充电构件、电子照相设备和处理盒
JP5640801B2 (ja) * 2010-02-24 2014-12-17 三菱化学株式会社 画像形成装置および電子写真カートリッジ
JP5621497B2 (ja) * 2010-10-15 2014-11-12 富士ゼロックス株式会社 画像形成装置、及びプロセスカートリッジ
US9037046B2 (en) * 2011-01-21 2015-05-19 Hewlett-Packard Indigo B.V. Liquid electrophotography printing apparatus and methods thereof
WO2012121176A1 (ja) 2011-03-04 2012-09-13 三菱化学株式会社 電荷輸送物質、電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
US8709689B2 (en) * 2011-08-26 2014-04-29 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, image-forming apparatus, and electrophotographic cartridge
CN103374740A (zh) * 2012-04-18 2013-10-30 靖江先锋半导体科技有限公司 铝镁合金的低粉尘阳极氧化表面处理工艺
CN103374742A (zh) * 2012-04-18 2013-10-30 靖江先锋半导体科技有限公司 铝镁合金的增强型阳极氧化表面处理工艺
JP5696130B2 (ja) * 2012-11-30 2015-04-08 京セラドキュメントソリューションズ株式会社 積層型電子写真感光体、画像形成装置、及び積層型電子写真感光体の製造方法
JP5990154B2 (ja) * 2013-10-30 2016-09-07 京セラドキュメントソリューションズ株式会社 積層型電子写真感光体
JP6233129B2 (ja) * 2014-03-25 2017-11-22 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP5941499B2 (ja) * 2014-06-30 2016-06-29 京セラドキュメントソリューションズ株式会社 トリアリールアミン誘導体、及び電子写真感光体
US10316167B2 (en) 2014-09-19 2019-06-11 Plastipak Packaging Oxygen scavengers, compositions comprising the scavengers, and articles made from the compositions
JP6583230B2 (ja) * 2016-11-30 2019-10-02 京セラドキュメントソリューションズ株式会社 電子写真感光体
JPWO2019077706A1 (ja) * 2017-10-18 2020-02-06 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
JP7001144B2 (ja) * 2020-12-23 2022-01-19 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675397A (ja) * 1992-08-26 1994-03-18 Minolta Camera Co Ltd 感光体
JPH0934142A (ja) * 1995-07-18 1997-02-07 Mitsubishi Chem Corp 電子写真用感光体
JPH1069104A (ja) * 1996-08-26 1998-03-10 Fuji Xerox Co Ltd 電子写真感光体及び電子写真装置
JP2001242645A (ja) * 1999-12-20 2001-09-07 Mitsubishi Chemicals Corp 電子写真感光体
JP2004246120A (ja) * 2003-02-14 2004-09-02 Konica Minolta Holdings Inc 有機感光体、画像形成方法及び画像形成装置
JP2005134709A (ja) * 2003-10-31 2005-05-26 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2005181679A (ja) * 2003-12-19 2005-07-07 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2005289877A (ja) * 2004-03-31 2005-10-20 Nippon Jiyouriyuu Kogyo Kk ブタジエニルベンゼンアミン誘導体、その製造方法、および電子写真感光体

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606988A (en) 1984-02-21 1986-08-19 Ricoh Company, Ltd. Styryl derivatives and electrophotographic photoconductor comprising one styryl derivative
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
US5043237A (en) * 1990-01-12 1991-08-27 E. I. Du Pont De Nemours And Company Inhibitor-containing photohardenable electrostatic master compositions having improved resolution
JP2561977B2 (ja) 1991-03-19 1996-12-11 三田工業株式会社 ヒドラゾン系化合物とこれを用いた感光体
JPH0627702A (ja) 1992-07-13 1994-02-04 Mita Ind Co Ltd 電子写真感光体
JP3081715B2 (ja) 1992-09-25 2000-08-28 出光興産株式会社 電子写真感光体
US5538826A (en) * 1993-09-09 1996-07-23 Canon Kabushiki Kaisha Electrophotographic image forming method, apparatus and device unit
JP3181799B2 (ja) * 1993-11-02 2001-07-03 高砂香料工業株式会社 トリフェニルアミン誘導体、それを用いた電荷輸送材料及び電子写真感光体
JP3321683B2 (ja) * 1994-01-31 2002-09-03 コニカ株式会社 電子写真感光体
JP3537065B2 (ja) 1996-07-01 2004-06-14 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP3939394B2 (ja) 1997-05-14 2007-07-04 三菱化学株式会社 電子写真感光体及び該感光体を用いる画像形成方法
US5932384A (en) 1997-05-14 1999-08-03 Mitsubishi Chemical Corporation Electrophotographic photoreceptor
US6482560B2 (en) * 1999-12-20 2002-11-19 Mitsubishi Chemical Corporation Electrophotographic photoreceptor
JP4157283B2 (ja) 2000-06-29 2008-10-01 三菱化学株式会社 アリールアミン組成物、その製造方法、及びそれを用いた電子写真感光体
JP4849385B2 (ja) * 2000-10-24 2012-01-11 保土谷化学工業株式会社 フタロシアニン組成物及びその製造方法、並びにそれを用いた電子写真感光体
JP3714898B2 (ja) 2001-10-25 2005-11-09 三菱製紙株式会社 有機光導電性材料及びそれを用いた電子写真感光体
JP2004252066A (ja) 2003-02-19 2004-09-09 Minolta Co Ltd 有機感光体
JP4069781B2 (ja) 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
US7175954B2 (en) 2003-03-31 2007-02-13 Konica Minolta Holdings, Inc. Electrophotographic photoreceptor
US7381511B2 (en) * 2003-06-02 2008-06-03 Ricoh Company, Ltd. Photoreceptor, image forming method and image forming apparatus using the photoreceptor, process cartridge using the photoreceptor and coating liquid for the photoreceptor
JP2005221539A (ja) 2004-02-03 2005-08-18 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP4437066B2 (ja) 2004-10-29 2010-03-24 京セラミタ株式会社 電子写真感光体および画像形成装置
JP2006178321A (ja) 2004-12-24 2006-07-06 Kyocera Mita Corp 電子写真感光体および画像形成装置
JP4658741B2 (ja) * 2004-12-24 2011-03-23 京セラミタ株式会社 電子写真感光体および画像形成装置
JP4204569B2 (ja) 2005-03-31 2009-01-07 京セラミタ株式会社 電子写真感光体及び画像形成装置
US7399564B2 (en) 2005-09-07 2008-07-15 Kyocera Mita Corporation Electrophotographic photoconductor
JP4891003B2 (ja) 2005-09-07 2012-03-07 京セラミタ株式会社 電子写真感光体
JP2007122036A (ja) * 2005-09-28 2007-05-17 Mitsubishi Chemicals Corp 電子写真感光体、該電子写真感光体を用いた画像形成装置、およびカートリッジ
JP2008009139A (ja) 2006-06-29 2008-01-17 Kyocera Mita Corp 積層型電子写真感光体及び画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675397A (ja) * 1992-08-26 1994-03-18 Minolta Camera Co Ltd 感光体
JPH0934142A (ja) * 1995-07-18 1997-02-07 Mitsubishi Chem Corp 電子写真用感光体
JPH1069104A (ja) * 1996-08-26 1998-03-10 Fuji Xerox Co Ltd 電子写真感光体及び電子写真装置
JP2001242645A (ja) * 1999-12-20 2001-09-07 Mitsubishi Chemicals Corp 電子写真感光体
JP2004246120A (ja) * 2003-02-14 2004-09-02 Konica Minolta Holdings Inc 有機感光体、画像形成方法及び画像形成装置
JP2005134709A (ja) * 2003-10-31 2005-05-26 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2005181679A (ja) * 2003-12-19 2005-07-07 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2005289877A (ja) * 2004-03-31 2005-10-20 Nippon Jiyouriyuu Kogyo Kk ブタジエニルベンゼンアミン誘導体、その製造方法、および電子写真感光体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063230A (ja) * 2006-09-04 2008-03-21 Kyocera Mita Corp トリフェニルアミン誘導体および電子写真感光体
CN101852995A (zh) * 2009-03-31 2010-10-06 京瓷美达株式会社 单层型电子照相感光体和图像形成装置
CN101852995B (zh) * 2009-03-31 2012-07-04 京瓷美达株式会社 单层型电子照相感光体和图像形成装置
CN101661230B (zh) * 2009-09-24 2011-09-14 杭州科雷机电工业有限公司 外鼓式制版机铝合金光鼓的磨削加工工艺
JP2017125878A (ja) * 2016-01-12 2017-07-20 京セラドキュメントソリューションズ株式会社 電子写真感光体

Also Published As

Publication number Publication date
EP1930778A8 (en) 2008-07-30
JP5083449B2 (ja) 2012-11-28
KR20080049062A (ko) 2008-06-03
US8663882B2 (en) 2014-03-04
US20100150608A1 (en) 2010-06-17
CN102087489B (zh) 2012-09-26
EP1930778A1 (en) 2008-06-11
JP2012073641A (ja) 2012-04-12
CN101273305A (zh) 2008-09-24
JP4983993B2 (ja) 2012-07-25
JP2011197694A (ja) 2011-10-06
CN101273305B (zh) 2012-07-18
CN102087489A (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5083449B2 (ja) 電子写真感光体、該電子写真感光体を用いた画像形成装置、およびカートリッジ
JP2007122036A (ja) 電子写真感光体、該電子写真感光体を用いた画像形成装置、およびカートリッジ
JP5365164B2 (ja) 電子写真感光体、ポリエステル樹脂、樹脂組成物、及びポリエステル樹脂の製造方法
WO2014021341A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
WO2004053597A1 (ja) 電子写真感光体
JP4214903B2 (ja) 電子写真感光体
JP6337553B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP6160370B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
JP4862661B2 (ja) 感光層形成用塗布液、電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5040318B2 (ja) 感光層形成用塗布液、電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2011095418A (ja) 電子写真感光体、電子写真カートリッジ及び画像形成装置
JP6123338B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP2018159087A (ja) ポリアリレート樹脂、及びそれを用いた電子写真感光体
JP5614010B2 (ja) 電子写真感光体、電子写真感光体カートリッジおよび画像形成装置
JP5481826B2 (ja) 電子写真感光体製造用塗布液、電子写真感光体、画像形成装置、および、電子写真感光体カートリッジ
JP2008152248A (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP6354239B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP4973196B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5332401B2 (ja) 電子写真感光体、電子写真感光体カートリッジおよび画像形成装置
JP5332402B2 (ja) 電子写真感光体、電子写真感光体カートリッジおよび画像形成装置
JP4973200B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP4661575B2 (ja) 電子写真感光体、該感光体を用いる電子写真カートリッジ、及び該感光体を用いる画像形成装置
JP2014164046A (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP2007212597A (ja) 電子写真感光体、画像形成方法および画像形成装置
JP5663837B2 (ja) 電子写真感光体並びにその製造方法、電子写真カートリッジ、および画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035249.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087007095

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006810755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12088322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE