WO2007034800A1 - ポリアリーレンスルフィドおよびその製造方法 - Google Patents

ポリアリーレンスルフィドおよびその製造方法 Download PDF

Info

Publication number
WO2007034800A1
WO2007034800A1 PCT/JP2006/318567 JP2006318567W WO2007034800A1 WO 2007034800 A1 WO2007034800 A1 WO 2007034800A1 JP 2006318567 W JP2006318567 W JP 2006318567W WO 2007034800 A1 WO2007034800 A1 WO 2007034800A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
weight
pas
molecular weight
less
Prior art date
Application number
PCT/JP2006/318567
Other languages
English (en)
French (fr)
Inventor
Shunsuke Horiuchi
Koji Yamauchi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37888843&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007034800(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to CN2006800435295A priority Critical patent/CN101313011B/zh
Priority to JP2006534512A priority patent/JP4432971B2/ja
Priority to US11/992,328 priority patent/US7750111B2/en
Priority to EP06798127.4A priority patent/EP1927615B2/en
Publication of WO2007034800A1 publication Critical patent/WO2007034800A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0227Polyarylenethioethers derived from monomers containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides

Definitions

  • the present invention relates to an industrially useful polyarylene sulfide having a narrow molecular weight distribution, a high molecular weight and a high purity, and to a method for producing a polyarylene sulfide having such advantages.
  • Polyarylen sulfide represented by polyphenylene sulfide (hereinafter also abbreviated as PPS) has excellent heat resistance, barrier properties, chemical resistance, electrical insulation, This is a resin having properties suitable as engineering plastics such as heat and humidity resistance and flame resistance.
  • PAS polyarylen sulfide
  • PPS polyphenylene sulfide
  • This is a resin having properties suitable as engineering plastics such as heat and humidity resistance and flame resistance.
  • it can be molded into various molded parts, films, sheets, fibers, etc. by injection molding and extrusion molding, and is used in fields that require heat resistance and chemical resistance, such as various electrical / electronic parts, mechanical parts, and automotive parts. Widely used.
  • the polyarylene sulfide obtained by this method contains a large amount of low molecular weight components, a polymer having a wide molecular weight distribution in which the degree of dispersion represented by the ratio of the weight average molecular weight to the number average molecular weight is very large. It is. Therefore, when used for molding processing, sufficient mechanical properties were not exhibited, and there were problems such as a large amount of gas components when heated and a large amount of eluted components when in contact with a solvent. In order to improve these problems, for example, a step of forming a crosslinked structure and increasing the molecular weight by performing a gas phase oxidation treatment in an oxidizing atmosphere such as in the air is required, and the process becomes more complicated. At the same time, productivity was lowered (for example, see Patent Document 1).
  • the PAS contains a large amount of low molecular weight components and has a wide molecular weight distribution.
  • a collection method has been proposed. Since impurities are extracted by the heat extraction effect in these methods, it is expected that the metal content of PAS will be reduced and the molecular weight distribution will be narrowed, but the effect is insufficient, and an expensive organic solvent is used. The process is complicated due to the method of using (for example, Patent Documents 2 and 3).
  • the sulfur source and the dihaloaromatic compound are heated in an organic polar solvent at a temperature of 220 to 2800C.
  • the weight average molecular weight Mw and the number average molecular weight Mn produced by washing PAS obtained by reacting for 0.1 to 2 hours under the conditions of the above with an organic polar solvent under conditions of a temperature of 100 to 220 ° C PAS with a ratio of MwZMn in the range of 2-5 is disclosed.
  • the low molecular weight component is removed by washing the organic solvent at a high temperature to obtain a PAS having a narrow molecular weight distribution, so the PAS yield is low and substantially obtained.
  • many expensive lithium compounds are used in the polymerization of PAS, so that the economy is inferior, and there are still many problems to be solved, such as lithium remaining in PAS with little force ( For example, see Patent Document 4).
  • alkali metal sulfate and Z or alkaline earth metal sulfate and a polyhalogenated aromatic compound in an aprotic organic solvent are used.
  • the force that can be expected to obtain a PAS having a narrow molecular weight distribution with a degree of dispersion MwZMn of about 1.9 PAS having a wide molecular weight distribution is subjected to an extraction operation in a molten solution state at high temperature and high pressure
  • This method employs a method for separating a large amount of low molecular weight components from PAS, and the process is complicated, and the yield of PAS obtained is as low as 80% or less.
  • an expensive lithium compound is used in the polymerization of PAS.
  • Patent Document 5 if there is a concern about the polymer remaining in the polymer, another problem remains (for example, Patent Document 5).
  • a method for producing a narrow PAS having a molecular weight distribution a method in which a cyclic arylene sulfide oligomer is heated and subjected to ring-opening polymerization in the presence of an ionic ring-opening polymerization catalyst is disclosed. Unlike the Patent Documents 2 and 3, this method can be expected to obtain a PAS having a narrow molecular weight distribution without performing a complicated organic solvent washing operation. However, this method has a problem that a large amount of alkali metal remains in the PAS obtained because PAS is synthesized by using an alkali metal salt of sulfur such as sodium salt of thiophenol as a ring-opening polymerization catalyst.
  • this method has a problem in that the molecular weight of the resulting PAS becomes insufficient when an attempt is made to reduce the residual amount of alkali metal in PAS by reducing the amount of ring-opening polymerization catalyst used. (For example, Patent Documents 6 and 7).
  • PAS obtained by the above method that is, a method of reducing the residual amount of alkali metal in PAS
  • a cyclic aromatic thioether oligomer is used in the presence of a polymerization initiator that generates sulfur radicals by heating.
  • a method for producing PAS that undergoes ring-opening polymerization is disclosed.
  • the glass transition temperature of the polyphenylene sulfide obtained by the method is as low as 85 ° C, which has a low molecular weight.
  • the ferrosulfide contains a large amount of low molecular weight components and has a wide molecular weight distribution, which is insufficient in terms of molecular weight and narrow molecular weight distribution. Furthermore, although there is no disclosure regarding the weight loss rate when the obtained polyester-sulfide is heated by this method, the polymerization initiator used in this method has a lower molecular weight than that of polysulfide-sulfide and is also thermally stable. Therefore, when the polysulfur sulfide obtained by this method is heated, a large amount of gas is generated, and there is a concern that molding processability is inferior (for example, Patent Document 8).
  • a high-purity cyclic polyarylene sulfide oligomer substantially free of linear polyarylene sulfide is used as the monomer source.
  • cyclic oligomers are obtained as a mixture with a large amount of linear oligomers, and therefore high purification operations are required to obtain high-purity cyclic products. This is a factor that increases the cost of the resulting PAS.
  • ring-opening polymerization there has been a demand for a method that allows a mixture of a cyclic body and a linear body to be used as the monomer source.
  • Non-patent Document 1 a PPS polymerization method in which a mixture of cyclic PPS and linear PPS is heated as a monomer source is also known.
  • This method is an easy polymerization method for PPS, but the resulting PPS has a low degree of polymerization and is not suitable for practical use.
  • This document discloses that the degree of polymerization can be improved by increasing the heating temperature. Nevertheless, the molecular weight is not yet suitable for practical use, and in this case, the formation of a crosslinked structure is avoided. It was pointed out that PPS with poor thermal properties could not be obtained, and it was pointed out that a high-quality PPS polymerization method more suitable for practical use was desired.
  • Polyphenylene sulfide is a polymer with a high molecular weight distribution, a large amount of low molecular weight components, a very high degree of dispersion expressed by the ratio of the weight average molecular weight to the number average molecular weight, and a wide molecular weight distribution. The purity is low! If it is a product, the problem has not been solved.
  • Another method for heat-treating PAS is melt extrusion while purging the vent port with nitrogen and keeping the vent port at a reduced pressure when melt-extruding PAS resin with an extruder having a vent port.
  • Patent Document 1 Do heat treatment is performed under reduced pressure above the melting point of PAS, so the degas effect during heat treatment is excellent.
  • the PAS obtained by this method is expected to be able to reduce the weight loss rate when heated, and the level is still not satisfactory. It had similar molecular weight distribution characteristics and alkali metal content characteristics, and it was difficult to say that the purity was sufficiently high.
  • Patent Document 1 Japanese Patent Publication 45-3368 (Pages 7-10)
  • Patent Document 2 Japanese Patent Publication No. 1-25493 (page 23)
  • Patent document 3 Japanese Patent Publication No. 4 55445 (pages 3-4)
  • Patent Document 4 JP-A-2-182727 (Pages 9-13)
  • Patent Document 5 JP-A-9 286860 (Pages 5-6)
  • Patent Document 6 Patent No. 3216228 (Pages 7-10)
  • Patent Document 7 Japanese Patent No. 3141459 (Pages 5-6)
  • Patent Document 8 US Pat. No. 5,869,599 (pages 27-28)
  • Patent Document 9 US Pat. No. 3,793,256 specification (page 2)
  • Patent Document 10 Japanese Patent Laid-Open No. 3-41152 (Claims)
  • Patent Document 11 JP 2000-246733 A (Page 4)
  • Non-Patent Document 1 Polymer, vol. 37, no. 14, 1996 (pages 3111-3116) Disclosure of the invention
  • An industrially useful polyaryry having a narrow molecular weight distribution, high molecular weight and high purity It is an object of the present invention to provide a lens sulfide and to provide a method for producing a polyarylen sulfide having such advantages.
  • the present invention provides:
  • thermogravimetric analysis was performed at a temperature increase rate of 20 ° CZ from 50 ° C to any temperature above 330 ° C in a non-acidic atmosphere at normal pressure. (This is the value obtained from the sample weight (W2) when reaching 330 ° C based on the sample weight (W1) when reaching 100 ° C)
  • a polyarylene sulfide prepolymer containing at least 50% by weight of cyclic polyarylene sulfide and having a weight average molecular weight of less than 10,000 is heated to a weight average molecular weight of 10,000 or more.
  • an industrially useful polyarylene sulfide having a narrow molecular weight distribution, a high molecular weight and high purity is provided, and a polyarylene sulfide having such advantages is provided.
  • a manufacturing method can be provided.
  • PAS in the present invention is a homopolymer or copolymer having a repeating unit of the formula, one (Ar—S) — as a main constituent unit, preferably containing 80 mol% or more of the repeating unit.
  • Ar includes units represented by the following formulas (A) to (K), among which the formula (A) is particularly preferred. [0020] [Chemical 1]
  • Rl, R2 are hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, and a substituent in which halogen power is also selected.
  • R1 and R2 can be the same or different ( ⁇ )
  • this repeating unit is a main structural unit, it can contain a small amount of branching units or crosslinking units represented by the following formulas (L) to (N). Copolymerization amount of branching unit or a bridge unit is preferably in the range of 0 to 1 mole 0/0 for (Ar-S) one unit mole. [0023] [Chemical 2]
  • the PAS in the present invention may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
  • Typical examples of these include poly-phenylene sulfide, poly-phenylene sulfide sulfone, poly-phenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof.
  • a particularly preferred PAS is the p-phenylene sulfide unit as the main structural unit of the polymer.
  • PPS Polysulfur sulfide
  • the PAS of the present invention has a weight average molecular weight of 10,000 or more, preferably 15,000 or more, more preferably 18,000 or more. If the weight average molecular weight is less than 10,000, the moldability during heating is low, and the mechanical strength and chemical resistance of the molded product are low. There is no particular upper limit on the weight average molecular weight, but less than 1,000,000 is a preferred range. More preferably, it is less than 500,000, more preferably less than 200,000, and high moldability can be obtained within this range.
  • the degree of dispersion represented by the spread of the molecular weight distribution of PAS in the present invention is preferably 2.5 or less. 2.3 The following is more preferred 2. Less than 1 is more preferred 2. Less than 0 is more preferred.
  • the degree of dispersion exceeds 2.5 the amount of low-molecular components contained in PAS tends to increase, which means that mechanical properties deteriorate when PAS is used for molding processing, and gas is generated when heated. It tends to be a factor such as an increase in amount and an increase in the amount of eluted components when in contact with a solvent.
  • the weight average molecular weight and number average molecular weight can be determined using, for example, SEC (size exclusion chromatography) equipped with a differential refractive index detector.
  • the melt viscosity of the PAS of the present invention is not particularly limited, but a preferred range is usually a melt viscosity of 5 to 10, OOOPa's (300 ° C, shear rate ⁇ sec).
  • the PAS of the present invention is characterized by higher purity than conventional ones, and the content of alkali metal as an impurity is preferably lOOppm or less.
  • the preferred alkali metal content is less than 50 ppm, more preferably 30 ppm or less, and still more preferably 10 ppm or less.
  • the alkali metal content of PAS in the present invention is, for example, a value calculated for the amount of alkali metal in ash, which is a residue obtained by baking PAS using an electric furnace or the like. It can be quantified by analyzing by an atomic absorption method.
  • the alkali metal refers to lithium, sodium, potassium, rubidium, cesium, and francium belonging to Group IA of the Periodic Table.
  • the PAS of the present invention preferably contains no alkali metal other than sodium. When it contains alkali metals other than sodium, it tends to adversely affect the electrical and thermal properties of PAS. In addition, the amount of metal eluted when PAS comes into contact with various solvents may increase, and this tendency is particularly strong when PAS contains lithium.
  • alkali metals tend to have a strong influence on the electrical properties, thermal properties, and metal elution of PAS. is there. Therefore, various metal species In particular, it is speculated that the PAS quality can be improved by setting the alkali metal content within the above range.
  • the PAS of the present invention does not substantially contain a halogen other than chlorine, that is, fluorine, bromine, iodine, or astatine.
  • a halogen other than chlorine that is, fluorine, bromine, iodine, or astatine.
  • chlorine when the PAS of the present invention contains chlorine as a halogen, it is stable in the temperature range where PAS is normally used. Therefore, even if a small amount of chlorine is contained, the effect on the mechanical properties of the PAS is small.
  • halogens are included, their unique properties tend to degrade the properties of PAS, such as electrical properties and residence stability.
  • the PAS of the present invention contains chlorine as a halogen, the preferred amount is 1% by weight or less, more preferably 0.5% by weight or less, and still more preferably 0.2% by weight or less. Electric characteristics and retention stability tend to be better.
  • a major feature of the PAS of the present invention is that the weight loss upon heating satisfies the following formula (1).
  • AWr is the weight loss rate (%), and it is thermogravimetric at a temperature increase rate of 20 ° CZ from 50 ° C to any temperature above 330 ° C in a non-acidic atmosphere at normal pressure. This is the value obtained from the sample weight (W2) when it reached 330 ° C, based on the sample weight (W1) when it reached 100 ° C.
  • the PAS of the present invention has an AWr of 0.18% or less, preferably 0.12% or less, and more preferably 0.10% or less, and 0.085 or less. Is more preferable when. ⁇ Wr exceeding the above range is not preferable because, for example, when PAS is molded, there is a problem that the amount of gas generated is large and it tends to occur. This is not preferable because there is a tendency for productivity to deteriorate due to an increased amount of deposits on the mold during molding. As far as the present inventors know, the AWr of known PAS exceeds 0.18%, but the PAS obtained by the preferred production method of the present invention has a very high purity, unlike the known PAS in terms of molecular weight distribution and impurity content. As a result, the value of AWr is estimated to decrease significantly.
  • AWr is the force that can be determined by general thermogravimetric analysis.
  • the atmospheric pressure is a non-acidic atmosphere at normal pressure.
  • a non-acidic atmosphere is an atmosphere in which the oxygen concentration in the gas phase in contact with the sample is 5% by volume or less, preferably 2% by volume or less, more preferably an oxygen-free atmosphere, that is, a non-oxygen atmosphere such as nitrogen, helium, or argon. It indicates an active gas atmosphere, and among these, a nitrogen atmosphere is particularly preferable from the viewpoints of economy and ease of handling.
  • Normal pressure is the pressure in the vicinity of the standard state of the atmosphere, and is the atmospheric pressure condition at a temperature of approximately 25 ° C and an absolute pressure of approximately 101.3kPa. If the measurement atmosphere is other than the above, it may not be possible to make measurements in accordance with the actual use of PAS, such as when PAS acidification occurs during measurement, or it is significantly different from the atmosphere actually used in PAS molding processing. Sex occurs.
  • thermogravimetric analysis is performed by raising the temperature from 50 ° C to an arbitrary temperature of 330 ° C or higher at a rate of temperature increase of 20 ° CZ. Preferably, hold for 1 minute at 50 ° C, then heat at a heating rate of 20 ° CZ for thermogravimetric analysis.
  • This temperature range is a temperature range frequently used when actually using PAS typified by polyphenylene sulfide, and is frequently used when melting solid PAS and then molding it into an arbitrary shape. It is also a temperature range.
  • the weight reduction rate in the actual operating temperature range is related to the amount of gas generated from PAS during actual use and the amount of components adhering to the die and mold during molding.
  • PAS is superior in quality and superior in that the weight loss rate in such a temperature range is small. It is desirable to measure AWr with a sample amount of about 10 mg, and the shape of the sample should be a fine particle of about 2 mm or less.
  • the amount of weight loss when heating a thermosetting resin or a thermoplastic resin tends to increase as the temperature increases, and this tendency is also applicable to PAS.
  • the present inventors analyzed the temperature dependence of the weight loss during heating of the PAS of the present invention and the known PAS in detail, and as a result, the PAS was analyzed according to the thermogravimetric analysis conditions described above.
  • the weight reduction rate we found that the relationship between the following formulas (2) and (3) is generally established between the weight reduction rate and the temperature T.
  • AWrl AWtl-(l. 0 X 10 " 3 XT1)--(2)
  • AWr2 AWt2 + (l. 0 ⁇ 10 " 3 ⁇ 2) ⁇ '(3)
  • AWtl is over 50 ° C to 330 ° C under normal pressure non-oxidizing atmosphere.
  • the thermogravimetric analysis value obtained when the temperature is raised to the desired temperature Tl (temperature increase rate: 20 ° CZ), and the sample weight at an arbitrary temperature T1 based on the sample weight (W) when it reaches 100 ° C
  • the weight loss rate AWr of the PAS of the present invention can be obtained by using the relationship of the force equation (2) based on the sample weight at 330 ° C in the analysis value obtained by thermogravimetric analysis as described above. It is possible to estimate the value of AWr from the weight loss rate AWtl based on the sample weight at temperatures exceeding ° C.
  • AWt2 is heated from 50 ° C to any temperature T2 above 270 ° C and below 330 ° C in a non-oxidizing atmosphere at normal pressure (heating rate 20 ° From the difference from the sample weight (Wt2) at an arbitrary temperature T2 based on the sample weight (W) when reaching 100 ° C, the thermogravimetric analysis value obtained when ) Weight loss rate (%) obtained by ''.
  • AWt2 (W-Wt2) / WX 100 (%) ⁇ ' ⁇ (1),
  • the weight loss rate AWr of the PAS of the present invention is 270 by using the relationship of the force equation (3) based on the sample weight at 330 ° C in the analysis value obtained by thermogravimetric analysis as described above. It is possible to estimate the value of AWr from the weight loss rate AWt2 based on the sample weight in the temperature range from ° C to less than 330 ° C. Note that when the upper limit of the measurement temperature in thermogravimetric analysis is less than S270 ° C, PAS does not melt, or even if it melts, the fluidity tends to be low, so such a measurement temperature range is a temperature suitable for actual use. It is desirable to use the above-mentioned range for the measurement temperature range from the viewpoint that it is not a range but is used as an evaluation standard for PAS quality.
  • the PAS having the feature of the above formula (1) is converted to a high polymerization degree by heating a polyarylene sulfide prepolymer containing a cyclic polyarylene sulfide as described later. It is preferable to manufacture by making it. Details on conversion to a high degree of polymerization will be given later.
  • the force of weight ratio of cyclic PAS contained in the PAS obtained after the polyarylene sulfide prepolymer is converted to a high polymerization degree is 0% or less, preferably 25% or less, More preferably, PAS of 15% or less is preferable because the aforementioned AWr value is particularly small. If this value exceeds the above range, the AWr value tends to increase, and although the cause is not clear at present, it is assumed that the cyclic PAS contained in the PAS partially evaporates during heating. .
  • the range of the weight average molecular weight and the range of the degree of dispersion of the PAS and the content of Z or alkali metal It is not always necessary to be within the above-mentioned range.
  • PAS containing a certain amount of cyclic PAS can satisfy the thermogravimetric property of the above formula (1).
  • the weight loss upon heating is particularly significant. Desirable because it tends to decrease.
  • the PAS of the present invention has a small heating loss AWr when the temperature is raised, and has a superior characteristic.
  • the heating loss when holding the PAS at an arbitrary constant temperature is also small. And tend to have excellent characteristics.
  • the generation amount of the rataton type compound and the Z or ar phosphorus type compound when heated is remarkably small.
  • the Rataton type compound eg if j8 prop-old Rataton, j8 Buchirorataton, ⁇ penta gluconolactone, Kisanorataton to j8, ⁇ Heputanorataton, ⁇ old Kutanorataton, ⁇ Nonarataton, ⁇ decalactone, ⁇ Buchirorataton, ⁇ Roh Les opening Rataton, ⁇ Pentanolataton, ⁇ -hexanolataton, ⁇ -heptanolataton, ⁇ -otatarataton, 7-nonaratatone, ⁇ -decalactone, ⁇ -pentanolataton, ⁇ -hexanolataton, ⁇ -heptanolataton, ⁇ -otatarataton, 7-nonaratatone, ⁇ -
  • the amount of rataton-type compound generated is preferably 500 ppm or less, more preferably ⁇ to 300 ppm, and more preferably OO to lOOppm. Less than 50ppm or less is desirable.
  • the generation amount of a phosphorus compound is preferably 300 ppm or less, more preferably 100 ppm, still more preferably 50 ppm or less, and more preferably 30 ppm or less.
  • the gas generated when treated at 320 ° C for 60 minutes in a non-oxidizing atmosphere is gas chromatographed.
  • An example is a method of quantifying by component division using a graph.
  • the method for producing PAS of the present invention comprises heating a polyarylene sulfide prepolymer having at least 50% by weight of cyclic polyarylene sulfide and having a weight average molecular weight of less than 10,000 to a weight average molecular weight of 10
  • the PAS of the present invention having the above-mentioned characteristics can be easily obtained according to this method.
  • the cyclic polyarylene sulfide in the preferred method for producing PAS of the present invention is a cyclic compound having the formula (Ar-S) as one main structural unit, preferably the repeating unit It is a compound such as the following general formula (O) that contains 80 mol% or more.
  • Ar is a force having units such as the above formulas (A) to (K), among which formula (A ) Is particularly preferred.
  • the cyclic polyarylene sulfide may contain any of repeating units such as the above formulas (A) to (K) or a mixture thereof that may be contained in blocks. May be. Typical examples of these include cyclic polyphenylene sulfide, cyclic polyphenylene sulfide sulfone, cyclic polyphenylene sulfide ketone, cyclic random copolymers, cyclic block copolymers containing them, and A mixture of these may be mentioned. Particularly preferred cyclic polyarylene sulfides are p-phenylene sulfide units as the main structural unit.
  • cyclic polyphenylene sulfide (hereinafter sometimes abbreviated as cyclic PPS) containing 80 mol% or more, particularly 90 mol% or more.
  • the number of repetitions m in the formula (O) of the cyclic polyarylene sulfide is not particularly limited, but 2 to 50 is preferable, 2 to 25 is more preferable, and 3 to 20 is more preferable range. It can be illustrated as As will be described later, the polyarylene sulfide prepolymer is preferably converted to a polymer having a high degree of polymerization at a temperature higher than the melting temperature of the cyclic polyarylene sulfide. In view of the fact that the melting temperature of arylene sulfide tends to be high, the conversion of polyarylene sulfide prepolymer to a high degree of polymerization can be performed at a lower temperature. It is advantageous to make the above range.
  • the cyclic polyarylene sulfide is a single compound having a single repeating number or a different compound.
  • Use of a mixture of cyclic polyarylene sulfides having a different melting number tends to have a low melt solution temperature is preferable because the temperature during the conversion to a high degree of polymerization can be further reduced.
  • the method for producing a PAS of the present invention is characterized in that the polyphenylene sulfide polymer containing the cyclic polyarylene sulfide as described above is heated to be converted into a high degree of polymerization.
  • the polyarylene sulfide prepolymer used here contains at least 50% by weight of cyclic polyarylene sulfide prepolymer, preferably 70% by weight or more, more preferably 80% by weight or more, more preferably Those containing 90% or more are preferable.
  • the upper limit value of the cyclic polyarylene sulfide prepolymer contained in the polyarylene sulfide prepolymer is not particularly limited, but 98% by weight or less, preferably 95% by weight or less can be exemplified as a preferable range.
  • the higher the weight ratio of cyclic polyarylene sulfide in the polyarylene sulfide prepolymer the higher the degree of polymerization of PAS obtained after heating. That is, in the PAS production method of the present invention, the degree of polymerization of the obtained PASS can be easily adjusted by adjusting the abundance ratio of the cyclic polyarylene sulfide prepolymer in the polyarylene sulfide prepolymer. Is possible.
  • the weight ratio of the cyclic polyarylene sulfide in the polyarylene sulfide copolymer exceeds the above-mentioned upper limit value, the melting temperature of the polyarylene sulfide precursor tends to increase. It is preferable to set the weight ratio of the cyclic polyarylene sulfide in the fluid prepolymer within the above range because the temperature when the polyarylene sulfide prepolymer is converted into a high degree of polymerization can be further reduced.
  • the components other than the cyclic polyarylene sulfide prepolymer in the polyarylene sulfide prepolymer are linear polyarylene sulfide oligomers.
  • the linear polyarylene sulfide oligomer is a homooligomer or copolymer having a repeating unit of the formula, one (Ar—S) — as a main constituent unit, preferably containing 80 mol% or more of the repeating unit. It is an oligomer.
  • Ar is expressed by the above formula (A) to formula (K), etc. Among the forces having a certain unit, formula (A) is particularly preferable.
  • the linear polyarylene sulfide oligomer can contain a small amount of branching units or crosslinking units represented by the above formulas (L) to (N) as long as these repeating units are the main constituent units. Copolymerization of these branches Unit or a bridge unit is preferably in the range of 0 to 1 mole 0/0 for (Ar-S) one unit mole. Further, the linear polyarylene sulfide oligomer may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
  • Typical examples thereof include polyphenylene sulfide oligomers, polyphenylene sulfide sulfone oligomers, polyphenylene sulfide ketone oligomers, random copolymers, block copolymers, and mixtures thereof.
  • Particularly preferred linear polyarylene sulfide oligomers include linear polyphenylene sulfide oligomers containing 80 mol% or more, particularly 90 mol% or more of P-phenylene sulfide units as the main structural unit of the polymer. It is done.
  • the amount of the linear polyarylene sulfide prepolymer contained in the polyarylene sulfide prepolymer is smaller than the cyclic polyarylene sulfide prepolymer contained in the polyarylene sulfide prepolymer.
  • the weight ratio of cyclic polyarylene sulfide to linear polyarylene sulfide in the polyarylene sulfide precursor must be 1 or more. Preferable 2.
  • the weight average molecular weight is reduced to 10,000. It is possible to easily obtain exceeding polyarylensulfide. Therefore, the larger the weight ratio of the cyclic polyarylene sulfide to the linear polyarylene sulfide in the polyarylene sulfide prepolymer, the larger the weight average of PAS obtained by the PAS production method of the present invention.
  • the molecular weight tends to increase, so there is no particular upper limit to this weight ratio, but in order to obtain a porous sulfhydric prepolymer having a weight ratio exceeding 100, a line in the polyarylene sulfide prepolymer is used. It is necessary to significantly reduce the PAS content, which requires a lot of labor. According to the PAS production method of the present invention, a sufficiently high molecular weight PAS can be easily obtained even if a polyarylene sulfide prepolymer having a weight ratio of 100 or less is used.
  • the upper limit of the molecular weight of the polyarylene sulfide prepolymer used for the production of the PAS of the present invention is less than 10,000 in terms of weight average molecular weight, and is 5,000 or less, preferably S, and less than 3,000.
  • the lower limit is preferably 300 or more in terms of weight average molecular weight, more preferably 400 or more, and even more preferably 500 or more.
  • the PAS of the present invention is characterized by high purity, and the polyarylene sulfide prepolymer used in the production is preferably high purity. Therefore, the content of alkali metal as an impurity is preferably 10 ppm or less, more preferably less than 50 ppm, more preferably 30 ppm or less, and even more preferably 10 ppm or less.
  • the alkali metal content of the resulting PAS is usually the polyarylene sulfide fluid.
  • the alkali metal content of the polyarylene sulfide prepolymer is, for example, a value obtained by calculating the alkali metal force in the ash that is a residue obtained by firing the polyarylene sulfide prepolymer using an electric furnace or the like,
  • the ash content can be quantified by analyzing it by, for example, ion chromatography or atomic absorption.
  • the alkali metal refers to lithium, sodium, potassium, rubidium, cesium, and francium belonging to Group IA of the periodic table.
  • the polyarylene sulfide prepolymer of the present invention is an alkali other than sodium. It is preferable that no metal is contained. In addition, it is preferable that the polyphenylene sulfide precursor of the present invention does not substantially contain a halogen other than chlorine.
  • various catalyst components that promote the conversion can be used in the conversion to the high polymerization degree by heating.
  • a catalyst component include ionic compounds and compounds having radical generating ability.
  • ionic compounds include alkali metal salts of sulfur, such as sodium salt of thiophenol, and examples of compounds having radical generating ability include compounds that generate sulfur radicals upon heating. More specifically, a disulfide bond containing Compound can be exemplified. However, even in such cases, it is desirable that the alkali metal content, alkali metal species, and halogen species contained in the polyarylene sulfide prepolymer be in accordance with the above-mentioned conditions.
  • the amount of alkali metal in the reaction system is 10 ppm or less, preferably 50 ppm or less, more preferably 30 ppm or less, more preferably 10 ppm or less. It is preferred that the disulfide weight is less than 1% by weight, preferably less than 0.5% by weight, more preferably less than 0.3% by weight and even more preferably less than 0.1% by weight relative to the total weight. It becomes easy to obtain the PAS of the invention. When various catalyst components are used, the catalyst components are usually taken into PAS, and the resulting PAS often contains catalyst components. In particular, when an ionic compound containing an alkali metal and Z or another metal component is used as a catalyst component, most of the metal component contained therein tends to remain in the obtained PAS.
  • polyarylene sulfides obtained using various catalyst components tend to increase in weight loss when PAS is heated. Therefore, when a higher purity PAS is desired and when it is desired to reduce the weight loss when heated to Z or heated, it is desirable to use as little as possible, preferably not, a catalyst component.
  • Examples of the method for obtaining the polyarylene sulfide prepolymer include the following methods. (1) By heating a mixture containing at least a polyhalogen aromatic compound, a sulfiding agent and an organic polar solvent to polymerize polyarylene sulfide resin, it is separated with an 80 mesh sieve (aperture 0.125 mm).
  • a polyarylene sulfide oligomer is prepared by separating and recovering a polyarylene sulfide oligomer contained therein and subjecting it to a purification operation.
  • a mixture containing at least a polyhalogen aromatic compound, a sulfiding agent and an organic polar solvent is heated to polymerize polyarylene sulfide resin, and after the polymerization is completed, the organic polar solvent is removed by a known method.
  • the above-described PAS of the present invention is preferably produced by a method of heating the polyarylene sulfide prepolymer to convert it to a high degree of polymerization. It is preferable that the heating temperature is a temperature at which the polyarylene sulfide prepolymer is melted and dissolved. If the heating temperature is lower than the melting temperature of the polyarylene sulfide copolymer, a long time tends to be required to obtain PAS.
  • the temperature at which the polyarylene sulfide prepolymer melts varies depending on the composition and molecular weight of the polyarylene sulfide prepolymer, and the environment during heating, so it cannot be uniquely indicated.
  • the melting temperature By analyzing polyarylene sulfide prepolymers with a differential scanning calorimeter, it is possible to determine the melting temperature. However, if the temperature is too high, it is an undesirable side effect typified by a cross-linking reaction or a decomposition reaction between polyarylene sulfide prepolymers, between PASs produced by heating, and between PAS and polyarylene sulfide prepolymers. Since reactions tend to occur and the properties of the resulting PAS may deteriorate, it is desirable to avoid temperatures at which such undesirable side reactions are noticeable. Examples of the heating temperature include 180 to 400 ° C, preferably 200 to 380 ° C, more preferably 250 to 360. C.
  • the heating time varies depending on various characteristics such as cyclic polyarylene sulfide content, m number, and molecular weight in the polyarylene sulfide prepolymer used, and conditions such as heating temperature. Therefore, it is not possible to define uniformly, but it is preferable to set so that the aforementioned undesirable side reaction does not occur as much as possible.
  • Examples of the heating time include 0.05 to 100 hours, preferably 0.1 to 20 hours, and more preferably 0.1 to 10 hours. Less than 0.05 hours, conversion of polyarylene sulfide prepolymer to PAS becomes insufficient. Immediately after 100 hours, adverse effects on the characteristics of PAS obtained by undesirable side reactions may be manifested. Not only tends to be high, but also causes economic disadvantages There is a case.
  • the conversion of the polyarylene sulfide prepolymer to the high polymerization degree by heating is usually carried out in the absence of a solvent, but can also be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not substantially cause undesired side reactions such as inhibition of conversion to a high degree of polymerization due to heating of polyarylene sulfide prepolymers and decomposition or crosslinking of the produced PAS.
  • N-methyl-2-pyrrolidone nitrogen-containing polar solvents such as dimethylformamide, dimethylacetamide, sulfoxides such as dimethylsulfoxide and dimethylsulfone, sulfone solvents, ketones such as acetone, methylethylketone, jetylketone, and acetophenone Solvents, ether solvents such as dimethyl ether, dipropyl ether, tetrahydrofuran, etc., halogen solvents such as chloroform, methylene chloride, trichloroethylene, ethylene dichloride, dichloroethane, tetrachloroethane, chlorobenzene, methanol
  • halogen solvents such as chloroform, methylene chloride, trichloroethylene, ethylene dichloride, dichloroethane, tetrachloroethane, chlorobenzene, methanol
  • examples include ethanol, propanol, butanol
  • the conversion of the polyarylene sulfide prepolymer to a high degree of polymerization by heating is performed by a method using a normal polymerization reaction apparatus, as well as in a mold for producing a molded product.
  • Any apparatus having a heating mechanism such as an extruder or a melt-kneader can be used without particular limitation, and a known method such as a batch method or a continuous method can be employed.
  • the atmosphere during the conversion of the polyarylene sulfide prepolymer to a high degree of polymerization by heating is preferably a non-acidic atmosphere, preferably under reduced pressure. Further, when the reaction is performed under reduced pressure conditions, it is preferable that the atmosphere in the reaction system is once changed to a non-oxidizing atmosphere and then reduced pressure conditions. This tends to suppress the occurrence of favorable side reactions such as bridge reactions and decomposition reactions between polyarylene sulfide prepolymers, between PAS produced by heating, and between PAS and polyarylene sulfide prepolymers. It is in.
  • the non-acidic atmosphere is an atmosphere in which the oxygen concentration in the gas phase in contact with the polyarylene sulfide prepolymer is 5% by volume or less, preferably 2% by volume or less, and more preferably substantially free of oxygen. It means an inert gas atmosphere such as nitrogen, helium, argon, etc. Among these, a nitrogen atmosphere is particularly preferred from the aspect of economy and ease of handling.
  • the reduced pressure condition means that the reaction system is lower than atmospheric pressure, and the upper limit is preferably 50 kPa or less, more preferably 20 kPa or less, and even more preferably lOkPa or less.
  • the lower limit is exemplified by 0.1 lkPa or more, more preferably 0.2 kPa or more.
  • an undesirable side reaction such as a crosslinking reaction tends to occur
  • a cyclic compound having a low molecular weight contained in the polyarylene sulfide brepolymer is dependent on the reaction temperature. There is a tendency for polyarylene sulfide to be volatilized easily.
  • the conversion of the polyarylene sulfide prepolymer to the high degree of polymerization can also be performed in the presence of a fibrous material.
  • the fibrous substance is a fine and thread-like substance, and an arbitrary substance having a structure elongated like a natural fiber is preferable.
  • the polyarylene sulfide prepolymer of the present invention has a remarkably low viscosity when melted compared to general thermoplastic resin such as PAS, Wetness with fibrous material tends to be good.
  • the polyarylene sulfide prepolymer is converted into a high degree of polymerization according to the PAS production method of the present invention. It is possible to easily obtain a composite material structure in which a material and a high degree of polymerization (polyarylene sulfide) form good wetting.
  • the fibrous material a reinforcing fiber having a long fiber strength is preferable, as described above, and the reinforcing fiber used in the present invention is not particularly limited.
  • the reinforcing fiber includes glass fiber, carbon fiber, graphite fiber, amide fiber, silicon carbide fiber, alumina fiber, and boron fiber.
  • carbon fiber and graphite fiber which have good specific strength and specific elastic modulus, and a large contribution to light weight, can be exemplified as the best.
  • Carbon fiber and graphite fiber can be used for all types of carbon fiber and graphite fiber depending on the application.
  • the length is preferably 5 cm or more. Within this length range, it becomes easy to sufficiently develop the strength of the reinforcing fiber as a composite material.
  • Carbon fiber and graphite fiber can be mixed with other reinforcing fibers.
  • the shape and arrangement of the reinforcing fibers are not limited.
  • the reinforcing fibers can be used in a single direction, a random direction, a sheet shape, a mat shape, a woven shape, and a braided shape.
  • the conversion of the polyarylene sulfide prepolymer to a high degree of polymerization can also be performed in the presence of a filler.
  • a filler include non-fibrous glass, non-fibrous carbon, and inorganic fillers such as calcium carbonate, titanium oxide, and alumina.
  • the PAS of the present invention is excellent in heat resistance, chemical resistance, flame retardancy, electrical properties and mechanical properties, and in particular, has a narrow molecular weight distribution and a remarkably low metal content compared to conventional PAS. Therefore, it has excellent processability, mechanical properties, and electrical properties, and is not only used for injection molding, injection compression molding, and blow molding, but is also formed into extruded products such as sheets, films, fibers, and pipes by extrusion molding. , Can be used.
  • a known melt film-forming method can be adopted. For example, after PAS is melted in a single-screw or twin-screw extruder, a film die is used. A method of producing a film by further extruding and cooling on a cooling drum, or a biaxial stretching method in which a film thus produced is stretched in the vertical and horizontal directions using a roller-type longitudinal stretching apparatus and a transverse stretching apparatus called a tenter. However, it is not limited to this.
  • a known melt spinning method can be applied.
  • a PAS chip as a raw material is supplied to a single-screw or twin-screw extruder. This is a force that can be applied to the kneading process, followed by a polymer streamline changer installed at the tip of the extruder, a filter layer, etc., extruding from the spinneret, cooling, stretching, and heat setting. It is not limited.
  • the PAS of the present invention may be used singly or, if desired, inorganic fillers such as glass fiber, carbon fiber, titanium oxide, calcium carbonate, antioxidant, heat stabilizer, purple External line absorbers, colorants, etc. can also be added, such as polyamide, polysulfone, polyphenylene ether, polycarbonate, polyethenores norephone, polyethylene terephthalate and polyester represented by polybutylene terephthalate, polyethylene, polypropylene, polytetrafluoro Olefin copolymers having functional groups such as polyethylene, epoxy groups, carboxyl groups, carboxylic acid ester groups, acid anhydride groups, polyolefin elastomers, polyether ester elastomers, polyether amide elastomers, polyamide imides, polyacetals, It can be blended ⁇ such polyimide.
  • inorganic fillers such as glass fiber, carbon fiber, titanium oxide, calcium carbonate, antioxidant, heat stabilizer, purple External line absorbers, colorants,
  • the PAS of the present invention is excellent in molding processability, mechanical properties, and electrical properties, the applications thereof include, for example, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, Recon case, optical pickup, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, micro Electric and electronic parts such as phones, headphones, small motors, magnetic head bases, power modules, semiconductors, LCDs, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts; VTR parts, TV parts , Iron, Hair dryer, Rice cooker parts, Microwave oven parts, Sound parts, Audio 'Laser disc (registered trademark), Compact disc, Digital video disc, etc.
  • sensors LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, Recon case, optical pickup, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, micro Electric and electronic parts such as phones, headphones,
  • Machine-related parts Optical equipment represented by microscopes, binoculars, cameras, watches, etc., precision machine-related parts; water taps, mixed faucets, pump parts, pipe joints, water flow control valves, relief valves, Water temperature sensor, water volume sensor, water meter housing and other water-related parts; valve alternator terminal, alternator connector, IC regulator, light meter potentiometer One base, various valves such as exhaust gas valve, fuel related 'exhaust system' Intake system pipes, air intake nozzle snorkel, intake bear hold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, throttle position sensor, Krantasha Fupo Sensor, air flow meter, brake pad wear sensor, air-conditioning thermostat base, heating hot air flow control valve, radiator motor brush hono-redder, water pump impeller, turbine vane, wiper motor related parts, distributor , Starter switches, starter relays, transmission wire harnesses, window washer nozzles, air conditioner panel switch boards
  • PAS film has excellent mechanical properties, electrical properties, and heat resistance. It can be suitably used for various applications such as dielectric film applications for capacitors and chip capacitors, circuit board and insulating substrate applications, motor insulating film applications, transformer insulating film applications, and release film applications.
  • PAS monofilaments or short fibers they can be suitably used in various applications such as paper-making dryer canvas, net conveyors, bag filters, and insulating paper.
  • the molecular weight of polyarylene sulfide and polyarylene sulfide prepolymer is gel permeation chromatography (a type of size exclusion chromatography (SEC)) (
  • GPC was calculated in terms of polystyrene.
  • the measurement conditions for GPC are shown below.
  • Pre-temperature bath temperature 250 ° C
  • the quantification of the content of Al metal contained in the polyarylene sulfide and the polyarylene sulfide prepolymer was carried out as follows.
  • the amount of halogen contained in the polyarylene sulfide and the polyarylene sulfide prepolymer was determined by the following method.
  • the weight loss rate during heating of polyarylene sulfide was measured using a thermogravimetric analyzer under the following conditions.
  • the sample used was a fine particle of 2 mm or less.
  • Weight loss rate AWr is calculated using the above equation (1) when the temperature rises in (b)! Based on the sample weight at 100 ° C, the sample weight at 330 ° C is reached. did.
  • the weight reduction rate at 300 ° C when the temperature was raised based on the sample weight at 100 ° C was AWr300, and the temperature increase was based on the sample weight at 100 ° C.
  • the weight loss rate at 320 ° C was AWr320, and the weight loss rate at 340 ° C with the temperature increased based on the sample weight at 100 ° C was shown as AWr340 for reference.
  • the components generated when PAS was heated were quantified by the following method.
  • the sample used was a fine particle of 2 mm or less.
  • the gas component collected in the tube was thermally desorbed by raising the temperature from room temperature to 280 ° C in 5 minutes using a thermal desorption device TDU (manufactured by Supelco).
  • the thermally desorbed component was divided into components using gas chromatography, and the amount of ⁇ -butyrolatatone and 4-chloromethyl-methylaline in the gas was determined.
  • the white powder had a weight average molecular weight of 900, Na content of 4 ppm, and chlorine content of 2.2 wt%. Alkali metals other than Na and halogens other than chlorine were below the detection limit. From the absorption spectrum of the white powder in the infrared spectroscopic analysis, it was found that the white powder was polyphenylene sulfide. As a result of analyzing the thermal characteristics of this white powder using a differential scanning calorimeter (heating rate 40 ° CZ min), it shows a broad endotherm at about 200-260 ° C, and the peak temperature is about 215 ° C. It turned out to be C.
  • this white powder has 4 to 11 cyclic polyphenylene sulfide and the number of repeating units. 2 to: L 1 was a mixture of linear polysulfide sulfide, and the weight ratio of cyclic polyphenylene sulfide to linear polyphenylene sulfide was about 9: 1.
  • the obtained solid was again diluted with 0.5 liters of ion exchange water, stirred at 70 ° C. for 30 minutes, and then filtered through an 80 mesh sieve.
  • the solid thus obtained was dried with hot air at 130 ° C. to obtain a dried polymer.
  • the solid component was dispersed in 0.5 kg of 0.5% acetic acid aqueous solution and 70 ° C. The mixture was stirred for 30 minutes and filtered in the same manner. The obtained solid component was again dispersed in 1 kg of ion-exchanged water, stirred at 70 ° C. for 30 minutes, and then filtered in the same manner. The obtained water-containing cake was dried in a vacuum dryer at 70 ° C overnight to obtain 7.4 g of a dried cake.
  • this white powder is a mixture of cyclic polyphenylene sulfide and linear polyphenylene sulfide force.
  • the polyarylenesulfide precursor lOOmg obtained in Reference Example 1 was charged into a glass ampule, and the inside of the ampule was replaced with nitrogen.
  • the ampule was placed in an electric furnace adjusted to 300 ° C and heated for 60 minutes, then the ampule was taken out and cooled to room temperature.
  • the infrared spectrum of the slightly blackish product obtained was in agreement with Reference Example 2, indicating that the product was PPS.
  • the product was completely dissolved in 1 chloronaphthalene at 210 ° C.
  • PAS was synthesized in the same manner as in Example 1 except that the heating temperature in the electric furnace was changed to 340 ° C.
  • the product obtained was slightly blackish.
  • the infrared spectrum was consistent with Reference Example 2 and the product was found to be PPS.
  • this product was dissolved in 1 chloronaphthalene at 210 ° C, a small amount of insoluble components were formed.
  • the conversion rate of the prepolymer to PPS was 99%, the weight average molecular weight of the obtained PPS was 67300, and the degree of dispersion was 2.15.
  • the Na content was 3 ppm, and no other alkali metals were detected.
  • AWr 0.071%.
  • Polyarylenesulfide precursor obtained in Reference Example 1 lOOmg is made of glass amplifier
  • the reactor was charged with nitrogen and replaced with nitrogen, and then the pressure was reduced to about 0.2 kPa using a vacuum pump.
  • the ampoule was placed in an electric furnace adjusted to 300 ° C, heated for 60 minutes while maintaining the inside of the ampoule at about 0.2 kPa, and then the ampoule was taken out and cooled to room temperature. A slight amount of scattered components was observed during heating.
  • the obtained product was a slightly brownish rosin.
  • the infrared spectrum of this product was consistent with Reference Example 2, indicating that the product was PPS.
  • the product was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • the conversion rate of the prepolymer to PPS was 20%
  • the weight average molecular weight of the obtained PPS was 38300
  • the degree of dispersion was 1.47.
  • Na content was 4 ppm and other alkali metals were not detected.
  • halogens other than chlorine were detected.
  • AWr was 0.106%.
  • AWr300 (%) 0.082
  • AWr320 (%) 0.096
  • AWr3 40 (%) 0.118.
  • Example 3 Except that the heating time in the electric furnace was changed to 120 minutes, the same operation as in Example 3 was performed to obtain a slightly brownish oily product.
  • the infrared spectrum of this product was consistent with Reference Example 2, and the product was found to be PPS.
  • the product was completely dissolved in 1 chloronaphthalene at 210 ° C.
  • GPC measurement it was found that the conversion rate of the prepolymer to PPS was 56%, the weight average molecular weight of the obtained PPS was 63800, and the degree of dispersion was 1.70.
  • the Na content was 4 ppm, and no other alkali metals were detected. In addition, halogens other than chlorine were not detected.
  • AWr was 0.031%.
  • Example 5 Except that the heating time in the electric furnace was changed to 120 minutes, the same operation as in Example 5 was performed to obtain a slightly brownish oily product.
  • the infrared spectrum of this product was consistent with Reference Example 2, and the product was found to be PPS.
  • the product was completely dissolved in 1 chloronaphthalene at 210 ° C.
  • the conversion rate of the prepolymer to PPS was 93%
  • the weight average molecular weight of the obtained PPS was 130300
  • the degree of dispersion was 2.03.
  • the Na content was 3 ppm, and no other alkali metals were detected. In addition, halogens other than chlorine were not detected.
  • AWr was 0.037%.
  • AWr300 (%) 0.022
  • AWr320 (%) 0.031
  • AWr340 (%) 0.042.
  • the PAS of the present invention has an extremely narrow molecular weight distribution and an alkali metal. It can be seen that the content is extremely low. In addition, it can be seen that the PAS of the present invention generates a remarkably small amount of rataton-type compound and Z or ar-line type compound when heated.
  • PAS is synthesized according to the PAS production method disclosed in Patent Document 6, that is, a method in which a cyclic arylene sulfide oligomer is heated and subjected to ring-opening polymerization in the presence of an ionic ring-opening polymerization catalyst. The results are shown.
  • a glass ampoule was charged with powder 100111 8 in which polyarylene sulfide prepolymer obtained in Reference Example 1 and sodium salt of thiophenol as an ionic catalyst compound were mixed at a weight ratio of 1: 0.012.
  • the procedure was the same as in Example 1 except that.
  • the product obtained was a blackish, brittle mass.
  • the infrared spectrum of the product was consistent with Reference Example 2, and the product was found to be PPS.
  • the product was completely dissolved in 1 chloronaphthalene at 210 ° C.
  • GPC measurement it was found that the conversion rate of the prepolymer to PPS was 70%, the weight average molecular weight of the obtained PPS was 34500, and the degree of dispersion was 1.74.
  • the Na content was 2050 ppm, and no other alkali metals were detected. In addition, halogens other than chlorine were not detected.
  • PAS synthesis is performed according to the PAS production method disclosed in Patent Document 8, that is, the ring-opening polymerization of a cyclic aromatic thioether oligomer in the presence of a polymerization initiator that generates sulfur radicals. The result of having performed is shown.
  • PAS was manufactured according to the method of Patent Document 11 as follows: o
  • the obtained solid was diluted with 40 kg of ion-exchanged water, stirred at 70 ° C. for 30 minutes, and then filtered through the same sieve as described above to collect the solid twice.
  • the solid material thus obtained was dried with hot air at 130 ° C. to obtain about 4 kg of granular PPS.
  • the obtained granular PPS was melt-kneaded with a TEX30 type twin screw extruder manufactured by Nippon Steel Co., Ltd. at a cylinder temperature of 320 ° C and with a screw rotation of 200 rpm.
  • the hopper, vent, and screw shaft were sealed with nitrogen to prevent air from entering.
  • the vent part was decompressed to about lOkPa to remove the volatile components.
  • the strand extruded from the nozzle was cooled by water cooling into a gut shape, and then pelletized using a strand cutter. The obtained pellets were dried at 130 ° C for 1 kg.
  • ⁇ Wr 0.187%.
  • the Na content was 120 ppm, the Ca content was 550 ppm, and no alkali metals other than sodium were detected. In addition, halogens other than chlorine were not detected.
  • PAS obtained by using the conventionally used method for reducing the weight loss rate during heating of PAS has a larger AWr than the PAS of the present invention.
  • Non-Patent Document 1 that is, the result of synthesizing PAS using the poly-phenylene sulfide mixture obtained by the method of Reference Example 4 is shown.
  • PAS was synthesized in the same manner as in Example 1 except that the white powder obtained in Reference Example 4, that is, a polyphenylene sulfide mixture containing about 40% by weight of cyclic polyphenylene sulfide was used as a raw material. .
  • the obtained product was a blackish brittle lump.
  • the infrared spectrum of the product was almost the same as in Reference Example 2, indicating that the product was PPS.
  • the product which was completely dissolved in 1-chloronaphthalene at 210 ° C, was colored brown.
  • the conversion of the raw material to polymer was 83%, and the weight average molecular weight of the obtained PPS was 320.
  • the dispersity was 0 and 2.13, and it was impossible to obtain PAS with sufficient molecular weight.
  • Non-Patent Document 1 that is, the synthesis of PAS using the poly-sulfur sulfide mixture obtained by the method of Reference Example 4 was carried out under the same temperature conditions as in Comparative Example 6. Indicates.
  • the obtained product was a blackish fragile lump, and partial foaming was observed.
  • the infrared spectrum of the product was almost the same as in Reference Example 2, indicating that the product was PPS.
  • the product was partially insoluble in 1-chloronaphthalene at 210 ° C, and the solution was colored brown.
  • the conversion rate of the raw material to the polymer was 97%
  • the weight average molecular weight of the obtained PPS was 4500
  • the degree of dispersion was 2.25, so a PAS with sufficient molecular weight could not be obtained. There wasn't.
  • PAS is produced from polyarylene sulfide prepolymer in the presence of fibrous material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 狭い分子量分布を有し、高分子量且つ高純度であって工業的に有用なポリアリーレンスルフィドとその製造方法を提供するものであり、ポリアリーレンスルフィドは重量平均分子量が10,000以上であって、且つ、加熱した際の重量減少が、△Wr=(W1-W2)/W1×100≦0.18(%)(ここで△Wrは重量減少率(%)、W1は100°C到達時点の試料重量、W2は330°C到達時の試料重量)であることを特徴とし、その製造方法は環式ポリアリーレンスルフィドを少なくとも50重量%以上含み、且つ重量平均分子量が10,000未満であるポリアリーレンスルフィドプレポリマーを加熱して重量平均分子量10,000以上の高重合度体に転化させることを特徴とする。

Description

明 細 書
ポリアリーレンスルフィ ドおよびその製造方法 技術分野
[0001] 狭い分子量分布を有し、高分子量且つ高純度であって工業的に有用なポリアリー レンスルフイドに関し、また、このような利点を有するポリアリーレンスルフイドの製造方 法に関する。
背景技術
[0002] ポリフエ-レンスルフイド(以下、 PPSと略する場合もある)に代表されるポリアリーレ ンスルフイド (以下、 PASと略す場合もある)は優れた耐熱性、バリア性、耐薬品性、 電気絶縁性、耐湿熱性、難燃性などエンジニアリングプラスチックとして好適な性質 を有する榭脂である。また、射出成形、押出成形により各種成形部品、フィルム、シー ト、繊維等に成形可能であり、各種電気 ·電子部品、機械部品および自動車部品な ど耐熱性、耐薬品性の要求される分野に幅広く用いられている。
[0003] この PASの具体的な製造方法として、 N—メチルー 2—ピロリドンなどの有機アミド 溶媒中で硫ィ匕ナトリウムなどのアルカリ金属硫ィ匕物と P—ジクロロベンゼンなどのポリ ハロ芳香族化合物とを反応させる方法が提案されており、この方法は PASの工業的 製造方法として幅広く利用されている。し力しながら、この製造方法は高温、高圧、且 つ強アルカリ条件下で反応を行うことが必要であり、更に、 N—メチルピロリドンのよう な高価な高沸点極性溶媒を必要とし、溶媒回収に多大なコストがかかるエネルギー 多消費型で、多大なプロセスコストを必要とすると 、つた課題を有して 、る。
[0004] さらに、重合反応は脱塩重縮合機構であるため、塩ィ匕ナトリウム等の副生塩が多量 に生成する。従って重合反応後には副生塩の除去工程が必要であるが通常の処理 では副生塩の完全な除去が難しぐ市販の汎用的な PPS品中にはアルカリ金属含 有量で 1000〜3000ppm程度が含有されて!、る。このように生成ポリマー中にアル カリ金属塩が残存していると、電気特性等の物性低下を招くといった問題が生ずる。 従って、このようなポリアリーレンスルフイドを原料として用いた成形品を電気'電子部 品の分野に適用しょうとすると、ポリアリーレンスルフイド中のアルカリ金属による電気 特性の低下が大きな障害となる。
[0005] また、この方法で得られるポリアリーレンスルフイドは、低分子量成分を多く含み、重 量平均分子量と数平均分子量の比で表される分散度が非常に大きぐ分子量分布 の広いポリマーである。そのため、成形加工用途に用いた場合、十分な機械特性が 発現せず、また加熱した際のガス成分が多い、溶剤と接した際の溶出成分量が多い 等の問題が生じていた。これら問題点を改善するためには、例えば空気中のような酸 化性雰囲気下で気相酸化処理することで架橋構造を形成し高分子量化する工程が 必要であり、プロセスがさらに煩雑になるとともに生産性の低下を招いていた (例えば 、特許文献 1参照)。
[0006] 前記 PASの問題点の一つ、即ち、 PASが低分子量成分を多く含み分子量分布が 広 、点を改善する方法として、不純物を含有する PASの混合物を PASが溶融相を なす最低温度よりも高 、状態で、 PASを含むポリマー溶融相と溶媒を主とする溶媒 相に相分離せしめることで不純物を熱抽出に付すことにより精製する方法、または冷 却後に顆粒状ポリマーを析出させて回収する方法が提案されている。これら方法で は熱抽出効果により不純物が抽出されるため、 PASの金属含量の低減、及び分子 量分布が狭くなることが期待されるがその効果は不十分であり、また、高価な有機溶 剤を使用する方法のためプロセスが煩雑であった (例えば特許文献 2及び 3)。
[0007] 前記課題、即ち PASが低分子量成分を多く含み分子量分布が広 、点を改善する 別の方法として、有機極性溶媒中で硫黄源とジハロ芳香族化合物とを温度 220〜2 80°Cの条件下に 0. 1〜2時間反応させて得られた PASを温度 100〜220°Cの条件 下に有機極性溶媒で洗浄することを特徴として製造される重量平均分子量 Mwと数 平均分子量 Mnの比 MwZMnが 2〜5の範囲内にある PASが開示されている。該 P ASの製造では高温で有機溶剤洗浄を行うことで低分子量成分を除去して狭い分子 量分布の PASを得ているため、 PASの収率が低ぐまた、実質的に得られている最 も分散度が低い PASでも MwZMn= 2. 9でありその効果は不十分であった。更に 該方法では PASの重合に際し高価なリチウム化合物を多量に使用しているため経 済性に劣り、またリチウムが PASに少な力もず残留してしまうなど、まだ解決すべき課 題が多かった (例えば特許文献 4参照)。 [0008] 前記 PASの不十分な分子量分布を改善する方法として、非プロトン性有機溶媒中 でアルカリ金属硫ィ匕物及び Z又はアルカリ土類金属硫ィ匕物とポリハロゲン化芳香族 化合物とを重合し、得られた PAS重合反応物を含む重合溶液中に水を溶液全体の 5〜50重量%、並びに無機及び Z又は有機の酸を、前記重合溶液が酸性になるよう に添加し、かつ溶液中の PAS重合反応物が溶融相をなす最低温度よりも高い温度 下で溶媒相とポリマー溶融相とに相分離させ、ポリマー溶融相を回収することを特徴 とする製造方法によって得られる PASが開示されている。この方法によれば分散度 MwZMnが 1. 9程度の狭い分子量分布を有する PASを得ることが期待できる力 こ の方法では広い分子量分布を有する PASを高温高圧下の溶融解状態で抽出操作 に処すことにより多量の低分子量成分を PASから分離する方法を採用しており、プロ セスが煩雑で、また得られる PASの収率は 80%以下と低ぐさらに該 PASの重合で は高価なリチウム化合物を多量に使用しており、これのポリマーへの残留も懸念があ ると 、つた課題が残って 、た (例えば特許文献 5)。
[0009] また、狭 、分子量分布を有する PASの製造方法として、環状ァリーレンスルフイド オリゴマーをイオン性の開環重合触媒下で、加熱開環重合する方法が開示されてい る。この方法では前記特許文献 2及び 3とは異なり、煩雑な有機溶剤洗浄操作を行わ ずに狭 、分子量分布を有する PASを得ることが期待できる。しかしながらこの方法で は PASの合成にぉ 、てチォフエノールのナトリウム塩等、硫黄のアルカリ金属塩を開 環重合触媒として用いるため、得られる PASにアルカリ金属が多量に残留するという 問題があった。またこの方法にぉ 、て開環重合触媒の使用量を低減することで PAS へのアルカリ金属残留量を低減しょうとした場合、得られる PASの分子量が不十分と なる問題があった。(例えば特許文献 6及び 7)。
[0010] 前記方法で得られる PASの問題点、すなわち PASへのアルカリ金属残留量を低 減する方法として、加熱により硫黄ラジカルを発生する重合開始剤の存在下で環状 の芳香族チォエーテルオリゴマーを開環重合する PASの製造方法が開示されてい る。この方法では重合開始剤に非イオン性ィ匕合物を用いるため、得られる PASのァ ルカリ金属含有量が低減されると思われる。しカゝしながら、該方法で得られるポリフエ 二レンスルフイドのガラス転移温度は 85°Cと低ぐこれは分子量が低ぐまた、該ポリ フエ-レンスルフイドが低分子量成分を多量に含み分子量分布が広いためであり、分 子量及び狭い分子量分布という点で不十分であった。さらに、該方法では得られるポ リフエ-レンスルフイドを加熱した際の重量減少率については何ら開示が無いが、該 方法で用いる重合開始剤はポリフエ-レンスルフイドと比較して分子量が低ぐまた熱 安定性も劣るため、この方法で得られるポリフエ-レンスルフイドを加熱した際には多 量のガスが発生し、成形加工性が劣る懸念があった (例えば特許文献 8)。
[0011] また特許文献 6〜8の PASの製造方法における開環重合においては、そのモノマ 一源として線状ポリアリーレンスルフイドを実質的に含まない高純度の環状ポリアリー レンスルフイドオリゴマーを用いることが好ましい容態とされており、線状のポリアリー レンスルフイドは極少量の混在のみが許容されている。一般に環状オリゴマーは多量 の線状オリゴマーとの混合物として得られるため、高純度の環状体を得るためには高 度な精製操作が必要であり、このことは結果として得られる PASのコストアップ要因と なっており、開環重合においては環状体と線状体の混合物をそのモノマー源に用い ることが許容される方法が望まれて 、た。
[0012] また、モノマー源として環状 PPSと線状 PPSの混合物を加熱する PPSの重合方法 も知られている(非特許文献 1)。この方法は PPSの安易な重合法であるが、得られる PPSの重合度は低く実用に適さない PPSであった。該文献では加熱温度を高くする ことで重合度の向上が見られることが開示されている力 それでもなお実用に適した 分子量には到達しておらず、また、この場合は架橋構造の生成が回避できず、熱的 特性の劣る PPSし力得られないことが指摘されており、より実用に適した品質の高い PPSの重合方法が望まれて 、た。
[0013] 一方、 PASを加熱した際の重量減少率を減ずる方法として、 PASを熱処理する方 法について従来力 多くの提案がなされており、たとえばポリフエ-レンスルフイドを 酸素雰囲気下、融点未満で熱処理する方法や、ポリフ 二レンスルフイドを不活性ガ ス雰囲気下、融点未満で熱処理する方法などが開示されている (たとえば特許文献 9 及び 10)。これらの方法で得られるポリアリーレンスルフイドは、確かに熱処理を施さ な ヽ PASと比較して加熱した際の重量減少率が低減する傾向にある力 それでもな お加熱した際の重量減少率は満足できる水準ではな力つた。さらにこの方法で得ら れるポリフ -レンスルフイドは低分子量成分を多く含み、重量平均分子量と数平均 分子量の比で表される分散度が非常に大きぐ分子量分布の広いポリマーであって 、且つアルカリ金属含有量もはなはだ多 、純度の低!、物であると!/、う問題も解決され ていなかった。
[0014] PASを熱処理する別の方法としてはベント口を有する押出機を用いて PAS榭脂の 溶融押出をする際にベント口を窒素でパージしつつ、ベント口を減圧に保ちながら溶 融押出を行うことで得られる PAS榭脂ペレットが開示されている(たとえば特許文献 1 D oこの方法では熱処理を PASの融点以上の減圧条件下で行っているため、熱処 理中のデガス効果に優れ、この方法で得られる PASは加熱した際の重量減少率が 低減できることが期待できる力 その水準は 、まだなお満足できるものではな力つた。 さらに、この方法による PASペレットも前記のポリフエ-レンスルフイドと類似の分子量 分布特性及びアルカリ金属含有量特性を有し、純度が十分に高 ヽとは言 ヽ難 ヽもの であった。
特許文献 1 :特公昭 45— 3368号公報 (第 7〜10頁)
特許文献 2 :特公平 1— 25493号公報 (第 23頁)
特許文献 3 :特公平 4 55445号公報 (第 3〜4頁)
特許文献 4:特開平 2— 182727号公報 (第 9〜13頁)
特許文献 5 :特開平 9 286860号公報 (第 5〜6頁)
特許文献 6 :特許第 3216228号明細書 (第 7〜10頁)
特許文献 7 :特許第 3141459号明細書 (第 5〜6頁)
特許文献 8:米国特許第 5869599号明細書 (第 27〜28頁)
特許文献 9:米国特許第 3793256号明細書 (第 2頁)
特許文献 10 :特開平 3— 41152号公報 (特許請求の範囲)
特許文献 11:特開 2000— 246733号公報 (第 4頁)
非特許文献 1 : Polymer, vol. 37, no. 14, 1996年(第 3111〜3116頁) 発明の開示
発明が解決しょうとする課題
[0015] 狭い分子量分布を有し、高分子量且つ高純度であって工業的に有用なポリアリー レンスルフイドを提供すること、また、このような利点を有するポリアリーレンスルフイド の製造方法を提供することを課題とするものである。
課題を解決するための手段
[0016] 上記課題に関し、本発明は、
1.重量平均分子量が 10, 000以上であって、且つ、加熱した際の重量減少が下記 式を満たすことを特徴とするポリアリーレンスルフイド。
AWr = (Wl - W2) /Wl X 100≤ 0. 18 (%)
(ここで AWrは重量減少率(%)であり、常圧の非酸ィ匕性雰囲気下で 50°Cから 330 °C以上の任意の温度まで昇温速度 20°CZ分で熱重量分析を行った際に、 100°C到 達時点の試料重量 (W1)を基準とした 330°C到達時の試料重量 (W2)から求められ る値である)、
及び、
2.環式ポリアリーレンスルフイドを少なくとも 50重量%以上含み、且つ重量平均分子 量が 10, 000未満であるポリアリーレンスルフイドプレポリマーを加熱して重量平均分 子量 10, 000以上の高重合度体に転ィ匕させることを特徴とするポリアリーレンスルフ イドの製造方法、
を提供することにある。
発明の効果
[0017] 本発明によれば、狭い分子量分布を有し、高分子量且つ高純度であって工業的に 有用なポリアリーレンスルフイドを提供、また、このような利点を有するポリアリーレンス ルフイドの製造方法を提供できる。
発明を実施するための最良の形態
[0018] 以下に、本発明実施の形態を説明する。
[0019] (l) PAS
本発明における PASとは、式、一(Ar—S)—の繰り返し単位を主要構成単位とす る、好ましくは当該繰り返し単位を 80モル%以上含有するホモポリマーまたはコポリ マーである。 Arとしては下記の式 (A)〜式 (K)などであらわされる単位などがあるが 、なかでも式 (A)が特に好ま ヽ。 [0020] [化 1]
Figure imgf000008_0001
[0021] (Rl, R2は水素、炭素原子数 1〜12のアルキル基、炭素原子数 1〜12のアルコキ シ基、炭素数 6〜24のァリーレン基、ハロゲン基力も選ばれた置換基であり、 R1と R2 は同一でも異なって ヽてもよ ヽ)
[0022] この繰り返し単位を主要構成単位とする限り、下記の式 (L)〜式 (N)などで表され る少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋 単位の共重合量は、 (Ar-S)一の単位 1モルに対して 0〜1モル0 /0の範囲である ことが好ましい。 [0023] [化 2]
Figure imgf000009_0001
[0024] また、本発明における PASは上記繰り返し単位を含むランダム共重合体、ブロック 共重合体及びそれらの混合物の 、ずれかであってもよ 、。
[0025] これらの代表的なものとして、ポリフエ-レンスルフイド、ポリフエ-レンスルフイドスル ホン、ポリフエ-レンスルフイドケトン、これらのランダム共重合体、ブロック共重合体及 びそれらの混合物などが挙げられる。特に好ましい PASとしては、ポリマーの主要構 成単位として p—フエ-レンスルフイド単位
[0026] [化 3]
Figure imgf000009_0002
[0027] を 80モル%以上、特に 90モル%以上含有するポリフエ-レンスルフイド(以下、 PPS と略すことちある)力 S挙げられる。
[0028] 本発明の PASの分子量は、重量平均分子量で 10, 000以上、好ましくは 15, 000 以上、より好ましくは 18, 000以上である。重量平均分子量が 10, 000未満では加 ェ時の成形性が低ぐまた成形品の機械強度ゃ耐薬品性等の特性が低くなる。重量 平均分子量の上限に特に制限は無いが、 1, 000, 000未満を好ましい範囲として例 示でき、より好ましくは 500, 000未満、更に好ましくは 200, 000未満であり、この範 囲内では高い成形加工性を得ることができる。
[0029] 本発明における PASの分子量分布の広がり、即ち重量平均分子量と数平均分子 量の比 (重量平均分子量 Z数平均分子量)で表される分散度は 2. 5以下が好ましく 、 2. 3以下がより好ましぐ 2. 1以下が更に好ましぐ 2. 0以下がよりいつそう好ましい 。分散度が 2. 5を越える場合は PASに含まれる低分子成分の量が多くなる傾向が強 ぐこのことは PASを成形加工用途に用いた場合の機械特性低下、加熱した際のガ ス発生量の増大及び溶剤と接した際の溶出成分量の増大等の要因になる傾向にあ る。なお、前記重量平均分子量及び数平均分子量は例えば示差屈折率検出器を具 備した SEC (サイズ排除クロマトグラフィー)を使用して求めることができる。
[0030] また、本発明の PASの溶融粘度に特に制限はないが、通常、溶融粘度が 5〜10, OOOPa' s (300°C、剪断速度 ΙΟΟθΖ秒)の範囲が好ましい範囲として例示できる。
[0031] 本発明の PASは従来のものに比べ高純度であることが特徴であり、不純物である アルカリ金属含量は lOOppm以下が望ましい。好ましいアルカリ金属含量としては 50 ppm未満、より好ましくは 30ppm以下、更に好ましくは lOppm以下である。アルカリ 金属含有量が lOOppmを超えると、例えば高度な電気絶縁特性が要求される用途 における信頼性が低下するなど、 PASの用途に制限が生じる可能性が増大する。こ こで本発明における PASのアルカリ金属含有量とは、例えば PASを電気炉等を用い て焼成した残渣である灰分中のアルカリ金属量力 算出される値であり、前記灰分を 例えばイオンクロマト法や原子吸光法により分析することで定量することができる。
[0032] なお、アルカリ金属とは周期律表第 IA属のリチウム、ナトリウム、カリウム、ルビジゥ ム、セシウム、フランシウムのことを指す力 本発明の PASはナトリウム以外のアルカリ 金属が含まないことが好ましい。ナトリウム以外のアルカリ金属を含む場合、 PASの 電気特性や熱的特性に悪影響を及ぼす傾向にある。また PASが各種溶剤と接した 際の溶出金属量が増大する要因になる可能性があり、特に PASがリチウムを含む場 合にこの傾向が強くなる。ところで、各種金属種の中でも、アルカリ金属以外の金属 種、たとえばアルカリ土類金属や遷移金属と比較して、アルカリ金属は PASの電気 特性、熱的特性及び金属溶出量への影響が強い傾向にある。よって、各種金属種の 中でも、特にアルカリ金属含有量を前記範囲にすることで PASの品質を向上する事 ができると推測している。
[0033] また、本発明の PASは実質的に塩素以外のハロゲン、即ちフッ素、臭素、ヨウ素、 アスタチンを含まな 、ことが好まし 、。本発明の PASがハロゲンとして塩素を含有す る場合、 PASが通常使用される温度領域においては安定であるために塩素を少量 含有しても PASの機械特性に対する影響が少な 、が、塩素以外のハロゲンを含有 する場合、それらの特異な性質が PASの特性、例えば電気特性や滞留安定性を悪 化させる傾向にある。本発明の PASがハロゲンとして塩素を含有する場合、その好ま しい量は 1重量%以下、より好ましくは 0. 5重量%以下、更に好ましくは 0. 2重量% 以下であり、この範囲では PASの電気特性や滞留安定性がより良好となる傾向にあ る。
[0034] 本発明の PASのおおきな特徴は、加熱した際の重量減少が下記式(1)を満たすこ とである。
AWr = (Wl - W2) /Wl X 100≤ 0. 18 (%) · · · (1)
[0035] ここで AWrは重量減少率(%)であり、常圧の非酸ィ匕性雰囲気下で 50°Cから 330 °C以上の任意の温度まで昇温速度 20°CZ分で熱重量分析を行った際に、 100°C到 達時点の試料重量 (W1)を基準とした 330°C到達時の試料重量 (W2)から求められ る値である。
[0036] 本発明の PASは AWrが 0. 18%以下であり、 0. 12%以下であることが好ましぐ 0 . 10%以下であることが更に好ましぐ 0. 085以下であることがよりいつそう好ましい。 △Wrが前記範囲を超える場合は、たとえば PASを成形カ卩ェする際に発生ガス量が 多いといった問題や発生しやすくなる傾向があり好ましくなぐまた、押出成形時の口 金やダイス、また射出成型時の金型への付着物が多くなり生産性が悪化する傾向も あるため好ましくない。本発明者らの知る限りでは公知の PASの AWrは 0. 18%を 越えるが、本発明の好ましい製造法によって得られる PASは分子量分布や不純物 含有量が公知の PASと異なりきわめて高純度であるがために AWrの値が著しく低 下するものと推測している。
[0037] AWrは一般的な熱重量分析によって求めることが可能である力 この分析におけ る雰囲気は常圧の非酸ィ匕性雰囲気を用いる。非酸ィ匕性雰囲気とは試料が接する気 相における酸素濃度が 5体積%以下、好ましくは 2体積%以下、更に好ましくは酸素 を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気 であることを指し、この中でも特に経済性及び取扱いの容易さの面からは窒素雰囲 気が特に好ましい。また、常圧とは大気の標準状態近傍における圧力のことであり、 約 25°C近傍の温度、絶対圧で 101. 3kPa近傍の大気圧条件のことである。測定の 雰囲気が前記以外では、測定中に PASの酸ィヒ等が起こったり、実際に PASの成形 加工で用いられる雰囲気と大きく異なるなど、 PASの実使用に即した測定になり得な い可能性が生じる。
[0038] また、 AWrの測定においては 50°Cから 330°C以上の任意の温度まで昇温速度 20 °CZ分で昇温して熱重量分析を行う。好ましくは 50°Cで 1分間ホールドした後に昇 温速度 20°CZ分で昇温して熱重量分析を行う。この温度範囲はポリフ -レンスル フイドに代表される PASを実使用する際に頻用される温度領域であり、また、固体状 態の PASを溶融させ、その後任意の形状に成形する際に頻用される温度領域でも ある。このような実使用温度領域における重量減少率は、実使用時の PASからのガ ス発生量や成形加工の際の口金や金型などへの付着成分量などに関連する。従つ て、このような温度範囲における重量減少率が少な 、PASの方が品質の高 、優れた PASであるといえる。 AWrの測定は約 lOmg程度の試料量で行うことが望ましぐま たサンプルの形状は約 2mm以下の細粒状であることが望ましい。
[0039] なお、一般に熱硬化性榭脂及び熱可塑性榭脂を加熱した際の重量減少量は温度 が高くなるほど大きくなる傾向があり、この傾向は PASにも当てはまることが知られて いる。このような傾向をふまえた上で、本発明者らは本発明の PAS及び公知の PAS の加熱時の重量減少量の温度依存性を詳細に分析した結果、前記した熱重量分析 条件に従って PASの重量減少率を求める場合、重量減少率と温度 Tにはおおむね 下記式 (2)及び (3)の関係が成り立つことを見 、だした。
AWrl = AWtl - (l. 0 X 10"3 XT1) - -- (2)
AWr2 = AWt2+ (l. 0 Χ 10"3 ΧΤ2) · '· (3)
[0040] 式(2)において AWtlは常圧の非酸化性雰囲気下で 50°Cから 330°Cを越える任 意の温度 Tlまで昇温 (昇温速度 20°CZ分)した際に得られる熱重量分析値におい て、 100°C到達時点の試料重量 (W)を基準とした任意の温度 T1における試料重量 (Wtl)との差から下記式(1) 'によって得られる重量減少率(%)である。
AWtl = (w- Wtl) /W X 100 (%) · · · (1),
[0041] 本発明の PASの重量減少率 AWrは前記したように熱重量分析を行った分析値に おける 330°C時点の試料重量を基準としている力 式(2)の関係を用いることで 330 °Cを越える温度における試料重量を基準とした重量減少率 AWtlから AWrの値を 見積ちることが可會である。
[0042] 式(3)にお!/、て AWt2は常圧の非酸化性雰囲気下で 50°Cから 270°C以上 330°C 未満の任意の温度 T2まで昇温 (昇温速度 20°CZ分)した際に得られる熱重量分析 値にぉ 、て、 100°C到達時点の試料重量 (W)を基準とした任意の温度 T2における 試料重量 (Wt2)との差から下記式(1) ' 'によって得られる重量減少率(%)である。 AWt2= (W-Wt2) /WX 100 (%) · ' · (1),,
[0043] 本発明の PASの重量減少率 AWrは前記したように熱重量分析を行った分析値に おける 330°C時点の試料重量を基準としている力 式(3)の関係を用いることで 270 °C以上 330°C未満の温度領域における試料重量を基準とした重量減少率 AWt2か ら AWrの値を見積もることが可能である。なお、熱重量分析における測定温度上限 力 S270°C未満の場合、 PASが溶融しない、または、溶融しても流動性が低い傾向に あるため、このような測定温度範囲は実使用に適した温度範囲とはいえず、 PAS品 質の評価基準として用いるとの観点で測定温度範囲に前記範囲を用いることが望ま しい。
[0044] 本発明の PASの加熱時の重量減少率が前記式(1)を満足するようなきわめて優れ た熱重量特性を発現する理由は現時点定かではな 、が、本発明の PASは PAS成 分以外の不純物成分の含有量が少な!/、ことが奏功し、公知の PASでは到達し得な 力つた著しく少な 、重量減少率を発現するものと推測して 、る。
[0045] この様に前記式(1)の特徴を有する PASは、後述するように環式ポリアリーレンス ルフイドを含むポリアリーレンスルフイドプレボリマーを加熱して高重合度体に転ィ匕さ せることによって製造することが好ましい。高重合度体への転化に関しては後で詳述 する力 ポリアリーレンスルフイドプレボリマーを高重合度体へ転ィ匕せしめる操作に処 した後に得られる PASに含有される環式 PASの重量分率力 0%以下、好ましくは 2 5 %以下、より好ましくは 15 %以下である PASは前述の AWrの値が特に小さくなる ため好ましい。この値が前記範囲を超える場合には AWrの値が大きくなる傾向にあ り、この原因は現時点定かではないが PASの含有する環式 PASが加熱時に一部揮 散するためと推察している。
[0046] なお、本発明の PASの特徴である、加熱した際の重量減少が前記式(1)を満たす 場合、 PASの重量平均分子量の範囲及び分散度の範囲および Zまたはアルカリ金 属含有量は必ずしも前記した範囲内である必要はなぐ前述したように環式 PASを 一定量含んでいる PASなどでも前記式(1)の熱重量特性を満たすことが可能である 。ただし、重量平均分子量の範囲及び分散度の範囲が前記範囲内である場合、およ び Zまたは PASのアルカリ金属含有量が前記した範囲内である場合には、加熱した 際の重量減少が特に少なくなる傾向にあり望まし 、。
[0047] 上述の様に本発明の PASは昇温した際の加熱減量 AWrが少な 、と 、う優れた特 徴を有する力 任意のある一定温度で PASを保持した際の加熱減量も少な 、と 、う 優れた特徴を有する傾向がある。
[0048] また、本発明の PASの別の特徴は、加熱した際のラタトン型化合物及び Zまたは ァ-リン型化合物の発生量が著しく少ないことである。ここでラタトン型化合物とは、例 えば j8プロピ才ラタトン、 j8ブチロラタトン、 βペンタノラクトン、 j8へキサノラタトン、 β ヘプタノラタトン、 β才クタノラタトン、 βノナラタトン、 βデカラクトン、 γブチロラタトン 、 Ύノ レ口ラタトン、 γペンタノラタトン、 γへキサノラタトン、 γヘプタノラタトン、 γオタ タラタトン、 7ノナラタトン、 γデカラクトン、 δペンタノラタトン、 δへキサノラタトン、 δ ヘプタノラタトン、 δォクタノラタトン、 δノナラタトン、 δデカラクトンなどが例示でき、ま た、ァ-リン型化合物とは、ァ-リン、 Ν—メチルァ-リン、 Ν, Ν ジメチルァ-リン、 Ν ェチルァ-リン、 Ν—メチル Ν ェチルァ-リン、 4—クロ口一ァ-リン、 4—クロ ロー Ν—メチノレア二リン、 4 クロロー Ν, Ν ジメチノレア二リン、 4 クロロー Ν ェチ ルァ-リン、 4—クロ口一 Ν—メチル Ν ェチルァ-リン、 3—クロ口一ァ-リン、 3— クロロー Ν—メチノレア二リン、 3—クロロー Ν, Ν ジメチノレア二リン、 3—クロロー Ν— ェチルァ-リン、 3—クロ口 N—メチル—N ェチルァ-リンなどが例示できる。カロ 熱した際のラタトン型化合物及び Zまたはァニリン型化合物の発生は、成形加工時 の榭脂の発泡や金型汚れ等の要因となり成形加工性を悪化させることのみならず周 辺環境の汚染の要因にもなるため、できるだけ少なくすることが望まれており、加熱を 行う前の PAS重量基準でラタトン型化合物の発生量が好ましくは 500ppm以下、より 好ましく ίま 300ppm、更【こ好ましく ίま lOOppm以下、より!/ヽつそう好ましく ίま 50ppm以 下が望ましい。同様にァ-リン型化合物の発生量は好ましくは 300ppm以下、より好 ましくは 100ppm、更に好ましくは 50ppm以下、よりいつそう好ましくは 30ppm以下 が望ましい。なお、 PASを加熱した際のラタトン型化合物及び Zまたはァ-リン型化 合物の発生量を評価する方法としては非酸化性雰囲気下 320°Cで 60分処理した際 の発生ガスをガスクロマトグラフィーを用いて成分分割して定量する方法が例示でき る。
[0049] 本発明の PASの加熱時にこれら化合物の発生量が少ない理由は現時点定かでは 無 、が、本発明の PASの好まし 、製造方法で用いるポリアリーレンスルフイドプレポリ マーが環式ポリアリーレンスルフイドを少なくとも 50重量0 /0含む純度の高いものであ つて、加熱した際にラタトン型化合物及び Zまたはァ-リン型化合物を発生する不純 物の含有量が少な 、ことが寄与して 、ると推測して 、る。
[0050] (2)本発明の PASの製造方法
本発明の PASの製造方法は、環式ポリアリーレンスルフイドを少なくとも 50重量% 以上含み、且つ重量平均分子量が 10, 000未満のポリアリーレンスルフイドプレポリ マーを加熱して重量平均分子量 10, 000以上の高重合度体に転化させることによつ て製造することを特徴とし、この方法によれば容易に前述した特性を有する本発明の PASを得ることができる。
[0051] く環式ポリアリーレンスルフイド >
本発明の PASの好ましい製造方法における環式ポリアリーレンスルフイドとは式、 (Ar-S)一の繰り返し単位を主要構成単位とする環式ィ匕合物であり、好ましくは 当該繰り返し単位を 80モル%以上含有する下記一般式 (O)のごとき化合物である。 Arとしては前記式 (A)〜式 (K)などであらわされる単位などがある力、なかでも式 (A )が特に好ましい。
[0052] [化 4]
Figure imgf000016_0001
[0053] なお、環式ポリアリーレンスルフイドにおいては前記式 (A)〜式 (K)などの繰り返し 単位をランダムに含んでも良いし、ブロックで含んでも良ぐそれらの混合物のいずれ かであってもよい。これらの代表的なものとして、環式ポリフ -レンスルフイド、環式 ポリフエ-レンスルフイドスルホン、環式ポリフエ-レンスルフイドケトン、これらが含ま れる環式ランダム共重合体、環式ブロック共重合体及びそれらの混合物などが挙げ られる。特に好ましい環式ポリアリーレンスルフイドとしては、主要構成単位として p— フエ二レンスルフイド単位
[0054] [化 5]
Figure imgf000016_0002
[0055] を 80モル%以上、特に 90モル%以上含有する環式ポリフエ-レンスルフイド(以下、 環式 PPSと略すこともある)が挙げられる。
[0056] 環式ポリアリーレンスルフイドの前記(O)式中の繰り返し数 mに特に制限は無いが、 2〜50が好ましぐ 2〜25がより好ましぐ 3〜20が更に好ましい範囲として例示でき る。後述するようにポリアリーレンスルフイドプレボリマーの高重合度体への転ィ匕は環 式ポリアリーレンスルフイドが溶融解する温度以上で行うことが好ま 、が、 mが大きく なると環式ポリアリーレンスルフイドの溶融解温度が高くなる傾向にあるため、ポリアリ 一レンスルフイドプレボリマーの高重合度体への転ィ匕をより低い温度で行うことができ るようになるとの観点で mを前記範囲にすることは有利となる。
[0057] また、環式ポリアリーレンスルフイドは、単一の繰り返し数を有する単独化合物、異 なる繰り返し数を有する環式ポリアリーレンスルフイドの混合物のいずれでも良いが、 異なる繰り返し数を有する環式ポリアリーレンスルフイドの混合物の方が単一の繰り返 し数を有する単独化合物よりも溶融解温度が低い傾向があり、異なる繰り返し数を有 する環式ポリアリーレンスルフイドの混合物の使用は前記した高重合度体への転ィ匕を 行う際の温度をより低くできるため好ましい。
[0058] 本発明の PASの製造方法は、前記したごとき環式ポリアリーレンスルフイドを含むポ リアリーレンスルフイドプレボリマーを加熱して高重合度体に転ィ匕させることを特徴と するが、ここで用いるポリアリーレンスルフイドプレポリマーは環式ポリアリーレンスルフ イドが少なくとも 50重量%以上含むものであり、好ましくは 70重量%以上、より好まし くは 80重量%以上、更に好ましくは 90%以上含むものが好ましい。また、ポリアリー レンスルフイドプレポリマーに含まれる環式ポリアリーレンスルフイドの上限値には特 に制限は無いが、 98重量%以下、好ましくは 95重量%以下が好ましい範囲として例 示できる。通常、ポリアリーレンスルフイドプレポリマーにおける環式ポリアリーレンス ルフイドの重量比率が高いほど、加熱後に得られる PASの重合度が高くなる傾向に ある。すなわち、本発明の PASの製造法においてはポリアリーレンスルフイドプレポリ マーにおける環式ポリアリーレンスルフイドの存在比率を調整することで、得られる P ASの重合度を容易に調整することが可能である。また、ポリアリーレンスルフィドブレ ポリマーにおける環式ポリアリーレンスルフイドの重量比率が前記した上限値を超え ると、ポリアリーレンスルフイドプレボリマーの溶融解温度が高くなる傾向にあるため、 ポリアリーレンスルフイドプレポリマーにおける環式ポリアリーレンスルフイドの重量比 率を前記範囲にすることは、ポリアリーレンスルフイドプレボリマーを高重合度体へ転 化する際の温度をより低くできるため好ましい。
[0059] くポリアリーレンスルフイドプレポリマー >
ポリアリーレンスルフイドプレポリマーにおける環式ポリアリーレンスルフイド以外の 成分は線状のポリアリーレンスルフイドオリゴマーであることが特に好まし 、。ここで線 状のポリアリーレンスルフイドオリゴマーとは、式、一(Ar—S)—の繰り返し単位を主 要構成単位とする、好ましくは当該繰り返し単位を 80モル%以上含有するホモオリゴ マーまたはコオリゴマーである。 Arとしては前記した式 (A)〜式 (K)などであらわされ る単位などがある力 なかでも式 (A)が特に好ましい。線状のポリアリーレンスルフイド オリゴマーはこれら繰り返し単位を主要構成単位とする限り、前記した式 (L)〜式 (N )などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単 位または架橋単位の共重合量は、 (Ar-S)一の単位 1モルに対して 0〜1モル0 /0 の範囲であることが好ましい。また、線状のポリアリーレンスルフイドオリゴマーは上記 繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物の ヽ ずれかであってもよい。
[0060] これらの代表的なものとして、ポリフエ-レンスルフイドオリゴマー、ポリフエ-レンス ルフイドスルホンオリゴマー、ポリフエ二レンスルフイドケトンオリゴマー、これらのランダ ム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい 線状のポリアリーレンスルフイドオリゴマーとしては、ポリマーの主要構成単位として P フエ-レンスルフイド単位を 80モル%以上、特に 90モル%以上含有する線状のポ リフエ-レンスルフイドオリゴマーが挙げられる。
[0061] ポリアリーレンスルフイドプレポリマーが含有する線状ポリアリーレンスルフイド量は、 ポリアリーレンスルフイドプレポリマーが含有する環式ポリアリーレンスルフイドよりも少 ないことが特に好ましい。即ちポリアリーレンスルフイドプレボリマー中の環式ポリアリ 一レンスルフイドと線状ポリアリーレンスルフイドの重量比(環式ポリアリーレンスルフィ ド/線状ポリアリーレンスルフイド)は 1以上であることが好ましぐ 2. 3以上がより好ま しぐ 4以上が更に好ましぐ 9以上がよりいつそう好ましぐこのようなポリアリーレンス ルフイドプレポリマーを用いることで重量平均分子量が 10, 000を越えるポリアリーレ ンスルフイドを容易に得ることが可能である。従って、ポリアリーレンスルフイドプレポリ マー中の環式ポリアリーレンスルフイドと線状ポリアリーレンスルフイドの重量比の値が 大き 、ほど、本発明の PAS製造方法により得られる PASの重量平均分子量は大きく なる傾向にあり、よってこの重量比に特に上限は無いが、該重量比が 100を越えるポ リアリーレンスルフイドプレポリマーを得るためには、ポリアリーレンスルフイドプレポリ マー中の線状 PAS含有量を著しく低減する必要があり、これには多大の労力を要す る。本発明の PAS製造方法によれば該重量比が 100以下のポリアリーレンスルフイド プレボリマーを用いても十分な高分子量 PASを容易に得ることが可能である。 [0062] 本発明の PASの製造に用いるポリアリーレンスルフイドプレポリマーの分子量の上 限値は、重量平均分子量で 10, 000未満であり、 5, 000以下力 S好ましく、 3, 000以 下が更に好ましぐ一方、下限値は重量平均分子量で 300以上が好ましぐ 400以 上が好ましぐ 500以上が更に好ましい。
[0063] 本発明の PASは高純度であることが特徴であり、製造に用いられるポリアリーレンス ルフイドプレポリマーも高純度であることが好まし 、。したがって不純物であるアルカリ 金属含量は lOOppm以下が好ましぐ 50ppm未満がより好ましぐ 30ppm以下が更 に好ましぐ lOppm以下がよりいつそう好ましい。本発明の PASの製造に際し、ポリア リーレンスルフイドプレボリマーを加熱して高重合度体に転ィ匕する方法を用いる場合 、得られる PASのアルカリ金属含有量は、通常、ポリアリーレンスルフイドプレポリマー のアルカリ金属含有量に依存するため、ポリアリーレンスルフイドプレポリマーのアル カリ金属含有量が前記範囲を超えると、得られる PASのアルカリ金属含有量が本発 明の PASのアルカリ金属含有量の範囲を超える恐れが生じる。ここでポリアリーレン スルフイドプレポリマーのアルカリ金属含有量とは、例えばポリアリーレンスルフイドプ レポリマーを電気炉等を用いて焼成した残渣である灰分中のアルカリ金属力 算出さ れる値であり、前記灰分を例えばイオンクロマト法や原子吸光法により分析することで 定量することができる。
[0064] なお、アルカリ金属とは周期律表第 IA属の、リチウム、ナトリウム、カリウム、ルビジゥ ム、セシウム、フランシウムのことを指す力 本発明のポリアリーレンスルフイドプレポリ マーはナトリウム以外のアルカリ金属が含まないことが好ましい。また、本発明のポリ ァリーレンスルフイドプレボリマーは実質的に塩素以外のハロゲンを含まないことが好 ましい。
[0065] また、ポリアリーレンスルフイドプレボリマーには加熱による高重合度体への転化に 際しては、転化を促進する各種触媒成分を使用することも可能である。このような触 媒成分としてはイオン性化合物やラジカル発生能を有する化合物が例示できる。ィォ ン性ィ匕合物としてはたとえばチォフエノールのナトリウム塩等、硫黄のアルカリ金属塩 が例示でき、また、ラジカル発生能を有する化合物としてはたとえば加熱により硫黄ラ ジカルを発生する化合物を例示でき、より具体的にはジスルフイド結合を含有するィ匕 合物が例示できる。但し、このような場合でもポリアリーレンスルフイドプレボリマーの アルカリ金属含有量、アルカリ金属種、含有ハロゲン種は前記した条件に準じること が望ましぐまた、ポリアリーレンスルフイドプレボリマーを加熱して高重合度体に転ィ匕 させる反応を、反応系内のアルカリ金属量が lOOppm以下、好ましくは 50ppm以下 、より好ましくは 30ppm以下更に好ましくは lOppm以下であって、なお且つ、反応系 内の全ィォゥ重量に対するジスルフイド重量が 1重量%未満、好ましくは 0. 5重量% 未満、より好ましくは 0. 3重量%未満、更に好ましくは 0. 1重量%未満として行うこと が好ましぐこれにより本発明の PASを得ることが容易となる。なお、各種触媒成分を 使用する場合、触媒成分は通常は PASに取り込まれ、得られる PASは触媒成分を 含有するものになることが多い。特に触媒成分としてアルカリ金属及び Zまたは他の 金属成分を含有するイオン性の化合物を用いた場合、これに含まれる金属成分の大 部分は得られる PAS中に残存する傾向が強い。また、各種触媒成分を使用して得ら れたポリアリーレンスルフイドは、前記した PASを加熱した際の重量減少が増大する 傾向にある。従って、より純度の高い PASを所望する場合および Zまたは加熱した 際の重量減少の少な ヽ PASを所望する場合には、触媒成分の使用をできるだけ少 なくする、好ましくは使用しないことが望まれる。
前記ポリアリーレンスルフイドプレボリマーを得る方法としては例えば以下の方法が 挙げられる。(1)少なくともポリハロゲンィ匕芳香族化合物、スルフイド化剤および有機 極性溶媒を含有する混合物を加熱してポリアリーレンスルフイド榭脂を重合すること で、 80meshふるい(目開き 0. 125mm)で分離される顆粒状 PAS榭脂、重合で生 成した PAS成分であって前記顆粒状 PAS榭脂以外の PAS成分 (ポリアリーレンスル フイド、オリゴマーと称する)、有機極性溶媒、水、およびハロゲンィ匕アルカリ金属塩を 含む混合物を調製し、ここに含まれるポリアリーレンスルフイドオリゴマーを分離回収 し、これを精製操作に処すことでポリアリーレンスルフイドプレボリマーを得る方法。 (2)少なくともポリハロゲンィ匕芳香族化合物、スルフイド化剤および有機極性溶媒を 含有する混合物を加熱してポリアリーレンスルフイド榭脂を重合して、重合終了後に 公知の方法によって有機極性溶媒の除去を行い、ポリアリーレンスルフイド榭脂、水、 およびハロゲン化アルカリ金属塩を含む混合物を調製し、これを公知の方法で精製 することで得られるポリアリーレンスルフイドプレポリマーを含むポリアリーレンスルフィ ド榭脂を得て、これを実質的にポリアリーレンスルフイド榭脂は溶解しな ヽがポリアリ 一レンスルフイドプレポリマーは溶解する溶剤を用いて抽出してポリアリーレンスルフ イドプレボリマーを回収する方法。
[0067] <ポリアリーレンスルフイドプレボリマーの高重合度体への転化 >
前記した本発明の PASは、前記ポリアリーレンスルフイドプレボリマーを加熱して高 重合度体に転ィ匕させる方法によって製造することが好まし 、。この加熱の温度は前 記ポリアリーレンスルフイドプレボリマーが溶融解する温度であることが好ましぐこの ような温度条件であれば特に制限は無 、。加熱温度がポリアリーレンスルフィドブレ ポリマーの溶融解温度未満では PASを得るのに長時間が必要となる傾向がある。な お、ポリアリーレンスルフイドプレポリマーが溶融解する温度は、ポリアリーレンスルフ イドプレボリマーの組成や分子量、また、加熱時の環境により変化するため、一意的 に示すことはできな 、が、例えばポリアリーレンスルフイドプレボリマーを示差走査型 熱量計で分析することで溶融解温度を把握することが可能である。但し、温度が高す ぎるとポリアリーレンスルフイドプレポリマー間、加熱により生成した PAS間、及び PA Sとポリアリーレンスルフイドプレボリマー間などでの架橋反応や分解反応に代表され る好ましくない副反応が生じやすくなる傾向にあり、得られる PASの特性が低下する 場合があるため、このような好ましくない副反応が顕著に生じる温度は避けることが望 ましい。加熱温度としては 180〜400°Cが例示でき、好ましくは 200〜380°C、より好 ましくは 250〜360。Cである。
[0068] 前記加熱を行う時間は使用するポリアリーレンスルフイドプレボリマーにおける環式 ポリアリーレンスルフイドの含有率や m数、及び分子量などの各種特性、また、加熱の 温度等の条件によって異なるため一様には規定できないが、前記した好ましくない副 反応がなるべく起こらないように設定することが好ましい。加熱時間としては 0. 05〜1 00時間が例示でき、 0. 1〜20時間が好ましぐ 0. 1〜10時間がより好ましい。 0. 05 時間未満ではポリアリーレンスルフイドプレポリマーの PASへの転化が不十分になり やすぐ 100時間を超えると好ましくない副反応による得られる PASの特性への悪影 響が顕在化する可能性が高くなる傾向にあるのみならず、経済的にも不利益を生じ る場合がある。
[0069] ポリアリーレンスルフイドプレボリマーの加熱による高重合度体への転ィ匕は、通常溶 媒の非存在下で行うが、溶媒の存在下で行うことも可能である。溶媒としては、ポリア リーレンスルフイドプレボリマーの加熱による高重合度体への転ィ匕の阻害や生成した PASの分解や架橋など好ましくない副反応を実質的に引き起こさないものであれば 特に制限はなぐ例えば N—メチルー 2—ピロリドン、ジメチルホルムアミド、ジメチル ァセトアミドなどの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホンなどのス ルホキシド 'スルホン系溶媒、アセトン、メチルェチルケトン、ジェチルケトン、ァセトフ ェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフラン などのエーテル系溶媒、クロ口ホルム、塩化メチレン、トリクロロエチレン、 2塩化ェチ レン、ジクロルェタン、テトラクロルェタン、クロルベンゼンなどのハロゲン系溶媒、メタ ノーノレ、エタノーノレ、プロパノーノレ、ブタノーノレ、ペンタノ一ノレ、エチレングリコーノレ、 プロピレングリコール、フエノール、クレゾール、ポリエチレングリコールなどのアルコ 一ル'フヱノール系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶 媒などがあげられる。また、二酸化炭素、窒素、水等の無機化合物を超臨界流体状 態として溶媒に用いることも可能である。これらの溶媒は 1種類または 2種類以上の混 合物として使用することができる。
[0070] 前記、ポリアリーレンスルフイドプレボリマーの加熱による高重合度体への転ィ匕は、 通常の重合反応装置を用いる方法で行うのはもちろんのこと、成形品を製造する型 内で行っても良いし、押出機や溶融混練機を用いて行うなど、加熱機構を具備した 装置であれば特に制限無く行うことが可能であり、バッチ方式、連続方式など公知の 方法が採用できる。
[0071] ポリアリーレンスルフイドプレボリマーの加熱による高重合度体への転ィ匕の際の雰 囲気は非酸ィ匕性雰囲気で行うことが好ましぐ減圧条件下で行うことも好ましい。また 、減圧条件下で行う場合、反応系内の雰囲気を一度非酸化性雰囲気としてから減圧 条件にすることが好ましい。これによりポリアリーレンスルフイドプレボリマー間、加熱 により生成した PAS間、及び PASとポリアリーレンスルフイドプレポリマー間などで架 橋反応や分解反応等の好ましくな 、副反応の発生を抑制できる傾向にある。なお、 非酸ィ匕性雰囲気とはポリアリーレンスルフイドプレボリマーが接する気相における酸 素濃度が 5体積%以下、好ましくは 2体積%以下、更に好ましくは酸素を実質的に含 有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを 指し、この中でも特に経済性及び取扱 、の容易さの面からは窒素雰囲気が好ま 、 。また、減圧条件下とは反応を行う系内が大気圧よりも低いことを指し、上限として 50 kPa以下が好ましぐ 20kPa以下がより好ましぐ lOkPa以下が更に好ましい。下限と しては 0. lkPa以上が例示でき、 0. 2kPa以上がより好ましい。減圧条件が好ましい 上限を越える場合は、架橋反応など好ましくない副反応が起こりやすくなる傾向にあ り、一方好ましい下限未満では、反応温度によってはポリアリーレンスルフィドブレポリ マーに含まれる分子量の低い環式ポリアリーレンスルフイドが揮散しやすくなる傾向 にある。
[0072] 前記したポリアリーレンスルフイドプレボリマーの高重合度体への転ィ匕は繊維状物 質の共存下で行うことも可能である。ここで繊維状物質とは細 、糸状の物質のことで あって、天然繊維のごとく細長く引き延ばされた構造である任意の物質が好ましい。 繊維状物質存在下でポリアリーレンスルフイドプレボリマーの高重合度体への転ィ匕を 行うことで、 PASと繊維状物質からなる複合材料構造体を容易に作成する事ができ る。このような構造体は、繊維状物質によって補強されるため、 PAS単独の場合に比 ベて、たとえば機械物性に優れる傾向にある。
[0073] ここで、各種繊維状物質の中でも長繊維力 なる強化繊維を用いることが好ましぐ これにより PASを高度に強化する事が可能になる。一般に榭脂と繊維状物質からな る複合材料構造体を作成する際には、榭脂が溶融した際の粘度が高いことに起因し て、榭脂と繊維状物質のぬれが悪くなる傾向にあり、均一な複合材料ができな力つた り、期待通りの機械物性が発現しないことが多い。ここでぬれとは、溶融樹脂のごとき 流体物質と、繊維状化合物のごとき固体基質との間に実質的に空気または他のガス が捕捉されないようにこの流体物質と固体基質との物理的状態の良好且つ維持され た接触があることを意味する。ここで流体物質の粘度が低い方が繊維状物質とのぬ れは良好になる傾向にある。本発明のポリアリーレンスルフイドプレポリマーは融解し た際の粘度が、一般的な熱可塑性榭脂、たとえば PASと比べて著しく低いため、繊 維状物質とのぬれが良好になりやすい。ポリアリーレンスルフイドプレポリマーと繊維 状物質が良好なぬれを形成した後、本発明の PASの製造方法によればポリアリーレ ンスルフイドプレボリマーが高重合度体に転ィ匕するので、繊維状物質と高重合度体( ポリアリーレンスルフイド)が良好なぬれを形成した複合材料構造体を容易に得ること ができる。
[0074] 繊維状物質としては長繊維力もなる強化繊維が好ま 、ことは前述したとおりであり 、本発明に用いられる強化繊維に特に制限はないが、好適に用いられる強化繊維と しては、一般に、高性能強化繊維として用いられる耐熱性及び引張強度の良好な繊 維があげられる。例えば、その強化繊維には、ガラス繊維、炭素繊維、黒鉛繊維、ァ ラミド繊維、炭化ケィ素繊維、アルミナ繊維、ボロン繊維が挙げられる。この内、比強 度、比弾性率が良好で、軽量ィ匕に大きな寄与が認められる炭素繊維や黒鉛繊維が 最も良好なものとして例示できる。炭素繊維や黒鉛繊維は用途に応じて、あらゆる種 類の炭素繊維や黒鉛繊維を用いることが可能である力 引張強度 450Kgf/mm2、引 張伸度 1. 6%以上の高強度高伸度炭素繊維が最も適している。長繊維状の強化繊 維を用いる場合、その長さは、 5cm以上であることが好ましい。この長さの範囲では、 強化繊維の強度を複合材料として十分に発現させることが容易となる。また、炭素繊 維や黒鉛繊維は、他の強化繊維を混合して用いてもカゝまわない。また、強化繊維は 、その形状や配列を限定されず、例えば、単一方向、ランダム方向、シート状、マット 状、織物状、組み紐状であっても使用可能である。また、特に、比強度、比弾性率が 高いことを要求される用途には、強化繊維が単一方向に引き揃えられた配列が最も 適して 、るが、取り扱 、の容易なクロス (織物)状の配列も本発明には適して!/、る。
[0075] また、前記したポリアリーレンスルフイドプレボリマーの高重合度体への転ィ匕は充填 剤の存在下で行うことも可能である。充填剤としては、たとえば非繊維状ガラス、非繊 維状炭素や、無機充填剤、たとえば炭酸カルシウム、酸化チタン、アルミナなどを例 示できる。
[0076] (3)本発明の PASの特性
本発明の PASは、耐熱性、耐薬品性、難燃性、電気的性質並びに機械的性質に 優れ、特に従来の PASと比べて分子量分布が狭ぐ且つ、金属含有量が著しく少な いため、成形加工性や機械特性及び電気的特性が極めて優れており、射出成形、 射出圧縮成形、ブロー成形用途のみならず、押出成形により、シート、フィルム、繊維 及びパイプなどの押出成形品に成形,使用することができる。
[0077] 本発明の PASを用いた PASフィルムの製造方法としては、公知の溶融製膜方法を 採用することができ、例えば、単軸または 2軸の押出機中で PASを溶融後、フィルム ダイより押出し、冷却ドラム上で冷却してフィルムを作成する方法、あるいは、このよう にして作成したフィルムをローラー式の縦延伸装置とテンターと呼ばれる横延伸装置 にて縦横に延伸する二軸延伸法などが例示できる力 特にこれに限定されるもので はない。
[0078] 本発明の PASを用いた PAS繊維の製造方法としては、公知の溶融紡糸方法を適 用することができ、例えば、原料である PASチップを単軸または 2軸の押出機に供給 しながら混練し、ついで押出機の先端部に設置したポリマー流線入替器、濾過層な どを経て紡糸口金より押出し、冷却、延伸、熱セットを行う方法などを採用することが できる力 特にこれに限定されるものではない。
[0079] また、本発明の PASは、単独で用いてもよいし、所望に応じて、ガラス繊維、炭素 繊維、酸化チタン、炭酸カルシウムなどの無機充填剤、酸化防止剤、熱安定剤、紫 外線吸収剤、着色剤などを添加することもでき、ポリアミド、ポリスルホン、ポリフエ-レ ンエーテル、ポリカーボネート、ポリエーテノレスノレホン、ポリエチレンテレフタレートや ポリブチレンテレフタレートに代表されるポリエステル、ポリエチレン、ポリプロピレン、 ポリテトラフルォロエチレン、エポキシ基、カルボキシル基、カルボン酸エステル基、 酸無水物基などの官能基を有するォレフィン系コポリマー、ポリオレフイン系エラスト マー、ポリエーテルエステルエラストマ一、ポリエーテルアミドエラストマー、ポリアミド イミド、ポリアセタール、ポリイミドなどの榭脂を配合することもできる。
[0080] (4)本発明の PASの用途
本発明の PASは特性として成形加工性や機械特性及び電気的特性に優れるため 、その用途としては、例えばセンサー、 LEDランプ、コネクター、ソケット、抵抗器、リレ 一ケース、スィッチ、コイルボビン、コンデンサー、ノ リコンケース、光ピックアップ、発 振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロ フォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、 液晶、 FDDキャリッジ、 FDDシャーシ、モーターブラッシュホルダー、パラボラアンテ ナ、コンピューター関連部品等に代表される電気 ·電子部品; VTR部品、テレビ部品 、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ 'レーザーディスク (登録商標)、コンパクトディスク、デジタルビデオディスク等の音声 •映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワード プロセッサ一部品等に代表される家庭、事務電気製品部品;オフィスコンピューター 関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、 モーター部品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双 眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;水道蛇口コマ、混 合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサー、水量 センサー、水道メーターハウジングなどの水廻り部品;バルブオルタネーターターミナ ル、オルタネーターコネクター, ICレギュレーター、ライトディヤー用ポテンシォメータ 一ベース、排気ガスバルブ等の各種バルブ、燃料関係'排気系'吸気系各種パイプ 、エアーインテークノズルスノーケル、インテークマ-ホールド、燃料ポンプ、エンジン 冷却水ジョイント、キャブレターメインボディー、キャブレタースぺーサ一、排気ガスセ ンサ一、冷却水センサー、油温センサー、スロットルポジションセンサー、クランタシャ フトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、ェアコ ン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモータ 一用ブラッシュホノレダー、ウォーターポンプインペラ一、タービンベイン、ワイパーモ 一ター関係部品、デュストリビューター、スタータースィッチ、スターターリレー、トラン スミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスィッチ 基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部 品絶縁板、ステップモーターローター、ランプソケット、ランプリフレタター、ランプハウ ジング、ブレーキピストン、ソレノィドボビン、エンジンオイルフィルター、燃料タンク、 点火装置ケース、車速センサー、ケーブルライナー等の自動車'車両関連部品、そ の他各種用途が例示できる。
PASフィルムの場合、優れた機械特性、電気特性、耐熱性を有しており、フィルム コンデンサーやチップコンデンサーの誘電体フィルム用途、回路基板、絶縁基板用 途、モーター絶縁フィルム用途、トランス絶縁フィルム用途、離型用フィルム用途など 各種用途に好適に使用することができる。
[0082] PASのモノフイランメントあるいは短繊維の場合、抄紙ドライヤーキャンバス、ネット コンベヤー、バグフィルター、絶縁ペーパーなどの各種用途に好適に使用することが できる。
実施例
[0083] 以下に実施例を挙げて本発明を更に具体的に説明する。これら例は例示的なもの であって限定的なものではな 、。
[0084] <分子量測定 >
ポリアリーレンスルフイド及びポリアリーレンスルフイドプレポリマーの分子量はサイズ 排除クロマトグラフィー(SEC)の一種であるゲルパーミエーシヨンクロマトグラフィー(
GPC)により、ポリスチレン換算で算出した。 GPCの測定条件を以下に示す。
装置:センシユー科学 SSC— 7100
カラム名:センシユー科学 GPC3506
溶離液: 1 クロロナフタレン
検出器:示差屈折率検出器
カラム温度: 210°C
プレ恒温槽温度: 250°C
ポンプ恒温槽温度: 50°C
検出器温度: 210°C
流量: 1. OmL/ mm
試料注入量: 300 /z L (スラリー状:約 0. 2重量%)
[0085] <アルカリ金属含有量の定量 >
ポリアリーレンスルフイド及びポリアリーレンスルフイドプレポリマーの含有するアル力 リ金属含有量の定量は下記により行った。
(a) 試料を石英るつぼに秤とり、電気炉を用いて灰化した。
(b) 灰化物を濃硝酸で溶解した後、希硝酸で定容とした。 (c) 得られた定容液を ICP重量分析法 (装置; Agilent製 4500)及び ICP発光分光 分析法(装置; PerkinElmer製 Optima4300DV)に処した。
[0086] <ハロゲン含有量の定量 >
ポリアリーレンスルフイド及びポリアリーレンスルフイドプレポリマーの含有するハロゲ ン量の定量は下記方法で行った。
(a) 酸素を充填したフラスコ内で試料を燃焼した。
(b) 燃焼ガスを溶液に吸収し、吸収液を調製した。
(c) 吸収液の一部をイオンクロマト法 (装置;ダイオネタス社製 DX320)によって分析 し、ハロゲン濃度を定量した。
[0087] < PASの加熱時重量減少率の測定 >
ポリアリーレンスルフイドの加熱時重量減少率は熱重量分析機を用いて下記条件 で行った。なお、試料は2 mm以下の細粒物を用いた。
装置:パーキンエルマ一社製 TGA7
測定雰囲気:窒素気流下
試料仕込み重量:約 10mg
測定条件:
(a)プログラム温度 50°Cで 1分保持
(b)プログラム温度 50°C力 400°Cまで昇温。この際の昇温速度 20°CZ分
[0088] 重量減少率 AWrは(b)の昇温にお!、て、 100°C時の試料重量を基準として、 330 °C到達時の試料重量力 前述の式(1)を用いて算出した。
[0089] なお、以下の実施例中においては、 100°C時の試料重量を基準とした昇温時 300 °Cにおける重量減少率を AWr300, 100°C時の試料重量を基準とした昇温時 320 °Cにおける重量減少率を AWr320, 100°C時の試料重量を基準とした昇温時 340 °Cにおける重量減少率を AWr340で表し、参考として示した。
[0090] < PASの加熱時発生ガス成分の分析 >
PASを加熱した際に発生する成分の定量は以下の方法により行った。なお、試料 は 2mm以下の細粒物を用いた。
(a) 加熱時発生ガスの捕集 約 10mgの PASを窒素気流下(50mlZ分)の 320°Cで 60分間加熱し、発生したガ ス成分を大気捕集用加熱脱離用チューブ carbOtmp400に捕集した。
(b) ガス成分の分析
上記チューブに捕集したガス成分を熱脱着装置 TDU (Supelco社製)を用いて室 温から 280°Cまで 5分間で昇温することで熱脱離させた。熱脱離した成分をガスクロ マトグラフィーを用いて成分分割して、ガス中の γブチロラタトン及び 4—クロ口一 Ν— メチルァ-リンの定量を行つた。
[0091] [参考例 1]
<ポリアリーレンスルフイドプレポリマーの調製 1 >
撹拌機付きの 70リットルオートクレーブに、 47. 5%水硫ィ匕ナトリウム 8. 27kg (70. 0モル)、 96%水酸ィ匕ナ卜リウム 2. 96kg (71. 0モル)、 N—メチル—2—ピロリドン(以 下 NMPと略する場合もある)を 11. 44kg (116モル)、酢酸ナトリウム 1. 72kg (21. 0モル)、及びイオン交換水 10. 5kgを仕込み、常圧で窒素を通じながら約 240°Cま で約 3時間かけて徐々に加熱し、精留塔を介して水 14. 8kgおよび NMP280gを留 出した後、反応容器を 160°Cに冷却した。なお、この脱液操作の間に仕込んだィォゥ 成分 1モル当たり 0. 02モルの硫ィ匕水素が系外に飛散した。
[0092] 次に、 p—ジクロロベンゼン 10. 3kg (70. 3モル)、 NMP9. 00kg (91. 0モル)を 加え、反応容器を窒素ガス下に密封した。 240rpmで撹拌しながら、 0. 6°CZ分の 速度で 270°Cまで昇温し、この温度で 140分保持した。水を 1. 26kg (70モル)を 15 分かけて圧入しながら 250°Cまで 1. 3°CZ分の速度で冷却した。その後 220°Cまで 0. 4°CZ分の速度で冷却してから、室温近傍まで急冷し、スラリー (A)を得た。この スラリー (A)を 26. 3kgの NMPで希釈しスラリー(B)を得た。
[0093] 80°Cに加熱したスラリー(B) 1000gをふるい(80mesh、 目開き 0. 175mm)で濾 別し、粗 PPS榭脂とスラリー (C)を約 750g得た。スラリー (C)をロータリーエバポレー ターに仕込み、窒素で置換後、減圧下 100〜160°Cで 1. 5時間処理した後、真空乾 燥機で 160°C、 1時間処理した。得られた固形物中の NMP量は 3重量%であった。
[0094] この固形物にイオン交換水 900g (スラリー(C)の 1. 2倍量)をカ卩えた後、 70°Cで 30 分撹拌して再スラリー化した。このスラリーを目開き 10〜16 μ mのガラスフィルターで 吸引濾過した。得られた白色ケークにイオン交換水 900gを加えて 70°Cで 30分撹拌 して再スラリー化し、同様に吸引濾過後、 70°Cで 5時間真空乾燥してポリフエ-レン スルフイド才リゴマーを得た。
[0095] 得られたポリフエ-レンスルフイドオリゴマーを 4g分取してクロ口ホルム 120gで 3時 間ソックスレー抽出した。得られた抽出液力 クロ口ホルムを留去して得られた固体に 再度クロ口ホルム 20gを加え、室温で溶解しスラリー状の混合液を得た。これをメタノ ール 250gに撹拌しながらゆっくりと滴下し、沈殿物を目開き 10〜16 mのガラスフィ ルターで吸引濾過し、得られた白色ケークを 70°Cで 3時間真空乾燥して白色粉末を 得た。
[0096] この白色粉末の重量平均分子量は 900、 Na含有量は 4ppm、塩素含有量は 2. 2 wt%であり、 Na以外のアルカリ金属及び塩素以外のハロゲンは検出限界以下であ つた。この白色粉末の赤外分光分析における吸収スペクトルより、白色粉末はポリフ -レンスルフイドであることが判明した。また、示差走査型熱量計を用いてこの白色 粉末の熱的特性を分析した結果 (昇温速度 40°CZ分)、約 200〜260°Cにブロード な吸熱を示し、ピーク温度は約 215°Cであることがわかった。
[0097] また高速液体クロマトグラフィーより成分分割した成分のマススペクトル分析、更に MALDI—TOF— MSによる分子量情報より、この白色粉末は繰り返し単位数 4〜1 1の環式ポリフエ-レンスルフイド及び繰り返し単位数 2〜: L 1の線状ポリフエ-レンス ルフイドからなる混合物であり、環式ポリフエ-レンスルフイドと線状ポリフエ-レンスル フイドの重量比は約 9 : 1であることがわ力つた。これより得られた白色粉末は環式ポリ フエ-レンスルフイドを約 90重量0 /0、線状ポリフエ-レンスルフイドを約 10%含み、本 発明の PASの製造に好適に用いられるポリフエ-レンスルフイドプレポリマーであるこ とが判明した。なお、 GPC測定を行った結果、ポリフエ-レンスルフイドプレボリマー は室温で 1 クロロナフタレンに全溶であり、重量平均分子量は 900であった。
[0098] [参考例 2]
<従来技術によるポリフエ-レンスルフイドの調製 1 >
参考例 1で得られた粗 PPS榭脂 lOOgに NMP約 0. 25リットルを加えて 85°Cで 30 分間で洗浄し、ふるい(80mesh、 目開き 0. 175mm)で濾別した。得られた固形物 を 0. 5リットルのイオン交換水で希釈して、 70°Cで 30分撹拌後、 80メッシュふるいで 濾過して固形物を回収する操作を合計 5回繰り返した。このようにして得られた固形 物を、 130°Cで熱風乾燥し、乾燥ポリマーを得た。得られたポリマーの赤外分光分析 による吸収スペクトルは参考例 1で得られたポリフエ-レンスルフイドプレボリマーの吸 収と一致した。
[0099] [参考例 3]
<従来技術によるポリフエ-レンスルフイドの調製 2 >
参考例 1で得られた粗 PPS榭脂 lOOgに NMP約 0. 25リットルを加えて 85°Cで 30 分間で洗浄し、ふるい(80mesh、 目開き 0. 175mm)で濾別した。得られた固形物 を 0. 5リットルのイオン交換水で希釈して、 70°Cで 30分撹拌後、 80メッシュふるいで 濾過して固形物を回収する操作を合計 3回繰り返した。次 、で得られた固形物を 0. 5リットルのイオン交換水で希釈してスラリーとし、ここに酢酸 0. 24gをカ卩えてスラリー を酸性としてから 70°Cで 30分撹拌、洗浄し、 80メッシュふるいで濾過した。得られた 固形物を再度 0. 5リットルのイオン交換水で希釈して、 70°Cで 30分撹拌後、 80メッ シュふるいで濾過した。このようにして得られた固形物を、 130°Cで熱風乾燥し、乾燥 ポリマーを得た。
[0100] [参考例 4]
<ポリフエ-レンスルフイド混合物の調製 2 >
撹拌機付きの 5リットルオートクレーブに、硫化ナトリウム 9水和物 60g (0. 25モル) 、 96%水酸ィ匕ナ卜リウム 0. 52g (0. 0125モル)、 NMP2. 56kg (25. 9モル)及び p —ジクロ口ベンゼン 37. 7g(0. 255モル)を仕込み、反応容器を窒素ガス下に密封し た。
[0101] 240rpmで撹拌しながら、室温から 200°Cまで約 2時間かけて加熱後、 1. 0°CZ分 の速度で 220°Cまで昇温し、この温度で 10時間保持した。その後室温近傍まで冷却 してスラリー(D)を得た。このスラリー(D) lkgを 4kgのイオン交換水で希釈し、 70°C で 30分攪拌したのち、平均ポアサイズ 10〜16 μ mのガラスフィルターを用いて濾過 した。得られた固形成分をイオン交換水 lkgに分散させて 70°Cで 30分攪拌したのち 同様に濾過を行った。ついで固形成分を 0. 5%酢酸水溶液 lkgに分散させて 70°C で 30分攪拌したのち同様に濾過を行った。得られた固形成分を再度イオン交換水 1 kgに分散させて 70°Cで 30分攪拌したのち同様に濾過を行った。得られた含水ケー クを真空乾燥機 70°Cで一晩乾燥し、乾燥ケーク 7. 4gを得た。
[0102] このようにして得た乾燥ケークを 5g分取して、テトラヒドロフラン 150gで 3時間ソック スレー抽出した。得られた抽出液カもテトラヒドロフランを留去した。このようにして得ら れた固体にアセトン 150gをカ卩えて攪拌後、 目開き 10〜16 μ mのガラスフィルターで 吸引濾過し白色ケークを得た。これを 70°Cで 3時間真空乾燥して白色粉末を得た。 この白色粉末の赤外分光分析における吸収スペクトルより、白色粉末はポリフエ-レ ンスルフイドであることが判明した。
[0103] 得られた白色粉末の高速液体クロマトグラフィー分析の結果から、この白色粉末は 環式ポリフエ-レンスルフイド及び線状ポリフエ-レンスルフイド力 なる混合物であり 、環式ポリフエ-レンスルフイドと線状ポリフエ-レンスルフイドの重量比は約 1 : 1. 5 ( 環式 PPS重量 Z線状 PPS重量 =0. 67)であることがわかった。またこれら分析結果 より、得られた白色粉末は環式ポリフエ-レンスルフイドを約 40重量%、線状ポリフエ 二レンスルフイドを約 60%含むポリフエ-レンスルフイド混合物であることが判明した。 なお、 GPC測定を行った結果、ポリフエ-レンスルフイド混合物の重量平均分子量は 1500であった。
[0104] [実施例 1]
参考例 1で得られたポリアリーレンスルフイドプレボリマー lOOmgをガラス製アンプ ルに仕込み、アンプル内を窒素で置換した。 300°Cに温調した電気炉内にアンプル を設置し 60分間加熱した後、アンプルを取り出し室温まで冷却した。得られた若干黒 みを帯びた生成物の赤外スペクトルは参考例 2と一致し、生成物は PPSであること力 S わかった。なお、生成物は 1 クロロナフタレンに 210°Cで全溶であった。 GPC測定 の結果、 PASプレポリマーに由来するピークと生成したポリマー(PPS)のピークが確 認でき、プレポリマーの PPSへの転化率は 71%、得られた PPSの重量平均分子量 は 61700、分散度は 1. 94であることがわ力つた。また、得られた生成物の元素分析 を行った結果、 Na含有量は 4ppmでこれ以外のアルカリ金属は検出されなかった。 また塩素以外のハロゲンは検出されな力つた。得られた生成物の加熱時重量減少率 の測定を行った結果、 AW O. 075%であった。また、 AWr300 (%) =0. 043, △Wr320 (%) =0. 061, AWr340 (%) =0. 092であった。
[0105] 上記で得られた生成物力 PPSを分離して分子量測定を行った結果を以下に示 す。上記で得られた生成物約 50mgに 1 クロロナフタレン約 5gをカ卩え、 250°Cで 10 分間攪拌した後、室温まで冷却してスラリーを得た。このスラリーを平均目開き 1 μ m の濾紙(5C)を用 、て濾過して 1 -クロロナフタレンを含むケーキを得た。このケーキ にクロ口ホルム約 30gを加えた後、超音波洗浄機を用いて分散液を得た。この分散液 を前記同様に濾過してクロ口ホルムを含むケーキを得た。このケーキにメタノール約 2 Ogを加えた後、超音波洗浄機を用いて分散液を得た後、同様に濾過し、ケーキをメ タノール約 20gでリンスした。このようにして得られたメタノールを含むケーキを、 70°C で 3時間真空乾燥した。得られた白色固体を GPC測定した結果、前記生成物の GP C測定で確認された PASプレボリマー由来ピークは消失し、ポリマーのピークのみで めつに。
[0106] [実施例 2]
電気炉での加熱温度を 340°Cに変更した以外は実施例 1と同様に PASの合成を 行った。得られた生成物は若干黒みを帯びたものであった。赤外スペクトルは参考例 2と一致し、生成物は PPSであることがわかった。この生成物を 1 クロロナフタレンに 210°Cに溶解した際には少量の不溶成分が生じた。可溶部の GPC測定の結果、プ レポリマーの PPSへの転化率は 99%、得られた PPSの重量平均分子量は 67300、 分散度は 2. 15であることがわ力つた。また、得られた生成物の元素分析を行った結 果、 Na含有量は 3ppmでこれ以外のアルカリ金属は検出されな力つた。また塩素以 外のハロゲンは検出されな力つた。得られた生成物の加熱時重量減少率の測定を行 つた結果、 AWrは 0. 071%であった。また、 AWr300 (%) =0. 045, AWr320 ( %) =0. 060, AWr340 (%) =0. 084であった。
[0107] さらにここで得られた PPSについて加熱時の発生ガス成分の分析を行った結果、ラ タトン型化合物及びァニリン型化合物は検出限界以下であった。
[0108] [実施例 3]
参考例 1で得られたポリアリーレンスルフイドプレボリマー lOOmgをガラス製アンプ ルに仕込み窒素で置換したのち、真空ポンプを用いて約 0. 2kPaに減圧した。 300 °Cに温調した電気炉内にアンプルを設置し、アンプル内を約 0. 2kPaに保ったまま 6 0分間加熱した後、アンプルを取り出し室温まで冷却した。なお、加熱中に若干量の 飛散成分が認められた。
[0109] 得られた生成物はわずかに茶色を帯びた榭脂であった。この生成物の赤外スぺタト ルは参考例 2と一致し、生成物は PPSであることがわ力つた。なお、生成物は 1—クロ ロナフタレンに 210°Cで全溶であった。 GPC測定の結果、プレポリマーの PPSへの 転化率は 20%、得られた PPSの重量平均分子量は 38300、分散度は 1. 47である ことがわ力つた。また、得られた生成物の元素分析を行った結果、 Na含有量は 4pp mでこれ以外のアルカリ金属は検出されな力つた。また塩素以外のハロゲンは検出さ れな力つた。得られた生成物の加熱時重量減少率の測定を行った結果、 AWrは 0. 106%であった。また、 AWr300 (%) =0. 082, AWr320 (%) =0. 096, AWr3 40 (%) =0. 118であった。
[0110] 上記生成物力 の PPSの分離を実施例 1と同様に行い、実施例 1同様に PPSが単 離できることを確認した。
[0111] [実施例 4]
電気炉での加熱時間を 120分に変更した以外は実施例 3と同様の操作を行い、わ ずかに茶色を帯びた榭脂状生成物を得た。この生成物の赤外スペクトルは参考例 2 と一致し、生成物は PPSであることがわかった。なお、生成物は 1 クロロナフタレン に 210°Cで全溶であった。 GPC測定の結果、プレポリマーの PPSへの転化率は 56 %、得られた PPSの重量平均分子量は 63800、分散度は 1. 70であることがわかつ た。また、得られた生成物の元素分析を行った結果、 Na含有量は 4ppmでこれ以外 のアルカリ金属は検出されな力つた。また塩素以外のハロゲンは検出されな力つた。 得られた生成物の加熱時重量減少率の測定を行った結果、 AWrは 0. 031%であ つた。また、 AWr300 (%) =0. 014, AWr320 (%) =0. 025, AWr340 (%) =0 . 040であった。
[0112] [実施例 5]
電気炉での加熱温度を 340°Cに変更した以外は実施例 3と同様の操作を行 、、わ ずかに茶色を帯びた榭脂状生成物を得た。この生成物の赤外スペクトルは参考例 2 と一致し、生成物は PPSであることがわかった。なお、生成物は 1 クロロナフタレン に 210°Cで全溶であった。 GPC測定の結果、プレポリマーの PPSへの転化率は 86 %、得られた PPSの重量平均分子量は 72800、分散度は 1. 88であることがわかつ た。また、得られた生成物の元素分析を行った結果、 Na含有量は 3ppmでこれ以外 のアルカリ金属は検出されな力つた。また塩素以外のハロゲンは検出されな力つた。 得られた生成物の加熱時重量減少率の測定を行った結果、 AWrは 0. 042%であ つた。また、 AWr300 (%) =0. 025, AWr320 (%) =0. 034, AWr340 (%) =0 . 049であった。
[0113] [実施例 6]
電気炉での加熱時間を 120分に変更した以外は実施例 5と同様の操作を行い、わ ずかに茶色を帯びた榭脂状生成物を得た。この生成物の赤外スペクトルは参考例 2 と一致し、生成物は PPSであることがわかった。なお、生成物は 1 クロロナフタレン に 210°Cで全溶であった。 GPC測定の結果、プレポリマーの PPSへの転化率は 93 %、得られた PPSの重量平均分子量は 130300、分散度は 2. 03であることがわ力つ た。また、得られた生成物の元素分析を行った結果、 Na含有量は 3ppmでこれ以外 のアルカリ金属は検出されな力つた。また塩素以外のハロゲンは検出されな力つた。 得られた生成物の加熱時重量減少率の測定を行った結果、 AWrは 0. 037%であ つた。また、 AWr300 (%) =0. 022, AWr320 (%) =0. 031, AWr340 (%) =0 . 042であった。
[0114] さらに、ここで得られた PPSについて加熱時の発生ガス成分の分析を行った結果、 ラタトン型化合物及びァ-リン型化合物は検出限界以下であった。
[0115] [比較例 1]
参考例 2で得られた PPSの GPC測定の結果、得られた PPSの重量平均分子量は 59600、分散度は 3. 78であることがわ力つた。また元素分析を行った結果、 Na含 有量は 1040ppmでこれ以外のアルカリ金属は検出されなかった。また塩素以外の ノ、ロゲンは検出されな力つた。得られた PPSの加熱時重量減少率の測定を行った結 果、 AWrは 0. 229%であった。また、 AWr300 (%) =0. 179, AWr320 (%) =0 . 210, AWr340 (%) =0. 244であった。
[0116] さらに、参考例 2で得られた PPSについて加熱時の発生ガス成分の分析を行った 結果、加熱前の PPSの重量に対して γブチロラタトンが 618ppm、 4 クロロー N—メ チルァ-リンが 416ppm検出された。
[0117] [比較例 2]
参考例 3で得られた PPSの GPC測定の結果、比較例 1と有意差はな力つた。また、 元素分析を行った結果、 Na含有量は 170ppmでこれ以外のアルカリ金属は検出さ れな力つた。また塩素以外のハロゲンは検出されな力つた。得られた PPSの加熱時 重量減少率の測定を行った結果、 AWrは 0. 259%であった。また、 AWr300 (%) =0. 223, AWr320 (%) =0. 247, AWr340 (%) =0. 270であった。
[0118] さらに、参考例 2で得られた PPSについて加熱時の発生ガス成分の分析を行った 結果、加熱前の PPSの重量に対して γブチロラタトンが 1350ppm、 4 クロロー N— メチルァ-リンが 382ppm検出された。
[0119] 実施例 1〜6に例示した本発明の PASと、比較例 1及び 2の公知の方法による PAS の比較から明らかな様に、本発明の PASは極めて分子量分布が狭ぐ且つアルカリ 金属含有量が極めて少ないことがわかる。また、本発明の PASは、加熱した際のラタ トン型化合物及び Zまたはァ-リン型化合物の発生量が著しく少ないことがわかる。
[0120] [比較例 3]
ここでは特許文献 6に開示されている PASの製造方法、すわなち、環状ァリーレン スルフイドオリゴマーをイオン性の開環重合触媒下で、加熱開環重合する方法に従つ て PASの合成を行った結果を示す。
[0121] 参考例 1で得られたポリアリーレンスルフイドプレボリマーと、イオン性の触媒化合物 としてチォフエノールのナトリウム塩を重量比で 1 : 0. 012で混合した粉末1001118を ガラス製アンプルに仕込んだ以外は実施例 1と同様に行った。得られた生成物は黒 みを帯びた脆い塊状物であった。生成物の赤外スペクトルは参考例 2と一致し、生成 物は PPSであることがわかった。なお、生成物は 1 クロロナフタレンに 210°Cで全溶 であった。 GPC測定の結果、プレポリマーの PPSへの転化率は 70%、得られた PPS の重量平均分子量は 34500、分散度は 1. 74であることがわ力つた。また、得られた 生成物の元素分析を行った結果、 Na含有量は 2050ppmでこれ以外のアルカリ金 属は検出されな力つた。また塩素以外のハロゲンは検出されな力つた。
[0122] 環式ポリアリーレンスルフイドの開環重合に際し開環重合触媒としてイオン性ィ匕合 物を用いる公知の方法では、得られる PASに多量のアルカリ金属が含有されること がわカゝる。
[0123] [比較例 4]
ここでは特許文献 8に開示されている PASの製造方法、すなわち硫黄ラジカルを発 生する重合開始剤の存在下で環状の芳香族チォエーテルオリゴマーを開環重合す る PASの製造方法に従って PASの合成を行った結果を示す。
[0124] 参考例 1で得られたポリアリーレンスルフイドプレボリマーと、ラジカル触媒化合物と して 2, 2'—ジチォビスべンゾチアゾールを重量比で 1 : 0. 031で混合した粉末 100 mgをガラス製アンプルに仕込んだ以外は実施例 1と同様に行った。得られた生成物 は黒みを帯びた脆 、塊状物であった。生成物の赤外スペクトルは参考例 2と一致し、 生成物は PPSであることがわ力つた。得られた PPSの加熱時重量減少率の測定を行 つた結果、 AW O. 282%であった。また、 AWr300 (%) =0. 204, AWr320 ( %) =0. 252, AWr340 (%) =0. 313であった。
[0125] 環式ポリアリーレンスルフイドの開環重合に際し開環重合触媒としてラジカル触媒 化合物を用いる公知の方法では、得られる PASの加熱時重量減少率が増大するこ とがわかる。
[0126] [比較例 5]
ここでは従来用いられてきた PASの加熱時重量減少率の低減方法に従って PAS を製造した結果を示す。 PASの製造は特許文献 11の方法に準じて、以下の様に行 つた o
[0127] 参考例 1で得られたスラリー(B) 41kgをふるい(80mesh、 目開き 0. 175mm)で濾 別し、得られた固形成分に NMP18. 4kgをカ卩えて 85°Cで 30分間攪拌し、上記と同様 のふるいで濾別した。得られた固形物を 32kgのイオン交換水で希釈して、 70°Cで 3 0分撹拌後、上記同様のふるいで濾過して固形物を回収する操作を合計 3回繰り返 した。っ 、で得られた固体にイオン交換水 40kg及び酢酸カルシウム 20gをカ卩えて 70 °Cで 30分撹拌後、上記同様のふるいで濾過して固形物を回収した。得られた固形 物を 40kgのイオン交換水で希釈して、 70°Cで 30分撹拌後、上記同様のふるいで濾 過して固形物を回収する操作を合計 2回繰り返した。このようにして得られた固形物 を、 130°Cで熱風乾燥し、粒状の PPSを約 4kgを得た。
[0128] 得られた粒状 PPSを日本製鋼所社製 TEX30型 2軸押出機で、シリンダー温度を 32 0°Cに設定し、 200rpmのスクリュー回転にて溶融混練した。なお、ホッパー部、ベン ト部、スクリュー軸部は窒素シールを行い、空気の混入を抑制した。また、溶融混練 中はベント部を約 lOkPaに減圧し、揮散成分の除去を行った。ノズルより押し出され たストランドは水冷により冷却しガット状にした後、ストランドカッターを用いてペレット 化した。得られたペレットを 130°Cで 1晚乾燥した。
[0129] このようにして得られた PPSペレットの加熱時重量減少率の測定を行った結果、△ Wrは 0. 187%であった。また、 AWr300 (%) =0. 139, AWr320 (%) =0. 173 , AWr340 (%) =0. 199であった。得られた生成物の元素分析を行った結果、 Na 含有量は 120ppm、 Ca含有量は 550ppmであり、ナトリウム以外のアルカリ金属は検 出されなかった。また塩素以外のハロゲンは検出されな力つた。
[0130] 従来用いられてきた PASの加熱時重量減少率の低減方法を用いて得られた PAS は、本発明の PASと比べて AWrが大きいことがわ力る。
[0131] [比較例 6]
ここでは非特許文献 1に開示されている PASの製造方法、すなわち、参考例 4の方 法により得られるポリフエ-レンスルフイド混合物を用いて PASの合成を行った結果 を示す。
[0132] 参考例 4で得られた白色粉末、即ち環式ポリフ -レンスルフイドを約 40重量%含 むポリフエ-レンスルフイド混合物を原料に用いた以外は実施例 1と同様にして PAS の合成を行った。
[0133] 得られた生成物は黒みを帯びた脆い塊状物であった。生成物の赤外スペクトルは 参考例 2とほぼ一致し、生成物は PPSであることがわ力つた。なお、生成物は 1—クロ ロナフタレンに 210°Cで全溶であった力 溶液は茶色く着色していた。 GPC測定の 結果、原料のポリマーへの転化率は 83%、得られた PPSの重量平均分子量は 320 0、分散度は 2. 13であり、十分な分子量の PASを得ることはできな力つた。
[0134] [比較例 7]
ここでは非特許文献 1に開示されている PASの製造方法、すなわち、参考例 4の方 法により得られるポリフエ-レンスルフイド混合物を用いて PASの合成を比較例 6とは 温度条件変えて行った結果を示す。
[0135] 参考例 4で得られた白色粉末、即ち環式 PPSを約 40重量%、線状 PPSを約 60% 含む、 PPS混合物を原料に用いた以外は実施例 2と同様にして PASの合成を行つ た。
[0136] 得られた生成物は黒みを帯びた脆い塊状物であり、一部発泡が見られた。生成物 の赤外スペクトルは参考例 2とほぼ一致し、生成物は PPSであることがわかった。な お、生成物は 1—クロロナフタレンに 210°Cで一部不溶であり、溶液は茶色く着色し ていた。 GPC測定の結果、原料のポリマーへの転ィ匕率は 97%、得られた PPSの重 量平均分子量は 4500、分散度は 2. 25であり、十分な分子量の PASを得ることはで きなかった。
[0137] [実施例 7]
ここでは繊維状物質の存在下でポリアリーレンスルフイドプレポリマーからの PASの 製造を行った例を示す。
[0138] ガラスクロス(幅 50mm X長さ約 70mm X厚み 0. 2mm,重量約 1. Og,綾織)の中 央部に参考例 1で得られたポリアリーレンスルフイドプレボリマー約 0. 5gを直径約 2c mの円状に配置した。これをアルミ箔に挟み込み、プレス成型機を用いて 360°Cで 3 0分間、圧力 50kgZcm2で加熱成形した後、室温近傍まで冷却した。
[0139] アルミ箔を取り除いたところ、ガラスクロス全面に榭脂が含浸した状態になっている ことがわ力つた。得られたガラスクロスと榭脂の複合体力も榭脂を取り出し、 GPC測定 を行ったところ、ポリアリーレンスルフイドプレポリマーのポリマーへの転化率は 93%、 重量平均分子量は 63100、分散度は 2. 27であった。本発明によれば繊維状物質 の存在下でも PASを製造することが可能であり、容易に均一な複合材料が得られる ことがわかった。
[0140] [比較例 8] ガラスクロス(幅 50mm X長さ約 70mm X厚み 0. 2mm,重量約 1. Og,綾織)の 中央部に参考例 2で得られた PPS約 0. 5gを直径約 2cmの円状に配置した。これを アルミ箔に挟み込み、実施例 7と同様に加熱成形した後、室温近傍まで冷却した。 アルミ箔を取り除いたところ、榭脂はガラスクロス中央部にのみ存在し、端部までは 含浸していなカゝつた。 PPSを用いた場合、繊維状物質との均一な複合材料を得るこ とが困難であることがわ力つた。

Claims

請求の範囲
[1] 重量平均分子量が 10, 000以上であって、且つ、加熱した際の重量減少が下記式 を満たすことを特徴とするポリアリーレンスルフイド。
AWr = (Wl - W2) /Wl X 100≤ 0. 18 (%)
(ここで AWrは重量減少率(%)であり、常圧の非酸ィ匕性雰囲気下で 50°Cから 330 °C以上の任意の温度まで昇温速度 20°CZ分で熱重量分析を行った際に、 100°C到 達時点の試料重量 (W1)を基準とした 330°C到達時の試料重量 (W2)から求められ る値である)
[2] 重量平均分子量 Z数平均分子量で表される分散度が 2. 5以下であることを特徴とす る請求項 1に記載のポリアリーレンスルフイド。
[3] アルカリ金属含有量が lOOppm以下であることを特徴とする請求項 1または 2のいず れかに記載のポリアリーレンスルフイド。
[4] アルカリ金属含量が 50ppm未満であることを特徴とする請求項 1から 3のいずれかに 記載のポリアリーレンスルフイド。
[5] 実質的にアルカリ金属がナトリウムであることを特徴とする請求項 3または 4のいずれ かに記載のポリアリーレンスルフイド。
[6] 実質的に塩素以外のハロゲンを含まないことを特徴とする請求項 1から 5のいずれか に記載のポリアリーレンスルフイド。
[7] 加熱した際の発生ガス成分中のラタトン型化合物がポリアリーレンスルフイド重量基 準で 500ppm以下であることを特徴とする請求項 1から 6のいずれかに記載のポリアリ 一レンスルフイド。
[8] 加熱した際の発生ガス成分中のァ-リン型化合物がポリアリーレンスルフイド重量基 準で 300ppm以下であることを特徴とする請求項 1から 6のいずれかに記載のポリアリ 一レンスルフイド。
[9] 加熱した際の発生ガス成分中のラタトン型化合物がポリアリーレンスルフイド重量基 準で 500ppm以下であって、且つ、加熱した際の発生ガス成分中のァ-リン型化合 物がポリアリーレンスルフイド重量基準で 300ppm以下であることを特徴とする請求項 1力 6のいずれかに記載のポリアリーレンスルフイド。
[10] 環式ポリアリーレンスルフイドを少なくとも 50重量%以上含み、且つ重量平均分子量 力 000未満であるポリアリーレンスルフイドプレポリマーを加熱して重量平均分子 量 10, 000以上の高重合度体に転ィ匕させることを特徴とするポリアリーレンスルフイド の製造方法。
[11] ポリアリーレンスルフイドプレボリマーを加熱して高重合度体に転ィ匕させる反応を、反 応系のアルカリ金属量を lOOppm以下、且つ、反応系内の全ィォゥ重量に対するジ スルフイド重量を 1重量%未満として行うことを特徴とする請求項 10に記載のポリアリ 一レンスルフイドの製造方法。
[12] 加熱を非酸化性雰囲気で行うことを特徴とする請求項 10または 11のいずれかに記 載のポリアリーレンスルフイドの製造方法。
[13] 加熱を減圧条件下で行うことを特徴とする請求項 10から 12のいずれかに記載のポリ ァリーレンスルフイドの製造方法。
[14] 加熱をポリアリーレンスルフイドプレボリマーが溶融する温度で行うことを特徴とする請 求項 10から 13のいずれかに記載のポリアリーレンスルフイドの製造方法。
[15] 得られるポリアリーレンスルフイドが請求項 1から 9の ヽずれかであることを特徴とする 請求項 10から 14のいずれかに記載のポリアリーレンスルフイドの製造方法。
[16] 繊維状物質の共存下で行うことを特徴とする、請求項 10から 15のいずれかに記載の ポリアリーレンスルフイドの製造方法。
[17] 繊維状物質が長繊維力もなる強化繊維であることを特徴とする請求項 16に記載のポ リアリーレンスルフイドの製造方法。
[18] 充填剤の共存下で行うことを特徴とする、請求項 10から 17のいずれかに記載のポリ ァリーレンスルフイドの製造方法。
PCT/JP2006/318567 2005-09-22 2006-09-20 ポリアリーレンスルフィドおよびその製造方法 WO2007034800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800435295A CN101313011B (zh) 2005-09-22 2006-09-20 聚芳撑硫醚及其制备方法
JP2006534512A JP4432971B2 (ja) 2005-09-22 2006-09-20 ポリアリーレンスルフィドの製造方法
US11/992,328 US7750111B2 (en) 2005-09-22 2006-09-20 Polyarylene sulfide and its production method
EP06798127.4A EP1927615B2 (en) 2005-09-22 2006-09-20 Polyarylene sulfide and process for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-275520 2005-09-22
JP2005275520 2005-09-22
JP2006-008277 2006-01-17
JP2006008277 2006-01-17

Publications (1)

Publication Number Publication Date
WO2007034800A1 true WO2007034800A1 (ja) 2007-03-29

Family

ID=37888843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318567 WO2007034800A1 (ja) 2005-09-22 2006-09-20 ポリアリーレンスルフィドおよびその製造方法

Country Status (5)

Country Link
US (1) US7750111B2 (ja)
EP (1) EP1927615B2 (ja)
JP (3) JP4432971B2 (ja)
CN (1) CN101313011B (ja)
WO (1) WO2007034800A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231255A (ja) * 2006-02-02 2007-09-13 Toray Ind Inc 環式ポリアリーレンスルフィド混合物の製造方法
WO2008105438A1 (ja) * 2007-02-28 2008-09-04 Toray Industries, Inc. 環式ポリアリーレンスルフィドの製造方法
WO2008114573A1 (ja) * 2007-03-20 2008-09-25 Toray Industries, Inc. 成形材料、プリプレグおよび繊維強化複合材料、ならびに繊維強化成形基材の製造方法
JP2008231236A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc 繊維強化複合材料の製造方法、および繊維強化複合材料
JP2008231291A (ja) * 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2008231292A (ja) * 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2008231138A (ja) * 2007-03-16 2008-10-02 Toray Ind Inc フィラー高充填樹脂組成物、錠剤の製造方法およびそれからなる成形品
JP2008231139A (ja) * 2007-03-16 2008-10-02 Toray Ind Inc 高誘電性樹脂組成物、錠剤の製造方法およびそれからなる成形品
JP2008231141A (ja) * 2007-03-16 2008-10-02 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物
JP2009030012A (ja) * 2007-02-28 2009-02-12 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
WO2009119466A1 (ja) 2008-03-28 2009-10-01 東レ株式会社 ポリフェニレンサルファイド樹脂微粒子の製造方法、ポリフェニレンサルファイド樹脂微粒子、およびその分散液
JP2009227952A (ja) * 2007-07-10 2009-10-08 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
JP2010501661A (ja) * 2006-08-24 2010-01-21 エスケー ケミカルズ カンパニー リミテッド ポリ(アリーレンスルフィド)の製造方法
JP2010018733A (ja) * 2008-07-11 2010-01-28 Toray Ind Inc 環式ポリアリーレンスルフィドおよびその製造方法
WO2011013686A1 (ja) 2009-07-30 2011-02-03 東レ株式会社 ポリアリーレンスルフィドの製造方法
WO2012057319A1 (ja) 2010-10-29 2012-05-03 東レ株式会社 ポリアリーレンスルフィドの製造方法およびポリアリーレンスルフィド
WO2013099234A1 (ja) 2011-12-28 2013-07-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法
WO2013128908A1 (ja) 2012-02-29 2013-09-06 東レ株式会社 ポリアリーレンスルフィドの製造方法、環式ポリアリーレンスルフィドペレットおよびその製造方法
WO2013161321A1 (ja) 2012-04-27 2013-10-31 東レ株式会社 ポリアリーレンスルフィド樹脂組成物、該樹脂組成物の製造方法、および該樹脂組成物の成形品
WO2014136448A1 (ja) 2013-03-06 2014-09-12 東レ株式会社 ブロック共重合体およびその製造方法
WO2014208418A1 (ja) 2013-06-28 2014-12-31 東レ株式会社 ポリアリーレンスルフィド樹脂組成物およびその製造方法
JP2015028142A (ja) * 2013-06-28 2015-02-12 東レ株式会社 ポリアリーレンスルフィドの製造方法
JP2015054869A (ja) * 2013-09-10 2015-03-23 Dic株式会社 ポリアリーレンスルフィドの製造方法
WO2015098748A1 (ja) 2013-12-25 2015-07-02 東レ株式会社 ポリアリーレンスルフィド樹脂組成物およびそれからなる成形品
WO2015111546A1 (ja) * 2014-01-24 2015-07-30 東レ株式会社 ポリフェニレンスルフィド樹脂微粒子、その製造方法および分散液
WO2017022524A1 (ja) * 2015-07-31 2017-02-09 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびその製造方法
KR20170027724A (ko) 2014-06-30 2017-03-10 도레이 카부시키가이샤 폴리아릴렌설파이드 및 그 제조 방법

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101313011B (zh) * 2005-09-22 2011-03-30 东丽株式会社 聚芳撑硫醚及其制备方法
JP5029613B2 (ja) * 2007-09-27 2012-09-19 東レ株式会社 ポリマーアロイの製造方法
ES2686842T3 (es) * 2010-03-10 2018-10-22 Sk Chemicals, Co., Ltd. Poli(sulfuro de arileno) con pequeña cantidad de desgasificación, y procedimiento de preparación del mismo
CN102675640B (zh) * 2011-03-18 2014-06-25 四川得阳工程塑料开发有限公司 聚苯硫醚生产合成工艺条件控制方法
US8709563B2 (en) 2011-09-30 2014-04-29 Ticona Llc Electrical conduit containing a fire-resisting thermoplastic composition
WO2013061561A1 (ja) 2011-10-24 2013-05-02 東レ株式会社 環式ポリアリーレンスルフィドの製造方法
EP2791200B1 (en) * 2011-12-16 2016-03-16 Solvay Specialty Polymers USA, LLC. Epoxy resin compositions
CN105722896B (zh) * 2013-10-29 2018-12-28 东丽株式会社 碳纤维增强聚芳撑硫醚的制造方法
EP3064536B1 (en) 2013-10-29 2021-01-13 Toray Industries, Inc. Molded article and molding material
DE102014225579A1 (de) * 2014-12-11 2016-06-16 Tesa Se Mehrschicht-Verbund für akustische Membranen
JP6803844B2 (ja) 2015-02-19 2020-12-23 ティコナ・エルエルシー 低粘度のポリアリーレンスルフィドを形成する方法
WO2016133739A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
WO2016133740A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method of polyarylene sulfide precipitation
JP6783242B2 (ja) 2015-03-25 2020-11-11 ティコナ・エルエルシー 高溶融粘度のポリアリーレンスルフィドを形成する方法
CN105037728A (zh) * 2015-06-10 2015-11-11 张家港市新盛新材料有限公司 一种聚苯硫醚生产方法
CN108883600B (zh) 2016-03-24 2021-08-06 提克纳有限责任公司 复合结构体
US20180251939A1 (en) 2016-11-07 2018-09-06 Milliken & Company Textile materials containing dyed polyphenylene sulfide fibers and methods for producing the same
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
WO2021126543A1 (en) 2019-12-20 2021-06-24 Ticona Llc Method for forming a polyarylene sulfide
JP7006841B1 (ja) * 2020-03-31 2022-01-24 東レ株式会社 ポリアリーレンスルフィドおよびその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341152A (ja) 1989-07-10 1991-02-21 Tosoh Corp ポリフェニレンスルフィド樹脂組成物
JPH05163349A (ja) * 1991-08-06 1993-06-29 Tosoh Corp ポリアリーレンスルフィドおよびその製造方法
JPH06172530A (ja) * 1992-12-09 1994-06-21 Tosoh Corp ポリアリーレンスルフィド樹脂の製造方法
JPH09286860A (ja) * 1996-04-24 1997-11-04 Idemitsu Kosan Co Ltd ポリアリーレンスルフィドおよびその製造方法
JP2000508359A (ja) * 1996-04-11 2000-07-04 ティコナ・ゲーエムベーハー 狭い分子量分布を有するポリアリーレンスルフィド及びその製造方法
JP2000246733A (ja) 1999-03-04 2000-09-12 Toray Ind Inc ポリアリーレンスルフィド樹脂ペレットの製造方法
JP2000281786A (ja) * 1999-03-30 2000-10-10 Toray Ind Inc ポリフェニレンスルフィド樹脂(組成物)の製造方法
JP2001261831A (ja) * 2000-03-21 2001-09-26 Toray Ind Inc ポリアリーレンスルフィド樹脂の製造方法およびポリアリーレンスルフィド樹脂組成物
JP2003113242A (ja) * 2001-10-02 2003-04-18 Tosoh Corp ポリアリーレンスルフィドの回収方法
JP2004182840A (ja) * 2002-12-03 2004-07-02 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂及びその組成物、並びにこれらの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141459A (en) 1961-12-05 1964-07-21 Frances J Orcutt Method of supporting circumferential head bandage
US3524835A (en) 1963-11-27 1970-08-18 Phillips Petroleum Co Heat treatment of poly(arylene sulfide) resins
JPS453368B1 (ja) 1964-11-27 1970-02-04
US3793256A (en) 1972-08-30 1974-02-19 Phillips Petroleum Co Controlled curing pf poly(arylene sulfide)resins
FR2427350B1 (fr) 1978-05-30 1986-08-14 Asahi Glass Co Ltd Poly(sulfure de phenylene) moulable
JPS6425493A (en) 1987-07-21 1989-01-27 Mitsubishi Electric Corp Semiconductor laser device
JP2923649B2 (ja) 1989-01-09 1999-07-26 出光石油化学株式会社 ポリアリーレンスルフイド射出成形品
EP0413257A3 (en) * 1989-08-14 1992-06-03 The Dow Chemical Company Cyclic poly(aryl ether) oligomers, a process for preparation thereof, and polymerization of cyclic poly (aryl ether) oligomers
JPH0455445A (ja) 1990-06-25 1992-02-24 Nippon Supeshiyaritei Prod Kk 抗菌性成形品
AT400674B (de) * 1991-07-24 1996-02-26 Biochemie Gmbh Pharmazeutische pleuromutilin-zubereitung
DE69222997T2 (de) 1991-08-06 1998-04-30 Tosoh Corp Verfahren zur Herstellung von Polyarylensulfid
JP3141459B2 (ja) 1991-10-15 2001-03-05 東ソー株式会社 アミノ基含有ポリアリ−レンスルフィドの製造方法
JPH0853621A (ja) 1994-08-11 1996-02-27 Toray Ind Inc ポリフェニレンスルフィド樹脂およびその成形品
JPH08269047A (ja) * 1995-03-29 1996-10-15 Kureha Chem Ind Co Ltd シクロ(ヘキサ−1,4−フェニレンサルファイド)の製造方法
US5869599A (en) 1995-04-10 1999-02-09 Hay; Allan S. Free radical ring opening for polymerization of cyclic oligomers containing an aromatic sulfide linkage
US5858029A (en) * 1997-01-13 1999-01-12 Mobil Oil Corporation Friction reducing additives for fuels and lubricants
CN101313011B (zh) * 2005-09-22 2011-03-30 东丽株式会社 聚芳撑硫醚及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341152A (ja) 1989-07-10 1991-02-21 Tosoh Corp ポリフェニレンスルフィド樹脂組成物
JPH05163349A (ja) * 1991-08-06 1993-06-29 Tosoh Corp ポリアリーレンスルフィドおよびその製造方法
JPH06172530A (ja) * 1992-12-09 1994-06-21 Tosoh Corp ポリアリーレンスルフィド樹脂の製造方法
JP2000508359A (ja) * 1996-04-11 2000-07-04 ティコナ・ゲーエムベーハー 狭い分子量分布を有するポリアリーレンスルフィド及びその製造方法
JPH09286860A (ja) * 1996-04-24 1997-11-04 Idemitsu Kosan Co Ltd ポリアリーレンスルフィドおよびその製造方法
JP2000246733A (ja) 1999-03-04 2000-09-12 Toray Ind Inc ポリアリーレンスルフィド樹脂ペレットの製造方法
JP2000281786A (ja) * 1999-03-30 2000-10-10 Toray Ind Inc ポリフェニレンスルフィド樹脂(組成物)の製造方法
JP2001261831A (ja) * 2000-03-21 2001-09-26 Toray Ind Inc ポリアリーレンスルフィド樹脂の製造方法およびポリアリーレンスルフィド樹脂組成物
JP2003113242A (ja) * 2001-10-02 2003-04-18 Tosoh Corp ポリアリーレンスルフィドの回収方法
JP2004182840A (ja) * 2002-12-03 2004-07-02 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド樹脂及びその組成物、並びにこれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER, vol. 37, no. 14, 1996
See also references of EP1927615A4

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231255A (ja) * 2006-02-02 2007-09-13 Toray Ind Inc 環式ポリアリーレンスルフィド混合物の製造方法
JP2010501661A (ja) * 2006-08-24 2010-01-21 エスケー ケミカルズ カンパニー リミテッド ポリ(アリーレンスルフィド)の製造方法
JP2009030012A (ja) * 2007-02-28 2009-02-12 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
WO2008105438A1 (ja) * 2007-02-28 2008-09-04 Toray Industries, Inc. 環式ポリアリーレンスルフィドの製造方法
US8329832B2 (en) 2007-02-28 2012-12-11 Toray Industries, Inc. Process for producing cyclic polyarylene sulfide
JP2008231141A (ja) * 2007-03-16 2008-10-02 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物
JP2008231138A (ja) * 2007-03-16 2008-10-02 Toray Ind Inc フィラー高充填樹脂組成物、錠剤の製造方法およびそれからなる成形品
JP2008231139A (ja) * 2007-03-16 2008-10-02 Toray Ind Inc 高誘電性樹脂組成物、錠剤の製造方法およびそれからなる成形品
WO2008114573A1 (ja) * 2007-03-20 2008-09-25 Toray Industries, Inc. 成形材料、プリプレグおよび繊維強化複合材料、ならびに繊維強化成形基材の製造方法
JP2008231236A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc 繊維強化複合材料の製造方法、および繊維強化複合材料
US7824770B2 (en) 2007-03-20 2010-11-02 Toray Industries, Inc. Molding material, prepreg and fiber-reinforced composite material, and method for producing fiber-reinforced molding substrate
JP2008231291A (ja) * 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2008231292A (ja) * 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2009227952A (ja) * 2007-07-10 2009-10-08 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
WO2009119466A1 (ja) 2008-03-28 2009-10-01 東レ株式会社 ポリフェニレンサルファイド樹脂微粒子の製造方法、ポリフェニレンサルファイド樹脂微粒子、およびその分散液
JP2010018733A (ja) * 2008-07-11 2010-01-28 Toray Ind Inc 環式ポリアリーレンスルフィドおよびその製造方法
WO2011013686A1 (ja) 2009-07-30 2011-02-03 東レ株式会社 ポリアリーレンスルフィドの製造方法
US8440784B2 (en) 2009-07-30 2013-05-14 Toray Industries, Inc. Process for producing polyarylene sulfide
JP5316540B2 (ja) * 2009-07-30 2013-10-16 東レ株式会社 ポリアリーレンスルフィドの製造方法
KR101410407B1 (ko) * 2010-10-29 2014-06-20 도레이 카부시키가이샤 폴리아릴렌술피드의 제조 방법 및 폴리아릴렌술피드
JP5182435B2 (ja) * 2010-10-29 2013-04-17 東レ株式会社 ポリアリーレンスルフィドの製造方法およびポリアリーレンスルフィド
WO2012057319A1 (ja) 2010-10-29 2012-05-03 東レ株式会社 ポリアリーレンスルフィドの製造方法およびポリアリーレンスルフィド
US8785571B2 (en) 2010-10-29 2014-07-22 Toray Industries, Inc. Method for producing polyarylene sulfide, and polyarylene sulfide
US9000104B2 (en) 2010-10-29 2015-04-07 Toray Industries, Inc. Polyarylene sulfide
US9416272B2 (en) 2011-12-28 2016-08-16 Toray Industries, Inc. Polyphenylene sulfide resin composition, molded product of polyphenylene sulfide resin composition and production method of polyphenylene sulfide resin composition
JP5582244B2 (ja) * 2011-12-28 2014-09-03 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法
WO2013099234A1 (ja) 2011-12-28 2013-07-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法
KR101475658B1 (ko) 2011-12-28 2014-12-22 도레이 카부시키가이샤 폴리페닐렌 설파이드 수지 조성물, 상기 수지 조성물의 성형품, 및 상기 수지 조성물의 제조 방법
US9187641B2 (en) 2011-12-28 2015-11-17 Toray Industries, Inc. Polyphenylene sulfide resin composition, molded product of polyphenylene sulfide resin composition and production method of polyphenylene sulfide resin composition
WO2013128908A1 (ja) 2012-02-29 2013-09-06 東レ株式会社 ポリアリーレンスルフィドの製造方法、環式ポリアリーレンスルフィドペレットおよびその製造方法
US9029484B2 (en) 2012-02-29 2015-05-12 Toray Industries, Inc. Production method of polyarylene sulfide, cyclic polyarylene sulfide pellet and production method thereof
WO2013161321A1 (ja) 2012-04-27 2013-10-31 東レ株式会社 ポリアリーレンスルフィド樹脂組成物、該樹脂組成物の製造方法、および該樹脂組成物の成形品
KR20150003163A (ko) 2012-04-27 2015-01-08 도레이 카부시키가이샤 폴리아릴렌 설파이드 수지 조성물, 상기 수지 조성물의 제조 방법, 및 상기 수지 조성물의 성형품
US9796850B2 (en) 2012-04-27 2017-10-24 Toray Industries, Inc. Polyarylene sulfide resin composition, manufacturing method of resin composition and molded product of resin composition
WO2014136448A1 (ja) 2013-03-06 2014-09-12 東レ株式会社 ブロック共重合体およびその製造方法
US9718928B2 (en) 2013-03-06 2017-08-01 Toray Industries, Inc. Block copolymer and production method of the same
KR20160024854A (ko) 2013-06-28 2016-03-07 도레이 카부시키가이샤 폴리아릴렌술피드 수지 조성물 및 그 제조 방법
JP2015028142A (ja) * 2013-06-28 2015-02-12 東レ株式会社 ポリアリーレンスルフィドの製造方法
WO2014208418A1 (ja) 2013-06-28 2014-12-31 東レ株式会社 ポリアリーレンスルフィド樹脂組成物およびその製造方法
US10000620B2 (en) 2013-06-28 2018-06-19 Toray Industries, Inc. Polyarylene sulfide resin composition and method for producing same
JP2015054869A (ja) * 2013-09-10 2015-03-23 Dic株式会社 ポリアリーレンスルフィドの製造方法
WO2015098748A1 (ja) 2013-12-25 2015-07-02 東レ株式会社 ポリアリーレンスルフィド樹脂組成物およびそれからなる成形品
KR20160102525A (ko) 2013-12-25 2016-08-30 도레이 카부시키가이샤 폴리아릴렌술피드 수지 조성물 및 그것으로 이루어지는 성형품
JPWO2015098748A1 (ja) * 2013-12-25 2017-03-23 東レ株式会社 ポリアリーレンスルフィド樹脂組成物およびそれからなる成形品
US9771465B2 (en) 2013-12-25 2017-09-26 Toray Industries, Inc. Polyarylene sulfide resin composition and molded article comprising same
WO2015111546A1 (ja) * 2014-01-24 2015-07-30 東レ株式会社 ポリフェニレンスルフィド樹脂微粒子、その製造方法および分散液
KR20170027724A (ko) 2014-06-30 2017-03-10 도레이 카부시키가이샤 폴리아릴렌설파이드 및 그 제조 방법
WO2017022524A1 (ja) * 2015-07-31 2017-02-09 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびその製造方法
US10294330B2 (en) 2015-07-31 2019-05-21 Toray Industries, Inc. Polyphenylene sulfide resin composition and method of manufacturing same

Also Published As

Publication number Publication date
EP1927615A4 (en) 2010-01-27
JP5594385B2 (ja) 2014-09-24
EP1927615B1 (en) 2016-02-24
EP1927615B2 (en) 2020-03-25
CN101313011A (zh) 2008-11-26
EP1927615A1 (en) 2008-06-04
JP2013108087A (ja) 2013-06-06
JP4432971B2 (ja) 2010-03-17
JPWO2007034800A1 (ja) 2009-03-26
CN101313011B (zh) 2011-03-30
US20090234068A1 (en) 2009-09-17
US7750111B2 (en) 2010-07-06
JP2009270118A (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5594385B2 (ja) ポリアリーレンスルフィド
US8546518B2 (en) Polyarylene sulfide and method for producing the same
KR101475658B1 (ko) 폴리페닐렌 설파이드 수지 조성물, 상기 수지 조성물의 성형품, 및 상기 수지 조성물의 제조 방법
US20100249342A1 (en) Process for production of polyphenylene sulfide resin
WO2013161321A1 (ja) ポリアリーレンスルフィド樹脂組成物、該樹脂組成物の製造方法、および該樹脂組成物の成形品
JP2009030012A (ja) 環式ポリアリーレンスルフィドの製造方法
JP5423038B2 (ja) ポリアリーレンスルフィドとオリゴアリーレンスルフィドの製造方法
JP6701877B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP2011068885A (ja) 環式ポリアリーレンスルフィドの製造方法
WO2016002210A1 (ja) ポリアリーレンスルフィドおよびその製造方法
WO2021100758A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
JPWO2020017288A1 (ja) 繊維強化樹脂基材
JP2023152968A (ja) ポリアリーレンスルフィドおよびポリアリーレンスルフィドの製造方法
JP2017105981A (ja) ポリアリーレンスルフィドの製造方法
JP6780373B2 (ja) 高純度なポリアリーレンスルフィド粒子の製造方法
JP2023019241A (ja) ポリアリーレンスルフィドの製造方法
JP5516312B2 (ja) 環式ポリアリーレンスルフィドの回収方法
JP2023149538A (ja) ポリアリーレンスルフィド樹脂の製造方法
WO2023053915A1 (ja) ポリアリーレンスルフィド樹脂組成物および成形品
WO2022045105A1 (ja) ポリアリーレンスルフィドの製造方法、ポリアリーレンスルフィド共重合体の製造方法、およびポリアリーレンスルフィド
CN117999318A (zh) 聚芳撑硫醚树脂组合物和成型品
JP2023019242A (ja) ポリアリーレンスルフィド樹脂組成物
CN115244112A (zh) 纤维增强热塑性树脂基材
JP2018053195A (ja) ポリアリーレンスルフィドの製造方法
CN118019805A (zh) 聚芳撑硫醚树脂组合物及成型品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043529.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006534512

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11992328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006798127

Country of ref document: EP