WO2013061561A1 - 環式ポリアリーレンスルフィドの製造方法 - Google Patents

環式ポリアリーレンスルフィドの製造方法 Download PDF

Info

Publication number
WO2013061561A1
WO2013061561A1 PCT/JP2012/006737 JP2012006737W WO2013061561A1 WO 2013061561 A1 WO2013061561 A1 WO 2013061561A1 JP 2012006737 W JP2012006737 W JP 2012006737W WO 2013061561 A1 WO2013061561 A1 WO 2013061561A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
cyclic
reaction mixture
reaction
mol
Prior art date
Application number
PCT/JP2012/006737
Other languages
English (en)
French (fr)
Inventor
智幸 小田島
堀内 俊輔
尚人 熊谷
幸二 山内
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12843497.4A priority Critical patent/EP2757124B1/en
Priority to JP2012550255A priority patent/JP5516756B2/ja
Priority to US14/353,204 priority patent/US9150695B2/en
Priority to CN201280051622.6A priority patent/CN103890043B/zh
Priority to KR1020147010712A priority patent/KR101408616B1/ko
Publication of WO2013061561A1 publication Critical patent/WO2013061561A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D341/00Heterocyclic compounds containing rings having three or more sulfur atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers

Definitions

  • the present invention relates to a method for producing cyclic polyarylene sulfide. More specifically, a method for producing a cyclic polyarylene sulfide by heating and reacting a reaction mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound and an organic polar solvent, wherein the cyclic polyarylene sulfide has a high purity. It is related with the method of manufacturing efficiently by a simple method.
  • Aromatic cyclic compounds have attracted attention in recent years due to the properties resulting from their cyclicity, ie, the specificity derived from their structure. Specifically, it is an effective monomer for use in high-functional material applications and functional materials, for example, as a compound having inclusion ability, and for the synthesis of high-molecular-weight linear polymers by ring-opening polymerization. It is expected to be used as Cyclic polyarylene sulfide (hereinafter, polyarylene sulfide may be abbreviated as PAS) also belongs to the category of aromatic cyclic compounds and is a notable compound as described above.
  • PAS Cyclic polyarylene sulfide
  • a method for producing a cyclic polyarylene sulfide for example, a method of oxidative polymerization of a diaryl disulfide compound under ultradilution conditions has been proposed (see, for example, Patent Document 1).
  • cyclic polyarylene sulfide is produced with high selectivity, and that only a small amount of linear polyarylene sulfide is produced, and cyclic polyarylene sulfide is certainly obtained in high yield.
  • the linear polyarylene sulfide produced as a by-product by this method has a molecular weight close to that of the target cyclic polyarylene sulfide, so that it is difficult to separate the cyclic polyarylene sulfide and the produced linear polyarylene sulfide. It was extremely difficult to efficiently obtain a high purity cyclic polyarylene sulfide.
  • this method requires an equivalent amount of an expensive oxidizing agent such as dichlorodicyanobenzoquinone as the raw material diaryl disulfide for the progress of oxidative polymerization, and it has not been possible to obtain cyclic polyarylene sulfide at low cost.
  • a dihalogenated aromatic compound such as 1,4-bis- (4′-bromophenylthio) benzene and sodium sulfide are refluxed in N-methylpyrrolidone at a reflux temperature.
  • a cyclic polyarylene sulfide can be obtained because the amount of the organic polar solvent with respect to 1 mol of the sulfur component in the reaction mixture is 1.25 liters or more.
  • This method is characterized in that the low molecular weight prepolymer produced in the reaction (A) is cyclized by adding a dihalogenated aromatic compound in the reaction (B).
  • a dihalogenated aromatic compound in the reaction (B) in order to efficiently produce a prepolymer, it is preferable that substantially no dihalogenated aromatic compound is present in the reaction mixture in the reaction (A). Only methods that did not include were verified.
  • the organic polar solvent in the reaction mixture in the reaction (A) is preferably less than 1.25 liters per mole of sulfur component. Only a method in which the organic polar solvent was 1 liter per mole of sulfur component has been verified.
  • the dihalogenated aromatic compound is allowed to actively coexist in the reaction mixture before addition of the dihalogenated aromatic compound, and the organic polar solvent is used in an amount of 1.
  • the effect on yield when producing cyclic polyarylene sulfide under more dilute conditions of 25 liters or more was unknown.
  • the cyclic polyarylene sulfide is first removed by removing a part or most of the organic polar solvent from the reaction mixture obtained by the reaction. And a mixed solid mainly composed of linear polyarylene sulfide is recovered, and then a solution containing cyclic polyarylene sulfide is prepared by contacting with a solvent capable of dissolving cyclic polyarylene sulfide, and then dissolved from the solution.
  • a method of obtaining a cyclic polyarylene sulfide by removing the solvent used is disclosed.
  • a highly pure cyclic polyarylene sulfide can be obtained by dissolving a polyarylene sulfide mixture containing at least linear polyarylene sulfide and cyclic polyarylene sulfide, and dissolving the cyclic polyarylene sulfide.
  • a method is disclosed in which a solution containing a cyclic polyarylene sulfide is prepared by contacting with a possible solvent, and then a cyclic polyarylene sulfide is obtained from the solution (see, for example, Patent Document 6).
  • a method for recovering cyclic polyarylene sulfides as described above that is, as a method for recovering highly pure cyclic polyarylene sulfides in an efficient and simple manner, at least a sulfidizing agent and dihalogenation in an organic polar solvent.
  • a method for recovering a cyclic polyarylene sulfide characterized by removing an organic polar solvent from a filtrate obtained by solid-liquid separation in a temperature range below the boiling point in pressure discloses a mixture comprising sex solvent to solid-liquid separation After distilling off part of the organic polar solvent.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for efficiently producing a highly pure cyclic polyarylene sulfide by a simple method.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms.
  • a reaction mixture comprising at least a sulfidizing agent (a), a dihalogenated aromatic compound (b) and an organic polar solvent (c), wherein 1.25 liters or more and 50 liters per mole of sulfur component in the reaction mixture
  • a method for producing a cyclic polyarylene sulfide by heating and reacting the reaction mixture containing the following organic polar solvent (c): 50% or more of the sulfidizing agent (a) in the reaction mixture is heated by heating the reaction mixture having an arylene unit of 0.80 mol or more and less than 1.05 mol per mol of sulfur component in the reaction mixture.
  • Step 1 until the reaction is consumed, and Subsequent to Step 1, the dihalogenated aromatic compound (b) is added and heated further so that the number of arylene units per mole of the sulfur component in the reaction mixture is 1.05 mol or more and 1.50 mol or less.
  • step 2 A step of obtaining a filtrate containing cyclic polyarylene sulfide and the organic polar solvent (c) by subjecting the reaction product to solid-liquid separation in a temperature range below the boiling point of the organic polar solvent (c) at normal pressure. 3.
  • the said reaction mixture is a manufacturing method of the cyclic polyarylene sulfide of Claim 4 containing the said linear polyarylene sulfide (d) at the time of the reaction start of the said step 1.
  • the pressure at the time of heating the said reaction mixture is 0.05 MPa or more in the pressure of a gauge
  • a method for producing the cyclic polyarylene sulfide according to item 4 or 5 A reaction mixture comprising at least a sulfidizing agent (a), a dihalogenated aromatic compound (b) and an organic polar solvent (c), wherein 1.25 liters or more and 50 liters per mole of sulfur component in the reaction mixture
  • the reaction mixture containing the following organic polar solvent (c): 50% or more of the sulfidizing agent (a) in the reaction mixture is heated by heating the reaction mixture having an arylene unit of 0.80 mol or more and less than 1.05 mol per mol of sulfur component in the reaction mixture.
  • Step 1 until the reaction is consumed, and Subsequent to Step 1, the dihalogenated aromatic compound (b) is added and heated further so that the number of arylene units per mole of the sulfur component in the reaction mixture is 1.05 mol or more and 1.50 mol or less.
  • Step 2 to obtain a reaction product containing at least cyclic polyarylene sulfide and linear polyarylene sulfide;
  • the linear polyarylene sulfide obtained by separating the cyclic polyarylene sulfide from the polyarylene sulfide mixture containing the cyclic polyarylene sulfide and the linear polyarylene sulfide obtained by heating and reacting by a method including A process for producing a cyclic polyarylene sulfide using an arylene sulfide as the linear polyarylene sulfide (d).
  • a method for producing the cyclic polyarylene sulfide according to item 4 or 5 A reaction mixture comprising at least a linear polyarylene sulfide (d), a sulfidizing agent (a), a dihalogenated aromatic compound (b) and an organic polar solvent (c), wherein 1 mol of the sulfur component in the reaction mixture
  • the reaction mixture containing 1.25 to 50 liters of the organic polar solvent (c) 50% or more of the sulfidizing agent (a) in the reaction mixture is heated by heating the reaction mixture having an arylene unit of 0.80 mol or more and less than 1.05 mol per mol of sulfur component in the reaction mixture.
  • Step 1 until the reaction is consumed, and Subsequent to Step 1, the dihalogenated aromatic compound (b) is added and heated further so that the number of arylene units per mole of the sulfur component in the reaction mixture is 1.05 mol or more and 1.50 mol or less.
  • Step 2 to obtain a reaction product containing at least cyclic polyarylene sulfide and linear polyarylene sulfide;
  • the linear polyarylene sulfide obtained by separating the cyclic polyarylene sulfide from the polyarylene sulfide mixture containing the cyclic polyarylene sulfide and the linear polyarylene sulfide obtained by heating and reacting by a method including A process for producing a cyclic polyarylene sulfide using an arylene sulfide as the linear polyarylene sulfide (d).
  • Embodiments of the present invention relate to a method for producing cyclic polyarylene sulfide (hereinafter sometimes abbreviated as cyclic PAS).
  • the sulfidation agent used in the embodiment of the present invention is any one that can introduce a sulfide bond into a dihalogenated aromatic compound and that can produce an arylene thiolate by acting on an arylene sulfide bond.
  • Good examples include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
  • alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide and a mixture of two or more of these. Of these, lithium sulfide and / or sodium sulfide are preferable, and sodium sulfide is more preferably used.
  • These alkali metal sulfides can be used as hydrates or aqueous mixtures or in the form of anhydrides.
  • the aqueous mixture refers to an aqueous solution, a mixture of an aqueous solution and a solid component, or a mixture of water and a solid component. Since generally available inexpensive alkali metal sulfides are hydrates or aqueous mixtures, it is preferred to use such forms of alkali metal sulfides.
  • alkali metal hydrosulfide examples include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and a mixture of two or more of these. Of these, lithium hydrosulfide and / or sodium hydrosulfide are preferable, and sodium hydrosulfide is more preferably used.
  • alkali metal sulfides generated in the reaction system from alkali metal hydrosulfides and alkali metal hydroxides can also be used.
  • an alkali metal sulfide prepared by previously contacting an alkali metal hydrosulfide and an alkali metal hydroxide can be used.
  • These alkali metal hydrosulfides and alkali metal hydroxides can be used in the form of compounds selected from hydrates, aqueous mixtures, and anhydrides. Hydrates or aqueous mixtures are preferred from the standpoint of availability and cost.
  • alkali metal sulfides generated in the reaction system from alkali metal hydroxides such as lithium hydroxide and sodium hydroxide and hydrogen sulfide can also be used.
  • alkali metal sulfides prepared by previously contacting alkali metal hydroxides such as lithium hydroxide and sodium hydroxide with hydrogen sulfide can also be used.
  • Hydrogen sulfide can be used in any form of gas, liquid, and aqueous solution.
  • the amount of the sulfidizing agent is determined based on the actual charge amount when a partial loss of the sulfidizing agent occurs before the start of the reaction with the dihalogenated aromatic compound due to dehydration operation or the like. It shall mean the remaining amount after deduction.
  • alkali metal hydroxide and / or an alkaline earth metal hydroxide in combination with the sulfidizing agent.
  • alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more of these.
  • alkaline earth metal hydroxide include calcium hydroxide, strontium hydroxide, and barium hydroxide. Sodium hydroxide is preferably used among them.
  • the amount of alkali metal hydroxide used can be 0.95 mol or more, preferably 1.00 mol or more, more preferably 1.005 mol, per 1 mol of alkali metal hydrosulfide. That's it. Moreover, it can be 1.50 mol or less, Preferably it is 1.25 mol or less, More preferably, it is 1.200 mol or less.
  • hydrogen sulfide is used as the sulfiding agent, it is particularly preferable to use an alkali metal hydroxide at the same time.
  • the amount of the alkali metal hydroxide used can be 2.0 mol or more, preferably 2.01 mol or more, more preferably 2.04 mol or more with respect to 1 mol of hydrogen sulfide. . Moreover, it can be 3.0 mol or less, Preferably it is 2.50 mol or less, More preferably, it is 2.40 mol or less.
  • the dihalogenated aromatic compound used in the embodiment of the present invention is an aromatic compound having an arylene group which is a divalent group of an aromatic ring and two halogeno groups.
  • One mole of the dihalogenated aromatic compound has 1 mole of an arylene unit and 2 moles of a halogeno group.
  • compounds having a phenylene group which is a divalent group of a benzene ring as an arylene group and two halogeno groups include p-dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dibromobenzene, o-dibromo.
  • dihalogenated benzenes such as benzene, m-dibromobenzene, 1-bromo-4-chlorobenzene, and 1-bromo-3-chlorobenzene.
  • dihalogenated aromatic compounds include 1-methoxy-2,5-dichlorobenzene, 1-methyl-2,5-dichlorobenzene, 1,4-dimethyl-2,5-dichlorobenzene, 1,3-dimethyl.
  • compounds containing a substituent other than halogen such as -2,5-dichlorobenzene and 3,5-dichlorobenzoic acid.
  • dihalogenated aromatic compounds mainly composed of p-dihalogenated benzene represented by p-dichlorobenzene are preferable. Particularly preferably, it contains 80 to 100 mol% of p-dichlorobenzene, and more preferably 90 to 100 mol%. It is also possible to use a combination of two or more different dihalogenated aromatic compounds in order to obtain a cyclic PAS copolymer.
  • linear polyarylene sulfide (hereinafter sometimes abbreviated as linear PAS) is the main constituent of a repeating unit of the formula: — (Ar—S) —
  • the unit is preferably a linear homopolymer or a linear copolymer containing 80 mol% or more of the repeating unit.
  • Ar includes units represented by the following formulas (A) to (L), among which the formula (A) is particularly preferable.
  • R1 and R2 are substituents selected from hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen group, and R1 and R2 are the same or different. May be.
  • this repeating unit is a main constituent unit, it can contain a small amount of branching units or crosslinking units represented by the following formulas (M) to (P).
  • the copolymerization amount of these branch units or cross-linking units is preferably in the range of 0 to 1 mol% with respect to 1 mol of the main structural unit represented by — (Ar—S) —.
  • linear PAS in the embodiment of the present invention may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
  • Typical examples thereof include polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers thereof, and mixtures thereof.
  • a particularly preferred linear PAS is a p-phenylene sulfide unit as the main structural unit of the polymer.
  • PPS polyphenylene sulfide
  • polyphenylene sulfide sulfone polyphenylene sulfide ketone.
  • linear PAS can be used as a raw material.
  • the melt viscosity of the linear PAS used in that case is not particularly limited, but the melt viscosity of a general linear PAS is exemplified by a range of 0.1 to 1000 Pa ⁇ s (300 ° C., shear rate 1000 / sec). A range of 0.1 to 500 Pa ⁇ s can be exemplified.
  • the molecular weight of the linear PAS is not particularly limited, and general PAS can be used.
  • the weight average molecular weight of such a PAS can be 5,000 or more, preferably 7,500 or more, and more preferably 10,000 or more.
  • the weight average molecular weight of PAS can be 1,000,000 or less, preferably 500,000 or less, and more preferably 100,000 or less.
  • the lower the weight average molecular weight the higher the solubility in an organic polar solvent. Therefore, there is an advantage that the time required for the reaction can be shortened, but within the above-mentioned range, it can be used without any substantial problem.
  • linear PAS The production method of such a linear PAS is not particularly limited, and any production method can be used.
  • an aromatic compound or thiophene containing at least one nucleus-substituted halogen and an alkali metal monosulfide represented by Japanese Patent Publication No. 45-3368, Japanese Patent Publication No. 52-12240 and Japanese Patent Publication No. 63-3375 Can be produced by a method in which is reacted at an elevated temperature in a polar organic solvent.
  • linear PAS can be obtained by bringing a sulfidizing agent and a dihalogenated aromatic compound into contact with each other in an organic polar solvent, as represented by, for example, JP-A No. 05-163349.
  • molded articles and molding waste using PAS produced by these methods, or waste plastics or off-spec products derived from PAS produced by these methods can be used widely as linear PAS.
  • the production of a cyclic compound is a competitive reaction between the production of a cyclic compound and the production of a linear compound
  • the method aimed at producing a cyclic polyarylene sulfide the cyclic product of the target product is used.
  • linear polyarylene sulfide is produced as a by-product.
  • such a by-product linear polyarylene sulfide can be used as a raw material without any problem.
  • the method for producing cyclic PAS represented by Patent Document 3 described above that is, an organic polar solvent having a sulfidizing agent and a dihalogenated aromatic compound in an amount of 1.25 liters or more per 1 mol of the sulfur component of the sulfidizing agent.
  • the method using polyarylene sulfide as a raw material is a particularly preferable method.
  • a method for producing a cyclic PAS represented by Patent Document 4 described above that is, linear polyarylene sulfide, a sulfidizing agent, and a dihalogenated aromatic compound are added in an amount of 1. with respect to 1 mol of a sulfur component in the reaction mixture.
  • Separation of cyclic polyarylene sulfide from the resulting polyarylene sulfide mixture containing cyclic polyarylene sulfide and linear polyarylene sulfide by a production method in which the reaction is conducted by heating using an organic polar solvent of 25 liters or more.
  • a method using the linear polyarylene sulfide obtained by the above as a raw material is also a preferable method.
  • a reaction mixture comprising at least a linear polyarylene sulfide (d), a sulfidizing agent (a), a dihalogenated aromatic compound (b) and an organic polar solvent (c), wherein 1 mol of sulfur component in the reaction mixture
  • a reaction mixture containing 1.25 liters to 50 liters of an organic polar solvent (c) with respect to 1 mol of sulfur component in the reaction mixture
  • the reaction mixture having an arylene unit of 0.80 mol or more and less than 1.05 mol is heated to react (step 1).
  • the number of arylene units per mol of sulfur component in the reaction mixture is 1.05.
  • linear polyarylene sulfide there is no restriction
  • the linear polyarylene sulfide can be used in a state containing an organic polar solvent which is a reaction solvent, and can also be used in a state containing a third component which does not essentially inhibit the reaction. Examples of such a third component include inorganic fillers and alkali metal halides.
  • the alkali metal halide includes any combination of alkali metals (ie, lithium, sodium, potassium, rubidium and cesium) and halogens (ie, fluorine, chlorine, bromine, iodine and astatine).
  • alkali metals ie, lithium, sodium, potassium, rubidium and cesium
  • halogens ie, fluorine, chlorine, bromine, iodine and astatine.
  • Specific examples include lithium chloride, sodium chloride, potassium chloride, lithium bromide, sodium bromide, potassium bromide, lithium iodide, sodium iodide, potassium iodide, and cesium fluoride.
  • Preferable examples include alkali metal halides generated by the reaction of the aforementioned sulfiding agent and dihalogenated aromatic compound.
  • Alkali metal halides resulting from combinations of sulfidizing agents and dihalogenated aromatic compounds that are generally readily available include lithium chloride, sodium chloride, potassium chloride, lithium bromide, sodium bromide, potassium bromide and iodide.
  • Sodium can be exemplified, and sodium chloride, potassium chloride, sodium bromide, and potassium bromide can be exemplified as preferred, and sodium chloride is more preferred. It is also possible to use linear polyarylene sulfide in the form of a resin composition containing an inorganic filler or an alkali metal halide.
  • linear PAS is generated as a by-product as described above.
  • the melt viscosity of the linear PAS produced in the embodiment of the present invention is not particularly limited, but the melt viscosity of a general linear PAS is 0.1 to 1000 Pa ⁇ s (300 ° C., shear rate 1000 / sec).
  • the range can be exemplified, and the range of 0.1 to 500 Pa ⁇ s can be said to be a range that tends to be generated.
  • the molecular weight of the linear PAS is not particularly limited, but the weight average molecular weight of a general PAS can be exemplified as 1,000 to 1,000,000, and the production of the cyclic polyarylene sulfide of the embodiment of the present invention
  • the linear PAS produced by the method tends to be in the range of 2,500 to 500,000, and tends to be in the range of 5,000 to 100,000.
  • the higher the weight average molecular weight the more strongly the characteristics as linear PAS are expressed. Therefore, in the separation of cyclic PAS and linear PAS described later, the separation tends to be easily performed. It can be used without any essential problems.
  • an organic polar solvent is used when a reaction between a sulfidizing agent and a dihalogenated aromatic compound is performed, or when a reaction product obtained by the reaction is subjected to solid-liquid separation.
  • the organic polar solvent is preferably an organic amide solvent.
  • N-alkylpyrrolidones such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and N-cyclohexyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam and ⁇ -caprolactam.
  • Caprolactams aprotic organic solvents represented by 1,3-dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, and hexamethylphosphoric triamide, and mixtures thereof are preferably used because of high stability of the reaction. Of these, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are preferably used.
  • the amount of the organic polar solvent used in the reaction of at least the sulfidizing agent, the dihalogenated aromatic compound, and the organic polar solvent is 1 with respect to 1 mol of the sulfur component in the reaction mixture. It is 25 liters or more and 50 liters or less.
  • the preferable lower limit of the amount of the organic polar solvent used is 1.5 liters or more, more preferably 2 liters or more.
  • the upper limit is preferably 20 liters or less, and more preferably 15 liters or less.
  • the amount of solvent used is based on the volume of the solvent under normal temperature and pressure.
  • the amount of the organic polar solvent used per mole of the sulfur component is less than 1.25 liters, the production rate of the cyclic polyarylene sulfide produced by the reaction of the sulfidizing agent and the dihalogenated aromatic compound is extremely low. Since the production rate of linear polyarylene sulfide by-produced accompanying the formation of cyclic polyarylene sulfide is increased, the productivity of cyclic polyarylene sulfide per unit raw material is poor.
  • the production rate of cyclic polyarylene sulfide refers to the sulfur-containing raw material used in the preparation of the reaction mixture in the production of cyclic polyarylene sulfide described in detail later (sulfidizing agent and, if used, linear).
  • the production rate of the cyclic polyarylene sulfide is preferable from the viewpoint of converting the used sulfur-containing raw material into the target product (cyclic polyarylene sulfide) more efficiently as the amount of the organic polar solvent used is larger.
  • the amount of the organic polar solvent used is extremely increased in the production of the cyclic polyarylene sulfide in order to achieve an extremely high production rate, the amount of cyclic PAS produced per unit volume of the reaction vessel decreases. There is a tendency, and the time required for the reaction tends to increase.
  • the usage-amount of the solvent in manufacture of a general cyclic compound is very large in many cases, and it cannot often obtain a cyclic compound efficiently in the preferable usage-amount range of embodiment of this invention.
  • cyclic PAS can be efficiently obtained even under conditions where the amount of solvent used is relatively small, that is, when the amount is not more than the above-mentioned upper limit value of the preferred amount of solvent used, compared to the case of general cyclic compound production. It is done.
  • the reaction is carried out above the reflux temperature of the reaction mixture, so that the reaction efficiency is very high and the consumption rate of the raw material is high. It is presumed that it works properly.
  • the amount of the organic polar solvent used in the reaction mixture is an amount obtained by subtracting the organic polar solvent removed from the reaction system from the organic polar solvent introduced into the reaction system.
  • Cyclic polyarylene sulfide in the embodiment of the present invention is a cyclic compound having a repeating unit of the formula — (Ar—S) — as a main structural unit, preferably the repeating unit.
  • a repeating unit of the formula — (Ar—S) — as a main structural unit, preferably the repeating unit.
  • Q general formula
  • examples of Ar include units represented by the above formulas (A) to (L), among which the formulas (A) to (C) are preferable, and the formulas (A) and (B) are preferred. More preferred is formula (A).
  • the repeating units such as the above formulas (A) to (L) may be included at random, may be included as a block, or may be any mixture thereof.
  • Typical examples of these include cyclic polyphenylene sulfide, cyclic polyphenylene sulfide sulfone, cyclic polyphenylene sulfide ketone, cyclic random copolymers containing these, cyclic block copolymers, and mixtures thereof.
  • Particularly preferred cyclic polyarylene sulfides include p-phenylene sulfide units as the main structural unit. Is a cyclic polyphenylene sulfide containing 80 mol% or more, particularly 90 mol% or more.
  • the number m of repeating cyclic polyarylene sulfides in the formula (Q) is not particularly limited, but is preferably a mixture of 4 to 50, more preferably 4 to 30, still more preferably 4 to 25.
  • a polyarylene sulfide prepolymer containing a cyclic polyarylene sulfide is used as a raw material and a high molecular weight polyarylene sulfide (hereinafter, a high molecular weight polyarylene sulfide obtained using a polyarylene sulfide prepolymer as a raw material is simply converted into (Also referred to as arylene sulfide or PAS), it is desirable that the polyarylene sulfide prepolymer is heated at a temperature at which the polyarylene sulfide prepolymer melts, so that the polyarylene sulfide can be obtained efficiently. It becomes.
  • the melting temperature of the cyclic PAS tends to be 275 ° C. or lower, preferably 260 ° C. or lower, more preferably 255 ° C. or lower. Therefore, the melting temperature of such a polyarylene sulfide prepolymer containing cyclic PAS also tends to be lowered accordingly. Therefore, when the range of m of the cyclic PAS is in the above range, it is desirable that the heating temperature of the polyarylene sulfide prepolymer can be set low in the production of the polyarylene sulfide.
  • the melting temperature of cyclic PAS and polyarylene sulfide is the endotherm observed when the temperature is raised to 360 ° C. at a scanning rate of 20 ° C./min after holding at 50 ° C. for 1 minute with a suggested scanning calorimeter. Indicates the peak temperature of the peak.
  • the cyclic polyarylene sulfide in the embodiment of the present invention may be either a single compound having a single repeating number or a mixture of cyclic polyarylene sulfides having different repeating numbers, but cyclic compounds having different repeating numbers.
  • a mixture of polyarylene sulfides is preferred because it has a lower melting solution temperature and a smaller amount of heat required for melting than a single compound having a single repeating number.
  • 10-77408 discloses a method for obtaining cyclohexa (p-phenylene sulfide) in which Ar in the cyclic PAS is a paraphenylene sulfide unit and the repeating number m is 6.
  • the cyclic PAS according to the embodiment of the present invention can be used from the viewpoint that the temperature required for heating can be lowered.
  • a mixture of cyclic polyarylene sulfides having different repeating numbers may be used as cyclic PAS. Preferred is as described above.
  • the cyclic PAS in which the m in the formula (A) is 4 to 13 is 100 wt%
  • the cyclic PAS in which m is 5 to 8 It is preferable to use a cyclic PAS mixture containing 5% by weight or more of each, and it is more preferable to use a cyclic PAS mixture containing 7% by weight or more of cyclic PAS having m of 5 to 8.
  • a cyclic PAS mixture having such a composition ratio is particularly preferred from the viewpoint of lowering the melting temperature because the melting peak temperature tends to be low and the heat of fusion tends to be small.
  • each cyclic PAS having a different number of repetitions m with respect to the total amount of cyclic polyarylene sulfide in the cyclic PAS mixture was divided into components by high performance liquid chromatography equipped with a UV detector.
  • the ratio of the peak area attributed to the single cyclic PAS having the desired m number to the total peak area attributed to the cyclic PAS can be obtained.
  • the qualitative characteristics of each peak divided into components by this high performance liquid chromatography can be obtained by separating each peak by preparative liquid chromatography and performing an absorption spectrum or mass analysis in infrared spectroscopic analysis.
  • a reaction mixture containing at least a sulfidizing agent (a), a dihalogenated aromatic compound (b) and an organic polar solvent (c) is heated to react.
  • a sulfidizing agent (a) a dihalogenated aromatic compound
  • c an organic polar solvent
  • step 1 and step 2 are included, whereby high-purity cyclic polyarylene sulfide can be obtained efficiently and in a short time.
  • Step 1 heating the reaction mixture having an arylene unit of 0.80 mol or more and less than 1.05 mol per mol of sulfur component in the reaction mixture, so that 50% or more of the sulfidizing agent (a) in the reaction mixture is The step of reacting until the reaction is consumed.
  • Step 2 After step 1, after adding the dihalogenated aromatic compound (b) such that the number of arylene units per mole of sulfur component in the reaction mixture is 1.05 mol or more and 1.50 mol or less, the reaction is further performed. Performing a reaction product containing at least cyclic polyarylene sulfide and linear polyarylene sulfide.
  • step 1 and step 2 will be described in detail.
  • Step 1 Production of cyclic polyarylene sulfide; Step 1
  • the reaction mixture containing the above raw material components is used in Step 1, but in Step 1, at least the sulfidizing agent and the dihalogenated aromatic compound contained in the reaction mixture react with each other to achieve the target product. Formation of cyclic polyarylene sulfide proceeds.
  • a linear polyarylene sulfide (d) may be included as a raw material component of the reaction mixture.
  • the linear polyarylene sulfide in addition to the sulfidizing agent and the dihalogenated aromatic compound, the linear polyarylene sulfide also reacts, and the production of the target cyclic polyarylene sulfide proceeds.
  • the linear polyarylene sulfide (d) it is desirable that the linear polyarylene sulfide (d) to be charged as a raw material component is contained in the reaction mixture at the start of the reaction in Step 1, thereby improving the generation efficiency of the cyclic polyarylene sulfide.
  • the reaction start time point here refers to a time point at which heating of the reaction mixture is started, and a state in which substantial reaction consumption of the sulfidizing agent (a) and the dihalogenated aromatic compound (b) has not progressed.
  • the substantial reaction consumption here includes cyclic PAS and linear PAS having a weight average molecular weight in the range of 2,500 to 500,000, which is easily produced as a by-product in the method of the embodiment of the present invention as described above. , Refers to the reaction consumption of a sufficient sulfidizing agent (a) and dihalogenated aromatic compound (b) to form.
  • the sulfidizing agent (a) and the dihalogenated aromatic compound (b) are not in a state where no reaction is consumed at all, but a very small amount of the sulfidizing agent (a) and the dihalogenated compound that can occur without heating.
  • the reaction consumption of the aromatic compound (b) may proceed. Therefore, prior to step 1, the linear polyarylene sulfide (d) is mixed with the sulfidizing agent (a), dihalogenated aromatic compound (b), and organic polar solvent (c), which are raw material components.
  • the order and method of mixing them are not particularly limited.
  • the arylene unit per mole of sulfur component in the reaction mixture is 0.80 mol or more and less than 1.05 mol.
  • the lower limit of the arylene unit is preferably 0.82 mol, more preferably 0.87 mol, still more preferably 0.90 mol, even more preferably 0.92 mol, and even more preferably 0.94 mol.
  • the upper limit of the arylene unit is preferably 1.002 mol, more preferably 1.005 mol, even more preferably less than 1.00 mol, even more preferably 0.995 mol, and 0.990 mol. Particularly preferred.
  • the lower limit value As the lower limit value is selected, the lower the lower limit value, the higher the yield of cyclic polyarylene sulfide that is the object of the embodiment of the present invention. Moreover, it exists in the tendency which can reduce the production amount of the impurity in manufacture of cyclic polyarylene sulfide, so that a higher lower limit is selected. In particular, when a lower limit value of less than 0.94 mol is selected, the production rate of cyclic polyarylene sulfide tends to be particularly increased, while when a lower limit value of 0.94 mol or more is selected, impurity formation occurs. There is a strong tendency to significantly suppress.
  • the arylene unit contained in the reaction mixture is a raw material containing an arylene unit at a stage where the reaction between the sulfidizing agent (a) charged as a raw material and the dihalogenated aromatic compound (b) does not proceed at all.
  • the sulfidizing agent (a) charged as a raw material and the dihalogenated aromatic compound (b) does not proceed at all.
  • the reaction has progressed or when the raw material contains linear polyarylene sulfide (d)
  • the arylene unit derived from the dihalogenated aromatic compound contained in the reaction mixture and the arylene present in the reaction mixture The total number of arylene units derived from sulfide compounds.
  • the arylene sulfide compound is produced by reacting the sulfidizing agent (a) with the dihalogenated aromatic compound (b) and / or the linear polyarylene sulfide (d). . Therefore, as the reaction proceeds, an arylene sulfide unit corresponding to the amount of the dihalogenated aromatic compound consumed is newly generated. That is, when the arylene-containing component is not removed or added to the reaction mixture during the reaction, it can be said that the amount of arylene units in the reaction mixture is the same as that in the preparation stage even at the stage where the reaction has progressed.
  • the amount of the arylene unit in the reaction mixture can be determined by quantifying the amount of the arylene unit derived from the dihalogenated aromatic and the amount of the arylene sulfide compound present in the reaction system.
  • the amount of the dihalogenated aromatic compound in the reaction mixture can be determined by a method using a gas chromatographic method described later.
  • the amount of the arylene sulfide compound in the reaction mixture is determined by determining the amount of solid content obtained by dispersing a part of the reaction mixture in a large excess of water, recovering insoluble components in water, and drying the recovered components. It can be obtained by measuring.
  • the molar amount of the sulfur component contained in the reaction mixture is synonymous with the molar amount of sulfur atoms present in the reaction mixture.
  • the sulfur component contained in the reaction mixture corresponds to 1 mole.
  • the sulfur component contained in the reaction mixture corresponds to 1 mole.
  • the molar amount of the sulfur component contained in the reaction mixture refers to the molar amount of the sulfur component derived from the sulfidizing agent (a). Further, when the reaction has progressed or when the raw material contains linear polyarylene sulfide (d), the molar amount of the sulfur component contained in the reaction mixture is derived from the sulfidizing agent contained in the reaction mixture. This refers to the total molar amount of the sulfur component and the sulfur component derived from the arylene sulfide compound present in the reaction system.
  • the arylene sulfide compound is obtained by reacting the sulfidizing agent (a) with the dihalogenated aromatic compound (b) and / or the linear polyarylene sulfide (d). Therefore, in the progress of the reaction, an arylene sulfide unit corresponding to the amount of the sulfidizing agent consumed is newly generated. That is, when there is no removal, loss or addition of the sulfidizing agent in the reaction mixture during the reaction, it can be said that the amount of sulfur component contained in the reaction mixture is the same as in the preparation stage even at the stage where the reaction has progressed.
  • the amount of the sulfur component in the reaction mixture can be determined by quantifying the amount of the sulfur component derived from the sulfidizing agent and the amount of the arylene sulfide compound present in the reaction system.
  • the amount of the sulfidizing agent in the reaction mixture can be determined by an ion chromatography method described later. The method for quantifying the arylene sulfide compound in the reaction mixture is as described above.
  • Step 1 with the ratio of the arylene units per mole of sulfur component in the reaction mixture in such a range, that is, 0.80 mole or more and less than 1.05 mole, is the production rate of the resulting cyclic polyarylene sulfide. And it is extremely important to improve quality.
  • the number of arylene units per mole of sulfur component in the reaction mixture is less than 0.80 mole, the yield of cyclic polyarylene sulfide in the reaction product obtained after the reaction remains low, and the low molecular weight that becomes an impurity component The content of the compound tends to increase.
  • the number of arylene units per mole of sulfur component in the reaction mixture is more than 1.05 mole, the effect of improving the production rate of cyclic polyarylene sulfide by performing step 2 cannot be obtained, and the reaction The production rate of cyclic polyarylene sulfide in the product remains low, and the content of low molecular weight compounds which are impurity components tends to increase. Therefore, outside the above preferred range, the amount of impurity components in the reaction product obtained after the reaction is increased, which means that even when the cyclic polyarylene sulfide is recovered and isolated, the cyclic polyarylene sulfide after isolation is isolated. It is necessary to avoid this because it directly leads to an increase in the impurity content contained in.
  • the condition that the arylene unit relative to the sulfur component is preferably set such that the number of arylene units per mol of the sulfur component in the reaction mixture in Step 1 is 0.80 mol or more and less than 1.00 mol is preferably set. It is possible. Conventionally, in such a range, the target product is difficult to obtain, and as described in detail later, there has been a problem that the separability when performing solid-liquid separation when recovering cyclic polyarylene sulfide is reduced. .
  • the embodiment of the present invention is characterized in that the step 2 is performed subsequent to the step 1, so that the target product can be obtained without any problem even if the reaction is carried out in such a range, and the production rate of the cyclic polyarylene sulfide is further increased.
  • the present invention has been found to be effective, and the present invention has been completed.
  • the arylene unit for the sulfur component is insufficient, it is possible to obtain high separability in solid-liquid separation for recovering cyclic polyarylene sulfide from the reaction product described later. This is one of the characteristics of the form.
  • setting the arylene unit per mole of the sulfur component in the reaction mixture in Step 1 to the above preferable range has an effect of further improving the yield of cyclic polyarylene sulfide. This is the preferred method.
  • linear polyarylene sulfide (d) may be included as a raw material component in the reaction mixture.
  • linear polyarylene sulfide (d) in the reaction mixture is included.
  • the content of is not particularly limited as long as the raw material composition in the reaction mixture is within the above range.
  • the amount of the sulfur component derived from the linear polyarylene sulfide (d) is the sum of the sulfur component derived from the linear polyarylene sulfide and the sulfur component derived from the sulfidizing agent (b), that is, in the reaction mixture. It is preferable to be a majority of the amount of total sulfur component.
  • the lower limit of the ratio of the sulfur component of the linear polyarylene sulfide in the reaction mixture to 1 mol of the total sulfur component in the reaction mixture is preferably 0.5 mol, more preferably 0.6 mol, and 0.7 mol Is more preferable.
  • the upper limit is preferably 0.99 mol, more preferably 0.95 mol, and even more preferably 0.90 mol. If the content of the linear polyarylene sulfide is within the above-mentioned preferable range, the cyclic polyarylene sulfide production rate with respect to the sulfidizing agent (a) used when the step 2 described later is performed after the step 1 is obtained. It tends to be higher. Moreover, it can be said that it is economically efficient when the linear polyarylene sulfide by-produced by the method of the embodiment of the present invention is used as the linear polyarylene sulfide (d).
  • step 1 the reaction mixture having the above composition is heated to perform the reaction.
  • the temperature in this reaction is preferably a temperature exceeding the reflux temperature of the reaction mixture under normal pressure.
  • This desirable temperature cannot be uniquely determined because it varies depending on the kind and amount of the sulfidizing agent, dihalogenated aromatic compound and organic polar solvent used in the reaction, but is usually 120 ° C. or higher, preferably 180 ° C. or higher.
  • it is 220 degreeC or more, More preferably, it can be 225 degreeC or more.
  • it can be 350 degrees C or less,
  • the substantial reaction consumption of the sulfidizing agent (a) and the dihalogenated aromatic compound (b) proceeds rapidly to form cyclic PAS and linear PAS, and the reaction proceeds in a short time.
  • the normal pressure is a pressure in the vicinity of the standard state of the atmosphere, and the standard state of the atmosphere is an atmospheric pressure condition in which the temperature is about 25 ° C. and the absolute pressure is about 101 kPa.
  • the reflux temperature is the temperature at which the liquid component of the reaction mixture repeats boiling and condensation. In the embodiments of the present invention, it has been described above that it is desirable to heat the reaction mixture beyond the reflux temperature under normal pressure.
  • Examples thereof include a method of reacting under a pressure exceeding the pressure and a method of heating the reaction mixture in a closed container.
  • the reaction may be either a one-step reaction performed at a constant temperature, a multi-stage reaction in which the temperature is increased stepwise, or a reaction in which the temperature is continuously changed.
  • the reaction time in Step 1 depends on the type and amount of raw materials used or the reaction temperature, and thus cannot be specified unconditionally, but is preferably 0.1 hours or more, more preferably 0.5 hours or more.
  • step 2 when performing step 2 after step 1 as described later, it is preferable to perform step 2 after sufficiently consuming the sulfidizing agent and dihalogenated aromatic compound in the reaction mixture in step 1.
  • the reaction time is not particularly limited, but the reaction proceeds sufficiently even within 40 hours, preferably within 10 hours, more preferably within 6 hours.
  • the pressure in step 1 is not particularly limited, and the pressure varies depending on the raw materials constituting the reaction mixture, its composition, the reaction temperature, and the like, and cannot be uniquely defined.
  • An example is 0.05 MPa or more, more preferably 0.3 MPa or more.
  • the lower limit of the preferable pressure at such a reaction temperature is 0.25 MPa or more, more preferably 0. 3 MPa or more can be illustrated.
  • 10 MPa or less More preferably, 5 MPa or less can be illustrated.
  • the time required to cause the linear polyarylene sulfide, the sulfidizing agent and the dihalogenated aromatic compound to react with each other tends to be shortened.
  • the reaction mixture is reacted with an inert gas described later at an optional stage such as before starting the reaction or during the reaction, preferably before starting the reaction. It is also a preferable method to pressurize the system.
  • the gauge pressure is a relative pressure based on the atmospheric pressure, and is equivalent to a pressure difference obtained by subtracting the atmospheric pressure from the absolute pressure.
  • a third component that does not significantly inhibit the reaction and a third component that has an effect of accelerating the reaction can be added to the reaction mixture.
  • limiting in particular in the method of performing reaction It is preferable to carry out on stirring conditions.
  • limiting in particular in the temperature at the time of charging a raw material here For example, you may react after charging a raw material near room temperature, or charge a raw material in the reaction container temperature-controlled beforehand to the temperature preferable for reaction mentioned above. It is also possible to carry out the reaction. It is also possible to continuously carry out the reaction by sequentially charging the raw materials into the reaction system in which the reaction is performed.
  • the sulfidizing agent (a), the dihalogenated aromatic compound (b), the organic polar solvent (c), and the linear polyarylene sulfide (d) those containing water can be used.
  • the amount of water at the start of the reaction that is, at the stage where the substantial reaction consumption of the sulfidizing agent (a) and the dihalogenated aromatic compound (b) charged as the reaction mixture has not progressed is the sulfur component in the reaction mixture.
  • the amount is preferably 0.2 mol or more, more preferably 0.5 mol or more, and further preferably 0.6 mol or more per mol.
  • the water content is preferably 20.0 mol or less, more preferably 10.0 mol or less, and more preferably 8.0 mol or less, per mol of sulfur component in the reaction mixture. preferable.
  • the linear polyarylene sulfide, sulfidizing agent, organic polar solvent, dihalogenated aromatic compound, and other components that form the reaction mixture contain water, and the amount of water in the reaction mixture exceeds the above range, Before starting the reaction or in the middle of the reaction, it is possible to reduce the amount of water in the reaction system so that the amount of water can be within the above range, and the reaction tends to proceed efficiently in a short time. is there.
  • the water content of the reaction mixture is less than the above preferable range, it is also a preferable method to add water so that the water content becomes the above water content.
  • the raw material When the amount of water in the reaction system is within the above preferred range (0.2 to 20.0 moles per mole of sulfur component in the reaction mixture), the raw material, linear polyarylene sulfide, sulfidizing agent, and dihalogenated aromatic
  • the reaction efficiency of the compound tends to increase, and the cyclic polyarylene sulfide tends to be obtained efficiently in a short time.
  • the high reaction efficiency of the raw material has the effect of relatively suppressing the side reaction that progresses competitively with the cyclic polyarylene sulfide formation reaction that is the object of the embodiment of the present invention, that is, the impurity formation reaction. It can be estimated that the cyclic polyarylene sulfide having a low impurity ratio and excellent quality is obtained by performing the reaction with a preferable amount of water.
  • reaction consumption rate of the dihalogenated aromatic compound is a value calculated by the following formula.
  • the remaining amount of the dihalogenated aromatic compound can be usually determined by gas chromatography.
  • reaction consumption rate (%) [[the charged amount of dihalogenated aromatic compound (mol) ⁇ the remaining amount of dihalogenated aromatic compound ( Mol)) / [charge amount of dihalogenated aromatic compound (mol) ⁇ excess amount of dihalogenated aromatic compound (mol)]] ⁇ 100
  • reaction consumption rate (%) [[the charged amount of dihalogenated aromatic compound (mol) ⁇ the remaining amount of dihalogenated aromatic compound ( Mol)] / [amount of dihalogenated aromatic compound (mol)]] ⁇ 100
  • Step 2 Production of cyclic polyarylene sulfide; Step 2 In Step 2, after Step 1, the dihalogenated aromatic compound (b) is added so that the arylene unit per mole of sulfur component in the reaction mixture is 1.05 mol or more and 1.50 mol or less, and further reaction is performed. By carrying out the reaction, a reaction product containing at least cyclic polyarylene sulfide and linear polyarylene sulfide is obtained.
  • the additional amount of the dihalogenated aromatic compound in the step 2 is such that the total amount of the arylene unit in the reaction mixture in the step 1 and the arylene unit derived from the newly added dihalogenated aromatic compound is 1 mol of the sulfur component in the reaction mixture.
  • This is an additional amount in which the per arylene unit is in the range of 1.05 mol to 1.50 mol.
  • the lower limit of the total amount of the arylene units after addition of the dihalogenated aromatic compound is 1.05 mol per mol of sulfur component in the reaction mixture, and preferably 1.06 mol.
  • the upper limit is 1.50 mol, preferably 1.30 mol, more preferably 1.20 mol, even more preferably 1.15 mol, and still more preferably 1.12 mol.
  • the method for adding the dihalogenated aromatic compound is not particularly limited, and examples include a method of intermittently performing a plurality of times and a method of continuously performing at a constant speed.
  • the amount of arylene units per mole of the sulfur component in the reaction mixture used in Step 1 is set to a condition in which the number of arylene units is insufficient with respect to the sulfur component. This is effective from the viewpoint of increasing the production rate of cyclic polyarylene sulfide.
  • the addition is performed intermittently over a plurality of times and / or by a method of continuously performing at a constant rate. It is desirable.
  • the process of intermittently adding the dihalogenated aromatic compound in Step 2 and / or The method of continuously performing at a constant rate is effective for reducing impurity components contained in the obtained cyclic polyarylene sulfide and obtaining a high-purity cyclic polyarylene sulfide. Furthermore, by adopting such an addition method, the production rate of cyclic polyarylene sulfide tends to further increase.
  • the sulfur in the reaction mixture is first temporarily removed.
  • the amount of arylene units per mol of sulfur component in the reaction mixture is the predetermined value of step 2.
  • a method of further adding is preferable. When intermittent addition is performed by such a method, it is possible to improve the production rate of cyclic polyarylene sulfide, particularly while reducing the amount of impurities produced.
  • a predetermined amount of the dihalogenated aromatic compound is introduced into the reaction system via a pressure-resistant addition pot, or a molten dihalogenated aromatic compound is used.
  • a method for adding the dihalogenated aromatic compound into the reaction system a predetermined amount of the dihalogenated aromatic compound is introduced into the reaction system via a pressure-resistant addition pot, or a molten dihalogenated aromatic compound is used. Examples thereof include a method in which a dihalogenated aromatic compound made into a solution using an aromatic compound or an organic polar solvent is pressed into the reaction system by a pressure pump.
  • the dihalogenated aromatic compound after the sulfidizing agent (b) in the reaction mixture is sufficiently consumed.
  • the addition of the dihalogenated aromatic compound is performed after the reaction until 50% or more of the sulfidizing agent is consumed as a lower limit, and after the reaction until 60% or more is consumed. More preferably, it is carried out after reacting until 70% or more of the reaction is consumed, more preferably after reacting until 80% or more of the reaction is consumed, and reaction is carried out until 90% or more of the reaction is consumed. It is particularly preferred to do this later.
  • Addition of the dihalogenated aromatic compound after the reaction consumption of the sulfidizing agent is thus advanced to the above range suppresses the generation of impurity components and improves the quality and purity of the resulting cyclic polyarylene sulfide. Is extremely important for.
  • the degree of reaction consumption of the sulfiding agent is less than 50%, the amount of impurity components in the reaction product obtained after the reaction increases. Such an increase in the amount of impurity components should be avoided even when recovering and isolating the cyclic polyarylene sulfide, because it directly leads to an increase in the content of impurities contained in the isolated cyclic polyarylene sulfide. is there.
  • the reaction consumption rate of the sulfidizing agent is, for example, the sulfide remaining in the reaction mixture using an ion chromatography technique equipped with an electrical conductivity detector or an electrochemical detector. It can be calculated by quantifying the amount of the agent. In this case, as a ratio of the reaction consumption of the sulfidizing agent (a value obtained by subtracting the residual amount of the sulfidizing agent in the reaction mixture from the amount of the sulfidizing agent charged) to the amount of the sulfidizing agent charged, sulfidation The reaction consumption rate of the agent can be calculated.
  • step 2 the reaction is further carried out after adding the dihalogenated aromatic compound, and it is possible to adopt the preferable conditions in step 1 described in the preceding paragraph (7) for various conditions such as temperature, pressure and water content in this reaction. It is.
  • the reaction temperature in step 2 is preferably a temperature exceeding the reflux temperature of the reaction mixture under normal pressure.
  • a temperature higher than the temperature used in step 1 can be adopted, specifically 180 ° C. or higher, more preferably 220 ° C. or higher, and further preferably 225. It is more than 250 degreeC, More preferably, it is 250 degreeC or more, More preferably, it can be 260 degreeC or more.
  • the temperature of the process 2 can be 320 degrees C or less, More preferably, it is 310 degrees C or less, More preferably, it can be 300 degrees C or less. In this preferable temperature range, not only the reaction tends to proceed in a short time, but also when the temperature higher than Step 1 is adopted, the amount of impurity components tends to be reduced.
  • reaction time in Step 2 depends on the type and amount of raw materials used or the reaction temperature, it cannot be specified unconditionally. However, since most of the sulfidizing agent charged in Step 1 has already been consumed, the reaction time in Step 1 It is possible to allow a sufficient reaction to proceed even in a shorter time.
  • a preferable lower limit of the reaction time is 0.1 hour or longer, and more preferably 0.25 hour or longer.
  • the reaction proceeds sufficiently even within 20 hours, preferably within 5 hours, more preferably within 3 hours.
  • reaction of the process 1 and the process 2 well-known various polymerization systems, reaction systems, such as a batch type and a continuous method, are employable.
  • the atmosphere in the production is preferably a non-oxidizing atmosphere, preferably in an inert gas atmosphere such as nitrogen, helium, and argon. From the viewpoint of economy and ease of handling, a nitrogen atmosphere is preferable.
  • Step 3 Solid-liquid separation of reaction product; Step 3
  • a reaction product containing at least a cyclic polyarylene sulfide and a linear polyarylene sulfide is obtained by performing the above-described Step 1 and Step 2.
  • the organic polar solvent used in Step 1 and Step 2 is also included in the reaction product.
  • step 3 subsequent to step 1 and step 2 above the reaction product obtained above is subjected to solid-liquid separation in a temperature range below the boiling point at normal pressure of the organic polar solvent. It is preferable to carry out a step of obtaining a filtrate containing the formula polyarylene sulfide and the organic polar solvent. By performing Step 3 using the reaction product, it is possible to easily separate the cyclic polyarylene sulfide and the linear polyarylene sulfide in the reaction product.
  • the temperature at which the reaction product is subjected to solid-liquid separation is preferably below the boiling point of the organic polar solvent at normal pressure.
  • the specific temperature may be 10 ° C or higher, more preferably 15 ° C or higher, and further preferably 20 ° C or higher.
  • it can be 200 degrees C or less, 150 degrees C or less is more preferable, and 120 degrees C or less is still more preferable.
  • cyclic polyarylene sulfide is highly soluble in organic polar solvents, while components other than cyclic polyarylene sulfide contained in the reaction product, especially linear polyarylene sulfide contained inevitably, are organic. Since it tends to be difficult to dissolve in a polar solvent, performing solid-liquid separation in such a temperature range is effective for obtaining a high-quality cyclic polyarylene sulfide as a filtrate component with high accuracy.
  • the method for performing solid-liquid separation is not particularly limited, and pressure filtration or vacuum filtration that is filtration using a filter, centrifugation or sedimentation separation that is separation based on a difference in specific gravity between a solid content and a solution, and a combination thereof. Etc. can be adopted.
  • pressure filtration using a filter or vacuum filtration can be preferably employed.
  • the filter used for the filtration operation is not particularly limited as long as it is stable under the conditions for solid-liquid separation.
  • commonly used filter media such as a wire mesh filter, a sintered plate, a filter cloth, and filter paper can be suitably used.
  • the pore size of this filter can be adjusted in a wide range depending on the viscosity, pressure, temperature, and particle size of the solid component in the reaction product for the solid-liquid separation operation.
  • the particle diameter of the linear polyarylene sulfide recovered as a solid content from the reaction product in this solid-liquid separation operation that is, the particle diameter of the solid content present in the reaction product to be subjected to solid-liquid separation. It is effective to select a filter pore diameter such as a mesh diameter or a pore diameter.
  • the average particle size (median diameter) of the solid content in the reaction product to be subjected to solid-liquid separation can vary widely depending on the composition, temperature, concentration, etc. of the reaction product.
  • the average particle size tends to be 1 to 200 ⁇ m. Therefore, a preferable average pore diameter of the filter can be exemplified by 0.1 ⁇ m or more, preferably 0.25 ⁇ m or more, and more preferably 0.5 ⁇ m or more. Moreover, 100 micrometers or less can be illustrated, 20 micrometers or less are preferable and 15 micrometers or less are more preferable.
  • a filter medium having an average pore size in the above range the linear polyarylene sulfide that permeates the filter medium tends to decrease, and a cyclic polyarylene sulfide having a high purity tends to be easily obtained.
  • the atmosphere when performing solid-liquid separation there is no particular limitation on the atmosphere when performing solid-liquid separation, but cyclic polyarylene sulfide, organic polar solvent, and linear PAS are oxidatively deteriorated depending on conditions such as contact time and temperature, It is preferable to carry out in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere means an atmosphere in which the oxygen concentration in the gas phase is 5% by volume or less, preferably 2% by volume or less, and more preferably contains substantially no oxygen, that is, an inert gas such as nitrogen, helium, or argon. Refers to the atmosphere. Among these, it is particularly preferable to carry out in a nitrogen atmosphere from the viewpoint of economy and ease of handling.
  • filters used for solid-liquid separation include, but are not limited to, sieves, vibrating screens, centrifuges, sedimentation separators, pressure filters, suction filters, and the like.
  • a filter having a mechanism that can easily maintain a non-oxidizing atmosphere during solid-liquid separation operation it is possible to select a filter having a mechanism that can easily maintain a non-oxidizing atmosphere during solid-liquid separation operation. preferable.
  • the centrifugal separator, the sedimentation separator, and the pressure filter can be said to be preferable because such functions can be easily added, and the mechanism is particularly simple.
  • a pressure filter is more preferable from the viewpoint of excellent economic efficiency.
  • Step 1 and Step 2 which are features in the method for producing cyclic polyarylene sulfide according to the embodiment of the present invention, extremely efficient solid-liquid separation is possible when the obtained reaction product is subjected to solid-liquid separation. It is also a great feature of the embodiment of the present invention that an effect excellent in solid-liquid separation is obtained.
  • the solid-liquid separation property can be evaluated by the time required for solid-liquid separation when a certain amount of reaction product is solid-liquid separated.
  • a filter medium (filter) having a predetermined standard (pore diameter, material) and a predetermined area is installed in a pressure filtration device that can be sealed, and a predetermined amount of reaction product is charged therein.
  • any method can be used as long as the organic polar solvent is separated from the reaction product and the amount of the organic polar solvent contained in the reaction product can be reduced.
  • Preferable methods include a method of distilling the organic polar solvent under reduced pressure or pressure, a method of removing the solvent by flash transfer, and the method of distilling the organic polar solvent under reduced pressure or pressure is particularly preferable.
  • an inert gas such as nitrogen, helium, or argon may be used as a carrier gas.
  • the temperature at which the organic polar solvent is distilled off varies depending on the type of the organic polar solvent and the composition of the reaction product, and thus cannot be uniquely determined, but is preferably 180 ° C. or higher, preferably 200 ° C. or higher. More preferred. Moreover, 300 degrees C or less is preferable, 280 degrees C or less is more preferable, and 250 degrees C or less is further more preferable.
  • the solid-liquid separation here, most of the cyclic polyarylene sulfide contained in the reaction product can be separated as a filtrate component, preferably 80% or more, more preferably 90% or more, and still more preferably 95. % Or more can be recovered as a filtrate component.
  • a part of the cyclic polyarylene sulfide remains in the linear polyarylene sulfide separated as a solid content by solid-liquid separation, it can be washed with a fresh organic polar solvent for the solid content. It is also possible to reduce the residual amount of cyclic polyarylene sulfide in the solid content.
  • the solvent used here may be any solvent that can dissolve the cyclic polyarylene sulfide, and it is preferable to use the same solvent as the organic polar solvent used in Step 1 and Step 2 described above.
  • the cyclic polyarylene sulfide can be recovered by separating the cyclic polyarylene sulfide from the filtrate component obtained by the solid-liquid separation. Is possible. There is no particular limitation on the recovery method. For example, if necessary, after removing a part or most of the organic polar solvent in the filtrate by an operation such as distillation, the solubility in the cyclic polyarylene sulfide is low and the organic polar solvent is used.
  • a method of recovering cyclic polyarylene sulfide as a solid by bringing a solvent having a miscible property and a filtrate into contact with each other under heating as necessary can be exemplified.
  • the solvent having such characteristics is generally a relatively polar solvent, and the preferred solvent differs depending on the organic polar solvent in the filtrate and the type of by-product contained in the filtrate. Examples thereof include alcohols typified by methanol, ethanol, propanol, isopropanol, butanol, and hexanol, ketones typified by acetone, and acetates typified by ethyl acetate and butyl acetate.
  • the content of the cyclic polyarylene sulfide in the filtrate is preferably 0.5% by weight or more, more preferably 1% by weight or more, still more preferably 2% by weight or more, and still more preferably 5% by weight or more.
  • the upper limit of the content of cyclic polyarylene sulfide in the filtrate is not particularly limited.
  • the inconvenience in this recovery operation is, for example, that the properties of the filtrate (which may be in the form of a slurry containing a solid content) before performing the operation of adding water, which is a preferable operation, become non-uniform and the local composition differs. For example, the quality of the product deteriorates.
  • the upper limit of the content of cyclic polyarylene sulfide in the filtrate cannot be determined. % Or less, preferably 15% by weight or less, more preferably 10% by weight or less.
  • this heating temperature differs depending on the characteristics of the organic polar solvent to be used and cannot be uniquely determined, it is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 90 ° C. or higher.
  • the upper limit temperature of the heating temperature is preferably not higher than the boiling point at normal pressure of the organic polar solvent to be used. Within such a temperature range, the cyclic polyarylene sulfide content in the filtrate tends to be stable while maintaining a high content, which is preferable. In preparing this mixture, it is possible to perform operations such as stirring and shaking, which is desirable from the viewpoint of maintaining a more uniform state of the filtrate.
  • this recovery method it is preferable to add and recover the cyclic polyarylene sulfide dissolved in the organic polar solvent as a solid by adding water to the filtrate.
  • water is added dropwise while stirring the filtrate.
  • the upper limit temperature of the temperature at which water is added is preferably not more than the boiling point at normal pressure of the organic polar solvent to be used.
  • the method of recovering cyclic PAS by adding water to the filtrate containing cyclic PAS exemplified above is compared with the reprecipitation method conventionally employed as a method for recovering cyclic PAS from the filtrate containing cyclic PAS. Therefore, the cyclic PAS can be efficiently recovered even when a small amount of solvent is used, so that the weight of water added to the filtrate containing the cyclic PAS and the organic solvent can be greatly reduced.
  • the weight of water added to the filtrate can be 50% by weight or less based on the total amount of the organic polar solvent and water after the addition of water. It is also possible to set a condition of 35% by weight or less under more preferable conditions.
  • the lower limit of the weight of water to be added is not particularly limited, but in order to more efficiently recover cyclic PAS as a solid content, it is preferably 5% by weight or more and more preferably 10% by weight or more.
  • it is possible to recover 50% by weight or more of the cyclic PAS contained in the filtrate as a solid content.
  • 80% by weight or more of the cyclic PAS can be recovered as a solid content, more preferably 90% by weight or more, still more preferably 95% or more, and even more preferably 98% by weight or more can be recovered. is there.
  • the amount of water in the filtrate is the total amount of water contained in the reaction mixture before solid-liquid separation and the amount of water added to the filtrate, and the amount of water added to the filtrate.
  • the amount needs to be determined taking into account the amount of water contained in the reaction mixture.
  • cyclic PAS can be recovered as a solid using a known solid-liquid separation method.
  • the solid-liquid separation method include separation by filtration, centrifugation, and decantation.
  • it is preferable to perform solid-liquid separation after the filtrate mixture is in a state of less than 50 ° C., more preferably 40 ° C. or less, more preferably 30 ° C. or less. Preferably it is done.
  • the recovery of cyclic PAS after such a preferable temperature is not only effective in increasing the recovery rate of cyclic PAS, but also from the viewpoint that cyclic PAS can be recovered with simpler equipment.
  • This is a preferable condition.
  • There is no particular lower limit to the temperature of the filtrate mixture but it is desirable to avoid conditions that cause the viscosity of the filtrate mixture to become too high due to a decrease in temperature, or conditions that cause solidification, and are generally around normal temperature. It is most desirable to do.
  • cyclic PAS By performing such solid-liquid separation, 50% by weight or more of cyclic PAS present in the filtrate mixture tends to be isolated and recovered as a solid content.
  • the solid cyclic PAS thus separated contains a liquid component (mother liquor) in the filtrate mixture
  • the mother liquor can be reduced by washing the solid cyclic PAS with various solvents.
  • solvents having low solubility in cyclic PAS are desirable. For example, water, alcohols represented by methanol, ethanol, propanol, isopropanol, butanol, and hexanol are used.
  • Examples thereof include ketones typified by acetone, and acetates typified by ethyl acetate and butyl acetate. From the viewpoints of availability and economy, water, methanol and acetone are preferable, and water is particularly preferable.
  • this cleaning method a method of adding a solvent to the separation filter on which the solid cake is deposited and solid-liquid separation, a method of adding a solvent to the solid cake and stirring to make a slurry, and then a solid-liquid separation again, etc.
  • a general drying process may be performed on the cyclic PAS in a wet state containing a liquid component, such as the above-mentioned mother liquor or a solvent component used for a cleaning operation.
  • a liquid component such as the above-mentioned mother liquor or a solvent component used for a cleaning operation.
  • the non-oxidizing atmosphere is an atmosphere in which the oxygen concentration in the gas phase in contact with various components to be recovered is 5% by volume or less, preferably 2% by volume or less, and more preferably substantially free of oxygen. It refers to an inert gas atmosphere such as nitrogen, helium, and argon. Among these, a nitrogen atmosphere is particularly preferable from the viewpoints of economy and ease of handling.
  • the cyclic PAS thus obtained usually has a cyclic PAS of 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight. It has a high purity, and has high utility value even industrially having characteristics different from generally obtained linear PAS.
  • a preferable range of m is 4 to 30, more preferably 4 to 25.
  • cyclic PAS When m is within this range, as described later, when cyclic PAS is used in various resins, the PAS tends to be melted at a lower temperature. When a prepolymer containing PAS is converted to a high degree of polymerization, the polymerization reaction tends to proceed, and a high molecular weight product tends to be easily obtained. The reason for this is not clear at this time, but it is assumed that cyclic PAS in this range has a large bond distortion due to the fact that the molecule is cyclic, and that a ring-opening reaction easily occurs during polymerization. Also, since cyclic PAS with a single m is obtained as a single crystal, it has a very high melting temperature.
  • the cyclic PAS according to the embodiment of the present invention is excellent in that the content of a low molecular weight compound (hereinafter sometimes referred to as a low molecular weight PAS) having a different structure from that of the cyclic PAS composed of an arylene sulfide unit is extremely small. It has the characteristics.
  • a low molecular weight compound is different from cyclic PAS and linear PAS having a sufficient molecular weight, for example, because of its poor heat resistance, it causes an increase in outgassing when heated, such as during molding.
  • the low molecular weight compound has an adverse effect such as acting as a component that inhibits the high molecular weight when the cyclic PAS is used as a prepolymer of a high molecular weight substance described later.
  • the method for producing a cyclic PAS according to an embodiment of the present invention is characterized in that it is possible to obtain a high-quality PAS in which such low molecular PAS is remarkably reduced by including the steps 1 and 2. Also have.
  • the low molecular weight PAS content contained as an impurity in the cyclic PAS can be calculated from the peak area obtained by component separation by high performance liquid chromatography equipped with a UV detector and an ODS column.
  • the weight fraction of the low molecular weight PAS component in the isolated cyclic PAS solid containing the low molecular weight PAS component can be calculated.
  • peaks attributed to low molecular weight PAS when the total detected peak area is used as a parameter based on the peak area detected by high performance liquid chromatography analysis corresponding to peaks other than those attributed to cyclic PAS
  • Resin composition blended with cyclic PAS recovered in the embodiment of the present invention can be blended with various resins and used.
  • a resin composition blended with cyclic PAS has a strong tendency to exhibit excellent fluidity during melt processing, and tends to have excellent residence stability.
  • Such improved properties, particularly fluidity express the characteristics of excellent melt processability even when the heating temperature during melt processing of the resin composition is low, so that extrusion molding of injection molded products, fibers, films, etc. This is a great merit in that it improves the melt processability when processed into a product.
  • the cyclic PAS of embodiment of this invention is 0.1 weight part or more with respect to 100 weight part of various resin, Preferably it is 0.8.
  • blending 5 parts by weight or more it is possible to obtain a remarkable improvement in characteristics.
  • the resin composition may further contain a fibrous and / or non-fibrous filler.
  • the blending amount can be 0.5 parts by weight or more, preferably 1 part by weight or more with respect to 100 parts by weight of the various resins. Moreover, it can be 400 weight part or less, Preferably it is 300 weight part or less, More preferably, it is 200 weight part or less, More preferably, it is 100 weight part or less.
  • the kind of filler any filler such as fibrous, plate-like, powdery, and granular can be used.
  • these fillers include layered silicates such as glass fiber, talc, wollastonite, montmorillonite, and synthetic mica, and glass fiber is particularly preferable.
  • the type of glass fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from, for example, a long fiber type, a short fiber type chopped strand, a milled fiber, or the like.
  • said filler can also be used in combination of 2 or more types.
  • said filler used for embodiment of this invention processes the surface with a well-known coupling agent (For example, a silane coupling agent, a titanate coupling agent, etc.) and other surface treatment agents. It can also be used.
  • the glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin.
  • the resin composition in order to maintain the thermal stability of the resin composition, it is possible to contain one or more heat-resistant agents selected from phenolic and phosphorus compounds.
  • the blending amount of the heat-resistant agent is preferably 0.01 parts by weight or more, particularly 0.02 parts by weight or more, with respect to 100 parts by weight of the various resins, from the viewpoint of heat resistance improvement effect. From the viewpoint of gas components generated during molding, it is preferably 5 parts by weight or less, particularly 1 part by weight or less with respect to 100 parts by weight of the various resins.
  • the resin composition includes the following compounds, that is, coupling agents such as organic titanate compounds and organic borane compounds, polyalkylene oxide oligomer compounds, thioether compounds, ester compounds, and organic phosphorus compounds.
  • Plasticizers such as base compounds, crystal nucleating agents such as talc, kaolin, organophosphorus compounds, and polyetheretherketone, metal soaps such as montanic acid waxes, lithium stearate and aluminum stearate, ethylenediamine and stearin Release agents such as acid and sebacic acid heavy compound and silicone compounds, anti-coloring agents such as hypophosphite, other lubricants, anti-UV agents, coloring agents, flame retardants, foaming agents, etc.
  • the usual additives can be blended. All of the above compounds tend to exhibit their effects effectively when added in an amount of less than 20 parts by weight, preferably 10 parts by weight or less, more preferably 1 part by weight or less, relative to 100 parts by weight of the various resins.
  • the method for producing the resin composition comprising the cyclic PAS as described above is not particularly limited.
  • the cyclic PAS, various resins, and other fillers and various additives as necessary may be added in advance.
  • melting and kneading with a generally known melt mixer such as a single-screw or twin-screw extruder, Banbury mixer, kneader, and mixing roll above the melting point of various resins and cyclic PAS, and solution of resin composition materials A method of removing the solvent after mixing in the medium is used.
  • the cyclic PAS is a simple substance of the cyclic PAS, that is, when m of the formula (Q) is a single one or when a mixture of different m is used having a high crystallinity and a high melting point.
  • the cyclic PAS is dissolved in a solvent in which the cyclic PAS is dissolved in advance and supplied to the melt mixer, and the solvent is removed during the melt kneading.
  • the cyclic PAS is once dissolved above its melting point and then rapidly cooled.
  • the crystallization is suppressed and the amorphous material is supplied to the melt mixer, or the premelter is set to a temperature higher than the melting point of the cyclic PAS, and only the cyclic PAS is melted in the premelter and melt-mixed as a melt.
  • a method of supplying to the machine can be adopted.
  • the crystalline resin include polyolefin resins such as polyethylene resin, polypropylene resin, and syndiotactic polystyrene, polyvinyl alcohol resin, polyvinylidene chloride resin, polyester resin, polyamide resin, polyacetal resin, polyphenylene sulfide.
  • polyolefin resins such as polyethylene resin, polypropylene resin, and syndiotactic polystyrene
  • polyvinyl alcohol resin polyvinylidene chloride resin
  • polyester resin polyamide resin
  • polyacetal resin polyphenylene sulfide
  • examples thereof include resins, polyether ether ketone resins, polyether ketone resins, polyketone resins, polyimide resins, and copolymers thereof, and one or more of them may be used in combination.
  • polyphenylene sulfide resins, polyamide resins, and polyester resins are preferable in terms of heat resistance, moldability, fluidity, and mechanical properties.
  • a polyester resin is preferable from the viewpoint of transparency of the obtained molded product.
  • a crystalline resin is used as various resins, there is a tendency that crystallization characteristics are improved in addition to the above-described improvement in fluidity.
  • polyphenylene sulfide resin is particularly preferable to use as various resins. In this case, the improvement in crystallinity as well as the improvement in fluidity, and further, the effect of these is that the occurrence of burrs during injection molding is remarkably suppressed. Features tend to develop.
  • the amorphous resin is not particularly limited as long as it is an amorphous resin that can be melt-molded.
  • the glass transition temperature is preferably 50 ° C. or higher, and is 60 ° C. or higher. Is more preferable, it is more preferable that it is 70 degreeC or more, and it is especially preferable that it is 80 degreeC or more.
  • the upper limit of the glass transition temperature is not particularly limited, but is preferably 300 ° C. or less, more preferably 280 ° C. or less from the viewpoint of moldability. In the embodiment of the present invention, the glass transition temperature of the amorphous resin is increased under the temperature increase condition of 20 ° C./min from 30 ° C.
  • amorphous resin examples include amorphous nylon resin, polycarbonate (PC) resin, polyarylate resin, ABS resin, poly (meth) acrylate resin, poly (meth) acrylate copolymer, polysulfone resin, And at least one selected from polyethersulfone resins, and may be used alone or in combination of two or more.
  • polycarbonate (PC) resin having particularly high transparency and among ABS resins, transparent ABS resin, polyarylate resin, poly (meth) acrylate resin, poly (meth) acrylate copolymer, and polyether A sulfone resin can be preferably used.
  • PC polycarbonate
  • transparent ABS resin polyarylate resin
  • poly (meth) acrylate resin poly (meth) acrylate copolymer
  • polyether A sulfone resin can be preferably used.
  • an amorphous resin having excellent transparency is used as various resins, in addition to the improvement in fluidity at the time of melt processing described above, a characteristic that high transparency can be maintained can be expressed.
  • a cyclic PAS When a cyclic PAS is used alone, that is, when m in the formula (Q) is single, such a cyclic PAS tends to have a high melting point. When kneading, the cyclic PAS having a different m in the formula (Q) has a melting temperature as described above. This tends to be low, which is effective in improving the uniformity during melt-kneading.
  • the resin composition obtained by blending cyclic PAS with various resins obtained above can be molded by any known method such as injection molding, extrusion molding, blow molding, press molding, spinning, etc. Can be processed and used. As molded products, they can be used as injection molded products, extrusion molded products, blow molded products, films, sheets, fibers, and the like.
  • the various molded articles thus obtained can be used for various applications such as automobile parts, electrical / electronic parts, building members, various containers, daily necessities, daily life goods and hygiene articles. Moreover, the said resin composition and a molded article consisting thereof can be recycled.
  • a resin composition obtained by pulverizing a resin composition and a molded product comprising the resin composition, preferably powdered, and blending additives as necessary, can be used in the same manner as the resin composition described above. It can also be a molded product.
  • the cyclic PAS recovered by the embodiment of the present invention has excellent characteristics as described in the above item (11), it is a PAS polymer, that is, a high polymerization degree. It is possible to use suitably as a prepolymer at the time of obtaining.
  • the prepolymer the cyclic PAS obtained by the cyclic PAS recovery method of the embodiment of the present invention may be used alone, or it may contain a predetermined amount of other components.
  • a PAS component such as a linear PAS or a PAS having a branched structure is particularly preferable.
  • a polyarylene sulfide prepolymer that contains at least the cyclic PAS of the embodiment of the present invention and can be converted into a high degree of polymerization by the method exemplified below is sometimes referred to as a PAS prepolymer.
  • the conversion of the cyclic PAS to a high degree of polymerization may be performed under the condition that a high molecular weight product is produced from the cyclic PAS as a raw material, including, for example, the cyclic PAS produced by the cyclic PAS production method of the embodiment of the present invention.
  • a method of heating the PAS prepolymer to convert it to a high degree of polymerization can be exemplified as a preferred method.
  • the heating temperature is preferably a temperature at which the PAS prepolymer melts and is not particularly limited as long as such temperature conditions are satisfied. If the heating temperature is lower than the melt solution temperature of the PAS prepolymer, a long time tends to be required to obtain a PAS having a high molecular weight.
  • the temperature at which the PAS prepolymer melts varies depending on the composition and molecular weight of the PAS prepolymer and the environment during heating, it cannot be uniquely indicated.
  • the PAS prepolymer is a differential scanning calorimeter. It is possible to grasp the melting solution temperature by analyzing with. If the heating temperature is too high, undesirable side reactions such as cross-linking reactions and decomposition reactions between PAS prepolymers, between PASs produced by heating, and between PAS and PAS prepolymers produced by heating are likely to occur. In some cases, the characteristics of the obtained PAS may deteriorate. Therefore, it is desirable to avoid a temperature at which such an undesirable side reaction is remarkably generated.
  • Examples of the heating temperature at which the manifestation of such undesirable side reactions can be suppressed are 180 ° C. or higher, preferably 200 ° C. or higher, more preferably 250 ° C. or higher. Moreover, 400 degreeC or less can be illustrated as said heating temperature, Preferably it is 380 degrees C or less, More preferably, it is 360 degrees C or less. On the other hand, if there is no problem even if a certain degree of side reaction occurs, a temperature range of 250 ° C. or higher, preferably 280 ° C. or higher can be selected. Further, a temperature range of 450 ° C. or lower, preferably 420 ° C. or lower can be selected. In this case, there is an advantage that the conversion to a high molecular weight can be performed in a very short time.
  • the time for performing the heating cannot be uniformly defined because it varies depending on various characteristics such as the content and m number of the cyclic PAS in the PAS prepolymer to be used, the molecular weight, and the conditions such as the temperature of the heating. It is preferable to set so that the undesirable side reaction does not occur as much as possible.
  • Examples of the heating time include 0.05 hours or more, and preferably 0.1 hours or more. Moreover, 100 hours or less can be illustrated, 20 hours or less are preferable and 10 hours or less are more preferable.
  • the heating time is less than 0.05 hours, the conversion of the PAS prepolymer to PAS tends to be insufficient.
  • the heating time exceeds 100 hours there is a tendency not only to increase the possibility of adverse effects due to undesirable side reactions on the properties of the PAS to be obtained, but also to cause economic disadvantages. There is a case.
  • the PAS prepolymer when converted to a high degree of polymerization by heating, various catalyst components that promote the conversion can be used.
  • a catalyst component include ionic compounds and compounds having radical generating ability.
  • the ionic compound include thiophenol sodium salt and lithium salt, and sulfur alkali metal salt.
  • produces a sulfur radical by heating can be illustrated, for example, The compound containing a disulfide bond can be illustrated more specifically.
  • the catalyst component is usually taken into PAS, and the obtained PAS often contains the catalyst component.
  • the amount of alkali metal in the reaction system containing the PAS prepolymer and the catalyst component is 100 ppm or less, preferably 50 ppm or less, more preferably Is 30 ppm or less, more preferably 10 ppm or less, and the weight of sulfur atoms constituting the disulfide group is less than 1% by weight, preferably less than 0.5% by weight, based on the weight of all sulfur atoms in the reaction system. More preferably, the addition amount of the catalyst component is adjusted so as to be less than 0.3% by weight, more preferably less than 0.1% by weight.
  • the conversion of the PAS prepolymer to a high degree of polymerization by heating is usually performed in the absence of a solvent, but can also be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not substantially cause undesired side reactions such as inhibition of conversion to a high degree of polymerization by heating the PAS prepolymer and decomposition or crosslinking of the produced PAS.
  • nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, dimethylformamide, and dimethylacetamide
  • sulfoxide / sulfone solvents such as dimethyl sulfoxide and dimethylsulfone
  • ketone systems such as acetone, methyl ethyl ketone, diethyl ketone, and acetophenone Solvents
  • ether solvents such as dimethyl ether, dipropyl ether, and tetrahydrofuran
  • halogen solvents such as chloroform, methylene chloride, trichloroethylene, ethylene chloride, dichloroethane, tetrachloroethane, and chlorobenzene
  • methanol, ethanol, propanol Butanol, pentanol, ethylene glycol, propylene glycol, phenol, cresol, and polyethylene glycol Or alcohol phenol based solvents, benzene, toluene, and
  • the conversion of the PAS prepolymer to a high degree of polymerization by heating may be performed in a mold for producing a molded product, as well as by a method using a normal polymerization reaction apparatus, an extruder, Any apparatus equipped with a heating mechanism such as a melt kneader can be used without particular limitation, and a known method such as a batch method or a continuous method can be employed.
  • the atmosphere during the conversion of the PAS prepolymer to a high degree of polymerization by heating is preferably a non-oxidizing atmosphere, and is preferably performed under reduced pressure. Moreover, when it carries out under pressure reduction conditions, it is preferable to make it the pressure reduction conditions after making the atmosphere in a reaction system once non-oxidizing atmosphere. Thereby, it is in the tendency which can suppress generation
  • the non-oxidizing atmosphere is an atmosphere in which the oxygen concentration in the gas phase in contact with the PAS component is 5% by volume or less, preferably 2% by volume or less, and more preferably contains substantially no oxygen, that is, nitrogen, helium, argon, etc.
  • the inert gas atmosphere Among these, a nitrogen atmosphere is particularly preferable from the viewpoints of economy and ease of handling.
  • the reduced pressure condition means that the reaction system is lower than the atmospheric pressure, and the upper limit is preferably 50 kPa or less, more preferably 20 kPa or less, and even more preferably 10 kPa or less.
  • An example of the lower limit is 0.1 kPa or more, and 0.2 kPa or more is more preferable.
  • the decompression condition exceeds the preferable upper limit, an undesirable side reaction such as a crosslinking reaction tends to occur.
  • the pressure reduction condition is less than the preferred lower limit, the cyclic polyarylene sulfide having a low molecular weight contained in the PAS prepolymer tends to be volatilized depending on the reaction temperature.
  • the conversion of the PAS prepolymer to a high degree of polymerization can be performed in the presence of a fibrous substance.
  • the fibrous substance is a fine thread-like substance, and an arbitrary substance having a structure elongated like a natural fiber is preferable.
  • a composite material structure composed of PAS and the fibrous substance can be easily prepared. Since such a structure is reinforced by a fibrous material, it tends to have superior mechanical properties, for example, compared to the case of PAS alone.
  • reinforcing fibers made of long fibers which makes it possible to highly strengthen PAS.
  • the resin and the fibrous substance tend to become poorer due to the high viscosity when the resin is melted.
  • composite materials cannot be produced or expected mechanical properties do not appear.
  • wetting is the physical state of the fluid material and the solid substrate so that substantially no air or other gas is trapped between the fluid material such as a molten resin and the solid substrate such as a fibrous compound. Means there is good and maintained contact.
  • the lower the viscosity of the fluid substance the better the wetting with the fibrous substance.
  • the PAS prepolymer of the embodiment of the present invention has good wettability with a fibrous material because its viscosity when melted is significantly lower than that of a general thermoplastic resin, for example, PAS produced by a conventionally known method. It is easy to become. After the PAS prepolymer and the fibrous material form good wetting, the PAS prepolymer is converted into a high polymerization degree according to the method for producing a PAS of the embodiment of the present invention. A composite material structure in which (polyarylene sulfide) forms good wetting can be easily obtained.
  • the fibrous fiber is preferably a reinforcing fiber composed of long fibers
  • the reinforcing fiber used in the embodiment of the present invention is not particularly limited.
  • examples thereof include fibers having good heat resistance and tensile strength used as reinforcing fibers.
  • examples of the reinforcing fiber include glass fiber, carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber, alumina fiber, and boron fiber.
  • carbon fiber and graphite fiber which have good specific strength and specific elastic modulus and have a great contribution to weight reduction, can be exemplified as the best.
  • any kind of carbon fiber or graphite fiber can be used depending on the application, but high strength and high elongation with a tensile strength of 450 kgf / mm2 mm and a tensile elongation of 1.6% or more. Carbon fiber is most suitable.
  • the length is preferably 5 cm or more. In the range of this length, it becomes easy to sufficiently develop the strength of the reinforcing fiber as a composite material. Carbon fibers and graphite fibers may be used in combination with other reinforcing fibers.
  • sequence of a reinforced fiber are not limited, For example, even if it is a single direction, a random direction, a sheet form, a mat form, a textile form, and a braid form, it can be used. In particular, for applications that require high specific strength and specific elastic modulus, an array in which reinforcing fibers are aligned in a single direction is most suitable. Arrangements are also suitable for embodiments of the present invention.
  • the conversion of the PAS prepolymer to a high degree of polymerization can be performed in the presence of a filler.
  • the filler include non-fibrous glass, non-fibrous carbon, and inorganic fillers such as calcium carbonate, titanium oxide, and alumina.
  • the peaks detected in the above HPLC analysis were classified into peaks derived from cyclic polyphenylene sulfide and peaks derived from the others.
  • the ratio (area ratio) of the integrated value of the detected area of the peak derived from other than the cyclic polyphenylene sulfide to the integrated value of the detected area of all the detected peaks is defined as the impurity ratio, and the amount of impurities of the cyclic polyphenylene sulfide is defined as the impurity ratio.
  • Hydrogen peroxide water was added to the sample to oxidize sulfide ions contained in the sample to sulfate ions, and then sulfate ions were quantified by the above analysis.
  • the amount of sulfide ions in the sample was calculated by the method of subtracting the sulfate ion quantitative value when analyzing the untreated sample to which no hydrogen peroxide solution was added from the obtained sulfate ion quantitative value.
  • the amount of sulfide ions calculated here is considered to correspond to the amount of unreacted sulfidizing agent contained in the data.
  • the amount of unreacted sulfidizing agent is calculated from the amount of sulfide ions calculated above, and the ratio of the amount of unreacted sulfidizing agent obtained and the amount of charged sulfidizing agent is used to determine the amount of sulfidizing agent in the sample.
  • the reaction consumption rate was calculated.
  • a polytetrafluoroethylene (PTFE) membrane filter having a diameter of 90 mm and an average pore diameter of 10 ⁇ m is set in a filter holder KST-90-UH (effective filtration area of about 45 parallel centimeters) manufactured by ADVANTEC, The tank part was adjusted to 100 ° C. with a band heater.
  • PTFE polytetrafluoroethylene
  • the reaction product heated to 100 ° C. was charged into the tank, and after sealing the tank, the inside of the tank was pressurized to 0.1 MPa with nitrogen. Starting from the time when the filtrate begins to be discharged from the lower part of the filter holder after pressurization, the time taken to discharge 50 g of the filtrate is measured, and the filtration rate based on the unit filtration area (kg / (m 2 ⁇ hr )) was calculated.
  • the amount of water contained in the raw material is 25.6 g (1.42 mol), and the amount of solvent per mole of sulfur component in the reaction mixture (per mole of sulfur atoms contained in sodium hydrosulfide charged as a sulfidizing agent) was about 2.43 L.
  • an arylene unit corresponding to p-DCB charged as a dihalogenated aromatic compound
  • the amount was 1.00 mol.
  • Step 1> The inside of the autoclave was sealed after being replaced with nitrogen gas, and the temperature was raised from room temperature to 200 ° C. over about 1 hour while stirring at 400 rpm. Next, the temperature was raised from 200 ° C. to 250 ° C. over about 0.5 hour. The pressure in the reactor at this stage was 1.0 MPa as a gauge pressure. Thereafter, the reaction mixture was heated at 250 ° C. for 2 hours to be reacted.
  • Step 2 An NMP solution of p-DCB (3.54 g of p-DCB was dissolved in 10 g of NMP) was charged into a 100 mL small tank installed at the top of the autoclave via a high pressure valve. After pressurizing the inside of the small tank to about 1.5 MPa, the valve at the bottom of the tank was opened, and an NMP solution of p-DCB was charged into the autoclave. After washing the wall surface of the small tank with 5 g of NMP, this NMP was also charged into the autoclave.
  • the number of arylene units per mole of sulfur component in the reaction mixture (corresponding to the total amount of p-DCB charged as a dihalogenated aromatic compound in Steps 1 and 2) was 1.10 moles.
  • the reaction was continued by continuing heating at 250 ° C. for an additional hour.
  • the high-pressure valve installed at the top of the autoclave, the vapor mainly composed of NMP is discharged, and this vapor component is aggregated in the water-cooled cooling pipe, After recovering about 394 g of liquid components, the high pressure valve was closed and sealed.
  • the reaction product was recovered by quenching to near room temperature.
  • the reaction consumption rate of sodium hydrosulfide used as a sulfidizing agent was It was 96%.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the sulfidizing agent in the reaction mixture was converted to cyclic polyphenylene sulfide was 17.8%.
  • the filtration rate was 355 kg / (m 2 ⁇ hr).
  • the weight ratio of NMP to water in the filtrate mixture after completion of the dropwise addition of water was 75:25.
  • the temperature of the mixture decreases to about 75 ° C. along with the dropwise addition of water, and solids are gradually formed in the mixture.
  • a slurry was obtained.
  • the slurry was cooled to about 30 ° C. over about 1 hour with stirring, and then stirred at about 30 ° C. or less for about 30 minutes, and then the obtained slurry was suction filtered through a glass filter having an opening of 10 to 16 ⁇ m.
  • the obtained solid content (including the mother liquor) was dispersed in about 30 g of water, stirred at 70 ° C.
  • cyclic polyphenylene sulfide having 4 to 15 units was detected.
  • the content of cyclic polyphenylene sulfide in the dry solid was about 86% by weight, and it was found that the obtained dry solid was highly pure cyclic polyphenylene sulfide.
  • the impurity ratio of this dry solid was 2.0%.
  • Step 1 In addition to the sample obtained by recovering the reaction product obtained in Step 1 and Step 2 after solid-liquid separation as described above, the operation is completed at the stage where Step 1 is performed, and the reaction mixture is obtained. A sample was also prepared. As a result of analyzing this reaction mixture, the reaction consumption rate of sodium hydrosulfide at the end of Step 1 was 94%, and Step 2 was performed after the sulfidizing agent contained in the reaction mixture was sufficiently consumed. Was confirmed.
  • Example 1 From the results of Example 1, according to the method for producing a cyclic polyarylene sulfide of the present invention, a high-quality cyclic polyarylene sulfide having a low impurity content can be obtained in a high yield. It was found that the efficiency of solid-liquid separation in the manufacturing process is extremely high, and that it is extremely excellent in terms of productivity.
  • Step 2 of Example 1 the same operation as in Example 1 was performed, except that no DCB was added and only 15 g of NMP was additionally added into the autoclave using a small tank. Therefore, in both step 1 and step 2, the number of arylene units per mole of sulfur component in the reaction mixture is 1.00 mole, and the arylene unit per mole of sulfur component in the reaction mixture is consistent from the start to the end of the reaction. The unit was 1.00 mol.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 96. %Met.
  • the production rate of cyclic polyphenylene sulfide determined by comparison with the case where all the sulfidizing agent in the reaction mixture was assumed to be converted to cyclic polyphenylene sulfide was 15.6%.
  • the filtration rate was 3 kg / (m 2 ⁇ hr).
  • step 2 was the same as in comparative example 1. That is, in Step 2, no additional p-DCB was added, and only 15 g of NMP was additionally added into the autoclave using a small tank.
  • p-DCB addition was not performed in Step 2, but p-DCB per 1 mol of sulfur component of sodium hydrosulfide in the reaction mixture used in Step 1 was 1.10 mol.
  • the reaction was carried out under the same conditions. Therefore, consistently from the start to the end of the reaction, the p-DCB per mole of sulfur component in the reaction mixture was 1.10 moles.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the sulfidizing agent in the reaction mixture was converted to cyclic polyphenylene sulfide was 16.0%.
  • the filtration rate was 350 kg / (m 2 ⁇ hr).
  • Example 1 the operation was completed after Step 1 and the reaction mixture was collected and analyzed. As a result, the reaction consumption rate of sodium hydrosulfide at the end of Step 1 was 95%. It was confirmed that Step 2 was performed after the sulfidizing agent contained in the reaction mixture was sufficiently consumed.
  • Example 2 The process up to Step 1 was carried out in the same manner as in Example 1 (the reaction consumption rate of sodium hydrosulfide at the end stage of Step 1 was 94%), and the NMP solution of p-DCB added in the next Step 2 was added to 1.76 g of p-DCB. Was dissolved in 10 g of NMP. That is, a cyclic PAS was produced under the same conditions as in Example 1 except that the reaction in Step 2 was carried out with 1.05 mole of arylene units per mole of sulfur component in the reaction system in Step 2.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 96. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where all the sulfidizing agents in the reaction mixture were assumed to be converted to cyclic polyphenylene sulfide was 17.5%.
  • the filtration rate was 247 kg / (m 2 ⁇ hr).
  • Example 2 From the results of Example 2, according to the method for producing a cyclic polyarylene sulfide of the present invention, a high-quality cyclic polyarylene sulfide having a low impurity content can be obtained in a high yield. It was found that the efficiency of solid-liquid separation in the production process was extremely high, and that it was extremely excellent from the viewpoint of productivity. Further, from the comparison with Example 1, although the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture in Step 2 is set low, the solid-liquid separability of the reaction product is slightly reduced, It has been found that the purity of the resulting cyclic polyarylene sulfide is further improved and extremely high productivity can be achieved.
  • Step 1 is performed in the same manner as in Example 1 (reaction consumption rate of sodium hydrosulfide at the end of Step 1 is 94%), and an NMP solution of p-DCB to be added in Step 2 is added to 2.65 g of p-DCB. Was dissolved in 10 g of NMP. That is, a cyclic PAS was produced under the same conditions as in Example 1 except that the reaction in Step 2 was carried out with 1.075 mole of arylene units per mole of sulfur component in the reaction system in Step 2.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the sulfidizing agent in the reaction mixture was converted to cyclic polyphenylene sulfide was 18.0%.
  • the filtration rate was 290 kg / (m 2 ⁇ hr).
  • Example 3 By comparing the results of Example 3 with Example 1, in the method for producing cyclic polyarylene sulfide of the present invention, the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture of Step 2 was set lower. However, it was found that the purity of the obtained cyclic polyarylene sulfide and the solid-liquid separation in the production process of cyclic PAS can be made to a sufficient level.
  • Step 1 is performed in the same manner as in Example 1 (reaction consumption rate of sodium hydrosulfide at the end of Step 1 is 94%).
  • the NMP solution of p-DCB to be added in the next Step 2 is added to 8.84 g of p-DCB.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 99. %Met.
  • the production rate of cyclic polyphenylene sulfide determined by comparison with the case where all the sulfidizing agent in the reaction mixture was assumed to be converted to cyclic polyphenylene sulfide was 17.4%.
  • the filtration rate was 334 kg / (m 2 ⁇ hr).
  • Example 4 By comparing the result of Example 4 with Example 1, the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture in Step 2 is set higher in the method for producing the cyclic polyarylene sulfide of the present invention.
  • the solid-liquid separability of the reaction product obtained during the production of the cyclic polyarylene sulfide is further increased, but the impurity component contained in the obtained cyclic polyarylene sulfide tends to increase.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the sulfidizing agent in the reaction mixture was converted to cyclic polyphenylene sulfide was 17.2%.
  • the filtration rate was 9 kg / (m 2 ⁇ hr).
  • Example 5 In the preparation of the reaction mixture of Example 1, p-DCB was changed to 33.6 g (0.229 mol), and the arylene unit per mol of sulfur component in the reaction mixture was changed to 0.95 mol. Then, in Step 2, the NMP solution of p-DCB to be added was changed to a solution in which 5.31 g of p-DCB was dissolved in 10 g of NMP. That is, a cyclic PAS was produced under the same conditions as in Example 1 except that the reaction in Step 1 was carried out with 0.95 mole of arylene units per mole of sulfur component in the reaction system in Step 1.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all the sulfidizing agents in the reaction mixture were converted to cyclic polyphenylene sulfide was 18.9%.
  • the filtration rate was 600 kg / (m 2 ⁇ hr).
  • the ratio of the arylene units to 1 mol of the sulfur component in the reaction mixture in Step 1 is set to be an excess condition of sulfur. It was found that the production rate of arylene sulfide was improved.
  • Example 6 In the preparation of the reaction mixture of Example 1, p-DCB was 31.8 g (0.217 mol), and the number of arylene units per mol of sulfur component in the reaction mixture was 0.90 mol.
  • Step 2 the NMP solution of p-DCB to be added was changed to one obtained by dissolving 7.07 g of p-DCB in 10 g of NMP. That is, a cyclic PAS was produced under the same conditions as in Example 1 except that the reaction in Step 1 was performed with 0.90 mole of arylene units per mole of sulfur component in the reaction system in Step 1.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the sulfidizing agent in the reaction mixture was converted to cyclic polyphenylene sulfide was 20.5%.
  • the filtration rate was 940 kg / (m 2 ⁇ hr).
  • Example 6 in the method for producing the cyclic polyarylene sulfide of the present invention, the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture in Step 1 is set to a condition in which sulfur is further excessive as compared with Example 5. As a result, it was found that the generation rate of cyclic polyarylene sulfide was further improved, while the impurity rate slightly increased.
  • Example 7 After performing the operation of step 1 in the same manner as in Example 6 (the reaction consumption rate of sodium hydrosulfide at the end stage of step 1 was 91%), it was added to a 100 mL small tank installed on the top of the autoclave via a high pressure valve. -An NMP solution of DCB (3.54 g of p-DCB was dissolved in 10 g of NMP) was charged. After pressurizing the inside of the small tank to about 1.5 MPa, the valve at the bottom of the tank was opened, and the p-DCB solution was charged into the autoclave. After washing the wall surface of the small tank with 5 g of NMP, this NMP was also charged into the autoclave.
  • DCB 3.54 g of p-DCB was dissolved in 10 g of NMP
  • Step 2 the NMP solution of p-DCB to be added is changed to a solution in which 3.53 g of p-DCB is dissolved in 10 g of NMP, and 1.10 mol of arylene units per mol of the sulfur component in the reaction system in Step 2 is obtained.
  • the reaction in Step 2 was performed.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 98. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the sulfidizing agent in the reaction mixture was converted to cyclic polyphenylene sulfide was 21.1%.
  • the filtration rate was 320 kg / (m 2 ⁇ hr).
  • the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture in Step 1 is an excess condition of sulfur, and addition of additional DCB is added. It was found that by using the method of split addition, which is a particularly preferable method of the present invention, the production rate of cyclic polyarylene sulfide is further improved and a high-quality cyclic polyarylene sulfide having a low impurity ratio can be obtained. .
  • Step 2 the NMP solution of p-DCB to be added is changed to a solution in which 12.4 g of p-DCB is dissolved in 10 g of NMP, and the amount of arylene units per mole of sulfur component in the reaction system in Step 2 is 1.10 mol.
  • Step 2 was performed under the same conditions as in Example 1.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of the cyclic polyphenylene sulfide obtained by comparison with the case where it was assumed that all the sulfidizing agents in the reaction mixture were converted to cyclic polyphenylene sulfide was 14.1%.
  • the filtration rate was 98 kg / (m 2 ⁇ hr).
  • Example 5 Here, the heating conditions in step 1 were changed, the temperature was raised to 200 ° C., then held at 200 ° C. for 2 hours, and then the same operation as in Example 6 was performed except that the operation in step 2 was performed. Carried out.
  • step 2 was performed before the reaction agent was sufficiently consumed by the reaction, that is, at a stage where the reaction consumption of the sulfidizing agent was insufficient.
  • Example 8 Here, the heating conditions in Step 1 were changed, and when the temperature was raised to 250 ° C., Step 1 was completed, and then the same operation as in Example 6 was performed except that the operation in Step 2 was performed.
  • the reaction consumption rate of sodium hydrosulfide at the end of Step 1 is 82%, and the sulfide contained in the reaction mixture It was confirmed that step 2 was performed after the reaction agent was sufficiently consumed.
  • Example 8 in the method for producing cyclic polyarylene sulfide of the present invention, even when the reaction consumption rate of the sulfidizing agent at the end of Step 1 is slightly reduced compared to Example 6, the cyclic polyarylene sulfide is It was found that although the solid-liquid separability of the reaction product obtained during the production of sulfide is slightly lowered, high productivity can be maintained. The obtained cyclic polyarylene sulfide was found to be of sufficiently high quality although the production rate and quality were slightly reduced.
  • Example 9 In the preparation of the reaction mixture of Example 1, p-DCB was 36.1 g (0.246 mol), and the number of arylene units per mol of sulfur component in the reaction mixture was 1.02 mol. The operation of step 1 was performed. In Step 2, the NMP solution of p-DCB to be added is changed to a solution in which 2.87 g of p-DCB is dissolved in 10 g of NMP, and the number of arylene units per mole of sulfur component in the reaction system in Step 2 is 1.10 mol. Step 2 was performed under the same conditions as in Example 1.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 98. %Met.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where all the sulfidizing agents in the reaction mixture were assumed to be converted to cyclic polyphenylene sulfide was 17.6%.
  • the filtration rate was 370 kg / (m 2 ⁇ hr).
  • Example 9 in the method for producing the cyclic polyarylene sulfide of the present invention, the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture in Step 1 is slightly increased from 1.00 mol to 1.02 mol. Compared with Example 1, the purity of the cyclic polyarylene sulfide was almost the same, but it was found that the efficiency of solid-liquid separation of the reaction product obtained during the production tends to be improved.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 97. %Met.
  • the production rate of cyclic polyphenylene sulfide determined by comparison with the case where all the sulfidizing agent in the reaction mixture was assumed to be converted to cyclic polyphenylene sulfide was 16.2%.
  • the filtration rate was 460 kg / (m 2 ⁇ hr).
  • the ratio of the arylene unit to 1 mol of the sulfur component in the reaction mixture in Step 1 and Step 2 is set to be high, so that It was found that the solid-liquid separability of the reaction product obtained during the production of arylene sulfide is further increased, but the impurity component contained in the obtained cyclic polyarylene sulfide tends to increase.
  • a rectifying column containing a filler is attached to the upper part of the autoclave through a valve, and the mixture is gradually heated to 230 ° C. over about 3 hours while stirring at 240 rpm through nitrogen at normal pressure, and the liquid is removed. 1 g was obtained.
  • this content contains 0.237 mol mol of sodium hydrosulfide, 0.242 mol mol of sodium hydroxide, 0.083 mol mol of water, and 234.3 g (2.36 mol mol) of NMP. It was found to be a sulfidizing agent with a small amount.
  • the amount of solvent per mole of sulfur component in the raw material mixture charged was about 2.85 liters.
  • the arylene unit was 1.02 mol per mol of the sulfur component.
  • a uniform slurry obtained by sufficiently purging the interior of the autoclave with nitrogen and stirring at 100 ° C. for 30 minutes was used as a raw material mixture.
  • step 1 The operation of step 1 was carried out in the same manner as in Example 9 (reaction consumption rate of sodium hydrosulfide at the end stage of step 1 was 94%).
  • Step 2 the NMP solution of added p-DCB is changed to 60.75 g of the raw material mixture slurry prepared in Reference Example 2 (including 0.0195 mol as an arylene unit and 0.0191 mol as a sulfur component). Then, the sulfur component was added at the same time, and step 2 was carried out under the same conditions as in Example 1 except that the arylene unit per mole of the sulfur component in the reaction system was 1.02 mol.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 94. %Met.
  • the production rate of cyclic polyphenylene sulfide determined by comparison with the case where all the sulfidizing agent in the reaction mixture was assumed to be converted to cyclic polyphenylene sulfide was 17.8%.
  • the filtration rate was 12 kg / (m 2 ⁇ hr).
  • Example 10 The same operation as in Example 6 was performed except that the reaction temperature after the additional operation in Step 2 was 260 ° C.
  • Example 10 From the results of Example 10, in the method for producing a cyclic polyarylene sulfide of the present invention, by performing Step 2 at a temperature higher than that of Step 1, the content of the cyclic polyarylene sulfide obtained is improved, and the impurity ratio It was found that high-quality cyclic polyphenylene sulfide was obtained.
  • Example 11 The same operation as in Example 6 was performed except that the reaction temperature in Step 2 was changed to 270 ° C.
  • Example 11 From the results of Example 11, even if Step 2 is performed at a higher temperature than Example 10, a high-quality cyclic polyphenylene sulfide can be obtained and the temperature can be raised to 270 ° C., but the quality is further improved. I found that there was no.
  • reaction vessel In a stainless steel autoclave (reaction vessel) equipped with a stirrer, 46.75 g of a 48 wt% sodium hydrosulfide aqueous solution (0.40 mol as sodium hydrosulfide) and 35.00 g of a 48 wt% sodium hydroxide aqueous solution (0.42) Mol), 1000 g (10.1 mol) of NMP, and 59.98 g (0.41 mol) of p-dichlorobenzene (p-DCB) were charged. After sufficiently purging the inside of the reaction vessel with nitrogen, it was sealed by pressurizing with pressurized nitrogen to 0.3 MPa with a gauge pressure.
  • p-DCB p-dichlorobenzene
  • the temperature in the reaction vessel was raised from room temperature to 200 ° C. over about 1 hour. At this stage, the pressure in the reaction vessel was 0.9 MPa as a gauge pressure. Next, the temperature in the reaction vessel was raised from 200 ° C. to 250 ° C. over about 30 minutes. The pressure in the reaction vessel at this stage was 1.5 MPa as a gauge pressure. After maintaining at 250 ° C. for 2 hours, the contents were rapidly cooled to near room temperature and the contents were collected from the reaction vessel.
  • Example 12 ⁇ Preparation of reaction mixture> In an autoclave equipped with a stirrer (material is SUS316L), 90.39 g of wet polyphenylene sulfide obtained in Reference Example 3 (20.79 g of linear polyphenylene sulfide (equivalent to 0.192 mol each as a sulfur component and an arylene unit).
  • Step 1> The inside of the autoclave was sealed after being replaced with nitrogen gas, and the temperature was raised from room temperature to 200 ° C. over about 1 hour while stirring at 400 rpm. Next, the temperature was raised from 200 ° C. to 250 ° C. over about 0.5 hour. The pressure in the reactor at this stage was 0.5 MPa as a gauge pressure. Thereafter, the reaction mixture was heated at 250 ° C. for 1 hour to be reacted.
  • Step 2 An NMP solution of p-DCB (1.76 g of p-DCB was dissolved in 50 g of NMP) was charged into a 100 mL small tank installed at the top of the autoclave via a high pressure valve. After pressurizing the inside of the small tank to about 1.5 MPa, the valve at the bottom of the tank was opened, and the p-DCB solution was charged into the autoclave. After washing the wall surface of the small tank with 10 g of NMP, this NMP was also charged into the autoclave.
  • arylene units per mole of sulfur component in the reaction mixture in the reaction system phenylene units derived from linear polyphenylene sulfide charged as linear polyarylene sulfide in Step 1 and dihalogens in Step 1 and Step 2).
  • phenylene units derived from linear polyphenylene sulfide charged as linear polyarylene sulfide in Step 1 and dihalogens in Step 1 and Step 2 were 1.05 mol, and the amount of solvent per mol of sulfur component in the reaction mixture was 2.74 liters.
  • the reaction was continued by continuing heating at 250 ° C. for an additional hour. Then, after cooling to 230 ° C.
  • the reaction consumption rate of sodium hydrosulfide used as a sulfidizing agent was 76.2%. Met.
  • the production rate of cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the linear polyarylene sulfide and the sulfidizing agent in the reaction mixture were converted to cyclic polyarylene sulfide was 15.9%.
  • the filtration rate was 55 kg / (m 2 ⁇ hr).
  • the weight ratio of NMP to water in the filtrate mixture after completion of the dropwise addition of water was 75:25.
  • the temperature of the mixture decreases to about 75 ° C. along with the dropwise addition of water, and solids are gradually formed in the mixture.
  • a slurry was obtained.
  • the slurry was cooled to about 30 ° C. over about 1 hour with stirring, and then stirred at about 30 ° C. or less for about 30 minutes, and then the obtained slurry was suction filtered through a glass filter having an opening of 10 to 16 ⁇ m.
  • the obtained solid content (including the mother liquor) was dispersed in about 30 g of water, stirred at 70 ° C. for 15 minutes, and then subjected to suction filtration with a glass filter in the same manner as described above, four times in total.
  • the obtained solid content was treated at 70 ° C. for 3 hours in a vacuum dryer to obtain a dry solid.
  • the obtained dry solid had a cyclic polyphenylene sulfide content of about 87% by weight and was found to be a highly pure cyclic polyphenylene sulfide.
  • the impurity ratio of this dry solid was 2.1%.
  • the reaction consumption rate of sodium hydrosulfide at the end of Step 1 is 75.0%, and is included in the reaction mixture. It was confirmed that step 2 was performed after the sulfiding agent was sufficiently consumed.
  • Example 12 From the results of Example 12, according to the method for producing a cyclic polyarylene sulfide of the present invention, a high-quality cyclic polyarylene sulfide having a low impurity content can be obtained in a high yield, and also obtained at the time of production. It was found that the solid-liquid separation efficiency of the reaction product obtained was extremely high, and that it was extremely excellent from the viewpoint of productivity.
  • Example 13 In the preparation of the reaction mixture of Example 12, the amount of p-DCB was reduced to 6.35 g (0.043 mol) and the amount of p-DCB added in Step 2 was 2.47 g (0.017 mol). The operation was carried out in the same manner as in Example 12 except that the number was increased. Therefore, the arylene unit per mole of sulfur component in the reaction mixture in Step 1 was 0.98 mole, and the arylene unit per mole of sulfur component in Step 2 was 1.05 mole.
  • reaction consumption rate of sodium hydrosulfide at the end of Step 1 was 78.0%, which was included in the reaction mixture. It was confirmed that step 2 was performed after the sulfidizing agent was sufficiently consumed.
  • Example 13 in the method for producing the cyclic polyarylene sulfide of the present invention, even if the arylene unit in the reaction mixture at the start of the reaction (step 1) is insufficient with respect to the sulfur component, it contains impurities. High-quality cyclic polyarylene sulfide with a low rate can be obtained in high yield, and the efficiency of solid-liquid separation of the reaction product obtained during production is extremely high, so that it is extremely excellent from the viewpoint of productivity. I understood.
  • step 2 the operation of step 2 was performed in the same manner as in Example 1 except that no additional DCB was added and only 60 g of NMP was additionally added into the autoclave using a small tank.
  • p-DCB addition was not performed in Step 2, but since the arylene unit per mole of the sulfur component in the reaction mixture used in Step 1 was 1.05 mol,
  • Step 2 the reaction was carried out under the same conditions, and the number of arylene units per mole of sulfur component in the reaction mixture was 1.05 moles consistently from the start to the end of the reaction.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 70.0%. there were.
  • the production rate of cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that all of the linear polyarylene sulfide and the sulfidizing agent in the reaction mixture were converted to cyclic polyphenylene sulfide was 10.8%.
  • the filtration rate was 15 kg / (m 2 ⁇ hr).
  • Example 12 the operation was completed after Step 1 and the reaction mixture was recovered and analyzed. As a result, the reaction consumption rate of sodium hydrosulfide at the end of Step 1 was 68.1%. Met.
  • Example 14 In preparing the reaction mixture of Example 1, the amount of p-DCB was reduced to 3.53 g (0.024 mol), and the amount of p-DCB added in Step 2 was 5.29 g (0.036 mol). The operation was carried out in the same manner as in Example 1 except that the number was increased. Therefore, the arylene unit per mole of the sulfur component in the reaction mixture in Step 1 was 0.90 mole, and the arylene unit per mole of the sulfur component in the reaction mixture in Step 2 was 1.05 mole.
  • reaction consumption rate of sodium hydrosulfide at the end of Step 1 is 77.5%, which is included in the reaction mixture. It was confirmed that step 2 was performed after the sulfidizing agent was sufficiently consumed.
  • Example 14 in the method for producing the cyclic polyarylene sulfide of the present invention, the ratio of the arylene unit to the sulfur component in the reaction mixture at the start of the reaction (Step 1) is further increased than that of Example 13. It turned out that the production
  • Example 15 Example 14 (reaction consumption rate of sodium hydrosulfide at the end of Step 1 was 77.5%), except that the amount of p-DCB added in Step 2 was increased to 7.06 g (0.048 mol) The same operation was carried out. Therefore, the arylene unit per mole of sulfur component in the reaction mixture in Step 1 was 0.90 mole, and the arylene unit per mole of sulfur component in the reaction mixture in Step 2 was 1.10 mole.
  • Example 15 in the method for producing the cyclic polyarylene sulfide of the present invention, the ratio of the arylene unit to the sulfur component in the reaction mixture at the start of the reaction (Step 1) was changed to the same sulfur as in Example 14.
  • the ratio of the arylene units to 1 mol of the sulfur component in the reaction mixture in the reaction mixture in Step 2 to be higher than that in Example 14, solid-liquid separation of the reaction product obtained during the production of the cyclic polyarylene sulfide is performed. It was found that the impurity ratio slightly increased while the productivity increased and the cyclic polyarylene sulfide formation rate further improved.
  • Step 1 was completed when the heating was raised to 200 ° C., and then the same operation as in Example 15 was performed except that the operation of Step 2 was performed.
  • the reaction consumption rate of sodium hydrosulfide in Step 1 was 29.4%, and it was confirmed that Step 2 was performed before the sulfidizing agent contained in the reaction mixture was sufficiently consumed.
  • the reaction consumption rate of sodium hydrosulfide as a sulfidizing agent was 80.1%. there were.
  • the production rate of the cyclic polyphenylene sulfide determined by comparison with the case where it was assumed that the linear polyarylene sulfide and the sulfidizing agent in the reaction mixture were all converted to the cyclic polyphenylene sulfide was 12.5%.
  • the filtration rate was 310 kg / (m 2 ⁇ hr).
  • Example 16 The same operation as in Example 15 was carried out except that the reaction temperature in Step 2 was 260 ° C.
  • the cyclic polyarylene sulfide is obtained by performing Step 2 at a temperature higher than Step 1 while using linear PAS as a raw material. It was found that the solid-liquid separability of the reaction product obtained during the production of was increased, the content of the cyclic polyarylene sulfide obtained was improved, and the impurity ratio tended to decrease.
  • Example 17 The same operation as in Example 16 was performed except that the holding time at 250 ° C. was extended to 2 hours in Step 1.
  • reaction consumption rate of sodium hydrosulfide at the end of Step 1 was 88.6%, which was included in the reaction mixture. It was confirmed that step 2 was performed after the sulfidizing agent was sufficiently consumed.
  • Example 17 when the reaction consumption rate of the sulfidizing agent at the end of Step 1 is improved with respect to Example 16, the production rate of cyclic polyarylene sulfide is improved, and the impurity rate tends to decrease. I found out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 少なくともスルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物からの環式ポリアリーレンスルフィドの製造方法であって、反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である反応混合物を加熱して反応させる工程1と、工程1に次いで、反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるようにジハロゲン化芳香族化合物(b)を追加した後にさらに反応させる工程2と、を含む。

Description

環式ポリアリーレンスルフィドの製造方法
 本発明は環式ポリアリーレンスルフィドの製造方法に関する。より詳しくは、少なくともスルフィド化剤、ジハロゲン化芳香族化合物及び有機極性溶媒を含む反応混合物を加熱して反応させて環式ポリアリーレンスルフィドを製造する方法であって、純度の高い環式ポリアリーレンスルフィドを簡便な方法で効率よく製造する方法に関する。
 芳香族環式化合物はその環状であることから生じる特性、すなわちその構造に由来する特異性により、近年注目を集めている。具体的には、高機能材料用途や機能材料への応用展開可能性、たとえば包接能を有する化合物としての活用や、開環重合による高分子量直鎖状高分子の合成のための有効なモノマーとしての活用などが期待されている。環式ポリアリーレンスルフィド(以下、ポリアリーレンスルフィドをPASと略する場合もある)も芳香族環式化合物の範疇に属し、上記同様に注目に値する化合物である。
 環式ポリアリーレンスルフィドの製造方法としては、たとえばジアリールジスルフィド化合物を超希釈条件下で酸化重合する方法が提案されている(たとえば特許文献1参照。)。この方法では環式ポリアリーレンスルフィドが高選択率で生成し、線状ポリアリーレンスルフィドはごく少量しか生成しないと推測され、確かに環式ポリアリーレンスルフィドが高収率で得られる。しかしながら、この方法では超希釈条件で反応を行うことが必須とされており、反応容器単位容積あたりに得られる環式ポリアリーレンスルフィドはごくわずかであり、効率的に環式ポリアリーレンスルフィドを得るとの観点では課題の多い方法であった。また該方法の反応温度は室温近傍であるため、反応に数十時間の長時間が必要であり生産性に劣る方法であった。さらに該方法で副生する線状ポリアリーレンスルフィドは原料のジアリールジスルフィド由来のジスルフィド結合を含む分子量の低いものであり、熱安定性の低い実用価値の無いものであった。また、この方法で副生する線状ポリアリーレンスルフィドは、目的物である環式ポリアリーレンスルフィドと分子量が近いために、環式ポリアリーレンスルフィドと副生する線状ポリアリーレンスルフィドの分離が困難であり高純度な環式ポリアリーレンスルフィドを効率よく得ることは極めて困難であった。加えて、該方法では酸化重合の進行のために例えばジクロロジシアノベンゾキノンなど高価な酸化剤が原料のジアリールジスルフィドと等量必要であり、安価に環式ポリアリーレンスルフィドを得ることはできなかった。ジアリールジスルフィド化合物を超希釈条件下で酸化重合する他の方法として、酸化重合を金属触媒の存在下で行い、酸化剤として酸素を利用する方法も提案されている。この方法では酸化剤が安価であるが、反応の制御が困難で多種多量の副生オリゴマーが生成し、また、反応に極めて長時間が必要など課題が多い。このように、ジアリールジスルフィド化合物を超希釈条件下で酸化重合する方法は、いずれの場合でも純度の高い環式ポリアリーレンスルフィドを安価に効率良く得ることはできなかった。
 環式ポリアリーレンスルフィドの他の製造方法として、4-ブロモチオフェノールの銅塩をキノリン中の超希釈条件下で加熱する方法が開示されている。この方法も前記特許文献1と同様に超希釈条件が必須であり、また反応に長時間が必要であり生産性の極めて低い方法であった。さらにこの方法では副生する臭化銅を生成物である環式ポリアリーレンスルフィドから分離することが困難であり、得られる環式ポリアリーレンスルフィドは純度の低いものであった(例えば特許文献2参照。)。
 汎用的な原料から収率良く環式ポリアリーレンスルフィドを製造する方法として、スルフィド化剤とジハロゲン化芳香族化合物を、スルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で反応させる方法が開示されている(例えば特許文献3参照。)。しかしこの方法では原料モノマーに対する環式ポリアリーレンスルフィドの収率が低く、多量の線状ポリアリーレンスルフィドが副生するため、改善が望まれていた。
 環式ポリアリーレンスルフィドを高収率で得る方法として、1,4-ビス-(4’-ブロモフェニルチオ)ベンゼンなどのジハロゲン化芳香族化合物と硫化ナトリウムとをN-メチルピロリドン中で還流温度下に接触させる方法が開示されている(例えば非特許文献1参照。)。この方法では、反応混合物中のイオウ成分1モルに対する有機極性溶媒量が1.25リットル以上であるため環式ポリアリーレンスルフィドが得られると推測できる。しかしながらこの方法は、原料に線状ポリアリーレンスルフィドを用いていないためジハロゲン化芳香族化合物を多量に用いることが必要であり、また用いているジハロゲン化芳香族化合物が極めて特殊な化合物であるため、工業的な実現性に乏しい方法であり改善が望まれていた。
 上記課題を解決する方法として、線状ポリアリーレンスルフィドとスルフィド化剤、ジハロゲン化芳香族化合物を反応混合物中のイオウ成分1モルあたり1.25リットル以上の有機極性溶媒中で加熱して反応させる方法が開示されている(例えば特許文献4参照。)。この方法では、線状ポリアリーレンスルフィドを原料に用いているため使用するモノマー量を低減でき、そのためモノマーに対する環式ポリアリーレンスルフィドの収率が向上し、工業的な実現性が期待できる方法である。しかしながらこの方法では、全ての反応原料、すなわち線状ポリアリーレンスルフィド、スルフィド化剤、ジハロゲン化芳香族化合物及び有機極性溶媒を一括に仕込み反応させる方法しか検証がなされておらず、そのため本発明の特長であるジハロゲン化芳香族化合物の追加による環式ポリアリーレンスルフィドの収率生成率向上および不純物の低減については検証が行われていない。
 ジハロゲン化芳香族化合物の追加を伴う、多段階での環式ポリアリーレンスルフィドの製造方法として、線状ポリアリーレンスルフィド、スルフィド化剤、有機極性溶媒、およびスルフィド化剤のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物を含む反応混合物を加熱する反応(A)を行い、ジハロゲン化芳香族化合物を追加し、反応混合物中のイオウ成分1モル当たり1.25リットル以上の有機極性溶媒中で加熱する反応(B)を行う方法が開示されている(例えば特許文献5。)。本方法では、反応(A)で生じた低分子量のプレポリマーを、反応(B)でジハロゲン化芳香族化合物を追加して環化することが特長である。本方法では、プレポリマーを効率よく生成させるために、反応(A)においては反応混合物中に実質的にジハロゲン化芳香族化合物が存在しないことが好ましく、実際、従来は、ジハロゲン化芳香族化合物を含まない方法しか検証がなされていなかった。また、プレポリマーを効率よく生成させるために、反応(A)における反応混合物中の有機極性溶媒は、イオウ成分1モル当たり1.25リットル未満であることが好ましく、実際、従来は、反応混合物中の有機極性溶媒がイオウ成分1モル当たり1リットルである方法しか検証がなされていなかった。したがって、本発明のごとく、ジハロゲン化芳香族化合物を追加する前の反応混合物中にジハロゲン化芳香族化合物を積極的に共存させ、かつ、全反応工程を通して有機極性溶媒がイオウ成分1モル当たり1.25リットル以上の、より希薄な条件にて環式ポリアリーレンスルフィドを製造する場合の収率に対する効果は未知であった。
 ここで、前記の特許文献3及び4において環式ポリアリーレンスルフィドを回収するに当たっては、反応によって得られた反応混合物からまず有機極性溶媒の一部もしくは大部分を除去することで環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを主成分とする混合固体を回収した後に、環式ポリアリーレンスルフィドを溶解可能な溶剤と接触させて環式ポリアリーレンスルフィドを含む溶液を調製し、次いで該溶液から溶解に用いた溶剤を除去することで環式ポリアリーレンスルフィドを得る方法が開示されている。
 また上記回収方法と類似した、純度の高い環式ポリアリーレンスルフィドを得る方法としては、少なくとも線状のポリアリーレンスルフィドと環式ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物を、環式ポリアリーレンスルフィドを溶解可能な溶剤と接触させて環式ポリアリーレンスルフィドを含む溶液を調製し、次いで該溶液から環式ポリアリーレンスルフィドを得る方法が開示されている(たとえば特許文献6参照。)。これらの方法では、確かに純度の高い環式ポリアリーレンスルフィドを得られるものの、純度の高い環式ポリアリーレンスルフィドを得るためには、環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィド及び有機極性溶媒からなる反応混合物を製造する工程、反応混合物から有機極性溶媒を除去して環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む混合固体を製造する工程、混合固体を溶剤と接触させることで環式ポリアリーレンスルフィドを含む溶液を得る工程、この溶液から溶剤を除去する工程が必須であり、非常に煩雑であると言える。
 上記のごとき環式ポリアリーレンスルフィドを回収する際の課題、すなわち、純度の高い環式ポリアリーレンスルフィドを効率よく且つ簡便な方法で回収する方法として、有機極性溶媒中で少なくともスルフィド化剤とジハロゲン化芳香族化合物を接触させて反応させて得られる少なくとも線状ポリアリーレンスルフィドと環式ポリアリーレンスルフィドを含む反応混合物から環式ポリアリーレンスルフィドを回収する方法であって、反応混合物を有機極性溶媒の常圧における沸点以下の温度領域で固液分離することにより得られた濾液から有機極性溶媒を除去することを特徴とする環式ポリアリーレンスルフィドの回収方法(たとえば特許文献7参照)や、少なくともポリアリーレンスルフィド、環式ポリアリーレンスルフィド及び有機極性溶媒を含む混合物から有機極性溶媒の一部を留去したのちに固液分離して環式ポリアリーレンスルフィドを回収する方法(たとえば特許文献8参照)が開示されている。これらの方法は、固液分離という簡易な方法で目的物である環式ポリアリーレンスルフィドを分離、回収しており、確かに上述の従来技術の課題を改善しようとする方法であるが、環式ポリアリーレンスルフィドを含む反応生成物を得る工程において、本発明の特徴であるジハロゲン化芳香族化合物の追加と更なる反応を行っていないため、反応生成物を固液分離のプロセスにおいて長時間の分離時間を要するという課題が依然残っており、また、得られる環式ポリアリーレンスルフィドの純度も不十分であり、改善が強く望まれていた。
特許第3200027号公報 米国特許第5869599号公報 特開2009-30012号公報 国際公開第2008/105438号 特開2011-068885号公報 特開2007-231255号公報 特開2009-149863号公報 特開2010-037550号公報 Bull. Acad. Sci., vol.39, p.763-766, 1990
 本発明は、上記従来技術の課題を解決し、純度の高い環式ポリアリーレンスルフィドを簡便な方法で効率よく製造する方法を提供することを課題とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
1.少なくともスルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、該反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の前記有機極性溶媒(c)を含む前記の反応混合物を加熱して反応させて、環式ポリアリーレンスルフィドを製造する方法であって、
前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である前記反応混合物を加熱して、前記反応混合物中の前記スルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程1と、
前記工程1に次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物(b)を追加した後にさらに加熱して反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程2と、を含む環式ポリアリーレンスルフィドの製造方法。
2.前記工程2に次いで、
前記反応生成物を、前記有機極性溶媒(c)の常圧における沸点以下の温度領域で固液分離することで、環式ポリアリーレンスルフィドと前記有機極性溶媒(c)とを含む濾液を得る工程3を行う第1項に記載の環式ポリアリーレンスルフィドの製造方法。
3.前記工程1において、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.00モル未満である前記反応混合物を加熱する、第1項または第2項に記載の環式ポリアリーレンスルフィドの製造方法。
4.前記反応混合物は、さらに線状ポリアリーレンスルフィド(d)を含む第1項から第3項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
5.前記反応混合物は、前記工程1の反応開始時点において前記線状ポリアリーレンスルフィド(d)を含む第4項に記載の環式ポリアリーレンスルフィドの製造方法。
6.前記工程1において、前記反応混合物中の前記スルフィド化剤(a)の70%以上が反応消費されるまで反応させた後に工程2を行う第1項から第5項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
7.前記反応混合物中のイオウ成分1モル当たり0.2~20.0モルの水を含む前記反応混合物を用いて、前記工程1を行う第1項から第6項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
8.前記工程1および前記工程2において、常圧における前記反応混合物の還流温度を越える温度で前記反応混合物を加熱する第1項から第7項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
9.前記工程1および前記工程2において、前記反応混合物を加熱する際の圧力がゲージ圧で0.05MPa以上である第1項から第8項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
10.前記ジハロゲン化芳香族化合物(b)がジクロロベンゼンである第1項から第9項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
11.前記スルフィド化剤(a)がアルカリ金属硫化物である第1項から第10項のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
12.第4項または第5項に記載の環式ポリアリーレンスルフィドの製造方法であって、
少なくともスルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、前記反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の前記有機極性溶媒(c)を含む前記反応混合物を、
前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である前記反応混合物を加熱して、前記反応混合物中の前記スルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程1と、
前記工程1に次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物(b)を追加した後にさらに加熱して反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程2と、
を含む方法で加熱して反応させることにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドとを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを、前記線状ポリアリーレンスルフィド(d)として用いる環式ポリアリーレンスルフィドの製造方法。
13.第4項または第5項に記載の環式ポリアリーレンスルフィドの製造方法であって、
少なくとも線状ポリアリーレンスルフィド(d)、スルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、前記反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の前記有機極性溶媒(c)を含む前記反応混合物を、
前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である前記反応混合物を加熱して、前記反応混合物中の前記スルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程1と、
前記工程1に次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物(b)を追加した後にさらに加熱して反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程2と、
を含む方法で加熱して反応させることにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドとを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを、前記線状ポリアリーレンスルフィド(d)として用いる環式ポリアリーレンスルフィドの製造方法。
 本発明によれば、純度の高い環式ポリアリーレンスルフィドを簡便な方法で効率よく製造する方法を提供できる。
 以下、本発明の実施の形態について詳細に説明する。本発明の実施の形態は、環式ポリアリーレンスルフィド(以下、環式PASと略すこともある)の製造方法に係るものである。
 (1)スルフィド化剤
 本発明の実施形態で用いられるスルフィド化剤とは、ジハロゲン化芳香族化合物にスルフィド結合を導入できるもの、およびアリーレンスルフィド結合に作用してアリーレンチオラートを生成するものであれば良く、例えばアルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が挙げられる。
 アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができる。なかでも硫化リチウムおよび/または硫化ナトリウムが好ましく、硫化ナトリウムがより好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。なお、水性混合物とは水溶液、もしくは水溶液と固体成分の混合物、もしくは水と固体成分の混合物のことをさす。一般的に入手できる安価なアルカリ金属硫化物は水和物または水性混合物であるので、このような形態のアルカリ金属硫化物を用いることが好ましい。
 アルカリ金属水硫化物の具体例としては、例えば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができる。なかでも水硫化リチウムおよび/または水硫化ナトリウムが好ましく、水硫化ナトリウムがより好ましく用いられる。
 また、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系の中で生成されるアルカリ金属硫化物も用いることができる。また、あらかじめアルカリ金属水硫化物とアルカリ金属水酸化物を接触させて調製したアルカリ金属硫化物を用いることもできる。これらのアルカリ金属水硫化物及びアルカリ金属水酸化物は、水和物、水性混合物、および無水物から選択される化合物の形で用いることができる。水和物または水性混合物が、入手のし易さ、コストの観点から好ましい。
 さらに、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から、反応系の中で生成されるアルカリ金属硫化物も用いることができる。また、あらかじめ水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素を接触させて調製したアルカリ金属硫化物を用いることもできる。硫化水素は気体状、液体状、水溶液状のいずれの形態で用いても差し障り無い。
 本発明の実施形態においてスルフィド化剤の量は、脱水操作などによりジハロゲン化芳香族化合物との反応開始前にスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味するものとする。
 なお、スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物の具体例としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物を好ましいものとして挙げることができる。アルカリ土類金属水酸化物の具体例としては、例えば水酸化カルシウム、水酸化ストロンチウム、および水酸化バリウムなどが挙げられ、なかでも水酸化ナトリウムが好ましく用いられる。
 スルフィド化剤として、アルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましい。この場合のアルカリ金属水酸化物の使用量は、アルカリ金属水硫化物1モルに対し0.95モル以上とすることができ、好ましくは1.00モル以上であり、更に好ましくは1.005モル以上である。また、1.50モル以下とすることができ、好ましくは1.25モル以下であり、更に好ましくは1.200モル以下である。スルフィド化剤として硫化水素を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましい。この場合のアルカリ金属水酸化物の使用量は、硫化水素1モルに対し2.0モル以上とすることができ、好ましくは2.01モル以上であり、更に好ましくは2.04モル以上である。また、3.0モル以下とすることができ、好ましくは2.50モル以下であり、更に好ましくは2.40モル以下である。
 (2)ジハロゲン化芳香族化合物
 本発明の実施形態で使用されるジハロゲン化芳香族化合物とは、芳香環の二価基であるアリーレン基と、2つのハロゲノ基とを有する芳香族化合物である。ジハロゲン化芳香族化合物1モルは、アリーレン単位1モルとハロゲノ基2モルを有している。たとえば、アリーレン基としてベンゼン環の二価基であるフェニレン基を有すると共に2つのハロゲノ基を有する化合物として、p-ジクロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジブロモベンゼン、o-ジブロモベンゼン、m-ジブロモベンゼン、1-ブロモ-4-クロロベンゼン、および1-ブロモ-3-クロロベンゼンなどのジハロゲン化ベンゼンを挙げることができる。さらに、ジハロゲン化芳香族化合物としては、1-メトキシ-2,5-ジクロロベンゼン、1-メチル-2,5-ジクロロベンゼン、1,4-ジメチル-2,5-ジクロロベンゼン、1,3-ジメチル-2,5-ジクロロベンゼン、および3,5-ジクロロ安息香酸などのハロゲン以外の置換基をも含む化合物を挙げることができる。なかでも、p-ジクロロベンゼンに代表されるp-ジハロゲン化ベンゼンを主成分にするジハロゲン化芳香族化合物が好ましい。特に好ましくは、p-ジクロロベンゼンを80~100モル%含むものであり、さらに好ましくは90~100モル%含むものである。また、環式PAS共重合体を得るために異なる2種以上のジハロゲン化芳香族化合物を組み合わせて用いることも可能である。
 (3)線状ポリアリーレンスルフィド
 本発明の実施形態における線状ポリアリーレンスルフィド(以下、線状PASと略する場合もある)とは、式、-(Ar-S)-の繰り返し単位を主要構成単位とする好ましくは当該繰り返し単位を80モル%以上含有する線状のホモポリマーまたは線状のコポリマーである。Arとしては下記の式(A)~式(L)などであらわされる単位などがあるが、なかでも式(A)が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
(ただし、式中のR1,R2は水素、炭素数1から6のアルキル基、炭素数1から6のアルコキシ基、およびハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。)
 この繰り返し単位を主要構成単位とする限り、下記の式(M)~式(P)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、-(Ar-S)-であらわされる主要構成単位1モルに対して0~1モル%の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 また、本発明の実施形態における線状PASは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
 これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、これらのブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい線状PASとしては、ポリマーの主要構成単位としてp-フェニレンスルフィド単位
Figure JPOXMLDOC01-appb-C000003
を80モル%以上、望ましくは90モル%以上含有するポリフェニレンスルフィド(以下、PPSと略すこともある)、ポリフェニレンスルフィドスルホン、およびポリフェニレンスルフィドケトンが挙げられる。
 本発明の実施形態の環状PASの製造方法においては、線状PASを原料として用いることができる。その場合に使用する線状PASの溶融粘度に特に制限は無いが、一般的な線状PASの溶融粘度としては0.1~1000Pa・s(300℃、剪断速度1000/秒)の範囲が例示でき、0.1~500Pa・sの範囲が例示できる。また、線状PASの分子量にも特に制限は無く、一般的なPASを用いることが可能である。この様なPASの重量平均分子量は5,000以上とすることができ、7,500以上が好ましく、10,000以上がより好ましい。また、PASの重量平均分子量は1,000,000以下とすることができ、500,000以下が好ましく、100,000以下がより好ましい。一般に重量平均分子量が低いほど有機極性溶媒への溶解性が高くなるため、反応に要する時間が短くできるという利点があるが、前述した範囲であれば本質的な問題なく使用が可能である。
 このような線状PASの製造方法は特に限定はされず、いかなる製法によるものでも使用することが可能である。例えば特公昭45-3368号公報、特公昭52-12240号公報および特公昭63-3375号公報に代表される、少なくとも1個の核置換ハロゲンを含有する芳香族化合物またはチオフェンとアルカリ金属モノスルフィドとを、極性有機溶媒中で高められた温度において反応せしめる方法により線状PASを製造することができる。また、好ましくは例えば特開平05-163349号公報に代表される、スルフィド化剤とジハロゲン化芳香族化合物とを有機極性溶媒中で接触させることによって線状PASを得ることができる。またこれら方法により製造されたPASを用いた成形品や成形屑、あるいはこれら方法により製造されたPAS由来の廃プラスチックやオフスペック品なども幅広く線状PASとして使用することが可能である。
 また、一般的に環式化合物の製造は、環式化合物の生成と線状化合物の生成の競争反応であるため、環式ポリアリーレンスルフィドの製造を目的とする方法においては、目的物の環式ポリアリーレンスルフィド以外に線状ポリアリーレンスルフィドが少なからず副生物として生成する。本発明の実施形態ではこの様な副生線状ポリアリーレンスルフィドも問題なく原料に用いることが可能である。例えば前述した特許文献3に代表される環式PASの製造方法、すなわち、スルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて加熱して反応させる製造方法により、得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドとを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを原料に用いる方法は、特に好ましい方法といえる。また、前述した特許文献4に代表される環式PASの製造方法、すなわち、線状ポリアリーレンスルフィド、スルフィド化剤、およびジハロゲン化芳香族化合物を反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて加熱して反応させる製造方法により、得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを原料に用いる方法も好ましい方法といえる。
 さらに、少なくとも線状ポリアリーレンスルフィド(d)、スルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の有機極性溶媒(c)を含む反応混合物を加熱して反応させて、環式ポリアリーレンスルフィドを製造する方法において、反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である反応混合物を加熱して反応させ(工程1)、工程1に次いで、反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるようにジハロゲン化芳香族化合物(b)を追加した後にさらに反応を行うことにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを用いることは、ことさら好ましい方法である。
 従来、環式化合物、例えば環式ポリアリーレンスルフィドの製造において副生する線状化合物、すなわち低分子量の線状ポリアリーレンスルフィドは、利用価値の無いものとして廃棄されていた。従って環式化合物の製造においては、この副生線状化合物に起因する廃棄物量が多い、また原料モノマーに対する収率が低いという課題があった。本発明の実施形態ではこの副生線状ポリアリーレンスルフィドを原料として使用することが可能であり、このことは廃棄物量の著しい低減や原料モノマーに対する収率の飛躍的な向上を可能とするという観点で意義の大きいものである。
 なお、線状ポリアリーレンスルフィドの形態に特に制限はなく、乾燥状態の粉末状、粉粒状、粒状、ペレット状でも良い。線状ポリアリーレンスルフィドは、反応溶媒である有機極性溶媒を含む状態で用いることも可能であり、また、本質的に反応を阻害しない第三成分を含む状態で用いることも可能である。この様な第三成分としては例えば無機フィラーやアルカリ金属ハロゲン化物が例示できる。ここで、アルカリ金属ハロゲン化物としては、アルカリ金属(すなわちリチウム、ナトリウム、カリウム、ルビジウムおよびセシウム)とハロゲン(すなわちフッ素、塩素、臭素、ヨウ素およびアスタチン)とから構成されるいかなる組み合わせのものをも含み、具体例としては塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、およびフッ化セシウムなどが例示できる。前述したスルフィド化剤とジハロゲン化芳香族化合物との反応によって生じるアルカリ金属ハロゲン化物が好ましく例示できる。一般的に入手が容易なスルフィド化剤およびジハロゲン化芳香族化合物の組み合わせから生じるアルカリ金属ハロゲン化物としては、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウムおよびヨウ化ナトリウムが例示でき、塩化ナトリウム、塩化カリウム、臭化ナトリウム、および臭化カリウムが好ましいものとして例示でき、塩化ナトリウムがより好ましいものである。また、無機フィラーやアルカリ金属ハロゲン化物を含む樹脂組成物の形態の線状ポリアリーレンスルフィドを用いることも可能である。
 本発明の実施形態の環式ポリアリーレンスルフィドの製造方法においては、上記のとおり線状PASが副生成物として生成する。本発明の実施形態において生成する線状PASの溶融粘度に特に制限は無いが、一般的な線状PASの溶融粘度としては0.1~1000Pa・s(300℃、剪断速度1000/秒)の範囲が例示でき、0.1~500Pa・sの範囲が生成しやすい傾向にある範囲といえる。また、線状PASの分子量に特に制限はないが、一般的なPASの重量平均分子量としては1,000~1,000,000が例示でき、本発明の実施形態の環式ポリアリーレンスルフィドの製造方法で生成する線状PASは2,500~500,000の範囲である傾向があり、5,000~100,000の範囲である傾向が強い。一般に重量平均分子量が高いほど、線状のPASとしての特性が強く発現するため、後述する環式PASと線状PASの分離においては分離が行いやすくなる傾向があるが、前述した範囲であれば本質的な問題なく使用が可能である。
 (4)有機極性溶媒
 本発明の実施形態ではスルフィド化剤とジハロゲン化芳香族化合物との反応を行う際や、反応で得られた反応生成物の固液分離を行う際に有機極性溶媒を用いるが、この有機極性溶媒としては有機アミド溶媒が好ましい。具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、およびN-シクロヘキシル-2-ピロリドンなどのN-アルキルピロリドン類や、N-メチル-ε-カプロラクタムおよびε-カプロラクタムなどのカプロラクタム類や、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、およびヘキサメチルリン酸トリアミドなどに代表されるアプロチック有機溶媒、及びこれらの混合物などが、反応の安定性が高いために好ましく使用される。これらのなかでもN-メチル-2-ピロリドンおよび1,3-ジメチル-2-イミダゾリジノンが好ましく用いられる。
 本発明の実施形態において、少なくともスルフィド化剤、ジハロゲン化芳香族化合物および有機極性溶媒からなる反応混合物を反応させる際の有機極性溶媒の使用量は、反応混合物中のイオウ成分1モルに対し1.25リットル以上50リットル以下である。有機極性溶媒の使用量の好ましい下限としては1.5リットル以上であり、さらに好ましくは2リットル以上である。一方、好ましい上限としては20リットル以下であり、15リットル以下が更に好ましい。なお、ここでの溶媒使用量は常温常圧下における溶媒の体積を基準とする。イオウ成分1モル当たりの有機極性溶媒の使用量が1.25リットルより少ない場合、スルフィド化剤およびジハロゲン化芳香族化合物の反応によって生成する環式ポリアリーレンスルフィドの生成率が極めて低くなる一方で、環式ポリアリーレンスルフィドの生成に付随して副生する線状ポリアリーレンスルフィドの生成率が高まるため、単位原料当たりの環式ポリアリーレンスルフィドの生産性に劣る。なおここで、環式ポリアリーレンスルフィドの生成率とは、後で詳述する環式ポリアリーレンスルフィドの製造において、反応混合物の調製に用いたイオウ含有原料(スルフィド化剤および使用する場合には線状ポリアリーレンスルフィド)に含まれるイオウ成分の全てが環式ポリアリーレンスルフィドに転化すると仮定した場合の環式ポリアリーレンスルフィドの生成量に対する、環式ポリアリーレンスルフィドの製造で実際に生成した環式ポリアリーレンスルフィド量の比率のことである。環式ポリアリーレンスルフィドの生成率が100%であれば、用いたイオウ含有原料中のイオウ成分の全てが環式ポリアリーレンスルフィドに転化したことを意味する。
 ここで環式ポリアリーレンスルフィドの生成率は、使用する有機極性溶媒の量が多いほど用いたイオウ含有原料をより効率よく目的物(環式ポリアリーレンスルフィド)に転化させるとの観点で好ましい。ただし、極めて高い生成率を達成するために環式ポリアリーレンスルフィドの製造に際して、使用する有機極性溶媒の使用量を極端に多くすると、反応容器の単位体積当たりの環式PASの生成量が低下する傾向に有り、また、反応に要する時間が長時間化する傾向がある。更に、環式ポリアリーレンスルフィドを単離回収する操作を行う場合には、有機極性溶媒使用量が多すぎると、反応生成物中の単位量当たりの環式ポリアリーレンスルフィド量が微量になるため、回収操作が困難となる。環式ポリアリーレンスルフィドの生成率と生産性を両立するとの観点で前記した有機極性溶媒の使用量範囲とする事が好ましい。
なお、一般的な環式化合物の製造における溶媒の使用量は極めて多い場合が多く、本発明の実施形態の好ましい使用量範囲では効率よく環式化合物を得られないことが多い。本発明の実施形態では一般的な環式化合物製造の場合と比べて、溶媒使用量が比較的少ない条件下、即ち前記した好ましい溶媒使用量上限値以下の場合でも、効率よく環式PASが得られる。この理由は現時点定かではないが、本発明の実施形態の方法では、反応混合物の還流温度を超えて反応を行うため、極めて反応効率が高く原料の消費速度が高いことが、環状化合物の生成に好適に作用しているものと推測している。ここで、反応混合物における有機極性溶媒の使用量とは、反応系内に導入した有機極性溶媒から、反応系外に除去された有機極性溶媒を差し引いた量である。
 (5)環式ポリアリーレンスルフィド
 本発明の実施形態における環式ポリアリーレンスルフィドとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする環式化合物であり、好ましくは当該繰り返し単位を80モル%以上含有する下記一般式(Q)のごとき化合物が例示できる。
Figure JPOXMLDOC01-appb-C000004
 ここでArとしては前記の式(A)~式(L)などであらわされる単位を例示できるが、なかでも式(A)~式(C)が好ましく、式(A)及び式(B)がより好ましく、式(A)が特に好ましい。
 なお、環式ポリアリーレンスルフィドにおいては前記式(A)~式(L)などの繰り返し単位をランダムに含んでも良いし、ブロックで含んでも良く、それらの混合物のいずれかであってもよい。これらの代表的なものとして、環式ポリフェニレンスルフィド、環式ポリフェニレンスルフィドスルホン、環式ポリフェニレンスルフィドケトン、これらが含まれる環式ランダム共重合体、環式ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい環式ポリアリーレンスルフィドとしては、主要構成単位としてp-フェニレンスルフィド単位
Figure JPOXMLDOC01-appb-C000005
を80モル%以上、特に90モル%以上含有する環式ポリフェニレンスルフィドが挙げられる。
 環式ポリアリーレンスルフィドの前記式(Q)中の繰り返し数mに特に制限はないが4~50の混合物が好ましく、4~30がより好ましく、4~25が更に好ましい。後で述べる様に環式ポリアリーレンスルフィドを含有するポリアリーレンスルフィドプレポリマーを原料として高分子量のポリアリーレンスルフィド(以下、ポリアリーレンスルフィドプレポリマーを原料として得られる高分子量のポリアリーレンスルフィドを、単にポリアリーレンスルフィドまたはPASとも呼ぶ)を製造する場合には、このポリアリーレンスルフィドプレポリマーの加熱を、ポリアリーレンスルフィドプレポリマーが溶融する温度で行うことが望ましく、これにより効率良くポリアリーレンスルフィドが得られることとなる。
 ここで環式ポリアリーレンスルフィドの繰り返し数mが前記範囲の場合には、環式PASの溶融温度が275℃以下、好ましくは260℃以下、より好ましくは255℃以下になる傾向がある。そのため、このような環式PASを含むポリアリーレンスルフィドプレポリマーの融解温度もこれに応じて低温化する傾向がある。従って、環式PASのmの範囲が前述の範囲の場合には、ポリアリーレンスルフィドの製造に際し、ポリアリーレンスルフィドプレポリマーの加熱温度を低く設定することが可能となるため望ましい。なおここで環式PAS及びポリアリーレンスルフィドの融解温度とは、示唆走査熱量計にて、50℃で1分保持後に、走査速度20℃/分で360℃まで昇温した際に観察される吸熱ピークのピーク温度のことを示す。
 また、本発明の実施形態における環式ポリアリーレンスルフィドは、単一の繰り返し数を有する単独化合物、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物のいずれでも良いが、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物の方が単一の繰り返し数を有する単独化合物よりも溶融解温度が低く、融解に要する熱量も小さくなる傾向があるため好ましい。また、本発明の実施形態の環式ポリアリーレンスルフィドにおいて、環式ポリアリーレンスルフィドの総量に対する前記式(A)のm=6の環式PASの含有量は50重量%未満であることが好ましく、40重量%未満がより好ましく、30重量%未満がさらに好ましい([m=6の環式PAS(重量)]/[環式PAS混合物(重量)]×100(%))。ここで例えば特許文献特開平10-77408号公報には環式PASのArがパラフェニレンスルフィド単位であって繰り返し数mが6のシクロヘキサ(p-フェニレンスルフィド)を得る方法が開示されているが、このm=6の環式PASは348℃に融解ピーク温度を有するとされ、このような環式PASを加工する際には極めて高い加工温度が必要となる。
 従って、環式ポリアリーレンスルフィドを含むポリアリーレンスルフィドプレポリマーを用いてポリアリーレンスルフィドを製造する場合において、加熱に必要な温度をより低い温度にしうるとの観点から本発明の実施形態の環式PASにおいては、特に前記式(A)のm=6の環式PASの含有量を先述の範囲とすることが好ましい。同様にポリアリーレンスルフィドの製造する場合における溶融加工温度をより低い温度にしうるとの観点から、本発明の実施形態では環式PASとして異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物を用いることが好ましいことは前述したとおりである。ここで、環式PAS混合物に含まれる環式PASのうち前記式(A)のmが4~13の環式PASの総量を100重量%とした場合に、mが5~8の環式PASをそれぞれ5重量%以上含む環式PAS混合物を用いることが好ましく、mが5~8の環式PASをそれぞれ7重量%以上含む環式PAS混合物を用いることがより好ましい。このような組成比の環式PAS混合物は特に融解ピーク温度が低くなり、且つ融解熱量も小さくなる傾向にあり溶融温度の低下の観点で特に好ましい。
 なおここで、環式PAS混合物における環式ポリアリーレンスルフィドの総量に対する繰り返し数mの異なる環式PASの各々の含有率は、環式PAS混合物をUV検出器を具備した高速液体クロマトグラフィーで成分分割した際に環式PASに帰属される全ピーク面積に対する、所望するm数を有する環式PAS単体に帰属されるピーク面積の割合として求めることができる。なお、この高速液体クロマトグラフィーで成分分割された各ピークの定性は、各ピークを分取液体クロマトグラフィーで分取し、赤外分光分析における吸収スペクトルや質量分析を行うことで可能である。
 (6)環式ポリアリーレンスルフィドの製造方法
 本発明の実施形態では、少なくともスルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物を加熱して反応させることによる環式ポリアリーレンスルフィドの製造において、以下の工程1及び工程2を含むことが特徴であり、これにより高純度の環式ポリアリーレンスルフィドを効率よく短時間に得ることが実現可能である。
工程1;反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である反応混合物を加熱して、反応混合物中のスルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程。
工程2;工程1に次いで、反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるようにジハロゲン化芳香族化合物(b)を追加した後にさらに反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程。
 以下、工程1及び工程2について詳述する。
 (7)環式ポリアリーレンスルフィドの製造;工程1
 本発明の実施形態では、上記原料成分を含む反応混合物を工程1で用いるが、工程1では、反応混合物に含まれる少なくともスルフィド化剤とジハロゲン化芳香族化合物とが反応することで目的物である環式ポリアリーレンスルフィドの生成が進行する。
 また、工程1では反応混合物の原料成分としてスルフィド化剤(a)とジハロゲン化芳香族化合物(b)に加え、線状ポリアリーレンスルフィド(d)を含んでいてもよい。この場合は、スルフィド化剤およびジハロゲン化芳香族化合物に加えて線状ポリアリーレンスルフィドも反応して、目的物である環式ポリアリーレンスルフィドの生成が進行する。ここで原料成分として仕込む線状ポリアリーレンスルフィド(d)は、工程1の反応開始時点で反応混合物に含まれていることが望ましく、それにより環式ポリアリーレンスルフィドの生成効率は向上する。ここで言う反応開始時点とは、反応混合物の加熱を開始する時点をさし、スルフィド化剤(a)およびジハロゲン化芳香族化合物(b)の実質的な反応消費が進行していない状態をいう。ここでの実質的な反応消費とは、環式PASと、前記の通り本発明の実施形態の方法で副生しやすい重量平均分子量が2,500~500,000の範囲の線状PASとが、生成するのに十分なスルフィド化剤(a)とジハロゲン化芳香族化合物(b)の反応消費をいう。すなわち、スルフィド化剤(a)およびジハロゲン化芳香族化合物(b)が全く反応消費していない状態ではなく、加熱せずとも起こりうるようなごくわずかな量のスルフィド化剤(a)およびジハロゲン化芳香族化合物(b)の反応消費は進行していても構わない。したがって、線状ポリアリーレンスルフィド(d)は、工程1に先立って、原料成分であるスルフィド化剤(a)とジハロゲン化芳香族化合物(b)および有機極性溶媒(c)と混合されていることが望ましく、それらを混合する順番や方法に特に制限はない。
 ここで、工程1で用いる反応混合物では、反応混合物中のイオウ成分1モル当たりのアリーレン単位を、0.80モル以上1.05モル未満としている。上記アリーレン単位の下限値は、0.82モルが好ましく、0.87モルがより好ましく、0.90モルが更に好ましく、0.92モルがよりいっそう好ましく、0.94モルが殊更好ましい。また、上記アリーレン単位の上限値は、1.002モルが好ましく、1.005モルがより好ましく、1.00モル未満がさらにこのましく、0.995モルがよりいっそう好ましく、0.990モルが殊更好ましい。
 上記の下限値として、より低い下限値を選択するほど、本発明の実施形態の目的物である環式ポリアリーレンスルフィドの生成率が向上する傾向にある。また、より高い下限値を選択するほど、環式ポリアリーレンスルフィドの製造における不純物の生成量を低減できる傾向にある。特に0.94モル未満の下限値を選択した場合には環式ポリアリーレンスルフィドの生成率が殊更に高まる傾向が強く、一方で0.94モル以上の下限値を選択した場合には不純物の生成を顕著に抑制できる傾向が強い。この理由は現時点において明確では無いが、工程1における反応により生成する反応中間体であって、工程1に引き続き行なう工程2で環式ポリアリーレンスルフィドもしくは不純物に転化しうる反応中間体の存在量が、上記の下限値の選択によって変化することが影響しているものと推測している。すなわち、上記の下限値としてより低い下限値を選択した場合には、この中間体の生成量が増大するため最終的に得られる環式ポリアリーレンスルフィドの生成量が増大する一方で不純物の生成量も多くなる傾向となると推測している。また一方で、より高い下限値を選択した場合には、この中間体の生成量が減少するため、最終的に得られる環式ポリアリーレンスルフィドの生成量が相対的に小さくなるのと同時に不純物の生成量も減少する傾向となると推測している。
 ここで、反応混合物に含まれるアリーレン単位とは、原料として仕込んだスルフィド化剤(a)とジハロゲン化芳香族化合物(b)との反応が全く進行していない段階においては、アリーレン単位を含む原料がジハロゲン化芳香族化合物(b)のみの場合は、反応混合物に含まれるジハロゲン化芳香族化合物(b)に由来するアリーレン単位をさす。また、反応が進行した段階、もしくは原料に線状ポリアリーレンスルフィド(d)を含む場合においては、反応混合物中に含まれるジハロゲン化芳香族化合物に由来するアリーレン単位と、反応混合物中に存在するアリーレンスルフィド化合物に由来するアリーレン単位の合計をさす。
 なおここで、本発明の実施形態においてアリーレンスルフィド化合物は、スルフィド化剤(a)と、ジハロゲン化芳香族化合物(b)および/または線状ポリアリーレンスルフィド(d)とが反応することにより生成する。したがって、反応の進行に伴い、消費したジハロゲン化芳香族化合物の量に相当するアリーレンスルフィド単位が新たに生成することとなる。すなわち、反応中に反応混合物に対してアリーレン含有成分が除去されたり追加されたりしない場合、反応が進行した段階であっても反応混合物中のアリーレン単位の量は仕込み段階と変わらないといえる。
 また、反応混合物中のアリーレン単位の量は、ジハロゲン化芳香族に由来するアリーレン単位および反応系内に存在するアリーレンスルフィド化合物の量をそれぞれ定量して求めることも可能である。ここで反応混合物中のジハロゲン化芳香族化合物量は後述するガスクロマトグラフ法を用いる方法で求めることができる。また、反応混合物中のアリーレンスルフィド化合物の量は、反応混合物の一部を大過剰の水に分散させて水に不溶な成分を回収し、回収した成分を乾燥して得られる固形分の量を測定することにより求めることが可能である。
 また、反応混合物に含まれるイオウ成分のモル量とは、反応混合物中に存在するイオウ原子のモル量と同義である。例えば反応混合物中にアルカリ金属硫化物が1モル存在し、イオウを含む他の成分が存在しない場合、反応混合物に含まれるイオウ成分は1モルに相当する。また、反応混合物中にアルカリ金属水硫化物が0.5モルとアリーレンスルフィド単位が0.5モル存在する場合、反応混合物に含まれるイオウ成分は1モルに相当する。
 したがって、原料として仕込んだスルフィド化剤(a)およびジハロゲン化芳香族化合物(b)の反応が全く進行していない段階においては、イオウ原子を有する原料がスルフィド化剤(a)のみの場合は、反応混合物に含まれるイオウ成分のモル量とは、スルフィド化剤(a)に由来するイオウ成分のモル量をさす。また、反応が進行した段階、もしくは原料に線状ポリアリーレンスルフィド(d)を含む場合においては、反応混合物に含まれるイオウ成分のモル量とは、反応混合物中に含まれるスルフィド化剤に由来するイオウ成分と、反応系内に存在するアリーレンスルフィド化合物に由来するイオウ成分の合計のモル量をさす。
 ここで、前記の通り本発明の実施形態においてアリーレンスルフィド化合物は、スルフィド化剤(a)と、ジハロゲン化芳香族化合物(b)および/または線状ポリアリーレンスルフィド(d)とが反応することにより生成するため、反応の進行においては、消費したスルフィド化剤の量に相当するアリーレンスルフィド単位が新たに生成することとなる。すなわち、反応中に反応混合物においてスルフィド化剤の除去や欠損や追加などがない場合、反応が進行した段階であっても反応混合物に含まれるイオウ成分の量は仕込み段階と変わらないといえる。
 また、反応混合物中のイオウ成分の量は、スルフィド化剤に由来するイオウ成分量および反応系内に存在するアリーレンスルフィド化合物の量をそれぞれ定量して求めることも可能である。ここで反応混合物中のスルフィド化剤の量は後述するイオンクロマトグラフィー手法で求めることができる。また、反応混合物中のアリーレンスルフィド化合物の定量方法は前述の通りである。
 反応混合物中のイオウ成分1モル当たりのアリーレン単位の比を、このような範囲、すなわち0.80モル以上1.05モル未満として工程1を行うことは、得られる環式ポリアリーレンスルフィドの生成率および品質を高めるために極めて重要である。反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モルよりも少ない場合は、反応後に得られる反応生成物における環式ポリアリーレンスルフィドの生成率は低く留まり、かつ不純物成分となる低分子量化合物の含有量が増大する傾向にある。また、反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モルよりも多い場合には、工程2を行うことによる環式ポリアリーレンスルフィドの生成率向上の効果が得られず、反応生成物における環式ポリアリーレンスルフィドの生成率は低く留まり、かつ不純物成分となる低分子量化合物の含有量が増大する傾向にある。したがって、上記の好ましい範囲以外では、反応後に得られる反応生成物における不純物成分量が増大し、このことは環式ポリアリーレンスルフィドを回収単離する場合においても、単離後の環式ポリアリーレンスルフィドに含まれる不純物含有量の増大に直結するため、避ける必要がある。
 ここで本発明の実施形態では、工程1における反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.00モル未満といった、イオウ成分に対するアリーレン単位が不足する条件を好ましく設定することが可能である。従来、このような範囲では目的物が得られにくく、また後で詳述するように環式ポリアリーレンスルフィドの回収を行う際の固液分離を行う際の分離性が低下するといった課題があった。しかしながら本発明の実施形態では、工程1に引き続き工程2を行うことを特徴とするため、このような範囲で反応を行っても問題なく目的物が得られ、さらに環式ポリアリーレンスルフィドの生成率が向上するといった効果があることを見出し、本発明の実施形態を完成させるに至った。また、イオウ成分に対するアリーレン単位が不足する上記条件では、後述する反応生成物から環式ポリアリーレンスルフィドを回収する固液分離において高い分離性を得ることが可能であり、このことも本発明の実施形態の特徴の一つといえる。本発明の実施形態において、工程1での反応混合物中のイオウ成分1モル当たりのアリーレン単位を上記の好ましい範囲とすることは、環式ポリアリーレンスルフィドの生成率がより向上する効果があることから好ましい方法である。
 本発明の実施形態の工程1では、前記の通り反応混合物中の原料成分として線状ポリアリーレンスルフィド(d)を含んでいてもよいが、この場合に反応混合物における線状ポリアリーレンスルフィド(d)の含有量は、反応混合物中の原料組成が上記の範囲にあれば特に制限はない。ただし、線状ポリアリーレンスルフィド(d)に由来するイオウ成分の量が、線状ポリアリーレンスルフィドに由来するイオウ成分とスルフィド化剤(b)に由来するイオウ成分の合計値、すなわち反応混合物中の全イオウ成分の量の過半となることが好ましい。すなわち、反応混合物中の全イオウ成分1モルに対する、反応混合物中の線状ポリアリーレンスルフィドのイオウ成分の比率の下限は、0.5モルが好ましく、0.6モルがより好ましく、0.7モルがさらに好ましい。また、上限は、0.99モルが好ましく、0.95モルがより好ましく、0.90モルがさらに好ましい。線状ポリアリーレンスルフィドの含有量を上記の好ましい範囲とすれば、工程1に次いで、後述の工程2を行った際に、用いたスルフィド化剤(a)に対する環式ポリアリーレンスルフィドの生成率が高くなる傾向にある。また、線状ポリアリーレンスルフィド(d)として本発明の実施形態の方法で副生する線状ポリアリーレンスルフィドを使用した際には、経済的に効率的といえる。
 工程1においては上記組成の反応混合物を加熱して反応を行う。この反応における温度は、常圧下における反応混合物の還流温度を越える温度が望ましい。この望ましい温度は反応に用いるスルフィド化剤、ジハロゲン化芳香族化合物及び有機極性溶媒の種類、量によって多様化するため一意的に決めることはできないが、通常120℃以上、好ましくは180℃以上、より好ましくは220℃以上、さらに好ましくは225℃以上とすることができる。また、350℃以下、好ましくは320℃以下、より好ましくは310℃以下、さらに好ましくは300℃以下とすることができる。この好ましい温度範囲ではスルフィド化剤(a)とジハロゲン化芳香族化合物(b)の実質の反応消費が速やかに進行して環式PASおよび線状PASが生成し、短時間で反応が進行する傾向にある。なおここで常圧とは、大気の標準状態近傍における圧力のことであり、大気の標準状態とは、約25℃近傍の温度、絶対圧で101kPa近傍の大気圧条件のことである。また、還流温度とは、反応混合物の液体成分が沸騰と凝縮を繰り返している状態の温度である。本発明の実施形態では反応混合物を常圧下の還流温度を超えて加熱することが望ましいことを前述したが、反応混合物をこのような加熱状態にする方法としては、例えば反応混合物を、常圧を越える圧力下で反応させる方法や、反応混合物を密閉容器内で加熱する方法が例示できる。また、反応は一定温度で行なう1段階反応、段階的に温度を上げていく多段反応、あるいは連続的に温度を変化させていく形式の反応のいずれでもかまわない。
 工程1における反応時間は使用する原料の種類や量あるいは反応温度に依存するので一概に規定できないが、0.1時間以上が好ましく、0.5時間以上がより好ましい。ここで、後述するように工程1に次いで工程2を行うにあたっては、工程1において反応混合物中のスルフィド化剤およびジハロゲン化芳香族化合物を十分に反応消費してから工程2を行うことが好ましいが、前述の好ましい反応時間とすることで、これら原料成分を十分に反応消費できる傾向にある。一方、反応時間に特に上限は無いが、40時間以内でも十分に反応が進行し、好ましくは10時間以内、より好ましくは6時間以内も採用できる。
 工程1における圧力に特に制限はなく、また圧力は、反応混合物を構成する原料、その組成、および反応温度等により変化するため一意的に規定することはできないが、好ましい圧力の下限としてゲージ圧で0.05MPa以上、より好ましくは0.3MPa以上が例示できる。なお、本発明の実施形態の好ましい反応温度においては反応物の自圧による圧力上昇が発生するため、この様な反応温度における好ましい圧力の下限としてゲージ圧で0.25MPa以上、より好ましくは0.3MPa以上を例示できる。また、好ましい圧力の上限としては、10MPa以下、より好ましくは5MPa以下が例示できる。この様な好ましい圧力範囲では、線状ポリアリーレンスルフィド、スルフィド化剤およびジハロゲン化芳香族化合物を接触させて反応させるのに要する時間が短くできる傾向にある。また、反応混合物を加熱する際の圧力を前記好ましい圧力範囲とするために、反応を開始する前や反応中など随意の段階で、好ましくは反応を開始する前に、後述する不活性ガスにより反応系内を加圧することも好ましい方法である。なお、ここでゲージ圧とは大気圧を基準とした相対圧力のことであり、絶対圧から大気圧を差し引いた圧力差と同意である。
 また反応混合物には、前記必須成分以外に反応を著しく阻害しない第三成分や、反応を加速する効果を有する第三成分を加えることも可能である。反応を行う方法に特に制限は無いが、撹拌条件下で行なうことが好ましい。なお、ここで原料を仕込む際の温度に特に制限はなく、例えば室温近傍で原料を仕込んだ後に反応を行っても良いし、あらかじめ前述した反応に好ましい温度に温調した反応容器に原料を仕込んで反応を行うことも可能である。また反応を行っている反応系内に逐次的に原料を仕込んで連続的に反応を行うことも可能である。
 また、スルフィド化剤(a)、ジハロゲン化芳香族化合物(b)、及び有機極性溶媒(c)、および線状ポリアリーレンスルフィド(d)としては、水を含むものを用いることも可能である。ただし、反応開始時点、すなわち反応混合物として仕込んだスルフィド化剤(a)およびジハロゲン化芳香族化合物(b)の実質的な反応消費が進行していない段階における水分量は、反応混合物中のイオウ成分1モル当たり、0.2モル以上とすることが好ましく、0.5モル以上とすることがより好ましく、0.6モル以上とすることがさらに好ましい。また、上記水分量は、反応混合物中のイオウ成分1モル当たり、20.0モル以下とすることが好ましく、10.0モル以下とすることがより好ましく、8.0モル以下とすることがさらに好ましい。反応混合物を形成する線状ポリアリーレンスルフィド、スルフィド化剤、有機極性溶媒、ジハロゲン化芳香族化合物、及びその他成分が水を含む場合で、反応混合物中の水分量が前記範囲を超える場合には、反応を開始する前や反応の途中において、反応系内の水分量を減じる操作を行い、水分量を前記範囲内にすることも可能であり、これにより短時間に効率よく反応が進行する傾向にある。また、反応混合物の水分量が前記好ましい範囲未満の場合は、前記水分量になるように水を添加することも好ましい方法である。
 反応系内の水分量が前記好ましい範囲内(反応混合物中のイオウ成分1モル当たり0.2~20.0モル)の場合、原料である線状ポリアリーレンスルフィド、スルフィド化剤およびジハロゲン化芳香族化合物の反応効率が高くなる傾向があり、短時間に効率よく環式ポリアリーレンスルフィドが得られる傾向にある。また、原料の反応効率が高いことは、本発明の実施形態の目的である環式ポリアリーレンスルフィドの生成反応と競争的に進行する副反応、すなわち不純物の生成反応を相対的に抑制する効果をもたらすと推測でき、好ましい水分量で反応を行なうことで不純物率が低く品質に優れる環式ポリアリーレンスルフィドが得られる傾向となる。
 なおここで、ジハロゲン化芳香族化合物の反応消費率は、以下の式で算出した値である。ジハロゲン化芳香族化合物の残存量は、通常、ガスクロマトグラフ法によって求めることができる。
・ジハロゲン化芳香族化合物をスルフィド化剤に対しモル比で過剰に添加した場合
反応消費率(%)=[〔ジハロゲン化芳香族化合物の仕込み量(モル)-ジハロゲン化芳香族化合物の残存量(モル))/〔ジハロゲン化芳香族化合物の仕込み量(モル)-ジハロゲン化芳香族化合物の過剰量(モル)〕〕×100
・ジハロゲン化芳香族化合物をスルフィド化剤に対しモル比で不足に添加した場合
反応消費率(%)=[〔ジハロゲン化芳香族化合物の仕込み量(モル)-ジハロゲン化芳香族化合物の残存量(モル)〕/〔ジハロゲン化芳香族化合物の仕込み量(モル)〕]×100
 (8)環式ポリアリーレンスルフィドの製造;工程2
 工程2では工程1に次いで、反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるようにジハロゲン化芳香族化合物(b)を追加した後にさらに反応を行うことで少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る。
 工程2におけるジハロゲン化芳香族化合物の追加量は、工程1における反応混合物中のアリーレン単位と、新たに追加するジハロゲン化芳香族化合物に由来するアリーレン単位の総量が、反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下の範囲となる追加量である。ここで、ジハロゲン化芳香族化合物の追加後の上記アリーレン単位の総量の下限は、反応混合物中のイオウ成分1モル当たり1.05モルであり、1.06モルが好ましい。また、上限は1.50モルであり、1.30モルが好ましく、より好ましくは1.20モル、よりいっそう好ましくは1.15モル、更に好ましくは1.12モルである。上記アリーレン単位の総量をこのような範囲として工程2の反応を行うことで、環式ポリアリーレンスルフィドの生成率が向上する傾向にあり、特に原料成分として線状ポリアリーレンスルフィドを用いた場合にはその傾向が顕著となる。さらに、従来技術で課題であった、後述する環式ポリアリーレンスルフィドの回収を行う際の、固液分離操作における分離性が著しく向上するのみならず、回収される環式ポリアリーレンスルフィドの品質が極めて高いといった優れた効果が得られる。これに対して、ジハロゲン化芳香族化合物の追加量が前記範囲を下回る場合には、環式ポリアリーレンスルフィドの生成率の明らかな向上は認められず、環式ポリアリーレンスルフィドを回収するために固液分離を行う際の分離性が低下する。一方で前記範囲を超える場合には、環式ポリアリーレンスルフィドの生成率も向上し、固液分離の際には高い分離性が得られる傾向にあるが、未反応のジハロゲン化芳香族化合物の残留量が増えることになり、このような残留物を回収するための設備が別途必要になり、操作が煩雑になる。また、回収に要するコストが増大するといったデメリットを生じることとなる。
 上記のジハロゲン化芳香族化合物を追加する方法に特に制限はないが、例えば複数回にわたって断続的に行う方法、一定速度で連続的に行う方法など例示できる。なおここで、工程1の説明において詳述した様に、工程1で用いる反応混合物中のイオウ成分1モル当たりのアリーレン単位量を、イオウ成分に対してアリーレン単位が不足する条件に設定することは、環式ポリアリーレンスルフィドの生成率を高めるとの観点で有効である。このような条件を採用した場合には、工程2でジハロゲン化芳香族化合物を追加する際に、追加を複数回にわたって断続的に行う方法、及び/または、一定速度で連続的に行う方法で行なうことが望ましい。特に、反応混合物中のイオウ成分1モル当たりのアリーレン単位が前記の好ましい範囲内で下限に近い場合ほど、工程2におけるジハロゲン化芳香族化合物の追加を複数回にわたって断続的に行う方法、及び/または、一定速度で連続的に行う方法で行なうことは、得られる環式ポリアリーレンスルフィドに含まれる不純物成分を低減し、高純度な環式ポリアリーレンスルフィドを得るために有効である。さらには、このような添加方法を採用することで、環式ポリアリーレンスルフィドの生成率も更にいっそう高まる傾向にある。
 なおここで、工程1をイオウ成分に対するアリーレン単位の量が不足する条件で行なった後に、ジハロゲン化芳香族化合物の追加を複数回にわたって断続的に行う場合には、まず一旦、反応混合物中のイオウ成分1モルに対するアリーレン単位の量が、1.00モル近傍になるようにジハロゲン化芳香族化合物を追加した後に、反応混合物中のイオウ成分1モル当たりのアリーレン単位の量が工程2の所定の値になるようにさらに追加を行う方法が好ましい。このような方法で断続的な追加を行う場合には、特に不純物生成量を少なくしつつ、環式ポリアリーレンスルフィドの生成率を向上することが可能になる。
 反応系内にジハロゲン化芳香族化合物を添加する具体的な手法としては、所定量のジハロゲン化芳香族化合物を、耐圧添加ポットを介して反応系に導入する方法、あるいは、溶融状態のジハロゲン化芳香族化合物または有機極性溶媒を用いて溶液としたジハロゲン化芳香族化合物を、圧力ポンプにより反応系内に圧入する方法などが例示できる。
 ここでジハロゲン化芳香族化合物の追加は、反応混合物中のスルフィド化剤(b)が十分に反応消費した後に実施することが望ましい。具体的には、ジハロゲン化芳香族化合物の追加は、下限としてスルフィド化剤の50%以上が反応消費するまで反応させた後に行っており、60%以上が反応消費するまで反応させた後に行うことが好ましく、70%以上が反応消費するまで反応させた後に行うことがより好ましく、80%以上が反応消費するまで反応させた後に行うことがさらに好ましく、90%以上が反応消費するまで反応させた後に行うことが殊更好ましい。このようにスルフィド化剤の反応消費を上記範囲まで進めた後にジハロゲン化芳香族化合物の添加を行うことは、不純物成分の生成を抑制し、得られる環式ポリアリーレンスルフィドの品質、純度を向上させるために極めて重要である。スルフィド化剤の反応消費の程度が50%未満であると、反応後に得られる反応生成物における不純物成分量が増大する。、このような不純物成分量の増大は、環式ポリアリーレンスルフィドを回収単離する場合においても、単離後の環式ポリアリーレンスルフィドに含まれる不純物含有量の増大に直結するため、避ける必要がある。
 ここで本発明の実施形態の方法において、スルフィド化剤の反応消費率は、例えば、電気伝導度検出器や電気化学検出器を具備したイオンクロマトグラフィー手法を用いて、反応混合物中に残存するスルフィド化剤の量を定量することにより算出可能である。この場合は、スルフィド化剤の反応消費量(仕込んだスルフィド化剤の量から反応混合物中のスルフィド化剤の残存量を減じた値)の、仕込んだスルフィド化剤の量に対する比として、スルフィド化剤の反応消費率を算出することができる。イオンクロマトグラフィー手法を用いた具体的評価方法としては、試料中に過酸化水素水を添加して、試料中に含まれる硫化物イオンの酸化を行った後に、電気伝導度検出器を用いた分析により、硫化物イオンの酸化によって生成する硫酸イオン量を算出する方法が例示できる。その硫酸イオン量からスルフィド化剤の残存量を定量し、上記スルフィド化剤の反応消費率を算出することが可能である。
 工程2においてはジハロゲン化芳香族化合物を追加した後にさらに反応を行うが、この反応における温度や圧力や水分量など諸条件は前項(7)に記載した工程1における好ましい条件を採用することが可能である。
 工程2における反応温度は、具体的には常圧下における反応混合物の還流温度を越える温度が望ましい。また、工程2では工程1で採用した温度よりも高い温度を採用することも可能であり、具体的には180℃以上とすることができ、より好ましくは220℃以上であり、さらに好ましくは225℃以上であり、よりいっそう好ましくは250℃以上であり、殊更好ましくは260℃以上とすることができる。また、工程2の温度は、320℃以下とすることができ、より好ましくは310℃以下であり、さらに好ましくは300℃以下とすることができる。この好ましい温度範囲では短時間で反応が進行する傾向にあるのみならず、工程1よりも高い温度を採用した場合には、不純物成分量も低減される傾向にある。
 工程2における反応時間は使用する原料の種類や量あるいは反応温度に依存するので一概に規定できないが、すでに工程1において仕込んだスルフィド化剤の大部分が消費されているため、工程1における反応時間よりも短い時間でも十分な反応を進行させることが可能である。好ましい反応時間の下限としては0.1時間以上が例示でき、0.25時間以上がより好ましい。一方好ましい反応時間の上限としては、20時間以内でも十分に反応が進行し、好ましくは5時間以内、より好ましくは3時間以内も採用できる。
 なお、工程1および工程2の反応においては、バッチ式および連続方法などの公知の各種重合方式、反応方式を採用することができる。また、製造における雰囲気は非酸化性雰囲気下が望ましく、窒素、ヘリウム、およびアルゴンなどの不活性ガス雰囲気下で行なうことが好ましく、経済性および取り扱いの容易さの面からは窒素雰囲気下が好ましい。
 (9)反応生成物の固液分離;工程3
 本発明の実施形態においては、前記した工程1と工程2を行うことで少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る。ここで通常は、工程1及び工程2で用いた有機極性溶媒も反応生成物に含まれる。
 本発明の実施形態では、上記工程1および工程2に次いで工程3として、上記で得られた反応生成物を、有機極性溶媒の常圧における沸点以下の温度領域で固液分離することで、環式ポリアリーレンスルフィドと有機極性溶媒を含む濾液を得る工程を実施することが好ましい。反応生成物を用いてこの工程3を行なうことで、反応生成物における環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを簡便に分離することが可能である。
 ここで反応生成物の固液分離を行う温度は、有機極性溶媒の常圧における沸点以下が望ましい。具体的な温度については有機溶極性媒の種類にもよるが、10℃以上とすることができ、15℃以上がより好ましく、20℃以上が更に好ましい。また、200℃以下とすることができ、150℃以下がより好ましく、120℃以下が更に好ましい。上記範囲では、環式ポリアリーレンスルフィドは有機極性溶媒に対する溶解性が高く、一方で反応生成物中に含まれる環式ポリアリーレンスルフィド以外の成分、中でも必然的に含まれる線状ポリアリーレンスルフィドは有機極性溶媒に溶けにくくなる傾向にあるため、このような温度領域で固液分離を行うことは、精度良く品質の高い環式ポリアリーレンスルフィドを濾液成分として得るために有効である。
 また、固液分離を行なう方法は特に限定されず、フィルターを用いる濾過である加圧濾過や減圧濾過、固形分と溶液の比重差による分離である遠心分離や沈降分離、さらにこれらを組み合わせた方法などを採用可能である。より簡易な方法としては、フィルターを用いる加圧濾過や減圧濾過方式が好ましく採用可能である。濾過操作に用いるフィルターは、固液分離を行なう条件において安定であるものであれば良く、例えばワイヤーメッシュフィルター、焼結板、濾布、濾紙など一般に用いられる濾材を好適に用いることができる。
 また、このフィルターの孔径は、固液分離操作に供するスラリーの粘度、圧力、温度、および反応生成物中の固形成分の粒子径などに依存して広範囲に調整しうる。特に、この固液分離操作において反応生成物から固形分として回収される線状ポリアリーレンスルフィドの粒子径、すなわち固液分離の対象となる反応生成物中に存在する固形分の粒子径に応じてメッシュ径または細孔径などのフィルター孔径を選定することは有効である。なお、固液分離の対象となる反応生成物中の固形分の平均粒子径(メディアン径)は、反応生成物の組成、温度、および濃度などにより広範囲に変化しうるが、本発明者らの知りうる限り、その平均粒子径は1~200μmである傾向がある。従って、フィルターの好ましい平均孔径としては、0.1μm以上が例示でき、0.25μm以上が好ましく、0.5μm以上がより好ましい。また、100μm以下が例示でき、20μm以下が好ましく、15μm以下がより好ましい。上記範囲の平均孔径を有する濾材を用いることで、濾材を透過する線状ポリアリーレンスルフィドが減少する傾向にあり、純度の高い環式ポリアリーレンスルフィドが得られやすくなる傾向にある。
 また、固液分離を行う際の雰囲気に特に制限はないが、接触させる際の時間や温度などの条件によって環式ポリアリーレンスルフィドや有機極性溶剤、線状PASが酸化劣化するような場合は、非酸化性雰囲気下で行なうことが好ましい。なお、非酸化性雰囲気とは、気相の酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であることを指す。この中でも特に、経済性及び取り扱いの容易さの面からは、窒素雰囲気下で行なうことが好ましい。
 固液分離に用いる濾過器の種別としては、ふるいや振動スクリーン、遠心分離機や沈降分離器、加圧濾過機や吸引濾過器などを例示できるが、これらに限定されるものではない。なお、前記の様に固液分離の好ましい雰囲気である非酸化性雰囲気下で実施するとの観点においては、固液分離操作時に非酸化性雰囲気を維持しやすい機構を有する濾過器を選択することが好ましい。たとえば、濾過器内を不活性ガスにより置換後に密閉した後に濾過操作を行うことが可能な濾過器や、不活性ガスを流しながら濾過操作を実施できる機構を具備する濾過器を用いることが例示できる。前記で例示した濾過器の中でも、遠心分離器、沈降分離器、および加圧濾過器は、このような機能を容易に付加可能であることから好ましい濾過器であるといえ、中でも機構が簡易であり経済性に優れるとの観点から加圧濾過器がより好ましい。
 固液分離を行なう際の圧力に制限はないが、より短時間で固液分離を行うために、先に例示した加圧濾過器を用いて加圧条件下で固液分離を行うことも可能であり、具体的にはゲージ圧で2.0MPa以下を好ましい圧力範囲として例示でき、1.0MPa以下がより好ましく、0.8MPa以下が更に好ましく、0.5MPa以下がよりいっそう好ましい範囲として例示できる。一般に圧力が増大するに伴い、固液分離を行なう機器の耐圧性を高くする必要が生じ、そのような機器はそれを構成する各部位に高度なシール性を有するものが必要となり必然的に機器費が増大することになる。上記好ましい圧力範囲では一般に入手可能な固液分離器を使用できる。
 なお本発明の実施形態の環式ポリアリーレンスルフィドの製造方法における特徴である工程1及び工程2を行うことで、得られる反応生成物を固液分離した際に極めて効率の良い固液分離が可能であり、固液分離性に優れた効果が得られることも、本発明の実施形態の大きな特長である。ここで固液分離性とは、一定量の反応生成物を固液分離した際に固液分離に要する時間で評価することが可能である。その具体的評価方法としては、たとえば密閉可能な加圧濾過装置に、所定の規格(孔径、材質)であって一定面積の濾材(フィルター)を設置し、ここに所定量の反応生成物を仕込み、一定条件(温度、圧力など)において、所定量の濾液を得るために要した時間を測定することで、重量/(面積・時間)を単位とする濾過速度で比較評価することが可能である。より具体的には、平均孔径10μmのPTFE製メンブランフィルターを用いて、100℃、0.1MPaの条件下で反応生成物を濾過した際に、所定量の濾液を得るために要する時間を測定することで評価が可能である。従来の環式ポリアリーレンスルフィドの製造方法で得られる反応生成物は、このような固液分離性評価において、極めて濾過性・濾過速度面で劣るという課題があり、これは従来技術が本発明の実施形態での必須工程である工程1及び工程2を採用していないからである。ここで本発明の実施形態では濾過速度として、50kg/(m2・hr)以上といった極めて高い値が得られる傾向にあり、環式ポリアリーレンスルフィド製造の工程1及び2において前述してきた各種条件において好ましい数値範囲を選択することで、100kg/(m2・hr)以上の極めて高い値や、150kg/(m2・hr)に到達する著しく高い濾過速度を達成することも可能である。
 また、反応生成物を固液分離するのに先立って、反応生成物に含まれる有機極性溶媒の一部を留去して反応生成物中の有機極性溶媒量を減じる操作を付加的に行うことも可能である。これにより固液分離操作の対象となる反応生成物量が減少するため、固液分離操作に要する時間が短縮できる傾向にある。
 有機極性溶媒を留去する方法としては、反応生成物から有機極性溶媒を分離し反応生成物に含有される有機極性溶媒量を低減できれば、いずれの方法でも特に問題はない。好ましい方法としては、減圧下あるいは加圧下に有機極性溶媒を蒸留する方法、フラッシュ移送により溶媒を除去する方法などが例示でき、なかでも減圧下あるいは加圧下に有機極性溶媒を蒸留する方法が好ましい。また減圧下あるいは加圧下に有機極性溶媒を蒸留する際、窒素、ヘリウム、アルゴンなどの不活性ガスをキャリアーガスとして用いても良い。
 有機極性溶媒の留去を行う温度については、有機極性溶媒の種類や、反応生成物の組成によって多様化するため、一意的には決めることはできないが、180℃以上が好ましく、200℃以上がより好ましい。また、300℃以下が好ましく、280℃以下がより好ましく、250℃以下がさらに好ましい。
 ここでの固液分離によれば、反応生成物に含まれる環式ポリアリーレンスルフィドの大部分を濾液成分として分離可能であり、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上を濾液成分として回収しうる。また、固液分離によって固形分として分離される線状ポリアリーレンスルフィドに環式ポリアリーレンスルフィドの一部が残留する場合には、固形分に対してフレッシュな有機極性溶媒を用いて洗浄することで、環式ポリアリーレンスルフィドの固形分への残留量を低減することも可能である。ここで用いる溶剤は環式ポリアリーレンスルフィドが溶解しうるものであれば良く、前述した工程1や工程2で用いた有機極性溶媒と同じ溶媒を用いることが好ましい。
 (10)環式ポリアリーレンスルフィドの分離
 本発明の実施形態では、前記固液分離により得られた濾液成分から、環式ポリアリーレンスルフィドを分離することで、環式ポリアリーレンスルフィドを回収することが可能である。回収方法に特に制限は無く、例えば必要に応じて濾液中の有機極性溶媒の一部もしくは大部分を蒸留等の操作により除去した後に、環式ポリアリーレンスルフィドに対する溶解性が低く且つ有機極性溶媒と混和する特性を有する溶剤と濾液とを、必要に応じて加熱下で接触させて、環式ポリアリーレンスルフィドを固体として回収する方法が例示できる。この様な特性を有する溶剤は一般に比較的極性の高い溶剤であり、濾液の中の有機極性溶媒や濾液の中に含まれる副生物の種類により好ましい溶剤は異なるので限定はできないが、例えば水や、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、およびヘキサノールに代表されるアルコール類や、アセトンに代表されるケトン類や、酢酸エチルおよび酢酸ブチルなどに代表される酢酸エステル類が例示できる。入手性、経済性の観点から水、メタノール及びアセトンが好ましく、水が特に好ましい。また、上記回収操作においては、濾液に対して水を加えることで濾液の中に含まれる環式ポリアリーレンスルフィドの50重量%以上を固形分として分離して回収する事が好ましい。
 ここで、濾液における環式ポリアリーレンスルフィドの重量分率は一般に含有率が高いほど回収操作後に得られる環式ポリアリーレンスルフィドの収量が増大し、効率よく環式ポリアリーレンスルフィドを回収できる。この観点から、濾液における環式ポリアリーレンスルフィドの含有率は0.5重量%以上が好ましく、1重量%以上がより好ましく、2重量%以上がよりいっそう好ましく、5重量%以上がことさら好ましい。一方、濾液における環式ポリアリーレンスルフィドの含有率の上限は特に無いが、含有率が高すぎると不溶成分が生じる傾向となり、回収操作に不都合を生じることもある。この回収操作上の不都合としてはたとえば、好ましい操作である水を加える操作を行う前の濾液の性状(固形分を含むスラリー状の場合もある)が不均一になり、局所的な組成が異なり回収物の品質が低下するなどである。またこのような不都合が生じる傾向は用いる有機極性溶媒の特性や反応混合物調製時の条件などに依存するため、濾液における環式ポリアリーレンスルフィドの含有率の上限を定めることはできないが、通常20重量%以下、好ましくは15重量%以下、より好ましくは10重量%以下の含有率が望ましい。
 また、前記したごとき回収操作における不都合を回避して濾液における環式ポリアリーレンスルフィドの含有率をより高くするために、濾液を加熱することも可能である。この加熱温度は用いる有機極性溶媒の特性に応じて異なるため一意的に決めることはできないが、50℃以上が好ましく、70℃以上がより好ましく、90℃以上がさらに好ましい。一方で、加熱温度の上限温度としては、使用する有機極性溶媒の常圧における沸点以下が好ましい。このような温度範囲内では、濾液の中の環式ポリアリーレンスルフィド含有量を高く保ちつつ安定した回収操作を行える傾向にあり好ましい。なお、この混合物を調製するにあたり、撹拌や震蕩等の操作を施すことも可能であり、より均一な濾液の状態を保つとの観点でも望ましい操作といえる。
 本回収法においては、濾液に水を加えることで、有機極性溶媒に溶解している環式ポリアリーレンスルフィドを固形分として析出させて回収することが好ましい。ここで濾液に水を加える方法に特に制限は無いが、水を加えたことで粗大な固形分が生成するような添加方法は避けるべきであり、好ましくは濾液を撹拌しながら水を滴下する方法が好ましい。水を加える温度に制限は無いが、温度が低いほど水を加えた際に粗大な固形分が生成する傾向が高まるため、このような操作上の不都合を回避し混合物の均一性を保つとの観点で50℃以上が好ましく、70℃以上がより好ましく、90℃以上がさらに好ましい。一方で水を加える温度の上限温度としては、使用する有機極性溶媒の常圧における沸点以下が好ましい。このような好ましい温度範囲で水を加える操作を行うことで、操作の観点及び設備の観点でより簡易な方法で回収操作を実施できる傾向にある。
 また、上記で例示した環式PASを含む濾液に水を加えて環式PASを回収する方法は、環式PASを含む濾液から環式PASを回収方法として従来採用されてきた再沈法と比べて少量の溶媒の使用でも効率よく環式PASを回収することが可能であるため、環式PASと有機溶媒を含む濾液に加える水の重量を、大幅に削減することが可能である。具体的には、濾液に加える水の重量を、水を加えた後の有機極性溶媒と水の総量を基準とした水分率で50重量%以下にすることも可能であり、より好ましい条件では40重量%以下、さらに好ましい条件では35重量%以下の条件を設定することも可能となる。一方で、加える水の重量の下限に特に制限はないが、より効率よく環式PASを固形分として回収するためには、同じく5重量%以上が好ましく、10重量%以上がより好ましい。本発明の実施形態の好ましい方法においては、濾液の中に含まれる環式PASの50重量%以上を固形分として回収することが可能であるが、前記のような好ましい水の使用量の範囲では環式PASの80重量%以上を固形分として回収できる傾向にあり、より好ましくは90重量%以上を、さらに好ましくは95%以上を、よりいっそう好ましくは98重量%以上を回収することも可能である。
 なおここで、濾液の中の水の量とは、固液分離を行う前の反応混合物中に含まれる水と、濾液に添加する水の量の総量のことであり、濾液に添加する水の量は反応混合物に含まれる水の量を考慮して決定する必要がある。
 上記までの操作の実施により得られた環式PASと有機極性溶媒及び水を含む濾液混合物中には、濾液の中に含まれていた環式PASのうち50重量%以上が固形分として存在する傾向となる。従って公知の固液分離法を用いて環式PASを固体として回収することができ、固液分離法としては、例えば濾過による分離、遠心分離、デカンテーション等を例示できる。ここで環式PASの回収率をより高くするためには、濾液混合物を50℃未満の状態にしてから固液分離を行うことが好ましく、より好ましくは40℃以下、さらに好ましくは30℃以下で行うことが好ましい。なお、このような好ましい温度としてから環式PASの回収を行うことは、環式PASの回収率を高める効果のみならず、より簡易な設備で環式PASの回収を行えるようになるとの観点でも好ましい条件といえる。なお、濾液混合物の温度の下限は特に無いが、温度が低下することで濾液混合物の粘度が高くなりすぎるような条件や、固化するような条件は避けることが望ましく、一般的には常温近傍とすることが最も望ましい。
 このような固液分離を行うことで濾液混合物中に存在する環式PASの50重量%以上を固形分として単離・回収することができる傾向にある。このようにして分離した固形状の環式PASが濾液混合物中の液成分(母液)を含む場合には、固形状の環式PASを各種溶剤を用いて洗浄することで、母液を低減することも可能である。ここで固液状の環式PASの洗浄に用いる各種溶剤としては環式PASに対する溶解性が低い溶剤が望ましく、たとえば水や、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、およびヘキサノールに代表されるアルコール類や、アセトンに代表されるケトン類や、酢酸エチルおよび酢酸ブチルなどに代表される酢酸エステル類が例示できる。入手性、経済性の観点から水、メタノール及びアセトンが好ましく、水が特に好ましい。このような溶剤を用いた洗浄を付加的に行うことで、固形状の環式PASが含有する母液量を低減できるのみならず、環式PASが含む溶剤に可溶な不純物を低減できるという効果もある。この洗浄方法としては、固形分ケークが堆積した分離フィルター上に溶剤を加えて固液分離する方法や、固形分ケークに溶剤を加えて撹拌することでスラリー化した後に再度固液分離する方法などが例示できる。また、前述の母液を含有、もしくは洗浄操作に用いた溶剤成分を含有する等、液成分を含む湿潤状態の環式PASに対して、たとえば一般的な乾燥処理を施してもよい。これにより、液成分を除去して、乾燥状態の環式PASを得ることも可能である。
 なお環式PASの回収操作を行う際の雰囲気は非酸化性雰囲気で行うことが好ましい。これにより環式PASを回収する際の環式PASの架橋反応や分解反応、酸化反応などの好ましくない副反応の発生を抑制できるのみならず、回収操作に用いる有機極性溶媒の酸化劣化等、好ましくない副反応を抑制できる傾向にある。なお、非酸化性雰囲気とは、回収操作の対象である各種成分が接する気相における酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指す。この中でも特に、経済性及び取扱いの容易さの面からは窒素雰囲気が好ましい。
 (11)本発明の実施形態で回収される環式PASの特性
 かくして得られた環式PASは、通常、環式PASを50重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上含む純度の高いものであり、一般的に得られる線状のPASとは異なる特性を有する工業的にも利用価値の高いものである。また、本発明の実施形態の製造方法により得られる環式PASは、前記式(Q)におけるmが単一ではなく、m=4~50の異なるmを有する前記式(Q)が得られやすいという特徴を有する。ここで好ましいmの範囲は4~30,より好ましくは4~25である。mがこの範囲の場合、後述するように環式PASを各種樹脂に配合して用いる際に、より低い温度でPASを溶融解させ得る傾向にあり、また、後で詳述するように環式PASを含むプレポリマーを高重合度体へ転化させる場合に重合反応が進行しやすく、高分子量体が得られやすくなる傾向にある。この理由は現時点判然とはしないが、この範囲の環式PASは分子が環式であるがために生じる結合のゆがみが大きく、重合時に開環反応が起こりやすいためと推測している。また、mが単一の環式PASは単結晶として得られるため、極めて高い融解温度を有するが、本発明の実施形態では環式PASは異なるmを有する混合物が得られやすく、これにより環式PASの融解温度が低いという特徴がある。このことは、環式PASを溶融して用いる際の加熱温度を低くできるという優れた特徴を発現することになる。
 また、本発明の実施形態による環式PASは、アリーレンスルフィド単位からなる環式PASとは構造の異なる、低分子量の化合物(以下低分子量PASと称する場合もある)の含有量が極めて少ないという優れた特性を有する。このような低分子量の化合物は、その特性が、環式PASや十分な分子量を有する線状PASとは異なり、たとえば耐熱性に劣るため成形加工時など加熱した際にアウトガスの増大要因となる。また、低分子量の化合物は、環式PASを後述する高分子量体のプレポリマーとして活用する際に、高分子量化を阻害する成分として作用するなど悪影響を生じる。本発明の実施形態の環式PASの製造方法は、工程1と工程2を備えることで、このような低分子PASが著しく低減された高品質なPASを得ることが可能であるという優れた特長も有する。
 ここで環式PASに不純物として含有される低分子量PAS含有量は、UV検出器とODSカラムを具備した高速液体クロマトグラフィーにより成分分割したピーク面積から算出することが可能である。このような手法により、低分子量PAS成分を含む環式PASの単離固体における低分子量PAS成分の重量分率を算出することができる。また、高速液体クロマトグラフィー分析で検出されたピーク面積を基準として、検出ピーク総面積を母数とした際の低分子量PASに帰属されるピーク(環式PASに帰属されるピーク以外のピークに該当)の総面積の割合、すなわちピーク面積比として低分子量PAS成分の含有率を算出することも可能である。
 本発明の実施形態においては、環式PASに含まれる低分子量PAS含有量が極めて少ない高品質な環式PASが得られることは前述したとおりであるが、本発明の実施形態の好ましい製造法によれば、上記評価手法における低分子量PASの重量分率として7重量%以下、好ましくは5重量%以下、より好ましくは3重量%以下の極めて高品質な環式PASを得ることが可能である。また、低分子化合物のピーク面積比で評価する場合、環式ポリフェニレンスルフィド以外に由来するピークの割合を不純物率と定義すると、本発明の実施形態の好ましい製法によれば、不純物率が9重量%以下、好ましくは6重量%以下、より好ましくは4重量%以下の環式PASを得ることが可能である。
 (12)本発明の実施形態で回収される環式PASを配合した樹脂組成物
 本発明の実施形態で得られた環式PASを各種樹脂に配合して用いることも可能であり、このような環式PASを配合した樹脂組成物は、溶融加工時にすぐれた流動性を発現する傾向が強く、また滞留安定性にも優れる傾向にある。この様な特性、特に流動性の向上は、樹脂組成物を溶融加工する際の加熱温度が低くても溶融加工性に優れるという特徴を発現するため、射出成形品や繊維、フィルム等の押出成形品に加工する際の溶融加工性の向上をもたらす点で大きなメリットとなる。環式PASを配合した際にこの様な特性の向上が発現する理由は定かではないが、環式PASの構造の特異性、すなわち環状構造であるために通常の線状化合物と比較してコンパクトな構造をとりやすいため、マトリックスである各種樹脂との絡み合いが少なくなりやすいこと、各種樹脂に対して可塑剤として作用すること、またマトリックス樹脂どうしの絡み合い抑制にも奏効するためと推測している。
 環式PASを各種樹脂に配合する際の配合量に特に制限は無いが、各種樹脂100重量部に対して本発明の実施形態の環式PASを、0.1重量部以上、好ましくは0.5重量部以上配合することで、顕著な特性の向上を得ることが可能である。また、50重量部以下、好ましくは20重量部以下、より好ましくは10重量部以下配合することで、顕著な特性の向上を得ることが可能である。
 また、上記樹脂組成物には必要に応じて更に繊維状および/または非繊維状の充填材を配合することも可能である。その配合量は、前記各種樹脂100重量部に対して0.5重量部以上とすることができ、好ましくは1重量部以上である。また、400重量部以下とすることができ、好ましくは300重量部以下であり、より好ましくは200重量部以下であり、更に好ましくは100重量部以下である。充填材の配合量をこのような範囲とすることで、樹脂組成物において優れた流動性を維持しつつ機械的強度が向上できる傾向にある。充填剤の種類としては、繊維状、板状、粉末状、粒状などのいずれの充填剤も使用することができる。これら充填剤の好ましい具体例としてはガラス繊維、タルク、ワラストナイト、モンモリロナイト、および合成雲母などの層状珪酸塩が例示でき、特に好ましくはガラス繊維である。ガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。また、上記の充填剤は2種以上を併用して使用することもできる。なお、本発明の実施形態に使用する上記の充填剤は、その表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理して用いることもできる。また、ガラス繊維は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆あるいは集束されていてもよい。
 また、樹脂組成物の熱安定性を保持するために、フェノール系およびリン系化合物の中から選ばれた1種以上の耐熱剤を含有せしめることも可能である。かかる耐熱剤の配合量は、耐熱性改良効果の点から、前記各種樹脂100重量部に対して、0.01重量部以上、特に0.02重量部以上であることが好ましい。また、成形時に発生するガス成分の観点からは、前記各種樹脂100重量部に対して5重量部以下、特に1重量部以下であることが好ましい。また、フェノール系及びリン系化合物を併用して使用することは、特に耐熱性、熱安定性、流動性保持効果が大きく好ましい。
 さらに、前記樹脂組成物には以下のような化合物、すなわち、有機チタネート系化合物および有機ボラン系化合物などのカップリング剤や、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、および有機リン系化合物などの可塑剤や、タルク、カオリン、有機リン化合物、およびポリエーテルエーテルケトンなどの結晶核剤や、モンタン酸ワックス類、ステアリン酸リチウム、およびステアリン酸アルミ等の金属石鹸や、エチレンジアミン・ステアリン酸・セバシン酸重宿合物、およびシリコーン系化合物などの離型剤や、次亜リン酸塩などの着色防止剤や、その他、滑剤、紫外線防止剤、着色剤、難燃剤、および発泡剤などの通常の添加剤を配合することができる。上記化合物はいずれも前記各種樹脂100重量部に対して20重量部未満、好ましくは10重量部以下、更に好ましくは1重量部以下の添加でその効果が有効に発現する傾向にある。
 上記のごとき環式PASを配合してなる樹脂組成物を製造する方法は特に限定されるものではないが、例えば環式PAS、各種樹脂および必要に応じてその他の充填材や各種添加剤を予めブレンドした後、各種樹脂および環式PASの融点以上において一軸または二軸押出機、バンバリーミキサー、ニーダー、ミキシングロールなどの通常公知の溶融混合機で溶融混練する方法や、樹脂組成物の材料を溶液中で混合した後に溶媒を除く方法などが用いられる。ここで環式PASとして環式PASの単体、すなわち前記式(Q)のmが単一のものを用いる場合や、異なるmの混合物であっても結晶性が高く融点が高いものを用いる場合は、環式PASを環式PASが溶解する溶媒に予め溶解して溶融混合機に供給し、溶融混練の際に溶媒を除去する方法、環式PASをその融点以上で一旦溶解した後に急冷することで結晶化を抑え、非晶状としたものを溶融混合機に供給する方法、あるいはプリメルターを環式PASの融点以上に設定し、プリメルター内で環式PASのみを溶融させ、融液として溶融混合機に供給する方法などを採用することができる。
 ここで環式PASを配合する各種樹脂に特に制限は無く、結晶性樹脂にも非晶性樹脂にも適用可能であり、また、熱可塑性樹脂にも熱硬化性樹脂にも適用が可能である。
 ここで結晶性樹脂の具体例としては例えば、ポリエチレン樹脂、ポリプロピレン樹脂、およびシンジオタクチックポリスチレンなどのポリオレフィン系樹脂や、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリケトン樹脂、ポリイミド樹脂およびこれらの共重合体などが挙げられ、1種または2種以上併用してもよい。中でも、耐熱性、成形性、流動性および機械特性の点で、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、およびポリエステル樹脂が好ましい。また、得られる成形品の透明性の面からはポリエステル樹脂が好ましい。各種樹脂として結晶性樹脂を用いる場合は、上述した流動性の向上の他に結晶化特性も向上する傾向がある。また、各種樹脂としてポリフェニレンスルフィド樹脂を用いることも特に好ましく、この場合、流動性の向上と共に、結晶性の向上、さらにはこれらが奏効した効果として射出成形時のバリ発生が顕著に抑制されるという特徴が発現しやすい傾向にある。
 非晶性樹脂としては非晶性を有する溶融成形可能な樹脂であれば、特に限定されないが、耐熱性の点で、ガラス転移温度が50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましく、80℃以上であることが特に好ましい。ガラス転移温度の上限は、特に限定されないが、成形性などの点から300℃以下であることが好ましく、280℃以下であることがより好ましい。なお、本発明の実施形態において、非晶性樹脂のガラス転移温度は、示差熱量測定において非晶性樹脂を30℃~予測されるガラス転移温度以上まで、20℃/分の昇温条件で昇温し1分間保持した後、20℃/分の降温条件で0℃まで一旦冷却し、1分間保持した後、再度20℃/分の昇温条件で測定した際に観察されるガラス転移温度(Tg)を指す。このような非結晶性樹脂の具体例としては、非晶性ナイロン樹脂、ポリカーボネート(PC)樹脂、ポリアリレート樹脂、ABS樹脂、ポリ(メタ)アクリレート樹脂、ポリ(メタ)アクリレート共重合、ポリスルホン樹脂、およびポリエーテルスルホン樹脂から選ばれる少なくとも1種が例示でき、1種または2種以上併用してもよい。これら非晶性樹脂の中でも、特に高い透明性を有するポリカーボネート(PC)樹脂、ABS樹脂の中でも透明ABS樹脂、ポリアリレート樹脂、ポリ(メタ)アクリレート樹脂、ポリ(メタ)アクリレート共重合、およびポリエーテルスルホン樹脂を好ましく使用することができる。各種樹脂として透明性に優れる非晶性樹脂を用いる場合には、前述の溶融加工時の流動性向上に加えて、高い透明性を維持させることができるという特徴を発現できる。ここで、非晶性樹脂組成物に高い透明性を発現させたい場合には、環式PASとして前記式(Q)のmが異なる環式PASを用いることが好ましい。なお、環式PASとして環式PASの単体、すなわち前記式(Q)のmが単一のものを用いる場合、この様な環式PASは融点が高い傾向にあるため、非晶性樹脂と溶融混練する際に十分に溶融分散せずに樹脂中に凝集物となったり透明性が低下する傾向にあるが、前述したように前記式(Q)のmが異なる環式PASはその融解温度が低い傾向にあり、このことは溶融混練時の均一性の向上に効果的である。ここで、本発明の実施形態の製造方法により得られる環式PASは、前記式(Q)におけるmが単一ではなく、m=4~50の異なるmを有する前記式(Q)が得られやすいという特徴を有するため、高い透明性を有する非晶性樹脂組成物を得たい場合に特に有利である。
 上記で得られる、各種樹脂に環式PASを配合した樹脂組成物は通常公知の射出成形、押出成形、ブロー成形、プレス成形、紡糸などの任意の方法で成形することができ、各種成形品に加工し利用することができる。成形品としては、射出成形品、押出成形品、ブロー成形品、フィルム、シート、繊維などとして利用できる。またこれにより得られた各種成形品は、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。また、上記樹脂組成物およびそれからなる成形品は、リサイクルすることが可能である。例えば、樹脂組成物およびそれからなる成形品を粉砕し、好ましくは粉末状とした後、必要に応じて添加剤を配合して得られる樹脂組成物は、上記樹脂組成物と同じように使用でき、成形品とすることも可能である。
 (13)環式PASの高重合度体への転化
 本発明の実施形態によって回収される環式PASは前記(11)項に述べたごとき優れた特性を有するので、PASポリマーすなわち高重合度体を得る際のプレポリマーとして好適に用いることが可能である。なおここでプレポリマーとしては本発明の実施形態の環式PASの回収方法で得られる環式PAS単独でも良いし、所定量の他の成分を含むものでも差し障り無い。ただし、環式PAS以外の成分を含む場合は、線状PASや分岐構造を有するPASなど、PAS成分であることが特に好ましい。少なくとも本発明の実施形態の環式PASを含み、以下に例示する方法により高重合度体へ変換可能なものがポリアリーレンスルフィドプレポリマーであり、以下PASプレポリマーと称する場合もある。
 環式PASの高重合度体への転化は環式PASを原料にして高分子量体が生成する条件下で行えばよく、例えば本発明の実施形態の環式PAS製造方法による環式PASを含む、PASプレポリマーを加熱して高重合度体に転化させる方法が好ましい方法として例示できる。この加熱の温度は前記PASプレポリマーが溶融解する温度であることが好ましく、このような温度条件であれば特に制限は無い。加熱温度がPASプレポリマーの溶融解温度未満では分子量の高いPASを得るのに長時間が必要となる傾向がある。なお、PASプレポリマーが溶融解する温度は、PASプレポリマーの組成や分子量、また、加熱時の環境により変化するため、一意的に示すことはできないが、例えばPASプレポリマーを示差走査型熱量計で分析することで溶融解温度を把握することが可能である。なお、加熱温度が高すぎるとPASプレポリマー間、加熱により生成したPAS間、及び加熱により生成したPASとPASプレポリマー間などでの架橋反応や分解反応に代表される好ましくない副反応が生じやすくなる傾向にあり、得られるPASの特性が低下する場合がある。そのため、このような好ましくない副反応が顕著に生じる温度は避けることが望ましい。このような好ましくない副反応の顕在化を抑制しやすい加熱温度としては、180℃以上が例示でき、好ましくは200℃以上であり、より好ましくは250℃以上である。また、上記加熱温度としては、400℃以下が例示でき、好ましくは380℃以下であり、より好ましくは360℃以下である。一方、ある程度の副反応が起こっても差し障り無い場合には、250℃以上、好ましくは280℃以上の温度範囲も選択可能である。また、450℃以下、好ましくは420℃以下の温度範囲も選択可能である。この場合には、極短時間で高分子量体への転化を行えるという利点がある。
 前記加熱を行う時間は、使用するPASプレポリマーにおける環式PASの含有率やm数、及び分子量などの各種特性、また、加熱の温度等の条件によって異なるため一様には規定できないが、前記した好ましくない副反応がなるべく起こらないように設定することが好ましい。加熱時間としては、0.05時間以上が例示でき、0.1時間以上が好ましい。また、100時間以下が例示でき、20時間以下が好ましく、10時間以下がより好ましい。加熱時間が0.05時間未満では、PASプレポリマーのPASへの転化が不十分になりやすい。また、加熱時間が100時間を超えると、得られるPASの特性に対して、好ましくない副反応による悪影響が顕在化する可能性が高くなる傾向にあるのみならず、経済的にも不利益を生じる場合がある。
 また、PASプレポリマーの加熱による高重合度体への転化に際しては、転化を促進する各種触媒成分を使用することも可能である。このような触媒成分としてはイオン性化合物やラジカル発生能を有する化合物が例示できる。イオン性化合物としては、たとえばチオフェノールのナトリウム塩やリチウム塩等、および硫黄のアルカリ金属塩が例示できる。また、ラジカル発生能を有する化合物としては、たとえば加熱により硫黄ラジカルを発生する化合物を例示でき、より具体的にはジスルフィド結合を含有する化合物が例示できる。なお、各種触媒成分を使用する場合、触媒成分は通常はPASに取り込まれ、得られるPASは触媒成分を含有するものになることが多い。特に触媒成分としてアルカリ金属及び/または他の金属成分を含有するイオン性の化合物を用いた場合、これに含まれる金属成分の大部分は得られるPAS中に残存する傾向が強い。また、各種触媒成分を使用して得られたPASは、PASを加熱した際の重量減少が増大する傾向にある。従って、より純度の高いPASを所望する場合および/または加熱した際の重量減少の少ないPASを所望する場合には、触媒成分の使用をできるだけ少なくする、好ましくは使用しないことが望まれる。従って、各種触媒成分を使用してPASプレポリマーを高重合度体へ転化する際には、PASプレポリマーと触媒成分を含む反応系内のアルカリ金属量が100ppm以下、好ましくは50ppm以下、より好ましくは30ppm以下、更に好ましくは10ppm以下であって、なお且つ、反応系内の全イオウ原子の重量に対するジスルフィド基を構成するイオウ原子の重量が1重量%未満、好ましくは0.5重量%未満、より好ましくは0.3重量%未満、更に好ましくは0.1重量%未満になるように触媒成分の添加量を調整して行うことが好ましい。
 PASプレポリマーの加熱による高重合度体への転化は、通常溶媒の非存在下で行うが、溶媒の存在下で行うことも可能である。溶媒としては、PASプレポリマーの加熱による高重合度体への転化の阻害や生成したPASの分解や架橋など好ましくない副反応を実質的に引き起こさないものであれば特に制限はない。例えばN-メチル-2-ピロリドン、ジメチルホルムアミド、およびジメチルアセトアミドなどの含窒素極性溶媒や、ジメチルスルホキシドおよびジメチルスルホンなどのスルホキシド・スルホン系溶媒や、アセトン、メチルエチルケトン、ジエチルケトン、およびアセトフェノンなどのケトン系溶媒や、ジメチルエーテル、ジプロピルエーテル、およびテトラヒドロフランなどのエーテル系溶媒や、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、ジクロルエタン、テトラクロルエタン、およびクロルベンゼンなどのハロゲン系溶媒や、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、およびポリエチレングリコールなどのアルコール・フェノール系溶媒や、ベンゼン、トルエン、およびキシレンなどの芳香族炭化水素系溶媒などがあげられる。また、二酸化炭素、窒素、水等の無機化合物を超臨界流体状態として溶媒に用いることも可能である。これらの溶媒は1種類または2種類以上の混合物として使用することができる。
 前記、PASプレポリマーの加熱による高重合度体への転化は、通常の重合反応装置を用いる方法で行うのはもちろんのこと、成形品を製造する型内で行っても良いし、押出機や溶融混練機を用いて行うなど、加熱機構を具備した装置であれば特に制限無く行うことが可能であり、バッチ方式、連続方式など公知の方法が採用できる。
 PASプレポリマーの加熱による高重合度体への転化の際の雰囲気は非酸化性雰囲気で行うことが好ましく、減圧条件下で行うことも好ましい。また、減圧条件下で行う場合、反応系内の雰囲気を一度非酸化性雰囲気としてから減圧条件にすることが好ましい。これによりPASプレポリマー間、加熱により生成したPAS間、及び加熱により生成したPASとPASプレポリマー間などで架橋反応や分解反応等の好ましくない副反応の発生を抑制できる傾向にある。なお、非酸化性雰囲気とは、PAS成分が接する気相における酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指す。この中でも特に、経済性及び取扱いの容易さの面からは窒素雰囲気が好ましい。また、減圧条件下とは、反応を行う系内が大気圧よりも低いことを指し、上限として50kPa以下が好ましく、20kPa以下がより好ましく、10kPa以下が更に好ましい。下限としては0.1kPa以上が例示でき、0.2kPa以上がより好ましい。減圧条件が好ましい上限を越える場合は、架橋反応など好ましくない副反応が起こりやすくなる傾向にある。一方、減圧条件が好ましい下限未満では、反応温度によってはPASプレポリマーに含まれる分子量の低い環式ポリアリーレンスルフィドが揮散しやすくなる傾向にある。
 前記したPASプレポリマーの高重合度体への転化は、繊維状物質の共存下で行うことも可能である。ここで繊維状物質とは、細い糸状の物質のことであって、天然繊維のごとく細長く引き延ばされた構造である任意の物質が好ましい。繊維状物質存在下でPASプレポリマーの高重合度体への転化を行うことで、PASと繊維状物質からなる複合材料構造体を容易に作成する事ができる。このような構造体は、繊維状物質によって補強されるため、PAS単独の場合に比べて、たとえば機械物性に優れる傾向にある。
 ここで、各種繊維状物質の中でも長繊維からなる強化繊維を用いることが好ましく、これによりPASを高度に強化する事が可能になる。一般に樹脂と繊維状物質からなる複合材料構造体を作製する際には、樹脂が溶融した際の粘度が高いことに起因して、樹脂と繊維状物質のぬれが悪くなる傾向にあり、均一な複合材料ができなかったり、期待通りの機械物性が発現しないことが多い。ここでぬれとは、溶融樹脂のごとき流体物質と、繊維状化合物のごとき固体基質との間に実質的に空気または他のガスが捕捉されないようにこの流体物質と固体基質との物理的状態の良好且つ維持された接触があることを意味する。ここで流体物質の粘度が低い方が繊維状物質とのぬれは良好になる傾向にある。本発明の実施形態のPASプレポリマーは、融解した際の粘度が、一般的な熱可塑性樹脂、たとえば従来知られる方法により製造されたPASと比べて著しく低いため、繊維状物質とのぬれが良好になりやすい。PASプレポリマーと繊維状物質が良好なぬれを形成した後、本発明の実施形態のPASの製造方法によればPASプレポリマーが高重合度体に転化するので、繊維状物質と高重合度体(ポリアリーレンスルフィド)が良好なぬれを形成した複合材料構造体を容易に得ることができる。
 繊維状物質としては長繊維からなる強化繊維が好ましいことは前述したとおりであり、本発明の実施形態に用いられる強化繊維に特に制限はないが、好適に用いられる強化繊維としては、一般に高性能強化繊維として用いられる耐熱性及び引張強度の良好な繊維が挙げられる。例えば、その強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、およびボロン繊維が挙げられる。この内、比強度、比弾性率が良好で、軽量化に大きな寄与が認められる炭素繊維や黒鉛繊維が最も良好なものとして例示できる。炭素繊維や黒鉛繊維としては、用途に応じて、あらゆる種類の炭素繊維や黒鉛繊維を用いることが可能であるが、引張強度450Kgf/mm2 、引張伸度1.6%以上の高強度高伸度炭素繊維が最も適している。長繊維状の強化繊維を用いる場合、その長さは、5cm以上であることが好ましい。この長さの範囲では、強化繊維の強度を複合材料として十分に発現させることが容易となる。また、炭素繊維や黒鉛繊維は、他の強化繊維を混合して用いてもかまわない。また、強化繊維は、その形状や配列を限定されず、例えば、単一方向、ランダム方向、シート状、マット状、織物状、組み紐状であっても使用可能である。また、特に、比強度、比弾性率が高いことを要求される用途には、強化繊維が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も本発明の実施形態には適している。
 また、前記したPASプレポリマーの高重合度体への転化は、充填剤の存在下で行うことも可能である。充填剤としては、たとえば非繊維状ガラス、非繊維状炭素や、無機充填剤、たとえば炭酸カルシウム、酸化チタン、アルミナなどを例示できる。
 以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。最初に、実施例および比較例の環式ポリアリーレンスルフィドの製造方法で得られる試料の評価方法について説明する。
<環式ポリフェニレンスルフィドの分析>
 環式ポリフェニレンスルフィド化合物の定性定量分析は高速液体クロマトグラフィー(HPLC)を用いて実施した。HPLCの測定条件を以下に示す。
装置:島津製作所製 LC-10Avpシリーズ
カラム:関東化学社製 Mightysil RP-18 GP150-4.6(5μm)
検出器:フォトダイオードアレイ検出器(波長270nm)
 なお、HPLCで成分分割した各成分の構造決定は、液体クロマトグラフ質量分析(LC―MS)による分析と、分取液体クロマトグラフ(分取LC)での分取物のマトリックス支援レーザー脱離イオン化質量分析(MALDI-MS)、核磁気共鳴分光法(NMR)による分析、および赤外分光測定(IR測定)により行った。これにより、繰り返し単位数4~15の環式ポリフェニレンスルフィドが、本条件のHPLC測定により定性定量できることを確認した。
 上記HPLC分析において検出されたピークを、環式ポリフェニレンスルフィドに由来するピークとそれ以外に由来するピークに分類した。検出された全てのピークの検出面積の積算値に対する環式ポリフェニレンスルフィド以外に由来するピークの検出面積の積算値の割合(面積比)を、不純物率と定義し、環式ポリフェニレンスルフィドの不純物量を比較した。
<ジハロゲン化芳香族化合物の分析>
反応混合物や反応生成物及び反応途中の中間生成物中のジハロゲン化芳香族化合物の定量(p-ジクロロベンゼンの定量)は、ガスクロマトグラフィーを用いて以下の条件にて実施した。
装置:島津製作所製 GC-2010
カラム:J&W社製 DB-5 0.32mm×30m(0.25μm)
キャリアーガス:ヘリウム
検出器:水素炎イオン化検出器(FID)
<スルフィド化剤の分析>
 反応混合物や反応生成物及び反応途中の中間生成物中のスルフィド化剤の定量(水硫化ナトリウムの定量)は、イオンクロマトグラフィーを用いて以下の条件にて実施した。
装置:島津製作所製 HIC-20Asuper
カラム:島津製作所製 Shim-packIC-SA2(250mm×4.6mmID)
検出器:電気伝導度検出器(サプレッサ)
溶離液:4.0mM炭酸水素ナトリウム/1.0mM炭酸ナトリウム水溶液
流速:1.0mL/分
注入量:50マイクロリットル
カラム温度:30℃
 試料中に過酸化水素水を添加して、試料中に含まれる硫化物イオンを硫酸イオンへと酸化させ、その後に上記分析により硫酸イオンを定量した。得られた硫酸イオンの定量値から、過酸化水素水を添加しない無処理の試料を分析した際の硫酸イオン定量値を差し引く方法により、試料中の硫化物イオン量を算出した。ここで算出した硫化物イオン量は、資料中に含まれる未反応のスルフィド化剤量に対応すると考えられる。そのため、上記算出した硫化物イオン量から未反応のスルフィド化剤量を算出し、得られた未反応のスルフィド化剤量と、仕込んだスルフィド化剤量との割合から、試料におけるスルフィド化剤の反応消費率を算出した。
<反応生成物の固液分離性評価>
 反応生成物の固液分離性の評価は以下の条件で実施した。
 得られた反応生成物200gを分取し、300mL容のフラスコに仕込んだ。反応生成物をマグネチックスターラーを用いて撹拌すると共に、反応生成物のスラリーに窒素バブリングを行いながら、オイルバスにて100℃に加熱した。
 ADVANTEC社製の万能型タンク付フィルターホルダーKST-90-UH(有効濾過面積約45平行センチメートル)に、直径90mm,平均細孔直径10μmのポリテトラフルオロエチレン(PTFE)製メンブレンフィルターをセットし、タンク部分をバンドヒーターにて100℃に調温した。
 100℃に加熱した反応生成物をタンクに仕込み、タンクを密閉後、タンク内を窒素にて0.1MPaに加圧した。加圧後にフィルターホルダーの下部から濾過液が排出され始めた時点を起点として、50gの濾液が排出される間での時間を計測し、単位濾過面積基準の濾過速度(kg/(m2・hr))を算出した。
<線状ポリフェニレンスルフィドの分子量測定方法>
原料として用いる線状ポリフェニレンスルフィドの重量平均分子量は下記条件にて測定し、標準ポリスチレン換算として求めた。
装置:センシュー科学製 SSC-7100
カラム:Shodex UT806M×2
カラム温度:210℃
移動相:1-クロロナフタレン
検出器:示差屈折率検出器
検出器温度:210℃
 以下に、各実施例および比較例の環式ポリアリーレンスルフィドの製造方法、および、各実施例および比較例に係る評価結果について説明する。実施例1~11および比較例1~7の製造条件及び評価結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例1]
 <反応混合物の調製>
 攪拌機付きオートクレーブ(材質はSUS316L)に、スルフィド化剤(a)として48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液21.1g(水酸化ナトリウムとして0.253モル)、ジハロゲン化芳香族化合物(b)としてp-ジクロロベンゼン(p-DCB)35.4g(0.241モル)、及び、有機極性溶媒(c)としてN-メチル-2-ピロリドン(NMP)600g(6.05モル)を仕込むことで反応混合物を調製した。原料に含まれる水分量は25.6g(1.42モル)であり、反応混合物中のイオウ成分1モル当たり(スルフィド化剤として仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の溶媒量は約2.43Lであった。また、反応混合物中のイオウ成分1モル当たり(スルフィド化剤として仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の、アリーレン単位(ジハロゲン化芳香族化合物として仕込んだp-DCBに相当)の量は1.00モルであった。
 <工程1>
 オートクレーブ内を窒素ガスで置換後に密封し、400rpmで撹拌しながら約1時間かけて室温から200℃まで昇温した。次いで200℃から250℃まで約0.5時間かけて昇温した。この段階の反応器内の圧力はゲージ圧で1.0MPaであった。その後250℃で2時間保持することで反応混合物を加熱し反応させた。
 <工程2>
 高圧バルブを介してオートクレーブ上部に設置した100mL容の小型タンクにp-DCBのNMP溶液(p-DCB3.54gをNMP10gに溶解)を仕込んだ。小型タンク内を約1.5MPaに加圧後タンク下部のバルブを開き、p-DCBのNMP溶液をオートクレーブ内に仕込んだ。小型タンクの壁面をNMP5gで洗浄後、このNMPもオートクレーブ内に仕込んだ。本操作により、反応混合物中のイオウ成分1モル当たりのアリーレン単位(工程1と工程2でジハロゲン化芳香族化合物として仕込んだp-DCBの合計量に相当)は1.10モルとなった。この追加の仕込み終了後、250℃にてさらに1時間加熱を継続して反応を進行させた。その後約15分かけて230℃まで冷却した後、オートクレーブ上部に設置した高圧バルブを徐々に開放することで主としてNMPからなる蒸気を排出し、この蒸気成分を水冷冷却管にて凝集させることで、約394gの液成分を回収した後に高圧バルブを閉じて密閉した。次いで室温近傍まで急冷して、反応生成物を回収した。
 <反応生成物の分析評価>
 得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤として用いた水硫化ナトリウムの反応消費率は96%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、17.8%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は355kg/(m2・hr)であった。
 <環式ポリアリーレンスルフィドの回収>
 上記固液分離性評価と同様の手法にて反応生成物を固液分離して得た濾液成分100gを300mLフラスコに仕込み、フラスコ内を窒素で置換した。ついで撹拌しながら100℃に加温した後80℃に冷却した。この際、常温では一部不溶成分が存在したが100℃に到達した段階、さらに80℃に冷却した段階で不溶部は認められなかった。ついで系内温度80℃にて撹拌したまま、チューブポンプを用いて水33gを約15分かけてゆっくりと滴下した。ここで、水の滴下終了後の濾液混合物におけるNMPと水の重量比率は75:25であった。この濾液への水の添加において、水の滴下に伴い混合物の温度は約75℃まで低下し、また、混合物中に徐々に固形分が生成し、水の滴下が終了した段階では固形分が分散したスラリー状となった。このスラリーを撹拌したまま約1時間かけて約30℃まで冷却し、次いで30℃以下で約30分間撹拌を継続した後、得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過した。得られた固形分(母液を含む)を約30gの水に分散させ70℃で15分撹拌した後、前述同様にガラスフィルターで吸引濾過する操作を計4回繰り返した。得られた固形分を真空乾燥機70℃で3時間処理して、環式ポリアリーレンスルフィドとしての乾燥固体を得た。
 乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、乾燥固体中の環式ポリフェニレンスルフィドの含有率は、約86重量%であり、得られた乾燥固体は純度の高い環式ポリフェニレンスルフィドであることがわかった。またこの乾燥固体の不純物率は2.0%であった。
 また、上記のように工程1、工程2で得られた反応生成物を固液分離の後に回収して得られた試料とは別に、工程1までを行った段階で操作を終了して反応混合物を回収した試料も用意した。この反応混合物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は94%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例1の結果から、本発明の環式ポリアリーレンスルフィドの製造方法によれば、不純物含有率の少ない高品質な環式ポリアリーレンスルフィドを高収率で得ることができ、また環式PASの製造工程における固液分離の効率が極めて高く、生産性の観点でも極めて優れていることがわかった。
 [比較例1]
 実施例1の工程2において、DCBを追加添加せず、NMP15gのみを小型タンクを用いてオートクレーブ内に追加添加した以外は、実施例1と同様に操作を実施した。従って、工程1、工程2とも、反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.00モルであり、反応の開始から終了まで一貫して、反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.00モルであった。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は96%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、15.6%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は3kg/(m2・hr)であった。
 <環式ポリアリーレンスルフィドの回収>
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約79重量%であることがわかった。またこの乾燥固体の不純物率は1.5%であった。
 比較例1の結果から、本発明の特長であるジハロゲン化芳香族化合物の追加を行わず、工程2における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率が本発明法と異なる場合であっても、得られる環式ポリアリーレンスルフィドの不純物率は低い傾向にあった。しかしながら、単離される乾燥固体における環式ポリアリーレンスルフィドの重量分率(環式PASの含有率)が低く、さらに反応生成物の固液分離性も悪く生産性が低いことがわかった。
 [比較例2]
 実施例1の反応混合物の調製において、p-DCBを38.9g(0.265モル)として、反応混合物におけるイオウ成分1モル当たりのアリーレン単位の量を1.10モルとした以外は、実施例1と同様に工程1の操作を行った。
 工程2における操作は比較例1と同様とした。すなわち、工程2ではp-DCBを追加添加せず、NMP15gのみを小型タンクを用いてオートクレーブ内に追加添加した。ここで比較例2では工程2でのp-DCB追加はおこなわなかったが、工程1で用いた反応混合物における水硫化ナトリウムのイオウ成分1モル当たりのp-DCBは1.10モルであったので、工程2も同じ条件で反応を実施したこととなる。したがって、反応の開始から終了まで一貫して、反応混合物中のイオウ成分1モル当たりのp-DCBは1.10モルであった。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は16.0%であった。また得られた反応物の固液分離性を評価した結果、濾過速度は350kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約72重量%であることがわかった。またこの乾燥固体の不純物率は10.1%であった。
 なお、実施例1と同様に、工程1までを行った段階で操作を終了して反応混合物を回収して分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は95%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 比較例2の結果から、本発明の特長であるジハロゲン化芳香族化合物の追加を行わず、工程1における反応混合物中のイオウ成分1モルあたりのアリーレン単位の比率が本発明法と異なる場合には、不純物率が非常に高く品質に劣る環式ポリアリーレンスルフィドしか得られないことがわかった。
 [実施例2]
 工程1までを実施例1と同様に行ない(工程1の終了段階における水硫化ナトリウムの反応消費率は94%)、次の工程2で追加するp-DCBのNMP溶液を、p-DCB1.76gをNMP10gに溶解させたものに変えた。すなわち、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.05モルとして工程2の反応を行なった以外は、実施例1と同様の条件で環式PASを製造した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は96%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は17.5%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は247kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約84重量%であることがわかった。またこの乾燥固体の不純物率は1.5%であった。
 実施例2の結果から、本発明の環式ポリアリーレンスルフィドの製造方法によれば、不純物含有率の少ない高品質な環式ポリアリーレンスルフィドを高収率で得ることができ、また、環式PASの製造工程における固液分離の効率が極めて高く、生産性の観点でも極めて優れていることがわかった。また、実施例1との対比から、工程2における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を低めに設定することで、反応生成物の固液分離性がわずかに低下するものの、得られる環式ポリアリーレンスルフィドの純度が更に向上し、きわめて高い生産性が達成できることがわかった。
 [実施例3]
 工程1までを実施例1と同様に行ない(工程1の終了段階における水硫化ナトリウムの反応消費率は94%)、次の工程2で追加するp-DCBのNMP溶液を、p-DCB2.65gをNMP10gに溶解させたものに変えた。すなわち、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.075モルとして工程2の反応を行なった以外は、実施例1と同様の条件で環式PASを製造した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は18.0%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は290kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約84重量%であることがわかった。また、この乾燥固体の不純物率は1.5%であった。
 実施例3の結果を実施例1と対比することにより、本発明の環式ポリアリーレンスルフィドの製造方法において、工程2の反応混合物中のイオウ成分1モルに対するアリーレン単位の比率をより低めに設定しても、得られる環式ポリアリーレンスルフィドの純度、および環式PASの製造工程における固液分離性を十分なレベルにできることがわかった。
 [実施例4]
 工程1までを実施例1と同様に行ない(工程1の終了段階における水硫化ナトリウムの反応消費率は94%)、次の工程2で追加するp-DCBのNMP溶液を、p-DCB8.84gをNMP20gに溶解させたものに変えた。すなわち、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.25モルとして工程2の反応を行なった以外は、実施例1と同様の条件で環式PASを製造した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は99%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は17.4%であった。また、得られた反応生成物の固液分離性を評価した結果、濾過速度は334kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約82重量%であることがわかった。また、この乾燥固体の不純物率は4.3%であった。
 実施例4の結果を実施例1と対比することにより、本発明の環式ポリアリーレンスルフィドの製造方法において、工程2における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を高めに設定することで、環式ポリアリーレンスルフィドの製造時に得られる反応生成物の固液分離性がよりいっそう高まる反面、得られる環式ポリアリーレンスルフィドに含まれる不純物成分が増加する傾向にあることがわかった。
 [比較例3]
 工程2で追加するp-DCBのNMP溶液を、p-DCB0.71gをNMP10gに溶解させたものに変え、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.02モルとして工程2の反応を行なった以外は、実施例1と同様の条件で環式PASを製造した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は17.2%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は9kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約79重量%であることがわかった。また、この乾燥固体の不純物率は1.3%であった。
 比較例3の結果から、工程1の後にジハロゲン化芳香族化合物の追加を行った場合でも、工程2における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率が本発明の範囲よりも低い条件の場合には、不純物率が低い環式ポリアリーレンスルフィドが得られる傾向にあるものの、単離される乾燥固体における環式ポリアリーレンスルフィドの含有率が低く、さらに環式PASの製造工程における固液分離性も悪く生産性が低いことがわかった。
 [実施例5]
 実施例1の反応混合物の調製において、p-DCBを33.6g(0.229モル)として、反応混合物におけるイオウ成分1モル当たりのアリーレン単位を0.95モルとした以外は実施例1と同様に工程1の操作を行い、次いで工程2では、追加するp-DCBのNMP溶液を、p-DCB5.31gをNMP10gに溶解させたものに変えた。すなわち、工程1における反応系内のイオウ成分1モル当たりのアリーレン単位を0.95モルとして工程1の反応を行なった以外は、実施例1と同様の条件で環式PASを製造した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は18.9%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は600kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であることがわかった。また、この乾燥固体の不純物率は2.0%であった。
 また、工程1までを行った段階で操作を終了して回収した反応混合物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は92%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例5の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程1における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率をイオウが過剰の条件とすることで、環式ポリアリーレンスルフィドの生成率が向上することがわかった。
 [実施例6]
 実施例1の反応混合物の調製において、p-DCBを31.8g(0.217モル)として、反応混合物におけるイオウ成分1モル当たりのアリーレン単位を0.90モルとした以外は実施例1と同様に工程1の操作を行い、次いで工程2では、追加するp-DCBのNMP溶液を、p-DCB7.07gをNMP10gに溶解させたものに変えた。すなわち、工程1における反応系内のイオウ成分1モル当たりのアリーレン単位を0.90モルとして工程1の反応を行なった以外は、実施例1と同様の条件で環式PASを製造した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は20.5%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は940kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であることがわかった。また、この乾燥固体の不純物率は3.5%であった。
 また、工程1までを行った段階で操作を終了して回収した反応混合物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は91%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例6の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程1における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を実施例5よりも更にイオウが過剰の条件とすることで、環式ポリアリーレンスルフィドの生成率がさらに向上する一方で、不純物率はわずかに上昇することがわかった。
 [実施例7]
 実施例6と同様に工程1の操作を行なった後(工程1の終了段階における水硫化ナトリウムの反応消費率は91%)、高圧バルブを介してオートクレーブ上部に設置した100mL容の小型タンクにp-DCBのNMP溶液(p-DCB3.54gをNMP10gに溶解)を仕込んだ。小型タンク内を約1.5MPaに加圧後タンク下部のバルブを開き、p-DCB溶液をオートクレーブ内に仕込んだ。小型タンクの壁面をNMP5gで洗浄後、このNMPもオートクレーブ内に仕込んだ。本操作により、反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.00モルとなった。なお、この追加仕込みの一連の操作には約5分を要した。追加の仕込み終了後、250℃にてさらに0.5時間加熱を継続して反応を進行させた。次いで工程2では、追加するp-DCBのNMP溶液を、p-DCB3.53gをNMP10gに溶解させたものに変え、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.10モルとして、実施例6と同様に工程2の反応を行なった。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は98%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は21.1%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は320kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約88重量%であることがわかった。また、この乾燥固体の不純物率は2.1%であった。
 実施例7の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程1における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率をイオウが過剰の条件とし、また追加するDCBの追加方法を本発明の特に好ましい方法である分割添加とすることで、環式ポリアリーレンスルフィドの生成率がさらに向上し、また不純物率も低い高品質な環式ポリアリーレンスルフィドが得られることがわかった。
 [比較例4]
 実施例1の反応混合物の調製において、p-DCBを26.5g(0.181モル)として、反応混合物におけるイオウ成分1モル当たりのアリーレン単位を0.75モルとした以外は、実施例1と同様に工程1の操作を行なった。工程2では、追加するp-DCBのNMP溶液を、p-DCB12.4gをNMP10gに溶解させたものに変え、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.10モルにしており、実施例1と同様の条件で工程2を実施した。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は14.1%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は98kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約70重量%であることがわかった。また、この環式乾燥固体の不純物率は12.0%であった。
  また、工程1までを行った段階で操作を終了して回収した反応混合物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は90%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 比較例4の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程1における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を本発明の範囲よりも低くした場合には、環式ポリアリーレンスルフィドの生成率は低く、また不純物率が大幅に増大し、品質の低い環式ポリアリーレンスルフィドしかえられないことがわかった。
 [比較例5]
ここでは、工程1における加熱の条件を変更して、200℃まで昇温した後、200℃で2時間保持しており、次いで工程2の操作を行った以外は実施例6と同様の操作を実施した。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は95%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定して場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、16.4%であった。また、得られた反応生成物の固液分離性を評価した結果、濾過速度は120kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約80重量%であることがわかった。また、この乾燥固体の不純物率は5.1%であった。
 また、工程1までを行った段階で操作を終了して回収した反応生成物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は39%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費される前、すなわちスルフィド化剤の反応消費が不十分な段階で工程2が行われたことが確認できた。
 比較例5の結果から、本発明の特長であるジハロゲン化芳香族化合物の追加を、スルフィド化剤の50%以上が反応消費される前、すなわちスルフィド化剤の反応消費が不十分な時点で行った場合には、環式ポリアリーレンスルフィドの生成率が低く、また、不純物率も高く品質に劣る環式ポリアリーレンスルフィドしか得られないことがわかった。
 [実施例8]
ここでは、工程1における加熱の条件を変更して、250℃まで昇温した時点で工程1を終了し、次いで工程2の操作を行った以外は実施例6と同様の操作を実施した。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は95%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定して場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、18.0%であった。また、得られた反応生成物の固液分離性を評価した結果、濾過速度は260kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約85重量%であることがわかった。また、この乾燥固体の不純物率は4.5%であった。
 また、工程1までを行った段階で操作を終了して回収した反応生成物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は82%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例8の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、実施例6に比べ、工程1の終了時点におけるスルフィド化剤の反応消費率がやや低下しても、環式ポリアリーレンスルフィドの製造時に得られる反応生成物の固液分離性がやや低下するものの、高い生産性を維持できることがわかった。また、得られる環式ポリアリーレンスルフィドは、生成率や品質がわずかに低下するものの十分に高品質であることがわかった。
 [実施例9]
実施例1の反応混合物の調製において、p-DCBを36.1g(0.246モル)として、反応混合物におけるイオウ成分1モル当たりのアリーレン単位を1.02モルとした以外は実施例1と同様に工程1の操作を行なった。工程2では、追加するp-DCBのNMP溶液を、p-DCB2.87gをNMP10gに溶解させたものに変え、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.10モルにしており、実施例1と同様の条件で工程2を実施した。
<反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は98%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は17.6%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は370kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約86重量%であることがわかった。また、この乾燥固体の不純物率は2.1%であった。
 また、工程1までを行った段階で操作を終了して回収した反応混合物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は94%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例9の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程1における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を1.00モルから1.02モルに微増した場合、実施例1と比較して、環式ポリアリーレンスルフィドの純度等はほぼ同等の結果だが、製造時に得られる反応生成物の固液分離の効率は向上傾向にあることがわかった。
 [比較例6]
実施例4の反応混合物の調製において、p-DCBを38.9g(0.264モル)として、反応混合物におけるイオウ成分1モル当たりのアリーレン単位を1.10モルとした以外は実施例4と同様に工程1の操作を行なった。工程2では、追加するp-DCBのNMP溶液を、p-DCB5.38gをNMP20gに溶解させたものに変え、工程2における反応系内のイオウ成分1モル当たりのアリーレン単位を1.25モルとしたこと以外は、実施例1と同様の条件で工程2を実施した。
<反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は16.2%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は460kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約71重量%であることがわかった。また、この乾燥固体の不純物率は10.4%であった。
 また、工程1までを行った段階で操作を終了して回収した反応混合物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は95%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 比較例6の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程1および工程2における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を高めに設定することで、環式ポリアリーレンスルフィドの製造時に得られる反応生成物の固液分離性がよりいっそう高まる反面、得られる環式ポリアリーレンスルフィドに含まれる不純物成分が増加する傾向にあることがわかった。
 [参考例1]
ここでは水を含むスルフィド化剤を原料に用いて有機極性溶媒中で脱水処理を行い、水分量の低減されたスルフィド化剤を調製する方法を例示する。
 攪拌機付き1リットルオートクレーブに48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液19.8g(水酸化ナトリウムとして0.238モル) 、およびN-メチル-2-ピロリドン(NMP)238.0g(2.40モル)を仕込んだ。オートクレーブに仕込んだ混合物が、水を含むスルフィド化剤に相当する。原料に含まれる水分量は24.9g(1.38モル)であり、スルフィド化剤の硫黄成分1モル当たりの水の量は5.75モルであった。また、スルフィド化剤の硫黄成分1モル当たりの有機極性溶媒量は約0.97リットルであった。
 オートクレーブ上部にバルブを介して充填剤入りの精留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら230℃まで約3時間かけて徐々に加熱して脱液を行い、留出液27.1gを得た。
 この留出液をガスクロマトグラフ法で分析したところ留出液の組成は水23.4g、NMPが3.7gであり、この段階では反応系内反応混合物中に水が1.5g(0.083モル)、NMPが234.3g(2.36モル)残存していることが判った。なお、脱水工程を通して反応系から飛散した硫化水素は0.004モルであり、硫化水素の飛散により反応系から水硫化ナトリウムが0.004モル減少し、水酸化ナトリウムが0.004モル増加したことになる。
 次いでオートクレーブ内を室温近傍まで冷却して、半固体状の内容物を回収した。上記分析の結果、この内容物は、水硫化ナトリウムを0.237molモル、水酸化ナトリウムを0.242molモル、水を0.083molモル、NMPを234.3g(2.36molモル)含む、含水量の少ないスルフィド化剤であることがわかった。
 [参考例2]
 ここではスルフィド化剤とp-DCBおよびNMPを混合してスラリー状の原料混合物を調製する方法を例示する。
 撹拌機を具備したステンレス製オートクレーブに参考例1で得られた含水量の少ないスルフィド化剤218.36g(水硫化ナトリウム11.21g(0.200モル)、水酸化ナトリウム8.17g(0.204モル)、水1.26g(0.070モル)、N-メチル-2-ピロリドン(NMP)197.72g(1.997モル)からなる)、p-ジクロロベンゼン(p-DCB)29.99g(0.204モル)、およびN-メチル-2-ピロリドン(NMP)386.53g(3.90モル)を仕込んだ。仕込んだ原料混合物中の硫黄成分1モルあたりの溶媒量は、約2.85リットルであった。また、アリーレン単位は硫黄成分1モルあたり1.02モルであった。オートクレーブ内を十分に窒素置換した後に100℃で30分撹拌して得た均一スラリーを、原料混合物とした。
 [比較例7]
 実施例9と同様に工程1の操作を行なった(工程1の終了段階における水硫化ナトリウムの反応消費率は94%)。工程2では、追加するp-DCBのNMP溶液を、参考例2で調製した原料混合物スラリー60.75g(アリーレン単位として0.0195モル相当、イオウ成分として0.0191モル相当を含む)に変えることにより、イオウ成分も同時に加え、反応系内のイオウ成分1モル当たりのアリーレン単位を1.02モルとしたこと以外は、実施例1と同様の条件で工程2を実施した。
<反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は94%であった。また、反応混合物中のスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は17.8%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は12kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約80重量%であることがわかった。また、この乾燥固体の不純物率は1.3%であった。
 本比較例より、ジハロゲン化芳香族化合物とスルフィド化剤を同時に追添加した場合には、実施例9に比べて、環式ポリフェニレンスルフィドが良好な生成率で得られるが、固液分離性は低く、品質も低下(環式PAS含有率が低下)することがわかった。
 [実施例10]
 工程2における追加の操作後の反応温度を260℃にした以外は、実施例6と同様の操作を実施した。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は97%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は20.6%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は945kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約88重量%であることがわかった。また、この乾燥固体の不純物率は3.2%であった。
 実施例10の結果から、本発明の環式ポリアリーレンスルフィドの製造方法において、工程2を工程1よりも高い温度で行うことで、得られる環式ポリアリーレンスルフィドの含有率は向上し、不純物率は低下する傾向にあり、高品質の環式ポリフェニレンスルフィドが得られることがわかった。
 [実施例11]
 工程2の反応温度を270℃にした以外は実施例6と同様の操作を実施した。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は98%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、20.5%であった。また、得られた反応生成物の固液分離性を評価した結果、濾過速度は935kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であることがわかった。また、この乾燥固体の不純物率は3.3%であった。
 実施例11の結果から、実施例10よりも工程2をさらに高い温度で行っても、高品質の環式ポリフェニレンスルフィドが得られ、270℃まで温度を上げてもよいが、更なる品質の向上はないことがわかった。
 [参考例3]
 ここでは従来技術による線状ポリアリーレンスルフィドの製造例、すなわち、スルフィド化剤と、ジハロゲン化芳香族化合物と、スルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒とを用いて、加熱して反応させて反応混合物を得て、得られる反応混合物を固液分離することにより環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドの分離を行い、溶媒を含む固形分として線状ポリアリーレンスルフィドを製造した例を示す。
 攪拌機を具備したステンレス製オートクレーブ(反応容器)に、48重量%の水硫化ナトリウム水溶液46.75g(水硫化ナトリウムとして0.40モル)、48重量%の水酸化ナトリウム水溶液35.00g(0.42モル)、NMP1000g(10.1モル)、およびp-ジクロロベンゼン(p-DCB)59.98g(0.41モル)を仕込んだ。反応容器内を十分に窒素置換した後、加圧窒素を用いてゲージ圧で0.3MPaに加圧して密封した。
 400rpmで撹拌しながら、室温から200℃まで約1時間かけて反応容器内を昇温した。この段階で、反応容器内の圧力はゲージ圧で0.9MPaであった。次いで200℃から250℃まで約30分かけて反応容器内を昇温した。この段階の反応容器内の圧力はゲージ圧で1.5MPaであった。250℃で2時間保持した後、室温付近まで急冷して、反応容器から内容物を回収した。
 得られた内容物をガスクロマトグラフィーおよび高速液体クロマトグラフィーにより分析した結果、モノマーのp-DCBの消費率は92%であった。また、反応混合物中のイオウ成分が全て環式ポリアリーレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリアリーレンスルフィドの生成率は16.7%であることがわかった。
 上記で得られた内容物、すなわち少なくとも環式ポリアリーレンスルフィド、線状ポリアリーレンスルフィド、NMPおよび副生塩としてNaClを含む反応混合物をナスフラスコに仕込み、フラスコ内を十分に窒素置換した後、撹拌しながら約100℃に調温し、加圧窒素を用いた熱時加圧濾過にて前記反応混合物の固液分離を行った。この操作により湿潤状態の固形分を得た。
 得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体の分析の結果、赤外分光分析における吸収スペクトルより、これは線状のポリフェニレンスルフィドであり、また、重量平均分子量はポリスチレン換算で11,000であることがわかった。また、得られた乾燥固体の重量から、湿潤状態の固形分中の線状ポリフェニレンスルフィドの含有率は約23%であることがわかった。また、前記湿潤状態の固形分の分析を行った結果、NMPおよびNaClの含有率はそれぞれ47重量%、30重量%であった。
 以下に、参考例3で得られた線状ポリアリーレンスルフィドをさらに加えた反応混合物を用いた実施例および比較例の環式ポリアリーレンスルフィドの製造方法、および、各実施例および比較例に係る評価結果について説明する。実施例12~17および比較例8、9の製造条件及び評価結果を、表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 [実施例12]
 <反応混合物の調製>
 攪拌機付きオートクレーブ(材質はSUS316L)に、参考例3で得られた湿潤状態の線状ポリフェニレンスルフィドを90.39g((線状ポリフェニレンスルフィド20.79g(イオウ成分、アリーレン単位としてそれぞれ0.192モル相当)、NMP42.48g(0.429モル)、NaCl27.12g(0.464モル))、スルフィド化剤(b)として48重量%の水硫化ナトリウム水溶液5.62g(水硫化ナトリウムとして0.048モル)、48重量%の水酸化ナトリウム水溶液5.07g(水酸化ナトリウムとして0.061モル)、ジハロゲン化芳香族化合物(c)としてp-ジクロロベンゼン(p-DCB)7.07g(0.048モル)、及び、有機極性溶媒(d)としてNMP573g(5.78モル)を仕込むことで反応混合物を調製した。原料に含まれる水分量は5.56g(0.309モル)であり、反応混合物中のイオウ成分1モル当たりの溶媒量は約2.50リットルであった。また、反応混合物中のイオウ成分1モル当たりの、アリーレン単位(線状ポリアリーレンスルフィドとして仕込んだ線状ポリフェニレンスルフィドに由来するフェニレン単位と、ジハロゲン化芳香族化合物として仕込んだp-DCBに由来するフェニレン単位の合計量に相当)は1.00モルであった。
 <工程1>
 オートクレーブ内を窒素ガスで置換後に密封し、400rpmで撹拌しながら約1時間かけて室温から200℃まで昇温した。次いで200℃から250℃まで約0.5時間かけて昇温した。この段階の反応器内の圧力はゲージ圧で0.5MPaであった。その後250℃で1時間保持することで反応混合物を加熱し反応させた。
 <工程2>
 高圧バルブを介してオートクレーブ上部に設置した100mL容の小型タンクにp-DCBのNMP溶液(p-DCB1.76gをNMP50gに溶解)を仕込んだ。小型タンク内を約1.5MPaに加圧後タンク下部のバルブを開き、p-DCB溶液をオートクレーブ内に仕込んだ。小型タンクの壁面をNMP10gで洗浄後、このNMPもオートクレーブ内に仕込んだ。本操作により、反応系内の反応混合物中のイオウ成分1モル当たりのアリーレン単位(工程1で線状ポリアリーレンスルフィドとして仕込んだ線状ポリフェニレンスルフィドに由来するフェニレン単位と、工程1と工程2でジハロゲン化芳香族化合物として仕込んだp-DCBに由来するフェニレン単位の合計量に相当)は1.05モル、また、反応混合物中のイオウ成分1モル当たりの溶媒量は2.74リットルとなった。この追加の仕込み終了後、250℃にてさらに1時間加熱を継続して反応を進行させた。その後約15分かけて230℃まで冷却した後、オートクレーブ上部に設置した高圧バルブを徐々に開放することで主としてNMPからなる蒸気を排出し、この蒸気成分を水冷冷却管にて凝集させることで、約538gの液成分を回収した。その後、高圧バルブを閉じてオートクレーブを密閉した。次いで室温近傍まで急冷して、オートクレーブ内から反応生成物を回収した。
 <反応生成物の分析評価>
 得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤として用いた水硫化ナトリウムの反応消費率は76.2%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリアリーレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は15.9%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は55kg/(m2・hr)であった。
 <環式ポリアリーレンスルフィドの回収>
 上記固液分離性評価と同様の手法にて得た濾液成分100gを300mLフラスコに仕込み、フラスコ内を窒素で置換した。ついで撹拌しながら100℃に加温した後80℃に冷却した。この際、常温では一部不溶成分が存在したが100℃に到達した段階、さらに80℃に冷却した段階で不溶部は認められなかった。ついで系内温度80℃にて撹拌したまま、チューブポンプを用いて水33gを約15分かけてゆっくりと滴下した。ここで、水の滴下終了後の濾液混合物におけるNMPと水の重量比率は75:25であった。この濾液への水の添加において、水の滴下に伴い混合物の温度は約75℃まで低下し、また、混合物中に徐々に固形分が生成し、水の滴下が終了した段階では固形分が分散したスラリー状となった。このスラリーを撹拌したまま約1時間かけて約30℃まで冷却し、次いで30℃以下で約30分間撹拌を継続した後、得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過した。得られた固形分(母液を含む)を約30gの水に分散させ70℃で15分撹拌した後、前述同様にガラスフィルターで吸引濾過する操作を計4回繰り返した。得られた固形分を真空乾燥機70℃で3時間処理して乾燥固体を得た。
 乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であり、純度の高い環式ポリフェニレンスルフィドであることがわかった。また、この乾燥固体の不純物率は2.1%であった。
 また、工程1までを行った段階で操作を終了して回収した反応物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は75.0%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例12の結果から、本発明の環式ポリアリーレンスルフィドの製造方法によれば、不純物含有率の少ない高品質な環式ポリアリーレンスルフィドを高収率で得ることができ、また、製造時に得られる反応生成物の固液分離の効率が極めて高く、生産性の観点でも極めて優れていることがわかった。
 [実施例13]
 実施例12の反応混合物の調製において、p-DCBの量を6.35g(0.043モル)に低減し、工程2で追添加するp-DCBの量を2.47g(0.017モル)に増加した以外は、実施例12と同様に操作を実施した。従って、工程1における反応混合物中のイオウ成分1モル当たりのアリーレン単位は0.98モルであり、工程2における反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.05モルであった。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は80.4%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、17.0%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は83kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であることがわかった。また、この乾燥固体の不純物率は1.8%であった。
 また、工程1までを行った段階で操作を終了して回収した反応生成物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は78.0%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例13の結果によれば、本発明の環式ポリアリーレンスルフィドの製造方法において、反応開始時(工程1)の反応混合物中のアリーレン単位が、イオウ成分に対して不足しても、不純物含有率の少ない高品質な環式ポリアリーレンスルフィドを高収率で得ることができ、また、製造時に得られる反応生成物の固液分離の効率が極めて高く、生産性の観点でも極めて優れていることがわかった。
 [比較例8]
 実施例12の反応混合物の調製において、p-DCBを8.83g(0.060モル)として、反応混合物中のイオウ成分1モル当たりのアリーレン単位を1.05モルとした以外は実施例12と同様に工程1の操作を行った。
 次いで工程2においては、DCBを追加添加せず、NMP60gのみを小型タンクを用いてオートクレーブ内に追加添加した以外は実施例1と同様に行程2の操作を行った。ここで、比較例8においては、工程2でのp-DCB追加は行わなかったが、工程1で用いた反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.05モルであったので、工程2も同じ条件で反応を実施したこととなり、反応の開始から終了まで一貫して反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.05モルであった。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は70.0%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、10.8%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は15kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約71重量%であることがわかった。また、この乾燥固体の不純物率は4.5%であった。
 なお、実施例12と同様に、工程1までを行った段階で操作を終了して反応混合物を回収して分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は68.1%であった。
 比較例8の結果によれば、本発明の特長であるジハロゲン化芳香族化合物の追加を行わず、工程1における反応混合物中のイオウ成分とアリーレン単位との比率が本発明と異なる場合には、環式ポリアリーレンスルフィドの生成率が低く、また、不純物率が非常に高く品質に劣る環式ポリアリーレンスルフィドしか得られないことがわかった。
 [実施例14]
実施例1の反応混合物の調製において、p-DCBの量を3.53g(0.024モル)に低減し、工程2で追添加するp-DCBの量を5.29g(0.036モル)に増加した以外は、実施例1と同様に操作を実施した。従って、工程1における反応混合物中のイオウ成分1モル当たりのアリーレン単位は0.90モルであり、工程2における反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.05モルであった。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は17.8%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は17.8%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は80kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約86重量%であることがわかった。また、この乾燥固体の不純物率は2.3%であった。
 また、工程1までを行った段階で操作を終了して回収した反応生成物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は77.5%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例14の結果によれば、本発明の環式ポリアリーレンスルフィドの製造方法において、反応開始時(工程1)における反応混合物中のイオウ成分に対するアリーレン単位の比率を、実施例13よりもさらにイオウ過剰の条件とすることで、環式ポリアリーレンスルフィドの生成率がさらに向上することがわかった。
 [実施例15]
工程2で追添加するp-DCBの量を7.06g(0.048モル)に増加した以外は、実施例14(工程1の終了段階における水硫化ナトリウムの反応消費率は77.5%)と同様に操作を実施した。従って、工程1における反応混合物中のイオウ成分1モル当たりのアリーレン単位は0.90モルであり、工程2における反応混合物中のイオウ成分1モル当たりのアリーレン単位は1.10モルであった。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は81.0%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、18.2%であった。また、得られた反応生成物の固液分離性を評価した結果、濾過速度は155kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約86重量%であることがわかった。また、この乾燥固体の不純物率は3.7%であった。
 実施例15の結果によれば、本発明の環式ポリアリーレンスルフィドの製造方法において、反応開始時(工程1)における反応混合物中のイオウ成分に対するアリーレン単位の比率を、実施例14と同様のイオウ過剰の条件とし、工程2における反応混合物中のイオウ成分1モルに対するアリーレン単位の比率を実施例14より高めに設定することで、環式ポリアリーレンスルフィドの製造時に得られる反応生成物の固液分離性が高まり、環式ポリアリーレンスルフィドの生成率がさらに向上する一方で、不純物率はわずかに上昇することがわかった。
 [比較例9]
 ここでは工程1を、加熱を200℃まで昇温した時点で終了し、次いで工程2の操作を行った以外は実施例15と同様の操作を実施した。この場合の工程1における水硫化ナトリウムの反応消費率は29.4%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費する前に工程2が行われたことが確認できた。
 <反応生成物の分析評価>
 工程2および固液分離の操作後に得られた反応生成物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はフェニレンスルフィド単位からなる化合物であることが確認できた。
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は80.1%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は12.5%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は310kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約78重量%であることがわかった。また、この乾燥固体の不純物率は5.6%であった。
 比較例9の結果によれば、本発明の特長であるジハロゲン化芳香族化合物の追加を、スルフィド化剤の50%以上が反応消費される前、すなわちスルフィド化剤の反応消費が不十分な時点で行った場合には、環式ポリアリーレンスルフィドの生成率が低く、また、不純物率が非常に高く品質に劣る環式ポリアリーレンスルフィドしか得られないことがわかった。
 [実施例16]
 工程2の反応温度260℃にした以外は実施例15と同様の操作を実施した。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は82.3%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、18.6%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は170kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であることがわかった。また、この乾燥固体の不純物率は3.2%であった。
 実施例16の結果によれば、本発明の環式ポリアリーレンスルフィドの製造方法において、原料に線状PASを用いつつ、工程2を工程1よりも高い温度で行うことで、環式ポリアリーレンスルフィドの製造時に得られる反応生成物の固液分離性が高まり、得られる環式ポリアリーレンスルフィドの含有率は向上し、不純物率は低下する傾向にあることがわかった。
 [実施例17]
 工程1において250℃での保持時間を2時間に延長した以外は実施例16と同様の操作を行った。
 <反応生成物の分析評価>
 得られた反応生成物および反応後の脱液操作で回収した液成分を高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤である水硫化ナトリウムの反応消費率は90.0%であった。また、反応混合物中の線状ポリアリーレンスルフィドおよびスルフィド化剤がすべて環式ポリフェニレンスルフィドに転化すると仮定した場合との比較により求めた環式ポリフェニレンスルフィドの生成率は、19.3%であった。また得られた反応生成物の固液分離性を評価した結果、濾過速度は175kg/(m2・hr)であった。
 上記固液分離で得られた濾液成分を実施例1の環式ポリアリーレンスルフィドの回収と同様に処理することで得た乾燥固体をHPLCで分析した結果、単位数4~15の環式ポリフェニレンスルフィドが検出された。また、得られた乾燥固体は、環式ポリフェニレンスルフィドの含有率が約87重量%であることがわかった。また、この乾燥固体の不純物率は3.1%であった。
 また、工程1までを行った段階で操作を終了して回収した反応生成物を分析した結果、工程1の終了段階における水硫化ナトリウムの反応消費率は88.6%であり、反応混合物に含まれるスルフィド化剤が十分に反応消費された後に工程2が行われたことが確認できた。
 実施例17の結果によれば、実施例16に対し工程1の終了時点におけるスルフィド化剤の反応消費率が向上すると、環式ポリアリーレンスルフィドの生成率が向上し、さらに不純物率は低減傾向にあることがわかった。

Claims (13)

  1. 少なくともスルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、該反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の前記有機極性溶媒(c)を含む前記反応混合物を加熱して反応させて、環式ポリアリーレンスルフィドを製造する方法であって、
    前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である前記反応混合物を加熱して、前記反応混合物中の前記スルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程1と、
    前記工程1に次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物(b)を追加した後にさらに加熱して反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程2と、
     を含む環式ポリアリーレンスルフィドの製造方法。
  2. 前記工程2に次いで、前記反応生成物を、前記有機極性溶媒(c)の常圧における沸点以下の温度領域で固液分離することで、環式ポリアリーレンスルフィドと前記有機極性溶媒(c)とを含む濾液を得る工程3を行う
    請求項1に記載の環式ポリアリーレンスルフィドの製造方法。
  3. 前記工程1において、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.00モル未満である前記反応混合物を加熱する、請求項1または2に記載の環式ポリアリーレンスルフィドの製造方法。
  4. 前記反応混合物は、さらに線状ポリアリーレンスルフィド(d)を含む請求項1から3のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  5. 前記反応混合物は、前記工程1の反応開始時点において前記線状ポリアリーレンスルフィド(d)を含む請求項4に記載の環式ポリアリーレンスルフィドの製造方法。
  6. 前記工程1において、前記反応混合物中の前記スルフィド化剤(a)の70%以上が反応消費されるまで反応させた後に工程2を行う請求項1から5のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  7. 前記反応混合物中のイオウ成分1モル当たり0.2~20.0モルの水を含む前記反応混合物を用いて、前記工程1を行う請求項1から6のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  8. 前記工程1および前記工程2において、常圧における前記反応混合物の還流温度を越える温度で前記反応混合物を加熱する請求項1から7のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  9. 前記工程1および前記工程2において、前記反応混合物を加熱する際の圧力がゲージ圧で0.05MPa以上である請求項1から8のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  10. 前記ジハロゲン化芳香族化合物(b)がジクロロベンゼンである請求項1から9のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  11. 前記スルフィド化剤(a)がアルカリ金属硫化物である請求項1から10のいずれか1項に記載の環式ポリアリーレンスルフィドの製造方法。
  12. 請求項4または5に記載の環式ポリアリーレンスルフィドの製造方法であって、
    少なくともスルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、前記反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の前記有機極性溶媒(c)を含む前記反応混合物を、
    前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である前記反応混合物を加熱して、前記反応混合物中の前記スルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程1と、
    前記工程1に次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物(b)を追加した後にさらに加熱して反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程2と、
    を含む方法で加熱して反応させることにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドとを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを、前記線状ポリアリーレンスルフィド(d)として用いる環式ポリアリーレンスルフィドの製造方法。
  13. 請求項4または5に記載の環式ポリアリーレンスルフィドの製造方法であって、
    少なくとも線状ポリアリーレンスルフィド(d)、スルフィド化剤(a)、ジハロゲン化芳香族化合物(b)および有機極性溶媒(c)を含む反応混合物であって、前記反応混合物中のイオウ成分1モルに対して1.25リットル以上50リットル以下の前記有機極性溶媒(c)を含む前記反応混合物を、
    前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である前記反応混合物を加熱して、前記反応混合物中の前記スルフィド化剤(a)の50%以上が反応消費されるまで反応させる工程1と、
    前記工程1に次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物(b)を追加した後にさらに加熱して反応を行い、少なくとも環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含む反応生成物を得る工程2と、
    を含む方法で加熱して反応させることにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドとを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを、前記線状ポリアリーレンスルフィド(d)として用いる環式ポリアリーレンスルフィドの製造方法。
PCT/JP2012/006737 2011-10-24 2012-10-22 環式ポリアリーレンスルフィドの製造方法 WO2013061561A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12843497.4A EP2757124B1 (en) 2011-10-24 2012-10-22 Method for producing cyclic polyarylene sulfide
JP2012550255A JP5516756B2 (ja) 2011-10-24 2012-10-22 環式ポリアリーレンスルフィドの製造方法
US14/353,204 US9150695B2 (en) 2011-10-24 2012-10-22 Production method of cyclic polyarylene sulfide
CN201280051622.6A CN103890043B (zh) 2011-10-24 2012-10-22 环式聚芳撑硫醚的制造方法
KR1020147010712A KR101408616B1 (ko) 2011-10-24 2012-10-22 환형 폴리아릴렌 설파이드의 제조 방법

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011-232778 2011-10-24
JP2011232778 2011-10-24
JP2011-262087 2011-11-30
JP2011262087 2011-11-30
JP2012037527 2012-02-23
JP2012-037527 2012-02-23
JP2012120662 2012-05-28
JP2012-120662 2012-05-28
JP2012122623 2012-05-30
JP2012-122623 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013061561A1 true WO2013061561A1 (ja) 2013-05-02

Family

ID=48167416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006737 WO2013061561A1 (ja) 2011-10-24 2012-10-22 環式ポリアリーレンスルフィドの製造方法

Country Status (8)

Country Link
US (1) US9150695B2 (ja)
EP (1) EP2757124B1 (ja)
JP (1) JP5516756B2 (ja)
KR (1) KR101408616B1 (ja)
CN (1) CN103890043B (ja)
MY (1) MY167574A (ja)
TW (1) TWI549993B (ja)
WO (1) WO2013061561A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103317A1 (ja) * 2012-12-27 2014-07-03 東レ株式会社 環式ポリアリーレンスルフィドの製造方法
WO2015047716A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
WO2015047718A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Multi-stage process for forming polyarylene sulfides
WO2015047719A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Method of polyarylene sulfide crystallization
JP2015127398A (ja) * 2013-11-29 2015-07-09 東レ株式会社 ポリアリーレンスルフィドおよびその製造方法
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US10294330B2 (en) 2015-07-31 2019-05-21 Toray Industries, Inc. Polyphenylene sulfide resin composition and method of manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3162839A4 (en) * 2014-06-30 2018-01-10 Toray Industries, Inc. Polyarylene sulfide and method for manufacturing same
CN105885048A (zh) * 2014-12-12 2016-08-24 中国人民解放军63971部队 一种聚硫代苯醌及其制备方法
WO2021200332A1 (ja) * 2020-03-31 2021-10-07 東レ株式会社 ポリアリーレンスルフィドおよびその製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240B2 (ja) 1973-11-19 1977-04-05
JPS633375B2 (ja) 1980-01-19 1988-01-23 Matsushita Electric Ind Co Ltd
JPH05163349A (ja) 1991-08-06 1993-06-29 Tosoh Corp ポリアリーレンスルフィドおよびその製造方法
JPH1077408A (ja) 1996-09-03 1998-03-24 Kureha Chem Ind Co Ltd ポリフェニレンスルフィド樹脂組成物
US5869599A (en) 1995-04-10 1999-02-09 Hay; Allan S. Free radical ring opening for polymerization of cyclic oligomers containing an aromatic sulfide linkage
JP3200027B2 (ja) 1997-06-20 2001-08-20 科学技術振興事業団 環状オリゴ(チオアリーレン)化合物の製造法
JP2007231255A (ja) 2006-02-02 2007-09-13 Toray Ind Inc 環式ポリアリーレンスルフィド混合物の製造方法
WO2008105438A1 (ja) 2007-02-28 2008-09-04 Toray Industries, Inc. 環式ポリアリーレンスルフィドの製造方法
JP2009030012A (ja) 2007-02-28 2009-02-12 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
JP2009149863A (ja) 2007-11-29 2009-07-09 Toray Ind Inc 環式ポリアリーレンスルフィドの回収方法
JP2009227972A (ja) * 2008-02-28 2009-10-08 Toray Ind Inc ポリアリーレンスルフィドとオリゴアリーレンスルフィドの分離方法
JP2010037550A (ja) 2008-07-11 2010-02-18 Toray Ind Inc 環式ポリアリーレンスルフィドおよびポリアリーレンスルフィドの回収方法
JP2011068885A (ja) 2009-08-31 2011-04-07 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
JP2011149014A (ja) * 2009-12-22 2011-08-04 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432971B2 (ja) 2005-09-22 2010-03-17 東レ株式会社 ポリアリーレンスルフィドの製造方法
JP2008201885A (ja) 2007-02-20 2008-09-04 Toray Ind Inc ポリフェニレンスルフィドフィルム
JP4905417B2 (ja) 2007-07-10 2012-03-28 東レ株式会社 環式ポリアリーレンスルフィドの製造方法
JP4953020B2 (ja) 2008-02-05 2012-06-13 Dic株式会社 ポリアリ−レンスルフィド樹脂の製造方法
JP5434424B2 (ja) 2008-09-22 2014-03-05 東レ株式会社 環式ポリアリーレンスルフィド及びポリアリーレンスルフィドの回収方法
WO2011024879A1 (ja) 2009-08-27 2011-03-03 東レ株式会社 ポリアリーレンスルフィドおよびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240B2 (ja) 1973-11-19 1977-04-05
JPS633375B2 (ja) 1980-01-19 1988-01-23 Matsushita Electric Ind Co Ltd
JPH05163349A (ja) 1991-08-06 1993-06-29 Tosoh Corp ポリアリーレンスルフィドおよびその製造方法
US5869599A (en) 1995-04-10 1999-02-09 Hay; Allan S. Free radical ring opening for polymerization of cyclic oligomers containing an aromatic sulfide linkage
JPH1077408A (ja) 1996-09-03 1998-03-24 Kureha Chem Ind Co Ltd ポリフェニレンスルフィド樹脂組成物
JP3200027B2 (ja) 1997-06-20 2001-08-20 科学技術振興事業団 環状オリゴ(チオアリーレン)化合物の製造法
JP2007231255A (ja) 2006-02-02 2007-09-13 Toray Ind Inc 環式ポリアリーレンスルフィド混合物の製造方法
WO2008105438A1 (ja) 2007-02-28 2008-09-04 Toray Industries, Inc. 環式ポリアリーレンスルフィドの製造方法
JP2009030012A (ja) 2007-02-28 2009-02-12 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
JP2009149863A (ja) 2007-11-29 2009-07-09 Toray Ind Inc 環式ポリアリーレンスルフィドの回収方法
JP2009227972A (ja) * 2008-02-28 2009-10-08 Toray Ind Inc ポリアリーレンスルフィドとオリゴアリーレンスルフィドの分離方法
JP2010037550A (ja) 2008-07-11 2010-02-18 Toray Ind Inc 環式ポリアリーレンスルフィドおよびポリアリーレンスルフィドの回収方法
JP2011068885A (ja) 2009-08-31 2011-04-07 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法
JP2011149014A (ja) * 2009-12-22 2011-08-04 Toray Ind Inc 環式ポリアリーレンスルフィドの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BULL, ACAD. SCI., vol. 39, 1990, pages 763 - 766
See also references of EP2757124A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940060A4 (en) * 2012-12-27 2016-07-27 Toray Industries PROCESS FOR PREPARING CYCLIC POLYARYLENEULFIDE
WO2014103317A1 (ja) * 2012-12-27 2014-07-03 東レ株式会社 環式ポリアリーレンスルフィドの製造方法
US9567437B2 (en) 2012-12-27 2017-02-14 Toray Industries, Inc. Production method of cyclic polyarylene sulfide
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
WO2015047719A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
WO2015047718A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
WO2015047716A1 (en) * 2013-09-25 2015-04-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9868824B2 (en) 2013-09-25 2018-01-16 Ticona Llc Method of polyarylene sulfide crystallization
US9938379B2 (en) 2013-09-25 2018-04-10 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
JP2015127398A (ja) * 2013-11-29 2015-07-09 東レ株式会社 ポリアリーレンスルフィドおよびその製造方法
US10294330B2 (en) 2015-07-31 2019-05-21 Toray Industries, Inc. Polyphenylene sulfide resin composition and method of manufacturing same

Also Published As

Publication number Publication date
EP2757124A4 (en) 2014-12-17
JPWO2013061561A1 (ja) 2015-04-02
US20140256907A1 (en) 2014-09-11
US9150695B2 (en) 2015-10-06
CN103890043B (zh) 2015-09-16
CN103890043A (zh) 2014-06-25
KR101408616B1 (ko) 2014-06-17
KR20140059865A (ko) 2014-05-16
EP2757124A1 (en) 2014-07-23
JP5516756B2 (ja) 2014-06-11
TW201326263A (zh) 2013-07-01
TWI549993B (zh) 2016-09-21
EP2757124B1 (en) 2016-11-30
MY167574A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5516756B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP4911073B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP2012188625A (ja) 環式ポリアリーレンスルフィドの製造方法
JP4905417B2 (ja) 環式ポリアリーレンスルフィドの製造方法
CN115335435A (zh) 聚芳撑硫醚及其制造方法
JP5768929B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP2018076492A (ja) ポリアリーレンスルフィドプレポリマーおよびその製造方法
JP5516241B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP6221326B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP5609621B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP2015110758A (ja) 環式ポリアリーレンスルフィドの製造方法
JP6733826B2 (ja) ポリアリーレンスルフィドの製造方法
JP2013032512A (ja) 環式ポリアリーレンスルフィドの製造方法
JP2014108964A (ja) 環式ポリアリーレンスルフィドの製造方法
JP6241088B2 (ja) 環式ポリアリーレンスルフィドの製造方法
JP5750991B2 (ja) 環式ポリアリーレンスルフィドの回収方法
JP2015178586A (ja) 環式ポリアリーレンスルフィドの製造方法
JP2017031404A (ja) ポリアリーレンスルフィドの製造方法
JP2013072007A (ja) 環式ポリアリーレンスルフィドの回収方法
JP2019044178A (ja) 環式ポリアリーレンスルフィドの製造方法
JP2019026735A (ja) 高分子量ポリフェニレンスルフィド
JP2015127398A (ja) ポリアリーレンスルフィドおよびその製造方法
JP2013136721A (ja) 環式ポリアリーレンスルフィドの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012550255

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843497

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012843497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012843497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14353204

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147010712

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE