WO2017022524A1 - ポリフェニレンスルフィド樹脂組成物およびその製造方法 - Google Patents

ポリフェニレンスルフィド樹脂組成物およびその製造方法 Download PDF

Info

Publication number
WO2017022524A1
WO2017022524A1 PCT/JP2016/071564 JP2016071564W WO2017022524A1 WO 2017022524 A1 WO2017022524 A1 WO 2017022524A1 JP 2016071564 W JP2016071564 W JP 2016071564W WO 2017022524 A1 WO2017022524 A1 WO 2017022524A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene sulfide
weight
sulfide resin
less
molecular weight
Prior art date
Application number
PCT/JP2016/071564
Other languages
English (en)
French (fr)
Inventor
高尾英伸
海法秀
堀内俊輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US15/748,584 priority Critical patent/US10294330B2/en
Priority to CN201680043658.8A priority patent/CN107849250B/zh
Priority to KR1020187003841A priority patent/KR20180035221A/ko
Priority to EP16832803.7A priority patent/EP3330309A4/en
Priority to JP2016549524A priority patent/JP6337971B2/ja
Publication of WO2017022524A1 publication Critical patent/WO2017022524A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0818Alkali metal

Definitions

  • the present invention relates to a polyphenylene sulfide resin composition excellent in melt stability and generating a small amount of gas, and a method for producing the same.
  • Polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) has a high melting point and has suitable properties as an engineering plastic such as excellent flame retardancy and chemical resistance.
  • PPS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so it can be used in a wide range of fields such as electrical / electronic equipment and automotive equipment. It is widely used.
  • PPS generally has a problem that the melt stability is low. In particular, in the production of films and fibers having a long melt residence time, there is a problem that the quality of the obtained molded product is not constant.
  • Patent Document 1 A method of adjusting has been proposed (Patent Document 1).
  • PPS obtained by heating a prepolymer containing cyclic PPS has been proposed as a PPS with a reduced amount of gas generated during heating (Patent Literature). 2).
  • Patent Document 4 As a known technique related to Patent Document 2, a method of improving the polymerization rate by allowing a carboxylic acid metal salt to coexist when heating a prepolymer (Patent Document 3), and a sulfide compound having a functional group such as an amino group are allowed to coexist. Thus, a method (Patent Document 4) for obtaining PPS into which a reactive end is introduced is known.
  • Patent Document 5 a method of obtaining PPS excellent in heat resistance and low gas properties by blending PPS obtained by the solution polymerization method and PPS obtained in Patent Document 2 (Patent Document 5), and PPS obtained in Patent Document 2 A method (Patent Document 6) has been proposed in which PPS obtained in Patent Document 4 is blended with PPS to obtain PPS that contains reactive end groups and is excellent in low gas properties.
  • Patent Document 6 Japanese Patent Laying-Open No. 2005-225931 International Publication No. 2007-034800 JP 2011-173953 A International Publication No. 2013-161321 International Publication No. 2013-099234 International Publication No. 2013-161321
  • PPS obtained by the method described in Patent Document 1 has a small viscosity change at the time of melt residence, the effect is not sufficient, and furthermore, since PPS obtained by the solution polymerization method is used, gas generation during heating is generated. There is a problem that the amount is large.
  • PPS obtained by the method described in Patent Document 2 has a problem that although the amount of gas generated during heating is small, the viscosity change during melt residence is large.
  • Patent Documents 5 and 6 are also insufficient in terms of melt stability, and PPS obtained by Examples described in Patent Documents 5 and 6 does not sufficiently improve the melt stability. It has not been confirmed.
  • the polyphenylene sulfide resin composition of the present invention has the following constitution (I) or (II). That is, (I) When the total of the polyphenylene sulfide resins (a) to (c) is 100% by weight, the polyphenylene sulfide resin (b) and / or the polyphenylene sulfide with respect to 90 to 50% by weight of the polyphenylene sulfide resin (a) A polyphenylene sulfide resin composition comprising a total of 10 to 50% by weight of the resin (c), and having a viscosity change rate of 1.5 times or less when heated at 320 ° C. for 5 hours Composition.
  • Polyphenylene sulfide resin (a): polyphenylene sulfide resin having a weight average molecular weight of 50,000 or more and a weight reduction rate ⁇ Wr upon heating of 0.18% or less represented by the following formula (1)
  • Polyphenylene sulfide resin having a molecular weight increase rate of 5.0% or less when added at 0.5% by weight and heated at 320 ° C. for 10 minutes.
  • a polyphene represented by the following formula (1) and having a weight reduction rate ⁇ Wr when heated exceeds 0.18%. Rensurufido resin ⁇ Wr (W1-W2) / W1 ⁇ 100 (%) ⁇ (1) (Here, ⁇ Wr is the weight reduction rate (%), and the sample weight (W1) when reaching 100 ° C. when thermogravimetric analysis is performed at a temperature rising rate of 20 ° C./min in a non-oxidizing atmosphere at normal pressure.
  • the manufacturing method of the polyphenylene sulfide resin composition of this invention has the following structure. That is, When the total of the polyphenylene sulfide resins (a) to (c) is 100% by weight, the polyphenylene sulfide resin (b) and / or the polyphenylene sulfide resin (c) is 90% to 50% by weight of the polyphenylene sulfide resin (a). ) In a total of 10 to 50% by weight, and the resulting polyphenylene sulfide resin composition has a viscosity change rate of 1.5 times or less when heated at 320 ° C. for 5 hours.
  • Polyphenylene sulfide resin (a): polyphenylene sulfide resin having a weight average molecular weight of 50,000 or more and a weight reduction rate ⁇ Wr upon heating of 0.18% or less represented by the following formula (1)
  • Polyphenylene sulfide resin having a molecular weight increase rate of 5.0% or less when added at 0.5% by weight and heated at 320 ° C.
  • a polyphene represented by the following formula (1) and having a weight reduction rate ⁇ Wr when heated exceeds 0.18%. Rensurufido resin ⁇ Wr (W1-W2) / W1 ⁇ 100 (%) ⁇ (1) (Here, ⁇ Wr is a weight reduction rate (%), and when thermogravimetric analysis is performed at a temperature rising rate of 20 ° C./min in a normal pressure non-oxidizing atmosphere, the sample weight when reaching 100 ° C. (W1)) And the value obtained from the sample weight (W2) when reaching 330 ° C.) It is.
  • the polydispersity index obtained by dividing the weight average molecular weight of the polyphenylene sulfide resin (a) by the number average molecular weight is 2.5 or less. preferable.
  • the alkali metal content of the polyphenylene sulfide resin (a) is preferably 700 ppm or less by weight.
  • the above aspect (I) is such that the content of the lactone type compound in the gas component generated when the polyphenylene sulfide resin (a) is heated is based on the weight of the polyphenylene sulfide resin. And preferably 500 ppm or less.
  • the above aspect (I) is such that the content of the aniline type compound in the gas component generated when the polyphenylene sulfide resin (a) is heated is based on the weight of the polyphenylene sulfide resin. Is preferably 300 ppm or less.
  • the polyphenylene sulfide resin (a) contains 85% by weight or more of the cyclic polyphenylene sulfide represented by the following general formula (A), and A polyphenylene sulfide resin obtained by heating a polyphenylene sulfide prepolymer having a weight average molecular weight of less than 10,000 to convert it to a high degree of polymerization having a weight average molecular weight of 50,000 or more is preferred.
  • the above aspect (I) is such that the content of the lactone type compound in the gas component generated when the polyphenylene sulfide resin (b) is heated is based on the weight of the polyphenylene sulfide resin. And preferably 500 ppm or less.
  • the alkaline earth metal (d) is preferably calcium.
  • the content of alkaline earth metal is preferably 20 to 1,000 ppm by weight.
  • the weight reduction rate ⁇ Wr when heated is preferably 0.30% or less.
  • the melt residence time until molding is long.
  • a PPS resin composition having high melt fluidity and excellent processability can be provided.
  • Example 2 is a GPC chart of the PPS resin composition obtained in Example 1.
  • 3 is a GPC chart of the PPS resin composition obtained in Example 2.
  • 4 is a GPC chart of the PPS resin composition obtained in Example 3.
  • 6 is a GPC chart of the PPS resin composition obtained in Example 4.
  • 6 is a GPC chart of the PPS resin composition obtained in Example 5.
  • 6 is a GPC chart of the PPS resin composition obtained in Example 6.
  • 6 is a GPC chart of the PPS resin composition obtained in Example 7.
  • 6 is a GPC chart of the PPS resin (a) obtained in Reference Example 3.
  • 6 is a GPC chart of the PPS resin (b) obtained in Reference Example 5.
  • 10 is a GPC chart of the PPS resin (c) obtained in Reference Example 8.
  • 10 is a GPC chart of the PPS resin composition obtained in Reference Example 13.
  • PPS resin is a polymer having a repeating unit represented by the following formula.
  • the PPS resin used in the present invention is preferably a polymer containing 80 mol% or more, further 90 mol% or more of the repeating unit represented by the above structural formula.
  • the PPS resin used in the present invention less than 20 mol% of the repeating units may be composed of repeating units represented by the following structures (B) to (L).
  • R1 and R2 are substituents selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, and a halogen group. May be the same or different.
  • these repeating units can contain a small amount of branching units or crosslinking units represented by the following formulas (M) to (O).
  • the copolymerization amount of these branch units or cross-linking units is preferably in the range of 0 to 1 mol% with respect to 1 mol of the repeating units.
  • PPS resin having a weight average molecular weight of 50,000 or more and ⁇ Wr of 0.18% or less (a)
  • the molecular weight of the PPS resin (a) used in the present invention is 50,000 or more in terms of weight average molecular weight, preferably 55,000 or more, more preferably 60,000 or more, and further preferably 65,000 or more.
  • the weight average molecular weight is less than 50,000, the difference in molecular weight from the PPS resin (b) described later becomes insufficient, and the increase in viscosity when the resulting PPS resin composition is processed and molded increases.
  • the molecular weight of the PPS resin is determined by using a size exclusion chromatography (SEC) equipped with a differential refractive index detector and a calibration curve according to the relational expression between the molecular weight obtained by measuring a standard substance having a known molecular weight and the retention time.
  • SEC size exclusion chromatography
  • the molecular weight value and the chart of the PPS resin in the present invention are measured by gel permeation chromatography (GPC), which is a kind of SEC, using polystyrene as a standard substance.
  • the polydispersity index obtained by dividing the weight average molecular weight by the number average molecular weight of the PPS resin (a) used in the present invention is preferably 2.5 or less, more preferably 2.3 or less, further preferably 2.1 or less, 2.0 or less is even more preferable.
  • the amount of gas generated when the resulting PPS resin composition is molded tends to be reduced.
  • the major feature of the PPS resin (a) used in the present invention is that the weight reduction rate ⁇ Wr when heated, represented by the following formula (1), is 0.18% or less.
  • ⁇ Wr (W1-W2) / W1 ⁇ 100 (%) (1)
  • ⁇ Wr is the weight reduction rate (%), and the sample weight (W1) when reaching 100 ° C. when thermogravimetric analysis is performed at a temperature rising rate of 20 ° C./min in a non-oxidizing atmosphere at normal pressure.
  • the value obtained from the sample weight (W2) when reaching 330 ° C.) ⁇ Wr of the PPS resin (a) used in the present invention is 0.18% or less, preferably 0.12% or less, more preferably 0.10% or less, and 0.085% or less. More preferably.
  • ⁇ Wr exceeds 0.18%, the amount of gas generated when the resulting PPS resin composition is molded is increased.
  • the above ⁇ Wr can be obtained by a general thermogravimetric analysis, and the atmosphere in this analysis is a normal pressure non-oxidizing atmosphere.
  • the non-oxidizing atmosphere in the present invention refers to an atmosphere that does not substantially contain oxygen, that is, an inert gas atmosphere such as nitrogen, helium, or argon. Among these, a nitrogen atmosphere is particularly preferable in terms of economy and ease of handling.
  • the normal pressure in the present invention is a pressure in the vicinity of the standard state of the atmosphere, and is an atmospheric pressure condition in which the temperature is approximately 25 ° C. and the absolute pressure is approximately 101.3 kPa.
  • thermogravimetric analysis is performed by increasing the temperature from 50 ° C. to 350 ° C. at a temperature increase rate of 20 ° C./min. Preferably, after holding at 50 ° C. for 1 minute, the temperature is increased at a rate of temperature increase of 20 ° C./min to perform thermogravimetric analysis.
  • This temperature range is a temperature range frequently used when the PPS resin is actually used, and is also a temperature range frequently used when the solid PPS resin is melted and then molded into an arbitrary shape.
  • the weight reduction rate in such a temperature range is related to the amount of gas generated from the PPS resin during actual use, the amount of components adhering to the die or mold during molding, and the like.
  • a PPS resin having a small weight loss rate in such a temperature range is an excellent PPS resin having high quality.
  • ⁇ Wr is desirably measured with a sample amount of about 10 mg, and the shape of the sample is desirably a fine particle having a size of about 2 mm or less.
  • an alkali metal content is 700 ppm or less by weight ratio as a preferable range. It can be exemplified, and it is preferable that the alkali metal content is 700 ppm or less because a decrease in electrical insulation due to metal impurities can be prevented. From the viewpoint of the above-described decrease in electrical insulation, the alkali metal content of the PPS resin (a) is more preferably 500 ppm or less by weight, more preferably 200 ppm or less, and more preferably 100 ppm or less. Even more preferable.
  • the alkali metal content of the PPS resin is, for example, a value calculated from the amount of alkali metal in the ash that is a residue obtained by baking the PPS resin using an electric furnace or the like. It can be quantified by analyzing by (ICP) emission spectroscopy or atomic absorption.
  • ICP emission spectroscopic analysis method is a technique widely used for the determination of trace elements because it can analyze multiple elements simultaneously and with high sensitivity.
  • an alkali metal refers to lithium, sodium, potassium, rubidium, cesium, and francium
  • the PPS resin (a) used by this invention does not contain alkali metals other than sodium.
  • an alkali metal other than sodium is included, the electric characteristics and thermal characteristics of the PPS resin tend to be adversely affected.
  • the PPS resin (a) used in the present invention preferably has a remarkably small amount of lactone type compound and / or aniline type compound when heated.
  • lactone type compound examples include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -pentanolactone, ⁇ -hexanolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -nonalactone, and ⁇ -decalactone.
  • Examples include nolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -nonalactone, and ⁇ -decalactone.
  • the aniline type compounds are aniline, N-methylaniline, N, N-dimethylaniline, N-ethylaniline, N-methyl-N-ethylaniline, 4-chloro-aniline, 4-chloro-N-methylaniline. 4-chloro-N, N-dimethylaniline, 4-chloro-N-ethylaniline, 4-chloro-N-methyl-N-ethylaniline, 3-chloro-aniline, 3-chloro-N-methylaniline, 3 Examples include -chloro-N, N-dimethylaniline, 3-chloro-N-ethylaniline, and 3-chloro-N-methyl-N-ethylaniline.
  • the amount of the lactone type compound generated is preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 100 ppm or less, and even more preferably 50 ppm or less, based on the weight of the PPS resin (a) before heating.
  • the amount of aniline-type compound generated is preferably 300 ppm or less, more preferably 100 ppm or less, still more preferably 50 ppm or less, and even more preferably 30 ppm or less. If the generation amount of the lactone type compound and / or aniline type compound when the PPS resin is heated is within the above preferable range, it is difficult to cause the foaming of the resin at the time of molding and mold contamination, and the productivity is improved. It does not cause pollution of the surrounding environment.
  • the generated gas when heated at 320 ° C. for 60 minutes in a non-oxidizing gas stream is gas chromatographed.
  • An example is a method of quantifying by component division using a graph.
  • the method for producing the PPS resin (a) used in the present invention is not particularly limited as long as it is a method capable of obtaining the PPS resin having the above characteristics.
  • the method for producing the PPS resin disclosed in International Publication No. 2007-034800 Can be mentioned as a preferred method.
  • the PPS prepolymer containing at least 50% by weight of cyclic PPS represented by the following formula (A) and having a weight average molecular weight of less than 10,000 is heated to have a weight average molecular weight of 10,000 or more.
  • An example of the method is that it is produced by converting to a high degree of polymerization. According to this method, it is possible to easily obtain a PPS resin having the above-described characteristics.
  • a preferred method for producing the PPS resin (a) used in the present invention is characterized in that a PPS prepolymer containing cyclic PPS is heated to be converted into a high degree of polymerization.
  • the amount of cyclic PPS contained in the PPS prepolymer used in the method for producing the PPS resin (a) used in the present invention is preferably 85% by weight or more, more preferably 90% by weight or more, and 93% by weight. More preferably, it is more preferably 95% by weight or more.
  • a PPS resin having a high degree of polymerization having a weight average molecular weight of 50,000 or more tends to be easily obtained by heating the PPS prepolymer.
  • the upper limit value of the cyclic PPS contained in the PPS prepolymer is not particularly limited, but 98% by weight or less can be exemplified as a preferable range. In this range, the melting temperature of the PPS prepolymer is low, and the temperature during heating tends to be lower.
  • the higher the content of cyclic PPS in the PPS prepolymer the higher the degree of polymerization of the PPS resin obtained after heating. That is, it is possible to easily adjust the degree of polymerization of the resulting PPS resin by adjusting the content of cyclic PPS in the PPS prepolymer.
  • the components other than cyclic PPS in the PPS prepolymer are preferably linear PPS, and the structure is as follows. It is preferable that it conforms to the term.
  • a method for obtaining the PPS prepolymer it can be produced, for example, by the method disclosed in International Publication No. 2013/061561. Heating a reaction mixture containing a sulfidizing agent, a dihalogenated aromatic compound and an organic polar solvent, wherein the arylene unit per mol of sulfur component is 0.80 mol or more and less than 1.05 mol, to form the sulfidation The dihalogenated aromatic compound is reacted until 50% or more of the agent is consumed by reaction, and then the arylene unit per mole of the sulfur component in the reaction mixture is 1.05 mol or more and 1.50 mol or less.
  • the reaction is carried out by further heating after the addition of, to prepare a reaction product containing at least cyclic PPS and linear PPS polyarylene sulfide, and purifying and recovering the PPS component in the filtrate when this is solid-liquid separated.
  • a PPS prepolymer can be obtained.
  • a preferred method for producing the PPS resin (a) used in the present invention is characterized in that a PPS prepolymer containing cyclic PPS is heated to be converted into a high degree of polymerization.
  • the melting temperature is preferable, and there is no particular limitation as long as it is such a temperature condition. When the heating temperature is in the above preferred range, a long time is not required to obtain a high degree of polymerization.
  • the temperature at which the PPS prepolymer melts varies depending on the composition and molecular weight of the PPS prepolymer and the environment at the time of heating, it cannot be uniquely indicated, but the lower limit of the heating temperature can be exemplified by 180 ° C.
  • the PPS prepolymer tends to melt quickly, and the time required to obtain a high degree of polymerization tends to be shortened.
  • As an upper limit of heating temperature 400 degrees C or less can be illustrated, 380 degrees C or less is preferable and 360 degrees C or less is more preferable.
  • undesirable side reactions represented by cross-linking reactions and decomposition reactions between PPS prepolymers, between high-polymerization products generated by heating, and between high-polymerization products and PPS prepolymers are avoided, The characteristics of the obtained PPS are not deteriorated.
  • the heating time varies depending on various properties such as cyclic PPS content, m number, and molecular weight in the PPS prepolymer used, and conditions such as the heating temperature, it cannot be uniformly defined. Is preferably 3 minutes or longer, preferably 6 minutes or longer, and more preferably 1 hour or longer. Within this preferred range, the conversion of the PPS prepolymer to PPS is sufficient. As an upper limit, 100 hours or less can be illustrated, 20 hours or less are more preferable, and 10 hours or less are more preferable. Within this preferred range, the undesirable side reaction can be avoided.
  • the atmosphere during heating is preferably a non-oxidizing atmosphere, and is preferably performed under reduced pressure. Moreover, when it carries out under pressure reduction conditions, it is preferable to make it the pressure reduction conditions after making the atmosphere in a reaction system once non-oxidizing atmosphere. This operation tends to suppress the aforementioned undesirable side reaction.
  • the reduced pressure condition means that the reaction system is lower than the atmospheric pressure, and the upper limit is preferably 50 kPa or less, more preferably 20 kPa or less, and even more preferably 10 kPa or less. When it is 50 kPa or less, the above-mentioned undesirable side reaction tends to be suppressed. On the other hand, as a lower limit, 0.1 kPa or more can be exemplified. Within this preferable pressure-reducing condition range, the cyclic PPS having a low molecular weight contained in the PPS prepolymer is hardly volatilized.
  • the upper limit of the amount of cyclic PPS contained in the PPS resin after heating the PPS prepolymer is preferably 40% or less, more preferably 30% or less, and more preferably 20% or less in terms of the weight ratio of the PPS resin. More preferably, it is more preferably 10% or less.
  • the lower limit is preferably 2% or more, more preferably 4% or more, and further preferably 6% or more.
  • a PPS resin composition having excellent fluidity tends to be obtained.
  • the content rate of cyclic PPS can be made into the said preferable range by adjusting the heating time of a PPS prepolymer, for example.
  • the cyclic PPS content in the PPS resin can be calculated from the area fraction of the sub-peak in the GPC chart of the PPS resin.
  • the weight average molecular weight is less than 50,000, the alkaline earth metal content is less than 200 ppm, and 0.5% by weight of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is added.
  • the molecular weight of the PPS resin (b) used in the present invention is less than 50,000 in terms of weight average molecular weight, preferably 40,000 or less, more preferably 30,000 or less, and even more preferably 20,000 or less.
  • the weight average molecular weight is 50,000 or more
  • the difference in molecular weight from the PPS resin (a) becomes insufficient, and the viscosity increase when the resulting PPS resin composition is processed and molded increases.
  • 3,000 or more can be illustrated as a preferable range, 4,000 or more are more preferable, 5,000 or more are further more preferable, The PPS resin composition obtained in this range is obtained. There is a tendency that the amount of gas generated during molding is reduced.
  • the amount of alkaline earth metal contained in the PPS resin (b) used in the present invention is less than 200 ppm by weight, more preferably 150 ppm or less, and even more preferably 100 ppm or less.
  • the alkaline earth metal content is 200 ppm or more, the moldability of the resulting PPS resin composition is lowered. It is speculated that the reason is that an excessive amount of alkaline earth metal is deposited.
  • the alkaline earth metal content of the PPS resin is, for example, a value calculated from the amount of alkaline earth metal in the ash that is a residue obtained by baking the PPS resin using an electric furnace or the like. For example, it can be quantified by analyzing by ICP emission spectroscopy or atomic absorption.
  • the alkaline earth metal refers to calcium, strontium, barium, and radium.
  • the feature of the PPS resin (b) used in the present invention is the increase in molecular weight when 0.5% by weight of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane is added and heated, represented by the following formula (2)
  • the rate ( ⁇ Mn) is 5.0% or less.
  • ⁇ Mn (Mn2-Mn1) / Mn1 ⁇ 100 (%) (2) (Where ⁇ Mn is the molecular weight increase rate (%), and the number average measured after heating at 320 ° C. for 10 minutes without adding 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane to the PPS resin.
  • the molecular weight increase rate ⁇ Mn of the PPS resin (b) used in the present invention is 5.0% or less, preferably 4.0% or less, more preferably 3.0% or less, and 2.0% More preferably, it is as follows. When ⁇ Mn exceeds 5.0%, the increase in viscosity when the resulting PPS resin composition is molded is increased, and / or the amount of gas generated is increased.
  • the atmospheric atmosphere for the heating is a normal pressure non-oxidizing atmosphere.
  • the oxygen concentration exceeds 5% by volume, there is a possibility that ⁇ Mn reflecting the actual functional group content cannot be obtained due to oxidation of the PPS resin or the like during heating.
  • the PPS resin (b) used in the present invention preferably has a remarkably small amount of lactone type compound when heated.
  • the amount of lactone-type compound generated when the PPS resin (b) is heated is preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 100 ppm or less, and even more preferably 50 ppm or less, based on the weight of the PPS resin before heating.
  • the production method of the PPS resin (b) used in the present invention is not particularly limited as long as it is a method by which a PPS resin having the above characteristics can be obtained.
  • a method for producing the PPS prepolymer by removing the solvent from the solid content when the reaction mixture is subjected to solid-liquid separation can be exemplified.
  • PPS resin (b) production methods 2.
  • a method using a PPS prepolymer having a low cyclic PPS content can be exemplified.
  • a PPS resin having the above-described characteristics can be obtained by heating a PPS prepolymer having a cyclic PPS content of less than 80% by weight.
  • a weight average molecular weight can illustrate 10,000 or more as a preferable range, 15,000 or more are more preferable, 18,000 or more are further preferable. Within this range, the amount of gas generated when the resulting PPS resin composition is molded tends to be reduced.
  • an upper limit less than 1,000,000 can be illustrated as a preferable range, less than 500,000 is more preferable, and less than 200,000 is more preferable. Within this range, a PPS resin composition having high moldability is obtained. It tends to be obtained.
  • the lower limit of the alkaline earth metal (d) content of the PPS resin (c) used in the present invention is 200 ppm, preferably 300 ppm or more, and more preferably 400 ppm or more.
  • the content of the alkaline earth metal is less than 200 ppm, the increase in viscosity when the resulting PPS resin composition is molded is increased.
  • the upper limit of the content is 800 ppm, and when the content exceeds 800 ppm, the fluidity when molding the obtained PPS resin composition is lowered.
  • the alkaline earth metal (d) contained in the PPS resin (c) is at least one selected from calcium, strontium, barium and radium.
  • One kind of alkaline earth metal may be included, or a mixture of two or more kinds may be used. From the viewpoint of reducing the increase in viscosity when molding the resulting PPS resin composition, it is desirable to increase the molar content of the alkaline earth metal contained in the PPS resin (c). Is particularly preferred.
  • the PPS resin (c) used in the present invention is characterized in that the weight reduction rate ⁇ Wr when heated represented by the above formula (1) exceeds 0.18%.
  • ⁇ Wr is 0.18% or less, the affinity with an alkaline earth metal decreases, and the increase in viscosity during molding of the resulting PPS resin composition increases.
  • the upper limit of ⁇ Wr is preferably 0.40% or less, more preferably 0.30% or less, from the viewpoint of reducing the amount of gas generated when the resulting PPS resin composition is molded.
  • it is more preferably 0.25% or less. Within this preferred range, the amount of gas generated when the resulting PPS resin composition is molded tends to be reduced.
  • the production method of the PPS resin (c) used in the present invention is not particularly limited as long as it is a method capable of obtaining a PPS resin having the above characteristics.
  • a PPS resin as disclosed in International Publication No. 2013-099234 can be used. It is obtained by a production method, specifically a solution polymerization method in which an alkali metal sulfide such as sodium sulfide and a dihaloaromatic compound such as p-dichlorobenzene are reacted in an organic amide solvent such as N-methyl-2-pyrrolidone.
  • a method of contacting with a solution containing an alkaline earth metal salt can be exemplified. According to this method, it is possible to easily obtain a PPS resin having the above-described characteristics.
  • PPS resin (a), PPS resin (b) and / or PPS resin (c) the total weight of PPS resin (a), PPS resin (b) and PPS resin (c) is 100% by weight.
  • PPS resin (b) or PPS resin (c) is blended in an amount of 10 to 50% by weight with respect to 90 to 50% by weight of PPS resin (a), or PPS resin (b )
  • the PPS resin (c) are blended so as to be 10 to 50% by weight.
  • the upper limit of the blending amount of the PPS resin (a) is 90% by weight.
  • the blending amount exceeds 90% by weight (when the blending amount of the PPS resin (b) and the PPS resin (c) is less than 10% by weight), The increase in viscosity when the resulting PPS resin composition is molded is increased.
  • the lower limit of the blending amount of the PPS resin (a) is 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more.
  • the method of blending two or more kinds of PPS resins including the PPS resin (a) in the present invention is not particularly limited.
  • the PPS resin is dry blended at the above blending ratio, it is uniaxial and biaxial.
  • examples thereof include a method of supplying to a generally known melt kneader such as an extruder, a Banbury mixer, a kneader, and a mixing roll and performing melt mixing at a temperature equal to or higher than the melting temperature of the PPS resin.
  • the upper limit of the temperature at the time of melt mixing is preferably 380 ° C. or less, more preferably 360 ° C. or less, further preferably 340 ° C., and still more preferably 320 ° C. or less. Within this range, undesirable side reactions such as crosslinking reactions tend to be avoided.
  • the preferred time for performing the melt mixing may vary depending on the temperature at which the melt mixing is performed, but 1 minute or more can be exemplified as a preferable range, 3 minutes or more is more preferable, and 5 minutes or more is more preferable. Within this range, the PPS resin as a raw material is sufficiently melted and a highly uniform PPS resin composition tends to be obtained.
  • the upper limit is preferably 30 minutes or less, more preferably 20 minutes or less, and even more preferably 15 minutes or less. Within this range, the undesirable side reaction tends to be suppressed.
  • the atmosphere at the time of melt mixing is preferably a non-oxidizing atmosphere from the viewpoint of suppressing the above-mentioned undesirable side reaction, and the amount of gas generated when the resulting PPS resin composition is molded is From the viewpoint of reduction, it is also preferable to carry out under reduced pressure conditions.
  • the PPS resin composition of the present invention has a molecular weight measured by size exclusion chromatography.
  • the sub-peak area fraction (FS2) calculated from the value S2 according to the following equation (3) is 1.0 to 20%.
  • the feature of the PPS resin composition of the present invention is that the viscosity change rate ( ⁇ 300 ) expressed by the following formula (4) when heated at 320 ° C. for 5 hours is 1.5 times or less. .
  • ⁇ 300 ⁇ 300 / ⁇ 0 (4)
  • ⁇ 300 is the viscosity change rate (times), and is obtained from the melt viscosity ⁇ 0 before heat treatment and the melt viscosity ⁇ 300 after heat treatment at 320 ° C. for 5 hours in a non-oxidizing atmosphere at normal pressure. Value.
  • the lower limit of F S2 of the PPS resin composition of the present invention is 1.0%, preferably at least 2.0%, 3.0% or more is more preferable. When FS2 is less than 1.0%, fluidity at the time of molding processing is lowered.
  • the upper limit of F S2 is 20%, more preferably 15% or less, more preferably 10% or less, more preferably more than 5%. When FS2 exceeds 20%, the increase in viscosity during molding is increased.
  • Example 1 As an example of the molecular weight distribution chart of the PPS resin composition of the present invention, the chart obtained in Example 1 is shown in FIG. A molecular weight distribution having two peaks as shown in FIG. 1 may be referred to as a bimodal molecular weight distribution in the present invention.
  • the peak top molecular weight of the main peak component of the PPS resin of the present invention is 10,000 or more, preferably 15,000 or more, more preferably 18,000 or more, and further preferably 20,000 or more. When it is less than 10,000, the amount of gas generated when the resulting PPS resin composition is molded is increased. On the other hand, the upper limit is 1,000,000 or less, preferably 500,000 or less, more preferably 200,000 or less, and even more preferably 100,000 or less. When it exceeds 1,000,000, the moldability of the resulting PPS resin composition is lowered.
  • the peak top molecular weight of the sub-peak of the PPS resin composition of the present invention is less than 10,000, preferably 5,000 or less, more preferably 3,000 or less, and even more preferably 2,000 or less. When it is 10,000 or more, the fluidity during molding of the resulting PPS resin composition is lowered. On the other hand, the lower limit is 100 or more, preferably 300 or more, more preferably 400 or more, and even more preferably 500 or more. When it is less than 100, the amount of gas generated when the resulting PPS resin composition is molded is increased.
  • the weight average molecular weight of the main peak of the PPS resin composition of the present invention is 10,000 or more, preferably 20,000 or more, more preferably 25,000 or more, and further preferably 30,000 or more. When it is less than 10,000, the amount of gas generated when the resulting PPS resin composition is molded is increased.
  • the upper limit is preferably 2,000,000, preferably 1,000,000 or less, more preferably 500,000 or less, and even more preferably 200,000 or less. Within this range, a PPS resin composition having high moldability tends to be obtained.
  • the weight average molecular weight of the sub-peak of the PPS resin composition of the present invention is preferably less than 10,000, more preferably 8,000 or less, further preferably 5,000 or less, and even more preferably 3,000 or less. Within this range, a highly fluid PPS resin composition tends to be obtained.
  • the lower limit is 100 or more, preferably 300 or more, more preferably 400 or more, and further preferably 500 or more. When it is less than 100, the amount of gas generated when the resulting PPS resin composition is molded is increased.
  • the melt viscosity of the PPS resin composition of this invention Usually, 1 Pa.s or more can be illustrated by the melt viscosity in 320 degreeC, and 10 Pa.s or more is more preferable, and 20 Pa.s or more is more preferable. Further preferred.
  • the upper limit is preferably 10,000 Pa ⁇ s or less, more preferably 5,000 Pa ⁇ s or less, and still more preferably 3,000 Pa ⁇ s or less. When the melt viscosity is within the above range, the moldability tends to be excellent.
  • the upper limit of ⁇ 300 of the PPS resin composition of the present invention is 1.5 times, more preferably 1.3 times or less, still more preferably 1.2 times or less, and even more preferably 1.1 times or less. .
  • ⁇ 300 exceeds 1.5 times, the increase in viscosity at the time of molding increases.
  • the lower limit of ⁇ 300 is not particularly limited, but 0.5 times or more can be exemplified as a preferable range, 0.7 times or more is more preferable, 0.8 times or more is further preferable, and 0.9 times or more is more preferable. More preferably, within this range, the melt viscosity during molding tends to be stable.
  • the melt viscosity can be measured using a known viscometer such as a rheometer, capilograph, or rotational viscometer, or converted from a melt flow rate measured using a known flow meter such as a melt indexer or flow meter. It is also possible to ask for it.
  • a known viscometer such as a rheometer, capilograph, or rotational viscometer
  • the atmosphere during the heat treatment at the time of measuring the melt viscosity is an atmospheric non-oxidizing atmosphere.
  • the atmosphere actually used in the molding process of the PPS resin so it is appropriate as an index of melt stability in actual use.
  • the heating temperature at the time of measuring the melt viscosity is 320 ° C. which is higher than the melting temperature of the PPS resin composition, which is close to the temperature frequently used when actually molding the PPS resin.
  • a PPS resin having a small viscosity change rate at 320 ° C. can be said to be an excellent PPS resin having a high quality in which an increase in viscosity in an actual use temperature region is suppressed.
  • the PPS resin composition of the present invention preferably contains an alkaline earth metal amount from the viewpoint of reducing an increase in viscosity during molding.
  • a preferable range is 20 ppm or more, preferably 30 ppm or more, and more preferably 40 ppm or more. When the content is 20 ppm or more, an increase in viscosity at the time of molding tends to be reduced.
  • the upper limit is preferably 1,000 ppm or less, more preferably 500 ppm or less, and further preferably 400 ppm or less. When the alkaline earth metal content is 1,000 ppm or less, the moldability tends to be excellent.
  • the PPS resin composition of the present invention preferably has a weight reduction rate ⁇ Wr expressed by the above formula (1) of 0.30% or less when heated. 0.24% or less is more preferable, 0.20% or less is more preferable, and 0.18% or less is even more preferable. When ⁇ Wr is less than or equal to the above range, the amount of gas generated during molding tends to be reduced.
  • the PPS resin composition of the present invention preferably has a small amount of lactone type compound and / or aniline type compound when heated.
  • the amount of lactone-type compound generated when the PPS resin composition is heated is preferably 800 ppm or less, more preferably 500 ppm or less, further preferably 300 ppm or less, and more preferably 100 ppm or less, based on the weight of the PPS resin composition before heating. Even more preferable.
  • the amount of aniline-type compound generated is preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less, and even more preferably 50 ppm or less.
  • the method of the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
  • the measuring method of a physical property is as follows. ⁇ Analysis of PPS prepolymer> The quantitative determination of cyclic PPS contained in the PPS prepolymer was performed using high performance liquid chromatography (HPLC). The measurement conditions for HPLC are shown below. Apparatus: Shimadzu LC-10Avp series column: Kanto Chemical Co., Ltd.
  • melt viscosity and viscosity change rate The melt viscosity and viscosity change rate of the PPS resin and the resin composition were measured using a rheometer under the following conditions. The heat treatment at 320 ° C. was also performed in a rheometer.
  • the viscosity change rate ⁇ 300 was calculated from the melt viscosity before heating ( ⁇ 0 ) measured in (i) and the melt viscosity after heating ( ⁇ 300 ) measured in (ii) using the above formula (3). .
  • (Ii) The same operation as in (i) was performed, except that 0.5% by weight of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added in a sample weight ratio.
  • the molecular weight increase rate ⁇ Mn is the number average molecular weight (Mn1) without addition of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane measured in (i) and 2- (3,4-) measured in (ii).
  • the number average molecular weight (Mn2) at the time of addition of (epoxycyclohexyl) ethyltrimethoxysilane was calculated using the above formula (2).
  • NMP solution of p-DCB (3.54 g of p-DCB and 10 g of NMP) was charged into a 100 mL small tank installed at the top of the autoclave via a high pressure valve. After pressurizing the inside of the small tank to about 1.5 MPa, the valve at the bottom of the tank was opened, and an NMP solution of p-DCB was charged into the autoclave. After washing the wall surface of the small tank with 5 g of NMP, this NMP was also charged into the autoclave. After the completion of this additional charging, the reaction was continued by continuing heating at 250 ° C. for an additional hour. Then, after cooling to 230 ° C.
  • the high-pressure valve installed at the top of the autoclave, the vapor mainly composed of NMP is discharged, and this vapor component is aggregated in the water-cooled cooling pipe, After recovering about 394 g of liquid components, the high pressure valve was closed and sealed. Next, the reaction product was recovered by quenching to near room temperature. 200 g of the obtained reaction product was collected and charged into a 300 mL flask. The reaction product was stirred with a magnetic stirrer and heated to 100 ° C. in an oil bath while nitrogen bubbling was performed on the reaction product slurry.
  • a polytetrafluoroethylene (PTFE) membrane filter with a diameter of 90 mm and an average pore diameter of 10 ⁇ m is set in ADVANTEC's universal filter holder KST-90-UH
  • the temperature of the part was adjusted to 100 ° C. with a band heater.
  • the reaction product heated to 100 ° C. was charged into the tank, the tank was sealed, the inside of the tank was pressurized to 0.1 MPa with nitrogen, and solid-liquid separation was performed until the filtrate was completely discharged.
  • the temperature of the mixture decreases to about 75 ° C. along with the dropwise addition of water, and solids are gradually formed in the mixture.
  • a slurry was obtained.
  • the slurry was cooled to about 30 ° C. over about 1 hour with stirring, and then stirred at about 30 ° C. or less for about 30 minutes, and then the obtained slurry was suction filtered through a glass filter having an opening of 10 to 16 ⁇ m.
  • the obtained solid content was dispersed in about 30 g of water, stirred at 70 ° C. for 15 minutes, and then subjected to suction filtration with a glass filter in the same manner as described above, four times in total.
  • the obtained solid content was dried at 70 ° C. in a vacuum dryer for 3 hours to obtain a PPS prepolymer as a dry solid. This PPS prepolymer is referred to as the first prepolymer.
  • the obtained PPS prepolymer As a result of analyzing the obtained PPS prepolymer by high performance liquid chromatography, it was found to contain 88% by weight of cyclic PPS. As a result of GPC measurement, the number average molecular weight was 800, the weight average molecular weight was 1,100, and the polydispersity index was 1.38.
  • an arylene unit (corresponding to p-DCB charged as a dihalogenated aromatic compound) per mole of sulfur component in the reaction mixture (per mole of sulfur atom contained in sodium hydrosulfide charged as a sulfidizing agent).
  • the amount was 1.00 mol.
  • the inside of the autoclave was sealed after being replaced with nitrogen gas, and the temperature was raised from room temperature to 200 ° C. over about 1 hour while stirring at 400 rpm. Next, the temperature was raised from 200 ° C. to 250 ° C. over about 0.5 hour. The pressure in the reactor at this stage was 1.0 MPa as a gauge pressure. Thereafter, the reaction mixture was heated at 250 ° C. for 2 hours to be reacted.
  • NMP solution of p-DCB (8.84 g of p-DCB was dissolved in 20 g of NMP) was charged into a 100 mL small tank installed at the top of the autoclave via a high pressure valve. After pressurizing the inside of the small tank to about 1.5 MPa, the valve at the bottom of the tank was opened, and an NMP solution of p-DCB was charged into the autoclave. After washing the wall surface of the small tank with 5 g of NMP, this NMP was also charged into the autoclave. Then, after cooling to 230 ° C.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and GPC measurement was performed. As a result, a chart having a bimodal molecular weight distribution as shown in FIG. 8 was obtained.
  • the peak top molecular weight of the main peak was 41,600, the number average molecular weight was 23,100, the weight average molecular weight was 54,200, and the polydispersity index was 2.35.
  • the peak top molecular weight of the sub-peak is 700, the number average molecular weight is 800, the weight average molecular weight is 900, the polydispersity index is 1.12, and the area fraction calculated from the area ratio of the chromatogram is 4.8%. there were.
  • ⁇ Reference Example 4> Preparation of PPS resin having a weight average molecular weight of less than 50,000 by heating the second PPS prepolymer
  • the second PPS prepolymer obtained in Reference Example 2 was mixed with a distillation tube and a stirring blade. After charging the attached glass test tube, decompression and nitrogen replacement in the test tube were repeated three times. The inside of the test tube was depressurized, adjusted to 340 ° C. while being maintained at about 0.1 kPa, heated for 180 minutes, and then cooled to room temperature to obtain a bulk PPS resin.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and as a result of GPC measurement, a chart having a bimodal molecular weight distribution similar to that of Reference Example 3 was obtained.
  • the peak top molecular weight of the main peak was 32,700, the number average molecular weight was 17,800, the weight average molecular weight was 42,800, and the polydispersity index was 2.40.
  • the peak top molecular weight of the sub-peak is 800, the number average molecular weight is 800, the weight average molecular weight is 900, the polydispersity index is 1.14, and the area fraction calculated from the area ratio of the chromatogram is 3.4%. there were.
  • Reference Example 5 Preparation of PPS resin (b) having a weight average molecular weight of less than 50,000, an alkaline earth metal content of less than 200 ppm, and ⁇ Mn of 5.0% or less.
  • Reaction of Reference Example 1 The solid content obtained when the product slurry was subjected to solid-liquid separation was added with 200 g of ion-exchanged water as a slurry, stirred at 80 ° C. for 30 minutes, and then filtered to recover the solid content three times. It was. The obtained solid content was dried at 130 ° C. under reduced pressure for 8 hours to obtain a powdery PPS resin.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and GPC measurement was performed. As a result, a chart having a unimodal molecular weight distribution as shown in FIG. 9 was obtained.
  • the peak top molecular weight was 11,600
  • the number average molecular weight was 5,700
  • the weight average molecular weight was 12,000
  • the polydispersity index was 2.12.
  • ⁇ Wr was 0.20%.
  • ⁇ 0 and ⁇ 300 were 0.81 Pa ⁇ s and 1.59 Pa ⁇ s, respectively, and ⁇ 300 was 1.96 times. It was.
  • Reference Example 6 Preparation of a PPS resin having a high reactive functional group content by heating a PPS prepolymer in the presence of a sulfide compound having a reactive functional group
  • the first PPS prepolymer obtained in Reference Example 1 and Bis (4-aminophenyl) sulfide in a weight ratio of PPS prepolymer of 1.0% by weight was charged into a glass test tube equipped with a distillation tube and a stirring blade, and the test tube was evacuated and purged with nitrogen three times. Repeated. While maintaining the inside of the test tube in a nitrogen atmosphere, the temperature was adjusted to 340 ° C. and heated for 60 minutes, then the inside of the test tube was depressurized, heated at about 0.1 kPa for another 30 minutes, and then cooled to room temperature to give a block of PPS resin. Obtained.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and as a result of GPC measurement, a chart having a bimodal molecular weight distribution similar to Reference Examples 3 and 4 was obtained.
  • the peak top molecular weight of the main peak was 17,900, the number average molecular weight was 10,400, the weight average molecular weight was 21,000, and the polydispersity index was 2.01.
  • the peak top molecular weight of the sub-peak is 700, the number average molecular weight is 800, the weight average molecular weight is 900, the polydispersity index is 1.13, and the area fraction calculated from the area ratio of the chromatogram is 2.3%. there were.
  • ⁇ Mn was 7.5%.
  • ⁇ 0 and ⁇ 300 are 1.72 Pa ⁇ s and 5.50 Pa ⁇ s, respectively, and ⁇ 300 is 3.20 times. there were.
  • the reaction vessel was heated from room temperature to 245 ° C. over 360 minutes while passing nitrogen at normal pressure, and 10.1 kg of solvent was distilled off. After cooling the reaction vessel to 200 ° C., 10.42 kg (70.9 mol) of p-DCB and 9.37 kg (94.5 mol) of NMP were added, and the reaction vessel was sealed under nitrogen gas and stirred at 240 rpm. The temperature was raised from 270 ° C. to 270 ° C. over 120 minutes, and the reaction was carried out at 270 ° C. for 140 minutes. Thereafter, 2.40 kg of ion-exchanged water was injected while cooling from 270 ° C. to 250 ° C. over 15 minutes. Next, the mixture was cooled from 250 ° C. to 220 ° C. over 75 minutes, and then rapidly cooled to near room temperature to recover the contents.
  • the contents were diluted with 35 liters of NMP, stirred as a slurry at 85 ° C. for 30 minutes, and then filtered using a wire mesh with an opening of 175 ⁇ m to separate into solid and liquid.
  • the obtained solid was washed with 35 liters of NMP and filtered off as described above.
  • the obtained solid content was added to 70 liters of ion-exchanged water, stirred at 70 ° C. for 30 minutes, and then filtered to collect the solid content three times in total to obtain an undried PPS resin.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and as a result of GPC measurement, it was found that it had a unimodal molecular weight distribution as shown in FIG.
  • the peak top molecular weight was 48,400, the number average molecular weight was 18,800, the weight average molecular weight was 50,000, and the polydispersity index was 2.66.
  • ⁇ Wr was 0.25%.
  • ⁇ Mn was 7.4%.
  • ⁇ 0 and ⁇ 300 were 206 Pa ⁇ s and 124 Pa ⁇ s, respectively, and ⁇ 300 was 0.60 times.
  • ⁇ Wr was 0.25%.
  • sodium was detected at 912 ppm by weight, and other alkali metals and alkaline earth metals were not detected.
  • 978 ppm of ⁇ -butyrolactone and 402 ppm of 4-chloro-N-methylaniline were detected with respect to the weight of the PPS resin before heating.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and as a result of GPC measurement, it was found to have a unimodal molecular weight distribution as in Reference Examples 8 and 9.
  • the peak top molecular weight was 48,200
  • the number average molecular weight was 18,800
  • the weight average molecular weight was 49,900
  • the polydispersity index was 2.65.
  • ⁇ Wr was 0.26%.
  • 512 ppm by weight of sodium was detected, and no other metals were detected.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and as a result of GPC measurement, it was found that it had a unimodal molecular weight distribution as in Reference Examples 8 to 10.
  • the peak top molecular weight was 48,300, the number average molecular weight was 18,800, the weight average molecular weight was 50,300, and the polydispersity index was 2.68.
  • ⁇ Wr was 0.27%.
  • 84 ppm by weight of sodium was detected, and other metals were not detected.
  • Reference Example 12 Preparation of PPS Resin Containing Calcium by Adding Calcium Acetate during PPS Prepolymer Heating First PPS prepolymer obtained in Reference Example 1 and 0.044 wt% in weight ratio of PPS prepolymer
  • the glass acetate monohydrate was charged into a glass test tube equipped with a distillation tube and a stirring blade, and the pressure reduction and nitrogen replacement in the test tube were repeated three times.
  • the inside of the test tube was depressurized, adjusted to 340 ° C. while being maintained at about 0.1 kPa, heated for 180 minutes, and then cooled to room temperature to obtain a bulk PPS resin.
  • the obtained PPS resin was completely dissolved in 1-chloronaphthalene at 210 ° C., and GPC measurement was performed. As a result, a chart having a bimodal molecular weight distribution similar to Reference Examples 3, 4, and 6 was obtained.
  • the peak top molecular weight of the main peak was 41,300, the number average molecular weight was 22,100, the weight average molecular weight was 53,800, and the polydispersity index was 2.43.
  • the peak top molecular weight of the sub-peak is 700, the number average molecular weight is 800, the weight average molecular weight is 900, the polydispersity index is 1.11, and the area fraction calculated from the area ratio of the chromatogram is 5.2%. there were.
  • ⁇ Reference Example 13> Blending of two types of PPS resins having different molecular weights 90% by weight of PPS resin having a weight average molecular weight of 50,300 obtained in Reference Example 11 and 12,000 of the weight average molecular weight obtained in Reference Example 5 After dry blending 10% by weight of PPS resin, a TEX30 ⁇ type twin screw extruder manufactured by Nippon Steel Works equipped with a vacuum vent (screw diameter 30mm, L / D 45, kneading part at 5 locations, rotating in the same direction, fully meshed And kneaded using a screw) and pelletized with a strand cutter.
  • the melt kneading conditions were a screw rotation speed of 300 rpm, a discharge amount of 20 kg / hr, and the cylinder temperature was set so that the resin temperature of the die discharge part was 300 ° C.
  • the pellets had a unimodal molecular weight distribution as shown in FIG.
  • Examples 1 to 7, Comparative Examples 1 to 7> Each component was dry blended at the compounding ratios shown in Tables 1 to 3, and melt-kneaded under the conditions described in Reference Example 13 and then pelletized. The results of analyzing the pellets dried at 130 ° C. overnight are listed in Tables 1-3. For Examples 1 to 7, GPC charts thereof are shown in FIGS. The analysis results of the PPS resins (Reference Examples 8 to 11) obtained by solution polymerization are shown in Table 4 for comparison with Examples. The PPS resin obtained in Example 1 was completely dissolved in 1-chloronaphthalene at 210 ° C., and as a result of GPC measurement, a chart having a bimodal molecular weight distribution as shown in FIG. 1 was obtained.
  • the peak peak molecular weight of the main peak is 38,200, the number average molecular weight is 17,600, the weight average molecular weight is 49,700, the polydispersity index is 2.82, the peak top molecular weight of the sub-peak is 700, the number average molecular weight is 800, The weight average molecular weight was 900, and the polydispersity index was 1.10.
  • a PPS resin composition having a small viscosity change rate of 1.50 times or less can be obtained by blending the PPS resin (a) with the PPS resin (b). Further, from the comparison between Examples 1 to 3 and Comparative Example 1, the PPS resin composition obtained by blending 50% by weight or more of PPS resin (a) has less generation amount of lactone type compound and aniline type compound during heating. It can be seen that the PPS resin composition has a reduced gas generation amount. Furthermore, from the comparison between Example 1 and Comparative Example 2, the viscosity change rate is 1.50 times only when the PPS resin (b) is blended with the PPS resin (a) having a weight average molecular weight of 50,000 or more.
  • a PPS resin composition having a viscosity change rate as small as 1.50 times or less can be obtained by blending the PPS resin (c) with the PPS resin (a). Further, from the comparison between Examples 4 to 6 and Comparative Example 4, the PPS resin composition obtained by blending 50% by weight or more of the PPS resin (a) generates less lactone type compounds and aniline type compounds during heating. It can be seen that the PPS resin composition has a reduced gas generation amount. Further, from the comparison between Example 4 and Comparative Examples 5 to 7, the viscosity change rate was 1.50 times or less only when the PPS resin (c) subjected to Ca treatment was blended with the PPS resin (a). It is clear that a small PPS resin composition can be obtained.
  • the PPS resin composition obtained by blending 50 wt% or more of the PPS resin (a) was a lactone type compound during heating and It can be seen that the PPS resin composition has a small amount of aniline-type compound and a reduced amount of gas generation.
  • the PPS resin composition of the present invention is excellent in heat resistance, chemical resistance, electrical properties and mechanical properties as well as excellent melt stability, low gas properties, injection molding, injection compression molding, blow molding, extrusion molding, etc.
  • Various molded products can be obtained by a known molding method. Among them, it is suitable for fiber and film applications where high melt stability is required, and the fiber and film obtained by molding are paper machine dryer canvas, net conveyor, bag filter, insulating paper film condenser, motor insulation. It can be suitably used for various applications such as a film, a transformer insulating film, and a release film.
  • the characteristics of the low viscosity change rate and bimodal molecular weight distribution of the PPS resin composition of the present invention can be confirmed.

Abstract

ポリフェニレンスルフィド樹脂(a)~(c)の合計を100重量%としたときに、ポリフェニレンスルフィド樹脂(a)90~50重量%に対して、ポリフェニレンスルフィド樹脂(b)および/またはポリフェニレンスルフィド樹脂(c)を合計で10~50重量%配合してなるポリフェニレンスルフィド樹脂組成物であって、且つ、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物。 ポリフェニレンスルフィド樹脂(a):重量平均分子量が50,000以上であって、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%以下であるポリフェニレンスルフィド樹脂 ポリフェニレンスルフィド樹脂(b):重量平均分子量が50,000未満であって、アルカリ土類金属の含有量が200ppm未満であって、且つ、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した際の分子量増加率が5.0%以下であるポリフェニレンスルフィド樹脂 ポリフェニレンスルフィド樹脂(c):アルカリ土類金属(d)を200~800ppm含有し、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%を超えるポリフェニレンスルフィド樹脂 ΔWr=(W1-W2)/W1×100(%)・・・(1) (ここでΔWrは重量減少率(%)であり、常圧の非酸化性雰囲気下で昇温速度20℃/分で熱重量分析を行った際に、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から求められる値である。) 溶融滞留時の粘度変化が小さく、且つ、加熱時のガス発生量の少ないPPS樹脂組成物を提供する。

Description

ポリフェニレンスルフィド樹脂組成物およびその製造方法
 本発明は、溶融安定性に優れ、ガス発生量が少ないポリフェニレンスルフィド樹脂組成物およびその製造方法に関するものである。
 ポリフェニレンスルフィド(以下PPSと略す場合もある)は高い融点を示し、優れた難燃性、耐薬品性などエンジニアリングプラスチックとして好適な性質を有している。PPSは、押出成形、射出成形、圧縮成形などの一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気・電子機器、自動車機器等の広範な分野において汎用されている。しかし、PPSは一般に溶融安定性が低いという課題点があり、特に、溶融滞留時間の長いフィルム・繊維等の製造においては、得られる成形品の品質が一定とならないという問題点があった。
 現在、主流となっているPPSの製造方法は、N-メチル-2-ピロリドンなどの有機アミド溶媒中で硫化ナトリウムなどのアルカリ金属硫化物とp-ジクロロベンゼンなどのジハロ芳香族化合物とを反応させる溶液重合法であるが、この方法で製造されるPPSは低分子量成分を多く含むため、加熱時のガス発生量が多いという課題がある。このガス成分は溶融加工時における金型・口金汚れの原因となることから、品質・生産性向上の観点から、その低減が望まれている。
 得られる成形品の品質が一定とならないという前記課題に対し、溶融滞留時の粘度変化が低減されたPPSの製造方法として、溶液重合法で得られたPPSを洗浄する際に、洗浄液のpHを調整する方法が提案されている(特許文献1)。
 加熱時のガス発生量が多いという前記課題に対し、加熱時のガス発生量が低減されたPPSとして、環式PPSを含むプレポリマーを加熱することで得られるPPSが提案されている(特許文献2)。
 特許文献2に関連する公知技術として、プレポリマーの加熱時にカルボン酸金属塩を共存させることで、重合速度を向上する方法(特許文献3)、アミノ基などの官能基を有するスルフィド化合物を共存させることで、反応性末端を導入したPPSを得る方法(特許文献4)が知られている。
 さらに、溶液重合法で得られるPPSと特許文献2で得られるPPSとを配合することで耐熱性、低ガス性に優れたPPSを得る方法(特許文献5)、特許文献2で得られるPPSと特許文献4で得られるPPSとを配合することで反応性末端基を含有し、低ガス性に優れたPPSを得る方法(特許文献6)が提案されている。
特開2005-225931号公報 国際公開2007-034800号 特開2011-173953号公報 国際公開2013-161321号 国際公開2013-099234号 国際公開2013-161321号
 特許文献1に記載された方法で得られるPPSは、溶融滞留時の粘度変化が小さいものの、その効果は十分でなく、さらに溶液重合法で得られたPPSを用いるために、加熱時のガス発生量が多いという課題がある。これに対し、特許文献2に記載された方法で得られるPPSは、加熱時のガス発生量が少ないものの、溶融滞留時の粘度変化が大きいという課題がある。
 特許文献3、4で得られたPPSにおいても、溶融安定性の点では不十分であり、その原因は、これらの方法で得られるPPSは、添加剤に由来する活性な末端を有し、後重合や架橋反応が起こりやすいためと推測している。
 また、特許文献5、6の方法で得られるPPSも、溶融安定性の点では不十分であり、特許文献5、6に記載された実施例で得られるPPSでは溶融安定性の十分な向上は確認できていない。
 本発明では公知技術では未達成であった、長時間の溶融滞留時の粘度変化が小さく、且つ、加熱時のガス発生量の少ないPPSを提供することを課題とする。
 上記課題を解決するため、本発明のポリフェニレンスルフィド樹脂組成物は次の(I)または(II)のいずれかの構成を有する。すなわち、
(I)ポリフェニレンスルフィド樹脂(a)~(c)の合計を100重量%としたときに、ポリフェニレンスルフィド樹脂(a)90~50重量%に対して、ポリフェニレンスルフィド樹脂(b)および/またはポリフェニレンスルフィド樹脂(c)を合計で10~50重量%配合してなるポリフェニレンスルフィド樹脂組成物であって、且つ、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物。
 ポリフェニレンスルフィド樹脂(a):重量平均分子量が50,000以上であって、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%以下であるポリフェニレンスルフィド樹脂
 ポリフェニレンスルフィド樹脂(b):重量平均分子量が50,000未満であって、アルカリ土類金属の含有量が200ppm未満であって、且つ、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した際の分子量増加率が5.0%以下であるポリフェニレンスルフィド樹脂
 ポリフェニレンスルフィド樹脂(c):アルカリ土類金属(d)を200~800ppm含有し、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%を超えるポリフェニレンスルフィド樹脂
 ΔWr=(W1-W2)/W1×100(%)・・・(1)
 (ここでΔWrは重量減少率(%)であり、常圧の非酸化性雰囲気下で昇温速度20℃/分で熱重量分析を行った際の、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から求められる値である。)、
または、
(II)サイズ排除クロマトグラフィーにより測定される分子量分布において、
 (i)分子量10,000以上1,000,000以下の領域にメインピークのピークトップを有し、
 (ii)分子量100以上10,000未満の領域にサブピークのピークトップを有し、
 (iii)サブピークの面積分率が1.0~20%であって、
且つ、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物、である。
 また、本発明のポリフェニレンスルフィド樹脂組成物の製造方法は次の構成を有する。すなわち、
ポリフェニレンスルフィド樹脂(a)~(c)の合計を100重量%としたときに、ポリフェニレンスルフィド樹脂(a)90~50重量%に対して、ポリフェニレンスルフィド樹脂(b)および/またはポリフェニレンスルフィド樹脂(c)を合計で10~50重量%配合するポリフェニレンスルフィド樹脂組成物の製造方法であって、得られるポリフェニレンスルフィド樹脂組成物の、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物の製造方法、
 ポリフェニレンスルフィド樹脂(a):重量平均分子量が50,000以上であって、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%以下であるポリフェニレンスルフィド樹脂
 ポリフェニレンスルフィド樹脂(b):重量平均分子量が50,000未満であって、アルカリ土類金属の含有量が200ppm未満であって、且つ、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した際の分子量増加率が5.0%以下であるポリフェニレンスルフィド樹脂
 ポリフェニレンスルフィド樹脂(c):アルカリ土類金属(d)を200~800ppm含有し、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%を超えるポリフェニレンスルフィド樹脂
 ΔWr=(W1-W2)/W1×100(%)・・・(1)
 (ここでΔWrは重量減少率(%)であり、常圧の非酸化性雰囲気下で昇温速度20℃/分で熱重量分析を行った際に、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から求められる値である。)、
である。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記ポリフェニレンスルフィド樹脂(a)の重量平均分子量を数平均分子量で除した多分散度指数が2.5以下であることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記ポリフェニレンスルフィド樹脂(a)のアルカリ金属含有量が重量比で700ppm以下であることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記ポリフェニレンスルフィド樹脂(a)を加熱した際に発生するガスの成分におけるラクトン型化合物の含有量が、ポリフェニレンスルフィド樹脂重量基準で500ppm以下であることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記ポリフェニレンスルフィド樹脂(a)を加熱した際に発生するガスの成分におけるアニリン型化合物の含有量が、ポリフェニレンスルフィド樹脂重量基準で300ppm以下であることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記ポリフェニレンスルフィド樹脂(a)が、下記一般式(A)で表わされる環式ポリフェニレンスルフィドを85重量%以上含み、且つ、重量平均分子量が10,000未満であるポリフェニレンスルフィドプレポリマーを加熱して、重量平均分子量50,000以上の高重合度体に転化させることにより得られたポリフェニレンスルフィド樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 (mは4~20の整数であり、環式ポリフェニレンスルフィドはmが4~20の異なる値を有する一般式(A)で表わされる化合物の混合物であってもよい。)
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記ポリフェニレンスルフィド樹脂(b)を加熱した際に発生するガスの成分におけるラクトン型化合物の含有率が、ポリフェニレンスルフィド樹脂重量基準で500ppm以下であることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(I)の態様は、上記アルカリ土類金属(d)がカルシウムであることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(II)の態様は、アルカリ土類金属の含有量が重量比で20~1,000ppmであることが好ましい。
 本発明のポリフェニレンスルフィド樹脂組成物のうち、上記(II)の態様は、前記式(1)で表される、加熱した際の重量減少率ΔWrが0.30%以下であることが好ましい。
 本発明によれば、溶融滞留時の粘度変化が小さく、且つ、加熱時のガス発生量が少ないという、成形までの溶融滞留時間が長い用途、例えば繊維やフィルムなどの製造に好適な特徴に加え、溶融流動性が高く、加工性に優れたPPS樹脂組成物を提供することができる。
実施例1で得られたPPS樹脂組成物のGPCチャートである。 実施例2で得られたPPS樹脂組成物のGPCチャートである。 実施例3で得られたPPS樹脂組成物のGPCチャートである。 実施例4で得られたPPS樹脂組成物のGPCチャートである。 実施例5で得られたPPS樹脂組成物のGPCチャートである。 実施例6で得られたPPS樹脂組成物のGPCチャートである。 実施例7で得られたPPS樹脂組成物のGPCチャートである。 参考例3で得られたPPS樹脂(a)のGPCチャートである。 参考例5で得られたPPS樹脂(b)のGPCチャートである。 参考例8で得られたPPS樹脂(c)のGPCチャートである。 参考例13で得られたPPS樹脂組成物のGPCチャートである。
 以下に、本発明の実施形態を説明する。
 1.PPS樹脂
 PPS樹脂とは、下記式で示される繰り返し単位を有する重合体である。
Figure JPOXMLDOC01-appb-C000003
 本発明で用いるPPS樹脂は、耐熱性の観点からは、上記構造式で示される繰り返し単位を80モル%以上、さらには90モル%以上含む重合体であることが好ましい。また、本発明で用いるPPS樹脂は、その繰り返し単位の20モル%未満が下記の構造(B)~(L)で示される繰り返し単位で構成されていてもよい。
Figure JPOXMLDOC01-appb-C000004
 (R1,R2は水素、炭素原子数1~12のアルキル基、炭素原子数1~12のアルコキシ基、炭素数6~24のアリーレン基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。)
 これらの繰り返し単位を主要構成単位とする限り、下記の式(M)~式(O)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、繰り返し単位1モルに対して0~1モル%の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 2.重量平均分子量が50,000以上であって、且つ、ΔWrが0.18%以下であるPPS樹脂(a)
 本発明で用いるPPS樹脂(a)の分子量は、重量平均分子量で50,000以上であり、55,000以上が好ましく、60,000以上がより好しく、65,000以上がさらに好ましい。重量平均分子量が50,000未満である場合、後述のPPS樹脂(b)との分子量の差が不十分となり、得られるPPS樹脂組成物を加工成形する際の粘度上昇が大きくなる。重量平均分子量の上限に特に制限は無いが、1,000,000以下を好ましい範囲として例示でき、500,000以下がより好ましく、200,000以下がさらに好ましく、この範囲内では高い成形加工性をもつPPS樹脂組成物が得られる傾向にある。
 PPS樹脂の分子量は、示差屈折率検出器を具備したサイズ排除クロマトグラフィー(SEC)を使用して、分子量が既知の標準物質の測定により得られた分子量と保持時間との関係式により検量線を作成して求めることが可能であり、本発明におけるPPS樹脂の分子量値およびチャートは、ポリスチレンを標準物質とし、SECの一種であるゲル浸透クロマトグラフィー(GPC)により測定したものである。
 本発明で用いるPPS樹脂(a)の、重量平均分子量を数平均分子量で除した多分散度指数は、2.5以下が好ましく、2.3以下がより好ましく、2.1以下がさらに好ましく、2.0以下がよりいっそう好ましい。多分散度指数が上記範囲にある場合は、得られるPPS樹脂組成物を成形加工する際のガス発生量が低減される傾向にある。
 本発明で用いるPPS樹脂(a)の大きな特徴は、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%以下であることである。
 ΔWr=(W1-W2)/W1×100(%)・・・(1)
 (ここでΔWrは重量減少率(%)であり、常圧の非酸化性雰囲気下で昇温速度20℃/分で熱重量分析を行った際の、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から求められる値である。)
 本発明で用いるPPS樹脂(a)のΔWrは0.18%以下であり、0.12%以下であることが好ましく、0.10%以下であることがより好ましく、0.085%以下であることがさらに好ましい。ΔWrが0.18%を超える場合は、得られるPPS樹脂組成物を成形加工する際のガス発生量が多くなる。
 上記ΔWrは一般的な熱重量分析によって求めることが可能であるが、この分析における雰囲気は常圧の非酸化性雰囲気を用いる。本発明における非酸化性雰囲気とは、酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指す。この中でも、経済性及び取扱いの容易さの面から、窒素雰囲気が特に好ましい。
 また、本発明における常圧とは大気の標準状態近傍における圧力のことであり、約25℃近傍の温度、絶対圧で101.3kPa近傍の大気圧条件のことである。
 ΔWrの測定においては、50℃から350℃まで昇温速度20℃/分で昇温して熱重量分析を行う。好ましくは50℃で1分間ホールドした後に昇温速度20℃/分で昇温して熱重量分析を行う。この温度範囲はPPS樹脂を実使用する際に頻用される温度領域であり、また、固体状態のPPS樹脂を溶融させ、その後任意の形状に成形する際に頻用される温度領域でもある。このような温度領域における重量減少率は、実使用時のPPS樹脂からのガス発生量や成形加工の際の口金や金型などへの付着成分量などに関連する。従って、このような温度範囲における重量減少率が少ないPPS樹脂は品質の高い優れたPPS樹脂であるといえる。ΔWrの測定は約10mg程度の試料量で行うことが望ましく、またサンプルの形状は約2mm以下の細粒状であることが望ましい。
 本発明で用いるPPS樹脂(a)に含まれるアルカリ金属の量に特に制限はないが、電気絶縁性が要求される部材に展開する観点では、アルカリ金属含量は重量比で700ppm以下が好ましい範囲として例示でき、アルカリ金属含有量を700ppm以下とすることで、金属不純物による電気絶縁性低下を防ぐことができるので好ましい。上記した電気絶縁性低下の観点から、PPS樹脂(a)のアルカリ金属含有量は、重量比で500ppm以下とすることがより好ましく、200ppm以下とすることがさらに好ましく、100ppm以下とすることがよりいっそう好ましい。
 ここで、PPS樹脂のアルカリ金属含有量とは、例えば、電気炉等を用いてPPS樹脂を焼成した残渣である灰分中のアルカリ金属量から算出される値であり、前記灰分を例えば高周波誘導プラズマ(ICP)発光分光分析法や原子吸光法により分析することで定量することができる。特に、ICP発光分光分析法は多元素を同時に、かつ、高感度で分析することが可能であるため、微量元素の定量に汎用される手法である。
 なお、アルカリ金属とはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムのことを指すが、本発明で用いるPPS樹脂(a)は、ナトリウム以外のアルカリ金属を含まないことが好ましい。ナトリウム以外のアルカリ金属を含む場合、PPS樹脂の電気特性や熱的特性に悪影響を及ぼす傾向にある。
 また、本発明で用いるPPS樹脂(a)は、加熱した際のラクトン型化合物および/またはアニリン型化合物の発生量が著しく少ないものであることが好ましい。ここでラクトン型化合物とは、例えばβ-プロピオラクトン、β-ブチロラクトン、β-ペンタノラクトン、β-ヘキサノラクトン、β-ヘプタノラクトン、β-オクタノラクトン、β-ノナラクトン、β-デカラクトン、γ-ブチロラクトン、γ-バレロラクトン、γ-ペンタノラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタラクトン、γ-ノナラクトン、γ-デカラクトン、δ-ペンタノラクトン、δ-ヘキサノラクトン、δ-ヘプタノラクトン、δ-オクタノラクトン、δ-ノナラクトン、およびδ-デカラクトンなどが例示できる。また、アニリン型化合物とは、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、N-エチルアニリン、N-メチル-N-エチルアニリン、4-クロロ-アニリン、4-クロロ-N-メチルアニリン、4-クロロ-N,N-ジメチルアニリン、4-クロロ-N-エチルアニリン、4-クロロ-N-メチル-N-エチルアニリン、3-クロロ-アニリン、3-クロロ-N-メチルアニリン、3-クロロ-N,N-ジメチルアニリン、3-クロロ-N-エチルアニリン、および3-クロロ-N-メチル-N-エチルアニリンなどが例示できる。
 ラクトン型化合物の発生量は、加熱前のPPS樹脂(a)の重量基準で500ppm以下が好ましく、300ppm以下がより好ましく、100ppm以下がさらに好ましく、50ppm以下がよりいっそう好ましい。同様にアニリン型化合物の発生量は、300ppm以下が好ましく、100ppm以下がより好ましく、50ppm以下がさらに好ましく、30ppm以下がよりいっそう好ましい。PPS樹脂を加熱した際のラクトン型化合物および/またはアニリン型化合物の発生量が上記好ましい範囲であれば、成形加工時の樹脂の発泡や金型汚れ等の要因となりにくく、生産性を向上させ、周辺環境の汚染の要因になることもない。なお、PPS樹脂を加熱した際のラクトン型化合物および/またはアニリン型化合物の発生量を評価する方法としては、非酸化性ガス気流下320℃で60分加熱処理した際の発生ガスを、ガスクロマトグラフィーを用いて成分分割して定量する方法が例示できる。
 本発明に用いるPPS樹脂(a)の製造方法は上記特性を有するPPS樹脂が得られる方法であれば特に限定はされないが、例えば、国際公開2007-034800号に開示されているPPS樹脂の製造方法を好ましい方法として挙げることができる。具体的には、下記式(A)で表される環式PPSを少なくとも50重量%以上含み、且つ、重量平均分子量が10,000未満のPPSプレポリマーを加熱して重量平均分子量10,000以上の高重合度体に転化させることによって製造する方法が例示できる。この方法によれば、容易に、前述した特性を有するPPS樹脂を得ることができる。
Figure JPOXMLDOC01-appb-C000006
 (ここで、mは4~20の整数であり、環式PPSは、mが4~20の異なる値を有する一般式(A)で表わされる化合物の混合物であってもよい。)
 <PPSプレポリマー>
 本発明で用いるPPS樹脂(a)の好ましい製造方法では、環式PPSを含むPPSプレポリマーを加熱して高重合度体に転化させることを特徴とする。本発明で用いるPPS樹脂(a)の製造方法で用いるPPSプレポリマーに含まれる環式PPSの量は85重量%以上であることが好ましく、90重量%以上であることがより好ましく、93重量%以上であることがさらに好ましく、95重量%以上であることがよりいっそう好ましい。環式PPSの含有量を85重量%以上とすることで、PPSプレポリマーの加熱によって、重量平均分子量で50,000以上の高い重合度のPPS樹脂が得られやすい傾向にある。また、PPSプレポリマーに含まれる環式PPSの上限値には特に制限は無いが98重量%以下が好ましい範囲として例示できる。この範囲ではPPSプレポリマーの融解温度が低く、加熱の際の温度をより低くできる傾向にある。
 通常、PPSプレポリマーにおける環式PPSの含有量が高いほど、加熱後に得られるPPS樹脂の重合度が高くなる傾向にある。すなわち、PPSプレポリマーにおける環式PPSの含有量を調整することで、得られるPPS樹脂の重合度を容易に調整することが可能である。PPSプレポリマーにおける環式PPS以外の成分は線状のPPSであることが好ましく、その構造は1.項に準ずるものであることが好ましい。
 <PPSプレポリマーの製造方法>
 PPSプレポリマーを得る方法としては例えば国際公開2013/061561号に開示されている方法により製造することができる。スルフィド化剤、ジハロゲン化芳香族化合物および有機極性溶媒を含み、このときのイオウ成分1モル当たりのアリーレン単位が0.80モル以上1.05モル未満である反応混合物を加熱して、前記スルフィド化剤の50%以上が反応消費されるまで反応させ、次いで、前記反応混合物中のイオウ成分1モル当たりのアリーレン単位が1.05モル以上1.50モル以下となるように前記ジハロゲン化芳香族化合物を追加した後にさらに加熱して反応を行い、少なくとも環式PPSと線状PPSポリアリーレンスルフィドを含む反応生成物を調製し、これを固液分離した際の濾液中のPPS成分を精製回収することでPPSプレポリマーを得ることができる。
 <PPSプレポリマーの高重度体への転化>
 本発明で用いるPPS樹脂(a)の好ましい製造方法では、環式PPSを含むPPSプレポリマーを加熱して高重合度体に転化させることを特徴とするが、加熱時の温度はPPSプレポリマーが融解する温度であることが好ましく、このような温度条件であれば特に制限は無い。加熱温度が上記好ましい範囲である場合、高重合度体を得るのに長時間が必要となることはない。なお、PPSプレポリマーが融解する温度は、PPSプレポリマーの組成や分子量、加熱時の環境により変化するため、一意的に示すことはできないが、加熱温度の下限としては180℃以上が例示でき、200℃以上が好ましく、250℃以上がより好ましい。この好ましい範囲内ではPPSプレポリマーが速やかに融解し、高重合度体を得るのに必要な時間が短くなる傾向にある。加熱温度の上限としては400℃以下が例示でき、380℃以下が好ましく、360℃以下がより好ましい。この好ましい範囲内ではPPSプレポリマー間、加熱により生成した高重合度体間、および高重合度体とPPSプレポリマー間などでの架橋反応や分解反応に代表される好ましくない副反応が避けられ、得られるPPSの特性が低下することはない。
 加熱時間は使用するPPSプレポリマーにおける環式PPSの含有率やm数、及び分子量などの各種特性、また、加熱の温度等の条件によって異なるため一様には規定できないが、加熱時間の下限としては3分以上が好ましく例示でき、6分以上が好ましく、1時間以上がより好ましい。この好ましい範囲内ではPPSプレポリマーのPPSへの転化が十分となる。上限としては100時間以下が例示でき、20時間以下がより好ましく、10時間以下がより好ましい。この好ましい範囲内では前記好ましくない副反応を避けることができる。
 加熱時の雰囲気は非酸化性雰囲気で行うことが好ましく、減圧条件下で行うことも好ましい。また、減圧条件下で行う場合、反応系内の雰囲気を一度非酸化性雰囲気としてから減圧条件にすることが好ましい。この操作により、前述の好ましくない副反応が抑制される傾向にある。減圧条件下とは反応を行う系内が大気圧よりも低いことを指し、上限としては50kPa以下が好ましく、20kPa以下がより好ましく、10kPa以下がさらに好ましい。50kPa以下である場合は、前述の好ましくない副反応が抑制される傾向にある。一方で、下限としては0.1kPa以上が例示できる。この好ましい減圧条件範囲内ではPPSプレポリマーに含まれる分子量の低い環式PPSが揮散しにくい。
 PPSプレポリマーの加熱後の、PPS樹脂中に含まれる環式PPSの量の上限としてはPPS樹脂重量比で40%以下であることが好ましく、30%以下とすることがより好ましく、20%以下とすることがさらに好ましく、10%以下とすることがよりいっそう好ましい。PPS樹脂(a)に含まれる環式PPSの含有量を40%以下とすることで、本発明で得られるPPS樹脂組成物を成形加工する際の粘度上昇が低減される傾向にある。一方、下限としては2%以上であることが好ましく、4%以上であることがより好ましく、6%以上であることがさらに好ましい。PPS樹脂(a)に含まれる環式PPSの含有量を2%以上とすることで、流動性に優れるPPS樹脂組成物が得られる傾向にある。環式PPSの含有率は例えば、PPSプレポリマーの加熱時間を調整することで前記の好ましい範囲とすることが可能である。
 PPS樹脂中の環式PPS含有率はPPS樹脂のGPCチャートにおけるサブピークの面積分率から算出することができる。
 3.重量平均分子量が50,000未満であって、アルカリ土類金属の含有量が200ppm未満であって、且つ、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した際の分子量増加率が5.0%以下であるPPS樹脂(b)
 本発明で用いるPPS樹脂(b)の分子量は、重量平均分子量で50,000未満であり、40,000以下が好ましく、30,000以下がより好ましく、20,000以下がさらに好ましい。重量平均分子量が50,000以上である場合、前記PPS樹脂(a)との分子量の差が不十分となり、得られるPPS樹脂組成物を加工成形する際の粘度上昇が大きくなる。重量平均分子量の下限に特に制限は無いが、3,000以上を好ましい範囲として例示でき、4,000以上がより好ましく、5,000以上がさらに好ましく、この範囲内では得られるPPS樹脂組成物を成形加工する際のガス発生量が低減される傾向にある。
 本発明で用いるPPS樹脂(b)に含まれるアルカリ土類金属の量は重量比で200ppm未満であり、150ppm以下がより好ましく、100ppm以下がさらに好ましい。アルカリ土類金属の含有量が200ppm以上である場合、得られるPPS樹脂組成物の成形加工性が低下する。その理由としては過剰量のアルカリ土類金属が析出するためであると推測している。
 ここで、PPS樹脂のアルカリ土類金属含有量とは、例えばPPS樹脂を、電気炉等を用いて焼成した残渣である灰分中のアルカリ土類金属量から算出される値であり、前記灰分を例えば、ICP発光分光分析法や原子吸光法により分析することで定量することができる。なお、アルカリ土類金属とはカルシウム、ストロンチウム、バリウム、ラジウムを指す。
 本発明で用いるPPS樹脂(b)の特徴は下式(2)で表される、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し加熱した際の分子量増加率(ΔMn)が5.0%以下であることである。
 ΔMn=(Mn2-Mn1)/Mn1×100(%)・・・(2)
 (ここでΔMnは分子量増加率(%)であり、PPS樹脂に対し、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを添加せず320℃で10分加熱した後、測定した数平均分子量(Mn1)と、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した後、測定した数平均分子量(Mn2)から求められる値である。)
 上記ΔMnはPPS樹脂中の、カルボキシル基やチオール基、ヒドロキシル基などに代表される活性官能基の含有量と関連するため、PPS樹脂を成形加工する際の、架橋などの副反応による粘度上昇の低減、ガス発生量の低減の観点から小さいことが望ましい。
本発明で用いるPPS樹脂(b)の分子量増加率ΔMnは5.0%以下であり、4.0%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることがさらに好ましい。ΔMnが5.0%を超える場合は、得られるPPS樹脂組成物を成形加工する際の粘度上昇が大きくなる、および/もしくはガス発生量が増加する。
 前記加熱を行う雰囲気は常圧の非酸化性雰囲気を用いる。酸素濃度が5体積%を超える場合は、加熱中にPPS樹脂の酸化等が起こることで、実際の官能基含有量を反映したΔMnが得られない可能性がある。
 また、本発明で用いるPPS樹脂(b)は加熱した際のラクトン型化合物の発生量が著しく少ないものであることが好ましい。PPS樹脂(b)を加熱した際のラクトン型化合物の発生量は、加熱前のPPS樹脂重量基準で500ppm以下が好ましく、300ppm以下がより好ましく、100ppm以下がさらに好ましく、50ppm以下がよりいっそう好ましい。
 本発明に用いるPPS樹脂(b)の製造方法は上記特性を有するPPS樹脂が得られる方法であれば特に限定はされないが、例えば、2.項に記載のPPSプレポリマーの製造方法において、反応混合液を固液分離した際の固形分から溶媒を除去することによって製造する方法が例示できる。溶媒の除去に際し、イオン交換水や酢酸水溶液、酢酸カルシウム水溶液などで洗浄処理を行うことも、PPS樹脂中のアルカリ金属や、着色原因物質の含有量が低減する傾向にあるため好ましい。この方法によれば、容易に、前述した特性を有するPPS樹脂を得ることができる。
 他のPPS樹脂(b)の製造方法としては、2.項に記載の環式PPSを含むPPSプレポリマーを加熱してPPS樹脂を製造する方法において、環式PPSの含有量が少ないPPSプレポリマーを用いる方法が例示できる。具体的には環式PPSの含有量が80重量%未満のPPSプレポリマーを加熱することによって、前述した特性を有するPPS樹脂を得ることができる。
 4.アルカリ土類金属(d)を200~800ppm含有し、且つ、ΔWrが0.18を超えるPPS樹脂(c)
 本発明で用いるPPS樹脂(c)の分子量に特に制限は無いが、下限としては重量平均分子量で10,000以上を好ましい範囲として例示でき、15,000以上がより好ましく、18,000以上がさらに好ましい。この範囲内では得られるPPS樹脂組成物を成形加工する際のガス発生量が低減される傾向にある。一方、上限としては、1,000,000未満を好ましい範囲として例示でき、500,000未満がより好ましく、200,000未満がさらに好ましく、この範囲内では高い成形加工性をもつPPS樹脂組成物が得られる傾向にある。
 本発明で用いるPPS樹脂(c)のアルカリ土類金属(d)含有量の下限値は200ppmであり、300ppm以上が好ましく、400ppm以上がより好ましい。アルカリ土類金属の含有量が200ppm未満である場合、得られるPPS樹脂組成物を成形加工する際の粘度上昇が大きくなる。一方、含有量の上限値は800ppmであり、含有量が800ppmを超える場合は、得られるPPS樹脂組成物を成形加工する際の流動性が低下する。
 PPS樹脂(c)に含まれるアルカリ土類金属(d)はカルシウム、ストロンチウム、バリウム、ラジウムから選ばれる、少なくとも一種類である。含まれるアルカリ土類金属は1種類でも良いし、2種類以上の混合であってもよい。得られるPPS樹脂組成物を成形加工する際の粘度上昇を低減する観点では、PPS樹脂(c)に含まれるアルカリ土類金属のモル含有量を増大させることが望ましいことから、原子量が最も小さいカルシウムが特に好ましい。
 本発明で用いるPPS樹脂(c)は前記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%を超えることを特徴とする。ΔWrが0.18%以下である場合、アルカリ土類金属との親和性が低下し、得られるPPS樹脂組成物の成形加工時の粘度上昇が大きくなる。一方、ΔWrの上限値は、得られるPPS樹脂組成物を成形加工する際のガス発生量を少なくする観点で、0.40%以下であることが好ましく、0.30%以下であることがより好ましく、0.25%以下であることがさらに好ましい。この好ましい範囲内では、得られるPPS樹脂組成物を成形加工する際のガス発生量が少なくなる傾向にある。
 本発明で用いるPPS樹脂(c)の製造方法は上記特性を有するPPS樹脂が得られる方法であれば特に限定はされないが、例えば、国際公開2013-099234号に開示されているようなPPS樹脂の製造方法、具体的にはN-メチル-2-ピロリドンなどの有機アミド溶媒中で硫化ナトリウムなどのアルカリ金属硫化物とp-ジクロロベンゼンなどのジハロ芳香族化合物とを反応させる溶液重合法により得られたPPS樹脂の回収に際して、アルカリ土類金属塩を含む溶液に接触させる方法が例示できる。この方法によれば、容易に、前述した特性を有するPPS樹脂を得ることができる。
 5.PPS樹脂(a)と、PPS樹脂(b)および/またはPPS樹脂(c)の配合
 本発明ではPPS樹脂(a)、PPS樹脂(b)、PPS樹脂(c)の重量の合計を100重量%としたときに、PPS樹脂(a)90~50重量%に対して、PPS樹脂(b)、PPS樹脂(c)のいずれかを単独で10~50重量%配合する、または、PPS樹脂(b)とPPS樹脂(c)の合計量が10~50重量%となるよう配合する。PPS樹脂(a)の配合量の上限は90重量%であり、90重量%を超える場合(PPS樹脂(b)、PPS樹脂(c)の配合量が合計で10重量%未満の場合)には、得られるPPS樹脂組成物を成形加工する際の粘度上昇が大きくなる。一方で、PPS樹脂(a)の配合量の下限は50重量%以上であり、60重量%以上がより好ましく、70重量%以上がさらに好ましい。50重量%より少ない場合(PPS樹脂(b)、PPS樹脂(c)の配合量が合計で50重量%を超える場合)には、得られるPPS樹脂組成物を成形加工する際のガス発生量が多くなる。
 そのなかでも、得られるPPS樹脂組成物を加熱した際のガス発生量を低減するという観点では、PPS樹脂(a)に対してPPS樹脂(b)を単独で配合することが好ましい。一方で、得られるPPS樹脂組成物の流動性の過度な上昇を抑制するという観点では、PPS樹脂(a)に対してPPS樹脂(c)を単独で配合することが好ましい。PPS樹脂(b)およびPPS樹脂(c)を併用すると、得られるPPS樹脂組成物を成形加工する際の粘度上昇がさらに低減される傾向にあるため、これも好ましい。
 本発明におけるPPS樹脂(a)を含む2種類以上のPPS樹脂を配合する方法は、特に限定はされないが、例えば、PPS樹脂を上記の配合比にてドライブレンドしたあと、単軸、2軸の押出機、バンバリーミキサー、ニーダー、およびミキシングロールなど通常公知の溶融混練機に供給してPPS樹脂の溶融温度以上の温度で溶融混合する方法を例示できる。
 溶融混合を行う際の温度の上限としては380℃以下が好ましく、360℃以下がより好ましく、340℃がさらに好ましく、320℃以下がよりいっそう好ましい。この範囲内では架橋反応などの好ましくない副反応が避けられる傾向にある。
 また、溶融混合を行う好ましい時間は、溶融混合を行う際の温度により変動しうるが、1分以上を好ましい範囲として例示でき、3分以上がより好ましく、5分以上がさらに好ましい。この範囲内では原料となるPPS樹脂が十分に融解し、均一性の高いPPS樹脂組成物が得られる傾向にある。一方、上限としては30分以下が好ましく、20分以下がより好ましく、15分以下がさらに好ましい。この範囲内では前記の好ましくない副反応が抑制される傾向にある。
 また、溶融混合を行う際の雰囲気としては、前記の好ましくない副反応を抑制するという観点では非酸化性雰囲気で行うことが好ましく、得られるPPS樹脂組成物を成形加工する際のガス発生量を低減するという観点から、減圧条件下で行うこともまた好ましい。
 6.PPS樹脂(a)と、PPS樹脂(b)および/またはPPS樹脂(c)を配合して得られるPPS樹脂組成物
 また、本発明のPPS樹脂組成物は、サイズ排除クロマトグラフィーにより測定される分子量分布において、
 (i)分子量10,000以上1,000,000以下の領域にメインピークのピークトップを有し、
 (ii)分子量100以上10,000以下の領域にサブピークのピークトップを有し、
 (iii)上記メインピークとサブピークの間に存在する極小点の分子量をMとしたときの、分子量M以上10,000,000以下の領域の面積値S1と、分子量100以上M以下の領域の面積値S2から、下記式(3)にしたがって算出される、サブピークの面積分率(FS2)が1.0~20%であるという特徴を示す。
 FS2=S2/(S1+S2)×100(%)・・・(3)
 なお、本発明において、サイズ排除クロマトグラフィーとして、具体的には、ポリスチレンを標準物質としたゲル浸透クロマトグラフィー(GPC)を採用する。
 また、本発明のPPS樹脂組成物の特徴は、下式(4)で表される、320℃で5時間加熱した際の粘度変化率(Δη300)が1.5倍以下であることである。
 Δη300=η300/η・・・(4)
 (ここでΔη300は粘度変化率(倍)であり、加熱処理前の溶融粘度ηと、常圧の非酸化性雰囲気下で320℃、5時間加熱処理した後の溶融粘度η300から求められる値である。)
 本発明のPPS樹脂組成物のFS2の下限値は1.0%であり、2.0%以上が好ましく、3.0%以上がより好ましい。FS2が1.0%未満である場合、成形加工時の流動性が低下する。一方、FS2の上限値は20%であり、15%以下がより好ましく、10%以下がさらに好ましく、5%以下がよりいっそう好ましい。FS2が20%を超える場合は、成形加工時の粘度上昇が大きくなる。
 本発明のPPS樹脂組成物の分子量分布のチャートの一例として、実施例1で得られたチャートを図1に示す。図1のようにピークを2つもつ分子量分布のことを、本発明中では二峰性分子量分布と呼称することがある。
 本発明のPPS樹脂のメインピーク成分のピークトップ分子量は、10,000以上であり、15,000以上が好ましく、18,000以上がより好ましく、20,000以上がさらに好ましい。10,000未満である場合、得られるPPS樹脂組成物を成形加工する際のガス発生量が増加する。一方、上限は、1,000,000以下であり、500,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。1,000,000を超える場合、得られるPPS樹脂組成物の成形加工性が低下する。
 本発明のPPS樹脂組成物のサブピークのピークトップ分子量は10,000未満であり、5,000以下が好ましく、3,000以下がより好ましく、2,000以下がさらに好ましい。10,000以上である場合、得られるPPS樹脂組成物の成形加工時の流動性が低下する。一方、下限は、100以上であり、300以上が好ましいく、400以上がより好ましく、500以上がさらに好ましい。100未満である場合、得られるPPS樹脂組成物を成形加工する際のガス発生量が増加する。
 本発明のPPS樹脂組成物のメインピークの重量平均分子量は10,000以上であり、20,000以上が好ましく、25,000以上がより好ましく、30,000以上がさらに好ましい。10,000未満である場合、得られるPPS樹脂組成物を成形加工する際のガス発生量が増加する。一方、上限としては2,000,000が好ましく、1,000,000以下が好ましく、500,000以下がより好ましく、200,000以下がさらに好ましい。この範囲内では高い成形加工性をもつPPS樹脂組成物が得られる傾向にある。
 本発明のPPS樹脂組成物のサブピークの重量平均分子量は10,000未満が好ましく、8,000以下がより好ましく、5,000以下がさらに好ましく、3,000以下がよりいっそう好ましい。この範囲内では流動性の高いPPS樹脂組成物が得られる傾向にある。一方、下限は100以上であり、300以上が好ましく、400以上がより好ましく、500以上がさらに好ましい。100未満である場合、得られるPPS樹脂組成物を成形加工する際のガス発生量が増加する。
 本発明のPPS樹脂組成物の溶融粘度に特に制限はないが、通常、320℃での溶融粘度で1Pa・s以上が好ましい範囲として例示でき、10Pa・s以上がより好ましく、20Pa・s以上がさらに好ましい。一方、上限としては10,000Pa・s以下が好ましく、5,000Pa・s以下がより好ましく、3,000Pa・s以下がさらに好ましい。前記範囲内の溶融粘度を有する場合は成形加工性に優れる傾向にある。
 本発明のPPS樹脂組成物のΔη300の上限値は1.5倍であり、より好ましくは1.3倍以下、さらに好ましくは1.2倍以下、よりいっそう好ましくは1.1倍以下である。Δη300が1.5倍を超える場合は、成形加工する際の粘度上昇が大きくなる。一方、Δη300の下限に特に制限は無いが、0.5倍以上を好ましい範囲として例示でき、0.7倍以上がより好ましく、0.8倍以上がさらに好ましく、0.9倍以上がよりいっそう好ましく、この範囲内では成形加工する際の溶融粘度が安定する傾向にある。
 溶融粘度の測定は、レオメーター、キャピログラフ、回転粘度計など公知の粘度計を用いて行うことができるほか、メルトインデクサー、フローメーターなどの公知の流量計を用いて測定した溶融流量から換算し求めることも可能である。
 前記加熱処理を行う方法に特に制限はないが、試験管に試料を加え、系内を常圧の非酸化性雰囲気下とした後、320℃に温調した電気炉やメタルバス等を用いて加熱する方法や、加熱処理前の溶融粘度測定を320℃、非酸化性雰囲気下とした粘度計中で行い、測定後に試料を取り出さず装置内で加熱する方法が例示できる。
 前記溶融粘度の測定時の加熱処理を行う際の雰囲気は常圧の非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気で行う場合には、実際にPPS樹脂の成形加工で用いられる雰囲気に近いので、実使用時の溶融安定性の指標として妥当である。
 前記溶融粘度の測定時の加熱温度はPPS樹脂組成物の溶融温度以上の320℃であり、これはPPS樹脂を実際に成形加工する際に頻用される温度に近い。320℃における粘度変化率の小さいPPS樹脂は、実使用温度領域での粘度上昇が抑制された、品質の高い優れたPPS樹脂であるといえる。
 本発明のPPS樹脂組成物は、成形加工時の粘度上昇が低減されるという観点からアルカリ土類金属量を含有することも好ましい。好ましい範囲としては20ppm以上が例示でき、30ppm以上が好ましく、40ppm以上がより好ましい。含有量が20ppm以上である場合、成形加工時の粘度上昇が低減する傾向にある。一方、上限値としては1,000ppm以下が好ましく、500ppm以下がより好ましく、400ppm以下がさらに好ましい。アルカリ土類金属の含有量が1,000ppm以下である場合、成形加工性に優れる傾向にある。
 本発明のPPS樹脂組成物は前記式(1)で表される、加熱した際の重量減少率ΔWrが0.30%以下であることが好ましい。0.24%以下がより好ましく、0.20%以下がさらに好ましく、0.18%以下であることがよりいっそう好ましい。ΔWrが前記範囲以下である場合、成形加工時のガス発生量が低減される傾向にある。
 また、本発明のPPS樹脂組成物は、加熱した際のラクトン型化合物および/またはアニリン型化合物の発生量が少ないものであることが好ましい。PPS樹脂組成物を加熱した際のラクトン型化合物の発生量としては、加熱前のPPS樹脂組成物の重量基準で800ppm以下が好ましく、500ppm以下がより好ましく、300ppm以下がさらに好ましく、100ppm以下がよりいっそう好ましい。同様にアニリン型化合物の発生量は、300ppm以下が好ましく、200ppm以下がより好ましく、100ppm以下がさらに好ましく、50ppm以下がよりいっそう好ましい。
 以下、本発明の方法を実施例及び比較例により更に具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、物性の測定法は以下の通りである。
<PPSプレポリマーの分析>
 PPSプレポリマー中に含まれる環式PPSの定量は高速液体クロマトグラフィー(HPLC)を用いて実施した。HPLCの測定条件を以下に示す。
装置:島津製作所製 LC-10Avpシリーズ
カラム:関東化学社製 Mightysil RP-18 GP150-4.6(5μm)
検出器:フォトダイオードアレイ検出器(270nm)
 上記HPLC分析において検出された全てのピークの検出面積の合計値と、環式PPSに由来するピークの検出面積の合計値の面積比から環式PPSの定量を行った。
 <分子量測定>
 PPS樹脂および樹脂組成物の分子量は、サイズ排除クロマトグラフィー(SEC)の一種であるゲル浸透クロマトグラフィー(GPC)により、ポリスチレン換算で算出した。GPCの測定条件を以下に示す。
装置:センシュー科学製 SSC-7110
カラム:昭和電工製 Shodex UT-G+Shodex UT-806M×2
溶離液:1-クロロナフタレン
検出器:示差屈折率検出器
カラム温度:210℃
プレ恒温槽温度:250℃
ポンプ恒温槽温度:50℃
検出器温度:210℃
流量:1.0mL/min
試料注入量:300μL (濃度:0.1重量%)
標準サンプル:ポリスチレン。
 <加熱時の重量減少率の測定>
 PPS樹脂および樹脂組成物の、加熱時の重量減少率の測定は熱重量分析器を用いて下記条件で行った。なお、試料は2mm以下の細粒物を用いた。
装置:パーキンエルマー製 TGA7
測定雰囲気:窒素気流下
試料仕込み重量:約10mg
測定条件:
(i)プログラム温度50℃で1分保持
(ii)プログラム温度50℃から350℃まで昇温。この際の昇温速度20℃/分
重量減少率ΔWrは、(ii)の昇温の際の、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から前述の式(1)を用いて算出した。
 <アルカリ金属およびアルカリ土類金属含有量の定量>
 PPS樹脂および樹脂組成物の、アルカリ金属およびアルカリ土類金属含有量の定量は以下の方法により行った。
(i)試料を石英るつぼに計りとり、電気炉を用いて灰化した。
(ii)灰化物を濃硝酸で溶解した後、希硝酸で一定の容積に希釈した。
(iii)得られた溶液中のアルカリ金属およびアルカリ土類金属の含有量を、ICP発光分光分析法(装置;パーキンエルマー製 Optima4300DV)により測定した。
 <加熱時の発生ガス成分の定量>
 PPS樹脂および樹脂組成物を加熱した際に発生するガス成分の定量は以下の方法により行った。なお、試料は2mm以下の細粒物を用いた。
 (i)ガス成分の捕集
 約10mgの試料を窒素気流下(50ml/分)、320℃で60分間加熱し、発生したガス成分を大気捕集用加熱脱離チューブ(Supelco製)に捕集した。
 (ii)ガス成分の分析
 上記チューブに捕集したガス成分を、熱脱離装置(Supelco製)を用いて室温から280℃まで5分間で昇温することで熱脱離させた。熱脱離した成分を、ガスクロマトグラフィーを用いて成分分割し、ラクトン型化合物量としてガス中のγ-ブチロラクトン量を定量し、アニリン型化合物量として4-クロロ-N-メチルアニリン量を定量した。
 <溶融粘度および粘度変化率の測定>
 PPS樹脂および樹脂組成物の溶融粘度および粘度変化率の測定は、レオメーターを用いて下記条件で行った。なお、320℃での加熱処理についてもレオメーター中で行った。
装置:アントンパール製 Physica MCR501
プレート:パラレル(φ25mm)
ギャップ:1.0mm
角周波数(ω):6.28rad/秒
せん断応力(τ):1,000Pa
試料仕込み重量:約0.7g
測定条件:
(i)320℃で試料を溶融させ、溶融粘度を測定した。
(ii)上記試料をレオメーター中にて、窒素気流下、320℃で300分加熱した後、320℃で溶融粘度を測定した。
 粘度変化率Δη300は(i)で測定した加熱前の溶融粘度(η)と、(ii)で測定した加熱後の溶融粘度(η300)から前述の式(3)を用いて算出した。
 <2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量増加率の測定>
 PPS樹脂および樹脂組成物の、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量増加率の測定は、以下の方法により行った。
(i)試料を試験管に仕込み、試験管内を窒素雰囲気に置換し、320℃で10分間加熱したあと、分子量を測定した。
(ii)2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを試料重量比で0.5重量%添加した以外は(i)と同様の操作を行った。
分子量増加率ΔMnは(i)で測定した2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン無添加時の数平均分子量(Mn1)と、(ii)で測定した2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の数平均分子量(Mn2)から前述の式(2)を用いて算出した。
 <参考例1>第1のPPSプレポリマーの調製
 ・オートクレーブでの反応
攪拌機付きオートクレーブに48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液21.1g(水酸化ナトリウムとして0.253モル)、p-ジクロロベンゼン(p-DCB)31.8g(0.217モル)、及び、N-メチル-2-ピロリドン(NMP)600g(6.05モル)を仕込むことで反応混合物を調製した。
オートクレーブ内を窒素ガスで置換後に密封し、400rpmで撹拌しながら約1時間かけて室温から200℃まで昇温した。次いで200℃から250℃まで約0.5時間かけて昇温した。この段階の反応器内の圧力はゲージ圧で1.0MPaであった。その後250℃で2時間保持することで反応混合物を加熱し反応させた。
 高圧バルブを介してオートクレーブ上部に設置した100mL容の小型タンクにp-DCBのNMP溶液(p-DCB3.54gをNMP10g)を仕込んだ。小型タンク内を約1.5MPaに加圧後タンク下部のバルブを開き、p-DCBのNMP溶液をオートクレーブ内に仕込んだ。小型タンクの壁面をNMP5gで洗浄後、このNMPもオートクレーブ内に仕込んだ。この追加の仕込み終了後、250℃にてさらに1時間加熱を継続して反応を進行させた。その後約15分かけて230℃まで冷却した後、オートクレーブ上部に設置した高圧バルブを徐々に開放することで主としてNMPからなる蒸気を排出し、この蒸気成分を水冷冷却管にて凝集させることで、約394gの液成分を回収した後に高圧バルブを閉じて密閉した。次いで室温近傍まで急冷して、反応生成物を回収した。得られた反応生成物200gを分取し、300mL容のフラスコに仕込んだ。反応生成物を、マグネチックスターラーを用いて撹拌すると共に、反応生成物のスラリーに窒素バブリングを行いながら、オイルバスにて100℃に加熱した。
 ・反応生成物スラリーの固液分離
 ADVANTEC社製の万能型タンク付フィルターホルダーKST-90-UHに、直径90mm,平均細孔直径10μmのポリテトラフルオロエチレン(PTFE)製メンブレンフィルターをセットし、タンク部分をバンドヒーターにて100℃に調温した。100℃に加熱した反応生成物をタンクに仕込み、タンクを密閉後、タンク内を窒素にて0.1MPaに加圧し、濾液の排出が終わるまで固液分離を行った。
 ・PPSプレポリマーの回収
 上記固液分離で得られた濾液成分100gを300mLフラスコに仕込み、フラスコ内を窒素で置換した。ついで撹拌しながら100℃に加温した後80℃に冷却した。この際、常温では一部不溶成分が存在したが100℃に到達した段階、さらに80℃に冷却した段階で不溶部は認められなかった。ついで系内温度80℃にて撹拌したまま、チューブポンプを用いて水33gを約15分かけてゆっくりと滴下した。ここで、水の滴下終了後の濾液混合物におけるNMPと水の重量比率は75:25であった。この濾液への水の添加において、水の滴下に伴い混合物の温度は約75℃まで低下し、また、混合物中に徐々に固形分が生成し、水の滴下が終了した段階では固形分が分散したスラリー状となった。このスラリーを撹拌したまま約1時間かけて約30℃まで冷却し、次いで30℃以下で約30分間撹拌を継続した後、得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過した。得られた固形分を約30gの水に分散させ70℃で15分撹拌した後、前述同様にガラスフィルターで吸引濾過する操作を計4回繰り返した。得られた固形分を真空乾燥機70℃で3時間乾燥し、乾燥固体としてPPSプレポリマーを得た。このPPSプレポリマーを第1のプレポリマーと呼称する。
 得られたPPSプレポリマーを高速液体クロマトグラフィーにより分析した結果、環式PPSを88重量%含有することが分かった。また、GPC測定を行った結果、数平均分子量は800、重量平均分子量は1,100であり、多分散度指数は1.38であった。
 <参考例2>第2のPPSプレポリマーの調製
 攪拌機付きオートクレーブに48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液21.1g(水酸化ナトリウムとして0.253モル)、p-DCB35.4g(0.241モル)、及び、NMP600g(6.05モル)を仕込むことで反応混合物を調製した。また、反応混合物中のイオウ成分1モル当たり(スルフィド化剤として仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の、アリーレン単位(ジハロゲン化芳香族化合物として仕込んだp-DCBに相当)の量は1.00モルであった。 オートクレーブ内を窒素ガスで置換後に密封し、400rpmで撹拌しながら約1時間かけて室温から200℃まで昇温した。次いで200℃から250℃まで約0.5時間かけて昇温した。この段階の反応器内の圧力はゲージ圧で1.0MPaであった。その後250℃で2時間保持することで反応混合物を加熱し反応させた。
 高圧バルブを介してオートクレーブ上部に設置した100mL容の小型タンクにp-DCBのNMP溶液(p-DCB8.84gをNMP20gに溶解)を仕込んだ。小型タンク内を約1.5MPaに加圧後タンク下部のバルブを開き、p-DCBのNMP溶液をオートクレーブ内に仕込んだ。小型タンクの壁面をNMP5gで洗浄後、このNMPもオートクレーブ内に仕込んだ。その後約15分かけて230℃まで冷却した後、オートクレーブ上部に設置した高圧バルブを徐々に開放することで主としてNMPからなる蒸気を排出し、この蒸気成分を水冷冷却管にて凝集させることで、約394gの液成分を回収した後に高圧バルブを閉じて密閉した。次いで室温近傍まで急冷して、反応生成物を回収した。得られた反応生成物を、参考例1の反応生成物スラリーの固液分離と同様に加圧濾過することで固液分離し、さらに、得られた濾液成分を参考例1の環式ポリアリーレンスルフィドの回収と同様に処理することでPPSプレポリマーを得た。このPPSプレポリマーを第2のPPSプレポリマーと呼称する。
 得られたPPSプレポリマーを高速液体クロマトグラフィーにより分析した結果、環式PPSを82重量%含有することが分かった。また、GPC測定を行った結果、数平均分子量は800、重量平均分子量は1,300であり、多分散度指数は1.62であった。
<参考例3>第1のPPSプレポリマーの加熱による、重量平均分子量が50,000以上、且つ、ΔWrが0.18以下のPPS樹脂(a)の調製
 参考例1で得られた第1のPPSプレポリマーを、留出管および撹拌翼を取り付けたガラス製の試験管に仕込んだ後、試験管内の減圧、窒素置換を3回繰り返した。試験管内を減圧とし、約0.1kPaに保ったまま340℃に温調して180分加熱した後、室温まで冷却して塊状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、図8に示すような二峰性分子量分布をもつチャートが得られた。メインピークのピークトップ分子量は41,600、数平均分子量は23,100、重量平均分子量は54,200、多分散度指数は2.35であった。また、サブピークのピークトップ分子量は700、数平均分子量は800、重量平均分子量は900、多分散度指数は1.12であり、クロマトグラムの面積比から算出した面積分率は4.8%であった。次いで、得られたPPS樹脂の加熱時の重量減少率を測定した結果、ΔWrは0.06%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で74ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、γ-ブチロラクトンおよび4-クロロ-N-メチルアニリンは検出限界以下であった。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは0.0%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度測定を行った結果、ηおよびη300はそれぞれ99.1Pa・s、240Pa・sであり、Δη300は2.42倍であった。
 <参考例4>第2のPPSプレポリマーの加熱による、重量平均分子量が50,000未満のPPS樹脂の調製
 参考例2で得られた第2のPPSプレポリマーを、留出管および撹拌翼を取り付けたガラス製の試験管に仕込んだ後、試験管内の減圧、窒素置換を3回繰り返した。試験管内を減圧とし、約0.1kPaに保ったまま340℃に温調して180分加熱した後、室温まで冷却して塊状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、参考例3に類似の二峰性分子量分布をもつチャートが得られた。メインピークのピークトップ分子量は32,700、数平均分子量は17,800、重量平均分子量は42,800、多分散度指数は2.40であった。また、サブピークのピークトップ分子量は800、数平均分子量は800、重量平均分子量は900、多分散度指数は1.14であり、クロマトグラムの面積比から算出した面積分率は3.4%であった。次いで、得られたPPS樹脂の加熱時の重量減少率を測定した結果、ΔWrは0.08%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で88ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、γ-ブチロラクトンおよび4-クロロ-N-メチルアニリンは検出限界以下であった。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは0.4%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度測定を行った結果、ηおよびη300はそれぞれ36.3Pa・s、84.9Pa・sであり、Δη300は2.34倍であった。
 <参考例5>重量平均分子量が50,000未満であって、アルカリ土類金属含有量が200ppm未満、且つ、ΔMnが5.0%以下であるPPS樹脂(b)の調製
 参考例1の反応生成物スラリーの固液分離を行った際に得られた固形分に対し、イオン交換水200gを加えスラリーとして、80℃で30分攪拌後、濾過して固形分を回収する操作を3回繰り返した。得られた固形分を減圧下130℃で8時間乾燥し、粉末状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、図9に示すような単峰性分子量分布をもつチャートが得られた。ピークトップ分子量は11,600、数平均分子量は5,700、重量平均分子量は12,000、多分散度指数は2.12であった。次いで、得られたPPS樹脂の加熱時重量減少率を測定した結果、ΔWrは0.20%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で278ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、γ-ブチロラクトンが286ppm、4-クロロ-N-メチルアニリンが102ppm検出された。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは1.2%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度を測定した結果、ηおよびη300はそれぞれ0.81Pa・s、1.59Pa・sであり、Δη300は1.96倍であった。
 <参考例6>反応性官能基を有するスルフィド化合物存在下でのPPSプレポリマーの加熱による、反応性官能基含有量の多いPPS樹脂の調製
 参考例1で得られた第1のPPSプレポリマーと、PPSプレポリマー重量比で1.0重量%のビス(4-アミノフェニル)スルフィドを、留出管および撹拌翼を取り付けたガラス製の試験管に仕込み、試験管内の減圧、窒素置換を3回繰り返した。試験管内を窒素雰囲気としたまま、340℃に温調して60分加熱した後、試験管内を減圧し、約0.1kPaでさらに30分加熱した後、室温まで冷却して塊状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、参考例3、4に類似の二峰性分子量分布をもつチャートが得られた。メインピークのピークトップ分子量は17,900、数平均分子量は10,400、重量平均分子量は21,000、多分散度指数は2.01であった。また、サブピークのピークトップ分子量は700、数平均分子量は800、重量平均分子量は900、多分散度指数は1.13であり、クロマトグラムの面積比から算出した面積分率は2.3%であった。次いで、得られたPPS樹脂の加熱時の重量減少率を測定した結果、ΔWrは0.10%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で71ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、γ-ブチロラクトンおよび4-クロロ-N-メチルアニリンは検出限界以下であった。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは7.5%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度測定を行った結果、ηおよびη300はそれぞれ1.72Pa・s、5.50Pa・sであり、Δη300は3.20倍であった。
 <参考例7>PPSの溶液重合
 撹拌機および底栓弁を具備したオートクレーブに、水硫化ナトリウムの48重量%水溶液8.17kg(水硫化ナトリウム3.92kg(70.0モル))、96%水酸化ナトリウム2.94kg(水酸化ナトリウム2.82kg(70.6モル))、NMP11.45kg(115.5モル)、酢酸ナトリウム1.89kg(23.1モル)、及びイオン交換水5.50kgを仕込んだ。
 反応容器を常圧で窒素を通じながら室温から245℃まで360分かけて昇温し、溶媒10.1kgを留出した。反応容器を200℃まで冷却した後、p-DCB10.42kg(70.9モル)、NMP9.37kg(94.5モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら200℃から270℃まで120分かけて昇温し、270℃で140分反応を行った。その後、270℃から250℃まで15分かけて冷却しながらイオン交換水2.40kgを圧入した。次いで、250℃から220℃まで75分かけて冷却した後、室温近傍まで急冷し、内容物を回収した。
 内容物を35リットルのNMPで希釈しスラリーとして85℃で30分撹拌後、目開き175μmの金網を用いて濾過することで固液分離した。得られた固形分を前記と同様にNMP35リットルで洗浄、濾別した。得られた固形分を70リットルのイオン交換水に加え、70℃で30分撹拌後、濾過して固形分を回収する操作を合計3回繰り返すことにより、未乾燥PPS樹脂を得た。
 <参考例8>溶液重合PPS樹脂のアルカリ土類金属処理による、アルカリ土類金属を200ppm~800ppm含有し、且つ、ΔWrが0.18%を超えるPPS樹脂(c)の調製
 参考例7で得られた未乾燥PPS樹脂2.0kgおよび酢酸カルシウム一水和物11gを20リットルのイオン交換水に加え、70℃で30分撹拌後、目開き175μmの金網用いて濾過することで固液分離した。得られた固形分に20リットルのイオン交換水を加え、70℃で30分撹拌後、濾過して固形分を回収した。こうして得られた固形分を窒素気流下、120℃で乾燥することにより、顆粒状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、図10に示すように単峰性の分子量分布をもつことが分かった。ピークトップ分子量は48,400、数平均分子量は18,800、重量平均分子量は50,000、多分散度指数は2.66であった。次いで、得られたPPS樹脂の加熱時重量減少率を測定した結果、ΔWrは0.25%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で261ppm、カルシウムが重量比で440ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、加熱前のPPS樹脂重量に対して、γ-ブチロラクトンが958ppm、4-クロロ-N-メチルアニリンが384ppm検出された。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは7.4%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度を測定した結果、ηおよびη300はそれぞれ206Pa・s、124Pa・sであり、Δη300は0.60倍であった。
 <参考例9>ナトリウム含有量の多いPPS樹脂の調製
 参考例7で得られた未乾燥PPS樹脂2.0kgを窒素気流下、120℃で乾燥することにより、顆粒状のPPS樹脂を得た。
得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、得られたPPS樹脂についてGPC測定を行った結果、参考例8と同様に単峰性の分子量分布をもつことが分かった。ピークトップ分子量は48,400、数平均分子量は18,700、重量平均分子量は50,100、多分散度指数は2.68であった。次いで、得られたPPS樹脂の加熱時重量減少率を測定した結果、ΔWrは0.25%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で912ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、加熱前のPPS樹脂重量に対して、γ-ブチロラクトンが978ppm、4-クロロ-N-メチルアニリンが402ppm検出された。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは8.0%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度測定を行った結果、ηおよびη300はそれぞれ126Pa・s、102Pa・sであり、Δη300は0.81倍であった。
 <参考例10>溶液重合PPS樹脂の中和処理による、ナトリウム含有量の低減されたPPS樹脂の調製
 参考例7で得られた未乾燥PPS樹脂2.0kgを20リットルのイオン交換水に加え、pHが7となるよう酢酸を添加したあと、70℃で30分撹拌後、目開き175μmの金網を用いて濾過することで固液分離した。得られた固形分に20リットルのイオン交換水を加え、70℃で30分撹拌後、濾過して固形分を回収した。こうして得られた固形分を窒素気流下、120℃で乾燥することにより、顆粒状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、参考例8、9と同様に、単峰性の分子量分布をもつことが分かった。ピークトップ分子量は48,200、数平均分子量は18,800、重量平均分子量は49,900、多分散度指数は2.65であった。次いで、得られたPPS樹脂の加熱時重量減少率を測定した結果、ΔWrは0.26%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で512ppm検出され、その他の金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、加熱前のPPS樹脂重量に対して、γ-ブチロラクトンが952ppm、4-クロロ-N-メチルアニリンが376ppm検出された。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは8.2%であった。最後に、得られた乾燥PPSの加熱処理前後の溶融粘度を測定した結果、ηおよびη300はそれぞれ104Pa・s、138Pa・sであり、Δη300は1.33倍であった。
 <参考例11>溶液重合PPS樹脂の酸処理による、ナトリウム含有量の少ないPPS樹脂の調製
 参考例7で得られた未乾燥PPS樹脂2.0kgおよび酢酸10gを20リットルのイオン交換水に加えた。このときの溶液のpHは4であった。70℃で30分撹拌後、目開き175μmの金網を用いて濾過することで固液分離した。得られた固形分に20リットルのイオン交換水を加え、70℃で30分撹拌後、濾過して固形分を回収した。こうして得られた固形分を窒素気流下、120℃で乾燥することにより、顆粒状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、参考例8~10と同様に、単峰性の分子量分布をもつことが分かった。ピークトップ分子量は48,300、数平均分子量は18,800、重量平均分子量は50,300、多分散度指数は2.68であった。次いで、得られたPPS樹脂の加熱時重量減少率を測定した結果、ΔWrは0.27%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で84ppm検出され、その他の金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、加熱前のPPS樹脂重量に対して、γ-ブチロラクトンが964ppm、4-クロロ-N-メチルアニリンが370ppm検出された。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは9.1%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度測定を行った結果、ηおよびη300はそれぞれ87.8Pa・s、187Pa・sであり、△η300は2.13倍であった。
 <参考例12>PPSプレポリマー加熱時の酢酸カルシウム添加による、カルシウムを含有するPPS樹脂の調製
 参考例1で得られた第1のPPSプレポリマーと、PPSプレポリマー重量比で0.044重量%の酢酸カルシウム一水和物を、留出管および撹拌翼を取り付けたガラス製の試験管に仕込み、試験管内の減圧、窒素置換を3回繰り返した。試験管内を減圧とし、約0.1kPaに保ったまま340℃に温調して180分加熱した後、室温まで冷却して塊状のPPS樹脂を得た。
 得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、参考例3、4および6に類似の二峰性分子量分布をもつチャートが得られた。メインピークのピークトップ分子量は41,300、数平均分子量は22,100、重量平均分子量は53,800、多分散度指数は2.43であった。また、サブピークのピークトップ分子量は700、数平均分子量は800、重量平均分子量は900、多分散度指数は1.11であり、クロマトグラムの面積比から算出した面積分率は5.2%であった。次いで、得られたPPS樹脂の加熱時の重量減少率を測定した結果、ΔWrは0.08%であった。また、得られたPPS樹脂のアルカリ金属およびアルカリ土類金属の含有量を定量した結果、ナトリウムが重量比で72ppm、カルシウムが重量比で101ppm検出され、その他のアルカリ金属およびアルカリ土類金属は検出されなかった。さらに、得られたPPS樹脂について加熱時の発生ガス成分を定量した結果、γ-ブチロラクトンおよび4-クロロ-N-メチルアニリンは検出限界以下であった。さらに、得られたPPS樹脂の2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン添加時の分子量変化率を測定した結果、ΔMnは0.1%であった。最後に、得られたPPS樹脂の加熱処理前後の溶融粘度測定を行った結果、ηおよびη300はそれぞれ98.2Pa・s、234Pa・sであり、Δη300は2.38倍であった。このことから、本発明の方法(PPS樹脂(c)の配合)とは異なる方法でアルカリ土類金属を導入して得られるPPS樹脂では滞留安定性の改善はみられないことが分かった。
 <参考例13>分子量の異なる2種のPPS樹脂の配合
 参考例11で得られた重量平均分子量50,300のPPS樹脂90重量%と、参考例5で得られた重量平均分子量12,000のPPS樹脂10重量%をドライブレンドした後、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(スクリュー径30mm、L/D=45、ニーディング部は5箇所、同方向回転完全噛み合い型スクリュー)を用いて溶融混練し、ストランドカッターによりペレット化した。溶融混練の条件は、スクリュー回転数300rpm、吐出量20Kg/hrであって、ダイス吐出部の樹脂温度が300℃となるようにシリンダー温度を設定した。130℃で一晩乾燥したペレットについてGPC測定を行った結果、図11に示すような単峰性の分子量分布をもつことが分かった。
 <実施例1~7、比較例1~7>
 表1~3に示す配合比で各成分をドライブレンドし、参考例13に記載の条件にて溶融混練後、ペレット化した。130℃で一晩乾燥したペレットを分析した結果を表1~3に記載する。実施例1~7については、そのGPCチャートを図1~7に示す。また、溶液重合で得られたPPS樹脂(参考例8~11)の分析結果を、実施例との比較のために表4に示す。実施例1で得られたPPS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、図1に示すような二峰性分子量分布をもつチャートが得られた。メインピークのピークトップ分子量は38,200、数平均分子量は17,600、重量平均分子量は49,700、多分散度指数は2.82、サブピークのピークトップ分子量は700、数平均分子量は800、重量平均分子量は900、多分散度指数は1.10であった。
Figure JPOXMLDOC01-appb-T000007
 実施例1~3から、PPS樹脂(a)に対してPPS樹脂(b)を配合することで、粘度変化率が1.50倍以下と小さいPPS樹脂組成物が得られることが分かる。また、実施例1~3と比較例1の比較から、PPS樹脂(a)を50重量%以上配合して得られるPPS樹脂組成物は加熱時のラクトン型化合物およびアニリン型化合物の発生量が少なく、ガス発生量が低減されたPPS樹脂組成物であることが分かる。さらに、実施例1と比較例2の比較から、重量平均分子量で50,000以上のPPS樹脂(a)に対してPPS樹脂(b)を配合した場合にのみ、粘度変化率が1.50倍以下と小さいPPS樹脂組成物が得られることが明らかである。加えて、実施例1と比較例3の比較から、PPS樹脂(a)に対してΔMnが5%以下であるPPS樹脂(b)を配合した場合にのみ、粘度変化率が1.50倍以下と小さいPPS樹脂組成物が得られることが明らかである。
Figure JPOXMLDOC01-appb-T000008
 実施例4~6から、PPS樹脂(a)に対してPPS樹脂(c)を配合することで、粘度変化率が1.50倍以下と小さいPPS樹脂組成物が得られることが分かる。また、実施例4~6と比較例4の比較から、PPS樹脂(a)を50重量%以上配合して得られるPPS樹脂組成物は加熱時のラクトン型化合物およびアニリン型化合物の発生量が少なく、ガス発生量が低減されたPPS樹脂組成物であることが分かる。さらに、実施例4と比較例5~7の比較から、PPS樹脂(a)に対してCa処理を施したPPS樹脂(c)を配合した場合にのみ、粘度変化率が1.50倍以下と小さいPPS樹脂組成物が得られることが明らかである。
Figure JPOXMLDOC01-appb-T000009
 実施例2、5と、実施例7の比較から、PPS樹脂(a)に対して、PPS樹脂(b)またはPPS樹脂(c)を単独で配合した場合と比べ、PPS樹脂(b)およびPPS樹脂(c)を併用した場合に粘度変化率のより小さいPPS樹脂組成物が得られやすいことが分かる。
Figure JPOXMLDOC01-appb-T000010
 実施例1~7と参考例8~11で得られる溶液重合PPS樹脂との比較から、PPS樹脂(a)を50重量%以上配合して得られるPPS樹脂組成物は加熱時のラクトン型化合物およびアニリン型化合物の発生量が少なく、ガス発生量が低減されたPPS樹脂組成物であることが分かる。
 本発明のPPS樹脂組成物は、優れた溶融安定性、低ガス性とともに耐熱性、耐薬品性、電気的性質並びに機械的性質に優れ、射出成形、射出圧縮成形、ブロー成形、押出成形などの公知の成形方法により各種成形品とすることができる。そのなかでも、高い溶融安定性が要求される、繊維、フィルム用途に好適であり、成形加工して得られる繊維、フィルムは、抄紙ドライヤーキャンバス、ネットコンベヤー、バグフィルター、絶縁ペーパーフィルムコンデンサー、モーター絶縁フィルム、トランス絶縁フィルム、離型用フィルムなど各種用途に好適に使用することができる。なお、成形加工後の成形品においても本発明のPPS樹脂組成物がもつ、低い粘度変化率、二峰性分子量分布という特徴を確認することができる。

Claims (12)

  1. ポリフェニレンスルフィド樹脂(a)~(c)の合計を100重量%としたときに、ポリフェニレンスルフィド樹脂(a)90~50重量%に対して、ポリフェニレンスルフィド樹脂(b)および/またはポリフェニレンスルフィド樹脂(c)を合計で10~50重量%配合してなるポリフェニレンスルフィド樹脂組成物であって、且つ、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物。
     ポリフェニレンスルフィド樹脂(a):重量平均分子量が50,000以上であって、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%以下であるポリフェニレンスルフィド樹脂
     ポリフェニレンスルフィド樹脂(b):重量平均分子量が50,000未満であって、アルカリ土類金属の含有量が200ppm未満であって、且つ、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した際の分子量増加率が5.0%以下であるポリフェニレンスルフィド樹脂
     ポリフェニレンスルフィド樹脂(c):アルカリ土類金属(d)を200~800ppm含有し、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%を超えるポリフェニレンスルフィド樹脂
     ΔWr=(W1-W2)/W1×100(%)・・・(1)
     (ここでΔWrは重量減少率(%)であり、常圧の非酸化性雰囲気下で昇温速度20℃/分で熱重量分析を行った際に、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から求められる値である。)
  2. 上記ポリフェニレンスルフィド樹脂(a)の重量平均分子量を数平均分子量で除した多分散度指数が2.5以下である請求項1に記載のポリフェニレンスルフィド樹脂組成物。
  3. 上記ポリフェニレンスルフィド樹脂(a)のアルカリ金属含有量が重量比で700ppm以下である請求項1または2に記載のポリフェニレンスルフィド樹脂組成物。
  4. 上記ポリフェニレンスルフィド樹脂(a)を加熱した際に発生するガスの成分におけるラクトン型化合物の含有量が、ポリフェニレンスルフィド樹脂重量基準で500ppm以下である請求項1~3のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物。
  5. 上記ポリフェニレンスルフィド樹脂(a)を加熱した際に発生するガスの成分におけるアニリン型化合物の含有量が、ポリフェニレンスルフィド樹脂重量基準で300ppm以下である請求項1~4のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物。
  6. 上記ポリフェニレンスルフィド樹脂(a)が、下記一般式(A)で表わされる環式ポリフェニレンスルフィドを85重量%以上含み、且つ、重量平均分子量が10,000未満であるポリフェニレンスルフィドプレポリマーを加熱して、重量平均分子量50,000以上の高重合度体に転化させることにより得られたポリフェニレンスルフィド樹脂である請求項1~5のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (mは4~20の整数であり、環式ポリフェニレンスルフィドはmが4~20の異なる値を有する一般式(A)で表わされる化合物の混合物であってもよい。)
  7. 上記ポリフェニレンスルフィド樹脂(b)を加熱した際に発生するガスの成分におけるラクトン型化合物の含有率が、ポリフェニレンスルフィド樹脂重量基準で500ppm以下である請求項1~6のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物。
  8. 上記アルカリ土類金属(d)がカルシウムである請求項1~7のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物。
  9. サイズ排除クロマトグラフィーにより測定される分子量分布において、
     (i)分子量10,000以上1,000,000以下の領域にメインピークのピークトップを有し、
     (ii)分子量100以上10,000未満の領域にサブピークのピークトップを有し、
     (iii)サブピークの面積分率が1.0~20%であって、
    且つ、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物。
  10. アルカリ土類金属の含有量が重量比で20~1,000ppmである請求項9に記載のポリフェニレンスルフィド樹脂組成物。
  11. 前記式(1)で表される、加熱した際の重量減少率ΔWrが0.30%以下である請求項9または10に記載のポリフェニレンスルフィド樹脂組成物。
  12. ポリフェニレンスルフィド樹脂(a)~(c)の合計を100重量%としたときに、ポリフェニレンスルフィド樹脂(a)90~50重量%に対して、ポリフェニレンスルフィド樹脂(b)および/またはポリフェニレンスルフィド樹脂(c)を合計で10~50重量%配合するポリフェニレンスルフィド樹脂組成物の製造方法であって、得られるポリフェニレンスルフィド樹脂組成物の、320℃で5時間加熱した際の粘度変化率が1.5倍以下であるポリフェニレンスルフィド樹脂組成物の製造方法。
     ポリフェニレンスルフィド樹脂(a):重量平均分子量が50,000以上であって、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%以下であるポリフェニレンスルフィド樹脂
     ポリフェニレンスルフィド樹脂(b):重量平均分子量が50,000未満であって、アルカリ土類金属の含有量が200ppm未満であって、且つ、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを0.5重量%添加し320℃で10分加熱した際の分子量増加率が5.0%以下であるポリフェニレンスルフィド樹脂
     ポリフェニレンスルフィド樹脂(c):アルカリ土類金属(d)を200~800ppm含有し、且つ、下記式(1)で表される、加熱した際の重量減少率ΔWrが0.18%を超えるポリフェニレンスルフィド樹脂
     ΔWr=(W1-W2)/W1×100(%)・・・(1)
     (ここでΔWrは重量減少率(%)であり、常圧の非酸化性雰囲気下で昇温速度20℃/分で熱重量分析を行った際に、100℃到達時の試料重量(W1)と、330℃到達時の試料重量(W2)から求められる値である。)
PCT/JP2016/071564 2015-07-31 2016-07-22 ポリフェニレンスルフィド樹脂組成物およびその製造方法 WO2017022524A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/748,584 US10294330B2 (en) 2015-07-31 2016-07-22 Polyphenylene sulfide resin composition and method of manufacturing same
CN201680043658.8A CN107849250B (zh) 2015-07-31 2016-07-22 聚苯硫醚树脂组合物及其制造方法
KR1020187003841A KR20180035221A (ko) 2015-07-31 2016-07-22 폴리페닐렌술피드 수지 조성물 및 그 제조 방법
EP16832803.7A EP3330309A4 (en) 2015-07-31 2016-07-22 POLYPHENYLENE SULFIDE RESIN COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
JP2016549524A JP6337971B2 (ja) 2015-07-31 2016-07-22 ポリフェニレンスルフィド樹脂組成物およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-151959 2015-07-31
JP2015151959 2015-07-31
JP2016067765 2016-03-30
JP2016-067765 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017022524A1 true WO2017022524A1 (ja) 2017-02-09

Family

ID=57942911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071564 WO2017022524A1 (ja) 2015-07-31 2016-07-22 ポリフェニレンスルフィド樹脂組成物およびその製造方法

Country Status (7)

Country Link
US (1) US10294330B2 (ja)
EP (1) EP3330309A4 (ja)
JP (1) JP6337971B2 (ja)
KR (1) KR20180035221A (ja)
CN (1) CN107849250B (ja)
TW (1) TW201714967A (ja)
WO (1) WO2017022524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030460A1 (ja) * 2020-08-06 2022-02-10 株式会社クレハ ポリフェニレンスルフィド樹脂組成物およびこれを含む制振材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64124A (en) * 1987-03-16 1989-01-05 Phillips Petroleum Co Improvement of melting stability of polymer
JPH0374433A (ja) * 1989-07-31 1991-03-29 Phillips Petroleum Co ポリ(アリ―レンスルフィド)組成物の製造方法
JP2003113242A (ja) * 2001-10-02 2003-04-18 Tosoh Corp ポリアリーレンスルフィドの回収方法
JP2005225931A (ja) * 2004-02-12 2005-08-25 Kureha Chem Ind Co Ltd ポリアリーレンスルフィド及びその製造方法
WO2007034800A1 (ja) * 2005-09-22 2007-03-29 Toray Industries, Inc. ポリアリーレンスルフィドおよびその製造方法
WO2013099234A1 (ja) * 2011-12-28 2013-07-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266680A (en) 1989-07-31 1993-11-30 Phillips Petroleum Company Process for the preparation of poly(arylene sulfide) compositions
CA2028619A1 (en) * 1989-12-29 1991-06-30 Michael C. Yu Poly(arylene sulfide) compositions having improved impact strengths and methods
JP5310326B2 (ja) * 2008-09-08 2013-10-09 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、その製造方法
JP5585119B2 (ja) 2010-02-23 2014-09-10 東レ株式会社 ポリアリーレンスルフィドの製造方法
KR101408616B1 (ko) 2011-10-24 2014-06-17 도레이 카부시키가이샤 환형 폴리아릴렌 설파이드의 제조 방법
EP2843001A4 (en) * 2012-04-27 2016-01-20 Toray Industries POLY (ARYLENE SULFIDE) RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE THEREOF
CN105849200B (zh) * 2013-12-25 2017-11-21 东丽株式会社 聚芳撑硫醚树脂组合物及其形成的成型品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64124A (en) * 1987-03-16 1989-01-05 Phillips Petroleum Co Improvement of melting stability of polymer
JPH0374433A (ja) * 1989-07-31 1991-03-29 Phillips Petroleum Co ポリ(アリ―レンスルフィド)組成物の製造方法
JP2003113242A (ja) * 2001-10-02 2003-04-18 Tosoh Corp ポリアリーレンスルフィドの回収方法
JP2005225931A (ja) * 2004-02-12 2005-08-25 Kureha Chem Ind Co Ltd ポリアリーレンスルフィド及びその製造方法
WO2007034800A1 (ja) * 2005-09-22 2007-03-29 Toray Industries, Inc. ポリアリーレンスルフィドおよびその製造方法
WO2013099234A1 (ja) * 2011-12-28 2013-07-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、該樹脂組成物の成形品、および該樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330309A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030460A1 (ja) * 2020-08-06 2022-02-10 株式会社クレハ ポリフェニレンスルフィド樹脂組成物およびこれを含む制振材

Also Published As

Publication number Publication date
JPWO2017022524A1 (ja) 2017-11-24
CN107849250B (zh) 2020-04-24
US20180223046A1 (en) 2018-08-09
JP6337971B2 (ja) 2018-06-06
TW201714967A (zh) 2017-05-01
US10294330B2 (en) 2019-05-21
CN107849250A (zh) 2018-03-27
EP3330309A4 (en) 2019-05-01
KR20180035221A (ko) 2018-04-05
EP3330309A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP5594385B2 (ja) ポリアリーレンスルフィド
EP2634206B1 (en) Polyarylene sulfide production method and polyarylene sulfide
US9422400B2 (en) Granular polyarylene sulfide and process for manufacturing the same
JP5189293B2 (ja) 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
JP6528678B2 (ja) ポリアリーレンスルフィド樹脂組成物およびそれからなる成形品
JP7006841B1 (ja) ポリアリーレンスルフィドおよびその製造方法
KR101927674B1 (ko) 폴리아릴렌 설파이드의 제조 방법
JP6233415B2 (ja) ガスケット用樹脂組成物、その製造方法及び二次電池用ガスケット
JP6987426B2 (ja) ポリアリーレンスルフィドの製造方法
JP6337971B2 (ja) ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2019119810A (ja) ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP5888556B2 (ja) 架橋型ポリアリーレンスルフィド樹脂およびその製造方法
JP2017075337A (ja) ポリアリーレンスルフィドおよびその製造方法
JP5098385B2 (ja) 高誘電性樹脂組成物、錠剤の製造方法およびそれからなる成形品
JPH055061A (ja) ポリアリーレンチオエーテル組成物
JP2018199748A (ja) 環式ポリアリーレンスルフィドの製造方法
JP2017105981A (ja) ポリアリーレンスルフィドの製造方法
JP2018188610A (ja) ポリアリーレンスルフィド樹脂組成物の製造方法
WO2023053917A1 (ja) ポリアリーレンスルフィド樹脂組成物および成形品
JP2024021683A (ja) ポリアリーレンスルフィド樹脂の製造方法
WO2020026918A1 (ja) ポリアリーレンスルフィドの製造方法、ポリアリーレンスルフィドプレポリマーおよびその製造方法
JP2015040287A (ja) 分岐型ポリアリーレンスルフィド樹脂の製造方法
JP2019026735A (ja) 高分子量ポリフェニレンスルフィド
JP2019048939A (ja) 環式ポリアリーレンスルフィドおよびポリアリーレンスルフィドの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549524

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15748584

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187003841

Country of ref document: KR

Kind code of ref document: A