WO2007032391A1 - 車両用導電体 - Google Patents

車両用導電体 Download PDF

Info

Publication number
WO2007032391A1
WO2007032391A1 PCT/JP2006/318161 JP2006318161W WO2007032391A1 WO 2007032391 A1 WO2007032391 A1 WO 2007032391A1 JP 2006318161 W JP2006318161 W JP 2006318161W WO 2007032391 A1 WO2007032391 A1 WO 2007032391A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
conductor
vehicle
electric wire
protective
Prior art date
Application number
PCT/JP2006/318161
Other languages
English (en)
French (fr)
Inventor
Kunihiko Watanabe
Original Assignee
Autonetworks Technologies, Ltd.
Sumitomo Wiring Systems, Ltd.
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd. filed Critical Autonetworks Technologies, Ltd.
Priority to DE112006002398T priority Critical patent/DE112006002398T5/de
Priority to CN2006800334025A priority patent/CN101263756B/zh
Priority to US11/991,003 priority patent/US20090167078A1/en
Priority to JP2007535510A priority patent/JPWO2007032391A1/ja
Publication of WO2007032391A1 publication Critical patent/WO2007032391A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/16Rigid-tube cables

Definitions

  • the present invention relates to a vehicle conductor.
  • a shield member having a tubular braided wire force in which metal fine wires are knitted in a mesh shape As a vehicle conductor to be mounted on an electric vehicle, a plurality of non-shielded electric wires are collectively surrounded by a shield member having a tubular braided wire force in which metal fine wires are knitted in a mesh shape.
  • the structure of the shield is considered.
  • the force S that can be used to surround the shield member with a protector made of synthetic resin, and the use of a protector increase the number of parts. There's a problem.
  • the applicant of the present application has proposed a structure in which a non-shielded electric wire is inserted into a metal pipe.
  • the pipe exhibits the function of shielding the electric wire and the function of protecting the electric wire, so that there is an advantage that the number of parts can be reduced as compared with the vehicle conductor using the shield member and the protector. is there.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-171952
  • the amount of heat generated when a predetermined current flows through the wire decreases as the cross-sectional area of the wire increases, and the temperature rise of the wire due to heat generation decreases as the heat dissipation of the conductor increases. It is done. Therefore, in an environment where an upper limit is set for the temperature rise value of the wire, in the case of a vehicle conductor with low heat dissipation efficiency as described above, the heat generation amount can be reduced by increasing the cross-sectional area of the wire. It is necessary to suppress.
  • increasing the cross-sectional area of the electric wire means that the electric conductor for the vehicle is increased in diameter and weight, so that countermeasures are desired.
  • the present invention has been completed based on the above circumstances, and an object thereof is to improve the heat radiation efficiency.
  • the present invention is a vehicle conductor used in an electric vehicle, a protective pipe attached to the electric vehicle, an electric wire inserted through the protective pipe and constituting a power line of the electric vehicle, and the protection And a cooling pipe that is inserted along the electric wire into the pipe and allows a liquid refrigerant to flow therethrough.
  • the protective pipe may be made of metal to provide a shielding function.
  • the electric wire may be wound around the outer periphery of the cooling pipe. In this way, since the electric wire is not greatly separated from the outer periphery of the cooling pipe, the heat transfer performance to the electric power cooling pipe is stabilized.
  • a holding portion for accommodating the electric wire may be integrally formed outside the cooling pipe. In this way, the electric wire does not leave the outer peripheral force of the cooling pipe, so the heat transfer performance from the electric wire to the cooling pipe is stabilized.
  • Three-phase AC power may be transmitted by inserting the three electric wires through the protective pipe.
  • the conductor of the electric wire may be a flat conductor. In this way, since the electric wire has its plate surface along the outer periphery of the cooling pipe, a large heat transfer area is ensured for the outer periphery of the electric power cooling pipe, and the heat transfer efficiency is excellent.
  • the cooling pipe may be made of metal and an insulating coating may be provided on the outer surface. Also this In this case, a coating layer may be provided to collectively cover the wires in a state where the three wires are wound from the outside of the insulation coating.
  • the heat dissipation efficiency is superior to the case where heat is radiated from the outer peripheral surface of the protective pipe to the atmosphere.
  • FIG. 1 is a schematic view of Embodiment 1.
  • FIG. 2 is a partially enlarged side view.
  • FIG. 3 is a partially enlarged longitudinal sectional view.
  • Figure 4 is a partially enlarged cross-sectional view.
  • FIG. 5 is a graph showing the results of a temperature rise experiment.
  • FIG. 6 is a partially enlarged longitudinal sectional view of Embodiment 2.
  • FIG. 7 is a partially enlarged cross-sectional view.
  • FIG. 8 is a graph showing the results of a temperature rise experiment.
  • FIG. 9 is a transverse sectional view of Embodiment 3.
  • FIG. 10 is a transverse sectional view of Embodiment 4.
  • FIG. 11 is a partially enlarged cross-sectional view of the fifth embodiment.
  • FIG. 12 is a partially enlarged longitudinal sectional view of Embodiment 5.
  • FIG. 13 is a partially enlarged cross-sectional view of the sixth embodiment.
  • FIG. 14 is a partially enlarged longitudinal sectional view of Embodiment 6.
  • Wa Conductor for vehicle
  • An electric motor vehicle is equipped with an engine room in front of the vehicle body Bd. Inside the engine room is a device Ma (for example, an inverter) that forms a power circuit for driving the motor Mo and a gasoline drive.
  • the engine Eg is housed.
  • a device Mb (for example, a battery) constituting a power circuit is mounted on the rear portion (for example, a trunk room) of the vehicle body Bd.
  • a vehicle conductor Wa is routed between the two devices Ma and Mb.
  • the vehicle conductor Wa includes a cylindrical shield member 10 having a collective shield function, a cooling pipe 20 having a heat dissipation function, and three electric wires 30 inserted into the shield member 10. Has been.
  • the shield member 10 includes a protective pipe 11 made of a metal (for example, aluminum alloy, stainless steel, copper, copper alloy, etc.) having a collective shield function in addition to the protective function of the electric wire 30, and a metal thin wire meshed
  • the flexible tubular member 12 also has a braided linear force, and the flexible tubular member 12 is fixed to the front and rear end portions of the protective pipe 11 so as to be conductive.
  • the protective pipe 11 has a circular cross-sectional shape, and is arranged almost horizontally along the under floor of the vehicle body Bd (below the floor plate Fp). It is fixed in a suspended state.
  • the flexible cylindrical member 12 connected to the front end portion of the protective pipe 11 is bent and arranged in the engine room, and is connected to a shield case (not shown) of the device Ma.
  • the flexible cylindrical part connected to the rear end of the protective noise 11 The material 12 passes through the floor board Fp and is routed in the vehicle, and is connected to a shield case (not shown) of the device Mb.
  • the cooling pipe 20 is made of metal (for example, aluminum alloy, stainless steel, copper, copper alloy, etc.), and has a circular cross-sectional shape.
  • the cooling pipe 20 passes from the radiator Ra for cooling the engine Eg through the engine room and extends rearward along the lower surface of the floor plate Fp, and from the rear end of the forward route portion 21 to the lower surface of the floor plate Fp.
  • a return path 22 that extends forward along the engine room and returns to the Rajta Ra. Cooling water (refrigerant) is supplied by the pump (not shown) to the Rajta Ra, the outbound path 21, and the return path 22. It circulates in a route that passes through the inside and flows.
  • a region extending rearward along the lower surface of the floor plate Fp in the forward path portion 21 of the cooling pipe 20 is inserted (accommodated) into the protective pipe 11.
  • the cooling pipe 20 is disposed at a substantially central position of the protective pipe 11.
  • the region of the forward path portion 21 of the cooling pipe 20 that protrudes forward from the protective pipe 11 is a mesh of a braided wire in the vicinity of the front end portion of the protective pipe 11 (the rear end portion of the front flexible cylindrical member 12). It is led out of the flexible cylindrical member 12 from the gap.
  • the rear end portion of the forward path portion 21 of the cooling pipe 20 protruding rearward from the protective pipe 11 is braided in the vicinity of the rear end portion of the protective pipe 11 (the front end portion of the rear flexible cylindrical member 12). It is led out to the outside of the flexible cylindrical member 12 from the gap of the mesh of the wire.
  • the return path 22 of the cooling pipe 20 is routed outside the protective pipe 11 and the flexible cylindrical member 12.
  • the electric wire 30 constitutes a power line for the electric vehicle EV, and three-phase AC power is transmitted by the three electric wires 30.
  • the electric wire 30 is a non-shield type electric wire cable in which the outer periphery of a flexible core wire 31 is surrounded by an insulating resin coating 32, and its cross-sectional shape is circular, and the three electric wires 30 is inserted (enclosed) into the front flexible cylindrical member 12, the protective pipe 11, and the rear flexible cylindrical member 12 all together.
  • three electric wires 30 are routed so as to be spirally wound at equal pitches along the outer circumference of the cooling pipe 20 at equal angular intervals in the circumferential direction.
  • the outer periphery of the resin coating 32 of the electric wire 30 and the outer periphery of the cooling pipe 20 are in line contact along the spiral wiring path of the electric wire 30.
  • the gaps on both sides of the line contact area between the outer peripheral surface of the cooling pipe 20 and the outer peripheral surface of the electric wire 30 are filled with a heat transfer layer 34 made of a resin seating bed by an adhesive.
  • the heat layer 34 keeps the electric wire 30 in line contact with the outer periphery of the cooling pipe 20.
  • the heat transfer layer 34 functions as a holding means for holding the electric wire 30 in contact with or close to the outer periphery of the cooling pipe 20 as in the spiral winding form.
  • the heat generated in the core wire 31 of the electric wire 30 due to energization is transferred from the core wire 31 to the grease coating 32, and (1) from the outer periphery of the grease coating 32 to the outer periphery of the cooling pipe 20 directly inside the protective noise 11. And (2) the outer periphery of the cooling pipe 20 through the path that is transmitted from the outer periphery of the resin coating 32 to the heat transfer layer 34 and transmitted from the heat transfer layer 34 to the outer periphery of the cooling pipe 20. Is transmitted to the cooling water flowing through.
  • the heat transferred to the cooling water passes through the return path 22 of the cooling pipe 20 routed outside the protective pipe 11, is transported to the radiator Ra, and is released from the surface of the radiator Ra to the atmosphere. Also, part of the heat is released into the atmosphere from the outer peripheral surface of the water-cooled pipe cooling pipe 20 by the air cooling action caused by the wind hitting the return path portion 22 of the cooling pipe 20 during traveling.
  • the heat generated in the electric wire 30 is forcibly taken away by the cooling water, so that the heat dissipation efficiency is improved as compared with the case where the outer peripheral surface of the protective pipe 11 is dissipated into the atmosphere. Are better.
  • the electric wire 30 is spirally wound around the outer periphery of the cooling pipe 20, and the electric wire 30 is connected to the cooling pipe 20 by the heat transfer layer 34. Since the wire 30 is fixed to the outer periphery! /, The outer peripheral force of the cooling pipe 20 is not separated, and the heat transfer performance from the wire 30 to the cooling pipe 20 is stable.
  • the vehicle electrical conductor Wa of Embodiment 1 is superior in heat dissipation compared to the conventional one.
  • three wires were inserted into the same protective pipe as in the first embodiment, and a cooling pipe was provided in the protective pipe, so that nothing was prepared.
  • the conductor of the electric wire is made of Cu, and the cross-sectional area of each conductor is 5.31 sq, and the area around the protective pipe is windless. Under these conditions, the temperature change of the wire over time when a current of 60 A was continuously passed through the three wires was experimentally measured, and based on the measured value, a conductor with a cross-sectional area of 3.5 sq was measured.
  • the gap between the protective pipe and the electric wire is filled with grease, and the cooling pipe is placed in the protective noise. Some are not provided.
  • the conductor of the electric wire is made of Cu, and the cross-sectional area of each conductor is 5.31sq, and wind is blown on the outer peripheral surface of the protective pipe. Under such conditions, the temperature change of the wire over time when a current of 60 A was continuously passed through the three wires was experimentally measured. Based on the measured value, 100 A was applied to a conductor with a cross-sectional area of 3.5 sq. The estimated temperature change over time when the current was applied was calculated.
  • the measured and calculated values are based on the outside temperature before energization. This calculation result is represented by Ts in the graph of Fig. 5. When 1000 seconds have elapsed, the temperature rise value is about 170 ° C, which is suppressed to a lower temperature than the conventional example.
  • the conductor 31 of the electric wire 30 is made of Cu, the cross-sectional area of the conductor 31 is 5.3 sq, and the flow rate of the cooling water flowing in the cooling pipe 20 is 300 ccZl3sec.
  • the wind is blown to the outer peripheral surface of the protective noise 11.
  • the temperature change of the wire 30 over time when a current of 100 A was continuously passed through the three wires 30 was measured by experiment. Based on the measured value, a conductor with a cross-sectional area of 3.5 sq was measured.
  • the estimated temperature change over time of wire 30 when a current of 100 A was passed through 31 was calculated. The measured value and the calculated value are based on the temperature of the cooling water flowing through the cooling pipe 20 before power is supplied.
  • the calculation result is represented by Ta in the graph of Fig. 5.
  • the temperature rise is suppressed to a low temperature of about 50 ° C.
  • about 50 ° C It is kept at almost constant temperature. From this experimental result, it was proved that the vehicle electrical conductor Wa of the first embodiment is superior in heat dissipation efficiency compared to the conventional and reference examples.
  • the configuration of the wire 40 is different from that of the first embodiment. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and descriptions of the structure, operation, and effects are omitted.
  • the electric wire 40 has a rectangular cross-sectional shape as a whole, and more specifically, the long side is significantly longer than the short side and has a substantially I-shape, and is generally slender and plate-like (strip plate or flat plate). ing.
  • the conductor 41 constituting the electric wire 40 is a flat conductor having a rectangular cross section.
  • the cross-sectional shape of the insulating resin coating 42 surrounding the conductor 41 is a rectangular frame.
  • the energizing electric wire 40 is spirally wound in such a form that the plate surface on the long side thereof is parallel to and close to the outer periphery of the cooling nozzle 20. Due to the spirally wound state, the electric wire 40 is held in a state close to the outer periphery of the cooling pipe 20!
  • a heat transfer layer 44 made of an adhesive is filled in the gap between the plate surface of the electric wire 40 facing each other and the outer peripheral surface of the cooling pipe 20. Is held close to the outer peripheral surface of the cooling pipe 20.
  • the heat transfer layer 44 constitutes a holding means for holding the electric wire 40 in a state close to the outer periphery of the cooling pipe 20. Note that the heat transfer layer 44 is also applied to the side surface force on the short side of the electric wire 40 and the region extending over the outer peripheral surface of the cooling pipe 20, thereby increasing the adhesive strength.
  • the conductor 41 of the electric wire 40 is a flat rectangular conductor having an elongated plate shape, and the plate surface is provided along the outer periphery of the cooling pipe 20. A large heat transfer area with respect to the outer periphery of the pipe 20 is ensured. Therefore, the heat transfer efficiency is excellent as compared with the first embodiment in which the electric wire 30 having a circular cross section and the cooling pipe 20 are in a line contact state.
  • Embodiment 2 has been clarified through experiments that the vehicle conductor Wb of Embodiment 2 is superior in heat dissipation compared to the conventional one.
  • Embodiment 2 and Three wires were inserted into the same protective pipe, and a cooling pipe was installed in the protective pipe to prepare a thing!
  • the conductor of the electric wire is made of Cu, and the cross-sectional area of each conductor is 5.31 sq, and the area around the protective pipe is windless. Under these conditions, the temperature change of the wire over time when a current of 60 A was continuously passed through the three wires was experimentally measured, and based on the measured value, a conductor with a cross-sectional area of 3.5 sq was measured.
  • the gap between the protective pipe and the electric wire is filled with grease, and the cooling pipe is placed in the protective noise. Some are not provided.
  • the conductor of the electric wire is made of Cu, and the cross-sectional area of each conductor is 5.31sq, and wind is blown on the outer peripheral surface of the protective pipe. Under these conditions, the temperature change of the wire over time when a current of 60 A was continuously passed through the three wires was measured by experiment. Based on the measured value, 100 A was applied to a conductor with a cross-sectional area of 3.5 sq. The estimated temperature change over time when the current was applied was calculated.
  • the measured and calculated values are based on the outside temperature before energization. This calculation result is represented by Ts in the graph of Fig. 8, but when 1000 seconds have elapsed, the temperature rise value is about 170 ° C, which is suppressed to a lower temperature than the conventional example.
  • the conductor 41 of the electric wire 40 is made of Cu and the cross-sectional area of the conductor 41 is 3.5 sq (the width dimension is 4.5 mm and the thickness dimension is 0.8 mm). ) And wind is blown to the outer peripheral surface of the protective pipe 11. While the current of 100 A was kept flowing through the three wires 30, the temperature change of the wires 40 over time when the flow rate of the cooling water flowing through the cooling pipe 20 was 300 ccZl3 sec was measured by experiments. This measured value is based on the temperature of the cooling water flowing in the cooling pipe 20 before energization. The result of this calculation is that when the force represented by Tb in the graph in Fig.
  • the temperature rise is suppressed to a low temperature of about 13 ° C. After about 100 seconds, the temperature is kept at a constant temperature of about 13 ° C. From this experimental result, it was proved that the vehicle conductor Wb of Embodiment 2 is superior in heat dissipation efficiency compared to the conventional and reference examples.
  • the temperature change is measured under the same conditions as described above except that the cooling water does not flow through the cooling pipe 20, and the measurement result is obtained. This is shown as Tx in the graph in Fig. 8. In this case, immediately after the start of energization, the temperature rises rapidly with the same gradient as in the reference example. From this experimental result, it is clear that the cooling action by the cooling pipe 20 is remarkably effective.
  • Embodiment 3 embodying the present invention will be described with reference to FIG.
  • the vehicle conductor Wc of the third embodiment is different from the first embodiment in the holding means for holding the electric wire 30 in a contact state or a close state with respect to the outer periphery of the cooling pipe 50. Since other configurations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and descriptions of the structure, operation, and effects are omitted.
  • the cooling pipe 50 includes a pipe body 51 having a circular cross section for flowing cooling water, and three holding grooves 52 formed on the outer periphery of the noise body 51 at equal angular intervals in the circumferential direction (configuration of the present invention). It is a form in which a holding part which is a requirement) is formed.
  • the holding groove 52 may be either of a form extending in parallel with the axis of the pipe body 51 or a form of extending spirally with respect to the axis of the pipe body 51.
  • Each holding groove 52 is fitted with an electric wire 30.
  • the opening force also prevents the electric wire 30 from coming off, so that the tape ( (Not shown) may be wound.
  • the tape crosses the opening of the holding groove 52, so that the electric wire 30 can be prevented from coming off the holding groove 52.
  • one electric wire 30 is fitted in one holding groove 52, but a plurality of electric wires may be fitted in one holding groove.
  • the vehicle conductor Wd according to the fourth embodiment is different from the first embodiment in the holding means for holding the electric wire 30 in contact with or close to the outer periphery of the cooling pipe 60. Since other configurations are the same as those in the first embodiment, the same symbols are used for the same configurations. The description of the structure, operation, and effect is omitted.
  • the cooling pipe 60 includes a pipe body 61 having a circular cross section for flowing cooling water, and three holding cylinder parts 62 formed on the outer periphery of the noise body 61 at equal angular intervals in the circumferential direction (the present invention).
  • the holding part which is a constituent requirement, is formed.
  • the holding cylinder portion 62 may be either of a form extending in parallel with the axis of the pipe main body 61 or a form of extending spirally with respect to the axis of the pipe main body 61.
  • the electric wires 30 are inserted into the holding grooves 62, respectively.
  • the force by which one electric wire 30 is inserted into one holding cylinder 62 may allow a plurality of electric wires to be inserted into one holding cylinder.
  • the protective pipe 70 has a two-layer structure of an inner pipe 71 and an outer pipe 72.
  • the inner pipe 71 and the outer pipe 72 can be combined in a form in which both the inner noise 71 and the outer pipe 72 are made of resin, in which the inner pipe 71 is made of resin and the outer pipe 72 is made of metal.
  • a configuration in which the pipe 71 is made of metal and the outer pipe 72 is made of resin is possible.
  • an insulating coating 73 having a constant thickness is formed on the outer circumference of the metal cooling pipe 20 over the entire length and continuously over the entire circumference.
  • This insulating coating 73 is a resin floor with an adhesive.
  • On the outer periphery of this insulating coating 73 three rectangular conductors 41 similar to those in Embodiment 2 are surrounded by an insulating resin coating 42.
  • the electric wire 40 is spirally wound and fixed by the adhesive force of the insulating coating 73.
  • the thickness of the resin coating 42 of the electric wire 40 can be reduced.
  • the vehicle conductor Wf of the sixth embodiment is similar to that of the fifth embodiment.
  • An insulating coating 73 having a constant thickness is formed on the outer periphery continuously over the entire length and the entire periphery.
  • This insulating coating 73 is a resin floor floor made of an adhesive.
  • a rectangular conductor 41 similar to that in Embodiments 2 and 5 is coated with an insulating resin coating 442.
  • Three surrounding electric wires 40 are wound spirally and fixed by the adhesive force of the insulating coating 73.
  • the resin coating layer 74 is formed so as to surround the insulating layer 73 over the entire length and the entire circumference.
  • the covering layer 74 collectively surrounds the three electric wires 40. In other words, the three electric wires 40 are embedded in the covering layer 74.
  • the protective pipe 11 is the same as that in the first embodiment. Since the other configuration is the same as that of the second embodiment, the same reference numeral is given to the same configuration, and the description of the structure, operation, and effect is omitted.
  • the protective pipe has a circular cross-sectional shape, but according to the present invention, the protective pipe has a non-circular cross-sectional shape (e.g., oval, oval, substantially square, It may be a substantially polygonal shape or a substantially trapezoidal shape.
  • a non-circular cross-sectional shape e.g., oval, oval, substantially square, It may be a substantially polygonal shape or a substantially trapezoidal shape.
  • the force of inserting three electric wires into one protective pipe According to the present invention, the number of electric wires passed through one protective pipe is one, two, Any of four or more may be used.
  • a force using a non-shield type electric wire as the electric wire According to the present invention, a heat pipe having a heat dissipation function may be used as the electric wire.
  • Embodiments 1 to 6 above a force that allows one cooling pipe to be inserted into one protective pipe
  • a plurality of cooling pipes are inserted into one protective noise. It may be allowed.
  • the cooling water of the engine (other equipment) radiator is allowed to flow to the cooling nove.
  • cooling water dedicated to wire cooling may be used.
  • the cooling pipe is made of metal in Embodiments 1 to 6
  • the cooling noise is made of synthetic resin.
  • the cross-sectional shape of the cooling pipe is circular.
  • the cross-sectional shape of the pipe body is circular.
  • the cross-sectional shape of the pipe body may be non-circular (eg, oval, oval, substantially square, substantially polygonal, substantially trapezoidal).
  • Embodiments 1 to 6 described above three wires are placed along one cooling pipe.
  • the number of wires placed along one cooling pipe is one or two. Any of 4 or more may be used.
  • the electric wire is spirally wound around the outer periphery of the cooling pipe.
  • the electric wire may be routed substantially parallel to the axis of the cooling pipe. .
  • Embodiments 1, 2, 5, and 6 above the electric wire and the cooling pipe are fixed by a heat transfer layer (resin bed) made of an adhesive, but according to the present invention, Embodiments 1, 2, 5 , 6, do not fix the wire and cooling pipe with adhesive.
  • Embodiments 1 to 6 above as a means for holding the electric wire in contact with or close to the outer periphery of the cooling pipe, a form in which the electric wire is wound in a spiral manner and bonded, a form in which the electric wire is fitted in the holding groove, and holding Although the electric wire is inserted into the cylindrical portion, according to the present invention, in addition to the above-described embodiment, it is possible to adopt a mode in which the electric wire is fixed to the outer periphery of the cooling pipe with a band or a tape.
  • the wire is spirally wound and bonded as a means for holding the wire in contact with or close to the outer periphery of the cooling pipe.
  • 1, 2, 5, and 6 use only one of the means for winding the electric wire in a spiral and the means for adhering the electric wire to the outer periphery of the cooling pipe as the holding means.
  • the outer periphery of the insulation coating of the electric wire is in direct contact with the outer peripheral surface of the cooling pipe, but according to the present invention, the outer periphery of the electric wire and the outer periphery of the cooling pipe are not in direct contact. It is good.
  • the outer periphery of the insulation coating of the electric wire and the outer peripheral surface of the cooling pipe are not in direct contact, but according to the present invention, the outer periphery of the electric wire and the outer periphery of the cooling pipe are As a form of direct contact, ⁇ .
  • Embodiments 1 to 6 above only the inside of the protective pipe is routed along the cooling pipe among the electric wires, and the electric wire is separated from the cooling pipe force outside the protective noise. According to the present invention, the electric wire may be routed along the cooling pipe even outside the protective pipe (inside the flexible cylindrical member).
  • the forward path portion of the cooling pipe is inserted into the protective noise, and the backward path portion of the cooling pipe is routed outside the protective noise, but according to the present invention, the forward path portion of the cooling pipe is arranged. May be routed outside the protective pipe, and the return path of the cooling pipe may be inserted into the protective pipe.
  • the protective noise is made of metal in the first to fourth and sixth embodiments
  • the protective pipe may be made of a synthetic resin such as a corrugated tube according to the present invention.
  • the cooling water is circulated by connecting the inside of the cooling pipe to the radiator.
  • the cooling pipe is a heat pipe with a refrigerant sealed inside. Also good. In this case, if a part of the heat pipe is positioned outside the protective pipe to function as a heat radiating part, high heat radiation performance can be exhibited.

Abstract

 車両用導電体Waは、金属製の保護パイプ11と、冷却水の流動が可能とされていて保護パイプ11の内部から保護パイプ11の外部に至る経路で配索された冷却パイプ20と、少なくとも保護パイプ11の内部においては冷却パイプ20に沿って配索された電線30とを備えている。電線30に生じた熱は、保護パイプ11内において冷却パイプ20内を流れる冷却水に伝達され、保護パイプ11の外部で放出される。電線30に生じた熱を冷却水によって強制的に奪うようにしたので、保護パイプ11の外周面から大気中に放熱させる場合に比べて、放熱効率に優れている。

Description

明 細 書
車両用導電体
技術分野
[0001] 本発明は、車両用導電体に関するものである。
背景技術
[0002] 電気自動車に搭載される車両用導電体としては、複数本のノンシールド電線を、金 属細線をメッシュ状に編んだ筒状の編組線力 なるシールド部材で包囲することによ り一括してシールドする構造のものが考えられている。この種の車両用導電体におい てシールド部材と電線を保護する方法としては、一般に、シールド部材を合成樹脂製 のプロテクタで包囲する手段がとられる力 S、プロテクタを用いると部品点数が増えると いう問題がある。
そこで、本願出願人は、特許文献 1に記載されているように、ノンシールド電線を金 属製のパイプ内に挿通する構造を提案した。この構造によれば、パイプが、電線をシ 一ルドする機能と電線を保護する機能を発揮するので、シールド部材とプロテクタを 用いた車両用導電体に比べて部品点数が少なくて済むという利点がある。
特許文献 1 :特開 2004— 171952公報
発明の開示
[0003] (発明が解決しょうとする課題)
ノイブを用いた車両用導電体では、電線とパイプとの間に空気層が存在しているた め、通電時に電線で発生した熱が、熱伝導率の低い空気によって遮断されてパイプ に伝わり難ぐし力も、パイプには、編組線における編み目の隙間のような外部との通 気経路が存在しないため、電線で発生した熱がパイプの内部に籠もり易ぐ放熱性が 低くなる傾向がある。
ここで、電線に所定の電流を流したときの発熱量は、電線の断面積が大きい程小さ くなり、発熱に起因する電線の温度上昇値は、導電体の放熱性が高いほど小さく抑 えられる。したがって、電線の温度上昇値に上限が定められている環境下では、上記 のように放熱効率の低い車両用導電体の場合、電線の断面積を大きくして発熱量を 抑える必要がある。
ところが、電線の断面積を増大することは、車両用導電体が大径化し重量化するこ とを意味するため、その対策が望まれる。
本発明は上記のような事情に基づいて完成されたものであって、放熱効率の向上 を図ることを目的とする。
[0004] (課題を解決するための手段)
本発明は、電気自動車に使用される車両用導電体であって、前記電気自動車に 取り付けられる保護パイプと、この保護パイプに挿通されて前記電気自動車の動力 用線路を構成する電線と、前記保護パイプ内に前記電線に沿って挿通され内部に 液冷媒を流す冷却パイプとを備えて 、る。
これにより、電線に生じた熱は、保護パイプ内において冷却パイプ内を流れる冷却 水に伝達され、保護パイプの外部で放出される。
[0005] 本発明の実施態様として、次の構成が好ましい。
(1)前記保護パイプを金属製としてシールド機能をもたせてもよい。
(2)前記電線を前記冷却パイプの外周に巻き付けてもよい。このようにすれば、電 線が冷却パイプの外周から大きく離れることがな 、ので、電線力 冷却パイプへの熱 伝達性能が安定する。
(3)前記冷却パイプの外側に、前記電線を収容する保持部を一体に形成してもよ い。このようにすれば、電線が冷却パイプの外周力 離れることがないので、電線から 冷却パイプへの熱伝達性能が安定する。
(4)前記冷却パイプと前記電線との空隙に、合成樹脂からなる伝熱層を充填すれ ば、電線力も冷却パイプへの熱伝達性能が安定する。
[0006] (5)前記保護パイプに 3本の前記電線を挿通して三相交流電力が送電されるように してちよい。
(6)前記電線の導体を平角導体としてもよい。このようにすれば、電線が、その板面 を冷却パイプの外周に沿わせることになるので、電線力 冷却パイプの外周に対する 熱伝達面積が広く確保され、熱伝達効率に優れている。
(7)前記冷却パイプを金属製として外表面に絶縁被覆を設けてもよい。また、この 場合、 3本の前記電線が前記絶縁被覆の外側から巻き付けられた状態で、前記各電 線を一括して覆う被覆層を設けてもょ ヽ。
[0007] (発明の効果)
電線に生じた熱を冷却水によって強制的に奪うようにしたので、保護パイプの外 周面から大気中に放熱させる場合に比べて、放熱効率に優れて 、る。
図面の簡単な説明
[0008] [図 1]図 1は実施形態 1の概略図である。
[図 2]図 2は部分拡大側面図である。
[図 3]図 3は部分拡大縦断面図である。
圆 4]図 4は部分拡大横断面図である。
[図 5]図 5は温度上昇実験の結果をあらわすグラフである。
[図 6]図 6は実施形態 2の部分拡大縦断面図である。
[図 7]図 7は部分拡大横断面図である。
[図 8]図 8は温度上昇実験の結果をあらわすグラフである。
[図 9]図 9は実施形態 3の横断面図である。
[図 10]図 10は実施形態 4の横断面図である。
[図 11]図 11は実施形態 5の部分拡大横断面図である。
[図 12]図 12は実施形態 5の部分拡大縦断面図である。
[図 13]図 13は実施形態 6の部分拡大横断面図である。
[図 14]図 14は実施形態 6の部分拡大縦断面図である。
符号の説明
[0009] Wa…車両用導電体
11· ··保護パイプ
20…冷却パイプ
30…電線
34…伝熱層
Wb, Wc, Wd, We, Wf…車両用導電体
40· "電線 44…伝熱層
50, 60· ··冷却ノィプ
52…保持溝 (保持部)
62…保持筒部 (保持部)
70· ··保護パイプ
73· ··絶縁被覆
74…被覆層
発明を実施するための最良の形態
[0010] <実施形態 1 >
以下、本発明を具体化した実施形態 1を図 1乃至図 5を参照して説明する。電気自 動車 EVの車体 Bdの前部にはエンジンルームが設けられ、エンジンルーム内には、 走行用モータ Moを駆動するための動力回路を構成する機器 Ma (例えば、インバー タ)とガソリン駆動用のエンジン Egとが収容されている。車体 Bdの後部(例えば、トラ ンクルーム)には動力回路を構成する機器 Mb (例えば、バッテリ)が搭載されている。 2つの機器 Ma, Mbとの間には車両用導電体 Waが配索されている。
[0011] 車両用導電体 Waは、一括シールド機能を備える筒状のシールド部材 10と、放熱 機能を備える冷却パイプ 20と、シールド部材 10内に挿通される 3本の電線 30とを備 えて構成されている。
[0012] シールド部材 10は、電線 30の保護機能の他に一括シールド機能を兼ね備える金 属製 (例えば、アルミニウム合金、ステンレス、銅、銅合金等)の保護パイプ 11と、金 属細線をメッシュ状に編んだ編組線力もなる可撓性筒状部材 12とからなり、保護パイ プ 11の前後両端部に可撓性筒状部材 12を導通可能に固着した構成になる。保護 パイプ 11は、横断面形状が円形をなしており、車体 Bdの床下 (床板 Fpの下方)に沿 うように概ね水平に配索され、保護パイプ 11の前後両端部がブラケット 13により車体 Bdに吊下状態で固定されている。保護パイプ 11の前端部に接続された可撓性筒状 部材 12は、エンジンルーム内に屈曲して配索され、機器 Maのシールドケース(図示 せず)に接続されている。一方、保護ノイブ 11の後端部に接続された可撓性筒状部 材 12は、床板 Fpを貫通して車内に配索され、機器 Mbのシールドケース(図示せず) に接続されている。
[0013] 冷却パイプ 20は、金属製 (例えば、アルミニウム合金、ステンレス、銅、銅合金等) であって、その横断面形状は円形をなしている。冷却パイプ 20は、エンジン Egを冷 却するためのラジェター Raからエンジンルーム内を通り、床板 Fpの下面に沿つて後 方へ延びる往路部 21と、往路部 21の後端から床板 Fpの下面に沿って前方へ延び てエンジンルーム内を通り、ラジェター Raに戻る復路部 22とから構成されており、冷 却水(冷媒)が、図示しないポンプにより、ラジェター Ra、往路部 21内、復路部 22内 を順に通る経路で循環して流動するようになって 、る。
[0014] 冷却パイプ 20の往路部 21のうち床板 Fpの下面に沿って後方へ延びる領域は、保 護パイプ 11内に挿通(収容)されている。保護ノイブ 11内においては、冷却パイプ 2 0は、保護パイプ 11のほぼ中心位置に配置されている。また、冷却パイプ 20の往路 部 21のうち保護パイプ 11から前方へ突出した領域は、保護パイプ 11の前端部近傍 (前側の可撓性筒状部材 12の後端部)において編組線の網目の隙間から可撓性筒 状部材 12の外部へ導出されている。さらに、冷却パイプ 20の往路部 21のうち保護パ イブ 11から後方へ突出した後端部は、保護パイプ 11の後端部近傍 (後側の可撓性 筒状部材 12の前端部)において編組線の網目の隙間から可撓性筒状部材 12の外 部へ導出されている。また、冷却パイプ 20の復路部 22は、保護パイプ 11及び可撓 性筒状部材 12の外部に配索されて 、る。
[0015] 電線 30は、電気自動車 EVの動力用線路を構成するものであって、 3本の電線 30 によって三相交流電力が送電されるようになっている。電線 30は、可撓性を有する芯 線 31の外周を絶縁性の榭脂被覆 32で包囲したノンシールドタイプの電線カゝらなり、 その横断面形状は円形をなしており、 3本の電線 30は、前側の可撓性筒状部材 12、 保護パイプ 11、及び後側の可撓性筒状部材 12に一括して挿通 (包囲)されている。 保護パイプ 11内においては、 3本の電線 30が、冷却パイプ 20の外周に沿って周方 向に等角度間隔を空け且つ互いに同一のピッチで螺旋状に巻き付けられるように配 索されている。この電線 30の榭脂被覆 32の外周と冷却パイプ 20の外周とは、電線 3 0の螺旋状の配索経路に沿って線接触して 、る。 [0016] さらに、冷却パイプ 20の外周面と電線 30の外周面との線接触領域の両側の隙間 は接着剤による榭脂座床カゝらなる伝熱層 34で埋められており、この伝熱層 34により 、電線 30が冷却パイプ 20の外周に対して線接触する状態に保持されている。また、 伝熱層 34は、螺旋状の巻き付け形態と同様、電線 30を冷却パイプ 20の外周に接触 又は近接した状態に保持するための保持手段として機能する。尚、図 3においては、 螺旋状の巻き付け状態が解り易 、ように、冷却パイプ 20に巻き付けられて 、る 3本の 電線 30のうち 1本だけを図示している。また、可撓性筒状部材 12内においては、 3本 の電線 30は、各電線 30の中心 (軸心)を結ぶ線が正三角形をなすように束ねられて 配索されており、電線 30の端部は機器 Maと機器 Mbに接続されている。
[0017] 次に、本実施形態の作用を説明する。
通電によって電線 30の芯線 31に生じた熱は、芯線 31から榭脂被覆 32に伝達され 、保護ノイブ 11の内部において、(1)榭脂被覆 32の外周から、直接、冷却パイプ 20 の外周に伝達される経路と、(2)榭脂被覆 32の外周から伝熱層 34に伝達され、伝熱 層 34から冷却パイプ 20の外周に伝達される経路を経て、冷却パイプ 20の往路部 21 内を流れる冷却水に伝達される。冷却水に伝達された熱は、保護パイプ 11の外部に 配索されている冷却パイプ 20の復路部 22内を通り、ラジェター Raに運ばれ、ラジェ ター Raの表面から大気中に放出される。また、熱の一部は、走行中に冷却パイプ 20 の復路部 22に風が当たることによる空冷作用により、水冷パイプ冷却パイプ 20の外 周面から大気中に放出される。
[0018] 本実施形態においては、電線 30に生じた熱を冷却水によって強制的に奪うように したので、保護パイプ 11の外周面カゝら大気中に放熱させる場合に比べて、放熱効率 に優れている。
また、電線 30を冷却パイプ 20の外周に対して接触状態に保持する保持手段として 、電線 30を冷却パイプ 20の外周に螺旋状に巻き付けるとともに、電線 30を伝熱層 3 4によって冷却パイプ 20の外周に固着して!/、るので、電線 30が冷却パイプ 20の外 周力も離れることがなく、電線 30から冷却パイプ 20への熱伝達性能が安定して 、る
[0019] また、本実施形態 1の車両用導電体 Waが従来のものと比較して放熱性に優れてい ることは、実験によって明らかとなっている。実験では、従来例として、本実施形態 1と 同じ保護パイプに 3本の電線を挿通し、冷却パイプは保護パイプ内に設けて 、な!/ヽ ものを用意した。電線の導体は Cu製であり、各導体の横断面積は 5. 31sqであり、保 護パイプの周囲は無風状態である。かかる条件の下で、 3本の電線に 60Aの電流を 流し続けたときの経時的な電線の温度変化を実験によって測定し、その測定値に基 づいて、横断面積が 3. 5sqの導体に 100Aの電流を流したときの経時的な温度変化 推定値を算出した。尚、この測定値と算定値は、通電前の外気温を基準としている。 この算出結果は図 5のグラフにおいて Toであらわしているが、 1000秒経過した時点 で、温度上昇値は約 650°Cの高温に達している。
[0020] また、参考例として、本実施形態 1と同じ保護パイプに 3本の電線を揷通するととも に、保護パイプと電線との隙間に榭脂を充填し、冷却パイプは保護ノイブ内に設け ていないものも用意した。電線の導体は Cu製であり、各導体の横断面積は 5. 31sq であり、保護パイプの外周面に風を吹き付けている。かかる条件の下で、 3本の電線 に 60Aの電流を流し続けたときの経時的な電線の温度変化を実験によって測定し、 その測定値に基づいて、横断面積が 3. 5sqの導体に 100Aの電流を流したときの経 時的な温度変化推定値を算出した。尚、この測定値と算定値は、通電前の外気温を 基準としている。この算出結果は図 5のグラフにおいて Tsであらわしているが、 1000 秒経過した時点で、温度上昇値は約 170°Cであり、従来例に比べて低い温度に抑え られている。
[0021] これに対し、本実施形態 1のものでは、電線 30の導体 31を Cu製とし、導体 31の横 断面積を 5. 3sqとし、冷却パイプ 20内を流れる冷却水の流量を 300ccZl3secとし 、保護ノイブ 11の外周面に風を吹き付けている。かかる条件の下で、 3本の電線 30 に 100Aの電流を流し続けたときの電線 30の経時的な温度変化を実験によって測定 し、その測定値に基づいて、横断面積が 3. 5sqの導体 31に 100Aの電流を流したと きの電線 30の経時的な温度変化推定値を算出した。尚、この測定値と算定値は、通 電前における冷却パイプ 20内を流れる冷却水の温度を基準としている。この算出結 果は図 5のグラフにおいて Taであらわしているが、 1000秒経過した時点で、温度上 昇値は約 50°Cの低い温度に抑えられている。また、約 200秒経過した後は、約 50°C のほぼ定温状態に保たれている。この実験結果から、本実施形態 1の車両用導電体 Waは、従来のもの及び参考例のものと比較して放熱効率に優れて 、ることが実証さ れた。
[0022] <実施形態 2 >
次に、本発明を具体ィ匕した実施形態 2を図 6及び図 8を参照して説明する。本実施 形態 2の車両用導電体 Wbは、電線 40の形態を上記実施形態 1とは異なる構成とし たものである。その他の構成については上記実施形態 1と同じであるため、同じ構成 については、同一符号を付し、構造、作用及び効果の説明は省略する。
電線 40は、全体としての横断面形状が長方形をなし、詳しくは長辺が短辺に対し て著しく長 、略 I字形をなし、全体として細長 、板状 (帯板状若しくは平板状)をなし ている。電線 40を構成する導体 41は、横断面形状が長方形をなす平角導体である 。導体 41を包囲する絶縁性の榭脂被覆 42の横断面形状は長方形の枠状をなして いる。力かる電線 40は、その長辺側の板面を冷却ノィプ 20の外周に対して平行に 且つ近接させる形態で、螺旋状に巻き付けられている。この螺旋状に巻き付ける形 態により、電線 40は冷却パイプ 20の外周に対して近接した状態に保持されて!ヽる。 さらに、この互いに近接して対向する電線 40の板面と冷却パイプ 20の外周面との間 隙には、接着剤からなる伝熱層 44が充填されており、この伝熱層 44によって電線 40 が冷却パイプ 20の外周面に対して近接状態に保持されて 、る。この伝熱層 44は、 電線 40を冷却パイプ 20の外周に近接した状態に保持するための保持手段を構成 する。尚、伝熱層 44は、電線 40の短辺側の側面力も冷却パイプ 20の外周面に亘る 領域にも塗布されており、これにより、接着強度が高められている。
本実施形態 2においては、電線 40の導体 41が、細長い板状をなす平角導体であ つて、その板面を冷却パイプ 20の外周に沿わせるように設けられているので、電線 4 0から冷却パイプ 20の外周に対する熱伝達面積が広く確保されて 、る。したがって、 円形断面の電線 30と冷却パイプ 20とが線接触状態とされている上記実施形態 1と比 較すると、熱伝達効率に優れている。
[0023] また、本実施形態 2の車両用導電体 Wbが従来のものと比較して放熱性に優れてい ることは、実験によって明らかとなっている。実験では、従来例として、本実施形態 2と 同じ保護パイプに 3本の電線を挿通し、冷却パイプは保護パイプ内に設けて 、な!/ヽ ものを用意した。電線の導体は Cu製であり、各導体の横断面積は 5. 31sqであり、保 護パイプの周囲は無風状態である。かかる条件の下で、 3本の電線に 60Aの電流を 流し続けたときの経時的な電線の温度変化を実験によって測定し、その測定値に基 づいて、横断面積が 3. 5sqの導体に 100Aの電流を流したときの経時的な温度変化 推定値を算出した。尚、この測定値と算定値は通電前の外気温を基準としている。こ の算出結果は図 8のグラフにおいて Toであらわしているが、 1000秒経過した時点で 、温度上昇値は約 650°Cの高温に達している。
[0024] また、参考例として、本実施形態 2と同じ保護パイプに 3本の電線を揷通するととも に、保護パイプと電線との隙間に榭脂を充填し、冷却パイプは保護ノイブ内に設け ていないものも用意した。電線の導体は Cu製であり、各導体の横断面積は 5. 31sq であり、保護パイプの外周面に風を吹き付けている。かかる条件の下で、 3本の電線 に 60Aの電流を流し続けたときの電線の経時的な温度変化を実験によって測定し、 その測定値に基づいて、横断面積が 3. 5sqの導体に 100Aの電流を流したときの経 時的な温度変化推定値を算出した。尚、この測定値と算定値は通電前の外気温を基 準としている。この算出結果は図 8のグラフにおいて Tsであらわしているが、 1000秒 経過した時点で、温度上昇値は約 170°Cであり、従来例に比べて低い温度に抑えら れている。
[0025] これに対し、本実施形態 2のものでは、電線 40の導体 41を Cu製とし、導体 41の横 断面積を 3. 5sq (幅寸法を 4. 5mm、厚さ寸法を 0. 8mm)とし、保護パイプ 11の外 周面に風を吹き付けている。この 3本の電線 30に 100Aの電流を流し続けるとともに 、冷却パイプ 20内を流れる冷却水の流量を 300ccZl3secとしたときの電線 40の経 時的な温度変化を実験によって測定した。この測定値は、通電前において冷却パイ プ 20内を流れる冷却水の温度を基準としている。この算出結果は図 8のグラフにお いて Tbであらわしている力 500秒経過した時点で、温度上昇値は約 13°Cの低い 温度に抑えられている。また、約 100秒経過した後は、約 13°Cのほぼ定温状態に保 たれている。この実験結果から、本実施形態 2の車両用導電体 Wbは、従来のもの及 び参考例のものと比較して放熱効率に優れていることが実証された。 [0026] また、本実施形態 2の車両用導電体 Wbにお 、て、冷却パイプ 20に冷却水を流さ ないという点以外は上記と同じ条件の下で温度変化を測定し、その測定結果を図 8 のグラフに Txとしてあらわした。この場合は、通電開始直後から、参考例と同様の勾 配で温度が急上昇している。この実験結果から、冷却パイプ 20による冷却作用が著 しく効果的であることが明らかとなつて 、る。
[0027] <実施形態 3 >
次に、本発明を具体化した実施形態 3を図 9を参照して説明する。本実施形態 3の 車両用導電体 Wcは、電線 30を冷却パイプ 50の外周に対して接触状態又は近接状 態に保持する保持手段を上記実施形態 1とは異なる形態としたものである。その他の 構成については上記実施形態 1と同じであるため、同じ構成については、同一符号 を付し、構造、作用及び効果の説明は省略する。
本実施形態 4の冷却パイプ 50は、冷却水を流動させる円形断面のパイプ本体 51と 、ノイブ本体 51の外周に周方向に等角度間隔を空けて形成した 3つの保持溝 52 ( 本発明の構成要件である保持部)を形成した形態となっている。保持溝 52は、パイプ 本体 51の軸線と平行に延びる形態と、パイプ本体 51の軸線に対して斜めをなす螺 旋状に延びる形態のいずれでもよい。各保持溝 52には、夫々、電線 30が嵌合され ている。
尚、保持溝 52はパイプ本体 51の中心とは反対側に開口されているので、この開口 力も電線 30が外れるのを防止するために、冷却パイプ 50の全体を包囲するようにテ ープ(図示せず)を巻き付けてもよい。これにより、テープが保持溝 52の開口を横切 るようになるので、電線 30が保持溝 52から外れるのを防止することができる。
また、本実施形態 3では、 1つの保持溝 52に 1本の電線 30を嵌合したが、 1つの保 持溝に複数の電線を嵌合させてもよ 、。
[0028] <実施形態 4>
次に、本発明を具体化した実施形態 4を図 10を参照して説明する。本実施形態 4 の車両用導電体 Wdは、電線 30を冷却パイプ 60の外周に対して接触状態又は近接 状態に保持する保持手段を上記実施形態 1とは異なる形態としたものである。その他 の構成については上記実施形態 1と同じであるため、同じ構成については、同一符 号を付し、構造、作用及び効果の説明は省略する。
本実施形態 4の冷却パイプ 60は、冷却水を流動させる円形断面のパイプ本体 61と 、ノイブ本体 61の外周に周方向に等角度間隔を空けて形成した 3つの保持筒部 62 (本発明の構成要件である保持部)を形成した形態となっている。保持筒部 62は、パ イブ本体 61の軸線と平行に延びる形態と、パイプ本体 61の軸線に対して斜めをなす 螺旋状に延びる形態のいずれでもよい。各保持溝 62には、夫々、電線 30が挿通さ れている。
尚、本実施形態 4では、 1つの保持筒部 62に 1本の電線 30を挿通した力 1つの保 持筒部に複数の電線を挿通させてもよ ヽ。
[0029] <実施形態 5 >
次に、本発明を具体ィ匕した実施形態 5を図 11及び図 12を参照して説明する。本実 施形態 5の車両用導電体 Weは、保護パイプ 70を内パイプ 71と外パイプ 72の 2層構 造にしている。内パイプ 71と外パイプ 72の組み合わせ形態としては、内ノイブ 71と 外パイプ 72の双方を榭脂製にする形態、内パイプ 71を榭脂製にして外パイプ 72を 金属製にする形態、内パイプ 71を金属製にして外パイプ 72を榭脂製にする形態が 可能である。
また、金属製の冷却パイプ 20の外周には、その全長に亘り且つ全周に亘つて連続 して一定厚さの絶縁被覆 73が形成されている。この絶縁被覆 73は、接着剤による榭 脂座床カゝらなり、この絶縁被覆 73の外周には、実施形態 2と同様の平角導体 41を絶 縁性の榭脂被覆 42で包囲した 3本の電線 40が螺旋状に巻き付けられ、絶縁被覆 73 の接着力によって固着されて 、る。
本実施形態 5では、電線 40と冷却パイプ 20の外周面との間に、絶縁被覆 73が介 在して 、るので、電線 40の榭脂被覆 42の厚さを薄くすることが可能となって 、る。 その他の構成については上記実施形態 2と同じであるため、同じ構成については、 同一符号を付し、構造、作用及び効果の説明は省略する。
[0030] <実施形態 6 >
次に、本発明を具体ィ匕した実施形態 6を図 13及び図 14を参照して説明する。本 実施形態 6の車両用導電体 Wfは、実施形態 5と同様に、金属製の冷却パイプ 20の 外周に、その全長に亘り且つ全周に亘つて連続して一定厚さの絶縁被覆 73を形成 している。この絶縁被覆 73は、接着剤による榭脂座床カゝらなり、この絶縁被覆 73の 外周には、実施形態 2及び実施形態 5と同様の平角導体 41を絶縁性の榭脂被覆 44 2で包囲した 3本の電線 40が螺旋状に巻き付けられ、絶縁被覆 73の接着力によって 固着されている。
さらに、本実施形態 6では、絶縁層 73を全長に亘り且つ全周に亘つて包囲する形 態の榭脂製の被覆層 74が形成されている。この被覆層 74は、 3本の電線 40を一括 して包囲しており、換言すると 3本の電線 40は被覆層 74の内部に埋設された状態と なっている。
尚、保護パイプ 11は実施形態 1と同様のものである。その他の構成については上 記実施形態 2と同じであるため、同じ構成については、同一符号を付し、構造、作用 及び効果の説明は省略する。
<他の実施形態 >
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく 、例えば次のような実施態様も本発明の技術的範囲に含まれる。
(1)上記実施形態 1〜6では保護パイプの横断面形状を円形としたが、本発明によ れば、保護パイプの横断面形状は非円形 (例えば、楕円形、長円形、略方形、略多 角形、略台形)であってもよい。
(2)上記実施形態 1〜6では 1つの保護パイプ内に 3本の電線を挿通した力 本発 明によれば、 1つの保護パイプに揷通される電線の本数は 1本、 2本、 4本以上のい ずれとしてもよい。
(3)上記実施形態 1〜6では電線としてノンシールドタイプの電線を用いた力 本発 明によれば、電線として放熱機能を備えるヒートパイプを用いてもょ ヽ。
(4)上記実施形態 1〜6では 1本の保護パイプ内に 1本の冷却パイプを挿通させる ようにした力 本発明によれば、 1本の保護ノイブ内に複数本の冷却パイプを挿通さ せてもよい。
(5)上記実施形態 1〜6ではエンジン (他の機器)用のラジェターの冷却水を冷却 ノイブに流すようにしたが、本発明によれば、他の機器 (エンジンやインバータ等)用 の冷却器の冷却水とは別に電線冷却専用の冷却水を用いてもよい。
(6)上記実施形態 1〜6では冷却パイプを金属製とした力 本発明によれば、冷却 ノイブを合成樹脂製としてもょ ヽ。
(7)上記実施形態 1, 2, 5, 6では冷却パイプの横断面形状を円形とし、実施形態 3 , 4ではパイプ本体の横断面形状を円形としたが、本発明によれば、冷却ノ ィプゃパ イブ本体の横断面形状は非円形 (例えば、楕円形、長円形、略方形、略多角形、略 台形)であってもよい。
(8)上記実施形態 1〜6では 1本の冷却パイプに 3本の電線を沿わせたが、本発明 によれば、 1本の冷却パイプに沿わせる電線の本数は、 1本、 2本、 4本以上のいず れでもよい。
(9)上記実施形態 1, 2, 5, 6では冷却パイプの外周に電線を螺旋状に巻き付けた が、本発明によれば、電線を冷却パイプの軸線とほぼ平行に配索してもよい。
(10)上記実施形態 1, 2, 5, 6では電線と冷却パイプを接着剤からなる伝熱層(榭 脂座床)で固定したが、本発明によれば、実施形態 1, 2, 5, 6において電線と冷却 パイプを接着剤で固定しな 、形態としてもょ 、。
(11)上記実施形態 1〜6では電線を冷却パイプの外周に接触又は近接した状態 に保持する手段として、電線を螺旋状に巻き付けて接着する形態、保持溝に電線を 嵌合する形態、保持筒部に電線を挿通させる形態としたが、本発明によれば、上記 実施形態以外にも、バンドやテープによって電線を冷却パイプの外周に固定する形 態を採用することができる。
(12)上記実施形態 1, 2, 5, 6では電線を冷却パイプの外周に接触又は近接した 状態に保持する手段として電線を螺旋状に巻き付けるとともに接着したが、本発明に よれば、実施形態 1, 2, 5, 6において、電線を螺旋状に巻き付ける手段と、電線を冷 却パイプの外周に接着する手段のうちいずれか一方のみを保持手段として採用して ちょい。
(13)上記実施形態 1では電線の絶縁被覆の外周が冷却パイプの外周面に直接接 触するようにしたが、本発明によれば、電線の外周と冷却パイプの外周とが直接接触 しない形態としてもよい。 (14)上記実施形態 2, 5, 6では電線の絶縁被覆の外周と冷却パイプの外周面とが 直接接触しないようにしたが、本発明によれば、電線の外周と冷却パイプの外周とが 直接接触する形態としてもょ ヽ。
(15)上記実施形態 1〜6では電線のうち冷却パイプに沿うように配索されるのは保 護パイプの内部のみとされ、保護ノイブの外部では電線が冷却パイプ力 分離する ようにしたが、本発明によれば、保護パイプの外部(可撓性筒状部材の内部)におい ても電線を冷却パイプに沿うように配索してもょ 、。
(16)上記実施形態 1〜6では冷却パイプの往路部を保護ノイブ内に挿通し、冷却 パイプの復路部を保護ノイブの外部に配索したが、本発明によれば、冷却パイプの 往路部を保護パイプの外部に配索し、冷却パイプの復路部を保護パイプ内に挿通し てもよい。
(17)上記実施形態 1〜4, 6では保護ノイブを金属製としたが、本発明によれば、 保護パイプをコルゲートチューブ等の合成樹脂製としてもよい。
( 18)上記実施形態 1〜6では冷却パイプ内をラジェターに接続して冷却水を循環 させるようにしたが、本発明によれば、冷却パイプとして、内部に冷媒を密封したヒー トパイプを用いてもよい。この場合は、ヒートパイプの一部を保護パイプの外部に位置 させて放熱部として機能させれば、高 ヽ放熱性能を発揮させることができる。
(19)上記実施形態 6の 3本の電線を被覆層で一括して覆う構造は、実施形態 1〜 5にも適用することができる。

Claims

請求の範囲
[1] 電気自動車に使用される車両用導電体であって、
前記電気自動車に取り付けられる保護パイプと、
この保護パイプに挿通されて前記電気自動車の動力用線路を構成する電線と、 前記保護ノイブ内に前記電線に沿って挿通された冷却ノイブとを備えることを特徴 とする車両用導電体。
[2] 前記保護ノイブは金属製であってシールド機能を有することを特徴とする請求の範 囲第 1項に記載の車両用導電体。
[3] 前記電線は前記冷却パイプの外周に巻き付けてあることを特徴とする請求の範囲 第 1項又は請求の範囲第 2項に記載の車両用導電体。
[4] 前記冷却パイプの外側には前記電線を収容する保持部が一体に形成されて 、るこ とを特徴とする請求の範囲第 1項ないし請求の範囲第 3項のいずれかに記載の車両 用導電体。
[5] 前記冷却パイプと前記電線との空隙には、合成樹脂からなる伝熱層が充填されて V、ることを特徴とする請求の範囲第 1項な 、し請求の範囲第 4項の 、ずれかに記載 の車両用導電体。
[6] 前記保護パイプには 3本の前記電線が挿通されて三相交流電力が送電されること を特徴とする請求の範囲第 1項ないし請求の範囲第 5項のいずれかに記載の車両用 導電体。
[7] 前記電線の導体は平角導体であることを特徴とする請求の範囲第 1項な 、し請求 の範囲第 6項のいずれかに記載の車両用導電体。
[8] 前記冷却ノイブは金属製であって外表面に絶縁被覆が設けられていることを特徴 とする請求の範囲第 1項ないし請求の範囲第 7項のいずれかに記載の車両用導電 体。
[9] 3本の前記電線が前記絶縁被覆の外側から巻き付けられた状態で、前記各電線を 一括して覆う被覆層が設けられていることを特徴とする請求の範囲第 8項に記載の車 両用導電体。
PCT/JP2006/318161 2005-09-13 2006-09-13 車両用導電体 WO2007032391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112006002398T DE112006002398T5 (de) 2005-09-13 2006-09-13 Fahrzeugleiter
CN2006800334025A CN101263756B (zh) 2005-09-13 2006-09-13 车辆导体
US11/991,003 US20090167078A1 (en) 2005-09-13 2006-09-13 Vehicle conductor
JP2007535510A JPWO2007032391A1 (ja) 2005-09-13 2006-09-13 車両用導電体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005265531 2005-09-13
JP2005-265531 2005-09-13

Publications (1)

Publication Number Publication Date
WO2007032391A1 true WO2007032391A1 (ja) 2007-03-22

Family

ID=37864982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318161 WO2007032391A1 (ja) 2005-09-13 2006-09-13 車両用導電体

Country Status (5)

Country Link
US (1) US20090167078A1 (ja)
JP (1) JPWO2007032391A1 (ja)
CN (1) CN101263756B (ja)
DE (1) DE112006002398T5 (ja)
WO (1) WO2007032391A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149550A (ja) * 2005-11-29 2007-06-14 Auto Network Gijutsu Kenkyusho:Kk シールド導電体及びシールド導電体の製造方法
JP2009132180A (ja) * 2007-11-28 2009-06-18 Sumitomo Wiring Syst Ltd ワイヤハーネスの配索構造
JP2010027577A (ja) * 2008-07-24 2010-02-04 Autonetworks Technologies Ltd 導電体および導電体の製造方法
EP2368769A1 (en) * 2008-12-18 2011-09-28 Honda Motor Co., Ltd. Vehicle wiring structure
JP2011228136A (ja) * 2010-04-20 2011-11-10 Hitachi Cable Ltd 車両用導電路
JP2012045962A (ja) * 2010-08-24 2012-03-08 Yazaki Corp ワイヤハーネス
JP2012164478A (ja) * 2011-02-04 2012-08-30 Hitachi Cable Ltd 三芯一括ケーブル
JP2012197034A (ja) * 2011-03-22 2012-10-18 Yazaki Corp ワイヤーハーネスの配索構造
JP2013169139A (ja) * 2013-03-19 2013-08-29 Yazaki Corp ワイヤハーネス
JP2013252846A (ja) * 2013-03-19 2013-12-19 Yazaki Corp 車体床下ワイヤハーネスの保護部材
WO2014077164A1 (ja) * 2012-11-16 2014-05-22 矢崎総業株式会社 ワイヤハーネス及びワイヤハーネス車両取付方法
JP2015159694A (ja) * 2014-02-25 2015-09-03 住友電装株式会社 電線の冷却装置
JP2017507640A (ja) * 2014-02-05 2017-03-16 テスラ・モーターズ・インコーポレーテッド 充電ケーブルの冷却
JP2020072014A (ja) * 2018-10-31 2020-05-07 矢崎総業株式会社 ワイヤハーネス
WO2020115995A1 (ja) * 2018-12-03 2020-06-11 株式会社オートネットワーク技術研究所 ワイヤハーネス、及び外装部材
JP2020183713A (ja) * 2019-05-07 2020-11-12 矢崎総業株式会社 車両用冷却システムおよびワイヤハーネス冷却構造
CN113135154A (zh) * 2020-01-17 2021-07-20 丰田自动车株式会社 车辆构造
JPWO2020066071A1 (ja) * 2018-09-28 2021-11-25 住友電気工業株式会社 ワイヤーハーネスの固定構造
WO2021251165A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251164A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251168A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251163A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2022044735A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
WO2022044733A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
WO2022044732A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
WO2022044734A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638898B2 (ja) * 2010-09-24 2014-12-10 矢崎総業株式会社 ワイヤハーネス配索構造及びシールドカバー
DE102012009337A1 (de) * 2012-05-10 2013-11-14 Volkswagen Aktiengesellschaft Kupferrohrleiter
DE102013019442A1 (de) * 2013-11-21 2015-05-21 Auto-Kabel Management Gmbh Elektrisches Kabel, Verfahren zum Herstellen eines solchen elektrischen Kabels und Verwendung eines solchen elektrischen Kabels
JP5971563B2 (ja) * 2013-11-29 2016-08-17 住友電装株式会社 電線のシールド構造
JP6200454B2 (ja) * 2015-06-12 2017-09-20 矢崎総業株式会社 ワイヤーハーネス
DE102015117508A1 (de) * 2015-10-15 2017-04-20 Phoenix Contact E-Mobility Gmbh Elektrisches Kabel mit einer Fluidleitung zum Kühlen
JP6481861B2 (ja) * 2015-11-10 2019-03-13 住友電装株式会社 シールド導電路
DE102016206266A1 (de) * 2016-04-14 2017-10-19 Phoenix Contact E-Mobility Gmbh Ladekabel zur Übertragung elektrischer Energie, Ladestecker und Ladestation zur Abgabe elektrischer Energie an einen Empfänger elektrischer Energie
DE102016109550A1 (de) * 2016-05-24 2017-11-30 Yazaki Systems Technologies Gmbh Kabelbaum und Anordnung mit solch einem Kabelbaum
CN107734925A (zh) * 2017-09-20 2018-02-23 宁波易威新能源科技有限公司 一种快速充电冷却系统
JP7199934B2 (ja) * 2017-12-25 2023-01-06 矢崎総業株式会社 ワイヤハーネスユニット、蓄電装置ユニット、及び、ワイヤハーネス
CN108790903A (zh) * 2018-06-27 2018-11-13 特瓦特能源科技有限公司 充电连接器、充电装置和电动车辆
DE102019101979A1 (de) * 2019-01-28 2020-07-30 HARTING Automotive GmbH Zugentlastung für einen Kabelschlauch
CN114097045B (zh) * 2019-07-25 2024-04-02 Abb电动汽车有限责任公司 用于为电动车辆充电的强电流充电电缆
EP3770007A1 (en) 2019-07-25 2021-01-27 ABB Schweiz AG Electrical vehicle charging system for charging an electrical vehicle
EP3770925B1 (en) * 2019-07-25 2023-12-27 ABB E-mobility B.V. Heavy-current charging cable for charging an electric vehicle
FR3099652A1 (fr) * 2019-08-01 2021-02-05 Aptiv Technologies Limited Dispositif de refroidissement passif pour câble électrique
EP3812199B1 (fr) * 2019-10-25 2023-10-11 Acome Câble à dissipation thermique améliorée
FR3102604B1 (fr) * 2019-10-25 2022-01-21 Acome Câble électrique à dissipation passive thermique améliorée
US11746700B2 (en) * 2020-11-24 2023-09-05 Hamilton Sundstrand Corporation Thermal management for a motor feeder
US11935671B2 (en) * 2021-01-27 2024-03-19 Apple Inc. Spiral wound conductor for high current applications
EP4125098A1 (en) * 2021-07-30 2023-02-01 Aptiv Technologies Limited A power cable assembly for a power distribution system having an integrated cooling system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333044A (en) * 1965-04-23 1967-07-25 William A Toto Passageway structure for liquid coolant at gun and transformer ends of welding cable having novel internal surface bearing for alternate polarity strands
JPS5333890U (ja) * 1976-08-31 1978-03-24
JPS58112204A (ja) * 1981-12-26 1983-07-04 住友電気工業株式会社 冷却式電力ケ−ブル線路
JPS6171505A (ja) * 1984-09-14 1986-04-12 株式会社東芝 冷却パイプ入り圧縮成形撚線
JPH06105443A (ja) * 1992-09-17 1994-04-15 Fujitsu Ltd 流体搬送装置
JPH07336855A (ja) * 1994-06-10 1995-12-22 Fujikura Ltd 管路内電力ケーブルの冷却方法および装置
JPH08256427A (ja) * 1995-03-17 1996-10-01 Sumitomo Electric Ind Ltd 金属被付電力ケーブル曲り部の防水補強構造
JPH08287745A (ja) * 1995-04-18 1996-11-01 Fujikura Ltd 超電導電力ケーブル
JP2004171952A (ja) * 2002-11-20 2004-06-17 Auto Network Gijutsu Kenkyusho:Kk シールド機能を備えた導電路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946142A (en) * 1974-09-30 1976-03-23 Mazin Kellow Cooling of power cables utilizing an open cycle cooling system
JPH07211155A (ja) * 1994-01-07 1995-08-11 Furukawa Electric Co Ltd:The 電力ケーブル線路
US5777273A (en) * 1996-07-26 1998-07-07 Delco Electronics Corp. High frequency power and communications cable
JPH10106362A (ja) * 1996-08-07 1998-04-24 Sumitomo Wiring Syst Ltd 電気自動車充電用冷却ケーブル
DE19807099C2 (de) * 1998-02-20 2000-02-17 G H Induction Deutschland Indu Induktive Erwärmung von Metallen
JP2002533894A (ja) * 1998-12-24 2002-10-08 ピレリー・カビ・エ・システミ・ソチエタ・ペル・アツィオーニ 超伝導ケーブル
JP4025173B2 (ja) * 2002-10-30 2007-12-19 トヨタ自動車株式会社 電力ケーブルの冷却装置
SE0203249L (sv) * 2002-11-05 2004-02-03 Volvo Lastvagnar Ab Kabelkanal för ett fordon samt metod för att montera ett kablage på ett fordon
US7741798B2 (en) * 2006-11-21 2010-06-22 Azure Dynamics, Inc. RFI/EMI filter for variable frequency motor drive system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333044A (en) * 1965-04-23 1967-07-25 William A Toto Passageway structure for liquid coolant at gun and transformer ends of welding cable having novel internal surface bearing for alternate polarity strands
JPS5333890U (ja) * 1976-08-31 1978-03-24
JPS58112204A (ja) * 1981-12-26 1983-07-04 住友電気工業株式会社 冷却式電力ケ−ブル線路
JPS6171505A (ja) * 1984-09-14 1986-04-12 株式会社東芝 冷却パイプ入り圧縮成形撚線
JPH06105443A (ja) * 1992-09-17 1994-04-15 Fujitsu Ltd 流体搬送装置
JPH07336855A (ja) * 1994-06-10 1995-12-22 Fujikura Ltd 管路内電力ケーブルの冷却方法および装置
JPH08256427A (ja) * 1995-03-17 1996-10-01 Sumitomo Electric Ind Ltd 金属被付電力ケーブル曲り部の防水補強構造
JPH08287745A (ja) * 1995-04-18 1996-11-01 Fujikura Ltd 超電導電力ケーブル
JP2004171952A (ja) * 2002-11-20 2004-06-17 Auto Network Gijutsu Kenkyusho:Kk シールド機能を備えた導電路

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149550A (ja) * 2005-11-29 2007-06-14 Auto Network Gijutsu Kenkyusho:Kk シールド導電体及びシールド導電体の製造方法
JP2009132180A (ja) * 2007-11-28 2009-06-18 Sumitomo Wiring Syst Ltd ワイヤハーネスの配索構造
JP2010027577A (ja) * 2008-07-24 2010-02-04 Autonetworks Technologies Ltd 導電体および導電体の製造方法
EP2368769A1 (en) * 2008-12-18 2011-09-28 Honda Motor Co., Ltd. Vehicle wiring structure
EP2368769A4 (en) * 2008-12-18 2012-05-09 Honda Motor Co Ltd VEHICLE WIRING STRUCTURE
US8481856B2 (en) 2008-12-18 2013-07-09 Honda Motor Co., Ltd. Vehicle wiring structure
JP2011228136A (ja) * 2010-04-20 2011-11-10 Hitachi Cable Ltd 車両用導電路
US9490613B2 (en) 2010-08-24 2016-11-08 Yazaki Corporation Wire harness
JP2012045962A (ja) * 2010-08-24 2012-03-08 Yazaki Corp ワイヤハーネス
JP2012164478A (ja) * 2011-02-04 2012-08-30 Hitachi Cable Ltd 三芯一括ケーブル
JP2012197034A (ja) * 2011-03-22 2012-10-18 Yazaki Corp ワイヤーハーネスの配索構造
WO2014077164A1 (ja) * 2012-11-16 2014-05-22 矢崎総業株式会社 ワイヤハーネス及びワイヤハーネス車両取付方法
JP2014100942A (ja) * 2012-11-16 2014-06-05 Yazaki Corp ワイヤハーネス及びワイヤハーネス車両取付方法
CN104812628A (zh) * 2012-11-16 2015-07-29 矢崎总业株式会社 线束和将线束安装在车辆中的方法
US9522639B2 (en) 2012-11-16 2016-12-20 Yazaki Corporation Wire harness and method for installing wire harness in vehicle
JP2013169139A (ja) * 2013-03-19 2013-08-29 Yazaki Corp ワイヤハーネス
JP2013252846A (ja) * 2013-03-19 2013-12-19 Yazaki Corp 車体床下ワイヤハーネスの保護部材
JP2017507640A (ja) * 2014-02-05 2017-03-16 テスラ・モーターズ・インコーポレーテッド 充電ケーブルの冷却
JP2015159694A (ja) * 2014-02-25 2015-09-03 住友電装株式会社 電線の冷却装置
JPWO2020066071A1 (ja) * 2018-09-28 2021-11-25 住友電気工業株式会社 ワイヤーハーネスの固定構造
JP7298621B2 (ja) 2018-09-28 2023-06-27 住友電気工業株式会社 ワイヤーハーネスの固定構造
JP2020072014A (ja) * 2018-10-31 2020-05-07 矢崎総業株式会社 ワイヤハーネス
WO2020115995A1 (ja) * 2018-12-03 2020-06-11 株式会社オートネットワーク技術研究所 ワイヤハーネス、及び外装部材
JP2020091940A (ja) * 2018-12-03 2020-06-11 株式会社オートネットワーク技術研究所 ワイヤハーネス、及び外装部材
JP7010199B2 (ja) 2018-12-03 2022-01-26 株式会社オートネットワーク技術研究所 ワイヤハーネス、及び外装部材
JP2020183713A (ja) * 2019-05-07 2020-11-12 矢崎総業株式会社 車両用冷却システムおよびワイヤハーネス冷却構造
JP7073299B2 (ja) 2019-05-07 2022-05-23 矢崎総業株式会社 車両用冷却システム
CN113135154B (zh) * 2020-01-17 2023-07-18 丰田自动车株式会社 车辆构造
JP2021112969A (ja) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 車両構造
JP7284107B2 (ja) 2020-01-17 2023-05-30 トヨタ自動車株式会社 車両構造
CN113135154A (zh) * 2020-01-17 2021-07-20 丰田自动车株式会社 车辆构造
JP7463860B2 (ja) 2020-06-08 2024-04-09 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251164A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251168A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
JP7463861B2 (ja) 2020-06-08 2024-04-09 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251163A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
JP7463859B2 (ja) 2020-06-08 2024-04-09 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
JP7463862B2 (ja) 2020-06-08 2024-04-09 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2021251165A1 (ja) * 2020-06-08 2021-12-16 株式会社オートネットワーク技術研究所 ワイヤハーネスユニット
WO2022044733A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
WO2022044734A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
WO2022044735A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
WO2022044732A1 (ja) * 2020-08-26 2022-03-03 住友電装株式会社 ワイヤハーネスユニット
JP7480638B2 (ja) 2020-08-26 2024-05-10 住友電装株式会社 ワイヤハーネスユニット

Also Published As

Publication number Publication date
CN101263756B (zh) 2010-09-01
JPWO2007032391A1 (ja) 2009-03-19
US20090167078A1 (en) 2009-07-02
CN101263756A (zh) 2008-09-10
DE112006002398T5 (de) 2008-07-24

Similar Documents

Publication Publication Date Title
WO2007032391A1 (ja) 車両用導電体
JP5434748B2 (ja) 車両用導電路
JP5491224B2 (ja) ワイヤハーネス
WO2006107050A1 (ja) シールド導電体及びその製造方法
WO2013125679A1 (ja) 電線の配索構造、及び外装部材付き電線
US7750241B2 (en) Distributive conductor
JP2006269201A (ja) シールド導電路
JP2007109642A (ja) 車両用シールド導電体及び車両用シールド導電体の製造方法
JP2015159694A (ja) 電線の冷却装置
US20080196917A1 (en) Fluid supply hose for a windscreen or headlamp washer system of a vehicle
WO2008069208A1 (ja) シールド導電体及びシールド導電体の製造方法
JP2012028162A (ja) ワイヤハーネス
JP2007087628A (ja) シールド導電路
JP5978509B2 (ja) 高圧導電路及びワイヤハーネス
JP4881611B2 (ja) シールド導電体
JP2009135240A (ja) 電線のシールド構造
JP2007066994A (ja) シールド導電体
JP2019032990A (ja) シールド導電路
JP2007287335A (ja) シールド導電路
WO2020066587A1 (ja) ワイヤハーネス
WO2019188513A1 (ja) ワイヤハーネス
JPH08223719A (ja) ガス絶縁開閉装置
JP2007008423A (ja) シールド導電体
JP2009289640A (ja) 自動車用のシールド線
JP5494181B2 (ja) 冷却装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033402.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535510

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11991003

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060023985

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006002398

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797911

Country of ref document: EP

Kind code of ref document: A1