WO2007032098A1 - 電解用フッ素系陽イオン交換膜及びその製造方法 - Google Patents

電解用フッ素系陽イオン交換膜及びその製造方法 Download PDF

Info

Publication number
WO2007032098A1
WO2007032098A1 PCT/JP2006/300033 JP2006300033W WO2007032098A1 WO 2007032098 A1 WO2007032098 A1 WO 2007032098A1 JP 2006300033 W JP2006300033 W JP 2006300033W WO 2007032098 A1 WO2007032098 A1 WO 2007032098A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
electrolysis
anode side
anode
shape
Prior art date
Application number
PCT/JP2006/300033
Other languages
English (en)
French (fr)
Inventor
Akio Kashiwada
Toshinori Hirano
Hiroshi Nakayama
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2006800339175A priority Critical patent/CN101263245B/zh
Priority to EP06702128.7A priority patent/EP1927678B1/en
Priority to US11/990,390 priority patent/US7938941B2/en
Priority to BRPI0615894A priority patent/BRPI0615894B1/pt
Priority to CA2622102A priority patent/CA2622102C/en
Publication of WO2007032098A1 publication Critical patent/WO2007032098A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1065Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1028Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith

Definitions

  • the present invention is used for cation exchange membranes for electrolysis, more specifically, electrolysis of aqueous alkali chloride solutions, and exhibits stable electrolysis performance while maintaining electrochemical properties and mechanical strength.
  • the present invention relates to a cation exchange membrane for electrolysis capable of reducing impurities in a hydroxide or alkali obtained by exchange and improving quality, and a method for producing the same.
  • Fluorine-containing ion exchange membranes have excellent heat resistance, chemical resistance, etc., and so on, including ion exchange membranes for electrolysis for the production of chlorine, hydroxide and alkali by electrolysis of alkali chloride.
  • ion exchange membranes for electrolysis for the production of chlorine, hydroxide and alkali by electrolysis of alkali chloride.
  • As a membrane for electrolysis such as ozone generation, fuel cell, water electrolysis, hydrochloric acid electrolysis, etc., it is widely used in various applications, and new applications are expanding.
  • the ion exchange membrane method has become the mainstream in recent years for the production of chlorine and hydroxide alkali by electrolysis of salt alkali.
  • the ion-exchange membrane used here has high V ⁇ current efficiency, low electrolysis voltage, handling ⁇ membrane strength that is not damaged during electrolysis, and impurities contained in the alkali hydroxide to be produced. In particular, a reduction in the concentration of alkali chloride is also required.
  • Various proposals have been made in order to satisfy such demands, and a layer made of a fluorinated resin having a carboxylic acid group having a high electric resistance but a high current efficiency and a sulfonic acid group having a low electric resistance. It is well known that a fluorine-containing ion exchange membrane having a multi-layer structure composed of a fluorine-containing resin is useful and is currently mainstream.
  • Patent Document 1 and Patent Document 2 the structure of the film is made more multilayered. Proposals have been proposed that specify the moisture content of each layer to reduce the electrolysis voltage and improve the membrane strength. However, in this case, if the moisture content of the layer facing the anode side is too high, the concentration of impurities in the alkali hydroxide produced by force will increase if a decrease in the strength of the film is observed.
  • a porous substrate such as a woven cloth having a fluorinated polymer force such as polytetrafluoroethylene (PTFE) is inserted into the film.
  • PTFE polytetrafluoroethylene
  • Patent Document 4 a method for improving the film strength by causing the shape of a woven fabric such as PTFE to protrude toward the anode surface side is also disclosed.
  • a portion surrounded by a woven fabric-shaped protruding portion is formed, so that the supply capability of the salt-alkaline aqueous solution on the anode surface of the membrane is reduced depending on the electrolysis conditions and the structure of the electrolytic cell.
  • impurities in the generated alkali hydroxide increase. For this reason, it is not possible to obtain a stable quality alkali metal hydroxide.
  • Patent Document 5 discloses a press port having a protrusion in a method for improving the shape of the surface on the anode side of a film for the purpose of reducing the amount of oxygen in chlorine that also generates an anode side force during electrolysis.
  • Patent Document 6 discloses a method of applying groove force by embedding a woven fabric on the surface of the film and then peeling it off.
  • a porous substrate such as PTFE previously embedded in the membrane is pushed up to the opposite side of the surface of the membrane to be grooved, substantially Since the thickness of the resin on the porous substrate is reduced, the strength of the film is reduced.
  • the ion exchange membrane receives stress from all directions during electrolysis, the stress is in a direction different from the direction of the porous substrate such as PTFE, for example, 45 ° to the porous substrate.
  • the strength of the ion exchange membrane obtained by these production methods is greatly reduced, and stable electrolytic performance cannot be obtained over a long period of time.
  • the supply performance of the salt-alkali aqueous solution between the anode and the membrane surface is insufficient, and impurities generated in the hydroxide-alkali are reduced. It cannot be reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-113029
  • Patent Document 2 Japanese Patent Laid-Open No. 63-8425
  • Patent Document 3 Japanese Patent Laid-Open No. 3-217427
  • Patent Document 4 Japanese Patent Laid-Open No. 4-308096
  • Patent Document 5 JP-A-60-39184
  • Patent Document 6 Japanese Patent Laid-Open No. 6-279600
  • alkali hydroxide contains a large amount of impurities, especially alkali chloride, it is necessary to use high-purity hydroxide and alkali products such as rayon, pulp, paper, and chemicals. Not suitable for the way. Accordingly, there has been a strong demand for a cation exchange membrane for electrolysis that reduces the impurity concentration of the alkali hydroxide to be produced.
  • the present invention is used for electrolysis of a salty-alkali aqueous solution and exhibits stable electrolytic performance while maintaining electrochemical properties and mechanical strength over a long period of time.
  • the hydroxide solution obtained by ion exchange is used.
  • the present invention relates to an ion exchange membrane for electrolysis that can reduce impurities in alkali and improve quality, and that cannot be achieved with conventional technology, and a method for producing the same.
  • the impurities in the generated alkali hydroxide are the anions that have penetrated into the film, such as the anode side force, as cations. It was discovered that an ion pair forms and dissolves as an impurity in the catholyte, and this phenomenon becomes significant when the supply of an aqueous alkali chloride solution is insufficient on the anode side surface of the membrane, The present invention has been reached.
  • the present inventors have analyzed the ion exchange membranes used in the electrolytic cells of various manufacturers and in various operating conditions, and as a result, when the area of the anode in close contact with the ion exchange membrane is large, When the current density of electrolysis is high, or when operated in a zero-gap electrolytic cell where the cathode of the electrolytic cell and the cathode side surface of the ion exchange membrane come into contact with each other, part of the ion-exchanged membrane. In addition, fine foaming occurs in the ion-exchange membrane along the shape of the anode of the electrolytic cell, and as a result of performance evaluation, there is an increase in impurities in hydroxide and alkali. I found the fact that.
  • the present invention is as follows.
  • a cation exchange membrane for electrolysis comprising a fluorine-containing polymer having an ion exchange group and a porous substrate, and a protrusion comprising a polymer having an ion exchange group on the anode side surface of the membrane
  • the surface force on the anode side of the film is 20 ⁇ h ⁇ 150, where the average value of the height to the top of the protrusion is hm), and the distribution density of the protrusion is P (piece Zcm 2 ), 50 ⁇ P ⁇ 1200, and when the average value of the area fraction of the bottom surface on the same surface as the anode side surface of the film is S (cm 2 Zcm 2 ), 0 001 ⁇ S ⁇ 0.6, and when T (cm 2 / cm 2 ) is the average value of the area fraction of the apex of the protruding part of the surface on the anode side of the film, T ⁇ 0.05
  • a cation exchange membrane for electrolysis characterized by being.
  • the average value of the length of the base of the protrusion on the same surface as the anode side surface of the film is a (m), and the width of the protrusion at half height hZ2 ( ⁇ m) of the protrusion
  • the cation exchange membrane as described in 1. above, where 0.5 ⁇ b / a ⁇ 0.9 and 0.25 ⁇ h / a ⁇ 0.80, where 1) (111) is the average value of .
  • the above-mentioned projecting portion has a conical shape, a quadrangular pyramid shape, a truncated cone shape, and a group force consisting of a quadrangular frustum shape.
  • the cation exchange membrane according to any one of.
  • a method for producing an ion exchange membrane for electrolysis comprising obtaining a protruding portion comprising a polymer having an ion exchange group on the anode side surface.
  • the release paper is brought into close contact with the anode side surface by reducing the pressure through the release paper.
  • the embossed shape is a cone shape, a polygonal pyramid shape, a hemispherical shape, a dome shape, a truncated cone shape, a polygonal frustum shape, or a mixed shape of two or more.
  • An electrolysis apparatus comprising the cation exchange membrane according to any one of 1 to 4 above, a cathode and an anode, wherein a surface having the protruding portion is in contact with or facing the anode The above electrolytic cell.
  • the fluorine-containing cation exchange membrane of the present invention reduces the impurities in the resulting alkali hydroxide while maintaining the electrochemical properties and mechanical strength in the electrolysis of an aqueous alkali chloride solution, and increases it over a long period of time. Can produce high quality hydroxide and alkali.
  • the present invention comprises a fluoropolymer having an ion exchange group and a porous substrate, and has a protruding portion comprising a polymer having an ion exchange group on the anode side surface of the membrane, the anode side of the membrane Surface force
  • h (m) is the average height to the top of the protrusion, 20 ⁇ h ⁇ 150, and when the distribution density of the protrusion is P (individual Zcm 2 ), 50 ⁇
  • P ⁇ 1200 and the average value of the area fraction of the bottom of the protruding part on the same surface as the anode side surface of the film is S (cm 2 Zcm 2 ), 0.001 ⁇ S ⁇ 0. 6 and T ⁇ 0.05 when the average value of the area fraction of the apex portion of the protruding portion on the anode side surface of the film is T (cm 2 Zcm 2 ).
  • Cation exchange membrane for use.
  • the anode-side surface refers to a membrane surface that faces the anode side when the cation exchange membrane for electrolysis of the present invention is disposed in an electrolytic cell.
  • this anode side surface has the protrusion part which comprises the polymer which has an ion exchange group.
  • the membrane surface having the protruding portion is referred to as “anode-side surface” for the sake of convenience even when the membrane itself is present independently without being incorporated into the electrolytic cell. To tell.
  • the height of the protruding portion comprising the polymer having an ion exchange group on the anode-side surface of the membrane as described above is the height from the anode-side surface of the membrane to the apex of the protruding portion.
  • the distribution density P (piece Zcm 2 ) of the protruding part on the anode side surface is preferably 20 ⁇ P ⁇ 1500, more preferably 50 ⁇ P ⁇ 1200, on the same surface as the anode side surface of the film of the protruding part
  • the average value of the area fraction of the bottom surface of S is S (cm 2 Zcm 2 )
  • it is 0.001 ⁇ S ⁇ 0.6
  • the average value of the area fraction of the apex of the protruding part is T ( When cm 2 Zcm 2 ), T ⁇ 0.05 is preferable.
  • the shape of the protrusion on the anode side surface of the membrane significantly improves the supply of the aqueous alkali chloride solution on the anode side surface of the membrane during electrolysis without impairing the mechanical strength and electrochemical properties of the membrane. It is unexpected that the impurities in the hydroxides and alkalis obtained by this method are greatly reduced.
  • the average value of the length of the base on the same surface as the anode-side surface of the film is a (m), and the half height hZ2 ( ⁇
  • the bZa value force is 0.5 ⁇ b / a ⁇ 0.9. If the value of bZa is 0.5 or more, the height of the protruding portion is sufficient in the preferable range of the distribution density P of the protruding portion required in the present invention, and sufficient salt on the anode side surface of the film is sufficient.
  • the average height hm) of the protruding portion of the anode-side surface of the film and the average value a (m) of the length of the base on the same surface as the anode-side surface of the protruding portion of the film It satisfies the relationship 0.25 ⁇ h / a ⁇ 0.8. If the hZa value is 0.25 or more, the height of the protruding portion is sufficient, sufficient supply of an aqueous alkali chloride solution is obtained, and the contact between the anode of the electrolytic cell and the protruding portion on the anode surface side of the membrane is obtained.
  • the area does not become excessive, and fine foaming in the membrane and degradation of electrolytic performance can be suppressed.
  • the hZa value is 0.8 or less, the electrolysis performance is stable without any decrease in the strength of the protruding portion.
  • the protruding portion which is a polymer force having an ion exchange group
  • the protruding portion is discontinuous, and this shape provides a sufficient supply of a salt / alkaline aqueous solution during electrolysis. It is done.
  • discontinuous means that the protrusions are formed in a narrow area on the film surface. This means that the minute is connected to the anode side surface connected in a continuous wall shape.
  • the shape of the protruding portion on the anode side surface of the membrane is preferably a polygonal pyramid shape such as a conical shape, a triangular pyramid shape, a quadrangular pyramid shape, a hemispherical shape, a dome shape, a truncated cone shape, a polygonal frustum shape, and the like. More preferable are a cone, a truncated cone, a quadrangular pyramid, a quadrangular pyramid, and the like because of the excellent balance between the contact area between the electrode and the anode of the electrolytic cell and the strength of the protruding portion.
  • the protruding portion on the anode side surface of the membrane may be any force in these shapes, or a mixed shape of two or more shapes selected from these forces.
  • the average value a (m) of the length of the base on the same surface as the anode side surface of the film is obtained by cutting a cross section of the film passing through the apex of the protruding portion into a thin film and multiplying by 40 times with an optical microscope. Obtained by observing at a magnification. That is, when the shape of the protruding portion is conical, truncated cone, hemispherical, dome-shaped, the diameter of the protruding portion was observed as a circle. Further, when the shape of the projecting portion was a quadrangular pyramid or a quadrangular frustum, the length of one side was observed assuming that the shape of the bottom surface was a square. The length of one side of the protruding portion was determined. About these average values, 10 were observed for each, and the average value was obtained.
  • the average h (wm) of the height of the protruding portion and the height hZ2 ( ⁇ m) of the half of the protruding portion are obtained by cutting a cross section of the film passing through the apex of the protruding portion into a thin film. It was determined by observing with a microscope at a magnification of 40 times. The average value was obtained by observing 10 cross sections.
  • the width b ( ⁇ m) of the protrusion at half height hZ2 of the protrusion if the shape of the protrusion is conical or frustoconical, the diameter, square weight, In the case of a square frustum shape, the length of one side was obtained.
  • the average value is the average of the values observed for 10 pieces.
  • the average value S (cm cm 2 ) of the area fraction of the bottom surface portion on the same surface as the anode side surface of the film of the projecting portion is obtained by using the value of a to calculate the area of the bottom surface portion of the circle. It was obtained by approximating the area or polygonal area.
  • the average value T (cm 2 Zcm 2 ) of the area fraction of the apex portion of the protruding portion is obtained by cutting out the cross section of the film into a thin film and confirming the protruding portion at a magnification of 100 using an optical microscope. If the shape of the protruding part is conical or frustum, the area of the circle is the pyramid or frustum.
  • the area of the apex portion was approximately obtained as the polygonal area.
  • the values of S and T are the area of the bottom surface and the top of the unit area on the anode side surface of the film, respectively.
  • As a percentage of The distribution density P (number Zcm 2 ) of the protruding portion was obtained by observing the anode side surface of the film with a light microscope at a magnification of 40 times.
  • the porous substrate used in the present invention is for the purpose of imparting strength and dimensional stability of the membrane, and it is essential that most of the porous substrate is present in the membrane.
  • a strong porous substrate is preferably made of a fiber made of a fluorine-based polymer because it requires heat resistance and chemical resistance over a long period of time.
  • PPF E polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl butyl ether copolymer
  • ETFE tetrafluoroethylene ethylene copolymer
  • PVDF vinylidene fluoride polymer
  • the porous substrate used in the present invention has a yarn diameter of preferably 20 to 300 denier, more preferably 50 to 250 denier, and a weave density of preferably 5 to 50 Z inches.
  • a woven fabric, a nonwoven fabric, a knitted fabric or the like is used, but a woven fabric is preferable.
  • the thickness of the woven fabric is preferably 30 to 250 111, more preferably 30 to 150 ⁇ .
  • the woven fabric or knitted fabric of the porous substrate is monofilament, multifilament, or these yarns, slit yarns, etc., and the weaving method is plain weaving, entangled weaving, knitting weaving, cord weaving, shearing force, etc. Is used.
  • the aperture ratio is preferably 30% or more, more preferably 50% or more and 90% or less.
  • the aperture ratio is preferably 30% or more from the viewpoint of electrochemical properties as an ion exchange membrane, and preferably 90% or less from the viewpoint of mechanical strength of the membrane.
  • the form is, for example, a tape yarn obtained by slitting a high-strength porous sheet made of PTFE force into a tape shape, or highly oriented made of PTFE.
  • the woven fabric is an auxiliary material usually called a sacrificial core for the purpose of preventing misalignment of the porous substrate during the membrane manufacturing process. May contain fiber ⁇ .
  • This auxiliary fiber is soluble in the membrane production process or in an electrolytic environment, and rayon, polyethylene terephthalate (PET), cellulose, polyamide and the like are used.
  • the amount of the mixed auxiliary fibers is preferably 10 to 80 wt%, more preferably 30 to 70 wt% of the entire woven or knitted fabric.
  • the fluoropolymer used in the present invention also has a main chain force of a fluorinated hydrocarbon, and has a functional group that can be converted into an ion exchange group by hydrolysis or the like as a pendant side chain.
  • the fluorinated polymer is obtained by copolymerizing at least one monomer selected from the following first group force and at least one monomer selected from the following second and Z or third group forces. Can be manufactured.
  • the first group of monomers are vinyl fluoride compounds, such as vinyl fluoride, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, perfluoro (alkyl). (Buyl ether), tetrafluoroethylene, and the like, and particularly when used as a membrane for alkaline electrolysis, it is desirable to use hydrogen-free perfluoromonomer tetrafluoroethylene, perfluoro (alkylvinyl). -Lu-Itel), a medium strength of hexafluoropropylene is preferably selected.
  • the second group of monomers is a beer compound having a functional group that can be converted into a carboxylic acid ion exchange group.
  • CF CF (OCF CYF) s— 0 (CZF) t—COOR
  • Monomers are used.
  • s is an integer of 0 to 2
  • t is an integer of 1 to 12
  • Y and Z represent F or CF
  • R represents a lower alkyl group.
  • n is an integer from 0 to 2
  • m is an integer from 1 to 4
  • Y is F or CF
  • R is CH
  • a perfluoro compound is preferable, but only R (lower alkyl group) is lost when it is hydrolyzed to a functional group strength S ion exchange group. It does not have to be a perfluoro type.
  • R lower alkyl group
  • the third group of monomers is a belief compound having a functional group that can be converted into a sulfone-type ion exchange group.
  • Copolymers of these monomers are obtained by polymerization methods developed for homopolymerization and copolymerization of fluorinated styrene, particularly by general polymerization methods used for tetrafluoroethylene. Can be manufactured. For example, in a non-aqueous method, an inert liquid such as perfluorohydrocarbon or chlorofluorocarbon is used as a solvent, and in the presence of a radical polymerization initiator such as perfluorocarbon peroxide or an azo compound. The copolymerization can be performed at a temperature of 0 to 200 ° C. and a pressure of 0.1 to 20 MPa.
  • the type and ratio of the monomers selected from the above three group forces are selected and determined according to the type and amount of functional groups desired for the fluorinated polymer.
  • a polymer containing only a carboxylate functional group at least one monomer selected from the first group and second group monomers may be copolymerized.
  • a polymer containing only a sulfonyl fluoride functional group at least one kind selected from the monomers of the first group and the third group may be copolymerized.
  • a polymer sharing two kinds of functional groups of carboxylic acid ester and sulfofluoride is required, at least one of the monomers of the first group, the second group and the third group is used. It can be selected and copolymerized.
  • the first group and second group forces copolymer and the first group and third group forces copolymer.
  • the desired fluorinated polymer can also be obtained by polymerizing the polymers separately and mixing them later. Further, the mixing ratio of each monomer may be increased by increasing the ratio of the monomer selected from the second group or the third group when the amount of the functional group required per unit polymer is increased.
  • an ion exchange membrane of the present invention when laminating a fluoropolymer having ion exchange groups and a porous substrate, a release paper that has been subjected to an embossing treatment is adhered to the surface of the anode surface, and the release paper is adhered to the surface.
  • a protruding portion containing a polymer having an ion exchange group on the anode side surface is obtained.
  • the embossing of the release paper is performed by bringing the release paper into close contact with a heated metal roll that has been processed in advance with a target protruding shape, and the processing temperature is preferably 20 to 120 ° C, more preferably 25.
  • linear pressure of resin pressure roll is preferably 500 NZcm or more, more preferably 600-2000 NZcm, processing speed is preferably 50 mZ min or less, more preferably 40 mZ min This is done by pressing as follows.
  • the embossing depth can be controlled by changing the linear pressure of the resin pressure roll that presses the release paper against the heated metal roll.
  • the basis weight of the release paper to be used can be in a relatively wide range, but 50 to 400 g / m 2 is preferred from the viewpoints of soldering properties and heat resistance.
  • embossing the release paper it is necessary to apply a force to the release paper having an air permeability of 0.03 MPa or less, preferably 0.025 MPa or less under reduced pressure, so that the film and the release paper are tightly bonded. It is preferable because the embossing shape can be accurately transferred to the release paper and the embossed shape can be accurately transferred to the release paper.
  • the air permeability of the release paper was measured with an air micrometer type tester according to the standard of JAPAN T APPI No. 5-1: 2000.
  • the shape of the emboss can be any shape because the surface shape of the metal roll used for the embossing force is transferred to the release paper.
  • various shapes such as a cone shape, a triangular pyramid shape, a polygonal pyramid shape such as a quadrangular pyramid shape, a hemispherical shape, a dome shape, a truncated cone shape, and a truncated pyramid shape can be selected. Two or more mixed shapes may be used.
  • the average emboss height is 20 to 150 m as described above, because the embossed shape is transferred to the anode side surface of the membrane in the same shape when the ion exchange membrane is integrated. Preferably, it is more preferable.
  • Additional [This, of embossed distribution density ⁇ or 20 to 150 0 ZCM is preferably a 2 instrument further ⁇ This preferably 50 to 1200 pieces ZCM 2, the average value of the area fraction of the bottom surface portion of the embossment, It is preferably 0.001 to 0.6 cm 2 Zcm 2 .
  • the area fraction of the apex of the boss varies depending on the shape of the emboss, but in any case V is preferably 0.05cm 2 Zcm 2 or less! /.
  • the relationship between the average length (a) of the bottom side of the bottom of the emboss and the average width (b) of the half height of the emboss is 0.5 ⁇ b / a ⁇ 0.9
  • the relationship between the average length (a) of the bottom side of the bottom surface and the average height (h) of the embossment is preferably 0.25 ⁇ h / a ⁇ 0.8.
  • the embossed processed into release paper is enclosed in a protruding portion when it is transferred to the anode side surface of the film if it is in a closed shape like a lattice, which is preferably discontinuous. Therefore, it becomes difficult to obtain a sufficient supply of the salt / alkaline solution during electrolysis.
  • embossed arrangement covered with the release paper is the embossed distribution density described in the present invention. As long as the degree and depth are not exceeded, they may be arranged regularly or randomly.
  • a fluorine-containing polymer having a carboxylate functional group located on the cathode side (first layer) and a fluorine-containing polymer having a sulfolfluoride functional group (second layer) are used. Is formed into a film by a coextrusion method. Separately, a fluoropolymer (third layer) having a sulfonyl fluoride functional group is formed into a film alone in advance.
  • the 2Z first layer composite film is laminated in this order, and integrated while removing air between the layers by reducing the pressure at a temperature at which each polymer melts.
  • co-extrusion of the first layer and the second layer contributes to increasing the adhesive strength at the interface, and the method of integrating under reduced pressure is more porous than the pressure pressing method.
  • the thickness of the third layer on the conductive substrate is increased. Furthermore, since the porous substrate is fixed to the inner surface of the membrane, the mechanical strength of the membrane can be sufficiently maintained.
  • a fourth layer containing both a carboxylic acid ester functional group and a sulfol fluoride functional group is provided between the first layer and the second layer. It is possible to intervene or to replace the second layer itself with a layer containing both carboxylic acid ester functional groups and sulfofluoride functional groups.
  • a method may be employed in which a polymer containing a carboxylic acid ester functional group and a polymer containing a sulfonyl fluoride functional group are separately produced and then mixed, or a single polymer having a carboxylic acid ester functional group is used.
  • Both the monomer and the monomer having a sulfonyl fluoride functional group may be copolymerized.
  • the fourth layer is inserted as a membrane structure, a co-extruded film of the first layer and the fourth layer is formed, and the third layer and the second layer are independently formed into a film separately from the above-mentioned method. You can also stack them at the same time! /, And film co-extrusion of the first, third, fourth and third layers at once.
  • the thickness of the first layer is preferably 5 to 50 / ⁇ ⁇ , more preferably 5 to 30 m
  • the second layer is a layer that dominates the strength of the film, and is preferably 30 to 120. m, more preferably 40-100 ⁇ m
  • the third layer is preferably 15-50.
  • the total thickness of the ion exchange membrane before hydrolysis is preferably 200 m or less, more preferably 50 to 180; ⁇ ⁇ as appropriate. adjust.
  • Film thickness is the mechanical strength of the film From the viewpoint of the above, 50 ⁇ m or more is particularly preferable, and from the viewpoint of the electrolytic resistance during electrolysis, 180 ⁇ m or less is particularly preferable.
  • the cation exchange membrane for electrolysis is required to have a low voltage.
  • a layer composed of a fluorinated resin containing a carboxylic acid group and a sulfonic acid group are included. It has been adopted to reduce the thickness of the layer made of fluorine resin.
  • the film strength has a problem that the film strength decreases in proportion to the thickness of the film.
  • a method is used in which a porous substrate such as PTFE is embedded in the membrane. In an ion exchange membrane with a porous substrate, the periphery of this porous substrate is the most It becomes a part where the greaves layer becomes thin and strongly affects the film strength.
  • the anode of the ion exchange membrane without thinning the resin layer around the porous substrate.
  • Discontinuous protrusions made of fluorine-containing resin can be provided on the side surface, and the shape of the anode side surface of the membrane can be improved without reducing the strength of the membrane.
  • the molten fluoropolymer does not directly contact the roll, for example, even if the protruding portion is processed using a metal roll or the like, corrosion of the metal roll is prevented. It is possible.
  • the protrusion provided on the surface of the anode side of the membrane by the manufacturing method of the present invention is small and discontinuous, the contact portion between the anode of the electrolytic cell and the membrane surface is reduced, and the alkali chloride solution is reduced. Sufficient supply is obtained, and impurities in the generated alkali hydroxide can be greatly reduced.
  • the film of the present invention may have an inorganic coating layer for preventing gas adhesion on the cathode side surface and the anode side surface as necessary.
  • the coating layer can be applied, for example, by spraying a liquid in which fine particles of inorganic oxides are dispersed in a binder polymer solution.
  • the fluorine-containing cation exchange membrane of the present invention can be used for various electrolysis, but here, a case where it is used for electrolysis of a salty-alkali aqueous solution will be described as a representative example.
  • Known conditions can be adopted for the electrolysis conditions. For example, in the anode chamber 2.5 to 5.5 regulations (N ), And the cathode chamber is supplied with water or diluted aqueous solution of alkaline or alkaline hydroxide, and electrolysis is performed under the conditions of electrolysis temperature of 50 to 120 ° C and current density of 5 to: LOOAZdm 2. Do.
  • An electrolytic cell in which the cation exchange membrane for fluorine-containing electrolysis of the present invention is used may be monopolar or bipolar as long as it has the above-described configuration including a cathode and an anode.
  • the material constituting the electrolytic cell include nickel, which is resistant to salt alkali and chlorine in the anode chamber, and titanium, which is preferred in the cathode chamber, which is resistant to hydroxide and alkali, and hydrogen. Is used.
  • an appropriate interval may be provided between the cation exchange membrane for fluorine-containing electrolysis of the present invention and the anode, but in the case of the membrane of the present invention, ion exchange with the cathode is possible.
  • the cathode is generally arranged at an appropriate interval from the ion exchange membrane, but even if this interval force is a contact type electrolytic cell (zero gap type electrolytic cell), the effect of the present invention is impaired. This is not the case.
  • the electrolysis in the examples and comparative examples is an expanded metal cathode Z perforated plate (4 mm ⁇ X 6 pitch, open area 40%) anode ldm 2 self-circulation type electrolysis cell. While maintaining the cathode concentration of caustic soda at 32% by weight, the temperature was set to 90 ° C with a current density of 60AZdm 2 and the liquid pressure on the cathode side of the electrolytic cell and the anode side The pressure difference from the liquid pressure was carried out for 7 days under the condition that the liquid pressure on the cathode side was increased by 8.8 kPa.
  • PTFE Polytetrafluoroethylene
  • PTFE 100 denier tape yarn made of polytetrafluoroethylene (PTFE) as a porous substrate and twisted 900 times Zm, and auxiliary fiber (sacrificial yarn) warp 30 denier, 6 filament Polyethylene terephthalate (PET) with a twist of 200 times Zm, and a weft of 35 denier, 8 filaments of PET made of 10 twists of Zm
  • PET Polyethylene terephthalate
  • the polymer (B) of the equivalent Zg dry resin and the polymer (C) having the same structure as the polymer (B) and the ion exchange capacity of 1.05 mg equivalent Zg dry resin were obtained.
  • a two-layer film (X) having a polymer (A) layer thickness of 25 m and a polymer (B) layer thickness of 75 m was obtained by a coextrusion T-die method.
  • a film (y) having a thickness of 25 ⁇ m of polymer (C) was obtained by a single-layer T-die method.
  • the surface has a truncated cone shape, the average height is 150 m, the distribution density of protrusions (protruding parts) is about 500 Zcm 2 , and the area fraction of the bottom surface of the protrusion is 0.157 cm cm 2 , on a metal roll heated to 40 ° C with protrusions with a bottom length of 200 m and a half height of the protrusion of 125 m.
  • a release paper having a basis weight of 127 gZm 2 was heat treated at a linear pressure of 1 kg NZcm and a heating speed of 1 OmZ.
  • the various materials obtained here were provided with a release paper, a film (y), a porous substrate, and a film (X) on a drum having a heating source and a vacuum source inside and having fine holes on the surface. After laminating in this order and heat-depressurizing, the release paper was removed to obtain a composite film. At this time, the processing temperature was 225 ° C., and the degree of vacuum was 0.022 MPa.
  • the film (y) on the anode side surface has an average height (h) of about 45 ⁇ m, a distribution density (P) of 500 pieces Zcm 2 ,
  • the average area fraction (S) is about 0.
  • the average value (T) of the area fraction of the apex is about 0.012 cm 2 Protruding part with polymer force having a truncated cone-like ion exchange group with an average value of base length (a) of about 100 m and an average value of width at half height of protruding part (b) of about 75 m It was confirmed that was formed.
  • the bZa value is 0.75 and the hZa value is 0.45.
  • the obtained composite membrane was hydrolyzed at 90 ° C. for 1 hour, washed with water and dried. Further, the 5 wt 0/0 ethanol solution of acid type polymer of Po Rimmer (C), was added a primary particle diameter of acid zirconium of 0. 02 m 20 wt%, to prepare a suspension obtained by dispersing, this The suspension was sprayed on both sides of the composite membrane by a spray method to form a gas-release coating of 0.5 mg / cm 2 .
  • the average height (h) of the protruding part that is also a force is 33 ⁇ m
  • the distribution density (P) of the protruding part is 500 pieces Zc m 2
  • the average value (S) of the area fraction of the bottom part of the protruding part is about 0 025 cm cm 2
  • the average value of the peak area fraction (T) is approximately 0.012 cm cm 2
  • the average bottom length of the protruding part (a) is approximately 80 ⁇ m
  • half the height of the protruding part (B) A composite membrane with a force of about 67 ⁇ m was fabricated. At this time, the value of bZa was about 0.84, and the value of hZa was about 0.41.
  • the obtained composite membrane was electrolyzed under the same
  • the average height (h) of the projecting portions having ion-exchange groups on the side surface of the anode of the obtained composite membrane is 66 ⁇ m
  • the distribution density (P) of the projecting portions is 250 Zcm 2
  • the average area fraction (S) of the bottom part of the protruding part is 0. lcm cm 2
  • the average value of the area part (T) of the apex part is about 0.009 cm 2
  • the average bottom length of the protruding part It was confirmed that the value (a) was about 200 ⁇ m and the average width (b) at the half height of the protruding part was 125 ⁇ m. At this time, the bZa value was about 0.63, and the hZa value was about 0.33.
  • the obtained composite membrane was electrolyzed under the same conditions as in Example 1. The results are also shown in Table 1. As in Example 1, good results were obtained.
  • the average pressure of the protruding part where only the polymer having ion exchange groups on the side of the anode is the same as in Example 3 with the linear pressure of the resin pressure roll made of 1400 NZcm.
  • the height (h) is 95 ⁇ m
  • the distribution density (P) of the protrusions is 250 pieces Zcm 2
  • the average area fraction (S) of the bottom part of the protrusions is 0.18 cm cm 2
  • the apex part The average area fraction (T) is about 0.009 cm 2
  • the average bottom length of the protruding part A composite film having (a) of about 270 / ⁇ ⁇ and an average width (b) of about 135 m at half the height of the protruding portion was produced. At this time, the bZa value was about 0.50 and the hZa value was about 0.35.
  • the obtained composite membrane was electrolyzed under the same conditions as in Example 1. The results are also shown in Table 1, and good results were obtained as in Example 1.
  • a composite film was prepared and evaluated in the same manner as in Example 1 using a release paper that had not been embossed. When the surface on the anode side was observed, no protruding portion as in the example was found.
  • Table 1 Although the mechanical strength confirmed by the tensile test was good, of the electrolysis performance, the current efficiency decreased greatly and the amount of sodium chloride sodium in caustic soda was 2 It was also high on the day and increased significantly on the seventh day.
  • the linear pressure of the resin pressure roll is set to 400 NZcm, and the average height of the protruding portion that also has the polymer force having ion exchange groups on the anode side surface in the same manner as in Example 3.
  • (H) is 16 ⁇ m
  • the distribution density (P) of the protrusions is 250 pieces Z cm 2
  • the average area fraction (S) of the bottom surface of the protrusions is about 0.019 cm cm 2
  • apex The average value of the area fraction (T) of the part is about 0.009 cm 2
  • the bZa value was about 0.53, and the hZa value was about 0.18.
  • the obtained composite membrane was electrolyzed under the same conditions as in Example 1. The results are also shown in Table 1. As in Comparative Example 1, although the mechanical strength was good, the current efficiency decreased greatly in the electrolysis performance, and the amount of sodium chloride sodium in the caustic soda was high even on the second day after the start of electrolysis. It was.
  • the linear pressure of the resin pressure roll is set to 400 NZcm, and the average height of the protruding part that also has the polymer force having ion exchange groups on the anode side surface is the same as in Example 1.
  • the cation exchange membrane for electrolysis of the present invention reduces the impurities in the generated alkali hydroxide while maintaining excellent electrochemical properties and mechanical strength for electrolysis of aqueous alkali chloride solutions, and improves quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 イオン交換基を有する含フッ素重合体と多孔性基材とを含んでなる電解用陽イオン交換膜であって、膜の陽極側表面にイオン交換基を有するポリマーを含んでなる突出部分を持ち、該膜の陽極側表面から該突出部分の頂点までの高さの平均値をh(μm)としたとき、20≦h≦150であり、該突出部分の分布密度をP(個/cm2)としたとき、50≦P≦1200であり、該突出部分の、膜の陽極側表面と同一表面上の底面部の面積分率の平均値をS(cm2/cm2)としたとき、0.001≦S≦0.6であり、該膜の陽極側表面の該突出部分の頂点部の面積分率の平均値をT(cm2/cm2)としたとき、T≦0.05であることを特徴とする電解用陽イオン交換膜。

Description

明 細 書
電解用フッ素系陽イオン交換膜及びその製造方法
技術分野
[0001] 本発明は、電解用陽イオン交換膜、より詳しくは、塩化アルカリ水溶液の電解に使 用され、電気化学的性質及び機械的強度を保持しながら安定した電解性能を発揮 し、特にイオン交換によって得られる水酸ィ匕アルカリ中の不純物を低減し品質を向上 させることが可能な電解用陽イオン交換膜及びその製造方法に関する。
背景技術
[0002] 含フッ素イオン交換膜は、耐熱性、耐薬品性などが優れて ヽることから、塩化アル カリの電解による塩素と水酸ィ匕アルカリの製造のための電解用イオン交換膜をはじめ として、オゾン発生用、燃料電池、水電解、塩酸電解などの電解用隔膜として、各種 用途に広く使用され、更に新しい用途が広がりつつある。
[0003] これらの用途の中で、塩ィ匕アルカリの電解による塩素と水酸ィ匕アルカリの製造は、 近年、イオン交換膜法が主流となっている。ここで用いられるイオン交換膜には、高 Vヽ電流効率と低!ヽ電解電圧、取扱 ヽ時ゃ電解時に損傷しな ヽ程度の膜強度と同時 に、製造する水酸化アルカリ中に含まれる不純物、特に塩化アルカリの低濃度化も 要求されている。カゝかる要求を満たすため、種々の提案がなされており、電気抵抗は 高 、が高電流効率を示すカルボン酸基を有する含フッ素榭脂からなる層及び低 ヽ 電気抵抗を有するスルホン酸基を有する含フッ素榭脂からなる層の複層構造を有す る含フッ素イオン交換膜が有用であり、現在の主流となっていることは周知である。
[0004] また、膜の含水率を増して電気抵抗を下げるために種々の提案がなされて!/、るが、 カルボン酸基を有する層のイオン交換容量を増して電気抵抗を下げようとすると電流 効率が低下し、同時に水酸ィ匕アルカリ中の不純物も増加する問題点がある。また、ス ルホン酸基を有する層のイオン交換容量を増して電気抵抗を下げようとすると、やは り生成する水酸ィ匕アルカリ中の不純物が増加し、更に膜の強度低下が顕著になると いう問題点が発生する。
最近では、特許文献 1及び特許文献 2などのように、膜の構成をより多層化し、それ ぞれの層の含水率を規定したものが提案されており、電解電圧の低減と膜強度の改 善を図っている。しかし、この場合、陽極側に面する層の含水率が高すぎるとやはり 膜の強度低下が認められるば力りでなぐ生成する水酸化アルカリ中の不純物濃度 も増加する。
[0005] 一方、膜強度を改良する方法として、例えば、特許文献 3のように、ポリテトラフルォ 口エチレン (PTFE)などの含フッ素重合体力もなる織布などの多孔性基材を膜中に 挿入することも、やはり周知の通りである。
更に、特許文献 4のように、 PTFEなどカゝらなる織布の形状を陽極面側に突出させ ることで膜強度を改善する方法も開示されている。しかし、この方法では、織布形状 の突出部分によって囲まれた部分が形成されるため、電解条件や電解槽の構造によ つては膜の陽極表面での塩ィ匕アルカリ水溶液の供給性が低下し、生成する水酸化ァ ルカリ中の不純物が増大する。このため、安定した品質の水酸ィ匕アルカリを得ること はできない。
[0006] また、電解時に陽極側力も生成する塩素中の酸素の量を低減する目的で、膜の陽 極側表面の形状を改善する方法において、特許文献 5には、突起部を持つプレス口 ールの形状を膜に転写して溝加工を行う方法、特許文献 6には膜表面に織布を埋め 込んだ後に引き剥がすことで溝力卩ェを施す方法が開示されている。しかし、これらの 製造方法によって得られたイオン交換膜では、予め膜内に埋め込まれた PTFEなど 力もなる多孔性基材が、溝加工を施す膜の表面とは反対側に押し上げられ、実質的 に多孔性基材上の樹脂の厚みが薄くなることから、膜の強度低下に繋がる。イオン交 換膜は、電解中にあらゆる方向からの応力を受けているため、 PTFEなど力もなる多 孔性基材の方向とは異なる方向、例えば、多孔性基材に対して 45度をなす方向の 応力に対しては、これらの製造方法で得られたイオン交換膜の強度は大幅に低下し 、長期にわたって安定した電解性能を得ることはできない。更に、これらの製造方法 によって得られるイオン交換膜では、陽極と膜表面との間の塩ィ匕アルカリ水溶液の供 給性の改善が不十分であり、生成する水酸ィ匕アルカリ中の不純物を低減させることは できない。
[0007] 特許文献 1:特開昭 63 - 113029号公報 特許文献 2:特開昭 63 - 8425号公報
特許文献 3:特開平 3— 217427号公報
特許文献 4:特開平 4 - 308096号公報
特許文献 5:特開昭 60— 39184号公報
特許文献 6:特開平 6 - 279600号公報
発明の開示
発明が解決しょうとする課題
[0008] 水酸化アルカリが不純物、特に塩化アルカリを多量に含んでいると、レーヨン、パル プ、紙、化学薬品などの製造のように、高純度の水酸ィ匕アルカリ製品を必要とする用 途には適さない。従って、生成する水酸化アルカリの不純物濃度が低減されるような 電解用陽イオン交換膜が切に求められて 、た。
本発明は、塩ィ匕アルカリ水溶液の電解に使用され、長期にわたって電気化学的性 質及び機械的強度を保持しながら安定した電解性能を発揮し、特にイオン交換によ つて得られる水酸ィ匕アルカリ中の不純物を低減し品質を向上させることが可能な、従 来の技術では達成し得な力つた電解用イオン交換膜及びその製造方法に関するも のである。
課題を解決するための手段
[0009] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、生成する水酸 化アルカリ中の不純物は、陽極側力ゝら膜内に浸入した陰イオンが陽イオンとイオン対 を形成し、陰極液に不純物として溶け込むことにより発生することを突き止め、またこ の現象は、膜の陽極側表面で塩化アルカリ水溶液の供給が不足した場合に顕著に なることを発見し、本発明に至った。
[0010] 更に詳しく説明すると、本発明者らは、様々なメーカーの電解槽や様々な運転条件 で使用されたイオン交換膜を解析した結果、イオン交換膜と密着する陽極の面積が 大きい場合や電解の電流密度が高い場合、又は、電解槽の陰極とイオン交換膜の 陰極側表面とが接触して ヽるゼロギャップ式電解槽で運転された場合、そのイオン交 換膜の一部には、電解槽の陽極の形状に沿ってイオン交換膜中に微細な発泡が生 じており、性能評価の結果、そこでは水酸ィ匕アルカリ中の不純物が増大しているとい う事実を発見した。
[0011] これは、電解槽の陽極とイオン交換膜の陽極側表面が密着している部分では、陽 極室の塩化アルカリ水溶液の供給が不足し、塩ィ匕アルカリ水溶液の濃度が低下する ために、イオン交換膜中に微細な発泡が生じるためであると考え、この問題を解決す るためにイオン交換膜の陽極側面の形状を種々検討した結果、本発明者らは本発 明に至ったのである。
[0012] 即ち、本発明は、下記の通りである。
1.イオン交換基を有する含フッ素重合体と多孔性基材とを含んでなる電解用陽ィ オン交換膜であって、膜の陽極側表面にイオン交換基を有するポリマーを含んでな る突出部分を持ち、該膜の陽極側表面力 該突出部分の頂点までの高さの平均値 を h m)としたとき、 20≤h≤150であり、該突出部分の分布密度を P (個 Zcm2)と したとき、 50≤P≤ 1200であり、該突出部分の、膜の陽極側表面と同一表面上の底 面部の面積分率の平均値を S (cm2Zcm2)としたとき、 0. 001≤S≤0. 6であり、該 膜の陽極側表面の該突出部分の頂点部の面積分率の平均値を T(cm2/cm2)とし たとき、 T≤0. 05であることを特徴とする電解用陽イオン交換膜。
2.前記突出部分の、膜の陽極側表面と同一表面上の底辺の長さの平均値を a ( m)とし、該突出部分の半分の高さ hZ2 ( μ m)における該突出部分の幅の平均値を 1) ( 111)としたとき、0. 5≤b/a≤0. 9であり、 0. 25≤h/a≤0. 80である上記 1. に記載の陽イオン交換膜。
3.前記突出部分が不連続である上記 1.又は 2.に記載の陽イオン交換膜。
[0013] 4.前記突出部分の形状が、円錐様、四角錐様、円錐台様、及び四角錐台様から なる群力 選ばれる 1つ又は 2つ以上の混合形状である上記 1.力 3.のいずれか 一項に記載の陽イオン交換膜。
5.イオン交換基を有する含フッ素重合体と多孔性基材とを積層する際に、陽極側 表面にエンボス処理をした離型紙を密着せしめ、該表面に該離型紙のエンボス形状 を転写することで、陽極側表面にイオン交換基を有するポリマーを含んでなる突出部 分を得ることを特徴とする電解用イオン交換膜の製造方法。
6.前記離型紙を介して減圧にすることにより該離型紙を前記陽極側表面に密着さ せる上記 5.に記載の方法。
7.エンボス形状が、円錐様、多角錐様、半球様、ドーム様、円錐台様、多角錐台 様のいずれか又は 2つ以上の混合形状である、上記 5.に記載の方法。
8.上記 1〜4のいずれか一項に記載の陽イオン交換膜、陰極及び陽極を含んでな る電解装置であって、前記突出部分を有する表面が該陽極に接触しているか、又は 対向している上記電解槽。
発明の効果
[0014] 本発明の含フッ素系陽イオン交換膜は、塩化アルカリ水溶液の電解において、電 気化学的性質及び機械的強度を保持しつつ、得られる水酸化アルカリ中の不純物 を低減し長期にわたって高品質の水酸ィ匕アルカリを製造できる。
発明を実施するための最良の形態
[0015] 以下、本発明について、特にその好ましい形態を中心に、具体的に説明する。
本発明は、イオン交換基を有する含フッ素重合体と多孔性基材とを含んでなり、膜 の陽極側表面にイオン交換基を有するポリマーを含んでなる突出部分を持ち、該膜 の陽極側表面力 該突出部分の頂点までの高さの平均値を h ( m)としたとき、 20 ≤h≤150であり、該突出部分の分布密度を P (個 Zcm2)としたとき、 50≤P≤1200 であり、該突出部分の、膜の陽極側表面と同一表面上の底面部の面積分率の平均 値を S (cm2Zcm2)としたとき、 0. 001≤S≤0. 6であり、該膜の陽極側表面の該突 出部分の頂点部の面積分率の平均値を T(cm2Zcm2)としたとき、 T≤0. 05である ことを特徴とする電解用陽イオン交換膜である。
[0016] ここで陽極側表面とは、本発明の電解用陽イオン交換膜が電解槽に配置された場 合、陽極側に向くことになる膜表面を言う。本発明においては、この陽極側表面が、 イオン交換基を有するポリマーを含んでなる突出部分を有する。なお、本発明におい ては、膜が電解槽に組み込まれずに、膜自体が独立に存在している場合であっても 、上記の突出部分を有する膜表面を、便宜上、「陽極側表面」と言う。
[0017] 本発明では、上記のごとぐ膜の陽極側表面にあるイオン交換基を有するポリマー を含んでなる突出部分の高さは、膜の陽極側表面から突出した部分の頂点までの高 さの平均値 h m) 1S 好ましくは 20≤h≤ 150、より好ましくは 20≤h≤ 120であり、 陽極側面に突出した部分の分布密度 P (個 Zcm2)が、好ましくは 20≤P≤1500、よ り好ましくは 50≤P≤ 1200であり、該突出部分の膜の陽極側表面と同一表面上の底 面部の面積分率の平均値を S (cm2Zcm2)としたとき、 0. 001≤S≤0. 6であり、該 突出部分の頂点部の面積分率の平均値を T(cm2Zcm2)としたとき、 T≤0. 05であ ることが好ましい。このような膜の陽極側表面の突出部の形状により、膜の機械強度 や電気化学的性質を損なうことなく電解時の膜の陽極側表面での塩化アルカリ水溶 液の供給が著しく向上し、電解によって得られる水酸ィ匕アルカリ中の不純物が大幅 に低減されることは予想外のことである。
[0018] また、膜の陽極側表面の突出部分において、膜の陽極側表面と同一表面上の底 辺の長さの平均値を a ( m)、該突出部分の半分の高さ hZ2 ( μ m)における該突 出部分の幅の平均値を b ( m)としたとき、 bZaの値力 0. 5≤b/a≤0. 9であるこ とが好ましい。 bZaの値が 0. 5以上であれば、本発明で必要な該突出部分の分布 密度 Pの好ましい範囲において、該突出部分の高さは十分であり、膜の陽極側表面 での十分な塩ィ匕アルカリ水溶液の供給性が得られ、該突出部分の強度低下もなぐ 膜が電解槽の陽極に押付けられても該突出部分の形状を維持しやすい。また、 b/a の値が 0. 9以下であれば、該突出部分と電解槽の陽極との接触面積が過大になら ず、膜の陽極側表面において電解槽の陽極室の塩ィ匕アルカリ水溶液の供給が不足 することもない。また、該突出部分の強度低下も起こりにくい。
[0019] 更に好ましい形態としては、膜の陽極側表面の突出部分の平均の高さ h m)と該 突出部分の膜の陽極側表面と同一表面上の底辺の長さの平均値 a ( m)との関係 力 0. 25≤h/a≤0. 8を満たすものである。 hZaの値が 0. 25以上であれば、該 突出部分の高さが十分で、塩化アルカリ水溶液の十分な供給が得られ、電解槽の陽 極と膜の陽極表面側の突出部分との接触面積が過大にならず、膜内の微細な発泡 、電解性能の低下を抑止できる。一方、 hZaの値が 0. 8以下であれば、該突出部分 の強度低下がなぐ電解性能が安定する。
[0020] 本発明における膜の陽極側表面でイオン交換基を有するポリマー力 なる突出部 分は不連続であることが好ましぐこの形状により電解時に十分な塩ィ匕アルカリ水溶 液の供給が得られる。ここで不連続であるとは、膜表面の狭い範囲において、突出部 分が連続壁状に繋がり閉ざされた陽極側表面にはなって 、な 、ことを意味して 、る。 膜の陽極側表面の突出部分の形状は、好ましくは、円錐状、三角錐状、四角錐状な どの多角錐状、半球状、ドーム状、円錐台、多角錐台などであり、該突出部分と電解 槽の陽極との接触面積や突出部分の強度のバランスに優れていることから、更に好 ましくは、円錐様、円錐台様、四角錐様、四角錐台様などである。膜の陽極側表面の 突出部分は、これらの形状の中のいずれ力、又は、これらの中から選択された 2っ以 上の形状の混合形状であっても構わな 、。
[0021] ここで、膜の陽極側表面と同一表面上の底辺の長さの平均値 a ( m)は、該突出 部分の頂点を通る膜の断面を薄膜に切り出し、光学顕微鏡で 40倍の倍率で観察し て求めた。即ち、該突出部分の形状が円錐状、円錐台状、半球状、ドーム状などの 場合には、該突出部分の底面が円であるとしてその直径を観察した。また、該突出部 分の形状が四角錘状、四角錘台状の場合には、底面の形状が正方形であるとしてそ の一辺の長さを観察した。突出部分の一辺の長さを求めた。これらの平均値につい ては、それぞれ 10個を観察してその平均値を求めた。
[0022] 次に該突出部分の高さの平均 h( w m)、及び該突出部分の半分の高さ hZ2 ( μ m )は、該突出部分の頂点を通る膜の断面を薄膜に切り出し、光学顕微鏡で 40倍の倍 率で観察して求めた。平均値は 10個の断面観察を行いその平均を求めた。また、該 突出部分の半分の高さ hZ2における突出部分の幅 b ( μ m)につ 、ては、該突出部 分の形状が円錐状、及び円錐台状の場合には直径、四角錘、及び四角錘台状の場 合には一辺の長さで求めた。平均値は同じく 10個を観察した値の平均である。
[0023] 更に、該突出部分の膜の陽極側表面と同一表面上の底面部の面積分率の平均値 S (cm cm2)は、 aの値を用いて、底面部の面積を円の面積又は多角形の面積に 近似して求めた。該突出部分の頂点部の面積分率の平均値 T(cm2Zcm2)は、膜の 断面を薄膜に切り出し、光学顕微鏡を用いて 100倍の倍率で該突出部分を確認し、 該突出部分の頂点力 底面側に 5 m下がった部分の幅の平均値を測定し、該突 出部分の形状が円錐状、円錐台状の場合には円の面積として、角錐状、角錐台状 の場合には多角形の面積として、頂点部の面積を近似的に求めた。なお、 S及び T の値は、それぞれ膜の陽極側表面の単位面積に対する底面部及び頂点部の面積 の割合として求めた。該突出部分の分布密度 P (個 Zcm2)は、膜の陽極側表面を光 学顕微鏡で 40倍の倍率で観察して求めた。
[0024] 本発明で使用される多孔性基材は、膜の強度及び寸法安定性を付与する目的の ものであり、膜中にその大部分が存在することが必須である。力かる多孔性基材は長 期にわたる耐熱性、耐薬品性が必要であることから、フッ素系重合体から成る繊維に よるものであることが好ましい。これらの例としては、ポリテトラフルォロエチレン (PTF E)、テトラフルォロエチレン パーフルォロアルキルビュルエーテル共重合体(PFA )、テトラフルォロエチレン エチレン共重合体(ETFE)、テトラフルォロエチレン へキサフルォロプロピレン共重合体、トリフルォロクロルエチレン エチレン共重合体 及びフッ化ビ-リデン重合体 (PVDF)などがあるが、特にポリテトラフルォロエチレン 力も成る繊維を用いることが好まし 、。
[0025] 本発明で使用される多孔性基材は、その糸径が好ましくは 20〜300デニール、より 好ましくは 50〜250デニール、織り密度が好ましくは 5〜50本 Zインチである。多孔 性基材の形状としては、織布、不織布又は編布などが用いられるが、織布の形態で あることが好ましい。また、織布の厚みは、好ましくは30〜250 111、より好ましくは 3 0〜150 πιである。
[0026] 多孔性基材の織布又は編布はモノフィラメント、マルチフィラメント、又は、これらの ヤーン、スリットヤーンなどが使用され、織り方は平織り、絡み織り、編織り、コード織り 、シヤーサッ力など種々の織り方が使用される。
また、開口率としては好ましくは 30%以上、より好ましくは 50%以上 90%以下であ る。開口率は、イオン交換膜としての電気化学的性質の観点力も 30%以上、また、膜 の機械的強度の観点から 90%以下が好ましい。
[0027] これら種々の多孔性基材の中でも、特に好ま U、形態としては、例えば、 PTFE力 ら成る高強度多孔質シートをテープ状にスリットしたテープヤーン、又は、 PTFEから 成る高度に配向したモノフィラメントの 50〜300デニールのものを使用し、織り密度が 10〜50本 Ζインチの平織り構成からなり、更にその厚みは 50〜100 μ mの範囲で かつその開口率は 50%以上であるものが挙げられる。更に、織布には、膜の製造ェ 程において多孔性基材の目ズレを防止する目的で、通常犠牲芯材と呼ばれる補助 繊維を含ませてもよ ヽ。この補助繊維は膜の製造工程又は電解環境下にお ヽて溶 解性を有するものであり、レーヨン、ポリエチレンテレフタレート(PET)、セルロース及 びポリアミドなどが用いられる。この場合の補助繊維の混織量は、好ましくは織布又 は編布全体の 10〜80wt%、より好ましくは 30〜70wt%である。
[0028] 本発明にお 、て用いられる含フッ素重合体とは、フッ素化炭化水素の主鎖力もなり 、ペンダント側鎖として、加水分解等によりイオン交換基に変換可能な官能基を有し 、かつ溶融加工が可能な重合体をいう。
[0029] 次に、このような含フッ素重合体の一般的な製造方法の例について説明する。
含フッ素重合体は、下記の第 1群力 選ばれる少なくとも 1種の単量体と、下記の第 2及び Z又は第 3群力 選ばれる少なくとも 1種の単量体とを共重合することにより製 造することができる。
第 1群の単量体は、フッ化ビ-ルイ匕合物であり、例えば、フッ化ビニル、へキサフル ォロプロピレン、フッ化ビ-リデン、トリフルォロエチレン、クロルトリフルォロエチレン、 パーフルォロ(アルキルビュルエーテル)、テトラフルォロエチレンなどの少なくとも 1 種であり、特にアルカリ電解用膜として使用される場合に、望ましくは水素を含まない パーフルォロ単量体であるテトラフルォロエチレン、パーフルォロ(アルキルビ-ルェ 一テル)、へキサフルォロプロピレンの中力 選ばれるのが好ましい。
[0030] 第 2群の単量体は、カルボン酸型イオン交換基に変換し得る官能基を有するビ- ル化合物である。一般的には、 CF =CF (OCF CYF) s— 0 (CZF) t— COORで表
2 2
される単量体が用いられる。ここで、 sは 0〜2の整数、 tは 1〜12の整数、 Y及び Zは F又は CFを表し、 Rは低級アルキル基を表す。
3
好ましい単量体は、 CF = CFO (CF2CYFO) n - (CF2) m— COORで表される
2
化合物である。ここで、 nは 0〜2の整数、 mは 1〜4の整数、 Yは F又は CF
3、 Rは CH
3 、 C H
2 5、 C Hを表す。
3 7
特に該重合体をアルカリ電解用膜として用いた場合には、パーフルォロ化合物が 好ましいが、 R (低級アルキル基)のみは官能基力 Sイオン交換基に加水分解される時 点で失われるために、パーフルォロ型である必要はない。このような好ましい単量体 としては、例えば、 CF =CFOCF— CF (CF )— O— CF COOCH、 CF =CFO CF CF (CF ) 0 (CF ) COOCH、 CF =CF[OCF— CF (CF ) ] 0 (CF ) CO
2 2 2 2 3 2 2 3 2 2 2
OCH、 CF =CFOCF CF (CF ) 0 (CF ) COOCH、 CF =CFO (CF ) COO
3 2 2 3 3 3 3 2 2 2
CH、 CF =CFO (CF ) COOCHなどがある。
3 2 2 3 3
[0031] 第 3群の単量体は、スルホン型イオン交換基に変換し得る官能基を有するビ-ルイ匕 合物である。好適な化合物の一般式は、 CF =CFO— X— CF— SO Fで表され、
2 2 2
ここで、 Xは種々のパーフルォロ基が選択される。具体例としては、 CF =CFOCF
2 2
CF SO F、 CF =CFOCF CF (CF ) OCF CF SO F、 CF =CFOCF CF (CF
2 2 2 2 3 2 2 2 2 2 3
) OCF CF CF SO F、 CF =CF (CF ) SO F、 CF =CFO [CF CF (CF ) θ] C
2 2 2 2 2 2 2 2 2 2 3 2
F CF SO F、 CF =CFOCF CF (CF OCF ) OCF CF SO F、などがあり、これら
2 2 2 2 2 2 3 2 2 2
の中でも特に好適なものとしては、 CF =CFOCF CF (CF ) OCF CF CF SO F
2 2 3 2 2 2 2 及び CF =CFOCF CF (CF ) OCF CF SO Fである。
2 2 3 2 2 2
[0032] これら単量体の共重合体は、フッ化工チレンの単独及び共重合に対して開発され た重合法、特にテトラフルォロエチレンに対して用いられる一般的な重合方法によつ て製造することができる。例えば、非水性法においては、パーフルォロ炭化水素、ク ロルフルォロカーボン等の不活性な液体を溶媒とし、パーフルォロカーボンペルォキ シド又はァゾィ匕合物等のラジカル重合開始剤の存在下で、温度 0〜200°C、圧力 0. l〜20MPaで共重合を行うことができる。
共重合を行うに当たり、前記 3つの群力 選ばれる単量体の種類及び割合は、フッ 素化重合体に希望する官能基の種類及び量によって選択決定される。
[0033] 例えば、カルボン酸エステル官能基のみを含有する重合体を要求する場合、第 1 群及び第 2群の単量体から、それぞれ少なくとも 1種を選択して共重合させればよい また、スルホニルフルオリド官能基のみを含有する重合体を要求する場合、第 1群 及び第 3群の単量体から、それぞれ少なくとも 1種を選択して共重合させればよい。 更に、カルボン酸エステル、及びスルホ-ルフルオリドの 2種の官能基を共有する 重合体を要求する場合には、第 1群、第 2群及び第 3群の単量体からそれぞれ少なく とも 1種を選択して共重合させればよいことになる。
この場合、第 1群及び第 2群力 なる共重合体と第 1群及び第 3群力 なる共重合 体を別々に重合し、後に混合することによつても目的のフッ素化重合体を得ることが できる。また、各単量体の混合割合は、単位重合体当たりに要求される官能基の量 を増やす場合、第 2群、又は第 3群から選ばれる単量体の割合を増加させればよい。
[0034] 一般的には、全官能基の量が交換基に転ィ匕された後、好ましくは 0. 5〜2. Omg当 量 Zg乾燥榭脂、より好ましくは 0. 6〜1. 5mg当量 Zg乾燥樹脂のイオン交換容量 の範囲で本発明のイオン交換膜が用いられる。
本発明のイオン交換膜の製造方法は、イオン交換基を有する含フッ素重合体と多 孔性基材とを積層する際に、陽極面表側にエンボス処理をした離型紙を密着せしめ 、該表面に該離型紙のエンボス形状を転写することで、陽極側表面にイオン交換基 を有するポリマーを含んでなる突出部分を得ることを特徴とする。
[0035] ここで、フィルム及び多孔性基材を一体化する際に使用する離型紙には、本発明 の目的である、膜の陽極側表面に突出部分を設けるために、予め目的とする形状の エンボス力卩ェを施しておく。離型紙へのエンボスカ卩ェは、例えば、予め、目的とする 突出形状の加工を表面に施した加熱金属ロールに離型紙を密着させ、加工温度を 好ましくは 20〜120°C、より好ましくは 25〜80°Cとして、加熱金属ロールに離型紙を 、榭脂製プレッシャーロールの線圧を好ましくは 500NZcm以上、より好ましくは 600 〜2000NZcmとして、加工速度を好ましくは 50mZ分以下、より好ましくは 40mZ 分以下として押し付けることにより行う。なお、エンボスの深さは、加熱金属ロールに 離型紙を押し付ける榭脂製プレッシャーロールの線圧を変化させることにより制御す ることが可能である。使用する離型紙の坪量は比較的広い範囲が可能であるが、ノ、 ンドリング性や耐熱性の観点から、 50〜400g/m2が好まし 、。
[0036] また、転写を行う際には、離型紙を介して減圧にすることにより該離型紙を密着させ る方法が、膜の機械的強度の保持力 好ましい。
なお、離型紙に予め施したエンボスの形状を膜の陽極側表面に転写する際には、 転写を確実に行うため、膜表面の温度を 180°C以上 300°C以下として転写を行うこと が好ましい。
また、離型紙にエンボス加工を施すにあたり、透気度が 0. 03MPa以下、好ましく は 0. 025MPa以下である離型紙に減圧下で力卩ェを施すことが、膜と離型紙との密 着性をより向上させ、離型紙に予め加工したエンボス形状を正確に転写できるため 好ましい。
なお、離型紙の透気度の測定は、空気マイクロメーター型試験器にて、 JAPAN T APPI No. 5—1 : 2000の規格に準じて測定した。
[0037] エンボスの形状は、エンボス力卩ェに用いる金属ロールの表面形状が離型紙に転写 されるため、いかなる形状にすることもできる。
本発明の目的を達成するためには、円錐状、三角錐状、四角錐状などの多角錐状 、半球状、ドーム状、円錐台状、角錐台状など種々の形状が選択可能であり、 2っ以 上の混合形状であっても構わな 、。
[0038] また、エンボスの高さの平均値は、イオン交換膜の一体化の際に、膜の陽極側表面 にほぼ同じ形状でエンボス形状が転写されるため、前述の通り 20〜 150 mが好ま しく、更【こ好ましく【ま20〜120 111でぁる。更【こ、エンボスの分布密度 ίま、 20〜150 0個 Zcm2であることが好ましぐ更〖こ好ましくは 50〜1200個 Zcm2、エンボスの底 面部の面積分率の平均値は、 0. 001〜0. 6cm2Zcm2であることが好ましい。ェン ボスの頂点部の面積分率は、エンボスの形状によって異なるが、いずれの場合にお V、ても 0. 05cm2Zcm2以下であることが好まし!/、。
また、エンボスの底面部の底辺の長さの平均(a)と該エンボスの半分の高さの幅の 平均(b)との関係は、 0. 5≤b/a≤0. 9、エンボスの底面部の底辺の長さの平均(a )とエンボスの高さの平均(h)との関係は、 0. 25≤h/a≤0. 8となることが好ましい。
[0039] この離型紙を用いて前述のような膜を製造した場合、膜の陽極側表面には、イオン 交換基を有するポリマー力もなる突出部分が形成され、電解時、陽極との密着性が 緩和されることで、陽極の塩ィ匕アルカリ溶液が膜の陽極側表面に十分に供給され、 本発明の目的を達成することが可能となる。
ここで、離型紙に加工されるエンボスは、不連続であることが好ましぐ格子状のよう な密閉された形状であると、膜の陽極側表面に転写された際、突出した部分に囲ま れた部分が形成されてしまうため、電解時の塩ィ匕アルカリ溶液の十分な供給を得るこ とが困難になる。
なお、離型紙にカ卩ェされるエンボスの配置は、本発明に記載のエンボスの分布密 度や深さの範囲を超えない限り、規則正しく配列されていても、ランダム状に配置さ れていても構わない。
[0040] 特に好まし 、方法としては、陰極側に位置するカルボン酸エステル官能基を含有 する含フッ素重合体 (第 1層)とスルホ-ルフルオリド官能基を有する含フッ素重合体 (第 2層)を共押出し法によってフィルム化する。これとは別にスルホニルフルオリド官 能基を有する含フッ素重合体 (第 3層)を予め単独でフィルム化する。加熱源及び真 空源を有し、その表面に多数の細孔を有する平板又はドラムの上に、透気性を有す る耐熱性の離型紙を介して、第 3層フィルム、多孔性基材、第 2Z第 1層複合フィルム をこの順に積層して、各ポリマーが溶融する温度下で減圧により各層間の空気を除 去しながら一体ィ匕する。ここで、第 1層と第 2層とを共押出しすることは界面の接着強 度を高めることに寄与しており、また、減圧下で一体化する方法は、加圧プレス法に 比べて多孔性基材上の第 3層の厚みが大きくなる特徴を有している。更に、多孔性 基材が膜の内面に固定されているため、膜の機械的強度が十分に保持できる。
[0041] なお、イオン交換膜の電気的性能を高める目的で、第 1層と第 2層との間にカルボ ン酸エステル官能基とスルホ-ルフルオリド官能基の両方を含有する第 4の層を介在 せしめることや、第 2層そのものをカルボン酸エステル官能基とスルホ-ルフルオリド 官能基の両方を含有する層に置き換えることも可能である。この場合、カルボン酸ェ ステル官能基を含有する重合体とスルホニルフルオリド官能基を含有する重合体を 別々に製造した後に混合する方法を採ってよいし、また、カルボン酸エステル官能基 を持つ単量体とスルホニルフルオリド官能基を持つ単量体の両者を共重合してもよ い。第 4層を膜の構成として挿入する場合には、第 1層と第 4層との共押出しフィルム を成形し、第 3層と第 2層はこれとは別に単独でフィルム化し、前述の方法で積層して もよ!/、し、第 1層 Z第 4層 Z第 2層の 3層を一度に共押し出しでフィルム化してもょ 、。
[0042] なお、第 1層の厚みは、好ましくは 5〜50 /ζ πι、より好ましくは 5〜30 m、第 2の層 は膜の強度を支配する層であるため、好ましくは 30〜120 m、より好ましくは 40〜 100 ^ m,また第 3層は 15〜50 が好ましい。更に、上記の第 4層を介在せしめる場 合には、イオン交換膜の加水分解前の合計厚みを、好ましくは 200 m以下、より好 ましくは 50〜180 ;ζ ΐηの範囲になるよう適宜調整する。膜厚みは、膜の機械的強度 の観点から、 50 μ m以上、電解時の電解抵抗の観点から 180 μ m以下が特に好まし い。
[0043] 前述の通り、電解用陽イオン交換膜は低電圧であることが要求されているが、その 手段のひとつとして、カルボン酸基を含有するフッ素榭脂からなる層とスルホン酸基 を含有するフッ素榭脂からなる層の厚みを薄くすることが採用されている。この場合、 膜強度に関しては、膜の厚みに比例して膜強度が低下するという問題点がある。膜 強度の低下を防ぐ目的で、 PTFEなど力 なる多孔性基材を膜内に埋め込む方法が 採られている力 多孔性基材のあるイオン交換膜では、この多孔性基材の周辺が最 も榭脂層が薄くなる部分となり、膜強度に強く影響している。
従って、イオン交換膜の強度を低下させないためには、多孔性基材の周辺の榭脂 層の厚みを薄くしない製造方法が有効である。
[0044] 本明細書に記載の、予め離型紙に施したエンボス形状を膜の表面に転写する方法 によれば、多孔性基材の周辺の榭脂層を薄くすることなくイオン交換膜の陽極側表 面に含フッ素系榭脂からなる不連続の突出部分を設けることができ、膜の強度を低 下させずに膜の陽極側表面の形状改善が可能となる。また、本発明に記載の製造方 法では、溶融した含フッ素ポリマーが直接ロールに接触することがないため、例えば 金属ロールなどを用いて突出部分の加工を行ったとしても金属ロールの腐食を防ぐ ことが可能である。更に、本発明の製造方法によって膜の陽極側面の表面に設けら れた突出部は小さぐかつ不連続であるため、電解槽の陽極と膜表面との接触部分 が少なくなり、塩化アルカリ溶液の十分な供給性が得られ、生成する水酸化アルカリ 中の不純物を大幅に低減できる。
[0045] 本発明の膜は必要に応じて陰極側表面及び陽極側表面にガス付着防止のための 無機物のコーティング層を有していても構わない。該コーティング層は、例えば、無 機酸ィ匕物の微細粒子をバインダーポリマー溶液に分散した液をスプレーにより塗布 することができる。
本発明の含フッ素系陽イオン交換膜は、種々の電解に使用できるが、ここでは、代 表例として塩ィ匕アルカリ水溶液の電解に使用する場合について説明する。電解の条 件については既知の条件が採用可能である。例えば、陽極室に 2. 5〜5. 5規定 (N )の塩化アルカリ水溶液を供給し、陰極室には水又は希釈した水酸ィ匕アルカリ水溶 液を供給し、電解温度が 50〜120°C、電流密度が 5〜: LOOAZdm2の条件で電解を 行う。
[0046] 本発明の含フッ素系電解用陽イオン交換膜が使用される電解槽は、陰極及び陽極 を含む上記の構成を有する限りにおいて、単極式でも複極式でもよい。また電解槽を 構成する材料としては、例えば、陽極室には塩ィ匕アルカリ及び塩素に耐性のあるもの としてチタンが好ましぐ陰極室には水酸ィ匕アルカリ及び水素に耐性のあるニッケル などが用いられる。電極の配置については、本発明の含フッ素系電解用陽イオン交 換膜と陽極との間に適当な間隔をつけて配置してもよいが、本発明の膜の場合、陽 極とイオン交換膜が接触して配置されていても何ら問題なく目的を達成できる。また、 陰極は一般的にはイオン交換膜と適当な間隔を以つて配置されているが、この間隔 力 、接触型の電解槽 (ゼロギャップ式電解槽)であっても本発明の効果を損なうこ とはない。
次に、実施例及び比較例によって本発明を説明する。
実施例
[0047] 以下、実施例及び比較例によって本発明を説明するが、本発明はこれら実施例に よって何ら制限されるものではな!/、。
実施例及び比較例における電解は、エキスパンドメタル陰極 Z多孔板 (4mm Φ X 6ピッチ、開孔率 40%)陽極の ldm2自己循環型電解セルにて、陽極側に塩化ナトリ ゥム水溶液を 205gZリットルに調整しつつ供給し、陰極側の苛性ソーダ濃度を 32重 量%に保ちつつ、 60AZdm2の電流密度で、温度を 90°Cに設定し、電解槽の陰極 側の液圧と陽極側の液圧との差圧を陰極側の液圧が 8. 8kPaだけ高い条件にて、 7 日間行った。
[0048] (実施例 1)
多孔性基材としてポリテトラフルォロエチレン (PTFE)製 100デニールのテープャ ーンに 900回 Zmの撚りをかけ糸状としたものと、補助繊維 (犠牲糸)の経糸として 30 デニーノレ、 6フィラメントのポリエチレンテレフタレート(PET)に 200回 Zmの撚りを力 けたもの、及び緯糸として 35デニール、 8フィラメントの PET製の糸に 10回 Zmの撚 りをかけたものを準備し、これらの糸を PTFE糸が 24本 Zインチ、犠牲糸が PTFEに 対して 4倍の 64本 Zインチとなるよう交互配列で平織りして厚み 100 μ mの織布を得 た。得られた織布を加熱された金属ロールで圧着し、織布の厚みを 70 mに調整し た。このとき、 PTFE糸のみの開口率は 75%であった。
[0049] 次に、 CF =CFと CF =CFOCF CF (CF ) OCF CF COOCHとの共重合体
2 2 2 2 3 2 2 3
でイオン交換容量が 0. 85mg当量 Zg乾燥榭脂のポリマー (A)、CF =CFと CF
2 2 2
= CFOCF CF (CF ) OCF CF SO Fとの共重合体でイオン交換容量が 0· 95mg
2 3 2 2 2
当量 Zg乾燥樹脂のポリマー (B)、及びポリマー (B)と同じ構造でイオン交換容量が 1. 05mg当量 Zg乾燥榭脂のポリマー(C)を得た。これらのポリマーを使用し、共押 出し Tダイ法にて、ポリマー(A)層の厚みが 25 m、ポリマー(B)層の厚みが 75 m の 2層フィルム(X)を得た。また、単層 Tダイ法にてポリマー(C)の厚み 25 μ mのフィ ルム (y)を得た。
[0050] 次に、表面に円錐台状で、その高さの平均値が 150 m、突起 (突出部分)の分布 密度が約 500個 Zcm2、突起底面部の面積分率が 0. 157cm cm2,突起部(突 出部分)の底面部の底辺の長さが 200 m、及び突起部の半分の高さの幅が 125 mの突起を有する 40°Cに加熱された金属製ロールに、榭脂製のプレッシャーロール の線圧 1 OOONZcm、加ェ速度 1 OmZ分で坪量 127gZm2の離型紙を加ェ処理し た。
[0051] ここで用いた加工処理前の離型紙の透気度は、空気マイクロメーター型試験器に て、 JAPAN TAPPI No. 5—1 : 2000の規格に準じて測定した値力 0. 005MP
&で &)つた o
ここで得られた各種材料を、内部に加熱源及び真空源を有し、その表面に微細孔 を有するドラム上に、離型紙、フィルム (y)、多孔性基材、及びフィルム (X)をこの順に 積層し加熱減圧着した後、離型紙を取り除くことで複合膜を得た。このときの加工温 度は 225°C、減圧度は 0. 022MPaであった。
[0052] 得られた膜を表面観察した結果、陽極側面のフィルム (y)には、高さの平均値 (h) が約 45 μ m、分布密度 (P)が 500個 Zcm2、底面部の面積分率の平均値 (S)が約 0 .
Figure imgf000017_0001
頂点部の面積分率の平均値 (T)が約 0. 012cm cm2,突出部 分の底辺長さの平均値 (a)が約 100 m、突出部分の半分の高さにおける幅の平均 値 (b)が約 75 mの円錐台様のイオン交換基を有するポリマー力もなる突出部分が 形成されていることを確認した。このとき、 bZaの値は 0. 75、 hZaの値は 0. 45であ つた o
[0053] 次に、得られた複合膜を 90°Cで 1時間加水分解した後、水洗、乾燥した。更に、ポ リマー(C)の酸型ポリマーの 5重量0 /0エタノール溶液に、 1次粒子径 0. 02 mの酸 化ジルコニウムを 20重量%加え、分散させた懸濁液を調合し、この懸濁液を上記複 合膜の両面にスプレー法により噴霧し、 0. 5mg/cm2のガス開放性被膜を形成させ た。
[0054] 上記のようにして得られた含フッ素系陽イオン交換膜について、引張強度、引張伸 度、及び電解性能を評価した。引張強度及び引張伸度の測定は、膜内に埋め込ん だ多孔性基材に対して 45度方向で幅 lcmのサンプルを作成し、チャック間距離 50 mm、引張り速度 lOOmmZ分の条件で、 JIS K6732に準じて行った。電解は、フィ ルム (y)が陽極側に向けて配置された前述の電解槽で、 60AZdm2の電流密度で、 温度を 90°Cに設定して 7日間行った。測定した項目は、電解電圧、電流効率、及び 生成する苛性ソーダ中の塩ィ匕ナトリウム量であり、それぞれ、電解開始後 2日目と 7日 目の測定値で電解の安定性を評価した。生成した苛性ソーダ中の塩ィ匕ナトリウム量( NaCl/50% -NaOH)は、苛性ソーダ中の塩化ナトリウムの塩化物イオンをチオシ アン酸水銀と反応させてチォシアン酸イオンを遊離し、該チオシアン酸イオンを鉄 (II I)イオンと反応させることによって生じるチォシアン酸鉄 (ΠΙ)の呈色の強度測定から 得られた値を、苛性ソーダ水溶液の濃度が 50重量%の場合に換算して求めた。
[0055] 結果を、他の実施例及び比較例とともに表 1に示す。引張強度、引張伸度は電解 に十分耐え得る値を示していた。また、電解開始後 2日目と 7日目で電解性能の低下 力 、さぐ苛性ソーダ中の塩ィ匕ナトリウム量は極微量であり、電解開始後 7日目であつ ても著しい増加は認められず、安定した電解性能であることが示された。
[0056] (実施例 2)
離型紙のエンボス加工処理にぉ 、て、榭脂製のプレッシャーロールの線圧を 800 NZcmとし、実施例 1と同様の方法にて陽極側面のイオン交換基を有するポリマー 力もなる突出部分の平均高さ(h)が 33 μ m、突出部分の分布密度 (P)が 500個 Zc m2、該突出部分の底面部の面積分率の平均値 (S)が約 0. 025cm cm2,頂点部 の面積分率の平均値 (T)が約 0. 012cm cm2,突出部分の底辺長さの平均値 (a )が約 80 μ m、及び突出部分の半分の高さにおける幅の平均値 (b)力約 67 μ mの 複合膜を作製した。このとき、 bZaの値は約 0. 84、 hZaの値は約 0. 41であった。 得られた複合膜について、実施例 1と同じ条件で電解を行った。結果を同じく表 1〖こ 示す、実施例 1と同様に良好な結果が得られた。
[0057] (実施例 3)
表面に四角錐台状で、その高さの平均値が 150 ;ζ ΐη、突起 (突出部分)の分布密 度が約 250個 Zcm2、突起底面部の面積分率が 0. 4cm cm2,突起部(突出部分 )の底面部の底辺の長さが 400 μ m、及び突起部の半分の高さの幅が 225 μ mの突 起を有する 40°Cに加熱された金属製ロールに、榭脂製のプレッシャーロールの線圧 1100N/cm,加工速度 10mZ分で坪量 127gZm2の離型紙を加工処理した。この 離型紙を用 、て実施例 1と同様に複合膜を作製した。
[0058] 得られた複合膜の陽極側面のイオン交換基を有するポリマー力 なる突出部分の 平均高さ(h)は 66 μ m、該突出部分の分布密度 (P)は 250個 Zcm2、該突出部分の 底面部の面積分率の平均値 (S)は 0. lcm cm2,頂点部の面積分率の平均値 (T )が約 0. 009cm cm2,突出部分の底辺長さの平均値(a)は約 200 μ m、及び突 出部分の半分の高さにおける幅の平均値 (b)は 125 μ mであることを確認した。この とき、 bZaの値は約 0. 63、hZaの値は約 0. 33であった。得られた複合膜について 、実施例 1と同じ条件で電解を行った。結果を同じく表 1に示すが、実施例 1と同様に 良好な結果が得られた。
[0059] (実施例 4)
離型紙のエンボス加工処理にぉ 、て、榭脂製のプレッシャーロールの線圧を 1400 NZcmとし、実施例 3と同様の方法にて陽極側面のイオン交換基を有するポリマー のみ力もなる突出部分の平均高さ (h)が 95 μ m、該突出部分の分布密度 (P)が 250 個 Zcm2、該突出部分の底面部の面積分率の平均値 (S)が 0. 18cm cm2,頂点 部の面積分率の平均値 (T)が約 0. 009cm cm2,突出部分の底辺長さの平均値 (a)が約 270 /ζ πι、及び突出部分の半分の高さにおける幅の平均値 (b)が約 135 mの複合膜を作製した。このとき、 bZaの値は約 0. 50、 hZaの値は約 0. 35であつ た。得られた複合膜について、実施例 1と同じ条件で電解を行った。結果を同じく表 1 に示すが、実施例 1と同様に良好な結果が得られた。
[0060] (比較例 1)
エンボス処理をしていない離型紙を用いて、実施例 1と同様に複合膜を作製し、評 価を行った。陽極側表面の観察を行ったところ、実施例のような突出部分は見られな かった。結果を表 1に示す力 引張試験で確認した機械的強度は良好であったもの の、電解性能のうち、電流効率の低下が大きぐまた苛性ソーダ中の塩ィ匕ナトリウムの 量は電解開始後 2日目でも高く、 7日目では著しく増加していた。
[0061] (比較例 2)
離型紙のエンボス加工処理にぉ 、て、榭脂製のプレッシャーロールの線圧を 400 NZcmとし、実施例 3と同様の方法にて陽極側面のイオン交換基を有するポリマー 力もなる突出部分の平均高さ(h)が 16 μ m、該突出部分の分布密度 (P)が 250個 Z cm2,該突出部分の底面部の面積分率の平均値 (S)が約 0. 019cm cm2,頂点 部の面積分率の平均値 (T)が約 0. 009cm cm2,突出部の底辺長さの平均値 (a )力約 87 μ m、及び突出部分の半分の高さにおける幅の平均値 (b)力約 46 μ mの 複合膜を作製した。このとき、 bZaの値は約 0. 53、 hZaの値は約 0. 18であった。 得られた複合膜について、実施例 1と同じ条件で電解を行った。結果を同じく表 1〖こ 示す。比較例 1と同様、機械的強度は良好であったものの、電解性能のうち、電流効 率の低下が大きぐまた苛性ソーダ中の塩ィ匕ナトリウムの量は電解開始後 2日目でも 高くなつていた。
[0062] (比較例 3)
離型紙のエンボス加工処理にぉ 、て、榭脂製のプレッシャーロールの線圧を 400 NZcmとし、実施例 1と同様の方法にて陽極側面のイオン交換基を有するポリマー 力もなる突出部分の平均高さ(h)が 15 m、該突出部分の分布密度 (P)が 500個 Z cm2,該突出部分の底面部の面積分率の平均値 (S)が約 0. 017cm cm2,頂点 部の面積分率の平均値 (T)が約 0. 012cm cm2,突出部分の底辺長さの平均値 (a)力約 65 μ m、及び突出部分の半分の高さにおける幅の平均値 (b)が約 35 μ m の複合膜を作製した。このとき、 bZaの値は約 0. 54、 hZaの値は約 0. 23であった 。得られた複合膜について、実施例 1と同じ条件で電解を行った。結果は同じく表 1 に示すが、やはり機械的強度は良好であったものの、電解性能のうち、電流効率の 低下が大きぐまた苛性ソーダ中の塩ィ匕ナトリウムの量は電解開始後 2日目でも高く なっていた。
[表 1]
表 1
Figure imgf000022_0001
産業上の利用可能性
本発明の電解用陽イオン交換膜は、塩化アルカリ水溶液の電解にお!、て、優れた 電気化学的性質と機械強度を保持しながら、生成する水酸化アルカリ中の不純物を 低減させ、品質の高い水酸ィ匕アルカリを提供すると共に、長期にわたって安定した電 解性能を発揮でき、電解コスト削減、高純度水酸ィ匕アルカリの提供に大きく貢献でき る。

Claims

請求の範囲
[1] イオン交換基を有する含フッ素重合体と多孔性基材とを含んでなる電解用陽イオン 交換膜であって、膜の陽極側表面にイオン交換基を有するポリマーを含んでなる突 出部分を持ち、該膜の陽極側表面力 該突出部分の頂点までの高さの平均値を h( μ m)としたとき、 20≤h≤ 150であり、該突出部分の分布密度を P (個 Zcm2)とした とき、 50≤P≤ 1200であり、該突出部分の、膜の陽極側表面と同一表面上の底面部 の面積分率の平均値を S (cm2Zcm2)としたとき、 0. 001≤S≤0. 6であり、該膜の 陽極側表面の該突出部分の頂点部の面積分率の平均値を T(cm2/cm2)としたとき 、T≤0. 05であることを特徴とする電解用陽イオン交換膜。
[2] 前記突出部分の、膜の陽極側表面と同一表面上の底辺の長さの平均値を a m) とし、該突出部分の半分の高さ hZ2 ( μ m)における該突出部分の幅の平均値を b ( /z m)としたとき、 0. 5≤b/a≤0. 9であり、 0. 25≤h/a≤0. 80である請求項 1に 記載の陽イオン交換膜。
[3] 前記突出部分が不連続である請求項 1又は 2に記載の陽イオン交換膜。
[4] 前記突出部分の形状が、円錐様、四角錐様、円錐台様、及び四角錐台様力 なる 群力 選ばれる 1つ又は 2つ以上の混合形状である請求項 1から 3のいずれか一項 に記載の陽イオン交換膜。
[5] イオン交換基を有する含フッ素重合体と多孔性基材とを積層する際に、陽極側表 面にエンボス処理をした離型紙を密着せしめ、該表面に該離型紙のエンボス形状を 転写することで、陽極側表面にイオン交換基を有するポリマーを含んでなる突出部分 を得ることを特徴とする電解用イオン交換膜の製造方法。
[6] 前記離型紙を介して減圧にすることにより該離型紙を前記陽極側表面に密着させ る請求項 5に記載の方法。
[7] エンボス形状が、円錐様、多角錐様、半球様、ドーム様、円錐台様、多角錐台様の Vヽずれか又は 2つ以上の混合形状である、請求項 5に記載の方法。
[8] 請求項 1〜4の 、ずれか一項に記載の陽イオン交換膜、陰極及び陽極を含んでな る電解装置であって、前記突出部分を有する表面が該陽極に接触しているか、又は 対向している上記電解槽。
PCT/JP2006/300033 2005-09-14 2006-01-05 電解用フッ素系陽イオン交換膜及びその製造方法 WO2007032098A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800339175A CN101263245B (zh) 2005-09-14 2006-01-05 电解用氟系阳离子交换膜及其制造方法
EP06702128.7A EP1927678B1 (en) 2005-09-14 2006-01-05 Cation-exchange fluorinated membrane for electrolysis and process for producing the same
US11/990,390 US7938941B2 (en) 2005-09-14 2006-01-05 Cation-exchange fluorinated membrane for electrolysis and process for producing the same
BRPI0615894A BRPI0615894B1 (pt) 2005-09-14 2006-01-05 membrana de troca catiônica para eletrólise, e, processo para produzir a mesma
CA2622102A CA2622102C (en) 2005-09-14 2006-01-05 Cation-exchange fluorinated membrane for electrolysis and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005267316A JP4708133B2 (ja) 2005-09-14 2005-09-14 電解用フッ素系陽イオン交換膜及びその製造方法
JP2005-267316 2005-09-14

Publications (1)

Publication Number Publication Date
WO2007032098A1 true WO2007032098A1 (ja) 2007-03-22

Family

ID=37864704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300033 WO2007032098A1 (ja) 2005-09-14 2006-01-05 電解用フッ素系陽イオン交換膜及びその製造方法

Country Status (10)

Country Link
US (1) US7938941B2 (ja)
EP (1) EP1927678B1 (ja)
JP (1) JP4708133B2 (ja)
KR (1) KR100990063B1 (ja)
CN (1) CN101263245B (ja)
BR (1) BRPI0615894B1 (ja)
CA (1) CA2622102C (ja)
RU (1) RU2385970C2 (ja)
TW (1) TWI333512B (ja)
WO (1) WO2007032098A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741243B1 (ko) 2009-08-26 2017-06-15 에보쿠아 워터 테크놀로지스 피티이. 리미티드 이온 교환막
CN102596411B (zh) 2009-10-26 2014-11-05 旭化成化学株式会社 阳离子交换膜、使用该阳离子交换膜的电解槽和阳离子交换膜的制造方法
CN101768758B (zh) * 2009-12-07 2012-05-09 山东华夏神舟新材料有限公司 一种电解用阳离子透过复合膜
AU2011315854B2 (en) 2010-10-15 2015-04-09 Evoqua Water Technologies Llc Process for making a monomer solution for making cation exchange membranes
EA024707B1 (ru) 2010-10-15 2016-10-31 ЭВОКУА УОТЕР ТЕКНОЛОДЖИЗ ЭлЭлСи Анионообменные мембраны и способ их получения
WO2012157715A1 (ja) * 2011-05-18 2012-11-22 旭硝子株式会社 含フッ素共重合体の製造方法
JP5867503B2 (ja) * 2011-05-18 2016-02-24 旭硝子株式会社 含フッ素共重合体およびイオン交換膜
JP5793444B2 (ja) * 2012-02-13 2015-10-14 旭化成ケミカルズ株式会社 陽イオン交換膜及びこれを用いた電解槽
CN104703697B (zh) 2012-10-04 2018-11-23 懿华水处理技术有限责任公司 高性能的阴离子交换膜及其制造方法
US9540261B2 (en) 2012-10-11 2017-01-10 Evoqua Water Technologies Llc Coated ion exchange membranes
CN102961979B (zh) * 2012-11-26 2014-12-10 山东东岳高分子材料有限公司 一种无涂层零极距离子交换膜及其制备方法
CN103014758B (zh) * 2012-12-14 2014-06-11 山东东岳高分子材料有限公司 一种超高电流密度条件下运行的离子交换膜及其制备方法
FR3002527A1 (fr) * 2013-02-26 2014-08-29 Univ Lorraine Paroi de separation d'electrolytes pour le transfert selectif de cations a travers la paroi et procede de fabrication de ladite paroi
CN105308217B (zh) * 2013-06-19 2018-06-12 旭化成株式会社 含氟系聚合物、阳离子交换膜和电解槽
JP7062396B2 (ja) * 2016-10-06 2022-05-06 旭化成株式会社 イオン交換膜
JP7058070B2 (ja) * 2016-10-06 2022-04-21 旭化成株式会社 陽イオン交換膜及び電解槽
EP3527697B1 (en) * 2016-10-13 2022-02-16 AGC Inc. Diaphragm for electrolyzing alkaline water, and device for electrolyzing alkaline water
JP6778459B2 (ja) * 2017-01-13 2020-11-04 旭化成株式会社 電解用電極、電解槽、電極積層体及び電極の更新方法
EP3575443B1 (en) 2017-01-27 2021-06-09 Asahi Kasei Kabushiki Kaisha Ion exchange membrane and electrolysis tank
CN110691639A (zh) * 2017-03-20 2020-01-14 Bl 科技公司 具有经压印非织造基材的离子交换膜
CN112739853B (zh) 2018-09-21 2024-06-18 旭化成株式会社 层积体制造用夹具、层积体的制造方法、包装体、层积体、电解槽以及电解槽的制造方法
US20220136118A1 (en) * 2019-02-14 2022-05-05 The Chemours Company Fc, Llc Multilayer cation exchange chloralkali membrane
KR102298741B1 (ko) 2019-12-30 2021-09-03 한남대학교 산학협력단 Nafion/PVDF를 블랜딩하여 제조된 양성자 교환막
KR102486446B1 (ko) 2020-12-24 2023-01-09 경상국립대학교산학협력단 과불화술폰산 이오노머가 그래프트된 그래핀 옥사이드를 포함하는 양이온 교환막 및 이를 이용한 용도

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113225A (ja) * 1981-12-28 1983-07-06 Asahi Glass Co Ltd イオン交換膜の加工法
JPS59157293A (ja) * 1981-01-16 1984-09-06 イー・アイ・テユポン・デ・ニモアス・アンド・カンパニー パーフルオロ化膜
JPS6455393A (en) * 1987-08-26 1989-03-02 Asahi Chemical Ind Reinforced ion-exchange membrane and its production
JPH02279732A (ja) * 1989-02-28 1990-11-15 E I Du Pont De Nemours & Co 強化されたカチオン交換膜及び方法
JPH02301584A (ja) * 1989-05-16 1990-12-13 Asahi Glass Co Ltd 塩化アルカリ電解槽

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152984A (en) 1980-04-30 1981-11-26 Asahi Glass Co Ltd Electrolytic cell for aqueous solution
JPS57131377A (en) 1981-02-05 1982-08-14 Asahi Glass Co Ltd Manufacture of caustic alkali
JPS6049718B2 (ja) 1983-08-12 1985-11-05 旭硝子株式会社 塩化アルカリ電解槽
JPH0822932B2 (ja) 1986-06-13 1996-03-06 旭硝子株式会社 電解用イオン交換膜
JPH0668033B2 (ja) 1986-06-27 1994-08-31 旭硝子株式会社 改良された電解用陽イオン交換膜
SU1541311A1 (ru) 1987-01-16 1990-02-07 Ленинградский Научно-Исследовательский Институт Химических Волокон И Композиционных Материалов С Опытным Заводом Способ получени волокна
US5169983A (en) * 1988-03-01 1992-12-08 Imperial Chemical Industries Plc Perfluorinated intermediates which are useful in the production of organic polymeric materials and ion-exchange membrane
DE3914439A1 (de) 1989-05-02 1990-11-08 Peroxid Chemie Gmbh Diaphragmaschnur
JP2869805B2 (ja) 1990-01-23 1999-03-10 旭化成工業株式会社 補強されたイオン交換膜
JP3075580B2 (ja) * 1991-04-05 2000-08-14 旭硝子株式会社 電解用含フッ素陽イオン交換膜
US5192446A (en) 1992-01-24 1993-03-09 The Graver Company Cation exchange resins having an enhanced capacity for iron oxides
JPH06279600A (ja) 1993-03-24 1994-10-04 Asahi Glass Co Ltd 陽イオン交換膜表面の溝加工方法
JPH08197060A (ja) * 1995-01-20 1996-08-06 Asahi Glass Co Ltd 脱イオン水製造方法
JP5258137B2 (ja) * 2000-09-27 2013-08-07 旭化成イーマテリアルズ株式会社 パーフルオロカーボン系共重合体を含有する分散組成物
JPWO2002096983A1 (ja) 2001-05-31 2004-09-09 旭化成株式会社 フッ素系イオン交換膜
US20030013787A1 (en) 2001-07-13 2003-01-16 Qun Sun Process for dissolution of highly fluorinated ion-exchange polymers
JP5140218B2 (ja) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー 表面洗浄・表面処理に適した帯電アノード水の製造用電解槽及びその製造法、並びに使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157293A (ja) * 1981-01-16 1984-09-06 イー・アイ・テユポン・デ・ニモアス・アンド・カンパニー パーフルオロ化膜
JPS58113225A (ja) * 1981-12-28 1983-07-06 Asahi Glass Co Ltd イオン交換膜の加工法
JPS6455393A (en) * 1987-08-26 1989-03-02 Asahi Chemical Ind Reinforced ion-exchange membrane and its production
JPH02279732A (ja) * 1989-02-28 1990-11-15 E I Du Pont De Nemours & Co 強化されたカチオン交換膜及び方法
JPH02301584A (ja) * 1989-05-16 1990-12-13 Asahi Glass Co Ltd 塩化アルカリ電解槽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1927678A4 *

Also Published As

Publication number Publication date
CA2622102C (en) 2011-01-25
EP1927678A1 (en) 2008-06-04
EP1927678A4 (en) 2009-08-05
JP4708133B2 (ja) 2011-06-22
TWI333512B (en) 2010-11-21
US7938941B2 (en) 2011-05-10
CN101263245B (zh) 2010-12-01
BRPI0615894A2 (pt) 2012-07-24
CN101263245A (zh) 2008-09-10
JP2007077453A (ja) 2007-03-29
CA2622102A1 (en) 2007-03-22
US20090120788A1 (en) 2009-05-14
BRPI0615894B1 (pt) 2017-04-25
TW200712262A (en) 2007-04-01
RU2385970C2 (ru) 2010-04-10
RU2008114371A (ru) 2009-10-20
KR100990063B1 (ko) 2010-10-26
KR20080036149A (ko) 2008-04-24
EP1927678B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP4708133B2 (ja) 電解用フッ素系陽イオン交換膜及びその製造方法
JP6324056B2 (ja) アルカリ水電解用隔膜及びこれを用いたアルカリ水電解槽
JP5774514B2 (ja) 陽イオン交換膜、及びこれを用いた電解槽
JP4573715B2 (ja) 電解用フッ素系陽イオン交換膜
JP6981421B2 (ja) アルカリ水電解用隔膜およびアルカリ水電解装置
JP5793444B2 (ja) 陽イオン交換膜及びこれを用いた電解槽
KR101962061B1 (ko) 이온 교환막
JP7174597B2 (ja) イオン交換膜、イオン交換膜の製造方法及び電解槽
JP5773906B2 (ja) 陽イオン交換膜及びこれを用いた電解槽
JPS59174627A (ja) 強化されていない膜、電気化学的槽、および電解方法
EP0305155B1 (en) A reinforced ion exchange membrane and a process for producing the same
JP2533778B2 (ja) 補強されたイオン交換膜及びその製造法
KR101967087B1 (ko) 이온 교환막
US10865282B2 (en) Ion exchange membrane, method for producing ion exchange membrane, and electrolyzer
JP2018059163A (ja) 陽イオン交換膜及び電解槽
US20200392633A1 (en) Ion exchange membrane, method for producing ion exchange membrane and electrolyzer
CN111139498B (zh) 离子交换膜和电解槽
JP2000297164A (ja) イオン交換膜およびその製造方法
JP2020204094A (ja) イオン交換膜、イオン交換膜の製造方法及び電解槽
JP2022145529A (ja) 陽イオン交換膜及び電解槽
CN115110116A (zh) 阳离子交换膜和电解槽
JPH0142292B2 (ja)
JPH0320475B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006702128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11990390

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2622102

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1084/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680033917.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008114371

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006702128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0615894

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080313