WO2006137177A1 - ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池 - Google Patents

ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池 Download PDF

Info

Publication number
WO2006137177A1
WO2006137177A1 PCT/JP2005/020001 JP2005020001W WO2006137177A1 WO 2006137177 A1 WO2006137177 A1 WO 2006137177A1 JP 2005020001 W JP2005020001 W JP 2005020001W WO 2006137177 A1 WO2006137177 A1 WO 2006137177A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
aqueous
secondary battery
aqueous electrolyte
solvent
Prior art date
Application number
PCT/JP2005/020001
Other languages
English (en)
French (fr)
Inventor
Ryoichi Kato
Hirofumi Suzuki
Jun Sasahara
Hitoshi Suzuki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP05805456.0A priority Critical patent/EP1905739B1/en
Priority to US11/993,376 priority patent/US8980214B2/en
Priority to KR1020077029555A priority patent/KR101285000B1/ko
Priority to CN2005800502026A priority patent/CN101208266B/zh
Priority to KR1020127031768A priority patent/KR101338814B1/ko
Priority to KR1020127020753A priority patent/KR101285016B1/ko
Publication of WO2006137177A1 publication Critical patent/WO2006137177A1/ja
Priority to US13/344,742 priority patent/US9593016B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing difluorophosphate, a non-aqueous electrolyte for a secondary battery, and a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolytic solution containing difluorophosphate as an additive can be industrially advantageously prepared, and a secondary battery including the difluorophosphate produced by this method.
  • the present invention relates to a nonaqueous electrolytic solution for use and a nonaqueous electrolytic solution secondary battery using the nonaqueous electrolytic solution.
  • Lithium secondary batteries include cyclic power carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, jetinole carbonate, and ethylmethyl carbonate, ⁇ -petit-mouth rataton, Cyclic esters such as ⁇ -valerolataton, chain esters such as methyl acetate and methyl propionate, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and dimethoxymethane, And sulfur-containing sulfur such as sulfolane and jetyl sulfone, non-aqueous solvents such as yellow organic solvents, LiPF, LiBF, LiCIO, LiCF SO, LiAsF, Li
  • Non-aqueous electrolyte solution in which electrolytes such as N (CF SO) and LiCF (CF) SO are dissolved is used.
  • Patent Document 1 describes lithium monofluorophosphate (Li PO F) and difluorophosphate.
  • Non-aqueous electrolyte containing at least one additive of lithium phosphate (LiPO F) LiPO F
  • this additive By reacting this additive with lithium, a film is formed at the interface between the positive electrode and the negative electrode, thereby suppressing the decomposition of the electrolytic solution caused by the contact between the electrolytic solution, the positive electrode active material, and the negative electrode active material. It describes that it suppresses discharge and improves storage characteristics after charging.
  • Patent Document 2 lithium carbonate is added as an additive to an electrolyte for a lithium secondary battery in which a lithium salt is dissolved in a non-aqueous solvent containing a cyclic ester to improve the charge / discharge characteristics of the battery. It is described.
  • lithium carbonate is added to the electrolyte in advance, so that the lithium carbonate produced by the reaction between the cyclic ester and lithium cannot be dissolved, and the reaction between lithium and the solvent is suppressed. Therefore, the effect of the invention is maintained by adding lithium carbonate to the electrolytic solution, preferably in a supersaturated state, and allowing it to exist as lithium carbonate in the electrolytic solution.
  • Patent Documents 2 and 3 describe that it is useful as an additive for an electrolyte for a certain type of difluorophosphate-powered lithium battery.
  • Patent Document 3 describes that when a mixed salt of lithium difluorophosphate and lithium monofluorophosphate is added, the battery performance is inferior to that when sodium difluorophosphate is added. In this way, the details of the effect and conditions of use, such as what salt of diphthetal mouth phosphate is suitable, are not necessarily clear.
  • Non-Patent Document 1 discloses that CO or Li CO is present as an additive in a LiPF solution.
  • the Li cycle efficiency is improved, and Li CO is an excellent coating.
  • difluorophosphate has been conventionally used, for example, POF with a metal salt or NH.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 67270
  • Patent Document 2 JP-A-1-286263
  • Patent Document 3 Japanese Patent No. 3438085
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-31079
  • Non-Patent Document 1 J. Electrochem. Soc, Vol. 143, No. 12, December 1996, p. 3809—382 0
  • Non-Patent Document 2 J. Fluorine Chem. (1988), 38 (3), P. 297-302
  • Non-Patent Document 3 Inorganic Chemistry Vol. 6, No. 10, P. 1915-1917 (1967) Disclosure of the Invention
  • the present invention provides a method for industrially advantageously producing difluorophosphate from an inexpensive and easily available raw material, and a secondary battery containing difluorophosphate produced by such a method as an additive.
  • the purpose of the present invention is to provide a non-aqueous electrolyte solution for use and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte solution.
  • the method for producing difluorophosphate of the present invention is characterized in that lithium hexafluorophosphate and carbonate are reacted in a non-aqueous solvent.
  • the nonaqueous electrolytic solution for a secondary battery of the present invention includes a nonaqueous electrolytic solution containing at least hexafluorophosphate as an electrolyte lithium salt in a nonaqueous solvent, and further containing difluorophosphate.
  • the difluorophosphate is supplied as a reaction product solution containing difluorophosphate obtained by reacting lithium hexafluorophosphate with carbonate in a non-aqueous solvent. .
  • the present inventors industrially advantageously produce difluorophosphate as an additive for a non-aqueous electrolyte for secondary batteries, and non-aqueous containing difluorophosphate as an additive.
  • lithium hexafluorophosphate which is widely used as an electrolyte, is easily industrially available.
  • difluorophosphate in an extremely industrially advantageous manner by reacting it with a very inexpensive carbonate in a non-aqueous solvent, and in particular, it contains at least lithium hexafluorophosphate as the electrolyte lithium salt.
  • a non-aqueous electrolyte solution containing difluorophosphate is supplied as a reaction product solution obtained by reacting at least part of the difluorophosphate with lithium hexafluorophosphate and carbonate in a non-aqueous solvent.
  • the reaction is delayed if a solvent having a relative dielectric constant of 10 or more is present in the nonaqueous solvent, and the nonaqueous solvent having a relative dielectric constant of less than 10 from the viewpoint of reaction rate. If a solvent is used, a diphtal hydrated phosphate can be efficiently produced, and if a non-aqueous solvent having a relative dielectric constant of 10 or more is added to the reaction solution, a non-aqueous electrolyte solution having excellent performance can be obtained. I found. It was also found that a non-aqueous electrolyte secondary battery having excellent performance can be manufactured using an electrolyte prepared by force. The present invention has been accomplished based on these findings.
  • the reaction liquid obtained by this reaction contains difluorophosphate and a fluorine salt in a non-aqueous solvent, and further contains a diacid-carbon.
  • the nonaqueous electrolytic solution for a secondary battery includes at least hexafluorophosphate as an electrolyte lithium salt in a nonaqueous solvent, and further includes difluorophosphate and fluoride. It is characterized by containing a salt.
  • the nonaqueous electrolytic solution for a secondary battery includes at least hexafluorophosphate as an electrolyte lithium salt in a nonaqueous solvent, and further includes difluorophosphate and carbon dioxide. It is characterized by containing.
  • the non-aqueous electrolyte solution for a secondary battery includes at least hexafluorophosphate as an electrolyte lithium salt in a non-aqueous solvent, and further difluorophosphate phosphate.
  • non-aqueous solvent those containing both cyclic carbonates and chain carbonates and mixed with three or more kinds of non-aqueous solvent components are difficult to solidify at a low temperature, especially when the molecular weight is small. ! / When chain carbonates are used and difluorophosphate is contained, difluorophosphate ion approaches the positive electrode material and attracts Li ions. This is preferable because the low-temperature discharge characteristics are improved.
  • the non-aqueous electrolyte secondary battery of the present invention comprises such a non-aqueous electrolyte for a secondary battery of the present invention, a negative electrode capable of inserting and extracting lithium ions, and a positive electrode. It is a thing.
  • the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte for a secondary battery of the present invention, a negative electrode capable of occluding and releasing lithium ions, and a positive electrode. (i), (ii) and
  • the DC resistance component of the secondary battery is less than 10 milliohms (m ⁇ ).
  • the electric capacity of the battery element housed in one battery casing of the secondary battery is 3 amperes per hour (Ah) or more.
  • JP-A-1-286263 lithium carbonate is added as an additive to an electrolytic solution for a lithium secondary battery in which a lithium salt is dissolved in a non-aqueous solvent containing a cyclic ester. It describes that charge / discharge characteristics are improved.
  • this Japanese Patent Application Laid-Open No. 1-286263 by adding lithium carbonate to the electrolytic solution in advance, the lithium carbonate produced by the reaction between the cyclic ester and lithium can no longer be dissolved, and the reaction between lithium and the solvent is suppressed. If so. Therefore, the effect of the invention is maintained by adding lithium carbonate to the electrolytic solution preferably in a supersaturated state and allowing it to exist as lithium carbonate in the electrolytic solution. Immediately That is, the effect of the invention is obtained by staying in the electrolyte without reacting with lithium carbonate
  • lithium nickel-based Lithium transition metal oxides that are typical as positive electrode materials such as complex oxides and lithium coronate complex oxides, and materials that are typical as negative electrode materials such as carbonaceous materials and metallic lithium are catalysts for the reaction. This is thought to be due to the trapping of water and HF that appear to act, and the difluorophosphate production reaction being suppressed.
  • difluorophosphate is produced by reacting lithium hexafluorophosphate and carbonate in a non-aqueous solvent.
  • the carbonate is not particularly limited as long as it is soluble in a non-aqueous solvent and has reactivity with lithium hexafluorophosphate.
  • alkali metal salts and alkaline earth metal salts are used.
  • NRiR 2 R 3 R 4 (where, Ri ⁇ R 4 also may be different, represent an organic group or a hydrogen atom having 1 to 12 carbon atoms. identical to one another) using those selected salt force Be
  • These are particularly advantageous raw materials for producing difluorophosphate for non-aqueous electrolytes.
  • the alkali metal is usually selected from the group power consisting of Li, Na, K, Rb, and Cs. Among them, Li, Na, and K are priced as difluorophosphates for non-aqueous electrolytes. Of availability
  • Li and K are preferable in terms of battery characteristics.
  • Li is renewed in terms of battery characteristics. Good for
  • the alkaline earth metal is usually selected from the group consisting of Be, Mg, Ca, Sr, and Ba.
  • Mg, Ca, Sr, and Ba are priced for non-aqueous electrolytes.
  • Ca is particularly preferable from the viewpoint of safety, and Ca is preferable from the viewpoint of battery characteristics.
  • Ri to R contained in the above NRiR 2 R 3 R 4 (wherein I ⁇ to R 4 are the same or different and each represents an organic group having 1 to 12 carbon atoms or a hydrogen atom).
  • the organic group of 4 is usually an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, a nitrogen such as a piperidyl group, a pyrrolidyl group, a pyridyl group, an imidazolyl group, or the like.
  • NR'R 2 R 3 R 4 may be any one that dissolves in a non-aqueous solvent, but from the viewpoint of solubility, a tetraethylammonium group or a triethylmethylammonium group is preferred. Better ,.
  • These carbonates may be used alone or in combination of two or more.
  • the non-aqueous solvent that serves as the reaction medium is not limited, but usually cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, jet carbonate, and ethyl methyl carbonate, y Cyclic esters such as butyrolatatone and y-valerolataton, chain esters such as methyl acetate and methyl propionate, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, and chain chains such as dimethoxyethane and dimethoxymethane
  • cyclic carbonates such as ethylene carbonate and propylene carbonate
  • chain carbonates such as dimethyl carbonate, jet carbonate, and ethyl methyl carbonate
  • y Cyclic esters such as butyrolatatone and y-valerolataton
  • chain esters such as methyl acetate and methyl propionate
  • the relative dielectric constant is a ratio ⁇ ⁇ ⁇ of a dielectric constant ⁇ of a substance and a dielectric constant ⁇ of a vacuum.
  • the substance having a relative dielectric constant of 10 or more in the present invention refers to a substance that may have a relative dielectric constant of 10 or more in a liquid state of 20 ° C. or more.
  • a substance having a relative dielectric constant of less than 10 means a substance having a relative dielectric constant of not more than 10 in a liquid state at 20 ° C or higher.
  • Non-aqueous solvents having a relative dielectric constant of less than 10 include, for example, chain carbonates such as dimethyl carbonate, jetyl carbonate, and ethyl methyl carbonate, chain esters such as methyl acetate and methyl propionate, tetrahydrofuran, Examples thereof include cyclic ethers such as 2-methyltetrahydrofuran and tetrahydropyran, and chain ethers such as dimethoxyethane and dimethoxymethane. These solvents can be used alone or in combination of two or more.
  • a mixed solvent of dimethyl carbonate and ethyl methyl carbonate, in which chain carbonates are more preferable is particularly preferable.
  • the reaction product solution When supplying the reaction product solution as a non-aqueous electrolyte, it is preferable to mix a non-aqueous solvent having a relative dielectric constant of 10 or more after the reaction.
  • the non-aqueous solvent having a relative dielectric constant of 10 or more are usually Examples thereof include cyclic carbonates such as ethylene carbonate and propylene carbonate, cyclic esters such as ⁇ -petit-mouthed ratatones and ⁇ valerolatatanes.
  • reaction product solution is used for a non-aqueous electrolyte solution
  • cyclic carbonates such as ethylene carbonate and propylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate are used.
  • the non-aqueous solvent so as to be a mixed solvent.
  • the charging ratio of lithium hexafluorophosphate and carbonate used for the reaction is not particularly limited, but from the viewpoint of efficiently synthesizing difluorophosphate, the molar ratio of carbonate to lithium hexafluorophosphate. (CO ZPF), the lower limit is usually IX
  • the upper limit is usually 2 or less, preferably 1. It is good preferable to 6 or less.
  • the lower limit of the molar ratio of carbonate to lithium hexafluorophosphate typically 5 X 10- 3 or more and preferably 1 X 10- 2 or more, the upper limit,
  • the upper limit for use as a system electrolyte is 0.8 or less, and preferably 0.6 or less.
  • the concentration of lithium hexafluorophosphate to be used for the synthesis is not particularly limited. Force
  • the lower limit of the concentration in the non-aqueous solvent is usually 0.3 molZkg or more, more preferably 0.5 mol / kg or more, and the upper limit is usually 2 5molZkg or less, 2. OmolZkg or less is preferred. Below this lower limit, the reaction rate decreases and immediately above the upper limit, side reactions tend to proceed.
  • the lower limit is a non-aqueous solvent 1kg usually 2 X 10- 3 mol or more with respect to, among others 5 X 10- 3 mol or more.
  • the upper limit is usually 4 mol or less, and preferably 3 mol or less. If the lower limit is exceeded, a side reaction may proceed if the upper limit is exceeded, which makes it difficult to obtain a sufficient amount of difluorophosphate.
  • the lower limit is usually 0 as the concentration of lithium hexafluorophosphate in a non-aqueous solvent.
  • the upper limit of 5 molZL or more, preferably 0.7 molZL or more is usually 2. OmolZL or less, and preferably 1.6 molZL or less. This is because the concentration close to a suitable concentration as a non-aqueous electrolyte solution is easier to handle.
  • the lower limit of the amount of carbonate used when the reaction product obtained by the reaction is supplied to the non-aqueous electrolyte for secondary batteries as a difluorophosphate source is 1 kg of the non-aqueous solvent.
  • the upper limit is preferably 0.6 mol or less. If the lower limit is not reached, the additive effect when used as a non-aqueous electrolyte is not obtained, and if the upper limit is exceeded, side reactions may easily proceed.
  • a nonaqueous solvent, lithium hexafluorophosphate, and carbonate may be usually present in order to advance the reaction.
  • the reaction proceeds fast when a small amount of water is present. Therefore, when supplying the reaction product solution to the non-aqueous electrolyte, a very small amount of water that does not affect the battery performance, for example, about 10 to 200 ppm of water as the concentration in the electrolyte is allowed to coexist in the reaction system. Also good.
  • reaction temperature and reaction time it is particularly preferable to select the optimal one depending on the situation.
  • the optimal one is as follows.
  • the temperature is not particularly limited as long as the reaction proceeds, but the reaction proceeds faster at a temperature higher than room temperature.
  • the lower limit of the reaction temperature is usually 20 ° C or higher, particularly 30 ° C or higher, more preferably 40 ° C or higher, and the upper limit is usually 85 ° C or lower, particularly 70 ° C or lower. Below this lower limit, if the upper limit is exceeded, the solvent is likely to evaporate, and LiPF tends to decompose. However, if the reaction temperature is low, sufficient reaction
  • the time is not particularly limited as long as the reaction proceeds, and it may take time until a target amount of difluorophosphate is formed, but the lower limit is usually 2 hours or more, especially 5 hours or more. It is. As a guide, it takes 24 hours or more at 30 ° C and 6 hours or more at 40 ° C. Below this lower limit, the target amount of difluorophosphate that is difficult to complete may not be obtained.
  • the upper limit of the reaction time is not set, but if the productivity viewpoint is too long for several days, the efficiency is poor.
  • the reaction temperature is usually from 30 ° C to 85 ° C, preferably from 40 ° C to 70 ° C. is there.
  • the reaction time is usually 30 minutes or longer and 10 hours or shorter, preferably 1 hour or longer and 8 hours or shorter.
  • the reaction product solution thus obtained contains unreacted lithium hexafluorophosphate and carbonate, non-reacted difluorophosphate and fluoride produced by the reaction, and carbon dioxide.
  • the method is not particularly limited, and any method such as distillation or recrystallization can be used as long as difluorophosphate is not decomposed.
  • any method such as distillation or recrystallization can be used as long as difluorophosphate is not decomposed.
  • the obtained difluorophosphate is used as a non-aqueous electrolyte for a secondary battery, it should be used without isolating difluorophosphate from the reaction product solution.
  • the isolation step can be omitted, which is very advantageous industrially.
  • lithium hexafluorophosphate is a substance used as an electrolyte for a non-aqueous electrolyte solution of a secondary battery.
  • a non-aqueous electrolyte solution for a secondary battery containing at least hexafluorophosphate as an electrolyte lithium salt in a non-aqueous solvent and further containing a difluorophosphate a non-aqueous electrolyte as a reaction solvent is prepared.
  • the reaction product solution can be used as a difluorophosphate source for the non-aqueous electrolyte by selecting an aqueous solvent that does not interfere with the non-aqueous solvent for the electrolyte.
  • the concentration of each component in the reaction product solution is preferably as follows.
  • the lower limit of the concentration of the Jifuruororin salt in the reaction product liquid is usually 1 X 10 "3 mol / kg or more and preferably 5 X 10- 3 molZkg or more, especially 1 X 10- 2 molZkg above, the upper limit Is usually 0.7 molZkg or less, especially 0.6 molZkg or less, and the lower limit of the concentration of lithium hexafluorophosphate remaining in the reaction product solution is usually 0.2 molZkg or more, and more preferably 0.3 molZkg or more.
  • the upper limit is usually 1.8 molZkg or less, particularly 1.5 mol / kg or less, and the lower limit of the concentration of carbonate remaining in the reaction product liquid may be 0.
  • the upper limit is usually 0 .02molZkg or less, especially 0. OlmolZkg or less.
  • the fluoride salt by-produced by the reaction is dissolved in the non-aqueous solvent, the portion exceeding the solubility is precipitated.
  • the precipitated fluoride salt can be removed by filtration, and the concentration of the partially dissolved portion can be adjusted by diluting the reaction product solution.
  • the concentration of fluoride salt in the electrolyte is usually 0.15 molZkg or less, and more preferably 0.1 ImolZkg or less, and usually 2 as the lower limit.
  • the amount of diacid carbon measured by the following method is 300 ppm or more from the viewpoint of the recovery capacity after high-temperature storage.
  • the amount of carbon dioxide in the electrolytic solution can be measured as follows. In the Ar box, 0.3 ml of the electrolyte is sealed in a 6 ml vial and heated at 60 ° C for 20 minutes. After that, 0.5 ml of the gas phase was sampled and the carbon dioxide was measured by gas chromatography. To do. Similarly, the amount of carbon dioxide in the Ar box used (blank) is also measured, and the measured force when the electrolyte is sealed is also subtracted from the blank so that carbon dioxide in the electrolyte is subtracted. Can be determined.
  • the reaction product solution obtained by the reaction when supplied to the non-aqueous electrolyte for secondary batteries as a difluorophosphate source, the reaction product solution It is preferable to adjust the amounts of lithium hexafluorophosphate and carbonate used for the reaction so that the concentration of each component in the above becomes the concentration of difluorophosphate, lithium hexafluorophosphate, carbonate and fluoride.
  • the concentration of each component such as difluorophosphate is adjusted by removing the nonaqueous solvent from the reaction product solution by an operation such as distillation as appropriate, or concentrating it or diluting with a nonaqueous solvent. It is preferable to add a solute component such as lithium hexafluorophosphate as appropriate.
  • a reaction obtained by reacting lithium hexafluorophosphate and carbonate in a non-aqueous solvent as at least a part of the difluorophosphate salt in the electrolyte solution is supplied by removing and concentrating the non-aqueous solvent appropriately by operations such as distillation and extraction, or conversely diluting with a non-aqueous solvent. This includes adjusting the concentration of components by adjusting the concentration of difluorophosphate, etc., or adding solute components such as lithium hexafluorophosphate as appropriate.
  • the nonaqueous electrolytic solution for a secondary battery of the present invention contains at least hexafluorophosphate as an electrolyte lithium salt in a nonaqueous solvent, and further contains difluorophosphate, and the difluorophosphate as the difluorophosphate.
  • the reaction product obtained by the above-described method for producing difluorophosphate of the present invention is used.
  • the reaction product liquid difluorophosphate obtained by reacting lithium hexafluorophosphate and carbonate in a non-aqueous solvent is isolated. It goes without saying that it may be used as an additive for non-aqueous electrolytes for secondary batteries However, separation and purification steps can be omitted by supplying the reaction product solution containing difluorophosphate, which is obtained by reacting lithium hexafluorophosphate and carbonate in a non-aqueous solvent. Industrially advantageous.
  • this reaction product liquid contains the difluorophosphate and fluoride salt produced, and lithium hexafluorophosphate and lithium carbonate remaining when lithium hexafluorophosphate and carbonate remain.
  • the non-aqueous electrolyte solution for a secondary battery of the present invention contains at least hexafluorophosphate as an electrolyte lithium salt in a non-aqueous solvent, and further contains difluorophosphate, further a fluoride salt and carbon dioxide. It becomes. In addition, those that do not contain lithium monofluorophosphate are preferred.
  • the non-aqueous electrolyte solution for a secondary battery of the present invention preferably has the following composition and ratio, including the case where the reaction product solution is supplied.
  • non-aqueous solvent for the non-aqueous electrolyte solution for secondary batteries of the present invention examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and chain chains such as dimethyl carbonate, jetyl carbonate, and ethylmethyl carbonate.
  • the non-aqueous solvent is composed of a cyclic carbonate selected from the group power consisting of alkylene carbonates having 2 to 4 carbon atoms in the alkylene group and dialkyl carbonates having 1 to 4 carbon atoms in the alkyl group.
  • a mixed solvent that contains 20% by volume or more of each of the chain carbonates selected for their group strength, and these carbonates account for 70% by volume or more of the total. Charge / discharge characteristics, battery life, etc. It is preferable for improving the overall quality.
  • alkylene carbonate having 2 to 4 carbon atoms of the alkylene group include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Among these, ethylene carbonate and propylene carbonate are preferable.
  • dialkyl carbonate in which the alkyl group has 1 to 4 carbon atoms include dimethyl Examples thereof include chinole carbonate, jetino carbonate, di-n-propinole carbonate, ethinoremethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and the like. Of these, dimethyl carbonate, jetyl carbonate, and ethyl methyl carbonate are preferred.
  • a non-aqueous solvent that may contain a solvent other than carbonate is usually 30% by weight or less, preferably A solvent other than carbonate, such as cyclic carbonate and chain carbonate, may be included as long as the battery performance is 10% by weight or less and does not deteriorate battery performance.
  • non-aqueous solvent those containing both cyclic carbonates and chain carbonates and mixed with three or more kinds of non-aqueous solvent components are difficult to solidify at a low temperature, especially when the molecular weight is small. ! / When chain carbonates are used and difluorophosphate is contained, difluorophosphate ion approaches the positive electrode material and attracts Li ions. This is preferable because the low-temperature discharge characteristics are improved.
  • Preferred solvent combinations include:
  • non-aqueous solvents include (1) a combination of ethylene carbonate (EC), dimethyl carbonate (DMC) and jetyl carbonate (DEC), and (2) ethylene carbonate (EC), dimethyl A combination of carbonate (DMC) and ethylmethyl carbonate (EMC) can be mentioned. Also preferred are those containing all four solvents: ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and jetyl carbonate (DEC)!
  • the non-aqueous electrolyte for secondary battery of the present invention is a power hexafluorophosphate that is particularly useful when lithium hexafluorophosphate (LiPF) is used as the electrolyte lithium salt.
  • LiPF lithium hexafluorophosphate
  • lithium salts are not particularly limited, but are usually LiCIO, LiBF, LiAsF, LiSbF.
  • Inorganic lithium salt 4 4 6 6 as well as LiCF SO, LiN (CF 2 SO 4), LiN (CF 3 CF 2 SO 4), Li
  • the concentration of the electrolyte lithium salt in the electrolytic solution is usually 2 molZL or less as the upper limit, 1.5 molZL or less in the middle, and usually 0.5 molZL or more, preferably 0.7 mol / L or more as the lower limit.
  • the force of making electrical conductivity and the point of viscosity are also preferable.
  • the difluorophosphate contained in the non-aqueous electrolyte for a secondary battery of the present invention is a difluorophosphate produced by the method for producing a difluorophosphate of the present invention, that is, the difluorophosphate of the present invention.
  • Alkaline metal salt, alkaline earth metal salt, and NRiRSRSR 4 (However, Ri to R 4 may be the same or different from each other.
  • Ri to R 4 may be the same or different from each other.
  • Preferred are those selected from salts having 1 to 12 carbon atoms or a hydrogen atom. These may be used alone or in combination of two or more.
  • Such Jifuruororin salt, the nonaqueous electrolytic solution, as the lower limit usually 1 X 10 "3 mo lZkg or more and preferably 3 X 10- 3 molZkg or more, preferably 1 X 10- 2 molZkg above,
  • the upper limit is usually 0.5 molZkg or less, particularly 0.3 molZkg or less, preferably 0.15 molZkg or less, and if this upper limit is exceeded, the viscosity increases and the lower limit is quickly reached. If it is less, it may be difficult to obtain the effect of improving the cycle characteristics.
  • carbonate may be mixed.
  • the upper limit of the concentration in the electrolytic solution is usually 1 X 10-olZkg or less, preferably 8 X 10-olZkg or less. Although not specified lower limit in particular, usually about 5 X 10- 4 molZkg can be present to allow no particular influence. Exceeding this upper limit does not impair the effects of the present invention, but is wasteful and inefficient.
  • any additive can be used in any appropriate amount.
  • additives examples include overcharge inhibitors such as cyclohexyl benzene and biphenyl, and negative electrode film forming agents such as beylene carbonate, butyl ethylene carbonate, fluoroethylene carbonate, and succinic anhydride.
  • positive electrode protective agents such as methylene sulfoxide, diphenylsulfide, thioanol, diphenyldisulfide, and dipyridi-mudisulfide.
  • a difluorophosphate-containing solution provided as a reaction product solution of lithium hexafluorophosphate and carbonate can be used for the preparation of the electrolytic solution.
  • a solvent, an electrolyte, and an additive as appropriate just by using the reaction product liquid itself as an electrolytic solution.
  • the amount of lithium hexafluorophosphate in the reaction product solution may be reduced. This can be added later to optimize the concentration.
  • the reaction product liquid can be used as an additive for the electrolytic solution. In this case, if the composition of the non-aqueous solvent serving as the reaction medium matches the solvent composition of the electrolytic solution described above, Easy! /.
  • the active material of the negative electrode constituting the secondary battery of the present invention is not particularly limited as long as it includes a material capable of occluding and releasing lithium, and specific examples thereof include, for example, various thermal decompositions. Examples thereof include pyrolysates of organic substances under conditions, artificial graphite, natural graphite, and the like.
  • artificial graphite and purified natural graphite produced by high-temperature heat treatment of graphitizable pitch obtained from various raw materials, or materials obtained by subjecting these graphite to various surface treatments including pitch are mainly used.
  • These graphite materials have a lattice plane (002 plane) d-value (interlayer distance) force of O.
  • the crystallite size (Lc) obtained by folding is preferably 30 nm or more. Further, the crystallite size (Lc) is more preferably 50 nm or more, more preferably 10 nm or more.
  • the median diameter of the graphite material is a median diameter measured by a laser diffraction 'scattering method: L m to: LOO ⁇ m, preferably 3 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 40 ⁇ m. m, more preferably 7 111 to 30 111.
  • the BET specific surface area of the graphite material is 0.5 m 2 / g to 25. Om 2 Zg, preferably 0.7 m 2 Zg to 20. OmVg, more preferably 1. Om 2 / g to 15.0 m. 2 Zg, more preferably 1.5 m 2 Zg ⁇ : LO. Om 2 Zg.
  • the intensity ratio of 1580 ⁇ 1620Cm- 1 ranging peak P the peak intensity I
  • the range of 1350 1 peak P the peak intensity I
  • a graphite-amorphous composite material in which a graphite material and an amorphous material are mixed or a graphite material is coated with an amorphous material is also preferable.
  • the composite of graphite and amorphous is obtained by heat-treating a mixture of carbon precursor and graphite powder using the carbon precursor to obtain amorphous, and then grinding the composite powder.
  • the obtained graphite particles or a mixture of a mixture of graphite particles and amorphous particles and a carbon precursor is heated to obtain an intermediate substance.
  • the proportion of the amorphous material in such a graphite amorphous composite powder is preferably 50% by weight or less. 25 wt% or less, more preferably 15 wt% or less, particularly preferably 10 wt% or less, 0.1 wt% or more, preferably 0.5 wt% or more, more preferably 1
  • the manufacturing process for obtaining a strong graphite amorphous composite powder is usually divided into the following four processes. It is done.
  • First step Graphite particles or a mixed powder of graphite particles and amorphous particles, a carbon precursor, and, if necessary, a solvent are mixed using various commercially available mixers and kneaders. And get a mixture.
  • Second step If necessary, the mixture is heated with stirring to obtain an intermediate from which the solvent has been removed.
  • Third step The mixture or intermediate substance is heated to 700 ° C or higher and 2800 ° C or lower in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas or argon gas to obtain a graphite amorphous composite material.
  • an inert gas atmosphere such as nitrogen gas, carbon dioxide gas or argon gas
  • Fourth step Powder processing such as pulverization, crushing, and classification treatment of the composite material as necessary
  • the second step and the fourth step may be omitted depending on circumstances, and the fourth step may be performed before the third step.
  • the heat history temperature condition is important as the heat treatment condition of the third step.
  • the lower temperature limit varies depending on the type of carbon precursor and its thermal history, but is usually 700 ° C or higher, preferably 900 ° C or higher.
  • the upper limit temperature can be raised to a temperature basically without a structural order exceeding the crystal structure of the graphite particle nucleus. Therefore, the upper limit temperature of the heat treatment is preferably 2800 ° C or lower, preferably 2000 ° C or lower, more preferably 1500 ° C or lower. Under such heat treatment conditions, the heating rate, cooling rate, heat treatment time, etc. can be arbitrarily set according to the purpose. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature.
  • the reactor used in this step may be a batch type or a continuous type, and may be one or more.
  • the material obtained by combining amorphous with graphite obtained as described above has a peak intensity ratio R value by Raman spectrum analysis, a half-value width ⁇ v of a peak near 1580 cm-l, and an X-ray wide angle.
  • the d002 and Lc values obtained in the diffraction pattern of the diffraction pattern should not exceed the crystallinity of the graphite material, that is, the R value is greater than that of graphite, and the half-value width ⁇ V is that of graphite.
  • the d002 value is preferably higher than that of graphite and Lc is preferably lower than that of graphite.
  • R of specific graphite amorphous composite powder material The value ranges from 0.01 to 1.0, preferably from 0.05 to 0.8, more preferably from 0.2 to 0.7, and even more preferably from 0.3 to 0.5. And it is mentioned that it is more than the value of the graphite used as a base material.
  • These carbonaceous materials may be mixed with other negative electrode materials capable of inserting and extracting lithium.
  • Other anode materials that can occlude and release lithium other than carbonaceous materials include metal oxide materials such as tin oxide and silicon oxide, lithium metal and various lithium alloys, and Si and Sn.
  • a metal material capable of forming an alloy with lithium can be exemplified. Two or more of these negative electrode materials may be used in combination.
  • the active material of the positive electrode constituting the secondary battery of the present invention is not particularly limited, but a lithium transition metal composite oxide is preferably used.
  • a lithium transition metal composite oxide is preferably used.
  • examples of such materials include lithium cobalt composite oxides such as LiCoO, and lithium nickel composites such as LiNiO.
  • oxides and lithium manganese complex oxides such as LiMnO.
  • lithium cobalt composite oxide and lithium nickel composite oxide are preferable.
  • some of the main transition metal elements are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, etc. It can be stabilized by replacing with other metal species, and is also preferable.
  • These positive electrode active materials can be used in combination.
  • the method for producing the positive electrode and the negative electrode is not particularly limited.
  • it can be produced by adding a binder, a thickener, a conductive material, a solvent, or the like to the above active material as necessary to form a slurry, which is applied to the current collector substrate and dried.
  • the active material can be roll-formed as it is to form a sheet electrode, or a compression-molded pellet electrode.
  • the thickness of the electrode active material layer is usually 3 ⁇ m or more and 1000 ⁇ m or less, preferably 5 ⁇ m or more and 200 ⁇ m or less for the positive electrode, and usually 1 ⁇ m or more and 400 ⁇ m or less for the negative electrode. Preferably, it is 3 ⁇ m or more and 200 m or less. When providing an active material layer on both sides of the current collector, the thickness of one side should be within this range.
  • the binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used in the production of the electrode, and specific examples thereof include polyvinylidene fluoride, polytetrafluoride. Examples include ethylene, styrene butadiene rubber, isoprene rubber, and butadiene rubber.
  • Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethyl cellulose, polybutyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black. In particular, it is preferable to add a conductive material to the positive electrode!
  • the solvent may be aqueous or organic.
  • aqueous solvent examples include water and alcohol
  • organic solvent examples include N-methylpyrrolidone (NMP) and toluene.
  • the material of the current collector for the negative electrode metals such as copper, nickel, and stainless steel are used, and copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
  • metals such as aluminum, titanium, and tantalum are used, and among these, aluminum foil is preferred from the viewpoint of cost and cost.
  • a separator is usually interposed between a positive electrode and a negative electrode.
  • the material and shape of the separator used in the secondary battery of the present invention are not particularly limited, but it is preferable to select a material that is stable against the electrolytic solution and has excellent liquid retention properties, such as polyethylene and polypropylene. It is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as a raw material.
  • the method for producing the secondary battery of the present invention having at least a negative electrode, a positive electrode, and a non-aqueous electrolyte is not particularly limited, and can be appropriately selected from conventionally employed methods. .
  • the shape of the battery is not particularly limited, and a cylinder type in which the sheet electrode and the separator are spiral, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a pellet electrode or the sheet electrode and the separator are provided. Laminated coin type, laminated type in which sheet electrode and separator are laminated can be used. Further, the method for assembling the battery is not particularly limited, and can be appropriately selected from various methods usually used according to the shape of the target battery.
  • the shape of the battery is not particularly limited, but a bottomed cylindrical shape, a bottomed square shape, a thin shape Examples include shape, sheet shape, and paper shape.
  • it may be of a different shape such as a horseshoe shape or a comb shape considering the fit to the peripheral system arranged around the battery. .
  • a square shape having at least one surface that is relatively flat and has a large area is preferred.
  • the current battery of the present invention is preferably one that satisfies at least one of the conditions of the following battery configuration, and more preferably one that satisfies all the conditions.
  • the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of improving the effects of the present invention, particularly the output characteristics.
  • the total electrode area of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 20 times or more, more preferably 40 times or more. These measures are also preferred from the standpoint of increasing stability at high temperatures.
  • the outer surface area of the outer case is the total area obtained by calculation from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of a bottomed square shape. .
  • the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder.
  • the total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the composite layer containing the negative electrode active material, and in a structure in which the positive electrode mixture layer is formed on both sides via a current collector foil. , The sum of the areas where each surface is calculated separately.
  • the positive electrode be designed so that the discharge capacity (the electric capacity of the battery element housed in one battery case of the secondary battery) is 3Ah or more and less than 20Ah when fully charged. Furthermore, it is more preferably 4 Ah or more and less than lOAh. If it is less than 3 Ah, the voltage drop due to the electrode reaction resistance becomes large when taking out a large current, and the power efficiency may be deteriorated. Over 20Ah The electrode reaction resistance is reduced and the power efficiency is improved. The temperature distribution due to heat generation inside the battery during pulse charging / discharging is large. The durability of repeated charging / discharging is inferior. The heat radiation efficiency may be reduced due to excessive heat generation, and the probability that the internal pressure will rise and the gas release valve will operate (valve operation), or the battery contents will erupt violently (explosion) may increase.
  • the discharge capacity the electric capacity of the battery element housed in one battery case of the secondary battery
  • the electrode group has a laminated structure in which the positive electrode and the negative electrode are interposed via the separator, and a structure in which the positive electrode and the negative electrode are spirally wound via the separator. Any of them may be used.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as electrode group occupancy) is preferably 40% to 90%, and more preferably 50% to 80%.
  • electrode group occupancy is less than 40%, the battery capacity is small, and when it is 90% or more, the battery expands due to the high temperature of the battery with less space and the liquid component of the electrolyte.
  • the internal pressure rises due to an increase in the atmospheric pressure, which deteriorates various characteristics such as repeated charge / discharge performance and high-temperature storage as a battery, or when a gas release valve that releases the internal pressure is activated There is.
  • the current collecting structure needs to have a structure that reduces the resistance of the wiring portion and the junction portion.
  • an internal resistance is large, it may be hindered and the effect of the non-aqueous electrolyte of the present invention may not be sufficiently exhibited.
  • a structure in which the metal core portions of the electrode layers are bundled and welded to the terminals is preferably used.
  • the internal resistance increases. Therefore, it is also preferable to reduce the resistance by providing a plurality of terminals in the electrode.
  • the internal resistance can be lowered by providing a plurality of lead structures for each of the positive electrode and the negative electrode and bundling the terminals.
  • the internal resistance can be made as small as possible.
  • an impedance (hereinafter referred to as a direct current resistance component) measured by a 10 kHz alternating current method is less than 10 milliohms. More preferably, the DC resistance component should be less than 5 milliohms. It is done. When the DC resistance component is 0.1 milliohm or less, the high output characteristics are improved, but the ratio of the current collecting structure used increases and the battery capacity may decrease.
  • the nonaqueous electrolytic solution of the present invention is effective in reducing the reaction resistance related to the desorption / insertion of lithium with respect to the electrode active material, which is considered to be a factor that can realize good low-temperature discharge characteristics. .
  • the battery with a large direct current resistance could not be reflected 100% in the low-temperature discharge characteristics due to the inhibition of the direct current resistance. This can be improved by using a battery having a small DC resistance component, and the effect of the non-aqueous electrolyte solution of the present invention can be fully exhibited.
  • the viewpoint power of drawing out the effect of the non-aqueous electrolyte and producing a high-power battery is that the battery element housed in one battery exterior of this requirement and the secondary battery described above. It is particularly preferable that the electric capacity of the battery (the electric capacity when the battery is discharged from the fully charged state to the discharged state) is 3 ampere hours (Ah) or more at the same time.
  • lithium carbonate was mixed at a ratio of 0.1 mol to 1 kg of this mixed solution, and reacted at 50 ° C. for 72 hours. Thereafter, the reaction product solution was filtered, and the filtrate was measured by an ion chromatograph method. The amount of PO F-on detected is 0.051 molZkg.
  • Example 1 the same operation as Example 1 was performed except that potassium carbonate was used instead of lithium carbonate.
  • the amount of PO F-on detected is 0.052 molZkg.
  • Example 1 the same operation as in Example 1 was performed except that calcium carbonate was used instead of lithium carbonate.
  • the amount of detected PO F-on is 0.047 molZkg.
  • Example 1 the same operation as in Example 1 was performed except that lithium carbonate was not used. PO F-on was not detected.
  • LiPF Lithium hexafluorophosphate
  • lithium carbonate corresponding to the quantity to be 10- 3 M. This work was performed in an environment of 25 ° C. After about 10 minutes, the liquid was filtered, and the force PO F-on measured by ion chromatography was not detected.
  • difluorophosphate can be prepared by sufficiently reacting lithium hexafluorophosphate and carbonate in a non-aqueous solvent.
  • Non-aqueous electrolyte secondary batteries were prepared by the following method, evaluated, and the results are shown in Table 1.
  • LiNiO lithium nickelate
  • the d-value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm
  • the crystallite size (Lc) is lOOnm or more (264 nm)
  • the ash content is 0.04 wt%
  • the median diameter by laser diffraction / scattering method is 17 ⁇ m
  • BET specific surface area 8.9m 2 / g peak vector (peak intensity I) and 135 in the range of 1580 ⁇ 1620cm— 1 in the Raman vector analysis using argon ion laser light
  • ⁇ 1620Cm- 1 range artificial graphite powder KS- 44 is a half-value width 22.
  • 2cm- 1 peak (Timcal Ltd., trade name) 98 parts by weight, the aqueous disperser Ji (carboxymethylcellulose sodium carboxymethyl cellulose sodium 100 parts by weight) and 2 parts by weight of aqueous styrene purged styrene butadiene rubber (50% by weight styrene butadiene rubber concentration), mixed with a disperser to form a slurry
  • the current collector was uniformly coated on both sides of an 18-m-thick copper foil, dried, and then rolled to 85 ⁇ m with a press machine, cut into a width of 56 mm and a length of 850 mm to obtain a negative electrode. However, there are 30mm uncoated parts in the length direction on both sides.
  • the reaction filtrate obtained in Example 1 was used as a non-aqueous electrolyte.
  • the concentration of fluoride salt in this reaction filtrate was 0.02 molZkg, lithium carbonate was not detected, and the concentration of difluorophosphate was 0.051 molZkg.
  • the positive electrode and the negative electrode were wound with a separator made of a porous polyethylene sheet and sealed in a battery can as an electrode group. Thereafter, 5 mL of the electrolyte solution was poured into a battery can loaded with the electrode group, and the electrode solution was sufficiently infiltrated and crimped to produce an 18650 type cylindrical battery.
  • Example 4 instead of using the reaction filtrate obtained in Example 1 as the non-aqueous electrolyte, Example 4 was used except that the solution of Comparative Example 1 (lithium hexafluorophosphate concentration ImolZL) was used.
  • a secondary battery was fabricated in the same manner as described above, evaluated in the same manner, and the results are shown in Table 1.
  • Example 4 instead of using the reaction filtrate obtained in Example 1 as a non-aqueous electrolyte, ethylene carbonate (EC), dimethyl carbonate (DMC) and jetyl carbonate purified in a dry argon atmosphere were used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DIPF jetyl carbonate purified in a dry argon atmosphere
  • a secondary battery was prepared in the same manner as in Example 4 except that a solution containing lithium difluorophosphate prepared according to the method described in Non-Patent Document 1 was added at a concentration of 0.05 molZkg. The same evaluation was performed, and the results are shown in Table 1.
  • Example 4 instead of using the reaction filtrate obtained in Example 1 as the non-aqueous electrolyte, a secondary battery was prepared in the same manner as in Example 4 except that the liquid of Comparative Example 2 was used. The results are shown in Table 1.
  • Comparative Example 4 700 596 As is apparent from Table 1, the non-aqueous electrolyte of the present invention is effective in improving the high-temperature cycle characteristics. The effect is not inferior to that of using the difluorophosphate salt of Reference Example 1.
  • a non-aqueous electrolyte secondary battery was prepared by the following method, evaluated, and the results are shown in Table 2.
  • the d-value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm
  • the crystallite size (Lc) is lOOnm or more (264 nm)
  • the ash content is 0.04 wt%
  • the median diameter by laser diffraction / scattering method is 17 ⁇ ⁇
  • ⁇ 1620Cm- 1 range artificial graphite powder KS- 44 is a half-value width 22.
  • 2cm- 1 peak (Timcal Ltd., trade name) 98 parts by weight, the aqueous disperser Ji (carboxymethylcellulose sodium carboxymethyl cellulose sodium 100 parts by weight) and 2 parts by weight of aqueous styrene purged styrene butadiene rubber (50% by weight styrene butadiene rubber concentration), mixed with a disperser to form a slurry It was uniformly applied to one side of a 18-m-thick copper foil as a current collector, dried, and then rolled to 85 m with a press machine, punched out to 12.5 mm in diameter with a punch, and used as a negative electrode.
  • Example 1 The reaction filtrate obtained in Example 1 was used as a non-aqueous electrolyte. With respect to this reaction filtrate, the amount of carbon dioxide was measured by the method described above, and as a result, 5897 ppm was detected.
  • a positive electrode and a negative electrode were laminated in a battery can with a separator made of a porous polyethylene sheet having a diameter of 14 mm, and the electrolyte was dropped, followed by crimping to produce a 2032 type coin battery.
  • Example 5 the non-aqueous electrolyte was used after degassing for 1 minute in an environment of 0.5 atm.
  • a coin battery was prepared in the same manner as in Example 5 except that the evaluation was performed in the same manner. The results are shown in Table 2. The measured amount of carbon dioxide in this electrolyte was 1165 ppm.
  • Example 5 instead of using the reaction filtrate obtained in Example 1 as the non-aqueous electrolyte, the same electrolyte as that used in Reference Example 1 was used. A coin battery was created and evaluated in the same manner. The results are shown in Table 2. The measured amount of carbon dioxide in this electrolyte was 125 ppm.
  • Example 5 instead of using the reaction filtrate obtained in Example 1 as a non-aqueous electrolyte, ethylene carbonate (EC), dimethyl carbonate (DMC) and jetyl carbonate purified in a dry argon atmosphere were used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DIPF jetyl carbonate purified in a dry argon atmosphere
  • a coin battery was prepared and evaluated in the same manner as in Example 5 except that what was solved was used. The results are shown in Table 2. The measured amount of carbon dioxide in this electrolyte was 129 ppm.
  • the capacity and recovery rate after high-temperature storage are better as the electrolyte has a larger measured amount of diacid and carbon, and the non-aqueous electrolyte containing difluorophosphate prepared by the method of the present invention is better. It can be said that it is effective in improving the high temperature storage characteristics of the lithium secondary battery.
  • a 2032 type coin cell was produced in the same procedure as in Example 5. [0138] However, as an electrolytic solution, a solvent mixture of ethylene carbonate (EC), dimethyl carbonate (DMC) and jetyl carbonate (DEC) purified in a dry argon atmosphere at a volume ratio of 2: 4: 4 was used. At a concentration, fully dried lithium hexafluorophosphate (LiPF) is dissolved, and this corresponds to an amount of 0. 5 mol per 1 kg of this mixed solution.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC jetyl carbonate
  • a new battery that had not undergone the actual charge / discharge cycle was initially charged / discharged at 25 ° C for 3 cycles (3.0-4. IV). Thereafter, a discharge test was conducted in a low temperature environment of -30 ° C. Charging upper limit voltage in an environment of 25 ° C in advance 4. A coin battery charged to IV by constant current and constant voltage method is discharged at a rate of 0.2C in a low temperature environment, and the discharge capacity at that time is Converted into a low-temperature discharge capacity.
  • Example 7 when the electrolyte solution was prepared, a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylmethyl carbonate (EMC) in a volume ratio of 2: 4: 4 was used as a nonaqueous solvent.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • the measured amount of PO F-aryon measured by the ion chromatography method was 0.025 molZkg.
  • a battery was prepared in the same manner as in Example 7 except that the electrolyte solution was prepared without mixing lithium carbonate in Example 7, the low-temperature discharge capacity was measured in the same manner, and the results are shown in Table 3. It should be noted that this electrolyte was not determined by PO F.
  • a battery was prepared in the same manner as in Example 8 except that the electrolyte solution was prepared without mixing lithium carbonate in Example 8, the low-temperature discharge capacity was measured in the same manner, and the results are shown in Table 3. It should be noted that this electrolyte was not determined by PO F. [0143] Reference Example 3
  • Example 7 a battery was prepared in the same manner as in Example 7 except that a mixed solvent of ethylene carbonate (EC) and jetyl carbonate ( DEC ) in a volume ratio of 2: 8 was used as the nonaqueous solvent when preparing the electrolytic solution.
  • the low temperature discharge capacity was measured in the same manner, and the results are shown in Table 3.
  • the PO Fanion measured by ion chromatography was used.
  • the measured amount was 0.025 mol Zkg.
  • a battery was prepared in the same manner as in Reference Example 3 except that the electrolyte solution was prepared without mixing lithium carbonate in Reference Example 3, the low-temperature discharge capacity was measured in the same manner, and the results are shown in Table 3. In this electrolyte, PO F-on was not measured.
  • Table 3 shows the comparison between Example 7 and Comparative Example 6, comparison between Example 8 and Comparative Example 7, and comparison between Reference Example 3 and Comparative Example 8 at low temperature with difluorophosphate. The results of calculating the improvement rate of the discharge capacity are also shown.
  • Example 9 Prepare dry ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylmethyl carbonate (EMC), which have a volume ratio of 3: 3: 4 when mixed, and mix with these solvents. Lithium hexafluorophosphate (LiPF), sometimes resulting in a solution with a concentration of ImolZL, and an amount of charcoal equivalent to 0.05 mol per kg of the mixed solution
  • Lithium acid lithium was prepared.
  • the mixture was reacted at 60 ° C for 5 hours with stirring, and then EC was mixed.
  • Example 9 the same operation as in Example 9 was performed, except that the EC mixing timing was changed simultaneously with DMC and EMC mixing.
  • the amount of PO F-on detected is 0.00
  • Example 10 the same operation as in Example 10 was performed except that the reaction time was 24 hours.
  • the amount of PO F-on detected was 0.015 molZkg.
  • LiPF was used in a solvent having a high relative dielectric constant and not containing EC.
  • a non-aqueous electrolyte secondary battery was prepared by the following method, evaluated, and the results are shown in Table 4.
  • LiNiO lithium nickelate
  • Artificial graphite powder KS-44 (manufactured by Timcal Co., Ltd., trade name) 98 parts by weight, aqueous thickener of sodium carboxymethylcellulose as a thickener and binder as a binder (concentration of 1% by weight of ruboxymethylcellulose sodium) 100 weight parts and were aqueous disperser Ji Ka ⁇ E 2 parts by weight (concentration 50 weight 0/0 of styrene butadiene rubber) were mixed in Deisupaza slurried styrene-butadiene rubber.
  • the obtained slurry was applied to both sides of a 10 m copper foil, dried, and rolled to 75 m with a press machine, and the active material layer size was 104 mm in width, 104 mm in length, and 30 mm in width. It cut out into the shape which has and was set as the negative electrode.
  • Example 2 The reaction filtrate obtained in Example 1 was used as a non-aqueous electrolyte.
  • the 32 positive electrodes and 33 negative electrodes were arranged alternately and laminated so that a porous polyethylene sheet separator (25 ⁇ m) was sandwiched between the electrodes. At this time, the positive electrode active material surface was faced so as not to deviate from the negative electrode active material surface.
  • the uncoated parts were welded together to produce a current collecting tab, and the electrode group was sealed in a battery can (outside dimension: 120 ⁇ 110 ⁇ 10 mm). Thereafter, 20 mL of the electrolyte was injected into the battery can loaded with the electrode group, sufficiently infiltrated into the electrode, and sealed to produce a battery.
  • Example 12 instead of using the reaction filtrate obtained in Example 1 as the non-aqueous electrolyte, the same procedure as in Comparative Example 1 (lithium hexafluorophosphate concentration ImolZL) was used. A battery was fabricated and tested as in Example 12, and the results are shown in Table 4.
  • Example 12 the battery used for evaluation was tested in the same manner as in Example 4, and the results are shown in Table 4.
  • Example 12 the battery used for evaluation was tested in the same manner as in Comparative Example 3, and the results are shown in Table 4.
  • Table 4 shows the output increase rate of Example 12 with respect to Comparative Example 9, Example 1 with respect to Comparative Example 10.
  • the output increase rate of 3 is also shown.
  • the impedance (DC resistance component) of each battery measured by the 10kHz AC method is also shown.
  • difluorophosphate which has been difficult to obtain in the past, can be easily prepared at a low cost and easily available, and the additive for non-aqueous electrolyte solution for secondary battery
  • a difluorophosphate that is extremely useful for such applications is provided, and a nonaqueous electrolytic solution and a secondary battery using the difluorophosphate can be easily produced.
  • This application is based on the Japanese patent application (# 112005-178828) dated June 20, 2005 and the Japanese patent application dated April 16, 2004 (Japanese Patent Application No. 2004-121852). Is taken in as. The contents of the documents cited in this specification are also incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Description

ジフルォロリン酸塩の製造方法、二次電池用非水系電解液及び非水系 電解液二次電池
技術分野
[0001] 本発明は、ジフルォロリン酸塩の製造方法、二次電池用非水系電解液及び非水系 電解液二次電池に関する。特に、ジフルォロリン酸塩を添加剤として含有する非水 系電解液を、工業的に有利に調製することが出来るジフルォロリン酸塩の製造方法 と、この方法で製造されたジフルォロリン酸塩を含む二次電池用非水系電解液及び この非水系電解液を用いた非水系電解液二次電池に関する。
背景技術
[0002] 近年、電子機器の小型化に伴い、高容量の二次電池の更なる高容量化が望まれ ている。そのため、ニッケル 'カドミウム、ニッケル '水素電池に比べ、よりエネルギー 密度の高 、リチウムイオン二次電池が注目されて 、る。
[0003] リチウム二次電池には、エチレンカーボネート、プロピレンカーボネート等の環状力 ーボネート類、ジメチルカーボネート、ジェチノレカーボネート、ェチルメチルカーボネ ート等の鎖状カーボネート類、 γ—プチ口ラタトン、 γ バレロラタトン等の環状エス テル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、テトラヒドロフラン、 2 —メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類、ジメトキシェタン、 ジメトキシメタン等の鎖状エーテル類、及びスルフォラン、ジェチルスルホン等の含硫 黄有機溶媒のような非水溶媒に、 LiPF、 LiBF、 LiCIO、 LiCF SO、 LiAsF、 Li
6 4 4 3 3 6
N (CF SO )、 LiCF (CF ) SO等の電解質を溶解させてなる非水系電解液が用い
3 2 2 3 2 3 3
られる。
[0004] このような非水系電解液を用いた二次電池では、その非水系電解液の組成によつ て反応性が異なるため、電池特性は大きく変わることとなる。特に、電解液の分解や 副反応が二次電池のサイクル特性や保存特性に及ぼす影響が問題となっているた め、従来、電解液に各種添加剤を添加することによって、これらの問題の改善する試 みがなされている。 [0005] 例えば、特許文献 1には、モノフルォロリン酸リチウム(Li PO F)及びジフルォロリ
2 3
ン酸リチウム (LiPO F )の少なくとも 1種の添加剤を含有する非水系電解液を用い、
2 2
この添加剤をリチウムと反応させることによって正極及び負極界面に被膜を形成させ ることで、電解液と正極活物質及び負極活物質との接触に起因する電解液の分解を 抑制し、これにより自己放電を抑制し、充電後の保存特性を向上させることが記載さ れている。
[0006] 特許文献 2には、環状エステルを含む非水溶媒にリチウム塩を溶解させたリチウム 二次電池用電解液に、添加剤として炭酸リチウムを添加して、電池の充放電特性を 向上させることが記載されている。この文献では、炭酸リチウムを予め電解液に添カロ しておくことにより、環状エステルとリチウムの反応で生成した炭酸リチウムが溶解でき なくなり、リチウムと溶媒との反応を抑制するとしている。そのため、電解液に好ましく は過飽和の状態で炭酸リチウムを添加し、電解液中に炭酸リチウムとして存在させる ことによって発明の効果を保っている。
[0007] 特許文献 2及び 3には、ある種のジフルォロリン酸塩力 リチウム電池用電解液の添 加剤として有用であることが記載されている。し力しながら、特許文献 3には、ジフル ォロリン酸リチウムとモノフルォロリン酸リチウムの混合塩を添加した場合は、ジフルォ 口リン酸ナトリウムを添加した場合より、電池性能が劣ることが記載されている。この様 に、ジフ口才口リン酸の如何なる塩が好適であるか等、その効果と使用条件の詳細は 必ずしも明確となって 、な 、。
[0008] さらに、非特許文献 1には、 COや Li COを添加剤として LiPF溶液中に存在させ
2 2 3 6
ると Liサイクル効率が向上すること、 Li COは優れた被覆剤であることが記載されて
2 3
いる。
[0009] これらの方法により、上記問題点についてある程度の改善が可能である力 必ずし も満足すべきものでなぐ工業的に有利でより確実な効果が得られる方法の提案が 求められている。特に、ジフルォロリン酸塩は、従来、例えば P O Fに金属塩や NH
2 3 4 3 を反応させることにより製造できるとされていた (非特許文献 2及び非特許文献 3参照 ) oし力しながら、この方法は、原料の P O Fが入手困難で非常に高価であること、副
2 3 4
生成物の分離精製が必要なこと等の理由から、非水系電解液の添加剤としてのジフ ルォロリン酸塩の製造方法としての工業的スケールでの適用には極めて不利であつ た。
特許文献 1:特開平 11 67270号公報
特許文献 2:特開平 1― 286263号公報
特許文献 3 :日本国特許第 3438085号公報
特許文献 4:特開 2004 - 31079号公報
非特許文献 1 :J. Electrochem. Soc, Vol. 143, No.12, December 1996, p. 3809—382 0
非特許文献 2 : J. Fluorine Chem.(1988),38(3), P. 297-302
非特許文献 3 : Inorganic Chemistry Vol. 6, No. 10, P. 1915— 1917(1967) 発明の開示
発明が解決しょうとする課題
[0010] 従って、本発明は、入手容易な安価な原料からジフルォロリン酸塩を工業的に有利 に製造する方法と、このような方法により製造されたジフルォロリン酸塩を添加剤とし て含む二次電池用非水系電解液と、この非水系電解液を用いた非水系電解液二次 電池を提供することを目的とする。
課題を解決するための手段
[0011] 本発明のジフルォロリン酸塩の製造方法は、へキサフルォロリン酸リチウムと炭酸塩 とを非水溶媒中で反応させることを特徴とする。
[0012] 本発明の二次電池用非水系電解液は、非水溶媒中に、電解質リチウム塩として少 なくともへキサフルォロリン酸塩を含み、更にジフルォロリン酸塩を含有してなる非水 系電解液であって、該ジフルォロリン酸塩の少なくとも一部力 へキサフルォロリン酸 リチウムと炭酸塩とを非水溶媒中で反応させてなるジフルォロリン酸塩を含む反応生 成液として供給されてなることを特徴とする。
[0013] 即ち、本発明者らは、二次電池用非水系電解液の添加剤としてのジフルォロリン酸 塩を工業的に有利に製造すること、そして、ジフルォロリン酸塩を添加剤として含有 する非水系電解液を安価にかつ簡便に調製する方法を提供すべく鋭意検討した結 果、電解質として汎用されているへキサフルォロリン酸リチウムと、工業的に入手容易 でかつ非常に安価な炭酸塩とを非水溶媒中で反応させることにより、ジフルォロリン 酸塩を極めて工業的に有利に製造することができること、特に、電解質リチウム塩とし て少なくともへキサフルォロリン酸リチウムを含み、更にジフルォロリン酸塩を含有して なる非水系電解液の、該ジフルォロリン酸塩の少なくとも一部を、へキサフルォロリン 酸リチウムと炭酸塩とを非水溶媒中で反応させてなる反応生成液として供給すること によって、極めて安価、かつ簡便にジフルォロリン酸塩を含有する二次電池用非水 系電解液を調製することができることを見出した。
[0014] この電解液の調製法についてさらに検討の結果、非水溶媒中に比誘電率 10以上 の溶媒が存在すると反応が遅延し、反応速度の観点から、比誘電率が 10未満の非 水溶媒を用いれば、効率的にジフ口才口リン酸塩が生成すること、更に該反応液に比 誘電率が 10以上の非水溶媒を添加すれば優れた性能を有する非水系電解液となる ことを見出した。また、力べして調製された電解液を用いて、優れた性能を有する非水 系電解液二次電池が製造できることを見出した。本発明はこれらの知見に基づいて 成し遂げられたものである。
[0015] 本発明における反応機構の詳細は明らかでないが、へキサフルォロリン酸塩と炭酸 リチウムとの反応を例に取ると、見掛け上、下記式のような反応が進行していると考え られる。なお、この反応は水、もしくは HFが触媒として働いている可能性もある。
[0016] LiPF + 2Li CO → LiPO F + 2CO +4LiF
6 2 3 2 2 2
従って、この反応で得られた反応液は、非水溶媒中にジフルォロリン酸塩とフツイ匕 物塩、更には二酸ィ匕炭素を含むものである。
[0017] よって、本発明の別の態様に係る二次電池用非水系電解液は、非水溶媒中に、電 解質リチウム塩として少なくともへキサフルォロリン酸塩を含み、更にジフルォロリン酸 塩とフッ化物塩とを含有してなることを特徴とする。
[0018] また、本発明の別の態様に係る二次電池用非水系電解液は、非水溶媒中に、電解 質リチウム塩として少なくともへキサフルォロリン酸塩を含み、更にジフルォロリン酸塩 と二酸化炭素とを含有してなることを特徴とする。
[0019] また、本発明の別の態様に係る二次電池用非水系電解液は、非水溶媒中に、電解 質リチウム塩として少なくともへキサフルォロリン酸塩を含み、更にジフルォロリン酸リ チウムを含有してなる非水系電解液であって、該非水溶媒が環状カーボネート類と 鎖状カーボネート類の両方を含み、かつ、 3種類以上の非水溶媒成分の混合溶媒で あることを特徴とする。
[0020] 非水溶媒として、環状カーボネート類と鎖状カーボネート類の両方を含み、かつ、 3 種類以上の非水溶媒成分を混合したものは、混合溶媒が低温で固化しにくぐ特に 分子量の小さ!/、鎖状カーボネート類を用い、ジフルォロリン酸塩が含有されて 、る場 合には、ジフルォロリン酸ァ-オンが正極材に接近し、 Liイオンを引きつけるため、二 次電池に使用したときに低温放電特性が向上するので好ましい。
[0021] また、本発明の非水系電解液二次電池は、このような本発明の二次電池用非水系 電解液と、リチウムイオンを吸蔵及び放出可能な負極と、正極とを備えてなるものであ る。
[0022] さらに、本発明の非水系電解液二次電池は、上記本発明の二次電池用非水系電 解液と、リチウムイオンを吸蔵及び放出可能な負極と、正極とを備え、かつ下記 (i)、 ( ii)及
び (iii)よりなる群力も選ばれる少なくとも 1つの条件を満たすことを特徴とする。
(i)前記二次電池の外装の表面積に対する前記正極の電極面積の総和が面積比で 20倍
以上である。
(ii)前記二次電池の直流抵抗成分が 10ミリオーム (m Ω )未満である。
(iii)前記二次電池の 1個の電池外装に収納される電池要素のもつ電気容量が 3アン ペア一アワー(Ah)以上である。
[0023] なお、特開平 1— 286263号公報には、環状エステルを含む非水溶媒にリチウム塩 を溶解させたリチウム二次電池用電解液に、添加剤として炭酸リチウムを添加して、 電池の充放電特性を向上させることが記載されている。この特開平 1— 286263号公 報では、炭酸リチウムを予め電解液に添加しておくことにより、環状エステルとリチウ ムの反応で生成した炭酸リチウムが溶解できなくなり、リチウムと溶媒との反応を抑制 するとしている。そのため、電解液に好ましくは過飽和の状態で炭酸リチウムを添加し 、電解液中に炭酸リチウムとして存在させることによって発明の効果を保っている。即 ち、炭酸リチウムのまま反応せずに電解液中にとどまることで発明の効果を得ている
[0024] し力しながら、この方法では、後述する比較例 2及び比較例 4に示すように、本発明 のような効果は得られな 、。
[0025] 即ち、ジフルォロリン酸塩を生成させるためには、へキサフルォロリン酸リチウムと炭 酸塩とを充分に反応させる必要があること、また、電池内に封入してしまった後では、 リチウムニッケル系複合酸ィ匕物、リチウムコノ レト系複合酸ィ匕物などの正極材として 典型的なリチウム遷移金属酸化物や、炭素質材料、金属リチウムなどの負極材として 典型的な物質が、反応の触媒作用をするとみられる水、 HFをトラップし、ジフルォロリ ン酸塩生成反応が抑制されてしまうことが原因と考えられる。
[0026] 即ち、ジフルォロリン酸塩を生成させるためには、へキサフルォロリン酸リチウムと炭 酸塩とを非水溶媒中で予め反応させる必要があり、非水系電解液として使用する際 は、この反応が充分に進行する以前に二次電池作製に供しても、本発明の効果を得 ることはできない。
発明を実施するための最良の形態
[0027] 以下に本発明の実施の形態の代表例を示し、本発明を更に詳細に説明する。
[0028] まず、本発明のジフルォロリン酸塩の製造方法について説明する。
[0029] 本発明では、へキサフルォロリン酸リチウムと炭酸塩とを非水溶媒中で反応させるこ とにより、ジフルォロリン酸塩を製造する。
[0030] 炭酸塩としては、非水溶媒中に溶解し、へキサフルォロリン酸リチウムと反応性を有 するものであれば良ぐ特に制限はないが、通常、アルカリ金属塩、アルカリ土類金 属塩、並びに、 NRiR2R3R4 (但し、 Ri〜R4は、互いに同一でも異なっていても良い、 炭素数 1〜12の有機基又は水素原子を表す。)の塩力 選ばれるものが用いられる 。これらは、特に非水系電解液向けジフルォロリン酸塩の製造に有利な原料である。
[0031] 上記アルカリ金属としては通常、 Li、 Na、 K、 Rb、 Csからなる群力 選ばれるものであ り、中でも、非水系電解液向けジフルォロリン酸塩には Li、 Na、 Kが価格、入手容易さ の
点で好ましぐ特に Li、 Kが電池特性の点で好ましい。中でも Liが電池特性の点で更 に好
ましい。
[0032] 上記アルカリ土類金属としては通常、 Be、 Mg、 Ca、 Sr、 Baからなる群から選ばれるも のであり、中でも、非水系電解液向けには Mg、 Ca、 Sr、 Baが価格、安全性の点で好ま しぐ特に Caが電池特性の点で好ましい。
[0033] 上記 NRiR2R3R4 (但し、 I^〜R4は、互いに同一でも異なっていても良い、炭素数 1 〜12の有機基又は水素原子を表す。 )に含まれる Ri〜R4の有機基としては通常、メ チル基、ェチル基、プロピル基、ブチル基等のアルキル基、シクロへキシル基等のシ クロアルキル基、ピペリジル基、ピロリジル基、ピリジル基、イミダゾリル基等の窒素原 子含有複素環基等が挙げられるが、中でも、メチル基、ェチル基が好ましい。 NR'R2 R3R4としては、非水溶媒中に溶解するものであれば良いが、溶解度の点からはテトラ ェチルアンモ -ゥム基、トリェチルメチルアンモ -ゥム基であることが好まし 、。
[0034] これらの炭酸塩は 1種を単独で用いても良ぐ 2種以上を併用してもよい。
[0035] 反応媒体となる非水溶媒としては限定されるものではないが、通常エチレンカーボ ネート、プロピレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジェ チルカーボネート、ェチルメチルカーボネート等の鎖状カーボネート、 y ブチロラタ トン、 y—バレロラタトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の 鎖状エステル類、テトラヒドロフラン、 2—メチルテトラヒドロフラン、テトラヒドロピラン等 の環状エーテル類、ジメトキシェタン、ジメトキシメタン等の鎖状エーテル類、及びス ルフォラン、ジェチルスルホン等の含硫黄有機溶媒力もなる群力 選ばれる 1種又は 2種以上の溶媒が使用できる。これらの中でも、反応速度の観点から誘電率の低い 溶媒、中でも比誘電率 10以下の溶媒が好ましぐ比誘電率 5以下の溶媒が特に好ま しい。
[0036] ここで、比誘電率とは物質の誘電率 εと真空の誘電率 ε の比 ε Ζ ε である。一般
0 0
に温度に依存するが、本発明における比誘電率 10以上の物質とは、 20°C以上の液 体の状態で比誘電率が 10以上となる場合がある物質を指す。同様に、比誘電率 10 未満の物質は、 20°C以上の液体の状態において比誘電率が 10以上となることがな い物質を意味する。 [0037] 比誘電率 10未満の非水溶媒としては、例えば、ジメチルカーボネート、ジェチルカ ーボネート、ェチルメチルカーボネート等の鎖状カーボネート類、酢酸メチル、プロピ オン酸メチル等の鎖状エステル類、テトラヒドロフラン、 2—メチルテトラヒドロフラン、テ トラヒドロピラン等の環状エーテル類、ジメトキシェタン、ジメトキシメタン等の鎖状エー テル類等が挙げられる。これらの溶媒は、 1種又は 2種以上を混合して用いることがで きる。
これら溶媒の中で、鎖状カーボネート類がより好ましぐジメチルカーボネートとェチ ルメチルカーボネートの混合溶媒が特に好ましい。
[0038] 反応生成液を非水系電解液として供給する場合、反応後に比誘電率が 10以上の 非水溶媒を混合することが好ましい、比誘電率 10以上の非水溶媒としては、例えば 、通常エチレンカーボネート、プロピレンカーボネート等の環状カーボネート類、 γ— プチ口ラタトン、 Ύ バレロラタトン等の環状エステル類等が上がられる。反応終了後 にこれら非水溶媒を反応液に添加することにより、反応溶液を優れた二次電池用非 水系電解液とすることができる。これらの溶媒も、 1種又は 2種以上を混合して用いる ことができる。
[0039] 反応生成液を非水系電解液用途に供する場合、最終的に、エチレンカーボネート 、プロピレンカーボネート等の環状カーボネート類と、ジメチルカーボネート、ジェチ ルカーボネート、ェチルメチルカーボネート等の鎖状カーボネート類との混合溶媒と なるように上記非水溶媒を添加するのが好ま 、。
[0040] 反応に供するへキサフルォロリン酸リチウムと炭酸塩との仕込み比率は特に限定さ れるものではないが、ジフルォロリン酸塩の合成を効率良く行う観点では、へキサフ ルォロリン酸リチウムに対する炭酸塩のモル比(CO ZPF )として、下限は、通常 I X
3 6
10— 3以上、中でも 3 X 10— 3以上、上限は、通常 2以下、中でも 1. 6以下とすることが好 ましい。
[0041] 特に、反応により得られる反応生成液を、ジフルォロリン酸塩源として二次電池用 非水系電解液に供給する場合には、へキサフルォロリン酸リチウムに対する炭酸塩 のモル比(CO ZPF )の下限は、通常 5 X 10— 3以上、中でも 1 X 10— 2以上、上限は、
3 6
通常 1. 6以下、中でも 1. 2以下とすることが有利であり、反応生成液をそのまま非水 系電解液として使用する際の上限は 0. 8以下、中でも 0. 6以下が好ましい。
[0042] 合成に供するへキサフルォロリン酸リチウムの濃度は特に限定されるものではない 力 非水溶媒中の濃度として下限は、通常 0. 3molZkg以上、中でも 0. 5mol/kg 以上、上限は、通常 2. 5molZkg以下、中でも 2. OmolZkg以下が好適である。こ の下限を下回ると反応速度が低下しやすぐ上限を上回ると副反応が進行しやすい 。また、合成に供する炭酸塩の使用量は特に限定されるものではないが、下限は、非 水溶媒 1kgに対して通常 2 X 10— 3mol以上、中でも 5 X 10— 3mol以上が好ましい。上 限は、通常 4mol以下、中でも 3mol以下が好ましい。この下限を下回ると充分な量の ジフルォロリン酸塩が得られにくぐ上限を上回ると副反応が進行する場合がある。
[0043] 特に、反応により得られる反応生成液を、ジフルォロリン酸塩源として二次電池用 非水系電解液に供給する場合には、通常へキサフルォロリン酸リチウムの非水溶媒 中濃度として、下限は 0. 5molZL以上、中でも 0. 7molZL以上が好ましぐ上限は 、通常 2. OmolZL以下、中でも 1. 6molZL以下が好ましい。これは、非水系電解 液として好適な濃度に近 、ほど、取り扱 、がしやす 、ためである。
[0044] また、反応により得られる反応生成液を、ジフルォロリン酸塩源として二次電池用非 水系電解液に供給する場合の炭酸塩の使用量としては、下限は非水溶媒 lkgに対 して通常 2 X 10— 3mol以上、中でも 0. Olmol以上が好ましぐ上限は、通常 lmol以 下、中でも 0. 8mol以下が好ましい。特に、反応生成液をそのまま非水系電解液とし て使用する場合は、上限として 0. 6mol以下が好ましい。この下限を下回ると非水系 電解液として使用した場合の添加剤効果が得られにくぐ上限を上回ると副反応が進 行しやすくなる場合がある。
[0045] ジフルォロリン酸塩の生成反応には、通常、反応を進行させるために非水溶媒、へ キサフルォロリン酸リチウム、及び炭酸塩が存在すれば良い。ただし、作用は明確で ないものの微量の水分が存在した場合に反応が速く進行する。従って、反応生成液 を非水系電解液に供給する場合は、電池性能に影響が出ない程度の微量な水分、 例えば、電解液中の濃度として 10〜 200ppm程度の水を反応系に共存させても良 い。
[0046] 反応温度、反応時間については、状況によって最適なものを選択すれば良ぐ特に 制限はないが好ましくは次の通りである。
[0047] 温度については、反応が進行する限り特に制限はないが、常温よりも高めの温度の 方が反応の進行が速い。反応温度の下限は、通常 20°C以上、中でも 30°C以上、さ らに好ましくは、 40°C以上であり、上限は、通常 85°C以下、中でも 70°C以下が好適 である。この下限を下回ると反応が進行しにくぐ上限を上回ると溶媒が気化しやす い上に、 LiPFが分解を起こしやすい。但し、反応温度が低めの場合には十分な反
6
応時間を確保することが肝要である。
[0048] また、時間についても、反応が進行する限り特に制限はなぐ目的とする量のジフル ォロリン酸塩が生成するまで時間をとればよいが、下限は、通常 2時間以上、中でも 5 時間以上である。 目安として、 30°Cならば 24時間以上、 40°Cならば 6時間以上を要 する。この下限を下回ると反応が完了しにくぐ目的量のジフルォロリン酸塩が得られ ない場合がある。反応時間の上限は特に定めないが、生産性の観点力も数日もの長 期になりすぎると効率が悪 、。
[0049] 反応溶媒として、比誘電率 10未満の非水溶媒を用いる場合、反応温度は、通常 3 0°C以上、 85°C以下、好ましくは 40°C以上、 70°C以下が適当である。また、反応時 間は、通常 30分以上、 10時間以下、好ましくは 1時間以上、 8時間以下が適当であ る。この様に、本発明においては、比誘電率 10未満の非水溶媒を用いることにより、 へキサフルォロリン酸リチウムと炭酸塩との反応を特に効率的に行うことができる。
[0050] このようにして得られる反応生成液は、非水溶媒中に未反応のへキサフルォロリン 酸リチウム及び炭酸塩と、反応により生成したジフルォロリン酸塩及びフッ化物と二酸 化炭素を含むものである。
[0051] 反応生成液からジフルォロリン酸塩を単離する場合、その方法としては特に限定さ れず、ジフルォロリン酸塩が分解しない限りは、蒸留、再結晶等、あらゆる方法を用い ることが可能である。しかし、目的に応じて、例えば後述するように、得られるジフルォ 口リン酸塩を二次電池用非水系電解液として用いる場合には、反応生成液からジフ ルォロリン酸塩を単離せずに用いることができ、これにより、単離工程を省略すること ができ、工業的に非常に有利である。
[0052] 即ち、上記反応生成液には目的とするジフルォロリン酸塩の他、未反応のへキサフ ルォロリン酸リチウム、炭酸塩、副生するフッ化物塩及び二酸化炭素並びに非水溶 媒が含有されて 、るが、へキサフルォロリン酸リチウムは二次電池の非水系電解液の 電解質として用いられる物質である。従って、例えば非水溶媒中に、電解質リチウム 塩として少なくともへキサフルォロリン酸塩を含み、更にジフルォロリン酸塩を含有し てなる二次電池用非水系電解液を調製する場合には、反応溶媒となる非水溶媒を 電解液用非水溶媒として支障のないものを選択することにより、反応生成液を非水系 電解液のジフルォロリン酸塩源として用いることができる。反応生成液を電解液の一 部として用いる場合、この反応生成液中の各成分の含有濃度は、好ましくは次の通り である。
[0053] 反応生成液中のジフルォロリン酸塩の含有濃度の下限は、通常 1 X 10"3mol/kg 以上、中でも 5 X 10— 3molZkg以上、特に 1 X 10— 2molZkg以上であり、上限は、通 常 0. 7molZkg以下、中でも 0. 6molZkg以下である。また、反応生成液中に残留 するへキサフルォロリン酸リチウムの含有濃度の下限は、通常 0. 2molZkg以上、中 でも 0. 3molZkg以上であり、上限は、通常 1. 8molZkg以下、中でも 1. 5mol/k g以下である。更に、反応生成液中に残留する炭酸塩の含有濃度の下限はなぐ 0で も構わない。上限は、通常 0. 02molZkg以下、中でも 0. OlmolZkg以下である。
[0054] また、反応により副生するフッ化物塩は非水溶媒中に溶解しているが、溶解度を超 える分は沈殿する。沈殿したフッ化物塩は、濾過操作により取り除くことができ、一部 溶解する部分は、反応生成液の希釈作業等で濃度調整をすることが可能である。二 次電池用非水系電解液としての用途においては、フッ化物塩の含有量力 電解液中 の濃度として、上限値として、通常 0. 15molZkg以下、中でも 0. ImolZkg以下、 下限値として、通常、 2 X 10— olZkg以上、好ましくは 3 X 10— 3molZkg以上、とな るようにするのが、電池としての高温保存耐久性能や熱安定性の点力 好ましい。ま た、以下の方法により測定される二酸ィ匕炭素の量が 300ppm以上であることが、高温 保存後の回復容量の点で好ましい。
[0055] 電解液中の二酸ィ匕炭素の量は次のようにして測定することができる。 Arボックス中 、電解液 0. 3mlを容積 6mlのバイアル瓶に封入し、 60°Cにて 20分間加熱する。そ の後、気相部分を 0. 5ml採取し、その中の二酸ィ匕炭素をガスクロマトグラフ法で測定 する。同様に使用する Arボックス中の二酸ィ匕炭素量 (ブランク)も測定し、電解液を封 入した場合の測定値力もブランクを差し引くことにとによって、電解液中の二酸ィ匕炭 素の量を求めることができる。
[0056] 後述の実施例 5, 6、参考例 2、比較例 5における二酸化炭素測定量はこうして求め た値である。
[0057] 従って、本発明のジフルォロリン酸塩の製造方法においては、反応により得られる 反応生成液を、ジフルォロリン酸塩源として二次電池用非水系電解液に供給する場 合には、反応生成液中の各成分濃度が上記ジフルォロリン酸塩、へキサフルォロリン 酸リチウム、炭酸塩及びフッ化物塩濃度となるように、反応に供するへキサフルォロリ ン酸リチウム及び炭酸塩量を調整するのが好ましい。また、必要に応じて、反応生成 液から、適宜非水溶媒を蒸留等の操作により除去して濃縮するか、逆に非水溶媒で 希釈することにより、ジフルォロリン酸塩等の各成分濃度を調整したり、適宜へキサフ ルォロリン酸リチウム等の溶質成分を追加したりすることが好ましい。
[0058] 即ち、本発明の二次電池用非水系電解液において、電解液中のジフルォロリン酸 塩の少なくとも一部として、へキサフルォロリン酸リチウムと炭酸塩とを非水溶媒中で 反応させてなる反応生成液を供給するとは、得られる反応生成液をそのまま供給す ることに加え、適宜非水溶媒を蒸留、抽出等の操作により除去して濃縮したり、逆に 非水溶媒で希釈することにより、ジフルォロリン酸塩等の濃度を調整したり、適宜へキ サフルォロリン酸リチウム等の溶質成分を追加したりして、成分濃度調整を行って用 いることを含むちのである。
[0059] 以下に本発明の二次電池用非水系電解液について説明する。
[0060] 本発明の二次電池用非水系電解液は、非水溶媒中に、電解質リチウム塩として少 なくともへキサフルォロリン酸塩を含み、更にジフルォロリン酸塩を含有し、該ジフル ォロリン酸塩として、上述の本発明のジフルォロリン酸塩の製造方法で得られた反応 生成液を用いたものである。
[0061] なお、本発明のジフルォロリン酸塩の製造方法において、へキサフルォロリン酸リチ ゥムと炭酸塩とを非水溶媒中で反応させて得られた反応生成液力 ジフルォロリン酸 塩を単離して二次電池用非水系電解液の添加剤として用いても良いことは言うまで もないが、へキサフルォロリン酸リチウムと炭酸塩とを非水溶媒中で反応させてなる、 ジフルォロリン酸塩を含む反応生成液として供給することにより、分離、精製の工程を 省略することができ、極めて工業的に有利である。前述の如ぐこの反応生成液は、 生成したジフルォロリン酸塩とフッ化物塩と、へキサフルォロリン酸リチウム及び炭酸 塩が残留する場合には残留するへキサフルォロリン酸リチウム及び炭酸リチウムを含 むものであるから、この場合には、本発明の二次電池用非水系電解液は、非水溶媒 中に、電解質リチウム塩として少なくともへキサフルォロリン酸塩を含み、ジフルォロリ ン酸塩と更にフッ化物塩及び二酸化炭素を含有するものとなる。更に、モノフルォロリ ン酸リチウムを含まな 、ものが好まし 、。
[0062] 本発明の二次電池用非水系電解液は、上述の反応生成液を供給する場合を含め 、その構成成分及び比率は、下記の組成となるようにするのが好ましい。
[0063] 本発明の二次電池用非水系電解液の非水溶媒としては、エチレンカーボネート、 プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類、ジメチルカ ーボネート、ジェチルカーボネート、ェチルメチルカーボネート等の鎖状カーボネート 類、 Ί ブチロラタトン、 Ί バレロラタトン等の環状エステル類、酢酸メチル、プロピ オン酸メチル等の鎖状エステル類、テトラヒドロフラン、 2—メチルテトラヒドロフラン、テ トラヒドロピラン等の環状エーテル類、ジメトキシェタン、ジメトキシメタン等の鎖状エー テル類、スルフォラン、ジェチルスルホン等の含硫黄有機溶媒等が挙げられる。これ らの溶媒は 2種類以上を混合して用いても良 、。
[0064] ここで非水溶媒は、アルキレン基の炭素数が 2〜4のアルキレンカーボネートからな る群力 選ばれた環状カーボネートと、アルキル基の炭素数が 1〜4であるジアルキ ルカーボネートよりなる群力も選ばれた鎖状カーボネートとをそれぞれ 20容量%以 上含有し、且つこれらのカーボネートが全体の 70容量%以上を占める混合溶媒であ るものが、充放電特性、電池寿命他、電池性能全般を高めるため好ましい。
[0065] アルキレン基の炭素数が 2〜4のアルキレンカーボネートの具体例としては、例えば エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等を挙げること ができ、これらのうち、エチレンカーボネート、プロピレンカーボネートが好ましい。
[0066] アルキル基の炭素数が 1〜4であるジアルキルカーボネートの具体例としては、ジメ チノレカーボネート、ジェチノレカーボネート、ジ— n—プロピノレカーボネート、ェチノレメ チルカーボネート、メチルー n—プロピルカーボネート、ェチルー n—プロピルカーボ ネート等を挙げることができる。これらのうち、ジメチルカーボネート、ジェチルカーボ ネート、ェチルメチルカーボネートが好ましい。
[0067] なお、上記環状カーボネートと鎖状カーボネートとの混合非水溶媒中には、カーボ ネート以外の溶媒を含有していても良ぐ非水溶媒中に、通常 30重量%以下、好ま しくは 10重量%以下で、電池性能を低下させない範囲であれば、環状カーボネート 、鎖状カーボネート等のカーボネート以外の溶媒を含んで 、ても良 、。
[0068] 非水溶媒として、環状カーボネート類と鎖状カーボネート類の両方を含み、かつ、 3 種類以上の非水溶媒成分を混合したものは、混合溶媒が低温で固化しにくぐ特に 分子量の小さ!/、鎖状カーボネート類を用い、ジフルォロリン酸塩が含有されて 、る場 合には、ジフルォロリン酸ァ-オンが正極材に接近し、 Liイオンを引きつけるため、二 次電池に使用したときに低温放電特性が向上するので好ましい。
[0069] 好ましい溶媒の組み合わせとしては、
(1) エチレンカーボネート (EC)、ジメチルカーボネート(DMC)及びジェチルカ ーボネート (DEC)の組み合わせ
(2) エチレンカーボネート (EC)、ジメチルカーボネート (DMC)及びェチルメチル カーボネート (EMC)の糸且み合わせ
及び、
(3) エチレンカーボネート (EC)、ェチルメチルカーボネート (EMC)及びジェチ ノレカーボネート (DEC)の糸且み合わせ
等が挙げられる。
[0070] このうち特に好ましい非水溶媒の組み合わせとしては、(1)エチレンカーボネート (E C)、ジメチルカーボネート (DMC)及びジェチルカーボネート (DEC)の組み合わせ と、(2)エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びェチルメチル カーボネート(EMC)の組み合わせが挙げられる。また、エチレンカーボネート(EC) 、ジメチルカーボネート(DMC)、ェチルメチルカーボネート(EMC)及びジェチルカ ーボネート (DEC)の 4種の溶媒を全て含んだものも好まし!/、。 [0071] 本発明の二次電池用非水系電解液は、電解質リチウム塩として特にへキサフルォ 口リン酸リチウム (LiPF )を使用する際に有用なものである力 へキサフルォロリン酸
6
リチウムとその他のリチウム塩を混合して使用することも可能である。これらのリチウム 塩は特に限定されるものではないが、通常、 LiCIO、 LiBF、 LiAsF、 LiSbFから
4 4 6 6 なる無機リチウム塩、並びに、 LiCF SO、 LiN (CF SO ) 、 LiN (CF CF SO )、 Li
3 3 3 2 2 3 2 2 2
N (CF SO ) (C F SO )及び LiC (CF SO )力 なる有機リチウム塩力 選ばれるも
3 2 4 9 2 3 2 3
のが使用できる。特に LiCIO、 LiBF力 選ばれるものが好ましい。
4 4
[0072] 電解質リチウム塩は電解液中の濃度として、上限値として、通常 2molZL以下、中 でも 1. 5molZL以下、下限値として、通常 0. 5molZL以上、好ましくは 0. 7mol/ L以上となるようにするの力 電気伝導率、粘度の点力も好ましい。
[0073] 本発明の二次電池用非水系電解液に含まれるジフルォロリン酸塩は、本発明のジ フルォロリン酸塩の製造方法で製造されるジフルォロリン酸塩、即ち、本発明のジフ ルォロリン酸塩の製造方法で用いられる炭酸塩由来のものと同種のものであり、アル カリ金属塩、アルカリ土類金属塩、及び、 NRiRSRSR4 (但し、 Ri〜R4は、互いに同一 でも異なっていても良い、炭素数 1〜12の有機基又は水素原子を表す。)の塩から 選ばれるものが好ましい。これらは 1種を単独で用いても良ぐ 2種以上を併用しても 良い。
[0074] このようなジフルォロリン酸塩は、非水系電解液中に、下限として、通常 1 X 10"3mo lZkg以上、中でも 3 X 10— 3molZkg以上、好ましくは 1 X 10— 2molZkg以上、上限と しては、通常、 0. 5molZkg以下、中でも 0. 3molZkg以下、好ましくは 0. 15mol Zkg以下の濃度で存在することが適当である。この上限を超えると粘度が増加しや すぐ下限を下回るとサイクル特性向上効果が得られにくい場合がある。
[0075] 前述の如ぐへキサフォロリン酸リチウムと炭酸塩との反応生成液を非水系電解液 の調製に用いることで、炭酸塩が混入してくる可能性があるが、炭酸塩は、非水系電 解液中の濃度の上限値として、通常 1 X 10— olZkg以下、中でも 8 X 10— olZkg 以下であることが好ましい。下限値は特に定めないが、通常、 5 X 10—4molZkg程度 は存在していても特に影響なく許容する。この上限を超えても本発明の効果が損な われることはないが、無駄が多く効率が悪い。 [0076] 本発明の非水系電解液にぉ ヽては、更に、任意の添加剤を適切な任意の量で使 用することができる。このような添加剤としては、例えばシクロへキシルベンゼン、ビフ ェ-ル等の過充電防止剤、ビ-レンカーボネート、ビュルエチレンカーボネート、フル ォロエチレンカーボネート、コハク酸無水物等の負極被膜形成剤、亜硫酸エチレン、 亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、ブタンスルトン、メタンスルホ ン酸メチル、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジ メチルスルホン、ジェチルスルホン、ジメチルスルホキシド、ジェチルスルホキシド、テ トラメチレンスルホキシド、ジフエ-ルスルフイド、チオア-ノール、ジフエ-ルジスルフ イド、ジピリジ -ゥムジスルフイド等の正極保護剤等が挙げられる。
[0077] 前述のように、本発明ではへキサフルォロリン酸リチウムと炭酸塩との反応生成液と して提供されるジフルォロリン酸塩含有溶液を電解液の調製に用いることができる。 その際、反応生成液自体を電解液として使用するだけでなぐ適宜溶媒、電解質、添 加剤を加えて任意の設計をすることが可能である。例えば、仕込み量によっては反応 生成液中のへキサフルォロリン酸リチウムの量が少なくなることがある力 これを後か ら加えて濃度の適正化を図ることができる。また、電解液の添加剤として反応生成液 を使用することもでき、この場合、反応媒体となる非水溶媒の組成を前述の電解液の 溶媒組成と一致させておくと取り扱!/、がしやす!/、。
[0078] 次に本発明の二次電池用非水系電解液を用いた本発明の非水系電解液二次電 池について説明する。
[0079] 本発明の二次電池を構成する負極の活物質としては、リチウムを吸蔵及び放出し 得る材料を含むものであれば良く特に限定されないが、その具体例としては、例えば 様々な熱分解条件での有機物の熱分解物や、人造黒鉛、天然黒鉛等が挙げられる 。好適には種々の原料から得た易黒鉛性ピッチの高温熱処理によって製造された人 造黒鉛及び精製天然黒鉛或いはこれらの黒鉛にピッチを含む種々の表面処理を施 した材料が主として使用されるが、これらの黒鉛材料は学振法による X線回折で求め た格子面(002面)の d値 (層間距離)力 O. 335〜0. 34nm、より好ましくは 0. 335〜 0. 337nmであるものが好ましい。これら黒鉛材料は、灰分が 1重量%以下、より好ま しくは 0. 5重量%以下、最も好ましくは 0. 1重量%以下でかつ学振法による X線回 折で求めた結晶子サイズ (Lc)が 30nm以上であることが好ましい。更に結晶子サイ ズ (Lc)は、 50nm以上の方がより好ましぐ lOOnm以上であるものが最も好ましい。
[0080] また、黒鉛材料のメジアン径は、レーザー回折'散乱法によるメジアン径で、: L m 〜: LOO μ m、好ましくは 3 μ m〜50 μ m、より好ましくは 5 μ m〜40 μ m、更に好まし くは7 111〜30 111でぁる。黒鉛材料の BET法比表面積は、 0. 5m2/g~25. Om2 Zgであり、好ましくは 0. 7m2Zg〜20. OmVg,より好ましくは 1. Om2/g~15. 0 m2Zg、更に好ましくは 1. 5m2Zg〜: LO. Om2Zgである。また、アルゴンイオンレー ザ一光を用いたラマンスペクトル分析において、 1580〜1620cm— 1の範囲のピーク P (ピーク強度 I )及び 1350〜1370cm 1の範囲のピーク P (ピーク強度 I )の強度比
A A B B
R=I /\力 sO〜0. 5、 1580〜1620cm— 1の範囲のピークの半値幅力 S26cm— 1以下、
B A
1580〜1620cm— 1の範囲のピークの半値幅は 25cm— 1以下がより好ましい。
[0081] 黒鉛材料と非晶質材料を混合、もしくは黒鉛材料を非晶質材料で被覆した黒鉛一 非晶質複合材料も好ましい。黒鉛質と非晶質の複合化は、非晶質を得るための炭素 前駆体をそのまま用いて炭素前駆体と黒鉛質粉体との混合物を加熱処理し、その後 粉砕処理して複合粉体を得る方法、前述の非晶質粉体を予め作成しておき、黒鉛質 粉体と混合し、加熱処理して複合化する方法、前述の非晶質粉体を予め作成してお き、黒鉛質粉体と非晶質粉体と炭素前駆体とを混合し、加熱処理して複合化する方 法などが採用可能である。なお、後二者の予め非晶質粉体を用意しておく方法では 、平均粒子径が黒鉛質粒子の平均粒径の 10分の 1以下の非晶質粒子を用いること が好ましい。
[0082] 通常、カゝかる黒鉛質粒子、あるいは黒鉛質粒子と非晶質粒子の混合物と炭素前駆 体を混合したものを加熱し中間物質を得て、その後炭化焼成、粉砕することにより、 最終的に黒鉛粒子に非晶質物を複合化させた黒鉛非晶質複合粉末を得ることがで きるが、このような黒鉛非晶質複合粉末中の非晶質物の割合は 50重量%以下、好ま しくは 25重量%以下、更に好ましくは 15重量%以下、特に好ましくは 10重量%以下 で、 0. 1重量%以上、好ましくは 0. 5重量%以上、更に好ましくは 1
重量%以上、特に好ましくは 2重量%以上となるように調整するのがよい。
[0083] 力かる黒鉛非晶質複合粉末を得るための製造工程は、通常、以下の 4工程に分け られる。
[0084] 第 1工程:黒鉛質粒子あるいは黒鉛質粒子と非晶質粒子の混合粉体と炭素前駆 体、更に必要に応じて溶媒とを種々の市販の混合機や混練機等を用いて混合し、混 合物を得る。
[0085] 第 2工程:必要に応じ前記混合物を攪拌しながら加熱し、溶媒を除去した中間物 質を得る。
[0086] 第 3工程:前記混合物又は中間物質を、窒素ガス、炭酸ガス、アルゴンガス等の不 活性ガス雰囲気下で 700°C以上 2800°C以下に加熱し、黒鉛非晶質複合物質を得 る。
[0087] 第 4工程:前記複合物質を必要に応じて粉砕、解砕、分級処理など粉体加工する
[0088] これらの工程中、第 2工程及び第 4工程は場合によっては省略可能であり、第 4ェ 程は第 3工程の前に行っても良い。
[0089] また、第 3工程の加熱処理条件としては、熱履歴温度条件が重要である。その温度 下限は炭素前駆体の種類、その熱履歴によっても若干異なるが通常 700°C以上、好 ましくは 900°C以上である。一方、上限温度は基本的に黒鉛粒子核の結晶構造を上 回る構造秩序を有しな 、温度まで上げることができる。従って熱処理の上限温度とし ては、通常 2800°C以下、好ましくは 2000°C以下、更に好ましくは 1500°C 以下が好ましい範囲である。このような熱処理条件において、昇温速度、冷却速度、 熱処理時間などは目的に応じて任意に設定することができる。また、比較的低温領 域で熱処理した後、所定の温度に昇温することもできる。なお、本工程に用いる反応 機は回分式でも連続式でも又、一基でも複数基でも良い。
[0090] このようにして得られた黒鉛質に非晶質を複合させた材料は、ラマンスペクトル分析 によるピーク強度比 R値や、 1580cm-lの付近のピークの半値幅 Δ v、 X線広角回 折の回折図において得られる d002、 Lcの値において、黒鉛質材料の結晶化度を上 回らないこと、即ち R値は黒鉛質のその値以上で、半値幅 Δ Vは黒鉛質のその値以 上、 d002値は黒鉛質のその値以上で、 Lcは黒鉛質のその値以下であることが好ま しい。具体的な黒鉛非晶質複合粉末材料の R 値としては、 0. 01以上 1. 0以下、好ましくは 0. 05以上 0. 8以下、より好ましくは 0. 2以上 0. 7以下、更に好ましくは 0. 3以上 0. 5以下の範囲で、かつ、母剤となる黒鉛 質の値以上であることが挙げられる。
[0091] またこれらの炭素質材料にリチウムを吸蔵及び放出可能な他の負極材を混合して 用いることもできる。炭素質材料以外のリチウムを吸蔵及び放出可能な他の負極材と しては、酸化錫、酸化珪素等の金属酸化物材料、更にはリチウム金属並びに種々の リチウム合金、及び Si、 Snのようにリチウムと合金形成可能な金属材料を例示するこ とができる。これらの負極材料は 2種類以上混合して用いても良 、。
[0092] 本発明の二次電池を構成する正極の活物質については、特に限定されるものでは ないが、好ましくはリチウム遷移金属複合酸化物を使用する。このような物質の例とし ては、 LiCoO等のリチウムコバルト複合酸化物、 LiNiO等のリチウムニッケル複合
2 2
酸化物、 LiMnO等のリチウムマンガン複合酸ィ匕物等を挙げることができる。中でも、
2
低温放電特性を向上させる観点では、リチウムコバルト複合酸ィ匕物、リチウムニッケル 複合酸化物が好ましい。これらリチウム遷移金属複合酸化物は、主体となる遷移金属 元素の一部を Al、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Li、 Ni、 Cu、 Zn、 Mg、 Ga、 Zr、 Si等の 他の金属種で置き換えることにより安定ィ匕させることもでき、また好ましい。これらの正 極の活物質は複数種併用することもできる。
[0093] 正極及び負極を製造する方法については、特に限定されない。例えば、上述の活 物質に、必要に応じて結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集 電体の基板に塗布し、乾燥することにより製造することができる。また、該活物質をそ のままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもで きる。
[0094] 電極活物質層の厚さは、正極の場合、通常 3 μ m以上 1000 μ m以下、好ましくは 5 μ m以上 200 μ m以下、負極の場合、通常 1 μ m以上 400 μ m以下、好ましくは 3 μ m以上 200 m以下が適当である。集電体上両面に活物質層を設ける場合など は、片面の厚さをこの範囲とする。
[0095] 結着剤については、電極製造時に使用する溶媒や電解液に対して安定な材料で あれば、特に限定されず、具体例として、ポリフッ化ビ-リデン、ポリテトラフルォロェ チレン、スチレン 'ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることがで きる。
[0096] 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチル セルロース、ェチルセルロース、ポリビュルアルコール、酸化スターチ、リン酸化スタ ーチ、カゼイン等が挙げられる。
[0097] 導電材としては、銅やニッケル等の金属材料、グラフアイト、カーボンブラック等のよ うな炭素材料が挙げられる。特に正極にっ 、ては導電材を含有させるのが好まし!/、。
[0098] 溶媒としては、水系でも有機系でも良い。水系溶媒としては、水、アルコール等が挙 がられ、有機系溶媒としては、 N-メチルピロリドン (NMP)、トルエン等が挙げられる。
[0099] 負極用集電体の材質としては、銅、ニッケル、ステンレス等の金属が使用され、これ らの中で薄膜に加工しやすいという点とコストの点から銅箔が好ましい。また、正極用 集電体の材質としては、アルミニウム、チタン、タンタル等の金属が使用され、これら の中で薄膜にカ卩ェしゃす ヽと 、う点とコストの点からアルミニウム箔が好ま 、。
[0100] 二次電池においては、通常、正極と負極との間にセパレータが介装される。本発明 の二次電池に使用するセパレータの材質や形状については、特に限定されないが、 電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましぐポリエチレ ン、ポリプロピレン等のポリオレフインを原料とする多孔性シート又は不織布等を用い るのが好ましい。
[0101] 少なくとも負極、正極及び非水系電解液を有する本発明の二次電池を製造する方 法については、特に限定されず、通常採用されている方法の中から適宜選択するこ とがでさる。
[0102] また、電池の形状についても特に限定されず、シート電極及びセパレータをスパイ ラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイ ドアウト構造のシリンダータイプ、ペレット電極又はシート電極及びセパレータを積層 したコインタイプ、シート電極及びセパレータを積層したラミネートタイプ等が使用可 能である。また、電池を組み立てる方法も特に制限されず、 目的とする電池の形状に 合わせて、通常用いられて 、る各種方法の中から適宜選択することができる。
[0103] 電池形状は特に限定されるものではないが、有底筒型形状、有底角型形状、薄型 形状、シート形状状、ペーパー形状があげられる。システムや機器に組み込まれる際 に、容積効率を高めて収納性を上げるために、電池周辺に配置される周辺システム への収まりを考慮した馬蹄形、櫛型形状などの異型のものであってもよい。電池内部 の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つ を有する角型形状が好ま U、。
[0104] 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるの で、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる 設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部で の温度分布が小さくなるように設計することが好まし 、。
[0105] ジフルォロリン酸塩を含有する本発明の電解液を使用する際、特に好ましい電池 構成は以下のようになる。本発明の時事電池は、以下の電池構成の条件力も選ばれ る少なくとも一つの条件を満たすものが好ましぐさらに全ての条件を満たすものが特 に好ましい。
[0106] 前述したような正極に関して、本発明の効果、特に出力特性を高める観点から、正 極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好まし い。具体的には、二次電池の外装の表面積に対する前記正極の電極面積の総和が 面積比で 20倍以上とすることが好ましぐ更に 40倍以上とすることがより好ましい。こ れらの措置は高温時の安定性を高める観点からも好ま 、。外装ケースの外表面積 とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填された ケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の 場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として 近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材 層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材 層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
[0107] また、正極は、放電容量(二次電池の 1個の電池外装に収納される電池要素のもつ 電気容量)が満充電で 3Ah以上 20Ah未満になるように設計することが好ましぐ更 に 4Ah以上 lOAh未満がより好ましい。 3Ah未満では、大電流の取り出し時に電極 反応抵抗による電圧低下が大きくなり電力効率が悪くなる場合がある。 20Ah以上で は、電極反応抵抗が小さくなり電力効率は良くなる力 パルス充放電時の電池内部 発熱による温度分布が大きぐ充放電繰り返しの耐久性が劣り、また、過充電や内部 短絡などの異常時の急激な発熱に対して放熱効率も悪くなり、内圧が上昇してガス 放出弁が作動する現象 (弁作動)、電池内容物が外に激しく噴出する現象 (破裂)に 至る確率が上がる場合がある。
[0108] 電極群は、前述の正極と負極とを前述のセパレータを介してなる積層構造のもの、 及び前述の正極と負極とを前述のセパレータを介して渦巻き状に捲回した構造のも の、いずれでもよい。
[0109] 電極群の体積が電池内容積に占める割合 (以下、電極群占有率と称する)は、 40 %〜90%にすることが好ましぐ 50%〜80%にすることが更に好ましい。前記の電 極群占有率が 40%未満では、電池容量が小さくなり、また、 90%以上では空隙スぺ ースが少なぐ電池が高温になることによって部材が膨張したり電解質の液成分の蒸 気圧が高くなつたりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温 保存などの諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作 動する場合がある。
[0110] 本発明の出力向上効果を高めるため、集電構造については配線部分や接合部分 の抵抗を低減する構造にする必要がある。こうした内部抵抗が大きい場合、それに阻 害されて本発明の非水系電解液の効果が充分に発揮されない場合がある。
[0111] 電極群が前述の積層構造では、各電極層の金属芯部分を束ねて端子に溶接して 形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部 抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に 用いられる。
[0112] 電極群が前述の捲回構造では、正極及び負極にそれぞれ複数のリード構造を設 け、端子に束ねることにより、内部抵抗を低くすることができる。
[0113] 前述の構造を最適化することにより、内部抵抗をできるだけ小さくすることができる。
大電流で用いられる電池では、 10kHz交流法で測定されるインピーダンス(以下、直 流抵抗成分と称する)を 10ミリオーム未満にすることが好ましい。直流抵抗成分を 5ミ リオーム未満にすることがより好ましぐ 2ミリオーム未満にすることが更に好適に用い られる。直流抵抗成分を 0. 1ミリオーム以下にすると高出力特性が向上するが、用い られる集電構造材の占める比率が増え、電池容量が減少する場合がある。
[0114] 本発明の非水系電解液は、電極活物質に対するリチウムの脱挿入に係わる反応抵 抗の低減に効果があり、それが良好な低温放電特性を実現できる要因になっている と考えられる。しかし、通常の直流抵抗が大きな電池では、直流抵抗に阻害されて反 応抵抗低減の効果を低温放電特性に 100%反映できな ヽことがわかった。直流抵抗 成分の小さな電池を用いることでこれを改善し、本発明の非水系電解液の効果を十 分に発揮できるようになる。
[0115] また、非水電解液の効果を引き出し、高出力の電池を作製するという観点力 は、 前記の通り、この要件と前述した二次電池の 1個の電池外装に収納される電池要素 のもつ電気容量 (電池を満充電状態から放電状態まで放電したときの電気容量)が、 3アンペア アワー (Ah)以上である、という要件を同時に満たすことが特に好ましい 実施例 1
[0116] 以下に、実施例、比較例及び参考例を挙げて本発明を更に具体的に説明するが、 本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。 〈ジフルォロリン酸塩の製造〉
実施例 1
乾燥アルゴン雰囲気下で精製したエチレンカーボネート (EC)、ジメチルカーボネ ート(DMC)及びジェチルカーボネート (DEC)の体積比 3: 3: 4の混合溶媒に、 lm olZLの濃度で、充分に乾燥したへキサフルォロリン酸リチウム (LiPF )を溶解させ
6
た。さらにこの混合溶液 lkgに対し、炭酸リチウムを、 0. lmolの割合で混合し、 50°C において 72時間反応させた。その後、この反応生成液を濾過し、濾液をイオンクロマ トグラフ法により測定した。検出された PO Fァ-オンの量は 0. 051molZkgであつ
2 2
た。
[0117] 実施例 2
実施例 1にお 、て、炭酸リチウムの代わりに炭酸カリウムを使用したこと以外は実施 例 1と同様の作業を行った。検出された PO Fァ-オンの量は 0. 052molZkgであ つた o
[0118] 実施例 3
実施例 1にお 、て、炭酸リチウムの代わりに炭酸カルシウムを使用したこと以外は実 施例 1と同様の作業を行った。検出された PO Fァ-オンの量は 0. 047molZkgで
2 2
めつに。
[0119] 比較例 1
実施例 1において、炭酸リチウムを使用しな力 たこと以外は実施例 1と同様の作業 を行った。 PO Fァ-オンは検出されなかった。
2 2
[0120] 比較例 2
乾燥アルゴン雰囲気下で精製したエチレンカーボネート (EC)、ジメチルカーボネー ト(DMC)及びジェチルカーボネート (DEC)の体積比 3: 3: 4の混合溶媒に、 lmol ZLの濃度で、充分に乾燥したへキサフルォロリン酸リチウム (LiPF )を溶解させた。
6
さらにこの混合溶液に対し、 10— 3Mとなる量に相当する炭酸リチウムを添加した。この 作業は 25°Cの環境下で行った。約 10分経過後に、液を濾過し、濾液をイオンクロマ トグラフ法により測定した力 PO Fァ-オンは検出されな力つた。
2 2
[0121] 以上のように、非水溶媒中でへキサフルォロリン酸リチウムと炭酸塩を十分に反応さ せることによって、ジフルォロリン酸塩が作成可能である。
〈非水系電解液二次電池の作製〉
実施例 4
下記の方法で非水系電解液二次電池を作製し、その評価を行って、結果を表 1〖こ 示した。
[正極の作製]
正極活物質としてのニッケル酸リチウム(LiNiO ) 90重量%と、導電材としてのァセ
2
チレンブラック 5重量%と、結着剤としてのポリフッ化ビ-リデン (PVdF) 5重量%とを 、 N—メチルピロリドン溶媒中で混合して、スラリー化した後、 20 mのアルミ箔の両 面に塗布して乾燥し、プレス機で厚さ 80 μ mに圧延したものを幅 52mm、長さ 830m mに切り出し、正極とした。ただし、表裏とも長さ方向に 50mmの無塗工部を設けてあ り、活物質層の長さは 780mmである。 [0122] [負極の作製]
X線回折における格子面(002面)の d値が 0. 336nm、晶子サイズ (Lc)が lOOnm 以上(264nm)、灰分が 0. 04重量%、レーザー回折 ·散乱法によるメジアン径が 17 ^ m, BET法比表面積が 8. 9m2/g、アルゴンイオンレーザー光を用いたラマンス ベクトル分析において 1580〜1620cm— 1の範囲のピーク P (ピーク強度 I )及び 135
A A
0〜1370cm— 1の範囲のピーク P (ピーク強度 I )の強度比 R=I 15、 1580
B B B /\が 0.
A
〜1620cm— 1の範囲のピークの半値幅が 22. 2cm— 1である人造黒鉛粉末 KS— 44 ( ティムカル社製、商品名) 98重量部に、カルボキシメチルセルロースナトリウムの水性 デイスパージヨン(カルボキシメチルセルロースナトリウムの濃度 1重量%) 100重量部 、及び、スチレン ブタジエンゴムの水性デイスパージヨン (スチレン ブタジエンゴム の濃度 50重量%) 2重量部をカ卩え、デイスパーザーで混合してスラリー化したものを、 負極集電体である厚さ 18 mの銅箔上の両面に均一に塗布し、乾燥後、さらにプレ ス機で 85 μ mに圧延したものを幅 56mm、長さ 850mmに切り出し、負極とした。ただ し、表裏とも長さ方向に 30mmの無塗工部を設けてある。
[電解液の調製]
実施例 1で得られた反応濾液を非水系電解液として使用した。この反応濾液のフッ 化物塩の濃度は 0. 02molZkg、炭酸リチウムは検出されず、ジフルォロリン酸塩の 濃度は 0. 051molZkgである。
[電池の組立]
正極と負極は、多孔製ポリエチレンシートのセパレーターをはさんで捲回し、電極 群とし電池缶に封入した。その後、電極群を装填した電池缶に上記電解液を 5mL注 入して、電極に充分浸透させ、かしめ成形を行って 18650型円筒電池を作製した。
[電池の評価]
実際の充放電サイクルを経て 、な 、新たな電池に対して、 25°Cで 5サイクル初期 充放電を行った。この時の 5サイクル目 0. 2C (1時間率の放電容量による定格容量 を 1時間で放電する電流値を 1Cとする、以下同様)放電容量を初期容量とした。
[0123] その後、リチウム二次電池の実使用上限温度と目される 60°Cの高温環境下にてサ イタル試験を行った。充電上限電圧 4. IVまで 2Cの定電流定電圧法で充電した後、 放電終止電圧 3. OVまで 2Cの定電流で放電する充放電サイクルを 1サイクルとし、こ のサイクルを 500サイクルまで繰り返した。
[0124] サイクル試験終了後の電池に対し、 25°C環境下で 3サイクルの充放電を行い、そ の 3サイクル目の 0. 2C放電容量を耐久後容量とした。
[0125] 比較例 3
実施例 4にお ヽて、非水系電解液として実施例 1で得られた反応濾液を使用する 代わりに、比較例 1の液 (へキサフルォロリン酸リチウム濃度 ImolZL)を使用したこと 以外は実施例 4と同様にして二次電池を作製し、同様に評価を行って結果を表 1〖こ 示した。
[0126] 参考例 1
実施例 4にお ヽて、非水系電解液として実施例 1で得られた反応濾液を使用する 代わりに、乾燥アルゴン雰囲気下で精製したエチレンカーボネート (EC)、ジメチルカ ーボネート (DMC)及びジェチルカーボネート (DEC)の体積比 3: 3: 4の混合溶媒 に、 ImolZLの濃度で、充分に乾燥したへキサフルォロリン酸リチウム (LiPF )を溶
6 解させ、更に非特許文献 1に記載の方法に従って作成されたジフルォロリン酸リチウ ムを 0. 05molZkgとなる濃度で添加した溶液を使用したこと以外は実施例 4と同様 にして二次電池を作製し、同様に評価を行って、結果を表 1に示した。
[0127] 比較例 4
実施例 4にお ヽて、非水系電解液として実施例 1で得られた反応濾液を使用する 代わりに、比較例 2の液を使用したこと以外は実施例 4と同様にして二次電池を作製 し、同様に評価を行って結果を表 1に示した。
[0128] [表 1] 初期容量 耐久後容量
(mAh) (mAh)
実施例 4 700 622
比較例 3 700 596
参考例 1 700 621
比較例 4 700 596 表 1から明らかなように、本発明の非水系電解液は高温サイクル特性の向上に効果 的である。また、その効果は参考例 1のジフルォロリン酸塩を用いた場合と比べてな んら遜色はない。
[0129] なお、比較例 4は、特開平 1— 286263号公報の実施例 1に対応するものであり、 当該実施例 1と同様に LiPFを lmolZL、炭酸リチウムを 10_3M添加したものである
6
力 ジフルォロリン酸塩の生成はみられず、本発明の効果は得られない。
[0130] 実施例 5
下記の方法で非水系電解液二次電池を作製し、その評価を行って、結果を表 2に 示した。
[正極の作製]
正極活物質としてのニッケル酸リチウム(LiNiO ) 90重量0 /0と、導電材としてのァセ
2
チレンブラック 5重量0 /0と、結着剤としてのポリフッ化ビニリデン (PVdF) 5重量0 /0とを 、 N—メチルピロリドン溶媒中で混合して、スラリー化した後、 20 μ mのアルミ箔の片 面に塗布して乾燥し、プレス機で厚さ 80 /z mに圧延したものをポンチで直径 12. 5m mに打ち抜き、正極とした。
[負極の作製]
X線回折における格子面(002面)の d値が 0. 336nm、晶子サイズ (Lc)が lOOnm 以上(264nm)、灰分が 0. 04重量%、レーザー回折 ·散乱法によるメジアン径が 17 μ πι、 BET法比表面積が 8. 9m2Zg、アルゴンイオンレーザー光を用いたラマンス ベクトル分析において 1580〜1620cm— 1の範囲のピーク P (ピーク強度 I )及び 135 0〜1370cm— 1の範囲のピーク P (ピーク強度 I )の強度比 R=I . 15
B B B /\が 0
A 、 1580
〜1620cm— 1の範囲のピークの半値幅が 22. 2cm— 1である人造黒鉛粉末 KS— 44 ( ティムカル社製、商品名) 98重量部に、カルボキシメチルセルロースナトリウムの水性 デイスパージヨン(カルボキシメチルセルロースナトリウムの濃度 1重量%) 100重量部 、及び、スチレン ブタジエンゴムの水性デイスパージヨン (スチレン ブタジエンゴム の濃度 50重量%) 2重量部をカ卩え、デイスパーザーで混合してスラリー化したものを、 負極集電体である厚さ 18 mの銅箔上の片面に均一に塗布し、乾燥後、さらにプレ ス機で 85 mに圧延したものをポンチで直径 12. 5mmに打ち抜き、負極とした。
[電解液の調製]
実施例 1で得られた反応濾液を非水系電解液として使用した。この反応濾液につ いて前述の方法で二酸化炭素量を測定したところ、 5897ppmが検出された。
[電池の組立]
正極と負極は、電池缶内で直径 14mmの多孔製ポリエチレンシートのセパレータ 一をはさんで積層し、上記電解液を滴下した後、カゝしめ成形を行って 2032型コイン 電池を作製した。
[電池の評価]
実際の充放電サイクルを経て 、な 、新たな電池に対して、 25°Cで 3サイクル初期 充放電を行った。この時の 3サイクル目 0. 2C (1時間率の放電容量による定格容量 を 1時間で放電する電流値を 1Cとする、以下同様)放電容量を正極活物質あたりに 換算し、初期容量とした。
[0131] その後、 60°Cの高温環境下にて保存試験を行った。事前に 25°Cの環境下で充電 上限電圧 4. IVまで定電流定電圧法で充電したコイン電池を、 60°Cにて 7日間保存 した。
[0132] 保存試験終了後の電池に対し、 25°C環境下で 3サイクルの充放電を行い、その 3 サイクル目の 0. 2C放電容量を正極活物質あたりに換算し、保存後容量とした。また 、初期容量に対する保存後容量の割合を回復率とした。この結果を表 2に示す。
[0133] 実施例 6
実施例 5において、非水系電解液を 0. 5気圧の環境下で 1分間脱気して使用した 以外は実施例 5と同様にしてコイン電池を作製し、同様に評価を行った。結果を表 2 に示す。この電解液における二酸ィ匕炭素測定量は 1165ppmであった。
[0134] 参考例 2
実施例 5にお ヽて、非水系電解液として実施例 1で得られた反応濾液を使用する 代わりに、参考例 1で用いたと同様の電解液を使用したこと以外は実施例 5と同様に してコイン電池を作成し、同様に評価を行った。結果を表 2に示す。この電解液にお ける二酸ィ匕炭素測定量は 125ppmであった。
[0135] 比較例 5
実施例 5にお ヽて、非水系電解液として実施例 1で得られた反応濾液を使用する 代わりに、乾燥アルゴン雰囲気下で精製したエチレンカーボネート (EC)、ジメチルカ ーボネート (DMC)及びジェチルカーボネート (DEC)の体積比 3: 3: 4の混合溶媒 に、 ImolZLの濃度で、充分に乾燥したへキサフルォロリン酸リチウム (LiPF )を溶
6 解させたものを用いたこと以外は実施例 5と同様にしてコイン電池を作成し、同様に 評価を行った。結果を表 2に示す。この電解液における二酸ィ匕炭素測定量は 129pp mであった。
[0136] [表 2]
Figure imgf000031_0001
表 2から、高温保存後の容量、及び回復率は電解液の二酸ィ匕炭素測定量が大きい ものほど良好であり、本発明の方法で作成したジフルォロリン酸塩含有の非水系電 解液は、リチウム二次電池の高温保存特性を向上させる上で有効であると言える。
[0137] 実施例 7
実施例 5と同様な手順で 2032型コインセルを作製した。 [0138] ただし、電解液としては、乾燥アルゴン雰囲気下で精製したエチレンカーボネート( EC)、ジメチルカーボネート (DMC)及びジェチルカーボネート (DEC)の体積比 2: 4 :4の混合溶媒に、 ImolZLの濃度で、充分に乾燥したへキサフルォロリン酸リチウ ム(LiPF )を溶解させ、更にこの混合溶液 lkgに対して 0. O5molとなる量に相当す
6
る炭酸リチウムを混合し、 50°Cにて 30時間反応させたものを濾過して用いた。この電 解液について、イオンクロマトグラフ法により測定した PO Fァ-オンの測定量は 0. 0
2 2
25molZkgであった。
[0139] この電池の低温放電容量を以下の方法で求め、結果を表 3に示した。
[低温放電容量の測定]
実際の充放電サイクルを経ていない新たな電池に対して、 25°Cで 3サイクル(3. 0 —4. IV)初期充放電を行った。その後、—30°Cの低温環境下にて放電試験を行つ た。事前に 25°Cの環境下で充電上限電圧 4. IVまで定電流定電圧法で充電したコ イン電池を低温環境下で 0. 2Cの速度で放電し、その時の放電容量を正極活物質 あたりに換算し、低温放電容量とした。
[0140] 実施例 8
実施例 7において、電解液調製の際、非水溶媒としてエチレンカーボネート (EC)、 ジメチルカーボネート (DMC)及びェチルメチルカーボネート (EMC)の体積比 2: 4: 4の混合溶媒を使用したこと以外は実施例 7と同様に電池を作製し、同様に低温放 電容量を測定し、結果を表 3に示した。なお、この電解液について、イオンクロマトグ ラフ法により測定した PO Fァ-オンの測定量は 0. 025molZkgであった。
2 2
[0141] 比較例 6
実施例 7において、炭酸リチウムを混合させずに電解液を調製したこと以外は実施 例 7と同様に電池を作製し、同様に低温放電容量を測定し、結果を表 3に示した。な お、この電解液は、 PO Fァ-才ンは柳』定されなかった。
2 2
[0142] 比較例 7
実施例 8において、炭酸リチウムを混合させずに電解液を調製したこと以外は実施 例 8と同様に電池を作製し、同様に低温放電容量を測定し、結果を表 3に示した。な お、この電解液は、 PO Fァ-才ンは柳』定されなかった。 [0143] 参考例 3
実施例 7において、電解液調製の際、非水溶媒としてエチレンカーボネート (EC) 及びジェチルカーボネート(DEC)の体積比 2: 8の混合溶媒を使用したこと以外は 実施例 7と同様に電池を作製し、同様に低温放電容量を測定し、結果を表 3に示した 。なお、この電解液について、イオンクロマトグラフ法により測定した PO Fァニオンの
2 2
測定量は 0. 025molZkgであった。
[0144] 比較例 8
参考例 3において、炭酸リチウムを混合させずに電解液を調製したこと以外は参考 例 3と同様に電池を作成し、同様に低温放電容量を測定し、結果を表 3に示した。な お、この電解液は、 PO Fァ-オンは測定されなかった。
2 2
[0145] 表 3には、上記実施例 7と比較例 6との対比、実施例 8と比較例 7との対比、及び参 考例 3と比較例 8との対比において、ジフルォロリン酸塩による低温放電容量の向上 率を算出した結果を併記した。
[0146] [表 3]
Figure imgf000033_0001
表 3より、ジフルォロリン酸塩を含有する電解液は、低温放電特性が良好であること が言える。その際、非水溶媒が 2種の混合溶媒である参考例 3よりも、 3種の混合溶 媒である実施例 7、実施例 8の方が、低温放電容量の絶対値及びジフルォロリン酸塩 存在による低温放電容量の向上率ともに良好であることが明らかである。
〈ジフルォロリン酸塩含有電解液の製造〉
実施例 9 混合した際に体積比にして 3: 3 :4となる乾燥したエチレンカーボネート (EC)、ジメ チルカーボネート(DMC)、ェチルメチルカーボネート(EMC)をそれぞれ用意し、こ れらの溶媒と混合したときに ImolZLの濃度の溶液となるようなへキサフルォロリン 酸リチウム (LiPF )と、それらの混合溶液 lkgに対して 0. 05molに相当する量の炭
6
酸リチウムを用意した。
[0147] まず、 DMCと EMCを混合し、そこに LiPFと炭酸リチウムをカ卩えて密閉した。これ
6
を攪拌しつつ 60°Cで 5時間反応させた後、 ECを混合した。
[0148] こうして得た非水系電解液をイオンクロマトグラフ法により測定したところ、検出され た PO Fァ-オンの量は 0. 024mol/kgであった。
2 2
[0149] 実施例 10
実施例 9において、 ECを混合するタイミングを DMC、 EMC混合と同時に変更した こと以外は実施例 9と同様の操作を行った。検出された PO Fァ-オンの量は 0. 00
2 2
4molZkgであった。
[0150] 実施例 11
実施例 10において、反応時間を 24時間としたこと以外は実施例 10と同様の操作 を行った。検出された PO Fァ-オンの量は 0. 015molZkgであった。
2 2
[0151] 以上、実施例 9、 10及び 11より、比誘電率の高い ECを含まない溶媒中で LiPFと
6 炭酸リチウムの反応を行うと、反応がすばやく進行することがわかる。実施例 11の条 件では、丸一日反応を実施しても実施例 9の電解液と同様のものにはならず、生産 性の面で不利となる。よって、 ECを含む非水系電解液を製造するに当たっては、 Li PFと炭酸リチウムとを、 ECを含まない溶媒中で反応させた後、 ECを加えることで製
6
造すると工業的により有利である。
[0152] 実施例 12
下記の方法で非水系電解液二次電池を作製し、その評価を行い、その結果を表 4 に示した。
[正極の作製]
正極活物質としてのニッケル酸リチウム(LiNiO ) 90重量%と、導電材としてのァセ
2
チレンブラック 5重量%と、結着剤としてのポリフッ化ビ-リデン (PVdF) 5重量%とを 、 N—メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを 15 m のアルミ箔の両面に塗布して乾燥し、プレス機で厚さ 80 mに圧延したものを、活物 質層のサイズとして幅 100mm、長さ 100mmおよび幅 30mmの未塗工部を有する形 状に切り出し、正極とした。
[負極の作製]
人造黒鉛粉末 KS— 44 (ティムカル社製、商品名) 98重量部に、増粘剤、バインダ 一としてそれぞれ、カルボキシメチルセルロースナトリウムの水性デイスパージヨン(力 ルボキシメチルセルロースナトリウムの濃度 1重量%) 100重量部、及び、スチレン ブタジエンゴムの水性デイスパージヨン(スチレン ブタジエンゴムの濃度 50重量0 /0) 2重量部をカ卩え、デイスパーザーで混合してスラリー化した。得られたスラリーを 10 mの銅箔の両面に塗布して乾燥し、プレス機で 75 mに圧延したものを、活物質層 のサイズとして幅 104mm、長さ 104mmおよび幅 30mmの未塗工部を有する形状に 切り出し、負極とした。
[電解液の調製]
実施例 1で得られた反応濾液を非水系電解液として使用した。
[電池の作製]
正極 32枚と負極 33枚は交互となるように配置し、各電極の間に多孔製ポリエチレ ンシートのセパレータ(25 μ m)が挟まれるよう積層した。 この際、正極活物質面が 負極活物質面内から外れな 、よう対面させた。この正極と負極それぞれにつ 、ての 未塗工部同士を溶接して集電タブを作製し、電極群としたものを電池缶 (外寸: 120 X 110 X 10mm)に封入した。その後、電極群を装填した電池缶に電解液を 20mL 注入して、電極に充分浸透させ、密閉し電池を作製した。
[電池の評価]
実際の充放電サイクルを経て 、な 、新たな電池に対して、 25°Cで 5サイクル初期 充放電を行った。この時の 5サイクル目 0. 2C (1時間率の放電容量による定格容量 を 1時間で放電する電流値を 1Cとする、以下同様)放電容量を初期容量とした。
25°C環境下で、 0. 2Cの定電流により 150分間充電を行ない、各々 0. 1C、 0. 3C 、 1. 0C、 3. 0C、 10. 0Cで 10秒間放電させ、その 10秒目の電圧を測定した。電流 —電圧直線と下限電圧 (3V)とで囲まれる 3角形の面積を出力 (W)とし、表 4に記載 した。
[0154] 比較例 9
実施例 12にお!/、て、非水系電解液として実施例 1で得られた反応濾液を使用する 代わりに、比較例 1の液 (へキサフルォロリン酸リチウム濃度 ImolZL)を使用したこと 以外は実施例 12と同様に電池を作製して試験を行い、その結果を表 4に示した。
[0155] 実施例 13
実施例 12において、評価に供する電池を実施例 4と同様のものとして試験を行い、 その結果を表 4に示した。
[0156] 比較例 10
実施例 12において、評価に供する電池を比較例 3と同様のものとして試験を行い、 その結果を表 4に示した。
[0157] 表 4には、比較例 9に対する実施例 12の出力上昇率、比較例 10に対する実施例 1
3の出力上昇率を併記した。また、各電池の 10kHz交流法で測定されるインピーダ ンス (直流抵抗成分)も併記してある。
[0158] 表 4より、ジフルォロリン酸塩を含有する電解液は、出力特性が良好であることが言 える。その際、容量が小さぐ直流抵抗も大きい実施例 13よりも、実施例 12の方が出 力特性の向上率が良好であることが明らかである。
[0159] [表 4]
Figure imgf000036_0001
産業上の利用可能性
[0160] 本発明によれば、従来入手困難であったジフルォロリン酸塩を、安価で容易に入 手可能な材料力 簡便に調製することができ、二次電池用非水系電解液の添加剤と しての用途に極めて有用なジフルォロリン酸塩が提供され、このジフルォロリン酸塩 を用いた非水系電解液及び二次電池を容易に製造することが可能となる。 本出願は、 2005年 6月 20日の日本特許出願 (#112005 - 178828)及び 2004 年 4月 16日の日本特許出願(特願 2004— 121852)に基づくものであり、その内容 はここに参照として取り込まれる。また、本明細書にて引用した文献の内容もここに参 照として取り込まれる。

Claims

請求の範囲
[1] へキサフルォロリン酸リチウムと炭酸塩とを非水溶媒中で反応させることを特徴とす るジフルォロリン酸塩の製造方法。
[2] 請求項 1において、炭酸塩が、アルカリ金属塩、アルカリ土類金属塩、及び、 NR 2
R3R4 (但し、 Ri〜R4は、互いに同一でも異なっていても良い、炭素数 1〜12の有機基 又は水素原子を表す。 )の塩力 なる群力 選ばれるものであることを特徴とするジフ ルォロリン酸塩の製造方法。
[3] 請求項 1又は 2において、非水溶媒が、環状カーボネート類、鎖状カーボネート類、 環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類、及び含硫黄 有機溶媒力 なる群力 選ばれる 1以上の溶媒であることを特徴とするジフルォロリン 酸塩の製造方法。
[4] 請求項 1ないし 3のいずれか 1項において、該非水溶媒が、比誘電率 10未満の非 水溶媒中であることを特徴とするジフルォロリン酸塩の製造方法。
[5] 非水溶媒中に、電解質リチウム塩として少なくともへキサフルォロリン酸塩を含み、 更にジフルォロリン酸塩を含有してなる非水系電解液であって、該ジフルォロリン酸 塩の少なくとも一部力 へキサフルォロリン酸リチウムと炭酸塩とを非水溶媒中で反応 させてなるジフルォロリン酸塩を含む反応生成液として供給されてなることを特徴とす る二次電池用非水系電解液。
[6] 請求項 5において、炭酸塩が、アルカリ金属塩、アルカリ土類金属塩、及び、 NR 2 R3R4 (但し、 Ri〜R4は、互いに同一でも異なっていても良い、炭素数 1〜12の有機基 又は水素原子を表す。 )の塩力 なる群力 選ばれるものであることを特徴とする二次 電池用非水系電解液。
[7] 請求項 5又は 6において、該非水溶媒が、エチレンカーボネート、プロピレンカーボ ネート、ジメチルカーボネート、ジェチノレカーボネート、及びェチノレメチノレカーボネー トからなる群から選ばれるものを含有することを特徴とする二次電池用非水系電解液
[8] 請求項 5又は 6において、反応生成液が、へキサフルォロリン酸リチウムと炭酸塩と の反応を比誘電率 10未満の非水溶媒中で行った後に、比誘電率 10以上の非水溶 媒を混合したものであることを特徴とする二次電池用非水系電解液。
[9] 請求項 8において、比誘電率 10未満の非水溶媒が、鎖状カーボネート類、鎖状ェ ステル類、環状エーテル類、及び鎖状エーテル類力 なる群力 選ばれる 1以上の 溶媒であることを特徴とする二次電池用非水系電解液。
[10] 請求項 8において、比誘電率 10以上の非水溶媒が、環状カーボネート類又は環状 エステル類力 なる群力 選ばれる 1以上の溶媒であることを特徴とする二次電池用 非水系電解液。
[11] 請求項 9において、鎖状カーボネート類力 ジメチルカーボネート、ジェチルカーボ ネート、及びェチルメチルカーボネートからなる群力も選ばれることを特徴とする二次 電池用非水系電解液。
[12] 請求項 10において、環状カーボネート類又は環状エステル類力 エチレンカーボ ネート、プロピレンカーボネート、 y ブチロラタトン、及び γ バレロラタトンからなる 群から選ばれることを特徴とする二次電池用非水系電解液。
[13] 請求項 8において、比誘電率 10未満の非水溶媒力 ジメチルカーボネートとェチ ルメチルカーボネートの混合溶媒であり、比誘電率 10以上の非水溶媒が、エチレン カーボネートであることを特徴とする二次電池用非水系電解液。
[14] 請求項 5ないし 13のいずれ力 1項において、非水系電解液中のジフルォロリン酸塩 の濃度が l X 10—2molZkg以上、 0. 5molZkg以下であることを特徴とする二次電 池用非水系電解液。
[15] 非水溶媒中に、電解質リチウム塩として少なくともへキサフルォロリン酸塩を含み、 更にジフルォロリン酸塩とフッ化物塩とを含有してなることを特徴とする二次電池用非 水系電解液。
[16] 非水溶媒中に、電解質リチウム塩として少なくともへキサフルォロリン酸塩を含み、 更にジフルォロリン酸塩と二酸化炭素とを含有してなることを特徴とする二次電池用 非水系電解液。
[17] 非水溶媒中に、電解質リチウム塩として少なくともへキサフルォロリン酸塩を含み、 更にジフルォロリン酸リチウムを含有してなる非水系電解液であって、該非水溶媒が 環状カーボネート類と鎖状カーボネート類の両方を含み、かつ、 3種類以上の非水 溶媒成分の混合溶媒であることを特徴とする二次電池用非水系電解液。
[18] 請求項 15において、該非水溶媒が、エチレンカーボネート、プロピレンカーボネー ト、ジメチルカーボネート、ジェチルカーボネート、及びェチルメチルカーボネートか らなる群から選ばれるものを含有することを特徴とする二次電池用非水系電解液。
[19] 請求項 15において、該非水溶媒が、少なくともエチレンカーボネート (EC)、ジメチ ルカーボネート (DMC)及びジェチルカーボネート (DEC)を含有する混合溶媒であ ることを特徴とする二次電池用非水系電解液。
[20] 請求項 15において、該非水溶媒が、少なくともエチレンカーボネート(EC)、ジメチ ルカーボネート (DMC)及びェチルメチルカーボネート (EMC)を含有する混合溶媒 であることを特徴とする二次電池用非水系電解液。
[21] 請求項 5ないし 20のいずれ力 1項において、非水系電解液中のジフルォロリン酸塩 の濃度が l X 10—2molZkg以上、 0. 5molZkg以下であることを特徴とする二次電 池用非水系電解液。
[22] 非水系電解液と、リチウムイオンを吸蔵及び放出可能な負極と、正極とを備えた非 水系電解液二次電池において、該非水系電解液が請求項 5ないし 21のいずれか 1 項に記載の二次電池用非水系電解液であることを特徴とする非水系電解液二次電 池。
[23] 非水系電解液と、リチウムイオンを吸蔵及び放出可能な負極と、正極とを備えた非 水系電解液二次電池において、該非水系電解液が請求項 5ないし 21のいずれか 1 項に記載の二次電池用非水系電解液であり、かつ下記 (i)、(ii)及び (iii)よりなる群 から選
ばれる少なくとも 1つの条件を満たすことを特徴とする非水系電解液二次電池。
(i)前記二次電池の外装の表面積に対する前記正極の電極面積の総和が面積比で 20倍
以上である。
(ii)前記二次電池の直流抵抗成分が 10ミリオーム (m Ω )未満である。
(iii)前記二次電池の 1個の電池外装に収納される電池要素のもつ電気容量が 3アン ペア一アワー(Ah)以上である。
PCT/JP2005/020001 2005-06-20 2005-10-31 ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池 WO2006137177A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP05805456.0A EP1905739B1 (en) 2005-06-20 2005-10-31 Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US11/993,376 US8980214B2 (en) 2005-06-20 2005-10-31 Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
KR1020077029555A KR101285000B1 (ko) 2005-06-20 2005-10-31 디플루오로인산염의 제조 방법, 2 차 전지용 비수계 전해액및 비수계 전해액 2 차 전지
CN2005800502026A CN101208266B (zh) 2005-06-20 2005-10-31 制备二氟磷酸盐的方法、二次电池的非水电解液和非水电解质二次电池
KR1020127031768A KR101338814B1 (ko) 2005-06-20 2005-10-31 디플루오로인산염의 제조 방법, 2 차 전지용 비수계 전해액 및 비수계 전해액 2 차 전지
KR1020127020753A KR101285016B1 (ko) 2005-06-20 2005-10-31 디플루오로인산염의 제조 방법, 2 차 전지용 비수계 전해액 및 비수계 전해액 2 차 전지
US13/344,742 US9593016B2 (en) 2005-06-20 2012-01-06 Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005178828 2005-06-20
JP2005-178828 2005-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/993,376 A-371-Of-International US8980214B2 (en) 2005-06-20 2005-10-31 Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US13/344,742 Division US9593016B2 (en) 2005-06-20 2012-01-06 Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
WO2006137177A1 true WO2006137177A1 (ja) 2006-12-28

Family

ID=37570215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020001 WO2006137177A1 (ja) 2005-06-20 2005-10-31 ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池

Country Status (5)

Country Link
US (2) US8980214B2 (ja)
EP (3) EP2647598B1 (ja)
KR (3) KR101285016B1 (ja)
CN (3) CN101847754B (ja)
WO (1) WO2006137177A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126800A1 (ja) * 2007-04-05 2008-10-23 Mitsubishi Chemical Corporation 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2008277000A (ja) * 2007-04-26 2008-11-13 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
EP2065339A1 (en) * 2007-03-12 2009-06-03 Central Glass Company, Limited Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
EP2166611A1 (en) * 2007-04-20 2010-03-24 Mitsubishi Chemical Corporation Nonaqueous electrolyte, and rechargeable battery with the nonaqueous electrolyte
JP2010135088A (ja) * 2008-12-02 2010-06-17 Mitsubishi Chemicals Corp 二次電池用非水系電解液の製造方法
EP2607305A1 (de) * 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
EP2607306A1 (de) * 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
JP2014015343A (ja) * 2012-07-06 2014-01-30 Kanto Denka Kogyo Co Ltd ジハロゲノリン酸リチウムの製造方法
US9028786B2 (en) 2008-12-02 2015-05-12 Stella Chemifa Corporation Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
JP5835514B1 (ja) * 2015-05-27 2015-12-24 宇部興産株式会社 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
CN106848406A (zh) * 2007-04-05 2017-06-13 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
CN110233290A (zh) * 2007-04-20 2019-09-13 三菱化学株式会社 非水电解液以及使用该非水电解液的非水电解质二次电池
WO2021177723A1 (ko) * 2020-03-06 2021-09-10 주식회사 엘지에너지솔루션 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4416734B2 (ja) 2003-06-09 2010-02-17 三洋電機株式会社 リチウム二次電池及びその製造方法
JP4610213B2 (ja) 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
WO2006043538A1 (ja) * 2004-10-19 2006-04-27 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
ATE510416T1 (de) * 2007-12-17 2011-06-15 Nxp Bv Mems-mikrofon
KR101384216B1 (ko) * 2009-03-02 2014-04-14 (주)포스코켐텍 복합 흑연 입자 및 이를 이용한 리튬 2차 전지
JP5544748B2 (ja) * 2009-04-22 2014-07-09 セントラル硝子株式会社 電気化学ディバイス用電解質、これを用いる電解液および非水電解液電池
CN102439777B (zh) * 2009-05-27 2014-07-30 株式会社杰士汤浅国际 非水电解质二次电池及非水电解质二次电池的制造方法
TW201219298A (en) * 2010-07-08 2012-05-16 Solvay Manufacture of LiPO2F2 and crystalline LiPO2F2
JP2013539448A (ja) * 2010-07-08 2013-10-24 ソルヴェイ(ソシエテ アノニム) LiPO2F2の製造
WO2012016924A1 (en) 2010-08-04 2012-02-09 Solvay Sa Manufacture of lipo2f2 from pof3 or pf5
CN102385996A (zh) * 2010-09-06 2012-03-21 三星电机株式会社 电解质溶液组合物和具有其的能量储存装置
KR102316004B1 (ko) * 2011-04-11 2021-10-21 미쯔비시 케미컬 주식회사 플루오로술폰산리튬의 제조 방법, 플루오로술폰산리튬, 비수계 전해액, 및 비수계 전해액 2 차 전지
US20140045078A1 (en) * 2011-04-26 2014-02-13 Solvay Sa Lithium air battery cell
KR20140054228A (ko) 2011-08-16 2014-05-08 솔베이(소시에떼아노님) LiPO2F2 및 LiPF6을 포함하는 혼합물의 제조 방법
WO2013026777A1 (en) 2011-08-24 2013-02-28 Solvay Sa Fluoroalkyl s-(fluoro)alkyl thiocarbonates, a method for the preparation of fluoroalkyl s-(fluoro)alkyl thiocarbonates, and their use
US9130246B2 (en) * 2012-01-11 2015-09-08 Samsung Sdi Co., Ltd. Rechargeable lithium battery having lithium difluorophosphate and a sultone-based compound
KR101614235B1 (ko) * 2012-03-14 2016-04-20 스텔라 케미파 코포레이션 디플루오로인산염의 제조방법
JP6184200B2 (ja) * 2012-07-04 2017-08-23 株式会社東芝 非水電解質二次電池及びその製造方法
JP5955693B2 (ja) * 2012-08-09 2016-07-20 三洋電機株式会社 非水電解質二次電池
JP2014035953A (ja) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP5951404B2 (ja) * 2012-08-09 2016-07-13 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP6105226B2 (ja) * 2012-08-09 2017-03-29 三洋電機株式会社 非水電解質二次電池
JP6114515B2 (ja) 2012-08-09 2017-04-12 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2014035940A (ja) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP5729613B2 (ja) * 2012-10-09 2015-06-03 トヨタ自動車株式会社 非水電解液二次電池および該電池の製造方法
KR101370619B1 (ko) * 2012-11-06 2014-03-06 리켐주식회사 리튬 옥사이드를 이용한 리튬 디플루오르 포스페이트, 리튬 테트라플루오르 포스파이트 또는 리튬 디플루오르 보레이트의 제조 방법
JP5666734B2 (ja) * 2013-06-07 2015-02-12 ステラケミファ株式会社 ジフルオロリン酸塩の製造方法
JP5687792B2 (ja) * 2013-06-07 2015-03-18 ステラケミファ株式会社 ジフルオロリン酸塩の製造方法
JP6428222B2 (ja) * 2014-12-09 2018-11-28 セントラル硝子株式会社 ジフルオロリン酸リチウム粉体の製造方法およびジフルオロリン酸リチウム
JP6580131B2 (ja) * 2015-04-27 2019-09-25 関東電化工業株式会社 ジフルオロリン酸塩の精製方法
US10622678B2 (en) * 2015-07-15 2020-04-14 Nec Corporation Lithium ion secondary battery
CN105800582B (zh) * 2016-03-15 2018-05-15 衢州氟硅技术研究院 一种二氟磷酸锂的制备方法及锂离子电池非水系电解液
KR101684377B1 (ko) 2016-04-19 2016-12-08 (주)켐트로스 디플루오로인산리튬의 제조방법
FR3059835B1 (fr) * 2016-12-02 2020-01-24 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
CN106532123A (zh) * 2016-12-30 2017-03-22 湖北诺邦科技股份有限公司 一种锂离子电池电解液及含有该电解液的电池
JP6812827B2 (ja) * 2017-02-17 2021-01-13 Tdk株式会社 非水電解液およびそれを用いた非水電解液電池
EP3598558A4 (en) 2017-03-17 2021-09-01 Asahi Kasei Kabushiki Kaisha WATER-FREE ELECTROLYTE, WATER-FREE SECONDARY BATTERY, CELL PACK AND HYBRID SYSTEM
EP3719879A3 (en) 2017-03-17 2020-11-18 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte, nonaqueous secondary battery, cell pack, and hybrid system
JP2018163833A (ja) * 2017-03-27 2018-10-18 三洋電機株式会社 非水電解質二次電池及びその製造方法
CN106829910A (zh) * 2017-03-29 2017-06-13 东营石大胜华新能源有限公司 一种二氟磷酸锂的制备方法
CN107226463B (zh) * 2017-07-07 2019-09-03 上海康鹏科技股份有限公司 一种二氟磷酸锂盐和四氟硼酸锂盐的联合制备方法
CN107381531A (zh) * 2017-08-23 2017-11-24 中山大学 一种二氟磷酸锂的制备方法
CN108128764A (zh) * 2017-11-16 2018-06-08 常州弘正新能源股份有限公司 一种快速制备二氟磷酸锂的方法
CN108376782A (zh) * 2018-01-23 2018-08-07 珠海市赛纬电子材料股份有限公司 一种二氟磷酸锂的催化制备方法
WO2019151724A1 (ko) * 2018-01-30 2019-08-08 주식회사 엘지화학 고온 저장 특성이 향상된 리튬 이차전지
KR102301670B1 (ko) 2018-01-30 2021-09-14 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지
CN108910857B (zh) * 2018-09-26 2020-10-13 深圳市研一新材料有限责任公司 一种二氟磷酸锂的制备方法
KR102267470B1 (ko) * 2019-03-08 2021-06-21 임광민 경제적이고 효율적인 고순도의 디플루오로인산리튬의 제조방법
CN112670568A (zh) * 2020-12-23 2021-04-16 远景动力技术(江苏)有限公司 一种兼具低阻抗和低产气性能的非水电解液及锂离子电池
CN113716543B (zh) * 2021-08-27 2023-05-30 湖南法恩莱特新能源科技有限公司 一种单氟磷酸锂的制备方法及其应用
CN113912037B (zh) * 2021-12-08 2022-03-18 深圳市研一新材料有限责任公司 一种二氟磷酸锂及其制备方法和应用
WO2024096273A1 (ko) * 2022-11-04 2024-05-10 주식회사 이브이에스텍 경제적인 디플루오로인산리튬의 제조방법
CN116239130B (zh) * 2023-05-12 2023-08-18 广州天赐高新材料股份有限公司 一锅法联产六氟磷酸盐和二氟磷酸盐的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181710A (ja) * 1982-04-13 1983-10-24 Central Glass Co Ltd アルカリモノフルオロホスフエ−トの製造方法
JPH01286263A (ja) 1988-05-13 1989-11-17 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用電解液
JPH10144345A (ja) * 1996-11-08 1998-05-29 Ube Ind Ltd リチウム二次電池用電解液
JPH1167270A (ja) 1997-08-21 1999-03-09 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2000188128A (ja) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp 非水電解液二次電池
JP3438085B2 (ja) 1995-02-24 2003-08-18 日本光電工業株式会社 炭酸ガス濃度測定装置
JP2004031079A (ja) 2002-06-25 2004-01-29 Mitsubishi Chemicals Corp 非水電解液二次電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440836A (en) * 1982-12-14 1984-04-03 Union Carbide Corporation Nonaqueous cell employing an anode having a boron-containing surface film
JP2845069B2 (ja) 1992-01-13 1999-01-13 日本電池株式会社 有機電解液二次電池
JPH06119939A (ja) 1992-10-01 1994-04-28 Sanyo Electric Co Ltd 有機電解液二次電池
JPH06150975A (ja) 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
JP3451601B2 (ja) 1994-02-03 2003-09-29 日本電池株式会社 リチウム電池
JP3512846B2 (ja) 1994-03-09 2004-03-31 株式会社東芝 非水電解液電池
TW284922B (ja) 1994-05-10 1996-09-01 Sumitomo Chemical Co
JPH0850923A (ja) 1994-08-04 1996-02-20 Sumitomo Chem Co Ltd 非水電解液リチウム二次電池
JPH0864246A (ja) 1994-08-22 1996-03-08 Sanyo Electric Co Ltd 密閉型の非水電解液二次電池
JP4038826B2 (ja) * 1996-07-19 2008-01-30 宇部興産株式会社 非水電解液二次電池および製造法
US6746804B2 (en) * 1998-05-13 2004-06-08 Wilson Greatbatch Technologies, Inc. Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US6245464B1 (en) * 1998-09-21 2001-06-12 Wilson Greatbatch Ltd. Hermetically sealed lithium-ion secondary electrochemical cell
KR100413907B1 (ko) 1998-12-22 2004-01-07 미쓰비시덴키 가부시키가이샤 전지용 전해액 및 이를 사용한 전지
US6489055B1 (en) * 1999-06-25 2002-12-03 Sanyo Electric Co., Ltd. Lithium secondary battery
JP3113652B1 (ja) * 1999-06-30 2000-12-04 三洋電機株式会社 リチウム二次電池
JP2001068162A (ja) 1999-08-24 2001-03-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその充放電方法
KR100326466B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
US20020081495A1 (en) * 2000-11-08 2002-06-27 Hiroshi Nakajima Nonaqueous electrolyte secondary battery
US6593029B2 (en) * 2001-03-15 2003-07-15 Wilson Greatbatch Ltd. Manufacturing process for improved discharge of lithium-containing electrochemical cells
JP4186463B2 (ja) * 2001-12-27 2008-11-26 ソニー株式会社 非水電解質二次電池
JP4407205B2 (ja) * 2003-08-22 2010-02-03 三菱化学株式会社 リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
CN100438197C (zh) * 2004-09-24 2008-11-26 比亚迪股份有限公司 一种非水电解液及其锂离子二次电池
WO2006043538A1 (ja) 2004-10-19 2006-04-27 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181710A (ja) * 1982-04-13 1983-10-24 Central Glass Co Ltd アルカリモノフルオロホスフエ−トの製造方法
JPH01286263A (ja) 1988-05-13 1989-11-17 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用電解液
JP3438085B2 (ja) 1995-02-24 2003-08-18 日本光電工業株式会社 炭酸ガス濃度測定装置
JPH10144345A (ja) * 1996-11-08 1998-05-29 Ube Ind Ltd リチウム二次電池用電解液
JPH1167270A (ja) 1997-08-21 1999-03-09 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2000188128A (ja) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp 非水電解液二次電池
JP2004031079A (ja) 2002-06-25 2004-01-29 Mitsubishi Chemicals Corp 非水電解液二次電池

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 7, no. 7, 1 January 2004 (2004-01-01), pages A194 - A197
INORGANIC CHEMISTRY, vol. 6, no. 10, 1967, pages 1915 - 1917
J. ELECTROCHEM. SOC., vol. 143, no. 12, December 1996 (1996-12-01), pages 3809 - 3820
J. FLUORINE CHEM., vol. 38, no. 3, 1988, pages 297 - 302
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 152, no. 7, 1 January 2005 (2005-01-01), pages A1361 - A1365
See also references of EP1905739A4 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065339A4 (en) * 2007-03-12 2011-09-21 Central Glass Co Ltd METHOD FOR PRODUCING LITHIUM DIFLUORPHOSPHAT AND THIS BATTERY WITH A WATER-FREE ELECTROLYTE CONTAINING THEREOF
US8728657B2 (en) 2007-03-12 2014-05-20 Central Glass Company, Limited Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
EP2065339A1 (en) * 2007-03-12 2009-06-03 Central Glass Company, Limited Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
US9853326B2 (en) 2007-04-05 2017-12-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
KR102305621B1 (ko) * 2007-04-05 2021-09-27 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
KR102522750B1 (ko) * 2007-04-05 2023-04-17 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
EP2144321A4 (en) * 2007-04-05 2011-08-10 Mitsubishi Chem Corp WATER-FREE ELECTROLYTIC FOR A BATTERY AND BATTERY WITH A WATER-FREE ELECTROLYTE
EP2144321A1 (en) * 2007-04-05 2010-01-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte for rechargeable battery, and rechargeable battery with nonaqueous electrolyte
EP2378602A3 (en) * 2007-04-05 2011-12-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte for recherable battery, and recharchable battery with nonaqueous electrolyte
EP2418723A1 (en) * 2007-04-05 2012-02-15 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
EP2450997A1 (en) * 2007-04-05 2012-05-09 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
CN102544585A (zh) * 2007-04-05 2012-07-04 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
CN102569893A (zh) * 2007-04-05 2012-07-11 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
US11616253B2 (en) 2007-04-05 2023-03-28 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
US11367899B2 (en) 2007-04-05 2022-06-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
EP2597717A1 (en) * 2007-04-05 2013-05-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
KR102388002B1 (ko) 2007-04-05 2022-04-18 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
US9093716B2 (en) 2007-04-05 2015-07-28 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
KR20200064177A (ko) * 2007-04-05 2020-06-05 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
CN105633345B (zh) * 2007-04-05 2020-01-17 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
US10468720B2 (en) 2007-04-05 2019-11-05 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
KR20190006070A (ko) * 2007-04-05 2019-01-16 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
CN108091826A (zh) * 2007-04-05 2018-05-29 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
KR20180032692A (ko) * 2007-04-05 2018-03-30 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
WO2008126800A1 (ja) * 2007-04-05 2008-10-23 Mitsubishi Chemical Corporation 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
CN104868157A (zh) * 2007-04-05 2015-08-26 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
US9590270B2 (en) 2007-04-05 2017-03-07 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
CN106848406A (zh) * 2007-04-05 2017-06-13 三菱化学株式会社 二次电池用非水电解液以及使用该非水电解液的非水电解质二次电池
EP2940779A1 (en) * 2007-04-05 2015-11-04 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
US9281541B2 (en) 2007-04-05 2016-03-08 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
US9653754B2 (en) 2007-04-20 2017-05-16 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
US9231277B2 (en) 2007-04-20 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
CN102623747A (zh) * 2007-04-20 2012-08-01 三菱化学株式会社 非水电解液以及使用该非水电解液的非水电解质二次电池
CN110233290B (zh) * 2007-04-20 2023-03-07 三菱化学株式会社 非水电解液以及使用该非水电解液的非水电解质二次电池
EP2573855A1 (en) * 2007-04-20 2013-03-27 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary battery employing the same
CN110233290A (zh) * 2007-04-20 2019-09-13 三菱化学株式会社 非水电解液以及使用该非水电解液的非水电解质二次电池
EP2166611B1 (en) * 2007-04-20 2013-12-25 Mitsubishi Chemical Corporation Nonaqueous electrolyte, and rechargeable battery with the nonaqueous electrolyte
EP2166611A1 (en) * 2007-04-20 2010-03-24 Mitsubishi Chemical Corporation Nonaqueous electrolyte, and rechargeable battery with the nonaqueous electrolyte
JP2008277000A (ja) * 2007-04-26 2008-11-13 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
US9028786B2 (en) 2008-12-02 2015-05-12 Stella Chemifa Corporation Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery
US9203106B2 (en) 2008-12-02 2015-12-01 Mitsubishi Chemical Corporation Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery
JP2010135088A (ja) * 2008-12-02 2010-06-17 Mitsubishi Chemicals Corp 二次電池用非水系電解液の製造方法
WO2013092991A1 (de) * 2011-12-23 2013-06-27 Lanxess Deutschland Gmbh Lipf6-lösungen
EP2607305A1 (de) * 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
EP2607306A1 (de) * 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6-Lösungen
JP2015507596A (ja) * 2011-12-23 2015-03-12 ランクセス・ドイチュランド・ゲーエムベーハー LiPF6溶液
WO2013092990A1 (de) * 2011-12-23 2013-06-27 Lanxess Deutschland Gmbh Lipf6-lösungen
JP2014015343A (ja) * 2012-07-06 2014-01-30 Kanto Denka Kogyo Co Ltd ジハロゲノリン酸リチウムの製造方法
JP5835514B1 (ja) * 2015-05-27 2015-12-24 宇部興産株式会社 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
WO2021177723A1 (ko) * 2020-03-06 2021-09-10 주식회사 엘지에너지솔루션 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Also Published As

Publication number Publication date
US20120100435A1 (en) 2012-04-26
CN101208266A (zh) 2008-06-25
KR20120106886A (ko) 2012-09-26
CN101208266B (zh) 2011-04-13
KR101338814B1 (ko) 2013-12-06
CN101847754A (zh) 2010-09-29
KR20130006707A (ko) 2013-01-17
EP2647598A1 (en) 2013-10-09
KR20080018897A (ko) 2008-02-28
EP1905739A4 (en) 2012-02-15
CN101847753A (zh) 2010-09-29
US9593016B2 (en) 2017-03-14
EP2647598B1 (en) 2016-05-04
EP1905739B1 (en) 2017-01-25
CN101847754B (zh) 2012-07-04
EP2647599A1 (en) 2013-10-09
KR101285016B1 (ko) 2013-07-10
EP2647599B1 (en) 2018-05-23
EP1905739A1 (en) 2008-04-02
US20080305402A1 (en) 2008-12-11
CN101847753B (zh) 2012-02-29
US8980214B2 (en) 2015-03-17
KR101285000B1 (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2006137177A1 (ja) ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
US8137848B2 (en) Method for producing difluorophosphate, nonaqueous electrolyte solution for secondary batteries, and nonaqueous electrolyte secondary battery
JP4674444B2 (ja) ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP5228270B2 (ja) ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP5761617B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2016189769A1 (ja) リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
JP2008300180A (ja) 非水電解質二次電池
JP4952080B2 (ja) 二次電池用非水系電解液及び非水系電解液二次電池
JP5740802B2 (ja) リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP4995444B2 (ja) リチウムイオン二次電池
EP3890092A1 (en) Electrolyte solution composition and secondary battery using same
JP5408111B2 (ja) ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP4363063B2 (ja) 非水電解液二次電池
JP2022547057A (ja) リチウム二次電池用電解質およびこれを含むリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077029555

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2005805456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005805456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580050202.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005805456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11993376

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020127020753

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020127031768

Country of ref document: KR