JP2010135088A - 二次電池用非水系電解液の製造方法 - Google Patents

二次電池用非水系電解液の製造方法 Download PDF

Info

Publication number
JP2010135088A
JP2010135088A JP2008307202A JP2008307202A JP2010135088A JP 2010135088 A JP2010135088 A JP 2010135088A JP 2008307202 A JP2008307202 A JP 2008307202A JP 2008307202 A JP2008307202 A JP 2008307202A JP 2010135088 A JP2010135088 A JP 2010135088A
Authority
JP
Japan
Prior art keywords
carbonate
less
aqueous electrolyte
difluorophosphate
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008307202A
Other languages
English (en)
Other versions
JP5504616B2 (ja
Inventor
Takashi Fujii
隆 藤井
Hirofumi Suzuki
裕文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008307202A priority Critical patent/JP5504616B2/ja
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to EP09830403.3A priority patent/EP2354089B1/en
Priority to US13/002,090 priority patent/US8293411B2/en
Priority to ES09830403.3T priority patent/ES2448580T3/es
Priority to PCT/JP2009/070196 priority patent/WO2010064637A1/ja
Priority to EP11165710.2A priority patent/EP2357154B1/en
Priority to KR1020117009628A priority patent/KR101240683B1/ko
Priority to KR1020107023400A priority patent/KR101069568B1/ko
Priority to CN2009801185286A priority patent/CN102036912B/zh
Publication of JP2010135088A publication Critical patent/JP2010135088A/ja
Priority to US13/110,564 priority patent/US9203106B2/en
Priority to US13/113,541 priority patent/US9028786B2/en
Application granted granted Critical
Publication of JP5504616B2 publication Critical patent/JP5504616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】 高純度のジフルオロリン酸塩を簡便に合成する工程を含む、工業的に有利な非水系電解液の製造方法を提供する。
【解決手段】 電解質、非水溶媒及びジフルオロリン酸塩を含む二次電池用非水系電解液の製造方法であって、ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩とを、フッ化水素の存在下で、反応させて得るか、又はリンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、アルカリ金属、アルカリ土類金属、アルミニウム若しくはオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得るか、あるいはジフルオロリン酸塩を、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム及びハロゲン化オニウムからなる群より選択される少なくとも1種のハロゲン化物と、ジフルオロリン酸とを、六フッ化リン酸塩の存在下で、反応させて得る工程;並びに得られたジフルオロリン酸塩、電解質及びを配合する工程;を含む、非水系電解液の製造方法である。
【選択図】なし

Description

本発明は、二次電池用非水系電解液の製造方法、並びにこの製造方法により得られた二次電池用非水系電解液及びこの二次電池用非水系電解液を備えた非水系電解液二次電池に関する。
近年の電気製品の軽量化、小型化に伴い、高いエネルギー密度を持つ非水系電解液二次電池、例えばリチウムイオン二次電池の開発が進められている。また、このリチウムイオン二次電池の適用分野が拡大するにつれて、電池特性のより一層の改善が要望されている。
電池特性の改善のために、二次電池用非水系電解液に配合する添加剤について種々の工夫がなされている。特許文献1では、モノフルオロリン酸リチウム及びジフルオロリン酸リチウムのうち少なくとも一方を添加剤として含有する電解液を用いることにより、電池の正極及び負極に皮膜を形成させ、これによって電解液と正極活物質及び負極活物質との接触に起因する電解液の分解を抑制し、自己放電の抑制、保存性能の向上を可能とする技術が開示されている。
ところで、ジフルオロリン酸塩については、例えば、非特許文献1〜4及び特許文献2〜8に、その製造方法が開示されている。非特許文献1には、五酸化二リンにフッ化アンモニウムや酸性フッ化ナトリウム等を作用させてジフルオロリン酸塩を得る方法が開示されている。しかしながら、この方法ではジフルオロリン酸塩の他にモノフルオロリン酸塩やリン酸塩、水が多く副生するため、その後の精製工程の負荷が重く効率的な手法とは言い難い。非特許文献2には、P(無水ジフルオロリン酸)を、LiOやLiOH等の酸化物や水酸化物を作用させてジフルオロリン酸塩を得る方法が開示されている。しかしながら、この方法で用いる無水ジフルオロリン酸は非常に高価であり、加えて純度が高いものは入手困難であることから工業生産には不利である。非特許文献3には、ジフルオロリン酸と塩化リチウムとを反応させてジフルオロリン酸リチウムを得る方法が開示されている。しかしながら、この方法は、モノフルオロリン酸を不純物として生成しやすく、高純度なジフルオロリン酸リチウムを得ることが困難である。非特許文献4には、尿素とリン酸二水素カリウムとフッ化アンモニウムを融解・反応させ、ジフルオロリン酸カリウムを得る手法が開示されている。しかしながら、この方法では、大量に副生するアンモニアガスの廃棄処理が必要になり、また、フッ化アンモニウムが多く残留することから効率的な手法とは言い難い。特許文献2には、六フッ化リン酸カリウムとメタリン酸カリウムを融解・反応させ、ジフルオロリン酸カリウムを得る方法が記載されているが、溶融するための坩堝からの汚染の心配や700℃といった高温環境の必要性から、これもまた生産性が良い手法とは言えない。特許文献3〜5には、六フッ化リン酸リチウムとホウ酸塩、二酸化ケイ素、炭酸塩とを非水溶媒中で反応させてジフルオロリン酸リチウムを得る方法が開示されている。特許文献6には、炭酸塩やホウ酸塩を、五フッ化リン等の気体と接触させてジフルオロリン酸リチウムを得る方法が開示されている。しかしながら、これらの反応によってジフルオロリン酸塩を得るには、例えば40〜170時間といった長時間を要し、工業生産には向かない。さらに、特許文献7では六フッ化リン酸塩とSi−O−Si結合を有する化合物とを有機電解液中で反応させジフルオロリン酸リチウムを得る手法が開示されているが、系中に新たに生成したSi−O−Si結合を有する化合物より沸点の低い化合物を除去する工程が必要となる。特許文献8には、フッ化物以外のハロゲン化物と六フッ化リン酸リチウムと水とを非水溶媒中で反応させてジフルオロリン酸リチウムを得る方法が開示されている。しかしながら、この方法では、六フッ化リン酸リチウムとの混合物としてのみジフルオロリン酸リチウムが得られ、単体を得ることができない。さらに、ジフルオロリン酸リチウムが溶液に溶解した状態でのみ得られており、電解液の組成調整の操作が煩雑で、工業生産には不利である。
特開平11−67270号公報 DE−813848 特開2005−53727号公報 特開2005−219994号公報 特開2005−306619号公報 特開2006−143572号公報 特開2008−140767号公報 特開2008−222484号公報 Zh. Neorgan. Khim., 7(1962)1313-1315 Journal of Fluorine Chemistry, 38(1988)297-302 Inorganic Nuclear Chemistry Letters, vol.5(1969)581-585 日本分析化学会第43年会公演要旨集, 536(1994)
このように、従来のジフルオロリン酸塩の製造の手法は、工業生産の点からも、純度の点からも、課題を抱えており、このことが二次電池用非水系電解液におけるジフルオロリン酸塩の使用の一つの問題にもなっていた。
本発明は、前記の事情に鑑みてなされたものであり、高純度のジフルオロリン酸塩を簡便に合成する工程を含む、工業的に有利な二次電池用非水系電解液の製造方法を提供するものである。また、この製造方法により得られた二次電池用非水系電解液及びこの二次電池用非水系電解液を備えた非水系電解液二次電池を提供するものである。
すなわち、本発明は、電解質、非水溶媒及びジフルオロリン酸塩を含む二次電池用非水系電解液の製造方法であって、ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩とを、フッ化水素の存在下で、反応させて得るか、又はリンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、アルカリ金属、アルカリ土類金属、アルミニウム若しくはオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得るか、あるいはジフルオロリン酸塩を、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム及びハロゲン化オニウムからなる群より選択される少なくとも1種のハロゲン化物と、ジフルオロリン酸とを、六フッ化リン酸塩の存在下で、反応させて得る工程;並びに得られたジフルオロリン酸塩、電解質及び非水溶媒を配合する工程;を含む、非水系電解液の製造方法に関する。また、本発明は、この製造方法により得られた二次電池用非水系電解液に関する。さらに、正極と、イオンを吸蔵及び放出可能な負極と、この二次電池用非水系電解液を備えた非水系電解液二次電池に関する。
本発明の非水系電解液の製造方法の特徴は、ジフルオロリン酸塩の合成工程にあり、具体的には、ジフルオロリン酸塩を、六フッ化リン酸塩の存在下で合成することにある。ジフルオロリン酸塩の合成時、原料や雰囲気から混入する余剰な水は、反応系内でジフルオロリン酸塩の加水分解を引き起こし、製品純度を著しく低下させうる。しかるに、六フッ化リン酸塩を存在させると、六フッ化リン酸塩が、この余剰の水に対してスカベンジャーとして働き、ジフルオロリン酸塩の高純度化が達成されると考えられる。また、六フッ化リン酸塩は、余剰の水と反応してジフルオロリン酸塩を生成すると同時に、フッ化水素を遊離するが、このフッ化水素は、反応系内で副生したモノフルオロリン酸塩やリン酸塩をジフルオロリン酸塩に変換させることができるため、ジフルオロリン酸塩の一層の高純度化が図られると考えられる。その結果、本発明の製造方法によれば、高純度なジフルオロリン酸塩を含有する非水系電解液が得られる。
本発明の非水系電解液の製造方法は、高純度のジフルオロリン酸塩を簡便に合成する工程を含む、工業的に有利な非水系電解液の製造方法である。また、製造方法により得られた非水系電解液は、高純度のジフルオロリン酸塩を含むため、ジフルオロリン酸塩の効果を十分に発揮することができ、これを使用した非水系電解液二次電池に、サイクル特性及び低温放電特性の改善をもたらすことができる。
以下に、本発明の実施の形態について詳細に説明するが、本発明は、これらの内容に限定はされない。
〔非水系電解液の製造方法〕
本発明の非水系電解液の製造方法は、I.ジフルオロリン酸塩の合成工程と、II.ジフルオロリン酸塩、電解質及び非水溶媒を配合する工程を含む。
I.ジフルオロリン酸塩の合成工程
ジフルオロリン酸塩の合成工程は、下記のいずれかから選ばれる。いずれの合成工程も、六フッ化リン酸塩を存在させて行う。
(I−1)ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩とを、フッ化水素の存在下で、反応させて得るか、又はリンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、アルカリ金属、アルカリ土類金属、アルミニウム若しくはオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得る工程。
(I−2)ジフルオロリン酸塩を、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム及びハロゲン化オニウムからなる群より選択される少なくとも1種のハロゲン化物と、ジフルオロリン酸とを、六フッ化リン酸塩の存在下で、反応させて得る工程。
(I−1)の合成工程について
(I−1)の合成工程では、ジフルオロリン酸塩を、(A)リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、(B)六フッ化リン酸塩とを、(D)フッ化水素の存在下で、反応させて得るか、又は(A)リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、(B)六フッ化リン酸塩と、(C)アルカリ金属、アルカリ土類金属、アルミニウム若しくはオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、(D)フッ化水素の存在下で、反応させて得る。
(I−1)の合成工程では、(A)リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種が使用される。
リンのオキソ酸としては、リン酸、メタリン酸、リン酸が脱水縮合したピロリン酸、トリポリリン酸等の鎖状のポリリン酸、トリメタリン酸等のような環状のポリリン酸、ホスホン酸、ホスフィン酸等が挙げられる。これらのリンのオキソ酸の無水物も用いることができ、例えば五酸化二リンが挙げられる。
リンのオキシハロゲン化物としては、リン酸トリクロリド、リン酸トリフルオリド、リン酸ジクロリドフルオリド等が挙げられる。
(A)としては、取り扱いの容易性、コストの優位性、入手の容易性を考慮すると、リン酸、五酸化二リンが好ましい。
(I−1)の合成工程では、(B)六フッ化リン酸塩が使用される。(B)としては、六フッ化リン酸リチウム、六フッ化リン酸カリウム、六フッ化リン酸ナトリウム、六フッ化リン酸アンモニウム等が挙げられ、余剰な水との反応性の点から六フッ化リン酸リチウムが好ましい。
(I−1)の合成工程では、場合により、(C)アルカリ金属、アルカリ土類金属、アルミニウム又はオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種が使用される。
アルカリ金属としては、Li、Na、K、Rb、Csが挙げられる。入手容易性の点から、Li、Na、Kが好ましい。
アルカリ土類金属としては、Be、Mg、Ca、Sr、Baが挙げられる。入手容易性、安全性の点から、Mg、Ca、Baが好ましい。同様の理由から、Alも好ましい。
オニウムとしては、アンモニウム、ホスホニウム、スルホニウム等が挙げられる。
アンモニウムとしてはNH 、第2級アンモニウム、第3級アンモニウム、第4級アンモニウムが挙げられ、第4級アンモニウムとしては、テトラアルキルアンモニウム(例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム等)、イミダゾリウム、ピラゾリウム、ピリジニウム、トリアゾリウム、ピリダジニウム、チアゾリウム、オキサゾリウム、ピリミジニウム、ピラジニウム等が挙げられるが、これらに限定されない。
ホスホニウムとしては、テトラアルキルホスホニウム(テトラメチルホスホニウム、テトラエチルホスホニウム等)が挙げられる。
スルホニウムとしては、トリアルキルスルホニウム(トリメチルスルホニウム、トリエチルスルホニウム等)が挙げられる。
ハロゲン化物としては、フッ化物、塩化物、臭化物、ヨウ化物が挙げられる。分子量の観点から、フッ化物、塩化物が好ましい。
ホウ酸塩としては、オルトホウ酸塩、メタホウ酸塩、二ホウ酸塩、四ホウ酸塩、五ホウ酸塩、八ホウ酸塩などが挙げられる。価格や入手しやすさの観点からは、オルトホウ酸塩、メタホウ酸塩、四ホウ酸塩が好ましい。
リン酸塩としては、オルトリン酸塩、リン酸一水素塩、リン酸二水素塩、メタリン酸塩、メタリン酸一水素塩、メタリン酸二水素塩、ホスフェン酸塩、メタホスフェン酸塩等が挙げられる。価格や入手のしやすさの観点からは、オルトリン酸塩、リン酸二水素塩が好ましい。
(C)としては、アルカリ金属のハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物又は酸化物が好ましく、より好ましくはリチウム属のハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物又は酸化物であり、特にフッ化リチウム、炭酸リチウム、ホウ酸リチウムである。
(I−1)の合成工程では、(D)フッ化水素が使用される。フッ化水素は、無水フッ化水素酸、無水フッ化水素酸と有機溶媒との混合物の形態であることができる。無水フッ化水素酸と有機溶媒との混合物の場合、有機溶媒としては、無水フッ化水素酸と反応せず、また反応に不活性であれば、特に限定されず、環状炭酸エステル、鎖状炭酸エステル、リン酸エステル、環状エーテル、鎖状エーテル、ラクトン化合物、鎖状エステル、ニトリル化合物、アミド化合物、スルホン化合物、アルコール類、炭化水素類等が挙げられる。例えば、以下の化合物が挙げられるが、これらに限定されない。
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられ、好ましくは、エチレンカーボネート、プロピレンカーボネートが挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられ、好ましくは、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、ジメトキシエタン等が挙げられる。ラクトン化合物としては、γ−ブチロラクトン等が挙げられる。鎖状エステルとしては、メチルプロピオネート、メチルアセテート、エチルアセテート、メチルホルメート等が挙げられる。ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホン化合物としては、スルホラン、メチルスルホラン等が挙げられる。アルコール類としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、ブチルアルコール、オクチルアルコール、炭化水素類としてはn−ペンタン、n−ヘキサン、n−オクタン、シクロヘキサン等が挙げられる。これらの有機溶媒は単独で、又は2種以上を混合して用いてもよい。また、前記有機溶媒分子中に含まれる炭化水素基の水素を少なくとも一部フッ素で置換したものを好適に用いることもできる。鎖状炭酸エステルや、酢酸エチルとヘキサンの混合物を好適に使用することができる。二次電池用非水電解液の添加剤としての利用可能性、付着した溶媒の除去しやすさの点を考慮すると、鎖状炭酸エステルが好ましく、より好ましくは、ジメチルカーボネート、エチルメチルカーボネートである。
(I−1)の合成工程では、(A)に含まれるリン原子のモル数を(a)、(B)に含まれるアニオン(PF )のモル数を(b)、(C)に含まれるカチオンのモル数を(c)、カチオンの価数をn(例えば、リチウムイオン等の1価のカチオンの場合、nは1である)、(D)に含まれるフッ化水素のモル数を(d)として、(a):(b):(n×(c)):(d)=(1〜4) :1:(0〜5): ( 0.01〜100)を満たすことが好ましく、(a):(b):(n×(c)):(d)=(1.4〜4):1:(0.1〜1): (0.1〜90)を満たすことがより好ましく、特に好ましくは、(a):(b):(n×(c)):(d)=(1.6〜4) :1:(0.2〜5):(1〜80):を満たすことである。
(I−1)の合成工程では、(A)リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、(B)六フッ化リン酸塩とを、(D)フッ化水素の存在下で、反応させることができる。この場合、(b)1モルに対して、好ましくは、(a)が1〜4モルであり、(d)が0.01〜100モルであり、より好ましくは(a)が1.4〜4モルであり、(d)が0.1〜90モルであり、特に好ましくは、(a)が1.6〜4モルであり、(d)が1〜80モルである。
また、(I−1)の合成工程では、(A)リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、(B)六フッ化リン酸塩と、(C)アルカリ金属、アルカリ土類金属、アルミニウム又はオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、(D)フッ化水素の存在下で、反応させることができる。この場合、(b)1モルに対して、好ましくは(a)が1〜4モル、n×(c)が0超、1モル以下、(d)が 0.01〜100モルであり、より好ましくは(a)が1.4〜4モル、n×(c)が0.1〜5モル、(d)が0.1〜90モルであり、特に好ましくは(a)が1.6〜4モル、n×(c)が0.2〜5モル、(d)が1〜80モルである。
いずれについても、反応機構の詳細は明らかではないが、ジフルオロリン酸塩の生成には、(A)と(D)との反応による、ジフルオロリン酸の生成、並びにこのジフルオロリン酸と(B)及び場合により(C)との反応が関与していると考えられる。
(I−1)の合成工程では、(A)と、(B)と、場合により(C)とを、(D)の存在下で、反応させる。この際に、(A)、(B)、場合により(C)、(D)の添加順序は特に限定されず、全てを同時に混合してもよい。(A)、(B)及び場合により(C)を混合した後に、(D)を加えることが好ましい。反応に際して、尿素、一酸化炭素、フッ化カルボニル等を存在させることもできる。(C)として、アルカリ金属塩、アルカリ土類金属塩、アルミニウム塩又はオニウム塩を使用することにより、対応するアルカリ金属、アルカリ土類金属、アルミニウム、オニウムのジフルオロリン酸塩を得ることができる。また、(B)及び(C)の塩のカウンターカチオンが異なる場合は、ジフルオロリン酸の複塩を得ることができる。
反応は、無溶媒で行ってもよく、または適切な溶媒中で行ってもよい。溶媒を使用する場合、溶媒は反応に不活性な有機溶媒であれば、特に限定されない。例えば、環状炭酸エステル、鎖状炭酸エステル、リン酸エステル、環状エーテル、鎖状エーテル、ラクトン化合物、鎖状エステル、ニトリル化合物、アミド化合物、スルホン化合物、アルコール類等が挙げられる。例えば、以下の化合物が挙げられるが、これらに限定されない。
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられ、好ましくは、エチレンカーボネート、プロピレンカーボネートが挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられ、好ましくは、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、ジメトキシエタン等が挙げられる。ラクトン化合物としては、γ−ブチロラクトン等が挙げられる。鎖状エステルとしては、メチルプロピオネート、メチルアセテート、エチルアセテート、メチルホルメート等が挙げられる。ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホン化合物としては、スルホラン、メチルスルホラン等が挙げられる。アルコール類としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、ブチルアルコール、オクチルアルコール等が挙げられる。これらの有機溶媒は単独で、又は2種以上を混合して用いてもよい。また、前記有機溶媒分子中に含まれる炭化水素基の水素を少なくとも一部フッ素で置換したものを好適に用いることもできる。
(I−1)の合成工程において、反応条件は、任意に設定することができる。反応温度は0℃〜300℃が好ましく、より好ましくは0℃〜200℃であり、特に好ましくは0〜180℃である。反応は、大気圧下で行っても、減圧下で行ってもよい。反応時間は、通常、0.5〜5時間であるが、反応装置や仕込み量によって適宜、変化させることができ、これに限定されない。
反応効率を高めるために、還流をかけることが好ましい。還流塔の温度は−50℃〜10℃が好ましく、−40℃〜8℃がより好ましく、特に好ましくは、−30℃〜5℃である。反応後に、反応液中に不溶解成分が生成している場合には、通常のろ過操作によってろ別することができる。ろ過の際に使用するフィルタとしては、反応液の酸性度が高いこと、フッ化水素酸を含有することから、ポリオレフィン製フィルタやフッ素樹脂製フィルタを用いることが好ましく、耐蝕性の観点からフッ素樹脂製のフィルタが特に好ましい。反応後、余剰に存在する反応溶媒や反応副生物は、一般的な加熱操作や減圧操作によって除去することができる。このときの加熱乾燥温度は、100〜200℃が好ましく、110〜180℃がより好ましく、特に好ましくは120〜150℃である。
(I−2)の合成工程について
(I−2)の合成工程では、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム及びハロゲン化オニウムからなる群より選択される少なくとも1種のハロゲン化物が用いられる。ハロゲン化物は、単独でも、あるいは2種以上併用してもよい。2種以上併用する場合、ハロゲン化物のカウンターカチオンは、同一であっても異なっていてもよい。カウンターカチオンが異なる場合、ジフルオロリン酸の複塩が形成される。
アルカリ金属としては、Li、Na、K、Rb、Csが挙げられる。入手容易性の点から、Li、Na、Kが好ましい。
アルカリ土類金属としては、Be、Mg、Ca、Sr、Baが挙げられる。入手容易性、安全性の点から、Mg、Ca、Baが好ましい。同様の理由から、Alも好ましい。
オニウムとしては、アンモニウム、ホスホニウム、スルホニウム等が挙げられる。
アンモニウムとしてはNH 、第2級アンモニウム、第3級アンモニウム、第4級アンモニウムが挙げられ、第4級アンモニウムとしては、テトラアルキルアンモニウム(例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム等)、イミダゾリウム、ピラゾリウム、ピリジニウム、トリアゾリウム、ピリダジニウム、チアゾリウム、オキサゾリウム、ピリミジニウム、ピラジニウム等が挙げられるが、これらに限定されない。
ホスホニウムとしては、テトラアルキルホスホニウム(テトラメチルホスホニウム、テトラエチルホスホニウム等)が挙げられる。
スルホニウムとしては、トリアルキルスルホニウム(トリメチルスルホニウム、トリエチルスルホニウム等)が挙げられる。
ハロゲン化物としては、フッ化物、塩化物、臭化物、ヨウ化物が挙げられる。分子量の観点から、フッ化物、塩化物が好ましい。
なかでも、ハロゲン化物としては、ハロゲン化アルカリ金属が好ましく、より好ましくはハロゲン化リチウムであり、さらに好ましくは塩化リチウム及びフッ化リチウムである。
(I−2)の合成工程では、ハロゲン化物を、六フッ化リン酸塩の存在下で、ジフルオロリン酸と反応させる。ハロゲン化物として、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム又はハロゲン化オニウムを使用することにより、対応するアルカリ金属、アルカリ土類金属、アルミニウム、オニウムのジフルオロリン酸塩を得ることができる。
六フッ化リン酸塩としては、六フッ化リン酸リチウム、六フッ化リン酸カリウム、六フッ化リン酸ナトリウム、六フッ化リン酸アンモニウム等が挙げられ、余剰な水との反応性の点から六フッ化リン酸リチウムが好ましい。
(I−2)の合成工程では、ハロゲン化物とジフルオロリン酸との仕込み量は、任意に設定することができる。一般に、反応後に、残存したハロゲン化物を精製操作で除去することができるため、ハロゲン化物は過剰量であってもよい。一方、ジフルオロリン酸が大過剰であると、モノフルオロリン酸塩等の副生の原因となりうるが、残存したジフルオロリン酸は一般的な洗浄等の精製操作で除去することができる。ジフルオロリン酸を、ハロゲン化物1当量あたり、1.1当量以下とすることが好ましく、精製操作の負荷軽減の観点から、ジフルオロリン酸を、ハロゲン化物1当量あたり、0.95〜1.05当量とすることが好ましく、さらに好ましくは、0.98〜1.02当量とすることであり、特に好ましくは0.99〜1.01当量とすることである。
(I−2)の合成工程では、六フッ化リン酸塩の仕込み量は、任意に設定することができる。高純度化の点からは、六フッ化リン酸塩を、ジフルオロリン酸1モルに対して、0.05モル以上とすることが好ましい。得られたジフルオロリン酸塩を、二次電池用電解液のように、六フッ化リン酸塩が混入していてもよい用途で使用する場合、仕込み量の上限は、特に限定されないが、得られたジフルオロリン酸塩を単体として使用する場合には、六フッ化リン酸塩を、ジフルオロリン酸1モルに対して、0.05〜0.5モルとすることが好ましく、より好ましくは0.1〜0.4モルとすることであり、さらに好ましくは0.12〜0.25モルとすることである。
(I−2)の合成工程では、ハロゲン化物とジフルオロリン酸とを、六フッ化リン酸塩の存在下で、反応させる。この際に、ハロゲン化物、六フッ化リン酸塩、ジフルオロリン酸の添加順序は特に限定されず、三者を同時に混合してもよく、六フッ化リン酸塩をハロゲン化物と混合してから、ジフルオロリン酸を加えてもよく、六フッ化リン酸塩をジフルオロリン酸と混合してから、ハロゲン化物を加えてもよく、また、ハロゲン化物とジフルオロリン酸を混合してから、六フッ化リン酸塩を加えてもよい。
反応は、無溶媒で行ってもよく、または適切な溶媒中で行ってもよい。溶媒を使用する場合、溶媒は反応に不活性な有機溶媒であれば、特に限定されない。例えば、環状炭酸エステル、鎖状炭酸エステル、リン酸エステル、環状エーテル、鎖状エーテル、ラクトン化合物、鎖状エステル、ニトリル化合物、アミド化合物、スルホン化合物、アルコール類等が挙げられる。例えば、以下の化合物が挙げられるが、これらに限定されない。
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられ、好ましくは、エチレンカーボネート、プロピレンカーボネートが挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられ、好ましくは、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、ジメトキシエタン等が挙げられる。ラクトン化合物としては、γ−ブチロラクトン等が挙げられる。鎖状エステルとしては、メチルプロピオネート、メチルアセテート、エチルアセテート、メチルホルメート等が挙げられる。ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホン化合物としては、スルホラン、メチルスルホラン等が挙げられる。アルコール類としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、ブチルアルコール、オクチルアルコール等が挙げられる。これらの有機溶媒は単独で、又は2種以上を混合して用いてもよい。また、前記有機溶媒分子中に含まれる炭化水素基の水素を少なくとも一部フッ素で置換したものを好適に用いることもできる。二次電池用電解液の添加剤としての利用可能性、付着した溶媒の除去しやすさの点を考慮すると、鎖状炭酸エステルが好ましく、より好ましくは、ジメチルカーボネート、エチルメチルカーボネートである。
(I−2)の合成工程において、反応条件は、任意に設定することができる。反応温度は、室温(25℃)〜200℃とすることができるが、加熱して行うことが好ましく、例えば、100〜180℃、好ましくは120〜150℃の範囲である。反応は、大気圧下で行っても、減圧下で行ってもよい。反応時間は、通常、1〜24時間であるが、反応装置や仕込み量によって適宜、変化させることができ、これに限定されない。
(I−2)の合成工程では、六フッ化リン酸塩に加えて、尿素、一酸化炭素、フッ化カルボニル等を存在させて、反応を行うこともできる。
(I−1)及び(I−2)の合成工程で得られたジフルオロリン酸塩を、さらなる精製工程に付すこともできる。精製方法は、特に限定されず、例えば洗浄や再結晶といった公知の手法を用いることができる。
洗浄や再結晶をおこなう溶媒の種類としては、ジフルオロリン酸塩等と反応したり、分解や変質を生じさせない限り、特に限定されず、環状炭酸エステル、鎖状炭酸エステル、リン酸エステル、環状エーテル、鎖状エーテル、ラクトン化合物、鎖状エステル、ニトリル化合物、アミド化合物、スルホン化合物、アルコール類、炭化水素類等が挙げられる。例えば、以下の化合物が挙げられるが、これらに限定されない。
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられ、好ましくは、エチレンカーボネート、プロピレンカーボネートが挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられ、好ましくは、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、ジメトキシエタン等が挙げられる。ラクトン化合物としては、γ−ブチロラクトン等が挙げられる。鎖状エステルとしては、メチルプロピオネート、メチルアセテート、エチルアセテート、メチルホルメート等が挙げられる。ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホン化合物としては、スルホラン、メチルスルホラン等が挙げられる。アルコール類としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソ-プロピルアルコール、ブチルアルコール、オクチルアルコール、炭化水素類としてはn−ペンタン、n−ヘキサン、n−オクタン、シクロヘキサン等が挙げられる。これらの有機溶媒は単独で、又は2種以上を混合して用いてもよい。また、前記有機溶媒分子中に含まれる炭化水素基の水素を少なくとも一部フッ素で置換したものを好適に用いることもできる。鎖状炭酸エステルや、酢酸エチルとヘキサンの混合物を好適に使用することができる。二次電池用電解液の添加剤としての利用可能性、付着した溶媒の除去しやすさの点を考慮すると、鎖状炭酸エステルが好ましく、より好ましくは、ジメチルカーボネート、エチルメチルカーボネートである。
なお、上記の溶媒を用いて精製操作を行う際、無水フッ化水素酸を適量添加することもできる。例えば、ハロゲン化物を使用する場合であって、ハロゲン化物がフッ化リチウム以外のときには、無水フッ化水素酸により、溶解度の高いフッ化リチウムに変換せしめた後、除去することもできる。
(I−1)及び(I−2)の合成工程により得られたジフルオロリン酸塩は、高純度であり、二次電池用非水電解液の添加剤として好適である。純度は、イオンクロマトグラフィーでアニオン分析を行い、ジフルオロリン酸イオンの相対面積比を算出して評価することができる。得られたジフルオロリン酸塩は、相対面積比が好ましくは80%以上であり、より好ましくは90%以上である。
II.ジフルオロリン酸塩、電解質及び非水溶媒の配合工程
上記のようにして得られたジフルオロリン酸塩、電解質及び非水溶媒を配合して、非水系電解液を調製する。
1.ジフルオロリン酸塩
ジフルオロリン酸塩は、1種を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。また、ジフルオロリン酸塩の分子量は限定されず、本発明の効果を著しく損なわない限り任意であるが、通常100以上である。また、上限は、特に限定されないが、本反応の反応性を鑑み、通常1000以下、好ましくは500以下が実用的で好ましい。
非水系電解液中のジフルオロリン酸塩の割合は、非水系電解液全体に対して、ジフルオロリン酸塩の合計で10ppm以上(0.001質量%以上)が好ましく、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。また、上限はジフルオロリン酸塩の合計で、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。ジフルオロリン酸塩が10ppm以上であれば、サイクル特性及び低温放電特性の改善効果が十分に得られ、5質量%以下であれば、充放電効率の電池特性に悪影響を及ぼすことを避けやすい。
2.電解質
電解質は、特に限定されず、目的とする非水系電解液二次電池に応じて、任意に採用することができる。なお、本発明の製造方法により得られた非水系電解液をリチウム二次電池に用いる場合には、電解質はリチウム塩が好ましい。
電解質の具体例としては、LiClO、LiAsF、LiPF、LiCO、LiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF)、LiBF(C)、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩;リチウム環状1,2−エタンジスルホニルイミド、リチウム環状1,3−プロパンジスルホニルイミド、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、
リチウム環状1,4−パーフルオロブタンジスルホニルイミド等のジスルホニルイミド類;リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロ(オキサラト)フォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等の含ジカルボン酸錯体リチウム塩;KPF、NaPF、NaBF、CFSONa等のナトリウム塩又はカリウム塩等が挙げられる。
これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウムビス(オキサラト)ボレートが好ましく、特にLiPF又はLiBFが好ましい。
電解質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、無機リチウム塩の2種の併用、無機リチウム塩と含フッ素有機リチウム塩の併用が、連続充電時のガス発生又は高温保存後の劣化が効果的に抑制されるので好ましい。
特に、LiPFとLiBFとの併用や、LiPF、LiBF等の無機リチウム塩と、LiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩との併用が好ましい。
LiPFとLiBFとを併用する場合、電解質全体に占めるLiBFの割合が、0.01質量%以上、20質量%以下であることが好ましい。この範囲内であると、LiBFの解離度の低さのために、非水系電解液の抵抗が高くなることが抑制されうる。
一方、LiPF、LiBF等の無機リチウム塩と、LiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩とを併用する場合、電解質全体に占める無機リチウム塩の割合が、70質量%以上、99質量%以下であることが好ましい。この範囲内であると、一般に無機リチウム塩と比較して分子量が大きい含フッ素有機リチウム塩の割合が高くなりすぎて、非水系電解液全体に占める非水溶媒の比率が低下し、非水系電解液の抵抗が高くなることが抑制されうる。
非水系電解液の最終的な組成中におけるリチウム塩の濃度は、本発明の効果を著しく損なわない限り任意であるが、好ましくは、0.5モル/L以上、3モル/L以下である。下限以上であると、十分な非水系電解液の電気伝導率が得られやすく、上限以下であると、粘度が上昇しすぎることが避けられ、良好な電気伝導率及び本発明の製造方法により得られた非水系電解液を用いた非水系電解液二次電池の性能を確保しやすい。リチウム塩の濃度は、より好ましくは0.6モル/L以上、さらに好ましくは0.8モル/L以上、また、より好ましくは2モル/L以下、さらに好ましくは1.5モル/L以下の範囲である。
特に、非水系電解液の非水溶媒がアルキレンカーボネートやジアルキルカーボネートといったカーボネート化合物を主体とする場合には、LiPFを単独で用いてもよいが、LiBFと併用すると連続充電による容量劣化が抑制されるので好ましい。これらを併用する場合、LiPF 1モルに対して、LiBFが、0.005モル以上、0.4モル以下であることが好ましい。上限以下であれば、高温保存後の電池特性が低下することを避けやすく、下限以上であれば、連続充電時のガス発生や容量劣化を避けやすい。LiPF 1モルに対して、LiBFは、好ましくは0.01モル以上、特に好ましくは0.05モル以上であり、好ましくは0.2モル以下である。
また、非水系電解液の非水溶媒がγ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル化合物を50容量%以上含むものである場合、LiBFが電解質全体の50モル%以上を占めることが好ましい。
3.非水溶媒
非水溶媒は、電池とした時に電池特性に対して悪影響を及ぼさない溶媒であれば、特に限定されず、以下の非水溶媒の1種以上であることが好ましい。
非水溶媒の例としては、鎖状及び環状カーボネート、鎖状及び環状カルボン酸エステル、鎖状及び環状エーテル、含リン有機溶媒、含硫黄有機溶媒等が挙げられる。
鎖状カーボネートの種類は、特に限定されず、例えば、ジアルキルカーボネートが挙げられ、なかでも構成するアルキル基の炭素数が、それぞれ1〜5のものが好ましく、特に好ましくは1〜4のものである。具体的には、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート、ジ−n−プロピルカーボネート等が挙げられる。
なかでも、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
環状カーボネートの種類は、特に限定されず、例えば、アルキレンカーボネートが挙げられ、なかでも構成するアルキレン基の炭素数は2〜6が好ましく、特に好ましくは2〜4である。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート(2−エチルエチレンカーボネート、シス及びトランス2,3−ジメチルエチレンカーボネート)等が挙げられる。
なかでも、エチレンカーボネート又はプロピレンカーボネートが、非水系電解液二次電池における種々の特性がよい点で好ましい。
鎖状カルボン酸エステルの種類は、特に限定されず、例えば、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−i−プロピル、酢酸−n−ブチル、酢酸−i−ブチル、酢酸−t−ブチル等の酢酸エステル;プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−i−プロピル、プロピオン酸−n−ブチル、プロピオン酸−i−ブチル、プロピオン酸−t−ブチル等のプロピオン酸エステル;酪酸メチル、酪酸エチル等の酪酸エステル等が挙げられる。
なかでも、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチルが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
環状カルボン酸エステルの種類は、特に限定されず、例えば、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等が挙げられる。
なかでも、γ−ブチロラクトンが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
鎖状エーテルの種類は、特に限定されず、例えば、ジメトキシメタン、ジメトキシエタン、ジエトキシメタン、ジエトキシエタン、エトキシメトキシメタン、エトキシメトキシエタン等が挙げられる。
なかでも、ジメトキシエタン、ジエトキシエタンが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
また、環状エーテルの種類は、特に限定されず、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
さらに、含リン有機溶媒の種類は、特に限定されず、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル等のリン酸エステル類;亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル等の亜リン酸エステル類;トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、トリフェニルホスフィンオキシド等のホスフィンオキシド類等が挙げられる。
また、含硫黄有機溶媒の種類は、特に限定されず、例えば、エチレンサルファイト等の環状サルファイト;1,3−プロパンスルトン、1,4−ブタンスルトン等の環状スルホン酸エステル;メタンスルホン酸メチル、ブスルファン等の鎖状スルホン酸エステル;スルホラン、スルホレン等の環状スルホン;ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン等の鎖状スルホン;ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド類;N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等のスルホンアミド類等が挙げられる。
なかでも、鎖状及び環状カーボネート又は鎖状及び環状カルボン酸エステルが、非水系電解液二次電池における種々の特性がよい点で好ましく、それらのなかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、γ−ブチロラクトンがより好ましく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、酪酸エチル、γ−ブチロラクトンがより好ましい。
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の併用が好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。
非水溶媒の好ましい組合せの1つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水溶媒全体に占める環状カーボネート類と鎖状カーボネート類との合計が、好ましくは80容量%以上、より好ましくは85容量%以上、特に好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が、好ましくは5容量%以上、より好ましくは10容量%以上、特に好ましくは15容量%以上であり、好ましくは50容量%以下、より好ましくは35容量%以下、特に好ましくは30容量%以下のものである。これらの非水溶媒の組み合わせを用いて作製された電池では、サイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスがよくなるので好ましい。
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの例としては、エチレンカーボネートと鎖状カーボネート類の組み合わせが挙げられ、例えば、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、さらにプロピレンカーボネートを加えた組み合わせも好ましい。プロピレンカーボネートを含有する場合、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。さらに、非水溶媒全体に占めるプロピレンカーボネートの量を、0.1容量%以上、10容量%以下とすると、エチレンカーボネートと鎖状カーボネート類との組み合わせの特性を維持したまま、さらに、優れた放電負荷特性が得られるので好ましい。プロピレンカーボネートの量は、より好ましくは1容量%、特に好ましくは2容量%以上であり、また、より好ましくは8容量%以下、特に好ましくは5容量%以下である。
なかでも、非対称鎖状カーボネート類を含有するものがより好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するもの、あるいは、さらにプロピレンカーボネートを含有するものが、サイクル特性と放電負荷特性のバランスがよいので好ましい。特に、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数が1〜2であるものが好ましい。
好ましい非水溶媒の他の例は、鎖状エステルを含有するものである。特に、上記のような環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状エステルを含有するものが、電池の放電負荷特性向上の点から好ましく、鎖状エステルとしては、酢酸メチル、酢酸エチル、プロピオン酸メチル、酪酸メチル、酪酸エチルが、特に好ましい。非水溶媒に占める鎖状エステルの容量は、好ましくは5容量%以上、より好ましくは8容量%以上、特に好ましくは10容量%以上であり、好ましくは50容量%以下、より好ましくは35容量%以下、特に好ましくは30容量%以下、とりわけ25容量%以下である。
他の好ましい非水溶媒の例は、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種又は2種以上の有機溶媒が、非水溶媒全体の60容量%以上を占めるものである。こうした非水溶媒は、引火点が50℃以上となることが好ましく、なかでも70℃以上となることが特に好ましい。このような非水溶媒を用いることにより、非水系電解液二次電池を高温で使用しても、溶媒の蒸発や液漏れが少なくなる。なかでも、非水溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又はエチレンカーボネートとプロピレンカーボネートとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜80:20であるものを用いると、一般にサイクル特性と放電負荷特性等のバランスがよくなるため、好ましい。
4.添加剤
本発明の非水系電解液の製造方法では、本発明の効果を著しく損なわない範囲において、各種の添加剤を配合していてもよい。添加剤は、公知のものを任意に用いることができる。添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
添加剤としては、過充電防止剤や、高温保存後の容量維持特性やサイクル特性を改善するための助剤等が挙げられる。なかでも、高温保存後の容量維持特性やサイクル特性を改善するための助剤として、不飽和結合及びハロゲン原子のうち少なくとも一方を有するカーボネート(以下、「特定カーボネート」と略記する場合がある)を加えることが好ましい。以下、特定カーボネートとその他添加剤に分けて説明する。
4−1.特定カーボネート
特定カーボネートは、不飽和結合及びハロゲン原子のうち少なくとも一方を有するカーボネートであるが、特定カーボネートは、不飽和結合のみを有していてもよく、ハロゲン原子のみを有していてもよく、不飽和結合及びハロゲン原子の双方を有していてもよい。
特定カーボネートの分子量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、50以上、250以下であるものが好ましい。この範囲であると、非水系電解液に対する特定カーボネートの溶解性が良好で、添加の効果を十分に発現することができる。特定カーボネートの分子量は、好ましくは80以上、150以下である。
特定カーボネートの製造方法は、特に限定されず、公知の方法を任意に選択して製造することが可能である。
特定カーボネートは、非水系電解液中に、1種を単独で含有させてもよく、2種以上を任意の組み合わせ及び比率で併有させてもよい。
特定カーボネートの配合量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液に対して、好ましくは0.01質量%以上、70質量%以下である
この下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の高温保存特性及び連続充電特性の低下を避けることができ、ガス発生量が多くなったり、容量維持率が低下することも避けることができる。特定カーボネートの配合量は、より好ましくは0.1質量%以上、特に好ましくは0.3質量%以上、また、より好ましくは50質量%以下、特に好ましくは40質量%以下である。
4−1−1.不飽和カーボネート
特定カーボネートのうち、不飽和結合を有するカーボネート(以下、「不飽和カーボネート」と略記する場合がある)としては、炭素−炭素二重結合や炭素−炭素三重結合等の炭素−炭素不飽和結合を有するカーボネートであれば、特に限定されず、任意の不飽和カーボネートを用いることができる。なお、芳香環を有するカーボネートも、不飽和結合を有するカーボネートに含まれるものとする。
不飽和カーボネートの例としては、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類等が挙げられる。
ビニレンカーボネート類の具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、カテコールカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート等が挙げられる。
フェニルカーボネート類の具体例としては、ジフェニルカーボネート、エチルフェニルカーボネート、メチルフェニルカーボネート、t−ブチルフェニルカーボネート等が挙げられる。
ビニルカーボネート類の具体例としては、ジビニルカーボネート、メチルビニルカーボネート等が挙げられる。
アリルカーボネート類の具体例としては、ジアリルカーボネート、アリルメチルカーボネート等が挙げられる。
なかでも、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類が好ましく、特に、ビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネートは、安定な界面保護皮膜を形成することができ、より好適に用いられる。
4−1−2.ハロゲン化カーボネート
特定カーボネートのうち、ハロゲン原子を有するカーボネート(以下、「ハロゲン化カーボネート」と略記する場合がある)としては、ハロゲン原子を有するものであれば、特に限定されず、任意のハロゲン化カーボネートを用いることができる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、なかでも、好ましくはフッ素原子又は塩素原子であり、フッ素原子が特に好ましい。また、ハロゲン化カーボネートが有するハロゲン原子の数は、1個以上であれば特に限定されず、好ましくは6個以下であり、より好ましくは4個以下である。ハロゲン化カーボネートが複数のハロゲン原子を有する場合、それらは互いに同一でもよく、異なっていてもよい。
ハロゲン化カーボネートの例としては、エチレンカーボネート誘導体類、ジメチルカーボネート誘導体類、エチルメチルカーボネート誘導体類、ジエチルカーボネート誘導体類等が挙げられる。
エチレンカーボネート誘導体類の具体例としては、フルオロエチレンカーボネート、クロロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4,4−ジクロロエチレンカーボネート、4,5−ジクロロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4−クロロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4,5−ジクロロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4−クロロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4,4−ジクロロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(クロロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(ジクロロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(トリクロロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(クロロメチル)−4−クロロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−(クロロメチル)−5−クロロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4−クロロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジクロロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート、4,4−ジクロロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
ジメチルカーボネート誘導体類の具体例としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロ)メチルカーボネート、クロロメチルメチルカーボネート、ジクロロメチルメチルカーボネート、トリクロロメチルメチルカーボネート、ビス(クロロメチル)カーボネート、ビス(ジクロロ)メチルカーボネート、ビス(トリクロロ)メチルカーボネート等が挙げられる。
エチルメチルカーボネート誘導体類の具体例としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、
エチルトリフルオロメチルカーボネート、2−クロロエチルメチルカーボネート、エチルクロロメチルカーボネート、2,2−ジクロロエチルメチルカーボネート、2−クロロエチルクロロメチルカーボネート、エチルジクロロメチルカーボネート、2,2,2−トリクロロエチルメチルカーボネート、2,2−ジクロロエチルクロロメチルカーボネート、2−クロロエチルジクロロメチルカーボネート、エチルトリクロロメチルカーボネート等が挙げられる。
ジエチルカーボネート誘導体類の具体例としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート、エチル−(2−クロロエチル)カーボネート、エチル−(2,2−ジクロロエチル)カーボネート、ビス(2−クロロエチル)カーボネート、エチル−(2,2,2−トリクロロエチル)カーボネート、
2,2−ジクロロエチル−2’−クロロエチルカーボネート、ビス(2,2−ジクロロエチル)カーボネート、2,2,2−トリクロロエチル−2’−クロロエチルカーボネート、2,2,2−トリクロロエチル−2’,2’−ジクロロエチルカーボネート、ビス(2,2,2−トリクロロエチル)カーボネート等が挙げられる。
なかでも、フッ素原子を有するカーボネートが好ましく、フッ素原子を有するエチレンカーボネート誘導体類がより好ましく、特にフルオロエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートは、安定な界面保護皮膜を形成することができ、より好適に用いられる。
4−1−3.ハロゲン化不飽和カーボネート
さらに、特定カーボネートとしては、不飽和結合とハロゲン原子とを共に有するカーボネート(これを適宜「ハロゲン化不飽和カーボネート」と略称する。)を用いることもできる。ハロゲン化不飽和カーボネートとしては、特に限定されず、本発明の効果を著しく損なわない限り、任意のハロゲン化不飽和カーボネートを用いることができる。
ハロゲン化不飽和カーボネートの例としては、ビニレンカーボネート誘導体類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体類、フェニルカーボネート誘導体類、ビニルカーボネート誘導体類、アリルカーボネート誘導体類等が挙げられる。
ビニレンカーボネート誘導体類の具体例としては、フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−(トリフルオロメチル)ビニレンカーボネート、クロロビニレンカーボネート、4−クロロ−5−メチルビニレンカーボネート、4−クロロ−5−フェニルビニレンカーボネート、4−(トリクロロメチル)ビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体類の具体例としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4−クロロ−5−ビニルエチレンカーボネート、4,4−ジクロロ−4−ビニルエチレンカーボネート、4,5−ジクロロ−4−ビニルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4−クロロ−4,5−ジビニルエチレンカーボネート、4,5−ジクロロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート、4−クロロ−4−フェニルエチレンカーボネート、4−クロロ−5−フェニルエチレンカーボネート、4,4−ジクロロ−5−フェニルエチレンカーボネート、4,5−ジクロロ−4−フェニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジフェニルエチレンカーボネート、4,5−ジクロロ−4,5−ジフェニルエチレンカーボネート等が挙げられる。
フェニルカーボネート誘導体類の具体例としては、フルオロメチルフェニルカーボネート、2−フルオロエチルフェニルカーボネート、2,2−ジフルオロエチルフェニルカーボネート、2,2,2−トリフルオロエチルフェニルカーボネート、クロロメチルフェニルカーボネート、2−クロロエチルフェニルカーボネート、2,2−ジクロロエチルフェニルカーボネート、2,2,2−トリクロロエチルフェニルカーボネート等が挙げられる。
ビニルカーボネート誘導体類の具体例としては、フルオロメチルビニルカーボネート、2−フルオロエチルビニルカーボネート、2,2−ジフルオロエチルビニルカーボネート、2,2,2−トリフルオロエチルビニルカーボネート、クロロメチルビニルカーボネート、2−クロロエチルビニルカーボネート、2,2−ジクロロエチルビニルカーボネート、2,2,2−トリクロロエチルビニルカーボネート等が挙げられる。
アリルカーボネート誘導体類の具体例としては、フルオロメチルアリルカーボネート、2−フルオロエチルアリルカーボネート、2,2−ジフルオロエチルアリルカーボネート、2,2,2−トリフルオロエチルアリルカーボネート、クロロメチルアリルカーボネート、2−クロロエチルアリルカーボネート、2,2−ジクロロエチルアリルカーボネート、2,2,2−トリクロロエチルアリルカーボネート等が挙げられる。
特定カーボネートとしては、単独で用いた場合に効果が高い、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネート、あるいはこれらの2種以上の併用が特に好ましい。
4−2.その他添加剤
特定カーボネート以外の添加剤としては、過充電防止剤、高温保存後の容量維持特性やサイクル特性を改善するための助剤等が挙げられる。
4−2−1.過充電防止剤
過充電防止剤の具体例としては、トルエン、キシレン等のトルエン類;ビフェニル、2−メチルビフェニル、3−メチルビフェニル、4−メチルビフェニル等の非置換又はアルキル基で置換されたビフェニル類;o−ターフェニル、m−ターフェニル、p−ターフェニル等の非置換又はアルキル基で置換されたターフェニル類;非置換又はアルキル基で置換されたターフェニル誘導体の部分水素化物;シクロペンチルベンゼン、シクロヘキシルベンゼン等のシクロアルキルベンゼン類;クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン等のベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類;t−ブチルベンゼン、t−アミルベンゼン、t−ヘキシルベンゼン、等のベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;ジフェニルエーテル、ジベンゾフラン等の酸素原子を有する芳香族化合物等の芳香族化合物が挙げられる。
他の過充電防止剤の具体例としては、フルオロベンゼン、フルオロトルエン、ベンゾトリフルオリド、2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、1,6−ジフルオロアニオール等の含フッ素アニソール化合物等も挙げられる。
これらの過充電防止剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせで併用してもよい。また、任意の組合せで併用する場合、同一の誘導体に分類される化合物の併用でもよく、異なる誘導体に分類される化合物の併用でもよい。異なる誘導体に分類される化合物を併用する場合の具体例としては、以下が挙げられる。
トルエン類とビフェニル類;
トルエン類とターフェニル類;
トルエン類とターフェニル類の部分水素化物;
トルエン類とシクロアルキルベンゼン類;
トルエン類とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類;
トルエン類とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;
トルエン類と酸素原子を有する芳香族化合物;
トルエン類と芳香族化合物の部分フッ素化物;
トルエン類と含フッ素アニソール化合物;
ビフェニル類とターフェニル類;
ビフェニル類とターフェニル類の部分水素化物;
ビフェニル類とシクロアルキルベンゼン類;
ビフェニル類とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類;
ビフェニル類とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;
ビフェニル類と酸素原子を有する芳香族化合物;
ビフェニル類と芳香族化合物の部分フッ素化物;
ビフェニル類と含フッ素アニソール化合物;
ターフェニル類とターフェニル類の部分水素化物;
ターフェニル類とシクロアルキルベンゼン類;
ターフェニル類とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類;
ターフェニル類とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;
ターフェニル類と酸素原子を有する芳香族化合物;
ターフェニル類と芳香族化合物の部分フッ素化物;
ターフェニル類と含フッ素アニソール化合物;
ターフェニル類の部分水素化物とシクロアルキルベンゼン類;
ターフェニル類の部分水素化物とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類;
ターフェニル類の部分水素化物とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;
ターフェニル類の部分水素化物と酸素原子を有する芳香族化合物;
ターフェニル類の部分水素化物と芳香族化合物の部分フッ素化物;
ターフェニル類の部分水素化物と含フッ素アニソール化合物;
シクロアルキルベンゼン類とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類;
シクロアルキルベンゼン類とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;
シクロアルキルベンゼン類と酸素原子を有する芳香族化合物;
シクロアルキルベンゼン類と芳香族化合物の部分フッ素化物;
シクロアルキルベンゼン類と含フッ素アニソール化合物;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類と酸素原子を有する芳香族化合物;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類と芳香族化合物の部分フッ素化物;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン類と含フッ素アニソール化合物;
ベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類と酸素原子を有する芳香族化合物;
ベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類と芳香族化合物の部分フッ素化物;
ベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン類と含フッ素アニソール化合物;
酸素原子を有する芳香族化合物と芳香族化合物の部分フッ素化物;
酸素原子を有する芳香族化合物と含フッ素アニソール化合物;
芳香族化合物の部分フッ素化物と含フッ素アニソール化合物;
が挙げられる。
これらの具体例としては
ビフェニルとo−ターフェニルとの組合せ、
ビフェニルとm−ターフェニルとの組合せ、
ビフェニルとターフェニル類の部分水素化物との組合せ、
ビフェニルとクメンとの組合せ、
ビフェニルとシクロペンチルベンゼンとの組合せ、
ビフェニルとシクロヘキシルベンゼンとの組合せ、
ビフェニルとt−ブチルベンゼンとの組合せ、
ビフェニルとt−アミルベンゼンとの組合せ、
ビフェニルとジフェニルエーテルとの組合せ、
ビフェニルとジベンゾフランとの組合せ、
ビフェニルとフルオロベンゼンとの組合せ、
ビフェニルとベンゾトリフルオリドとの組合せ、
ビフェニルと2−フルオロビフェニルとの組合せ、
ビフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
ビフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
ビフェニルと2,4−ジフルオロアニソールとの組合せ、
o−ターフェニルとターフェニル類の部分水素化物との組合せ、
o−ターフェニルとクメンとの組合せ、
o−ターフェニルとシクロペンチルベンゼンとの組合せ、
o−ターフェニルとシクロヘキシルベンゼンとの組合せ、
o−ターフェニルとt−ブチルベンゼンとの組合せ、
o−ターフェニルとt−アミルベンゼンとの組合せ、
o−ターフェニルとジフェニルエーテルとの組合せ、
o−ターフェニルとジベンゾフランとの組合せ、
o−ターフェニルとフルオロベンゼンとの組合せ、
o−ターフェニルとベンゾトリフルオリドとの組合せ、
o−ターフェニルと2−フルオロビフェニルとの組合せ、
o−ターフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
o−ターフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
o−ターフェニルと2,4−ジフルオロアニソールとの組合せ、
m−ターフェニルとターフェニル類の部分水素化物との組合せ、
m−ターフェニルとクメンとの組合せ、
m−ターフェニルとシクロペンチルベンゼンとの組合せ、
m−ターフェニルとシクロヘキシルベンゼンとの組合せ、
m−ターフェニルとt−ブチルベンゼンとの組合せ、
m−ターフェニルとt−アミルベンゼンとの組合せ、
m−ターフェニルとジフェニルエーテルとの組合せ、
m−ターフェニルとジベンゾフランとの組合せ、
m−ターフェニルとフルオロベンゼンとの組合せ、
m−ターフェニルとベンゾトリフルオリドとの組合せ、
m−ターフェニルと2−フルオロビフェニルとの組合せ、
m−ターフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
m−ターフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
m−ターフェニルと2,4−ジフルオロアニソールとの組合せ、
ターフェニル類の部分水素化物とクメンとの組合せ、
ターフェニル類の部分水素化物とシクロペンチルベンゼンとの組合せ、
ターフェニル類の部分水素化物とシクロヘキシルベンゼンとの組合せ、
ターフェニル類の部分水素化物とt−ブチルベンゼンとの組合せ、
ターフェニル類の部分水素化物とt−アミルベンゼンとの組合せ、
ターフェニル類の部分水素化物とジフェニルエーテルとの組合せ、
ターフェニル類の部分水素化物とジベンゾフランとの組合せ、
ターフェニル類の部分水素化物とフルオロベンゼンとの組合せ、
ターフェニル類の部分水素化物とベンゾトリフルオリドとの組合せ、
ターフェニル類の部分水素化物と2−フルオロビフェニルとの組合せ、
ターフェニル類の部分水素化物とo−フルオロシクロヘキシルベンゼンとの組合せ、
ターフェニル類の部分水素化物とp−フルオロシクロヘキシルベンゼンとの組合せ、
ターフェニル類の部分水素化物と2,4−ジフルオロアニソールとの組合せ、
クメンとシクロペンチルベンゼンとの組合せ、
クメンとシクロヘキシルベンゼンとの組合せ、
クメンとt−ブチルベンゼンとの組合せ、
クメンとt−アミルベンゼンとの組合せ、
クメンとジフェニルエーテルとの組合せ、
クメンとジベンゾフランとの組合せ、
クメンとフルオロベンゼンとの組合せ、
クメンとベンゾトリフルオリドとの組合せ、
クメンと2−フルオロビフェニルとの組合せ、
クメンとo−フルオロシクロヘキシルベンゼンとの組合せ、
クメンとp−フルオロシクロヘキシルベンゼンとの組合せ、
クメンと2,4−ジフルオロアニソールとの組合せ、
シクロヘキシルベンゼンとt−ブチルベンゼンとの組合せ、
シクロヘキシルベンゼンとt−アミルベンゼンとの組合せ、
シクロヘキシルベンゼンとジフェニルエーテルとの組合せ、
シクロヘキシルベンゼンとジベンゾフランとの組合せ、
シクロヘキシルベンゼンとフルオロベンゼンとの組合せ、
シクロヘキシルベンゼンとベンゾトリフルオリドとの組合せ、
シクロヘキシルベンゼンと2−フルオロビフェニルとの組合せ、
シクロヘキシルベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
シクロヘキシルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
シクロヘキシルベンゼンと2,4−ジフルオロアニソールとの組合せ、
t−ブチルベンゼンとt−アミルベンゼンとの組合せ、
t−ブチルベンゼンとジフェニルエーテルとの組合せ、
t−ブチルベンゼンとジベンゾフランとの組合せ、
t−ブチルベンゼンとフルオロベンゼンとの組合せ、
t−ブチルベンゼンとベンゾトリフルオリドとの組合せ、
t−ブチルベンゼンと2−フルオロビフェニルとの組合せ、
t−ブチルベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
t−ブチルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
t−ブチルベンゼンと2,4−ジフルオロアニソールとの組合せ、
t−アミルベンゼンとジフェニルエーテルとの組合せ、
t−アミルベンゼンとジベンゾフランとの組合せ、
t−アミルベンゼンとフルオロベンゼンとの組合せ、
t−アミルベンゼンとベンゾトリフルオリドとの組合せ、
t−アミルベンゼンと2−フルオロビフェニルとの組合せ、
t−アミルベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
t−アミルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
t−アミルベンゼンと2,4−ジフルオロアニソールとの組合せ、
ジフェニルエーテルとジベンゾフランとの組合せ、
ジフェニルエーテルとフルオロベンゼンとの組合せ、
ジフェニルエーテルとベンゾトリフルオリドとの組合せ、
ジフェニルエーテルと2−フルオロビフェニルとの組合せ、
ジフェニルエーテルとo−フルオロシクロヘキシルベンゼンとの組合せ、
ジフェニルエーテルとp−フルオロシクロヘキシルベンゼンとの組合せ、
ジフェニルエーテルと2,4−ジフルオロアニソールとの組合せ、
ジベンゾフランとフルオロベンゼンとの組合せ、
ジベンゾフランとベンゾトリフルオリドとの組合せ、
ジベンゾフランと2−フルオロビフェニルとの組合せ、
ジベンゾフランとo−フルオロシクロヘキシルベンゼンとの組合せ、
ジベンゾフランとp−フルオロシクロヘキシルベンゼンとの組合せ、
ジベンゾフランと2,4−ジフルオロアニソールとの組合せ、
フルオロベンゼンとベンゾトリフルオリドとの組合せ、
フルオロベンゼンと2−フルオロビフェニルとの組合せ、
フルオロベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
フルオロベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
フルオロベンゼンと2,4−ジフルオロアニソールとの組合せ、
ベンゾトリフルオリドと2−フルオロビフェニルとの組合せ、
ベンゾトリフルオリドとo−フルオロシクロヘキシルベンゼンとの組合せ、
ベンゾトリフルオリドとp−フルオロシクロヘキシルベンゼンとの組合せ、
ベンゾトリフルオリドと2,4−ジフルオロアニソールとの組合せ、
2−フルオロビフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
2−フルオロビフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
2−フルオロビフェニルと2,4−ジフルオロアニソールとの組合せ、
o−フルオロシクロヘキシルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
o−フルオロシクロヘキシルベンゼンと2,4−ジフルオロアニソールとの組合せ、
p−フルオロシクロヘキシルベンゼンと2,4−ジフルオロアニソールとの組合せ、
等が挙げられる。
過充電防止剤を配合する場合、過充電防止剤の配合量は、本発明の効果を著しく損なわない限り任意であるが、非水系電解液全体に対して、好ましくは0.1質量%以上、より好ましくは10質量%以下の範囲である。
過充電防止剤の配合は、万が一、誤った使用法や充電装置の異常等の過充電保護回路が正常に動作しない状況になり過充電されたとしても、非水系電解液二次電池の安全性が向上するので好ましい。
4−2−2.助剤
一方、高温保存後の容量維持特性やサイクル特性を改善するための助剤の具体例としては、コハク酸、マレイン酸、フタル酸等のジカルボン酸の無水物;エリスリタンカーボネート、スピロービスージメチレンカーボネート等の特定カーボネートに該当するもの以外のカーボネート化合物;エチレンサルファイト等の環状サルファイト;1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン等の環状スルホン酸エステル;メタンスルホン酸メチル、ブスルファン等の鎖状スルホン酸エステル;スルホラン、スルホレン等の環状スルホン;ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン等の鎖状スルホン;ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフイド等のスルフィド類;N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等のスルホンアミド類等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド、マロノニトリル、スクシノニトリル、アジポニトリル、ピメロニトリル、ドデカンジニトリル、ラウロニトリル、等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。
[非水系電解液二次電池]
本発明の非水系電解液二次電池は、正極と、イオンを吸蔵及び放出し得る負極と、本発明の製造方法により得られた非水系電解液とを備える。
1.電池構成
本発明の非水系電解液二次電池の非水系電解液以外の構成は、公知の非水系電解液二次電池と同様であり、通常、非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。本発明の非水系電解液二次電池の形状は、特に限定されず、円筒型、角形、ラミネート型、コイン型、大型等が挙げられる。
2.非水系電解液
非水系電解液は、上記の本発明の製造方法により得られた非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の製造方法により得られた非水系電解液に、その他の非水系電解液を混合して用いることも可能である。
3.負極
3−1.負極活物質
負極に使用される負極活物質は、電気化学的にイオンを吸蔵・放出可能なものであれば、特に限定されない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
3−1−1.炭素質材料
炭素質材料としては、特に限定されないが、下記(1)〜(4)から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
(1)天然黒鉛、
(2)人造炭素質物質又は人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質又は人造黒鉛質物質の具体例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、並びに炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
なお、上記の炭化可能な有機物の具体例としては、軟ピッチから硬ピッチまでのコールタールピッチ、乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、さらにアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等の窒素原子含有複素環式化合物、チオフェン、ビチオフェン等の硫黄原子含有複素環式化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクニロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂等が挙げられる。
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)〜(21)の何れか1項目又は複数の項目を同時に満たしていることが望ましい。
(1)X線パラメータ
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は、0.335nm以上であることが好ましく、また、好ましくは0.360nm以下であり、0.350nm以下がより好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、好ましくは1.0nm以上であり、より好ましくは1.5nm以上、さらに好ましくは2nm以上である。
黒鉛の表面を非晶質の炭素で被覆したものとして好ましいのは、X線回折における格子面(002面)のd値が0.335〜0.338nmである黒鉛を核材とし、その表面に該核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料が付着しており、かつ核材と核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料との割合が質量比で99:1〜80:20であるものである。これを用いると、高い容量で、かつ電解液と反応しにくい負極を製造することができる。
(2)灰分
炭素質材料中に含まれる灰分は、炭素質材料の全質量に対して、好ましくは1質量%以下であり、より好ましくは0.5質量%以下、特に好ましくは0.1質量%以下であり、また、好ましくは1ppm以上である。灰分の質量割合が、上記範囲を上回ると、充放電時の非水系電解液との反応による電池性能の劣化が無視できなくなる場合がある。また、上記範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
(3)体積基準平均粒径
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、好ましくは100μm以下であり、50μm以下がより好ましく、40μm以下がさらに好ましく、30μm以下が特に好ましく、25μm以下がとりわけ好ましい。体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
(4)ラマンR値、ラマン半値幅
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、好ましくは0.01以上であり、0.03以上がより好ましく、0.1以上がさらに好ましく、また、好ましくは1.5以下であり、1.2以下がより好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなり、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm−1付近のラマン半値幅は、特に限定されないが、10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下がより好ましく、40cm−1以下が特に好ましい。
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなり、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPBの強度Iとを測定し、その強度比R(R=I/I)を算出する。該測定で算出されるラマンR値を、本発明における炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPの半値幅を測定し、これを本発明における炭素質材料のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
(5)BET比表面積
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、好ましくは0.1m・g−1以上であり、0.7m・g−1以上がより好ましく、1.0m・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、好ましくは100m・g−1以下であり、25m・g−1以下がより好ましく、15m・g−1以下がさらに好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明における炭素質材料のBET比表面積と定義する。
(6)細孔径分布
炭素質材料の細孔径分布は、水銀圧入量の測定することによって算出される。水銀ポロシメトリー(水銀圧入法)を用いることで、炭素質材料の粒子内の空隙、粒子表面のステップによる凹凸、及び粒子間の接触面等による細孔が、直径0.01〜1μmの細孔に相当すると測定される炭素質材料は、好ましくは0.01cm・g−1以上、より好ましくは0.05cm・g−1以上、さらに好ましくは0.1cm・g−1以上、また、好ましくは0.6cm・g−1以下、より好ましくは0.4cm・g−1以下、さらに好ましくは0.3cm・g−1以下の細孔径分布を有する。
細孔径分布が上記範囲を上回ると、極板化時にバインダーを多量に必要となる場合がある。また、上記範囲を下回ると、高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られない場合がある。
また、水銀ポロシメトリー(水銀圧入法)により求められる、直径が0.01〜100μmの細孔に相当する、全細孔容積は、好ましくは0.1cm・g−1以上であり、0.25cm・g−1以上がより好ましく、0.4cm・g−1以上がさらに好ましく、また、好ましくは10cm・g−1以下であり、5cm・g−1以下がより好ましく、2cm・g−1以下がさらに好ましい。全細孔容積が上記範囲を上回ると、極板化時にバインダーを多量に必要となる場合がある。また、上記範囲を下回ると、極板化時に増粘剤やバインダーの分散効果が得られない場合がある。
また、平均細孔径は、好ましくは0.05μm以上であり、0.1μm以上がより好ましく、0.5μm以上がさらに好ましく、また、好ましくは50μm以下であり、20μm以下がより好ましく、10μm以下がさらに好ましい。平均細孔径が上記範囲を上回ると、バインダーを多量に必要となる場合がある。また、上記範囲を下回ると、高電流密度充放電特性が低下する場合がある。
水銀圧入量の測定は、水銀ポロシメトリー用の装置として、水銀ポロシメータ(オートポア9520:マイクロメリテックス社製)を用いて行う。前処理として、試料約0.2gを、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気する。引き続き、4psia(約28kPa)に減圧し水銀を導入し、4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させる。昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定する。
このようにして得られた水銀圧入曲線からWashburnの式を用い、細孔径分布を算出する。なお、水銀の表面張力(γ)は485dyne・cm−1(1dyne=10μN)、接触角(ψ)は140°とする。平均細孔径には累積細孔体積が50%となるときの細孔径を用いる。
(7)円形度
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましい。好ましくは0.1以上であり、0.5以上がより好ましく、0.8以上がより好ましく、0.85以上が特に好ましく、0.9以上がとりわけ好ましい。
高電流密度充放電特性は、一般に円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明における炭素質材料の円形度と定義する。
円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(8)真密度
炭素質材料の真密度は、好ましくは1.4g・cm−3以上であり、1.6g・cm−3以上がより好ましく、1.8g・cm−3以上がさらに好ましく、2.0g・cm−3以上が特に好ましく、また、好ましくは2.26g・cm−3以下である。真密度が、上記範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。なお、上記範囲の上限は、黒鉛の真密度の理論上限値である。
炭素質材料の真密度は、ブタノールを使用した液相置換法(ピクノメータ法)によって測定する。該測定で求められる値を、本発明における炭素質材料の真密度と定義する。
(9)タップ密度
炭素質材料のタップ密度は、好ましくは0.1g・cm−3以上であり、0.5g・cm−3以上がより好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がより好ましく、1.6g・cm−3以下が特に好ましい。
タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明における炭素質材料のタップ密度として定義する。
(10)配向比
炭素質材料の配向比は、好ましくは0.005以上であり、0.01以上がより好ましく、0.015以上がさらに好ましく、また、好ましくは0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(11)アスペクト比
炭素質材料のアスペクト比は、好ましくは1以上であり、また、好ましくは10以下であり、8以下がより好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の炭素質材料粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明における炭素質材料のアスペクト比と定義する。
(12)副材混合
副材混合とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料が2種以上含有されていることである。ここでいう性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の群から選ばれる1つ以上の特性を示す。
これらの副材混合の好ましい例としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないこと、ラマンR値が異なる炭素質材料を2種以上含有していること、及びX線回折パラメータが異なること等が挙げられる。
副材混合の効果の一例として、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素質材料を導電材として含有させることにより、電気抵抗を低減させることが挙げられる。
副材混合として導電材を混合する場合には、1種を単独で混合してもよく、2種以上を任意の組み合わせ及び比率で混合してもよい。また、導電材の炭素質材料に対する混合比率は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、45質量%以下が好ましく、40質量%以下がより好ましい。混合比率が、上記範囲を下回ると導電性向上の効果が得にくい場合がある。また、上記範囲を上回ると初期不可逆容量の増大を招く場合がある。
(13)電極作製
電極の製造は、本発明の効果を著しく損なわない限り、公知の何れの方法も用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
非水系二次電池の製造において、非水系電解液の注液工程直前の片面あたりの負極活物質層の厚さは、15μm以上が好ましく、20μm以上がより好ましく、30μm以上がさらに好ましく、また、150μm以下が好ましく、120μm以下がより好ましく、100μm以下がさらに好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくく、高電流密度充放電特性が低下する場合があるためである。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合があるためである。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(14)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。なかでも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていてもよい。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていてもよい。
集電体基板には、さらに次のような物性が望まれる。
(14−1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の負極活物質薄膜形成面の平均表面粗さ(Ra)は、特に限定されず、0.05μm以上が好ましく、0.1μm以上がより好ましく、0.15μm以上がさらに好ましく、また、1.5μm以下が好ましく、1.3μm以下がより好ましく、1.0μm以下がさらに好ましい。集電体基板の平均表面粗さ(Ra)が、上記の範囲内であると、良好な充放電サイクル特性が期待できるためである。また、負極活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上する。なお、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが通常用いられる。
(14−2)引張強度
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
集電体基板の引張強度は、特に限定されず、100N・mm−2以上が好ましく、250N・mm−2以上がより好ましく、400N・mm−2以上がさらに好ましく、500N・mm−2以上が特に好ましい。引張強度は、値が高いほど好ましいが、工業的入手可能性の観点から、通常1000N・mm−2以下である。引張強度が高い集電体基板であれば、充電・放電に伴う負極活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(14−3)0.2%耐力
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張り強度と同様な装置及び方法で測定される。
集電体基板の0.2%耐力は、特に限定されず、30N・mm−2以上が好ましく、より好ましくは150N・mm−2以上、特に好ましくは300N・mm−2以上である。0.2%耐値は値が高いほど好ましいが、工業的入手可能性の観点から、通常900N・mm−2以下である。0.2%耐力が高い集電体基板であれば、充電・放電に伴う負極活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができる。
(14−4)集電体の厚さ
集電体の厚さは任意であるが、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましく、また、1mm以下が好ましく、100μm以下がより好ましく、30μm以下がさらに好ましい。金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
(15)集電体と負極活物質層の厚さの比
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液の注液工程の直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がより好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がより好ましく、1以上が特に好ましい。
集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(16)電極密度
負極活物質を電極化した際の電極構造は、特に限定されず、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上がさらに好ましく、また、2g・cm−3以下が好ましく、1.9g・cm−3以下がより好ましく、1.8g・cm−3以下がさらに好ましく、1.7g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(17)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類は特に限定されず、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては、水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましく、また、15質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下がさらに好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤は、特に限定されず、具体例として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
(18)極板配向比
極板配向比は、0.001以上が好ましく、0.005以上がより好ましく、0.01以上がさらに好ましく、また、0.67以下が好ましい。極板配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の極板配向比の理論上限値である。
極板配向比の測定は、目的密度にプレス後の負極電極について、X線回折により電極の負極活物質配向比を測定することによって行なう。具体的手法は、特に限定されないが、標準的な方法としては、X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出する。該測定で算出される電極の負極活物質配向比を、本発明における炭素質材料による電極の極板配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲、及び、ステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度 0.01度/3秒
(004)面:53.5度≦2θ≦56.0度 0.01度/3秒
・試料調製 :硝子板に0.1mm厚さの両面テープで電極を固定
(19)インピーダンス
放電状態から公称容量の60%まで充電した時の負極の抵抗は、100Ω以下が好ましく、50Ω以下がより好ましく、20Ω以下がさらに好ましく、及び/又は二重層容量が1×10-6F以上が好ましく、1×10-5F以上がより好ましく、1×10-4Fがさらに好ましい。上記範囲の負極電極を用いると出力特性が良く好ましいためである。
負極の抵抗及び二重層容量の測定は、測定する非水系電解液二次電池を、公称容量を5時間で充電できる電流値にて充電した後に、20分間充放電をしない状態を維持し、次に公称容量を1時間で放電できる電流値にて放電したときの容量が、公称容量の80%以上あるものを用いる。
上記の放電状態の非水系電解液二次電池について、公称容量を5時間で充電できる電流値にて公称容量の60%まで充電し、直ちに非水系電解液二次電池をアルゴンガス雰囲気下のグローブボックス内に移す。ここで、該非水系電解液二次電池を、負極が放電又はショートしない状態ですばやく解体して取り出し、両面塗布電極であれば、片面の負極活物質を他面の負極活物質を傷つけずに剥離し、負極電極を12.5mmφに2枚打ち抜き、セパレータを介して負極活物質面がずれないよう対向させる。電池に使用されていた非水系電解液60μLをセパレータと両負極間に滴下して密着し、外気と触れない状態を保持して、両負極の集電体に導電をとり、交流インピーダンス法を実施する。
測定は温度25℃で、10-2〜105Hzの周波数帯で複素インピーダンス測定を行ない、求められたナイキスト・プロットの負極抵抗成分の円弧を半円で近似して表面抵抗(R)と、二重層容量(Cdl)を求める。
(20)負極板の面積
負極板の面積は、特に限定されないが、対向する正極板よりもわずかに大きくして、正極板が負極板から外にはみ出すことがないように設計することが好ましい。充放電を繰り返したサイクルの寿命や高温保存による劣化を抑制する観点から、できる限り正極に等しい面積に近づけることが、より均一かつ有効に働く電極割合を高めて特性が向上するので好ましい。特に、大電流で使用される場合には、この負極板の面積の設計が重要である。
(21)負極板の厚さ
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に限定されないが、芯材の金属箔厚さを差し引いた合材層の厚さは、15μm以上が好ましく、より好ましくは20μm以上、さらに好ましくは30μm以上、また、150μm以下が好ましくは、より好ましくは120μm以下、さらに好ましくは100μm以下である。
3−3−2.合金系材料
合金系材料は、リチウムを吸蔵・放出可能であれば、特に限定されず、リチウム合金を形成しうる単体金属もしくは合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物、リン化物等の化合物が挙げられる。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウム合金を形成しうる単体金属もしくは合金であることが好ましく、13族又は14族の金属・半金属元素(すなわち炭素を除く)を含む材料あることがより好ましく、さらには、アルミニウム(Al)、ケイ素(Si)、又はスズ(Sn)(以下、これらの元素を「特定金属元素」と略記する場合がある)の単体金属もしくはこれらを含む合金、又は特定金属元素の化合物であることが好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種を有する負極活物質の例としては、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上との金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、又はその化合物の酸化物・炭化物・窒化物・ケイ化物・硫化物・リン化物等の複合化合物が挙げられる。負極活物質として、これらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、具体例として、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。より具体的には、ケイ素やスズについては、これらの元素と負極として動作しない金属との合金を用いることができる。また、スズについては、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで、5〜6種の元素を含むような複雑な化合物も用いることができる。
なかでも、電池にしたときに単位質量当りの容量が大きいことから、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物や炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
また、金属単体又は合金を用いるよりは単位質量当りの容量には劣る傾向にはあるが、サイクル特性に優れることから、ケイ素及び/又はスズを含有する以下の化合物も好ましい。
・ケイ素及び/又はスズと酸素との元素比が通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの酸化物」。
・ケイ素及び/又はスズと窒素との元素比が通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの窒化物」。
・ケイ素及び/又はスズと炭素との元素比が通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの炭化物」。
なお、上記の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液二次電池における負極は、公知の方法を用いて製造することが可能である。負極の製造方法としては、例えば、上記の負極活物質にバインダーや導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」と略記する場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上記の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上記の負極活物質にバインダー、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
負極集電体の厚さは、1μm以上が好ましく、より好ましくは5μm以上であり、また、100μm以下が好ましく、より好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使用することもできる。このタイプの負極集電体は、その開口率を変更することで、質量も白在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離がさらに起こり難くなる。しかし、開口率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
負極活物質層を形成するためのスラリーは、負極活物質と導電材に対して、バインダー、増粘剤等を加えて作製される。
負極活物質と導電材の合計中の負極活物質の含有量は、70質量%以上が好ましく、より好ましくは75質量%以上であり、また、97質量%以下が好ましく、より好ましくは95質量%以下である。負極活物質の含有量が少な過ぎると、非水系電解液二次電池の容量が不足する傾向があり、多過ぎると相対的にバインダー等の含有量が不足することにより、得られる負極の強度が不足する傾向にある。なお、2種以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極活物質と導電材の合計中の導電材の含有量は、3質量%以上が好ましく、より好ましくは5質量%以上であり、また、30質量%以下が好ましく、より好ましくは25質量%以下である。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となるためである。なお、2種以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。
バインダーとしては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム・イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。バインダーの含有量は、負極活物質と導電材の合計100質量部に対して、0.5質量部以上が好ましく、より好ましくは1質量部以上であり、また、10質量部以下が好ましく、より好ましくは8質量部以下である。バインダーの含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となるためである。なお、2種以上のバインダーを併用する場合には、バインダーの合計量が上記範囲を満たすようにすればよい。
増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が、0.5質量%以上であることが好ましく、より好ましくは5質量%以下である。
スラリーは、上記負極活物質に、必要に応じて導電材、バインダー、増粘剤を混合し、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、水を用いることができるが、エタノール等のアルコール類やN−メチルピロリドン等の環状アミド類等の水以外の溶媒を、水に対して30質量%以下程度の割合で併用することもできる。また、有機溶媒としては、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、なかでも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。なお、これらは1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーの粘度は、集電体上に塗布することが可能な粘度であれば、特に限定されない。塗布が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて、適宜、調製すればよい。
得られたスラリーを、上記の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層を形成することができる。塗布の手法は、特に限定されず、公知の方法を用いることができる。乾燥の手法も、特に限定されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。
上記手法により負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上がさらに好ましく、また、2g・cm−3以下が好ましく、1.9g・cm−3以下がより好ましく、1.8g・cm−3以下がさらに好ましく、1.7g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
3−3−3.リチウム含有金属複合酸化物材料
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定されないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、リチウムイオン二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
一般式(3):
LiTi (3)
(式中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わし、
0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6)
で表されるリチウムチタン複合酸化物が、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
一般式(3)において、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5が挙げられる。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
リチウムチタン複合酸化物は、上記した要件に加えて、さらに、下記の(1)〜(16)に示した物性及び形状等の特徴のうち、少なくとも1項を満たしていることが好ましく、複数項を同時に満たすことが特に好ましい。
(1)BET比表面積
リチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m・g−1以上が好ましく、0.7m・g−1以上がより好ましく、1.0m・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、200m・g−1以下が好ましく、100m・g−1以下がより好ましく、50m・g−1以下がさらに好ましく、25m・g−1以下が特に好ましい。
BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明におけるリチウムチタン複合酸化物のBET比表面積と定義する。
(2)体積基準平均粒径
リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
リチウムチタン複合酸化物の体積基準平均粒径は、0.1μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上がさらに好ましく、また、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明における炭素質材料の体積基準平均粒径と定義する。
リチウムチタン複合酸化物の体積平均粒径が、上記範囲を下回ると、電極作製時に多量のバインダーが必要となり、結果的に電池容量が低下する場合がある。また、上記範囲を上回ると、電極極板化時に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
(3)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合、リチウムチタン複合酸化物の平均一次粒子径は、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましく、0.2μm以上が特に好ましく、また、2μm以下が好ましく、1.6μm以下がより好ましく、1.3μm以下がさらに好ましく、1μm以下が特に好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば10,000〜100,000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(4)形状
リチウムチタン複合酸化物の粒子の形状は、特に限定されず、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、なかでも一次粒子が凝集して、二次粒子を形成してなり、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子であるよりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電材との混合においても、均一に混合されやすいため好ましい。
(5)タップ密度
リチウムチタン複合酸化物のタップ密度は、0.05g・cm−3以上が好ましく、0.1g・cm−3以上がより好ましく、0.2g・cm−3以上がさらに好ましく、0.4g・cm−3以上が特に好ましく、また、2.8g・cm−3以下が好ましく、2.4g・cm−3以下がより好ましく、2g・cm−3以下がさらに好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力抵抗が増加する場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明におけるリチウムチタン複合酸化物のタップ密度として定義する。
(6)円形度
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物の円形度は、1に近いほど望ましい。好ましくは、0.10以上であり、0.80以上がより好ましく、0.85以上がさらに好ましく、0.90以上が特に好ましい。高電流密度充放電特性は、一般に円形度が大きいほどが向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行なう。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明におけるリチウムチタン複合酸化物の円形度と定義する。
(7)アスペクト比
リチウムチタン複合酸化物のアスペクト比は、1以上が好ましく、また、5以下が好ましく、4以下がより好ましく、3以下がさらに好ましく、2以下が特に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
アスペクト比の測定は、リチウムチタン複合酸化物の粒子を走査型電子顕微鏡で拡大観察して行なう。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明におけるリチウムチタン複合酸化物のアスペクト比と定義する。
(8)負極活物質の製造法
リチウムチタン複合酸化物の製造法としては、特に限定されず、無機化合物の製造法として一般的な方法を用いることができる。
例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、LiCO、LiNO等のLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
特に球状又は楕円球状の活物質を作製するには種々の方法が考えられる。一例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を調製して回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の方法として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
さらに別の方法として、酸化チタン等のチタン原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
また、これらの工程中に、Ti以外の元素、例えば、Al、Mn、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、C、Si、Sn、Agを、チタンを含有する金属酸化物構造中及び/又はチタンを含有する酸化物に接する形で存在していることも可能である。これらの元素を含有することで、電池の作動電圧、容量を制御することが可能となる。
(9)電極作製
電極の製造は、公知の方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
非水系二次電池の製造において、非水系電解液の注液工程直前の片面あたりの負極活物質層の厚さは、15μm以上が好ましく、より好ましくは20μm以上、さらに好ましくは30μm以上であり、また、150μm以下が好ましく、より好ましくは120μm以下、さらに好ましくは100μm以下である。
この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
集電体としては、公知のものを用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、なかでも加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。なかでも好ましくは銅(Cu)及び/又はアルミニウム(Al)を含有する金属箔膜であり、より好ましくは銅箔、アルミニウム箔であり、より好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。またアルミニウム箔は、その比重が軽いことから、集電体として用いた場合に、電池の質量を減少させることが可能となり、好ましく用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていてもよい。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていてもよい。
また、集電体基板には、さらに次のような物性が望まれる。
(10−1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に限定されず、好ましくは0.01μm以上であり、0.03μm以上がより好ましく、また、好ましくは1.5μm以下であり、1.3μm以下がより好ましく、1.0μm以下がさらに好ましい。
集電体基板の平均表面粗さ(Ra)が、上記の範囲内であると、良好な充放電サイクル特性が期待できるためである。また、活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上するためである。なお、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが通常用いられる。
(10−2)引張強度
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
集電体基板の引張強度は、特に限定されず、好ましくは50N・mm−2以上であり、100N・mm−2以上がより好ましく、150N・mm−2以上がさらに好ましい。引張強度は、値が高いほど好ましいが、工業的入手可能性の観点から、通常1000N・mm−2以下が望ましい。
引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(10−3)0.2%耐力
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張強度と同様な装置及び方法で測定される。
集電体基板の0.2%耐力は、特に限定されず、30N・mm−2以上が好ましく、より好ましくは100N・mm−2以上、さらに好ましくは150N・mm−2以上である。0.2%耐力は、値が高いほど好ましいが、工業的入手可能性の観点から、通常900N・mm−2以下が望ましい。
0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができるためである。
(10−4)集電体の厚さ
集電体の厚さは任意であるが、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上がさらに好ましく、また、好ましくは1mm以下であり、100μm以下がより好ましく、50μm以下がさらに好ましい。
金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、金属薄膜は、メッシュ状でもよい。
(11)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、好ましくは150以下であり、20以下がより好ましく、10以下がさらに好ましく、また、好ましくは0.1以上であり、0.4以上がより好ましく、1以上がさらに好ましい。
集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上がさらに好ましく、1.5g・cm−3以上が特に好ましく、また、3g・cm−3以下が好ましく、2.5g・cm−3以下がより好ましく、2.2g・cm−3以下がさらに好ましく、2g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に限定されず、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては、水、アルコール等が挙げられ、有機系溶媒の例としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上記の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、好ましくは20質量%以下であり、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。
負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量が低下する場合がある。また、上記範囲を下回ると、負極電極の強度低下を招き、電池作製工程上好ましくない場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合、活物質に対するバインダーの割合は、好ましく0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下がさらに好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合、活物質に対する割合は、好ましくは1質量%以上であり、2質量%以上がより好ましく、3質量%以上がさらに好ましく、また、好ましくは15質量%以下であり、10質量%以下がより好ましく、8質量%以下がさらに好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に限定されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
(14)インピーダンス
放電状態から公称容量の60%まで充電した時の負極の抵抗は、500Ω以下が好ましく、100Ω以下がより好ましく、50Ω以下がさらに好ましく、及び/又は二重層容量が1×10-6F以上が好ましく、1×10-5F以上がより好ましく、3×10-5F以上がさらに好ましい。上記範囲の負極電極を用いると出力特性が良く好ましいためである。
負極の抵抗及び二重層容量は、測定する非水系電解液二次電池を、公称容量を5時間で充電できる電流値にて充電した後に、20分間充放電をしない状態を維持し、次に公称容量を1時間で放電できる電流値で放電したときの容量が、公称容量の80%以上あるものを用いる。
上記の放電状態の非水系電解液二次電池について、公称容量を5時間で充電できる電流値にて公称容量の60%まで充電し、直ちに非水系電解液二次電池をアルゴンガス雰囲気下のグローブボックス内に移す。ここで該非水系電解液二次電池を、負極が放電又はショートしない状態ですばやく解体して取り出し、両面塗布電極であれば、片面の電極活物質を他面の電極活物質を傷つけずに剥離し、負極電極を12.5mmφに2枚打ち抜き、セパレータを介して活物質面がずれないよう対向させる。電池に使用されていた非水系電解液60μLをセパレータと両負極間に滴下して密着し、外気と触れない状態を保持して、両負極の集電体に導電をとり、交流インピーダンス法を実施する。
測定は温度25℃で、10-2〜105Hzの周波数帯で複素インピーダンス測定を行ない、求められたナイキスト・プロットの負極抵抗成分の円弧を半円で近似して表面抵抗(インピーダンスRct)と、二重層容量(インピーダンスCdl)を求める。
(15)負極板の面積
負極板の面積は特に限定されるものではないが、対向する正極板よりもわずかに大きくして、正極板が負極板から外にはみ出すことがないように設計することが好ましい。充放電を繰り返したサイクルの寿命や高温保存による劣化を抑制する観点から、できる限り正極に等しい面積に近づけることが、より均一かつ有効に働く電極割合を高めて特性が向上するので好ましい。特に、大電流で使用される場合には、この電極面積の設計が重要である。
(16)負極板の厚さ
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に限定されないが、芯材の金属箔厚さを差し引いた合材層の厚さは、好ましくは15μm以上であり、より好ましくは20μm以上、さらに好ましくは30μm以上であり、また、好ましくは150μm以下であり、より好ましくは120μm以下、さらに好ましくは100μm以下である。
4.正極
4−1.正極活物質
以下に正極に使用される正極活物質について説明する。
(1)組成
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に限定されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。
置換されたものの具体例としては、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
(2)表面被覆
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以下、「表面付着物質」と略記する場合がある)が付着したものを用いることもできる。表面付着物質の例としては、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。
正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量に対して、好ましくは0.1ppm以上であり、1ppm以上がより好ましく、10ppm以上がさらに好ましく、また、好ましくは20%以下であり、10%以下がより好ましく、5%以下がさらに好ましい。
表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。しかし、付着量が上記範囲を下回ると、その効果は十分に発現せず、また上記範囲を上回ると、リチウムイオンの出入りを阻害するために抵抗が増加する場合があるため、上記範囲が好ましい。
(3)形状
正極活物質粒子の形状は、特に限定されず、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、なかでも一次粒子が凝集して、二次粒子を形成してなり、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。従って、一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子よりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電材との混合においても、均一に混合されやすいため好ましい。
(4)タップ密度
正極活物質のタップ密度は、好ましくは1.3g・cm−3以上であり、1.5g・cm−3以上がより好ましく、1.6g・cm−3以上がさらに好ましく、1.7g・cm−3以上が特に好ましく、また、好ましくは2.5g・cm−3以下であり、2.4g・cm−3以下がより好ましい。
タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。正極活物質のタップ密度が上記範囲を下回ると、正極活物質層形成時に必要な分散媒量が増加するとともに、導電材やバインダーの必要量が増加し、正極活物質層への正極活物質の充填率が制約され、ひいては電池容量が制約される場合がある。また、タップ密度は一般に大きいほど好ましく、特に上限はないが、上記範囲を下回ると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明における正極活物質のタップ密度として定義する。
(5)メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いても測定することができる。
メジアン径d50は、好ましくは0.1μm以上であり、0.5μm以上がより好ましく、1μm以上がさらに好ましく、3μm以上が特に好ましく、また、好ましくは20μm以下であり、18μm以下がより好ましく、16μm以下がさらに好ましく、15μm以下が特に好ましい。メジアン径d50が、上記範囲を下回ると、高嵩密度品が得られなくなる場合があり、上記範囲を上回ると粒子内のリチウムの拡散に時間がかかるため、電池特性の低下や、電池の正極作製すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等が生じる場合がある。
なお、異なるメジアン径d50をもつ正極活物質を2種以上、任意の比率で混合することで、正極作製時の充填性をさらに向上させることもできる。
メジアン径d50の測定は、0.1質量%ヘキサメタリン酸ナトリウム水溶液を分散媒にして、粒度分布計として堀場製作所社製LA−920用いて、5分間の超音波分散後に測定屈折率1.24に設定して測定する。
(6)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、好ましくは0.01μm以上であり、0.05μm以上がより好ましく、0.08μm以上がさらに好ましく、0.1μm以上が特に好ましく、また、好ましくは3μm以下であり、2μm以下がより好ましく、1μm以下がさらに好ましく、0.6μm以下が特に好ましい。上記範囲を上回ると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(7)BET比表面積
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、好ましくは0.2m・g−1以上であり、0.3m・g−1以上がより好ましく、0.4m・g−1以上がさらに好ましく、また、好ましくは4.0m・g−1以下であり、2.5m・g−1以下がより好ましく、1.5m・g−1以下がさらに好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
BET比表面積は、表面積計(大倉理研製全自動表面積測定装置)を用いて測定する。試料に対して、窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって測定する。該測定で求められる比表面積を、本発明における陽極活物質のBET比表面積と定義する。
(8)正極活物質の製造法
正極活物質の製造法としては、特に限定されず、無機化合物の製造法として一般的な方法が用いることができる。
特に球状又は楕円球状の活物質を作製するには種々の方法が考えられる。一例として、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を調製して回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の方法として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
さらに別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
4−2.電極構造と作製法
以下に、本発明に使用される正極の構成及びその作製法について説明する。
(1)正極の作製法
正極は、正極活物質粒子とバインダーとを含有する正極活物質層を、集電体上に形成して作製することができ、公知の方法で作製することができる。例えば、正極活物質とバインダー、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
正極活物質の正極活物質層中の含有量は、好ましくは10質量%以上であり、30質量%以上がより好ましく、50質量%以上がさらに好ましく、また、好ましくは99.9質量%以下であり、99質量%以下がより好ましい。正極活物質の含有量が、上記範囲を下回ると、電気容量が不十分となる場合があるためである。また、上記範囲を上回ると、正極の強度が不足する場合があるためである。なお、本発明における正極活物質粉体は、1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。
(2)導電材
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の導電材の含有量は、好ましくは0.01質量%以上であり、0.1質量%以上がより好ましく、1質量%以上がさらに好ましく、また、好ましくは50質量%以下であり、30質量%以下がより好ましく、15質量%以下がさらに好ましい。含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
(3)バインダー
バインダーは、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
塗布法の場合は、バインダーは、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば、特に限定されず、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中のバインダーの含有量は、好ましくは0.1質量%以上であり、1質量%以上がより好ましく、3質量%以上がさらに好ましく、また、好ましくは80質量%以下であり、60質量%以下がより好ましく、40質量%以下がさらに好ましく、10質量%以下が特に好ましい。バインダーの割合が、上記範囲を下回ると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。また、上記範囲を上回ると、電池容量や導電性の低下につながる場合がある。
(4)液体媒体
スラリーを形成するための液体媒体としては、正極活物質、導電材、バインダー、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、特に限定されず、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
(5)増粘剤
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
増粘剤は、特に限定されず、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質に対する増粘剤の割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上がさらに好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下がさらに好ましい。上記範囲を下回ると著しく塗布性が低下する場合があり、また上記範囲を上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する場合がある。
(6)圧密化
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm−3以上が好ましく、1.5g・cm−3以上がより好ましく、2g・cm−3以上が特に好ましく、また、4g・cm−3以下が好ましく、3.5g・cm−3以下がより好ましく、3g・cm−3以下が特に好ましい。
正極活物質層の密度が、上記範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(7)集電体
正極集電体の材質としては、特に限定されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。なかでも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
集電体の厚さは任意であるが、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上がさらに好ましく、また、好ましくは1mm以下であり、100μm以下がより好ましく、50μm以下がさらに好ましい。薄膜が、上記範囲よりも薄いと、集電体として必要な強度が不足する場合がある。また、薄膜が上記範囲よりも厚いと、取り扱い性が損なわれる場合がある。
集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が、好ましくは150以下であり、20以下がより好ましく、10以下が特に好ましく、また、好ましくは0.1以上であり、0.4以上がより好ましく、1以上が特に好ましい。
集電体と正極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(8)電極面積
高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する上記正極の電極面積の総和を、面積比で20倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(9)放電容量
本発明の二次電池用非水系電解液を用いる場合、二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上であると、低温放電特性の向上効果が大きくなるため好ましい。そのため、正極板は、放電容量が満充電で、好ましくは3Ah(アンペアアワー)であり、より好ましくは4Ah以上、また、好ましくは20Ah以下であり、より好ましくは10Ah以下になるように設計する。
上記範囲を下回ると、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり電力効率が悪くなる場合がある。また、上記範囲を上回ると、電極反応抵抗が小さくなり電力効率は良くなるが、パルス充放電時の電池内部発熱による温度分布が大きく、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなる場合がある。
(10)正極板の厚さ
正極板の厚さは、特に限定されないが、高容量かつ高出力、高レート特性の観点から、芯材の金属箔厚さを差し引いた合材層の厚さが、集電体の片面に対して、10μm以上が好ましく、20μm以上がより好ましく、また、200μm以下が好ましく、100μm以下がより好ましい。
5.セパレータ
正極と負極との間には、短絡を防止するために、通常、セパレータを介在させる。この場合、本発明の製造方法により得られた非水系電解液を、このセパレータに含浸させて用いることができる。
セパレータの材料や形状は、特に限定されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。なかでも、本発明の製造方法により得られた非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。なかでも好ましくはガラスフィルター、ポリオレフィンであり、より好ましくはポリオレフィンである。これらの材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記セパレータの厚さは任意であるが、好ましくは1μm以上であり、5μm以上がより好ましく、10μm以上がさらに好ましく、また、好ましくは50μm以下であり、40μm以下がより好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、好ましくは20%以上であり、35%以上がより好ましく、45%以上がさらに好ましく、また、好ましくは90%以下であり、85%以下がより好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、好ましくは0.5μm以下であり、0.2μm以下がより好ましく、また、好ましくは0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものを用いることができる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製のバインダーを用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂をバインダーとして多孔層を形成させることが挙げられる。
6.電池設計
6−1.電極群
電極群は、特に限定されず、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のものが挙げられる。電極群の体積が電池内容積に占める割合(以下「電極群占有率」とも略記する)は、好ましくは40%以上であり、50%以上がより好ましく、また、90%以下であり、80%以下がより好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
6−2.集電構造
集電構造は、特に限定されず、本発明の製造方法により得られた非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。このように内部抵抗を低減させた場合、本発明の製造方法により得られた非水系電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造の場合、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好ましい。1枚の電極面積が大きいと、内部抵抗が大きくなるため、電極内に複数の端子を設けて抵抗を低減することも好適に行われる。電極群が上記の捲回構造の場合、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
上記の構造を最適化することにより、内部抵抗をできるだけ小さくすることができる。大電流で用いられる電池では、10kHz交流法で測定されるインピーダンス(以下、「直流抵抗成分」と略記する場合がある)を10mΩ(ミリオーム)以下にすることが好ましく、直流抵抗成分を5mΩ以下にすることがより好ましい。
直流抵抗成分を0.1mΩ以下にすると高出力特性が向上するが、用いられる集電構造材の占める比率が増え、電池容量が減少する場合がある。
本発明の製造方法により得られた非水系電解液は、電極活物質に対するリチウムの脱挿入に係わる反応抵抗の低減に効果があり、それが良好な低温放電特性を実現できる要因になっている。しかし、通常の直流抵抗が10mΩより大きな電池では、直流抵抗に阻害されて反応抵抗低減の効果を低温放電特性に100%反映できない場合がある。そこで、直流抵抗成分の小さな電池を用いることでこれを改善することができ、本発明の製造方法により得られた非水系電解液の効果を充分に発揮できるようになる。
また、非水系電解液の効果を引き出し、高い低温放電特性をもつ電池を作製するという観点からは、この要件と上記した二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上である、という要件を同時に満たすことが特に好ましい。
6−3.外装ケース
外装ケースの材質は、特に限定されず、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が挙げられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
上記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、又は樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
6−4.保護素子
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
6−5.外装体
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に限定されず、公知のものを任意に採用することができる。
外装体の材質は、特に限定されず、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が挙げられる。
また、外装体の形状は、特に限定されず、円筒型、角形、ラミネート型、コイン型、大型等が挙げられる。
以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
<二次電池の作製>
[正極の作製]
正極活物質としてニッケルマンガンコバルト酸リチウム(LiNi0.33Co0.33Mn0.33)85質量部を用い、カーボンブラック6質量部とポリフッ化ビニリデン(呉羽化学社製、商品名「KF−1000」)9質量部を混合し、N−メチル−2−ピロリドンを加えスラリー化し、これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が3.0g・cm−3になるようにプレスして正極とした。
[負極の作製]
人造黒鉛粉末KS−44(ティムカル社製、商品名)98質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部と、バインダーとしてスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、負極活物質層の密度が1.5g・cm−3になるようにプレスして負極とした。
[非水系電解液二次電池の製造]
上記の正極、負極、及びポリエチレン製セパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素を筒状のアルミニウムラミネートフィルムで包み込み、実施例及び比較例の各電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。さらに、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
[非水系電解液]
(実施例1)
ジフルオロリン酸(試薬:フルオロケム製)15.4gを250mL PFA容器に量りとり、六フッ化リン酸リチウム(試薬:ステラケミファ製)3.4gを加えた。続いて、塩化リチウム(試薬:和光純薬製)6.4gを加えて、窒素気流下1時間攪拌した後、130℃で17時間加熱し、その後、室温まで冷却してジフルオロリン酸リチウムの結晶を得た。得られたジフルオロリン酸リチウムを十分に乾燥させた後、乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合物(容量比1:1:1)に、十分に乾燥したLiPFを1mol/L、および上記にて得られたジフルオロリン酸リチウム1質量%を溶解し、非水系電解液とした。
[電池の評価]
(サイクル維持率)
・初期充放電
25℃の恒温槽中、シート状の非水系電解液二次電池を、0.2Cで4.2Vまで定電流−定電圧充電した後、0.2Cで3.0Vまで放電した。これを5サイクル行って電池を安定させた。このときの第5サイクル目の放電容量を初期容量とした。なお、1Cとは電池の全容量を1時間で放電させる場合の電流値のことである。
・サイクル試験
初期充放電を実施した電池を、60℃において、1Cの定電流定電圧法で4.2Vまで充電した後、1Cの定電流で3.0Vまで放電する充放電を500サイクル行った。このときの第1サイクル目の放電容量に対する第500サイクル目の放電容量の割合をサイクル維持率とした。
(初期低温放電率)
・低温試験
初期充放電を実施した電池を、25℃において、0.2Cの定電流定電圧充電法で4.2Vまで充電した後、−30℃において0.2Cの定電流放電を実施した。このときの放電容量を初期低温容量とし、初期容量に対する初期低温容量の割合を初期低温放電率とした。
(サイクル後低温放電率)
また、サイクル試験後の電池を25℃において0.2Cの定電流−定電圧充電法で4.2Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを3サイクル行い、その第3サイクル目の放電容量をサイクル後容量とした。その後、同一の電池を25℃において0.2Cの定電流−定電圧充電法で4.2Vまで充電した後、−30℃において0.2Cの定電流放電を実施した。このときの放電容量を、サイクル後低温容量とし、サイクル後容量に対するサイクル後低温容量の割合をサイクル後低温放電率とした。結果を表1に記す。
(実施例2)
五酸化二リン2.9gを250mL PFA容器に量りとり、六フッ化リン酸リチウム(試薬:ステラケミファ製)3.4gを加えた。続いて、15%フッ化水素ジメチルカーボネート溶液8.9gを加え、110℃で、窒素フローしながら1時間還流した。反応液中の不溶解分をろ別した後、130℃で17時間加熱し、余剰な溶媒や反応副生成物を留去せしめた。その後、室温まで冷却してジフルオロリン酸リチウムの結晶を得た。得られたジフルオロリン酸リチウムを十分に乾燥させた後、実施例1と同様にして電池の評価を行った。結果を表1に記す。
(実施例3)
六フッ化リン酸リチウム(試薬:ステラケミファ製)7.0gを250mL PFA容器に量りとり、炭酸リチウム(試薬:和光純薬製)3.4gを加えて五酸化二リン(試薬:和光純薬製)6.5gを加えた。続いて、10%フッ化水素ジメチルカーボネート溶液35gを加え、110℃で、窒素フローしながら1時間還流した。反応液中の不溶解分をろ別した後、130℃で17時間加熱し、余剰な溶媒や反応副生成物を留去せしめた。その後、室温まで冷却してジフルオロリン酸リチウムの結晶を得た。得られたジフルオロリン酸リチウムを十分に乾燥させた後、実施例1と同様にして電池の評価を行った。結果を表1に記す。
(実施例4)
六フッ化リン酸リチウム(試薬:ステラケミファ製)3.6gを250mL PFA容器に量りとり、フッ化リチウム(試薬:ステラケミファ製)2.4gを加えて五酸化二リン(試薬:和光純薬製)6.6gを加えた。続いて、5%フッ化水素ジメチルカーボネート溶液25.0gを加え、110℃で、窒素フローしながら1時間還流した。反応液中の不溶解分をろ別した後、130℃で17時間加熱し、余剰な溶媒や反応副生成物を留去せしめた。その後、室温まで冷却してジフルオロリン酸リチウムの結晶を得た。得られたジフルオロリン酸リチウムを十分に乾燥させた後、実施例1と同様にして電池の評価を行った。結果を表1に記す。
(実施例5)
六フッ化リン酸リチウム(試薬:ステラケミファ製)36gを1L PFA容器に量りとり、フッ化リチウム(試薬:ステラケミファ製)11.8g、五酸化二リン(試薬:和光純薬製)66.7gを加えた。続いて、無水フッ化水素酸300gを加え、130℃で17時間加熱し、余剰な溶媒や反応副生成物を留去せしめた。その後、室温まで冷却してジフルオロリン酸リチウムの結晶を得た。得られたジフルオロリン酸リチウムを十分に乾燥させた後、実施例1と同様にして電池の評価を行った。結果を表1に記す。
(比較例1)
実施例1においてジフルオロリン酸リチウムを加えない以外は同様に電池の評価をおこなった。結果を表1に記す。
(比較例2) 実施例1において六フッ化リン酸リチウムを使用せずに製造されたジフルオロリン酸リチウムを用い、電解液を調製した以外は、実施例1と同様にして電池の評価を行った。結果を表1に記す。
(比較例3) 実施例4において六フッ化リン酸リチウムを使用せずに製造されたジフルオロリン酸リチウムを用い、電解液を調製した以外は、実施例4と同様にして電池の評価を行った。結果を表1に記す。
(比較例4)
ジフルオロリン酸リチウムを特開2008−140767号公報記載の例を参考に調製した。公称100mLのSUS316L製密閉容器の蓋に、バルブ・温度計・圧力計と安全弁を取り付け反応装置とし、この反応装置を十分に乾燥させた後、アルゴンガスで満たされたチャンバー内に入れ、反応槽の中に、六フッ化リン酸リチウム(試薬:ステラケミファ製)15.2g、ジメチルカーボネート(試薬:キシダ化学製)30mL及びヘキサメチルジシロキサン(試薬:和光純薬製)35.7gを加えて溶解し、更にマグネチックスターラ用の攪拌子を入れた状態で蓋を取り付けて密閉し、反応容器をチャンバーから取り出した。続いてマグネチックスターラを用いて攪拌しながら60℃にて6時間反応させた。反応終了後、析出した固体を、メンブレンフィルターを用いた減圧ろ過によりろ別し、ジメチルカーボネートで洗浄した後、50℃、1000Pa以下にて減圧乾燥した。得られたジフルオロリン酸リチウムを用い、実施例1と同様にして電池の評価を行った。結果を表1に記す。
Figure 2010135088
(実施例6)
正極活物質としてニッケルマンガンコバルト酸リチウムに代えてコバルト酸リチウムを用いた以外は、実施例1と同様に電池を作製して評価を行った。結果を表1に記す。
(比較例5)
非水系電解液にジフルオロリン酸リチウムを加えない以外は、実施例6と同様に電池に電池を作製して評価をおこなった。結果を表2に記す。
(比較例6)
比較例2で調製された非水系電解液を用いた以外は、実施例6と同様に電池の評価を行った。結果を表2に記す。
Figure 2010135088
表1の結果から、下記のことがわかる。
まず、本発明の製造方法により得られた非水系電解液を用いた実施例1〜5と、ジフルオロリン酸リチウムを含まない非水系電解液を用いた比較例1とを比較すると、実施例1〜5では、比較例1よりも、初期低温放電率、サイクル維持率並びにサイクル後低温放電率が格段に向上した。一方、本発明の製造方法によらずに調製された非水系電解液を用いた比較例2及び比較例3は、比較例1に比べると各種特性が改善されたが、実施例1〜5には及ばなかった。一方、既知の手法を用いて製造されたジフルオロリン酸リチウムを用いた比較例4を比較した場合にも本発明の製造方法により得られた非水系電解液を用いた方が電池特性に改善が見られる。
さらに、表2の結果から正極活物質としてニッケルマンガンコバルト酸リチウムの代わりにコバルト酸リチウムを用いた場合でも同様の電池特性の改善が認められた。
以上のことから、本発明の製造方法により得られた非水系電解液を用いた非水系電解液二次電池は、低温放電特性、サイクル特性にも優れていることがわかる。
本発明の製造方法により得られた二次電池用非水系電解液や非水系電解液二次電池の用途は、特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。

Claims (12)

  1. 電解質、非水溶媒及びジフルオロリン酸塩を含む二次電池用非水系電解液の製造方法であって、
    ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩とを、フッ化水素の存在下で、反応させて得るか、又はリンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、アルカリ金属、アルカリ土類金属、アルミニウム若しくはオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得るか、あるいはジフルオロリン酸塩を、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム及びハロゲン化オニウムからなる群より選択される少なくとも1種のハロゲン化物と、ジフルオロリン酸とを、六フッ化リン酸塩の存在下で、反応させて得る工程;並びに
    得られたジフルオロリン酸塩、電解質及び非水溶媒を配合する工程;
    を含む、非水系電解液の製造方法。
  2. ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩とを、フッ化水素の存在下で、反応させて得るか、又はリンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、アルカリ金属、アルカリ土類金属、アルミニウム若しくはオニウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得る工程を含む、請求項1記載の非水系電解液の製造方法。
  3. ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、アルカリ金属のハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得る工程を含む、請求項2記載の非水系電解液の製造方法。
  4. ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、リチウムのハロゲン化物、炭酸塩、ホウ酸塩、リン酸塩、水酸化物及び酸化物からなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得る工程を含む、請求項3記載の非水系電解液の製造方法。
  5. ジフルオロリン酸塩を、リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種と、六フッ化リン酸塩と、炭酸リチウム及びフッ化リチウムからなる群より選択される少なくとも1種とを、フッ化水素の存在下で、反応させて得る工程を含む、請求項4記載の非水系電解液の製造方法。
  6. リンのオキソ酸、オキソ酸無水物及びオキシハロゲン化物からなる群より選択される少なくとも1種が、リン酸及び/又は五酸化二リンである、請求項1〜5のいずれか1項記載の非水系電解液の製造方法。
  7. ジフルオロリン酸塩を、ハロゲン化アルカリ金属、ハロゲン化アルカリ土類金属、ハロゲン化アルミニウム及びハロゲン化オニウムからなる群より選択される少なくとも1種のハロゲン化物と、ジフルオロリン酸とを、六フッ化リン酸塩の存在下で、反応させて得る工程を含む、請求項1記載の非水系電解液の製造方法。
  8. ハロゲン化物が、ハロゲン化アルカリ金属である、請求項7記載の非水系電解液の製造方法。
  9. 六フッ化リン酸塩が、六フッ化リン酸リチウムである、請求項1〜8のいずれか1項に記載の非水系電解液の製造方法。
  10. ジフルオロリン酸塩を、非水系電解液中、0.001〜5質量%で配合する、請求項1〜9のいずれか1項記載の非水系電解液の製造方法。
  11. 請求項1〜10のいずれか1項記載の非水系電解液の製造方法により得られた二次電池用非水系電解液。
  12. 正極と、イオンを吸蔵及び放出可能な負極と、請求項11記載の二次電池用非水系電解液とを備えた非水系電解液二次電池。
JP2008307202A 2008-12-02 2008-12-02 二次電池用非水系電解液の製造方法 Active JP5504616B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2008307202A JP5504616B2 (ja) 2008-12-02 2008-12-02 二次電池用非水系電解液の製造方法
CN2009801185286A CN102036912B (zh) 2008-12-02 2009-12-01 二氟磷酸盐的制造方法、非水电解液以及非水电解质二次电池
ES09830403.3T ES2448580T3 (es) 2008-12-02 2009-12-01 Procedimiento de producción de difluorofosfato
PCT/JP2009/070196 WO2010064637A1 (ja) 2008-12-02 2009-12-01 ジフルオロリン酸塩の製造方法、非水系電解液及び非水系電解液二次電池
EP11165710.2A EP2357154B1 (en) 2008-12-02 2009-12-01 Production process of a nonaqueous electrolytic solution comprising a production process of difluorophosphate
KR1020117009628A KR101240683B1 (ko) 2008-12-02 2009-12-01 비수계 전해액 및 비수계 전해액 이차 전지
EP09830403.3A EP2354089B1 (en) 2008-12-02 2009-12-01 Production process of difluorophosphate
US13/002,090 US8293411B2 (en) 2008-12-02 2009-12-01 Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery
KR1020107023400A KR101069568B1 (ko) 2008-12-02 2009-12-01 디플루오로인산염의 제조 방법
US13/110,564 US9203106B2 (en) 2008-12-02 2011-05-18 Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery
US13/113,541 US9028786B2 (en) 2008-12-02 2011-05-23 Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307202A JP5504616B2 (ja) 2008-12-02 2008-12-02 二次電池用非水系電解液の製造方法

Publications (2)

Publication Number Publication Date
JP2010135088A true JP2010135088A (ja) 2010-06-17
JP5504616B2 JP5504616B2 (ja) 2014-05-28

Family

ID=42346193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307202A Active JP5504616B2 (ja) 2008-12-02 2008-12-02 二次電池用非水系電解液の製造方法

Country Status (1)

Country Link
JP (1) JP5504616B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051752A (ja) * 2010-08-31 2012-03-15 Stella Chemifa Corp ジフルオロリン酸塩の製造方法
WO2012176871A1 (ja) * 2011-06-24 2012-12-27 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
JP2013534511A (ja) * 2010-07-08 2013-09-05 ソルヴェイ(ソシエテ アノニム) LiPO2F2及び結晶質LiPO2F2の製造
KR101521069B1 (ko) 2013-06-07 2015-05-15 스텔라 케미파 가부시키가이샤 디플루오로인산염의 정제 방법
JP2016011220A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 ジフルオロリン酸リチウムの製造方法
JP2018123054A (ja) * 2018-04-23 2018-08-09 ダイキン工業株式会社 ジフルオロリン酸リチウムの製造方法
CN115959645A (zh) * 2022-12-30 2023-04-14 深圳新宙邦科技股份有限公司 一种六氟磷酸碱金属盐的制备方法、电解液及锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053727A (ja) * 2003-08-01 2005-03-03 Mitsubishi Chemicals Corp ジフルオロリン酸塩の製造方法
JP2005219994A (ja) * 2004-02-09 2005-08-18 Mitsubishi Chemicals Corp ジフルオロリン酸リチウムの製造方法、ならびに、非水系電解液及びこれを用いた非水系電解液二次電池
JP2005251456A (ja) * 2004-03-02 2005-09-15 Mitsubishi Chemicals Corp リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP2005306619A (ja) * 2003-04-18 2005-11-04 Mitsubishi Chemicals Corp ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
WO2006043538A1 (ja) * 2004-10-19 2006-04-27 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
WO2006137177A1 (ja) * 2005-06-20 2006-12-28 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP2007173180A (ja) * 2005-12-26 2007-07-05 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
WO2008111367A1 (ja) * 2007-03-12 2008-09-18 Central Glass Company, Limited ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池
JP2008269982A (ja) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2008277001A (ja) * 2007-04-26 2008-11-13 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306619A (ja) * 2003-04-18 2005-11-04 Mitsubishi Chemicals Corp ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP2005053727A (ja) * 2003-08-01 2005-03-03 Mitsubishi Chemicals Corp ジフルオロリン酸塩の製造方法
JP2005219994A (ja) * 2004-02-09 2005-08-18 Mitsubishi Chemicals Corp ジフルオロリン酸リチウムの製造方法、ならびに、非水系電解液及びこれを用いた非水系電解液二次電池
JP2005251456A (ja) * 2004-03-02 2005-09-15 Mitsubishi Chemicals Corp リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
WO2006043538A1 (ja) * 2004-10-19 2006-04-27 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
WO2006137177A1 (ja) * 2005-06-20 2006-12-28 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP2007173180A (ja) * 2005-12-26 2007-07-05 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
WO2008111367A1 (ja) * 2007-03-12 2008-09-18 Central Glass Company, Limited ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池
JP2008222484A (ja) * 2007-03-12 2008-09-25 Central Glass Co Ltd ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池
JP2008269982A (ja) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2008277001A (ja) * 2007-04-26 2008-11-13 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534511A (ja) * 2010-07-08 2013-09-05 ソルヴェイ(ソシエテ アノニム) LiPO2F2及び結晶質LiPO2F2の製造
JP2012051752A (ja) * 2010-08-31 2012-03-15 Stella Chemifa Corp ジフルオロリン酸塩の製造方法
WO2012176871A1 (ja) * 2011-06-24 2012-12-27 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
KR101521069B1 (ko) 2013-06-07 2015-05-15 스텔라 케미파 가부시키가이샤 디플루오로인산염의 정제 방법
JP2016011220A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 ジフルオロリン酸リチウムの製造方法
JP2018123054A (ja) * 2018-04-23 2018-08-09 ダイキン工業株式会社 ジフルオロリン酸リチウムの製造方法
CN115959645A (zh) * 2022-12-30 2023-04-14 深圳新宙邦科技股份有限公司 一种六氟磷酸碱金属盐的制备方法、电解液及锂离子电池
CN115959645B (zh) * 2022-12-30 2023-09-08 深圳新宙邦科技股份有限公司 一种六氟磷酸碱金属盐的制备方法、电解液及锂离子电池

Also Published As

Publication number Publication date
JP5504616B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5401765B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5549438B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5472041B2 (ja) 非水系電解液およびそれを用いた非水系電解液二次電池
JP5628469B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
US8293411B2 (en) Production process of difluorophosphate, nonaqueous electrolytic solution and nonaqueous electrolytic secondary battery
JP5374828B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5471967B2 (ja) ジフルオロリン酸塩組成物及びそれからなる非水系電解液用添加剤、並びにそれを用いた二次電池用非水系電解液及び非水系電解液二次電池
JP5418955B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
CN116014240A (zh) 非水电解液以及使用该非水电解液的非水电解质二次电池
WO2012105510A1 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2011049153A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5504616B2 (ja) 二次電池用非水系電解液の製造方法
JP2008269979A (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5268016B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP6079264B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5251416B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6413874B2 (ja) 非水系電解液、非水系電解液二次電池および非水系電解液用添加剤
JP5374854B2 (ja) 非水系電解液およびそれを用いた非水系電解液二次電池
JP5635065B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5906762B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2008277003A (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350