KR101614235B1 - 디플루오로인산염의 제조방법 - Google Patents

디플루오로인산염의 제조방법 Download PDF

Info

Publication number
KR101614235B1
KR101614235B1 KR1020147022807A KR20147022807A KR101614235B1 KR 101614235 B1 KR101614235 B1 KR 101614235B1 KR 1020147022807 A KR1020147022807 A KR 1020147022807A KR 20147022807 A KR20147022807 A KR 20147022807A KR 101614235 B1 KR101614235 B1 KR 101614235B1
Authority
KR
South Korea
Prior art keywords
difluorophosphate
difluorophosphoric acid
salt
raw material
purity
Prior art date
Application number
KR1020147022807A
Other languages
English (en)
Other versions
KR20140121442A (ko
Inventor
데츠오 니시다
가즈히코 쇼가미
도모야 사토오
Original Assignee
스텔라 케미파 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스텔라 케미파 코포레이션 filed Critical 스텔라 케미파 코포레이션
Publication of KR20140121442A publication Critical patent/KR20140121442A/ko
Application granted granted Critical
Publication of KR101614235B1 publication Critical patent/KR101614235B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

알칼리금속, 알칼리토류금속 또는 오늄의 할로겐염, 탄산염, 인산염, 수산화물, 산화물로부터 선택되는 하나 이상의 원료염과 디플루오로인산을 디플루오로인산 중에서 반응시킨 후, 그 디플루오로인산 중에서 정석 조작에 의해 석출된 석출물을 디플루오로인산으로부터 고액분리하고, 석출물에 포함되는 디플루오로인산을 증류 제거함으로써 디플루오로인산염을 얻는 것을 특징으로 하는 디플루오로인산염의 제조방법.

Description

디플루오로인산염의 제조방법{Method for producing difluorophosphate}
본 발명은 디플루오로인산염의 제조방법에 관한 것이다.
최근 들어, 융점을 상온 근방에 갖는 염 또는 융점이 상온 이하인 염(이온 액체)이 발견되고 있다. 이온 액체는 양이온과 음이온으로 구성되어 있고, 각각의 서로 끌어당기는 힘이 매우 약하기 때문에 상온에서도 액상을 나타낸다. 서로 끌어당기는 힘이 약해지도록 양이온 및 음이온의 구조를 설계하면, 염의 융점을 변화시켜 이온 액체를 얻을 수 있게 된다. 또한 양이온과 음이온의 조합을 바꾸거나 각각의 이온에 치환기를 도입함으로써 이온 액체의 물성을 의도적으로 조절하는 것이 가능하다고 말하여지고 있다.
이온 액체는 휘발되기 어렵고, 또한 수 백℃ 이상의 고온까지 안정하게 존재하는 등의 특징을 갖는다. 지금까지 소위 "액체"라 불려온 물이나 유기 용매와는 특성을 달리 하는 것으로, 제3 액체라고도 일컬어지고 있다. 휘발되기 어려운 것이나 열안정성을 살린 윤활유로서의 이용이나 반응 용매·추출 분리 매체 등으로의 응용이 연구되고 있다. 또한 이온 액체는 염으로서, 이온만으로 구성되는 액체인 것으로부터 이온 전도성을 갖는다. 따라서 이온 액체 그 자체를 전해액으로서 사용하는 것이 가능하다. 이온 액체를 전지나 커패시터의 전해액으로서 응용하는 검토나 도금욕으로서 이용하는 검토가 활발히 진행되고 있다. 지금까지 전지나 커패시터의 전해액이라고 하면 수계 전해액 또는 유기계 전해액이 사용되어 왔으나, 수계 전해액의 경우 물의 분해 전압에 제약을 받게 되고, 또한 유기계 전해액의 경우 내열성이나 안전면에 문제가 생긴다. 이온 액체는 난연성·불휘발성 등의 안전상 바람직한 특징을 가질 뿐 아니라 전기화학적 안정성도 높기 때문에, 특히 고온 환경하에서 사용하는 전기 이중층 커패시터나 전지의 전해액으로서 적합하다.
이온 액체를 전지나 커패시터의 전해액으로서 적용하기 위해, 다양한 종류의 양이온과 음이온으로 이루어지는 이온 액체의 연구가 진행되어 왔다. 이러한 가운데 최근 디플루오로포스페이트를 음이온으로 하는 1-에틸-3-메틸이미다졸륨 디플루오로포스페이트라는 이온 액체의 특징이 보고되었다(비특허문헌 1). 대표적인 이온 액체로서 알려지는 1-에틸-3-메틸이미다졸륨 테트라플루오로보레이트와 동등한 전기 전도성·내전압성을 가지고 있는 것이 개시되어 있어, 전기 이중층 커패시터의 전해액으로서 적합하게 사용할 수 있는 것이 보고되어 있다(비특허문헌 2).
비특허문헌 1에서는 1-에틸-3-메틸이미다졸륨 클로라이드와 디플루오로인산칼륨을 아세톤 중에서 반응시켜, 부생하는 염화칼륨을 여과 분별한 아세톤 용액을 알루미나 칼럼에 작용시킨 후, 아세톤을 증류 제거시켜서 1-에틸-3-메틸이미다졸륨디플루오로포스페이트를 얻고 있다. 전해액 중의 불순물은 전지나 커패시터의 성능에 현저히 영향을 미치기 때문에, 이온 액체를 전해액으로서 사용할 때는 될 수 있는 한 불순물을 저감시키는 것이 바람직하다. 이온 액체는 난휘발성이며 또한 넓은 온도 범위에 걸쳐 액체 상태이기 때문에, 증류나 재결정 등의 정제방법으로 불순물을 저감시키는 것이 곤란하여, 순도 높은 이온 액체를 합성하기 위해서는 고순도 원료를 사용할 필요가 있어, 비특허문헌 1에서 사용하고 있는 디플루오로인산칼륨의 불순물은 될 수 있는 한 낮은 편이 바람직하다.
디플루오로인산염의 제조방법으로서는, 특허문헌 1 내지 특허문헌 5 및 비특허문헌 3 내지 비특허문헌 7에 개시가 있다.
특허문헌 1에는 육불화인산칼륨과 메타인산칼륨을 혼합 융해시켜 디플루오로인산칼륨을 얻는 방법이 기재되어 있는데, 용융하기 위한 도가니로부터의 오염의 걱정과 700℃라는 고온 환경이 필요하고, 또한 제품 순도 측면과 생산성 관점에서 좋은 수법이라고는 할 수 없다.
특허문헌 2~5에는 육불화인산리튬 또는 5불화인과, 메타인산리튬, 또는 이산화규소, 또는 탄산리튬 중 어느 하나를 유기 전해액 중에서 반응시켜 디플루오로인산리튬을 얻는 수법이 개시되어 있다. 그러나, 이들 반응에 의해 디플루오로인산염을 얻기 위해서는 40시간 내지 170시간이라는 장시간을 필요로 하여 공업 생산에는 적합하지 않다.
비특허문헌 3 및 4에는 오산화이인에 불화암모늄이나 산성 불화나트륨 등을 작용시켜서 디플루오로인산염을 얻는 방법이 기재되어 있다. 그러나 이들 방법에서는 디플루오로인산염 외에 모노플루오로인산염이나 인산염, 물이 많이 부생되기 때문에, 그 후의 정제 공정의 부하가 커서 효율적인 수법이라고는 하기 어렵다. 비특허문헌 5에는 P2O3F4(무수 디플루오로인산)에, 예를 들면 Li2O나 LiOH 등의 산화물이나 수산화물을 작용시켜서 목적하는 디플루오로인산염을 얻는 방법이 개시되어 있다. 그러나, 본 수법에서 사용하는 무수 디플루오로인산은 매우 고가일 뿐 아니라 순도가 높은 것은 입수 곤란한 것으로부터 공업 생산에는 불리하다.
비특허문헌 6에는 알칼리금속 클로라이드와 과잉의 디플루오로인산을 반응시켜, 부생하는 염화수소와 잉여의 디플루오로인산을 가열 감압 건조함으로써 증류 제거시킨 후, 디플루오로인산염을 얻는 수법이 개시되어 있다. 그러나, 충분히 순도가 높은 디플루오로인산을 사용하였더라도, 이 수법으로 얻어지는 디플루오로인산염에는 모노플루오로인산염이나 불화물염이 불순물로서 다량으로 잔존하여 순도가 높은 것을 얻는 것이 곤란하다.
비특허문헌 7에는 요소, 인산이수소칼륨 및 불화암모늄을 융해, 반응시켜 디플루오로인산칼륨을 얻는 수법이 개시되어 있다. 이 수법의 반응 온도는 170℃ 정도로, 특허문헌 1의 반응 조건에 비하면 온화하고 공업적으로도 실현하기 쉬운데, 대량으로 부생되는 암모니아 가스의 폐기처리나 불화암모늄이 많이 잔류하는 것으로부터 효율적이지 못하며, 얻어지는 제품의 순도에도 문제가 있다.
또한 고순도 디플루오로인산염은 이온 액체의 원료로서 뿐 아니라 리튬 이차 전지용 전해액의 첨가제로서도 이용할 수 있다. 최근 들어, 리튬 이차 전지의 응용분야는 휴대전화나 PC, 디지털 카메라 등의 전자기기로부터 차재(車載)로의 용도 확대에 수반하여, 출력 밀도나 에너지 밀도의 향상 및 용량 손실의 억제 등 추가적인 고성능화가 진행되고 있다. 특히 차재 용도는 민생품 용도보다도 과혹한 환경에 노출될 우려가 있는 것으로부터, 사이클 수명이나 보존성능 측면에 있어서 높은 신뢰성이 요구되고 있다. 리튬 이차 전지의 전해액에는 유기 용매에 리튬염을 용해시켜서 이루어지는 비수전해액이 사용되고 있는데, 이러한 비수전해액의 분해나 부반응이 리튬 이차 전지의 성능에 영향을 미치기 때문에, 비수전해액에 각종 첨가제를 혼합함으로써 사이클 수명이나 보존성능을 향상시키는 시도가 이루어져 왔다. 특허문헌 6에는 모노플루오로인산리튬 및 디플루오로인산리튬 중 적어도 한쪽을 첨가제로서 함유하는 비수전해액을 사용함으로써 양극 및 음극에 피막을 형성시킬 수 있고, 이것에 의해 비수전해액과 양극 활물질 및 음극 활물질의 접촉에 기인하는 전해액의 분해를 억제하여, 자기 방전의 억제, 보존성능의 향상을 가능하게 하는 것이 개시되어 있다.
DE -813848 A JP 2005-53727 A JP 2005-219994 A JP 2005-306619 A JP 2006-143572 A JP 3439085 B
K. Matsumoto and R. Hagiwara, Inorganic Chemstry, 2009, 48,7350-7358 제77회 전기화학회 개요집 1I18 Ber. Dtsch. Chem., Ges. B26(1929)786 Zh. Neorgan. Khim., 7(1962)1313 Journal of Fluorine Chemistry, 38(1988)297-302 Inorganic Nuclear Chemistry Letters, vol. 5(1969)581-585 일본 분석화학회 제43년 공연 요지집,536(1994)
본 발명의 과제는 이온 액체의 원료나 리튬 이차 전지용 전해액의 첨가제로서 유용한 고순도 디플루오로인산염의 제조방법을 제공하는 것에 있다.
본 발명은 아래의 발명에 관한 것이다.
1. 알칼리금속, 알칼리토류금속 또는 오늄의 할로겐염, 탄산염, 인산염, 수산화물, 산화물로부터 선택되는 하나 이상의 원료염과 디플루오로인산을 디플루오로인산 중에서 반응시킨 후, 그 디플루오로인산 중에서 정석 조작에 의해 석출된 석출물을 디플루오로인산으로부터 고액분리하고, 석출물에 포함되는 디플루오로인산을 증류 제거함으로써 디플루오로인산염을 얻는 것을 특징으로 하는 디플루오로인산염의 제조방법.
2. 원료염이 알칼리금속의 할로겐염, 탄산염, 인산염, 수산화물염, 산화물염으로부터 선택되는 하나 이상인 디플루오로인산염의 제조방법.
3. 알칼리금속이 리튬, 나트륨, 칼륨으로부터 선택되는 하나 이상인 디플루오로인산염의 제조방법.
4. 상기 1에 기재된 정석 조작 후의 고액분리된 디플루오로인산 용액 중에 원료염 또는 원료염과 디플루오로인산을 첨가하여, 상기 1에 기재된 조작을 반복하는 것을 특징으로 하는 디플루오로인산염의 제조방법.
본 발명의 디플루오로인산염의 제조방법의 특징은, 원료염과 디플루오로인산을 디플루오로인산 중에서 반응시켜, 생성된 디플루오로인산염이 용해된 디플루오로인산 용액으로부터 정석 조작에 의해 결정을 석출시키는 것에 있다. 전술한 바와 같이, 종래의 디플루오로인산염의 제조기술에서는 불화물염이나 모노플루오로인산염, 인산염이 부생됨으로써 충분한 순도의 디플루오로인산염을 얻을 수 없었다. 통상 제품 순도가 불충분한 경우에는 재결정 조작에 의해 제품 순도를 높일 수 있다. 재결정을 행하기 위해서는 제품을 적절히 용해할 수 있고, 또한 제품과 반응하지 않는 정석 용매가 필요한데, 본 발명자들은 종래부터 사용되고 있는 유기 용매나 무기 용매를 정밀 조사해도 디플루오로인산염의 정석에 적합한 정석 용매를 좀처럼 발견할 수 없었다. 비특허문헌 4에서는 알칼리금속 클로라이드와 디플루오로인산의 반응에 의해 얻어진 디플루오로인산염을 에테르로 세정한 후, 탈수 알코올 중에서 재결정에 의한 정제를 행하고 있다. 본 발명자들이 알코올 중에서 디플루오로인산염의 재결정을 시도한 바, 이온 크로마토그래피에 의한 측정에서 불순물 이온의 생성이 확인되었다. 이 불순물 이온의 구조에 대해서는 명확해져 있지 않으나, 디플루오로인산 이온과 알코올의 반응에 의해 생성된 것으로 생각된다.
본 발명자들은 시행착오를 반복한 결과, 디플루오로인산이 디플루오로인산염의 정석 용매로서 적합한 것을 발견하여, 디플루오로인산을 반응 용매·정석 용매로서 사용함으로써 간편하게 고순도의 디플루오로인산염을 제조하는 것이 가능해졌다.
본 발명의 디플루오로인산염의 제조방법에 의하면, 간편하게 고순도의 디플루오로인산염을 공업적으로 제조할 수 있다.
특히, 디플루오로인산염은 이온 액체의 원료나 리튬 이차 전지용 전해액의 첨가제로서 매우 유용하여, 본 발명에 의해 제조된 디플루오로인산염의 이용 가치는 높은 것이다.
본 발명의 실시형태에 대해서 상세하게 설명하는데, 아래의 내용에 한정되지 않고 요지의 범위 내에서 적절히 실시할 수 있다.
본 발명의 디플루오로인산염의 제조방법은 (1) 알칼리금속, 알칼리토류금속 또는 오늄의 할로겐염, 탄산염, 인산염, 수산화물염, 산화물로부터 선택되는 하나 이상의 원료염과 (2) 디플루오로인산을 (3) 디플루오로인산 중에서 반응시킨 후, (4) 그 디플루오로인산 중에서 정석 조작에 의해 석출된 석출물을 디플루오로인산으로부터 고액분리하고, (5) 석출물에 포함되는 디플루오로인산을 증류 제거함으로써 디플루오로인산염을 얻는 것을 특징으로 한다. 상기 정석 조작에 의해 석출된 석출물에는 목적의 디플루오로인산염 외에 디플루오로인산이나 불순물을 포함한다.
상기 원료염으로서는 알칼리금속, 알칼리토류금속 또는 오늄의 할로겐염, 탄산염, 인산염, 수산화물, 산화물로부터 선택되는 1종 이상을 사용할 수 있다.
상기 알칼리금속으로서는 Li, Na, K, Rb, Cs로부터 선택되는 것이다. 그 중에서도 Li, Na, K가 가격, 입수 용이함의 관점에서 바람직하다.
상기 알칼리토류금속으로서는 Be, Mg, Ca, Sr, Ba, Al로부터 선택되는 것이다. 그 중에서도 Mg, Ca, Ba, Al이 가격·안전성 측면에서 바람직하다.
상기 오늄으로서는 암모늄 또는 포스포늄 또는 설포늄을 들 수 있다.
본 발명에 있어서 사용하는 암모늄으로서는 NH4+, 제2급 암모늄, 제3급 암모늄, 제4급 암모늄을 들 수 있다. 제4급 암모늄으로서는 테트라알킬암모늄, 이미다졸륨, 피라졸륨, 피리디늄, 트리아졸륨, 피리다지늄, 티아졸륨, 옥사졸륨, 피리미디늄, 피라지늄 등을 들 수 있는데, 이것에 한정되지는 않는다.
본 발명에서 사용하는 포스포늄으로서는 테트라알킬포스포늄을 들 수 있다.
본 발명에서 사용하는 설포늄으로서는 트리알킬설포늄을 들 수 있다.
원료염의 할로겐염으로서는 불화물염, 염화물염, 브롬화물염, 요오드화물염을 들 수 있다. 분자량의 관점에서 불화물염, 염화물염이 바람직하다.
원료염의 인산염으로서는 오르토인산염, 인산 일수소염, 인산 이수소염, 메타인산염, 메타인산 일수소염, 메타인산 이수소염, 포스펜산염, 메타포스펜산염, 모노플루오로인산염 등을 들 수 있다. 가격이나 입수 용이함의 관점에서는 오르토인산염, 인산 이수소염이 바람직하다.
본 발명에 있어서 할로겐염, 탄산염, 인산염, 수산화물, 산화물은 1종 또는 2종 이상을 병용해도 된다.
원료염과 디플루오로인산의 혼합 비율은 디플루오로인산에 대한 디플루오로인산염의 포화 용해도에 상당하는 몰량의 원료염과 디플루오로인산을 혼합하여 반응시키면 된다. 디플루오로인산 1몰에 대해 원료염 0.01~1몰, 바람직하게는 0.03~0.5몰, 특히 바람직하게는 0.05~0.3몰 사용하는 것이 좋다.
본 발명의 디플루오로인산염의 제조방법에 있어서 원료염과 디플루오로인산을 반응시킬 때, 반응 온도는 -50℃~110℃가 바람직하고, 0℃~80℃가 보다 바람직하다. 특히 바람직한 것은 0℃~40℃이다. 반응 시간은 0.5~40시간, 바람직하게는 1~20시간으로 하는 것이 좋다.
본 발명의 디플루오로인산염의 제조방법에 있어서 디플루오로인산에 디플루오로인산염이 용해된 디플루오로인산 용액으로부터 정석 조작에 의해 결정을 석출할 때의 정속 온도의 범위는 -100℃~100℃가 바람직하고, -80℃~80℃가 보다 바람직하다. 특히 바람직한 것은 -50℃~50℃이다.
본 발명의 디플루오로인산염의 제조방법에 있어서 정석 조작에 의해 석출된 결정에는 정석 용매로서 사용한 디플루오로인산이나 부생된 불순물을 포함하고 있기 때문에, 건조 조작에 의해 이들 불순물을 제거할 필요가 있다. 이때의 건조 온도의 범위는 0℃~100℃가 바람직하고, 0℃~80℃가 보다 바람직하다. 특히 바람직한 것은 0℃~60℃이다.
건조 조작을 행할 때는 질소나 아르곤 등의 불활성 가스 중 또는 가스 기류 중에서 행하는 것이 바람직하다. 또한 건조 조작은 상압이어도 감압이어도 되나, 휘발물의 증류 제거를 촉진하기 위해 감압 건조가 바람직하다.
본 발명의 디플루오로인산염의 제조방법에 있어서 디플루오로인산염의 용해도를 바꾸거나, 여과 분별 조작시의 여과성을 높일 목적으로 디플루오로인산 용액에 유기 용매를 혼합해도 된다. 사용하는 유기 용매의 종류로서는 원료염, 디플루오로인산, 디플루오로인산염과 반응하지 않고, 또한 본 제조방법의 조작성 등에 악영향을 미치지 않는 한 특별히 한정되지는 않으나, 탄화수소류, 에테르류, 니트릴류, 카보네이트류 등을 사용할 수 있다.
본 발명의 디플루오로인산염의 합성방법에서 사용하는 디플루오로인산의 순도는 높은 편이 바람직하다. 디플루오로인산은 종래부터 알려져 있는 합성방법으로 제조할 수 있고, 예를 들면 J.C.BAILAR et. al., COMPREHENSIVE INORGANIC CHEMISTRY vol.2, p536에 개시되어 있는 방법에 의해 제조할 수 있다. 즉, 무수 인산에 그 3배 몰량의 무수 불화수소산을 작용시킴으로써 모노플루오로인산과 디플루오로인산의 혼합물을 얻을 수 있고, 이를 예를 들면 51℃-100 mmHg이 되는 조건하에서 증류함으로써 디플루오로인산의 순도를 높일 수 있다. 추가로 순도를 높이고자 할 때에는 증류 조작을 반복함으로써 달성할 수 있고, 예를 들면 비특허문헌 4에 개시가 있다. 본 발명의 디플루오로인산염의 제조방법에서 사용하는 디플루오로인산의 순도는 높으면 높을수록 얻어지는 디플루오로인산염의 순도가 높아지기 때문에 바람직하고, 이온 크로마토법에 의해 정량한 디플루오로인산의 함량이 95% 이상인 것이 바람직하다. 보다 바람직하게는 98% 이상이고, 더욱 바람직하게는 99% 이상이다.
본 발명의 디플루오로인산염의 합성방법에 있어서, 정석 조작 후에 고액분리한 디플루오로인산염이 용해된 디플루오로인산 용액은 재이용할 수 있다. 즉, 고액분리 후의 디플루오로인산 용액은 정석 여과 분별 조작에 의해 디플루오로인산 용액 중의 디플루오로인산염의 농도가 저하되어 있어, 이것에 상당하는 원료염, 또는 원료염과 디플루오로인산을 첨가함으로써 디플루오로인산과 원료염이 반응하여, 동일한 정석 여과 분별 조작을 행함으로써 디플루오로인산염을 동일하게 얻을 수 있다.
실시예
아래에 본 발명의 적합한 실시예를 예시적으로 상세하게 설명한다. 단, 이 실시예에 기재되어 있는 재료나 배합량 등은 특별히 한정적인 기재가 없는 한, 본 발명의 범위를 그것들로만 한정하는 취지의 것은 아니고, 단순한 설명예에 지나지 않는다.
참고예 1 디플루오로인산의 증류 정제
정석 용매로서 사용에 제공하는 디플루오로인산의 순도를 올리기 위해 증류 정제를 행하였다. 디플루오로인산(시약:플루오로켐 제조) 400 g을 PTFE제 둥근 바닥 플라스크에 칭량하여 덜고, 이를 감압하 40℃에서 증류를 행하여, -20℃로 냉각한 PTFE제 둥근 바닥 플라스크에 유분(留分) 313 g을 얻었다. 이 유분을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산의 순도로 하였다. 얻어진 디플루오로인산의 순도는 상대 면적으로 99%였다.
실시예 1
참고예 1에 있어서 증류 조작에 의해 얻어진 디플루오로인산 300 g을 500 ㎖ PFA 용기에 칭량하여 덜고, 염화리튬(시약:와코 순약 제조) 25 g을 첨가하였다. 이 반응액을 여과 조작에 의해 불용해분을 제거하고, 얻어진 여액을 25℃부터 -30℃까지 냉각하여 걸정을 석출시켰다. 이 슬러리액을 고액분리하여 얻어진 결정을 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 건조하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산리튬의 순도로 하였다. 얻어진 디플루오로인산리튬의 결정의 순도는 상대 면적으로 97%였다.
실시예 2
실시예 1에 있어서 정석 조작에 의해 고액분리하여 얻어진 여액 215 g에 염화리튬(시약:와코 순약 제조) 2.4 g을 첨가하였다. 이 반응액을 여과 조작에 의해 불용해분을 제거하고, 얻어진 여액을 25℃부터 -30℃까지 냉각하여 결정을 석출시켰다. 이 슬러리액을 고액분리하여 얻어진 결정을 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 건조하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산리튬의 순도로 하였다. 얻어진 디플루오로인산리튬의 결정의 순도는 상대 면적으로 97%였다.
실시예 3
참고예 1에 있어서 증류 조작에 의해 얻어진 디플루오로인산 300 g을 500 ㎖ PFA 용기에 칭량하여 덜고, 탄산리튬(시약:와코 순약 제조) 22 g을 첨가하였다. 이 반응액을 여과 조작에 의해 불용해분을 제거하고, 얻어진 여액을 25℃부터 -30℃까지 냉각하여 결정을 석출시켰다. 이 슬러리를 고액분리하여 얻어진 결정을 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 건조하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산리튬의 순도로 하였다. 얻어진 디플루오로인산리튬의 결정의 순도는 상대 면적으로 95%였다.
실시예 4
참고예 1에 있어서 증류 조작에 의해 얻어진 디플루오로인산 300 g을 500 ㎖ PFA 용기에 칭량하여 덜고, 수산화리튬(시약:와코 순약 제조) 14 g을 첨가하였다. 이 반응액을 여과 조작에 의해 불용해분을 제거하고, 얻어진 여액을 25℃부터 -30℃까지 냉각하여 결정을 석출시켰다. 이 슬러리를 고액분리하여 얻어진 결정을 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 건조하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산리튬의 순도로 하였다. 얻어진 디플루오로인산리튬의 결정의 순도는 상대 면적으로 93%였다.
실시예 5
참고예 1에 있어서 증류 조작에 의해 얻어진 디플루오로인산 300 g을 500 ㎖ PFA 용기에 칭량하여 덜고, 브롬화나트륨(시약:와코 순약 제조) 61 g을 첨가하였다. 이 반응액을 여과 조작에 의해 불용해분을 제거하고, 얻어진 여액을 25℃부터 -30℃까지 냉각하여 결정을 석출시켰다. 이 슬러리를 고액분리하여 얻어진 결정을 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 건조하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산나트륨의 순도로 하였다. 얻어진 디플루오로인산나트륨의 결정의 순도는 상대 면적으로 94%였다.
실시예 6
참고예 1에 있어서 증류 조작에 의해 얻어진 디플루오로인산 300 g을 500 ㎖ PFA 용기에 칭량하여 덜고, 염화칼슘(시약:와코 순약 제조) 33 g을 첨가하였다. 이 반응액을 여과 조작에 의해 불용해분을 제거하고, 얻어진 여액을 25℃부터 -30℃까지 냉각하여 결정을 석출시켰다. 이 슬러리를 고액분리하여 얻어진 결정을 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 건조하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산칼슘의 순도로 하였다. 얻어진 디플루오로인산칼슘의 결정의 순도는 상대 면적으로 95%였다.
비교예 1
여액을 정석하지 않고 PTFE제 둥근 바닥 플라스크를 사용하여 감압하 40℃에서 직접 농축 건조하는 것 이외는 실시예 1과 동일하게 행하였다. 얻어진 디플루오로인산리튬의 결정을 이온 크로마토그래피(다이오넥스 제조 DX-500,칼럼 AS-23)로 음이온 분석을 행하여, 디플루오로인산 이온의 상대 면적비를 디플루오로인산리튬의 순도로 하였다. 얻어진 디플루오로인산리튬의 결정의 순도는 상대 면적으로 85%였다.
본 발명에서 제조되는 디플루오로인산염은 이온 액체의 원료나 리튬 이차 전지용 전해액의 첨가제로서 매우 유용하여 이용 가치가 높은 것이다.

Claims (4)

  1. 알칼리금속, 알칼리토류금속 또는 오늄의 할로겐염, 탄산염, 인산염, 수산화물, 산화물로부터 선택되는 하나 이상의 원료와 디플루오로인산을, 디플루오로인산 1몰에 대하여 원료 0.01~1 몰인 디플루오로인산이 과잉이 되는 상태에서 반응시킨 후, 그 디플루오로인산 중에서 정석 조작에 의해 석출된 석출물을 디플루오로인산으로부터 고액분리하고, 석출물에 포함되는 디플루오로인산을 증류 제거함으로써 디플루오로인산염을 얻는 것을 특징으로 하는 디플루오로인산염의 제조방법.
  2. 제1항에 있어서,
    원료가 알칼리금속의 할로겐염, 탄산염, 인산염, 수산화물, 산화물로부터 선택되는 하나 이상인 디플루오로인산염의 제조방법.
  3. 제1항 또는 제2항에 있어서,
    알칼리금속이 리튬, 나트륨, 칼륨으로부터 선택되는 하나 이상인 디플루오로인산염의 제조방법.
  4. 제1항에 기재된 정석 조작 후의 고액분리된 디플루오로인산 용액 중에 원료 또는 원료와 디플루오로인산을 첨가하여 제1항에 기재된 조작을 반복하는 것을 특징으로 하는 디플루오로인산염의 제조방법.
KR1020147022807A 2012-03-14 2012-03-14 디플루오로인산염의 제조방법 KR101614235B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057408 WO2013136533A1 (ja) 2012-03-14 2012-03-14 ジフルオロリン酸塩の製造方法

Publications (2)

Publication Number Publication Date
KR20140121442A KR20140121442A (ko) 2014-10-15
KR101614235B1 true KR101614235B1 (ko) 2016-04-20

Family

ID=49160497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147022807A KR101614235B1 (ko) 2012-03-14 2012-03-14 디플루오로인산염의 제조방법

Country Status (6)

Country Link
US (1) US9593017B2 (ko)
EP (1) EP2826747B1 (ko)
KR (1) KR101614235B1 (ko)
CN (1) CN104114487B (ko)
PL (1) PL2826747T3 (ko)
WO (1) WO2013136533A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428222B2 (ja) * 2014-12-09 2018-11-28 セントラル硝子株式会社 ジフルオロリン酸リチウム粉体の製造方法およびジフルオロリン酸リチウム
WO2016175186A1 (ja) * 2015-04-27 2016-11-03 関東電化工業株式会社 ジフルオロリン酸塩の精製方法
CN105731412B (zh) * 2015-12-29 2018-02-23 中国科学院宁波材料技术与工程研究所 一种二氟磷酸盐的制备方法
CN106785045B (zh) * 2017-03-22 2019-03-22 国网河南省电力公司电力科学研究院 一种二氟磷酸锂的制备方法、锂离子电池电解液和离子电池
CN106829910A (zh) * 2017-03-29 2017-06-13 东营石大胜华新能源有限公司 一种二氟磷酸锂的制备方法
CN107720717B (zh) * 2017-10-27 2020-06-16 天津金牛电源材料有限责任公司 一种二氟磷酸锂的制备方法
JP6493941B1 (ja) 2017-12-28 2019-04-03 株式会社ノルミー 個人認証方法及び個人認証装置
CN108640096B (zh) * 2018-05-18 2019-12-06 多氟多化工股份有限公司 一种二氟磷酸及二氟磷酸锂的制备方法
KR101925044B1 (ko) 2018-06-21 2018-12-04 주식회사 천보 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
KR101925053B1 (ko) * 2018-06-22 2018-12-04 주식회사 천보 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
JP7300327B2 (ja) * 2019-06-25 2023-06-29 関東電化工業株式会社 ジフルオロリン酸リチウム粉末及びその製造方法
CN113620270B (zh) * 2021-09-08 2023-05-23 安阳工学院 一种二氟磷酸锂的制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155773A (ja) 2008-12-02 2010-07-15 Stella Chemifa Corp ジフルオロリン酸塩の製造方法
JP2011132072A (ja) 2009-12-24 2011-07-07 Ube Industries Ltd 六フッ化リン酸リチウムの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE813848C (de) 1949-04-06 1951-09-17 Bayer Ag Herstellung von Salzen der Difluorphosphorsaeure
JP3439085B2 (ja) 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
JP4674444B2 (ja) 2003-04-18 2011-04-20 三菱化学株式会社 ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP4483221B2 (ja) 2003-08-01 2010-06-16 三菱化学株式会社 ジフルオロリン酸塩の製造方法
JP4604505B2 (ja) 2004-02-09 2011-01-05 三菱化学株式会社 ジフルオロリン酸リチウムの製造方法、ならびに、非水系電解液及びこれを用いた非水系電解液二次電池
JP5228270B2 (ja) 2004-10-19 2013-07-03 三菱化学株式会社 ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
WO2006137177A1 (ja) * 2005-06-20 2006-12-28 Mitsubishi Chemical Corporation ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP5277550B2 (ja) * 2007-03-12 2013-08-28 セントラル硝子株式会社 ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池
WO2010064637A1 (ja) * 2008-12-02 2010-06-10 ステラケミファ株式会社 ジフルオロリン酸塩の製造方法、非水系電解液及び非水系電解液二次電池
CN102985362A (zh) 2010-07-08 2013-03-20 索尔维公司 LiPO2F2的制造
JP5793284B2 (ja) * 2010-08-31 2015-10-14 ステラケミファ株式会社 ジフルオロリン酸塩の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155773A (ja) 2008-12-02 2010-07-15 Stella Chemifa Corp ジフルオロリン酸塩の製造方法
JP2011132072A (ja) 2009-12-24 2011-07-07 Ube Industries Ltd 六フッ化リン酸リチウムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. C. Thompson et al., Inorg. Nucl. Chem. letters 1969, 5, 581.*

Also Published As

Publication number Publication date
EP2826747A1 (en) 2015-01-21
EP2826747A4 (en) 2015-04-01
CN104114487B (zh) 2017-04-05
US9593017B2 (en) 2017-03-14
PL2826747T3 (pl) 2017-12-29
WO2013136533A1 (ja) 2013-09-19
US20150064091A1 (en) 2015-03-05
KR20140121442A (ko) 2014-10-15
CN104114487A (zh) 2014-10-22
EP2826747B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
KR101614235B1 (ko) 디플루오로인산염의 제조방법
KR101488146B1 (ko) 디플루오로인산염의 제조 방법
US8871974B2 (en) Ionic liquid containing phosphonium cation having P—N bond and method for producing same
JP4616925B2 (ja) ジフルオロリン酸塩の製造方法
US9567217B2 (en) Method for producing difluorophosphate
JP5793284B2 (ja) ジフルオロリン酸塩の製造方法
KR101521069B1 (ko) 디플루오로인산염의 정제 방법
DE10119278C1 (de) Verfahren zur Herstellung von Fluoralkylphosphaten

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right