WO2016189769A1 - リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ - Google Patents

リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ Download PDF

Info

Publication number
WO2016189769A1
WO2016189769A1 PCT/JP2015/085697 JP2015085697W WO2016189769A1 WO 2016189769 A1 WO2016189769 A1 WO 2016189769A1 JP 2015085697 W JP2015085697 W JP 2015085697W WO 2016189769 A1 WO2016189769 A1 WO 2016189769A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
compound
aqueous
lithium ion
electrolyte
Prior art date
Application number
PCT/JP2015/085697
Other languages
English (en)
French (fr)
Inventor
潤一 親
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to EP15893401.8A priority Critical patent/EP3305753B1/en
Priority to US15/572,969 priority patent/US10446871B2/en
Priority to CN201580079742.0A priority patent/CN107531600A/zh
Priority to JP2015562976A priority patent/JP6265217B2/ja
Publication of WO2016189769A1 publication Critical patent/WO2016189769A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/02Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a novel lithium salt compound, a non-aqueous electrolyte using the same, and a lithium ion secondary battery and a lithium ion capacitor using the non-aqueous electrolyte.
  • a non-aqueous electrolyte prepared by dissolving an electrolyte such as LiPF 6 or LiBF 4 in a cyclic carbonate such as ethylene carbonate or propylene carbonate and a linear carbonate such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate A water electrolyte is used.
  • a cyclic carbonate such as ethylene carbonate or propylene carbonate
  • a linear carbonate such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate
  • Non-Patent Document 1 proposes a complex salt having an ether compound of a specific structure as a ligand, and it is reported that it exhibits low volatility, and it is also proposed to use the ether complex salt as an electrolyte. It is done.
  • Patent Document 1 discloses electrolysis using a complex electrolyte of glyme such as triethylene glycol dimethyl ether (triglyme) or tetraethylene glycol dimethyl ether (tetraglyme) and an alkali metal salt such as lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). Liquids and secondary batteries are disclosed and described as having high thermal stability.
  • Patent Document 2 discloses a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing lithium difluorophosphate, and describes that storage characteristics are improved.
  • Patent Document 3 discloses a compound having a skeleton containing a hetero element that is liquid at 25 ° C., such as dimethoxyethane, diethoxyethane, acetonitrile, etc., has a dielectric constant of 5 or more, and a viscosity of 0.6 cP or less, An electrolyte containing lithium (LiPO 2 F 2 ) is described as suppressing the deterioration of battery characteristics during high temperature storage.
  • Patent Document 4 discloses a non-aqueous electrolytic solution containing lithium difluorophosphate, and Example 3 thereof describes an example in which 4.6% by mass of lithium difluorophosphate is added.
  • the present invention uses a novel lithium salt compound, a non-aqueous electrolyte excellent in high-temperature cycle characteristics and output characteristics after high-temperature cycling using the same, and capable of suppressing metal elution from a positive electrode and the like, and the non-aqueous electrolyte It is an object of the present invention to provide a lithium ion secondary battery and a lithium ion capacitor.
  • the present inventors examined in detail the performance of the above-mentioned prior art non-aqueous electrolyte.
  • the non-aqueous electrolyte secondary battery consisting only of the glyme solvent and the alkali metal salt of Patent Document 1, although the safety can be improved to some extent because of the low volatility, the cyclic carbonate and linear carbonate 6. It was found that almost no effect can be exerted on the problem that the viscosity of the electrolytic solution is very high and the cycle characteristics are improved as compared with the non-aqueous electrolytic solution in which the electrolyte such as LiBF 4 is dissolved.
  • Patent Document 1 describes that the oxygen portion of the ether structure of glyme is coordinated to the alkali metal ion at 1: 1, and a complex is formed in at least a part of the electrolytic solution, but the lithium salt There is no mention of using lithium difluorophosphate as
  • Patent Document 2 The non-aqueous electrolyte secondary battery of Patent Document 2 is not satisfactory in terms of improving high-temperature cycle characteristics and suppressing the elution of metal ions from the positive electrode.
  • Patent Document 2 does not at all describe a combination of lithium difluorophosphate and an ether compound.
  • Patent Document 3 lithium difluorophosphate and short-chain dimethoxyethane and the like are mixed, but there is no description of a suitable mixing ratio, and they are merely added to lower the viscosity of the electrolytic solution.
  • Example 3 of Patent Document 4 4.6% by mass of lithium difluorophosphate is added to a non-aqueous electrolyte containing cyclic carbonate and linear carbonate. However, this can not completely dissolve lithium difluorophosphate uniformly.
  • the inventors of the present invention conducted intensive studies to solve the above-mentioned problems, and as a result, the above lithium difluorophosphate was converted into a novel complex lithium salt compound of the present invention. A compound having much higher solubility in the electrolyte than lithium oxide was found.
  • At least one ether compound selected from 2,5,8,11-tetraoxadodecane and 2,5,8,11,14-pentaoxapentadecane, which are relatively long-chain ether compounds, is used as a ligand
  • the lithium salt compound of the present invention comprising a lithium cation and a difluorophosphate anion is contained in the non-aqueous electrolytic solution, whereby the high temperature cycle characteristics and the output characteristics after the high temperature cycle are excellent, and metal elution from the positive electrode etc. They found that they could be suppressed and completed the present invention.
  • the present invention provides the following (1) to (5).
  • Lithium cation having as a ligand at least one ether compound selected from 2,5,8,11-tetraoxadodecane and 2,5,8,11,14-pentaoxapentadecane, and difluorophosphoric acid Lithium salt compound consisting of an anion.
  • Lithium salt compound consisting of an anion.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution is the non-aqueous electrolyte according to (2).
  • the lithium ion secondary battery characterized by being an electrolyte solution.
  • the lithium ion secondary battery and lithium ion capacitor used can be provided.
  • the lithium salt compound of the present invention includes 2,5,8,11-tetraoxadodecane (hereinafter, also referred to as “TOD”) and 2,5,8,11,14-pentaoxapentadecane (hereinafter, also referred to as "POP").
  • Lithium cation (A) (hereinafter, also simply referred to as “lithium cation (A)”) having as a ligand one or more ether compounds selected from: and difluorophosphate anion [(PO 2 F 2 ) ⁇ ] It consists of
  • the lithium salt compound of the present invention is typically represented by the following general formula (1) or (2). Further, the lithium cation (A) is represented by the left part of the general formula (1) or (2).
  • the lithium salt compound of the present invention is a lithium salt compound comprising a lithium cation (A) having as a ligand one or more ether compounds selected from TOD and POP, and a difluorophosphate anion.
  • the lithium salt compound is a Solvate and is a solvent separated ion pair. Therefore, a complex containing an ether compound which is not coordinated to a lithium ion, for example, a lithium bis (trifluoromethanesulfonyl) imide-TOD complex described in Patent Document 1, a lithium bis (trifluoromethanesulfonyl) imide-POP complex, and the like It has the characteristic of being difficult to decompose electrochemically in comparison.
  • the molar ratio of the ether compound (ligand: TOD and / or POP) to lithium ion (Li + ) in the lithium cation (A) is preferably 0.1 or more, more preferably 0.15 or more, still more preferably It is 0.25 or more, and preferably 0.7 or less, more preferably 0.6 or less, and still more preferably 0.55. More specifically, it is preferably 0.1 to 0.7, more preferably 0.15 to 0.6, still more preferably 0.25 to 0.55, and most preferably 0.5.
  • the process for producing a lithium salt compound of the present invention comprises at least one ether selected from 2,5,8,11-tetraoxadodecane (TOD) and 2,5,8,11,14-pentaoxapentadecane (POP) And contacting the compound with lithium difluorophosphate.
  • the contact of an ether compound (TOD and / or POP) with lithium difluorophosphate can be carried out by a method such as mixing them and reacting them with stirring.
  • the reaction can be carried out without using a reaction solvent. For this reason, lithium salt compounds can be industrially advantageously and efficiently produced.
  • the molar ratio of the ether compound (TOD and / or POP) which is a ligand to the lithium ion (Li + ) is preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0. It is 45 or more, preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, further preferably 1.5 or less. More specifically, it is preferably 0.3 to 5, more preferably 0.4 to 3, still more preferably 0.45 to 2, and particularly preferably 0.45 to 1.5.
  • TOD and / or POP can be easily reacted with lithium difluorophosphate, and the purity of the target lithium salt compound can be increased.
  • the contact temperature (reaction temperature) between the ether compound and lithium difluorophosphate is preferably low in the range in which the reaction proceeds, from the viewpoint of suppressing the decomposition of the lithium salt compound to be produced. Specifically, -30 to 80 ° C. is preferable, -28 to 50 ° C. is more preferable, -25 to 20 ° C. is more preferable, and -24 to 10 ° C. is particularly preferable.
  • the reaction pressure is not particularly limited, but is preferably 1 MPa from normal pressure (atmospheric pressure), and more preferably 0.3 MPa from normal pressure (atmospheric pressure).
  • the reaction time is also not particularly limited, but is usually 1 hour to 5 days, preferably 2 hours to 4 days, more preferably 3 hours to 3 days.
  • the obtained lithium salt compound can be isolated as a solid by washing with an ether solvent such as tert-butyl methyl ether and the like, if necessary, and then vacuum drying at room temperature. Moreover, the organic solvent used as electrolyte solution components, such as methyl ethyl carbonate and dimethyl carbonate, is added, and it can also utilize as non-aqueous electrolyte used for a lithium ion secondary battery, a lithium ion capacitor, etc. without isolating as solid. .
  • the lithium salt compound obtained by the production method of the present invention may have its structure confirmed by proton nuclear magnetic resonance spectrum ( 1 H-NMR), fluorine nuclear magnetic resonance spectrum ( 19 F-NMR), elemental analysis, etc. it can.
  • the non-aqueous electrolytic solution of the present invention is a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and 2,5,8,11-tetraoxadodecane (TOD) and 2,5,8,11,14
  • a lithium salt compound comprising a lithium cation having as a ligand one or more ether compounds selected from pentaoxapentadecane (POP), and a difluorophosphate anion.
  • the compound contained in the non-aqueous electrolyte solution of the present invention is a lithium cation (A) having as a ligand one or more ether compounds selected from TOD and POP, and a difluorophosphate anion [(PO 2 It is a lithium salt compound comprising F 2 ) ⁇ ].
  • lithium cation (A) is less likely to be electrochemically decomposed as compared with an ether compound which is not coordinated to a lithium ion, and cycle characteristics can be improved.
  • the difluorophosphate anion reacts rapidly with the active site on the electrode, it forms a solid electrode coating (Solid Electrolyte Interphase: SEI film) that does not prevent lithium ion permeation.
  • bis (trifluoromethanesulfonyl) imide ion [(CF 3 SO 2 ) 2 N ⁇ ] or the like which is not a difluorophosphate anion can not obtain the effect of improving high temperature cycle characteristics and output characteristics after high temperature cycles.
  • the lithium salt compound comprising the lithium cation (A) of the invention and difluorophosphate anion [(PO 2 F 2 ) ⁇ ] is considered to be able to exhibit excellent high temperature cycle characteristics and output characteristics after high temperature cycles.
  • the content of the lithium salt compound comprising the lithium cation (A) and the difluorophosphate anion contained in the non-aqueous electrolyte solution is 0.1 to It is preferably 10% by mass. If the content is 10% by mass or less, there is little possibility that the film is excessively formed on the electrode and the output characteristics after high temperature cycles are degraded, and if 0.1% by mass or more, the formation of the film is sufficient. The above range is preferable because high temperature cycle characteristics are enhanced.
  • the content is preferably 0.3% by mass or more, more preferably 1% by mass or more, and particularly preferably 1.7% by mass or more in the non-aqueous electrolyte. Moreover, 9 mass% or less is more preferable, 7 mass% or less is further more preferable, and its 5 mass% or less is especially preferable.
  • Non-aqueous solvent As a non-aqueous solvent used for the non-aqueous electrolyte solution of this invention, 1 or more types chosen from cyclic carbonate and chain
  • a chain ester In order to synergistically improve electrochemical properties such as cycle characteristics at a wide temperature range, particularly at high temperatures, and output characteristics after cycling, it is preferable that a chain ester is contained, and it is more preferable that a chain carbonate is contained, It is particularly preferred to include both cyclic carbonates and linear carbonates.
  • the term "linear ester" is used as a concept including linear carbonate and linear carboxylic acid ester.
  • the cyclic carbonate includes one or more selected from ethylene carbonate (EC), propylene carbonate (PC), 4-fluoro-1,3-dioxolan-2-one (FEC), and vinylene carbonate (VC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • VC vinylene carbonate
  • a combination of cyclic carbonates a combination of EC and VC, a combination of EC and FEC, and a combination of PC and VC are particularly preferable.
  • the non-aqueous solvent contains ethylene carbonate and / or propylene carbonate
  • the stability of the film formed on the electrode is increased, and the cycle characteristics when the storage device is used at high temperature and high voltage, the output characteristics after cycle, And the metal elution suppression effect from the positive electrode etc. is improved, which is preferable.
  • the content of ethylene carbonate and / or propylene carbonate is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 7% by volume or more, based on the total volume of the non-aqueous solvent, and the upper limit thereof Is preferably 40% by volume or less, more preferably 35% by volume or less, and still more preferably 25% by volume or less.
  • the chain ester include asymmetric linear carbonates, symmetrical linear carbonates, and linear carboxylic acid esters containing an asymmetric and ethoxy group.
  • asymmetric linear carbonate those having a methyl group are preferable, and specifically, methyl ethyl carbonate (MEC), methyl propyl carbonate and methyl isopropyl carbonate are preferable, and methyl ethyl carbonate (MEC) is more preferable.
  • MEC methyl ethyl carbonate
  • MEC methyl ethyl carbonate
  • MEC methyl ethyl carbonate
  • MEC methyl ethyl carbonate
  • the symmetrical chain carbonate dimethyl carbonate (DMC) and diethyl carbonate (DEC) are preferable, and as the chain carboxylic acid ester, ethyl acetate (EA) and ethyl propionate are preferable.
  • a combination of methyl ethyl carbonate (MEC) and dimethyl carbonate (DMC), a combination of methyl ethyl carbonate (MEC) and ethyl acetate, methyl ethyl carbonate (MEC), dimethyl carbonate (DMC) and ethyl acetate Combinations are more preferred.
  • the content of the linear ester is not particularly limited, but is preferably in the range of 60 to 90% by volume with respect to the total volume of the non-aqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte decreases and a wide temperature range, particularly at high temperature The above range is preferable because electrochemical characteristics such as cycle characteristics and output characteristics after cycles are less likely to be deteriorated.
  • the proportion of the volume occupied by ethyl acetate (EA) is preferably 1% by volume or more, more preferably 2% by volume or more, and still more preferably 3% by volume or more.
  • EA ethyl acetate
  • 10 volume% or less is preferable, 8 volume% or less is more preferable, and 6 volume% or less is still more preferable.
  • the high temperature cycle characteristics and the output characteristics after the high temperature cycle can be excellent and metal elution from the positive electrode etc. can be suppressed.
  • the ratio of cyclic carbonate to chain ester is preferably 10/90 to 45/55, and the volume ratio of (cyclic carbonate / chain ester) is preferably 15 from the viewpoint of improving the electrochemical properties at a wide temperature range, particularly at high temperatures. / 85 to 40/60 is more preferable, and 20/80 to 35/65 is more preferable.
  • SO 2 group-containing compounds, aromatic compounds, carbon-carbon triple bond-containing compounds, lithium-containing ionic compounds as additives which can be used in combination with the lithium salt compound of the present invention
  • one or more selected from cyclic acetal compounds and phosphazene compounds are more preferable.
  • the type of the SO 2 group-containing compound is not particularly limited as long as it is a compound having an “SO 2 group” in the molecule.
  • 4-yl acetate, ethylene sulfate, propylene sulfate, butane-1,4-diyl dimethane sulfonate, methylene methane disulfonate and the like are preferably mentioned.
  • 1,3-propane sultone is more preferable.
  • the type of the aromatic compound is not particularly limited as long as it is a compound having a "benzene ring" in the molecule.
  • Specific examples thereof include cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, biphenyl, terphenyl (o-, m- and p-form), fluorobenzene, hexafluorobenzene, octafluorotoluene, pentafluorophenylmethane
  • At least one member selected from sulfonate, 2-phenylphenyl phosphate, 2-phenylphenyl diethyl phosphate, methylphenyl carbonate, ethyl phenyl carbonate, methyl 2-phenyl phenyl carbonate, phenyl 2-phenyl phenyl carbonate, etc. is preferably used. It can be mentioned. Among these, cyclohexylbenzene
  • the type of the carbon-carbon triple bond-containing compound is not particularly limited as long as it is a compound having a "carbon-carbon triple bond" in the molecule.
  • One or more selected from -4-carboxylate, 2-butyne-1,4-diyl dimethane sulfonate and the like are preferably mentioned.
  • 2-butyne-1,4-diyldimethanesulfonate is more preferable.
  • the type of the lithium-containing ionic compound is not particularly limited as long as it is a compound having “lithium” as a cationic species. Specific examples thereof include lithium difluorophosphate, lithium fluorosulfonate, lithium difluorobis [oxalate-O, O ′] phosphate (LiPFO), lithium tetrafluoro [oxalate-O, O ′] phosphate, bis [oxalate -O, O '] lithium borate (LiBOB), lithium difluoro [oxalate-O, O'] borate, lithium methyl sulfate, lithium ethyl sulfate, lithium 2,2,2-trifluoroethyl sulfate, etc.
  • One or more types are preferably mentioned, and two or more types can also be used in combination. Among these, one or more selected from LiBOB and lithium methyl sulfate are more preferable.
  • the type is not particularly limited as long as the cyclic acetal compound is a compound having an "acetal group" in the molecule.
  • the cyclic acetal compound is a compound having an "acetal group" in the molecule.
  • one or more kinds selected from 1,3-dioxolane, 1,3-dioxane, 1,3,5-trioxane and the like are suitably mentioned, and two or more kinds can also be used in combination.
  • 1,3-dioxane is more preferable.
  • the type of the phosphazene compound is not particularly limited as long as it is a compound having “NPP—N group” in the molecule.
  • Specific examples thereof include methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, ethoxyheptafluorocyclotetraphosphazene, dimethylaminopentafluorocyclotriphosphazene, and diethylaminopentafluorocyclotriphosphazene etc.
  • the content of the SO 2 group-containing compound, the aromatic compound, the carbon-carbon triple bond-containing compound, the lithium-containing ionic compound, the cyclic acetal compound, or the phosphazene compound is 0.001 to 5 mass in the non-aqueous electrolyte, respectively. % Is preferred. In this range, the film is sufficiently formed without becoming too thick, and the high temperature cycle characteristics and the output characteristics after the high temperature cycle are enhanced.
  • the content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and the upper limit thereof is preferably 3.5% by mass or less, and more preferably 2.5% by mass. The following is more preferable.
  • lithium-containing ionic compound and at least one selected from an SO 2 group-containing compound, an aromatic compound, a carbon-carbon triple bond-containing compound, a cyclic acetal compound, and a phosphazene compound.
  • the lower limit of the HF concentration contained in the non-aqueous electrolyte solution of the present invention is preferably 1 ppm or more, more preferably 2 ppm or more, from the viewpoint of improving the output of lithium ion secondary battery and lithium ion capacitor Is preferably 50 ppm or less, more preferably 20 ppm or less, and still more preferably 8 ppm or less.
  • the lower limit of the alcohol content contained in the non-aqueous electrolyte solution of the present invention is preferably 1 ppm or more, more preferably 2 ppm or more from the viewpoint of improving the output of lithium ion secondary battery and lithium ion capacitor
  • the upper limit of is preferably 50 ppm or less, more preferably 20 ppm or less, and still more preferably 8 ppm or less.
  • lithium salt As an electrolyte salt used for this invention, lithium salt is mentioned suitably.
  • the lithium salt, LiPF 6, LiBF 4, LiN (SO 2 F) 2, and LiN (SO 2 CF 3) is preferably one or more selected from 2, LiPF 6 is more preferable.
  • the concentration of the lithium salt is generally preferably 0.8 M or more, more preferably 1.0 M or more, and still more preferably 1.2 M or more, with respect to the non-aqueous solvent.
  • 1.6 M or less is preferable, as for the upper limit, 1.5 M or less is more preferable, and 1.4 M or less is still more preferable.
  • the non-aqueous electrolytic solution of the present invention is, for example, a mixture of the above-mentioned non-aqueous solvent, a lithium consisting of the lithium cation (A) and the difluorophosphate anion with respect to the above-mentioned electrolytic salt and the non-aqueous electrolytic solution. It can be obtained by adding a salt compound. Under the present circumstances, it is preferable to refine
  • the non-aqueous electrolytic solution of the present invention can be used for the following first and second electricity storage devices, and as the non-aqueous electrolyte, not only liquid ones but also gelled ones can be used. Furthermore, the non-aqueous electrolytic solution of the present invention can also be used for solid polymer electrolytes. Above all, it is preferable to use as a first storage battery device (that is, for lithium batteries) or a second storage battery device (that is, for lithium ion capacitors) that uses lithium salt for electrolyte salt. It is more preferable to use for lithium ion secondary batteries.
  • the lithium ion secondary battery (hereinafter, also referred to as “lithium secondary battery”) of the present invention includes the positive electrode, the negative electrode, and the non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • the constituent members such as the positive electrode and the negative electrode other than the non-aqueous electrolytic solution can be used without particular limitation.
  • a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel is used as a positive electrode active material for a lithium secondary battery.
  • These positive electrode active materials can be used singly or in combination of two or more.
  • lithium composite metal oxides for example, LiCoO 2 , LiCo 1 -x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or more elements selected from Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , a solid solution of Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, or Fe), and LiNi 1/2 Mn 3/2
  • M is a transition metal such as Co, Ni, Mn, or Fe
  • LiNi 1/2 Mn 3/2 One or more selected from O 4 is preferably listed
  • the conductive agent of the positive electrode is not particularly limited as long as it is an electron conductive material which does not cause a chemical change.
  • at least one selected from carbon black such as natural graphite (scaly graphite etc.), graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black etc., and carbon nanotubes Carbon materials can be mentioned. Further, graphite, carbon black and carbon nanotubes may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, more preferably 2 to 5% by mass.
  • the positive electrode includes the above-mentioned positive electrode active material as a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Mixed with a binder such as copolymer (NBR), carboxymethylcellulose (CMC), or ethylene propylene diene terpolymer, added with a high boiling point solvent such as 1-methyl-2-pyrrolidone, and kneaded to prepare a positive electrode.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Mixed with a binder such as copolymer (NBR), carboxy
  • this positive electrode mixture is applied to an aluminum foil as a current collector, a stainless steel lath plate, etc., dried and pressure-molded, and then under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be produced by heat treatment with
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the capacity of the battery, preferably 2 g / cm 3 or more, more preferably 3 g / cm 3 or more, further Preferably, it is 3.6 g / cm 3 or more.
  • 4 g / cm ⁇ 3 > or less is preferable.
  • lithium metal, lithium alloy, and carbon materials capable of inserting and extracting lithium [graphitizable carbon, and the spacing of the (002) plane is 0.37 nm or more Non-graphitizable carbon, Graphite having an (002) plane spacing of 0.34 nm or less], tin (single body), tin compound, silicon (single body), silicon compound, lithium titanate such as Li 4 Ti 5 O 12 It can be used combining 1 type or 2 types or more selected from a compound etc. Particularly preferred combinations are graphite and silicon, or graphite and silicon compounds.
  • the content of silicon and silicon compound in all the negative electrode active material is preferably 1 to 45 mass%, more preferably 2 to 15 It is mass%. It is preferable for the content to be in the above-mentioned range because the capacity can be increased while suppressing the decrease in the electrochemical characteristics of the lithium secondary battery according to the present invention and the increase in the thickness of the electrode.
  • oxides containing titanium are preferable, and lithium titanate compounds having a spinel structure such as Li 4 Ti 5 O 12 are preferable. It is preferable to use a titanium-containing oxide as the negative electrode active material and the non-aqueous electrolyte solution of the present invention because the cycle characteristics at high temperature of the lithium ion secondary battery and the output characteristics after the cycle can be further improved. In addition, it is preferable to use a carbon nanotube as the conductive aid because the above effect is more easily exhibited.
  • the specific surface area of the oxide containing titanium is preferably 4 m 2 / g or more and 100 m 2 / g or less, and the volume-based average particle diameter obtained by the laser diffraction / scattering method is preferably 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode is kneaded using the same conductive agent, binder and high boiling point solvent as in the preparation of the above positive electrode to form a negative electrode mixture, and this negative electrode mixture is then applied to copper foil of the current collector and the like. After drying and pressure molding, it can be manufactured by heat treatment at a temperature of about 50 ° C. to 250 ° C. for about 2 hours under vacuum.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and preferably 1.5 g / cm 3 or more in order to further increase the capacity of the battery. In addition, as the upper limit, 2 g / cm ⁇ 3 > or less is preferable.
  • the battery separator is not particularly limited, but a microporous film, woven fabric, non-woven fabric or the like of a single layer or laminated polyolefin such as polypropylene, polyethylene, ethylene-propylene copolymer, etc. can be used.
  • stacking of polyolefin lamination
  • the thickness of the separator is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 4 ⁇ m or more, and the upper limit thereof is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the lithium battery there is no particular limitation on the structure of the lithium battery, and a coin battery, a cylindrical battery, a square battery, a laminate battery or the like can be applied.
  • the lithium secondary battery according to the present invention is excellent in electrochemical characteristics in a wide temperature range even when the charge termination voltage is 4.2 V or more, particularly 4.3 V or more, and further, the characteristics are excellent even at 4.4 V or more is there.
  • the discharge termination voltage can be usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, it is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged and discharged at -40 to 100 ° C, preferably -10 to 80 ° C.
  • a method of providing a safety valve on the battery cover or making a notch in a member such as a battery can or a gasket can also be adopted.
  • a current blocking mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery cover.
  • the second electricity storage device of the present invention is an electricity storage device that contains the non-aqueous electrolyte solution of the present invention and stores energy using intercalation of lithium ions to a carbon material such as graphite, which is a negative electrode, It is called an ion capacitor (LIC).
  • a carbon material such as graphite, which is a negative electrode, It is called an ion capacitor (LIC).
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a doping / dedoping reaction of a ⁇ -conjugated polymer electrode.
  • the electrolyte includes lithium salts such as at least LiPF 6.
  • the lithium ion capacitor can keep the negative electrode potential lower than that of a conventional electric double layer capacitor by using a carbon material in which lithium titanate or lithium ions are occluded or doped in advance instead of activated carbon as a negative electrode material. Therefore, the working voltage range of the cell can be broadened.
  • a lithium ion capacitor excellent in high temperature cycle characteristics and output characteristics after high temperature cycles can be provided.
  • Synthesis example 1 Synthesis of bis (difluorophosphoryl) (2,5,8,11-tetraoxadodecane) dilithium
  • 20.0 g (112 mmol) of 2,5,8,11-tetraoxadodecane and 12.0 g of lithium difluorophosphate Charged (111 mmol). After stirring at room temperature for 3 hours, it was cooled to -20.degree. After standing for 2 days, the precipitate was filtered and the filtrate was washed with tert-butyl methyl ether.
  • Synthesis example 2 Synthesis of bis (difluorophosphoryl) (2,5,8,11,14-pentaoxapentadecane) dilithium in a 100 ml flask 11.11 g (50 mmol) of 2,5,8,11,14-pentaoxapentadecane, difluorophosphoric acid 10.80 g (100 mmol) of lithium and 4.50 g of dimethyl carbonate were charged. After stirring at room temperature for 3.5 hours, dimethyl carbonate is distilled off under reduced pressure at 50 ° C. for 3 hours, and 22.14 g of bis (difluorophosphoryl) (2,5,8,11,14-pentaoxapentadecane) dilithium is colorless.
  • Examples 1 to 19 and Comparative Examples 1 to 4 [Fabrication of lithium ion secondary battery] LiNi 0.34 Mn 0.33 Co 0.33 O 2 94% by mass, acetylene black (conductive agent) 3% by mass are mixed, and 3% by mass of polyvinylidene fluoride (binder) is mixed in advance with 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to both surfaces of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to prepare a strip-shaped positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • the positive electrode sheet obtained above, the microporous polyethylene film separator, and the negative electrode sheet obtained above were laminated in this order, and wound in a spiral.
  • the wound body was housed in a nickel-plated cylindrical iron battery can that doubles as a negative electrode terminal.
  • a non-aqueous electrolyte having the composition described in Table 1 and Table 2 was injected, and the battery lid having the positive electrode terminal was crimped through a gasket to produce a 18650 type cylindrical battery.
  • the positive electrode terminal was previously connected inside the battery using a positive electrode sheet and an aluminum lead tab, and the negative electrode can was connected using a negative electrode sheet and a nickel lead tab.
  • the amount of metal elution after high temperature cycling was determined by identifying the amount of metal electrodeposited on the negative electrode.
  • the amount of metal deposited on the negative electrode disassembles the cylindrical battery after high temperature cycle, dissolves the washed negative electrode sheet with acid, and then performs ICP (high frequency inductively coupled plasma) emission spectroscopy (manufactured by Hitachi High-Tech Science Co., Ltd.)
  • ICP high frequency inductively coupled plasma
  • the amount of metal elution of the total amount of Ni, Mn and Co was analyzed by “SPS 3520 UV”.
  • the metal elution amount was evaluated on the basis of the total metal elution amount of Ni, Mn, and Co of Comparative Example 1 as 100%, and the relative metal elution amount was evaluated.
  • the conditions for producing the battery and the battery characteristics are shown in Tables 1 to 5.
  • Li 2 (TOD ) (PO 2 F 2) 2 the bis (difluoromethyl phosphoryl) (2,5,8,11-tetra oxa dodecane) is an abbreviation of dilithium
  • Li 2 ( POP) (PO 2 F 2 ) 2 is an abbreviation of bis (difluorophosphoryl) (2,5,8,11,14-pentaoxapentadecane) dilithium
  • Li (G 3) 1 TFSI is lithium bis (trifluoromethane) It is an abbreviation for sulfonyl) imide-2,5,8,11-tetraoxadodecane. The same applies to Tables 3 to 5.
  • Example 20 and comparative example 5 A positive electrode sheet was produced using LiNi 1/2 Mn 3/2 O 4 (positive electrode active material) in place of the positive electrode active material used in Example 5 and Comparative Example 1. 94% by mass of LiNi 1/2 Mn 3/2 O 4 coated with amorphous carbon and 3% by mass of acetylene black (conductive agent) are mixed, and 3% by mass of polyvinylidene fluoride (binding agent) is mixed in advance. The solution was added to a solution dissolved in methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, cut into a predetermined size, and a positive electrode sheet was prepared.
  • LiNi 1/2 Mn 3/2 O 4 positive electrode active material
  • a cylindrical battery is manufactured in the same manner as in Example 1 and Comparative Example 1 except that 4.9 V, the discharge end voltage is 2.7 V, and the composition of the non-aqueous electrolyte is changed to a predetermined one. Battery evaluation was performed. The metal elution amount was determined on the basis of the metal elution amount of Comparative Example 5 being 100%. The results are shown in Table 3.
  • Example 21 comparative example 6
  • a negative electrode sheet was manufactured using lithium titanate (Li 4 Ti 5 O 12 ; negative electrode active material) in place of the negative electrode active material used in Example 5 and Comparative Example 1.
  • 90% by mass of lithium titanate, 4% by mass of acetylene black (conductive agent) and 1% by mass of carbon nanotubes (conductive agent) are mixed, and 5% by mass of polyvinylidene fluoride (binder) is mixed with 1-methyl-2-pyrrolidone in advance
  • the mixture was added to the solution dissolved in and mixed, to prepare a negative electrode mixture paste.
  • the negative electrode material mixture paste was applied onto a copper foil (current collector), dried, pressurized and cut into a predetermined size to prepare a negative electrode sheet, and the charge termination voltage at the time of battery evaluation was 2 Cylindrical batteries were produced in the same manner as in Example 1 and Comparative Example 1 except that the discharge termination voltage was changed to 1.2 V and the composition of the non-aqueous electrolyte was changed to a predetermined value, and the battery evaluation was performed. Did. The results are shown in Table 4.
  • Examples 22 to 24 and Comparative Example 7 [Solubility test] A predetermined amount of bis (difluorophosphoryl) (2,5,8,11-tetraoxadodecane) dilithium obtained by the same method as that of Synthesis Example 1 was added to 50 g of the electrolyte used in Comparative Example 1, and The mixture was stirred for a minute (Examples 22 to 24). In addition, 0.75 g of lithium difluorophosphate was added to 50 g of the non-aqueous electrolyte used in Comparative Example 1, and the mixture was stirred at 25 ° C. for 10 minutes (Comparative Example 7). After stirring, when a completely homogeneous liquid without any undissolved matter was obtained, the solubility was evaluated as ⁇ , and when remaining undissolved, the solubility was evaluated as x. The results are shown in Table 5.
  • Each of the lithium secondary batteries of Examples 1 to 19 using a non-aqueous electrolytic solution containing a lithium cation having a specific ether compound as a ligand and a lithium salt compound comprising a difluorophosphate anion is Comparative Example 1 to Comparative Example 1 to The high temperature cycle characteristics, the output characteristics after the high temperature cycle, and the metal elution suppression effect from the positive electrode are improved as compared with the lithium secondary battery 4 described above.
  • Example 20 and Comparative Example 5 the case of using LiNi 1/2 Mn 3/2 O 4 for the positive electrode or the case of using lithium titanate for the negative electrode Since similar effects are also observed, it is clear that the effect is not dependent on a specific positive electrode or negative electrode. Furthermore, according to the comparison of Examples 22 to 24 and Comparative Example 7, the lithium salt compound having a lithium cation having an ether compound as a ligand and a difluorophosphate anion has significantly higher solubility than lithium difluorophosphate. It is understood that it has improved.
  • the non-aqueous electrolyte solution of the present invention also has an effect of improving high-temperature cycle characteristics, output characteristics after high-temperature cycles, and the like as a non-aqueous electrolyte for storage devices such as lithium ion capacitors.
  • non-aqueous electrolyte solution of the present invention makes it possible to obtain an electricity storage device which is excellent in high-temperature cycle characteristics and output characteristics after high-temperature cycles and can suppress metal elution from a positive electrode or the like.
  • a storage device such as a lithium ion secondary battery or a lithium ion capacitor mounted on a device likely to be used under high temperature such as a hybrid electric vehicle, a plug-in hybrid electric vehicle, a battery electric vehicle, a tablet terminal or an ultra book
  • a non-aqueous electrolyte solution it is possible to obtain an electricity storage device that is excellent in high-temperature cycle characteristics and output characteristics after high-temperature cycles and can suppress metal elution from a positive electrode or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(1)2,5,8,11-テトラオキサドデカン及び2,5,8,11,14-ペンタオキサペンタデカンから選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンとからなるリチウム塩化合物、(2)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に前記リチウム塩化合物を含有する非水電解液、(3)正極、負極及び前記非水電解液を備えたリチウムイオン二次電池、(4)前記非水電解液を用いるリチウムイオンキャパシタ、及び(5)前記エーテル化合物とジフルオロリン酸リチウムとを接触させる前記リチウム塩化合物の製造方法である。 本発明の非水電解液は、高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できる。

Description

リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
 本発明は、新規なリチウム塩化合物、それを用いた非水電解液、並びにその非水電解液を用いたリチウムイオン二次電池及びリチウムイオンキャパシタに関する。
 近年、電気自動車やハイブリッドカー等の自動車用電源、アイドリングストップ用のリチウムイオン二次電池及びリチウムイオンキャパシタが注目されている。
 リチウム二次電池の電解液としては、エチレンカーボネート、プロピレンカーボネート等の環状カーボネートと、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートに、LiPF、LiBF等の電解質を溶解させた非水電解液が用いられている。
 こうしたリチウム二次電池の負荷特性、サイクル特性等の電池特性を改良するために、これらの非水電解液に用いられる非水系溶媒や電解質塩について種々の検討がなされている。
 非特許文献1には、特定の構造のエーテル化合物を配位子として有する錯塩が提案されており、難揮発性を示すことが報告されており、当該エーテル錯塩を電解液とし利用することも提案されている。
 特許文献1には、トリエチレングリコールジメチルエーテル(トリグライム)やテトラエチレングリコールジメチルエーテル(テトラグライム)等のグライムと、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)等のアルカリ金属塩との錯体電解質を用いる電解液及び二次電池が開示されており、熱安定性が高いと記載されている。
 特許文献2には、ジフルオロリン酸リチウムを含有する非水電解液を用いた非水電解液二次電池が開示されており、保存特性が改善することが記載されている。
 特許文献3には、ジメトキシエタン、ジエトキシエタン、アセトニトリル等の25℃で液体であり、誘電率が5以上、粘性率が0.6cP以下のヘテロ元素を含む骨格を有する化合物と、ジフルオロリン酸リチウム(LiPO)を含有する電解液が、高温保存時における電池特性の劣化を抑制すると記載されている。
 特許文献4には、ジフルオロリン酸リチウムを含む非水電解液が開示されており、その実施例3には、ジフルオロリン酸リチウムを4.6質量%添加した例が記載されている。
特開2010-73489号 特開平11-067270号 特開2008-277002号 特開2008-222484号
Journal of Chemical Physics, vol.117, 5929(2002)
 本発明は、新規なリチウム塩化合物、それを用いた高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できる非水電解液、並びにその非水電解液を用いたリチウムイオン二次電池及びリチウムイオンキャパシタを提供することを課題とする。
 本発明者らは、上記従来技術の非水電解液の性能について詳細に検討した。その結果、特許文献1のグライム溶媒とアルカリ金属塩のみからなる非水電解液二次電池では、難揮発性のため安全性はある程度向上させることはできるものの、環状カーボネートと鎖状カーボネートに、LiPF、LiBF等の電解質を溶解させた非水電解液と比較して、電解液の粘性が非常に高くサイクル特性を向上させるという課題に対しては、殆ど効果が発揮できないことが判明した。
 また、トリエチレングリコールジメチルエーテル(トリグライム:2,5,8,11-テトラオキサドデカン)やテトラエチレングリコールジメチルエーテル(テトラグライム:2,5,8,11,14-ペンタオキサペンタデカン)と、リチウムビス(トリフルオロメタンスルホニル)イミド〔(CFSONLi:LiTFSI〕とを等モル混合した錯体塩を、LiPF、環状カーボネート及び鎖状カーボネートからなる非水電解液に添加して得た非水電解液においても、グライム溶媒とアルカリ金属塩のみからなる非水電解液よりも電解液の粘性は下がるが、サイクル特性及びサイクル後の出力特性を向上させるという課題に対しては殆ど効果が発揮できないことが判明した。
 また、特許文献1には、グライムのエーテル構造の酸素部分がアルカリ金属イオンに1:1で配位し、電解液中の少なくとも一部に錯体が形成されると記載されているが、リチウム塩としてジフルオロリン酸リチウムを用いることについての記載は全くない。
 特許文献2の非水電解液二次電池では、高温サイクル特性を向上させ、正極からの金属イオンの溶出を抑制するという点については満足できるものではなかった。また、特許文献2には、ジフルオロリン酸リチウムとエーテル化合物の組み合わせについては、全く記載がない。
 特許文献3では、ジフルオロリン酸リチウムと短鎖のジメトキシエタン等を混合しているが、好適な混合割合についての記載もなく、単に電解液の粘度を下げるために添加しているに過ぎない。
 特許文献4の実施例3では、環状カーボネートと鎖状カーボネートを含む非水電解液中にジフルオロリン酸リチウム4.6質量%を添加している。しかし、これではジフルオロリン酸リチウムを均一に完全溶解させることはできない。
 上記現状を踏まえ、本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、上記ジフルオロリン酸リチウムを、新規な錯体である本発明のリチウム塩化合物にすることにより、ジフルオロリン酸リチウムよりも電解液に格段に溶解性が高い化合物を見出した。
 また、比較的長鎖のエーテル化合物である、2,5,8,11-テトラオキサドデカン及び2,5,8,11,14-ペンタオキサペンタデカンから選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンからなる本発明のリチウム塩化合物を非水電解液中に含有させることにより、高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できることを見出し、本発明を完成した。
 すなわち本発明は、下記の(1)~(5)を提供するものである。
(1)2,5,8,11-テトラオキサドデカン及び2,5,8,11,14-ペンタオキサペンタデカンから選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンとからなるリチウム塩化合物。
(2)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に前記(1)に記載のリチウム塩化合物を含有することを特徴とする非水電解液。
(3)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えたリチウムイオン二次電池であって、前記非水電解液が、前記(2)に記載の非水電解液であることを特徴とするリチウムイオン二次電池。
(4)前記(2)に記載の非水電解液を用いることを特徴とするリチウムイオンキャパシタ。
(5)2,5,8,11-テトラオキサドデカン及び2,5,8,11,14-ペンタオキサペンタデカンから選ばれる1種以上のエーテル化合物とジフルオロリン酸リチウムとを接触させる前記(1)に記載のリチウム塩化合物の製造方法。
 本発明によれば、新規なリチウム塩化合物、それを用いた高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できる非水電解液、並びにその非水電解液を用いたリチウムイオン二次電池及びリチウムイオンキャパシタを提供することができる。
〔リチウム塩化合物〕
 本発明のリチウム塩化合物は、2,5,8,11-テトラオキサドデカン(以下、「TOD」ともいう)及び2,5,8,11,14-ペンタオキサペンタデカン(以下、「POP」ともいう)から選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオン(A)(以下、単に「リチウムカチオン(A)」ともいう)と、ジフルオロリン酸アニオン〔(PO〕とからなる。
 本発明のリチウム塩化合物は、代表的には下記一般式(1)又は(2)で表される。また、リチウムカチオン(A)は、一般式(1)又は(2)の左部分で表される。
 [Li(TOD)]2+[(PO (1)
 [Li(POP)]2+[(PO (2)
 本発明のリチウム塩化合物は、TOD及びPOPから選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオン(A)と、ジフルオロリン酸アニオンとからなるリチウム塩化合物である。このリチウム塩化合物は、溶媒和物(Solvate)であり、溶媒分離イオン対(solvent separated ion pair)である。このため、リチウムイオンに配位していないエーテル化合物を含む錯体、例えば、特許文献1に記載のリチウムビス(トリフルオロメタンスルホニル)イミド-TOD錯体や、リチウムビス(トリフルオロメタンスルホニル)イミド-POP錯体と比較して電気化学的に分解しにくいという特性を有する。
 また、用いるエーテル化合物が、ジメトキシエタンやジエトキシエタンのような短鎖のエーテル化合物であると、本発明のリチウム塩化合物のような効果は発現しない。
 リチウムカチオン(A)における、エーテル化合物(配位子:TOD及び/又はPOP)のリチウムイオン(Li)に対するモル比は、好ましくは0.1以上、より好ましくは0.15以上、更に好ましくは0.25以上であり、そして、好ましくは0.7以下、より好ましくは0.6以下、更に好ましくは0.55である。より具体的には、好ましくは0.1~0.7、より好ましくは0.15~0.6、更に好ましくは0.25~0.55であり、0.5であることが最も好ましい。
〔リチウム塩化合物の製造方法〕
 本発明のリチウム塩化合物の製造方法は、2,5,8,11-テトラオキサドデカン(TOD)及び2,5,8,11,14-ペンタオキサペンタデカン(POP)から選ばれる1種以上のエーテル化合物とジフルオロリン酸リチウムとを接触させることを特徴とする。
 エーテル化合物(TOD及び/又はPOP)とジフルオロリン酸リチウムとの接触は、両者を混合して、攪拌しながら反応させる等の方法によって行うことができる。
 本発明の製造方法では、反応溶媒を用いることなく反応を行うことができる。このため、工業的に有利かつ効率的にリチウム塩化合物を製造することができる。
 上記反応において、配位子であるエーテル化合物(TOD及び/又はPOP)のリチウムイオン(Li)に対するモル比は、好ましくは0.3以上、より好ましくは0.4以上、更に好ましくは0.45以上であり、そして、好ましくは5以下、より好ましくは3以下、更に好ましくは2以下、更に好ましくは1.5以下である。より具体的には、好ましくは0.3~5、より好ましくは0.4~3、更に好ましくは0.45~2、特に好ましくは0.45~1.5である。
 このようなモル比で反応させることで、TOD及び/又はPOPとジフルオロリン酸リチウムとを容易に反応させることができ、また、目的物であるリチウム塩化合物の純度を高めることができる。
 前記エーテル化合物とジフルオロリン酸リチウムとの接触温度(反応温度)は、生成するリチウム塩化合物の分解を抑制する観点から、反応が進行する範囲で温度は低いことが好ましい。具体的には、-30~80℃が好ましく、-28~50℃がより好ましく、-25~20℃が更に好ましく、-24~10℃が特に好ましい。
 反応圧力は特に制限されないが、常圧(大気圧)から1MPaであることが好ましく、常圧(大気圧)から0.3MPaであることがより好ましい。
 反応時間も特に制限はないが、通常、1時間~5日間であり、好ましくは2時間~4日間、より好ましくは3時間~3日間である。
 得られたリチウム塩化合物は、必要に応じて、tert-ブチルメチルエーテル等のエーテル溶媒等で洗浄した後、室温で真空乾燥する等して、固体として単離することができる。
 また、メチルエチルカーボネート、ジメチルカーボネート等の電解液成分となる有機溶媒を加え、固体として単離せずに、そのままリチウムイオン二次電池やリチウムイオンキャパシタ等に用いる非水電解液として利用することもできる。
 本発明の製造方法によって得られるリチウム塩化合物は、プロトン核磁気共鳴スペクトル(H-NMR)、フッ素の核磁気共鳴スペクトル(19F-NMR)、元素分析等により、その構造を確認することができる。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、2,5,8,11-テトラオキサドデカン(TOD)及び2,5,8,11,14-ペンタオキサペンタデカン(POP)から選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンとからなるリチウム塩化合物を含有することを特徴とする。
 本発明の非水電解液が、高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できる理由は必ずしも明らかではないが、以下のように考えられる。
 本発明の非水電解液に含まれる化合物は、上記のとおり、TOD及びPOPから選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオン(A)と、ジフルオロリン酸アニオン〔(PO〕とからなるリチウム塩化合物である。ここで、リチウムカチオン(A)はリチウムイオンに配位していないエーテル化合物と比較して電気化学的に分解しにくく、サイクル特性を向上させることができると考えられる。またジフルオロリン酸アニオンは電極上の活性点に素早く反応するため、リチウムイオンの透過を妨げない強固な電極被膜(Solid Electrolyte Interphase:SEI膜)を形成する。このため、ジフルオロリン酸アニオンではないビス(トリフルオロメタンスルホニル)イミドイオン〔(CFSO〕等では、高温サイクル特性及び高温サイクル後の出力特性の向上効果が得られないが、本発明のリチウムカチオン(A)と、ジフルオロリン酸アニオン〔(PO〕とからなるリチウム塩化合物では、優れた高温サイクル特性及び高温サイクル後の出力特性を発現することができると考えられる。
 本発明の非水電解液において、非水電解液に含有される前記リチウムカチオン(A)と、ジフルオロリン酸アニオンとからなるリチウム塩化合物の含有量は、非水電解液中に0.1~10質量%であることが好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され高温サイクル後の出力特性が低下するおそれが少なく、また0.1質量%以上であれば被膜の形成が十分であり、高温サイクル特性が高まるので上記範囲であることが好ましい。該含有量は、非水電解液中に0.3質量%以上がより好ましく、1質量%以上が更に好ましく、1.7質量%以上が特に好ましい。また、その上限は、9質量%以下がより好ましく、7質量%以下が更に好ましく、5質量%以下が特に好ましい。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート及び鎖状エステルから選ばれる1種以上が好適に挙げられる。広い温度範囲、特に高温でのサイクル特性、サイクル後の出力特性等の電気化学特性が相乗的に向上させるため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることが更に好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることが特に好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、及びビニレンカーボネート(VC)から選ばれる1種以上が挙げられる。
 環状カーボネートの組み合わせとしては、ECとVCの組み合わせ、ECとFECの組み合わせ、PCとVCの組み合わせが特に好ましい。
 また、非水溶媒がエチレンカーボネート及び/又はプロピレンカーボネートを含むと電極上に形成される被膜の安定性が増し、蓄電デバイスを高温、高電圧で使用した場合のサイクル特性、サイクル後の出力特性、及び正極等からの金属溶出抑制効果が向上するので好ましい。
 エチレンカーボネート及び/又はプロピレンカーボネートの含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限は、好ましくは40体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 鎖状エステルとしては、非対称鎖状カーボネート、対称鎖状カーボネート、及び非対称かつエトキシ基を含有する鎖状カルボン酸エステルが好適に挙げられる。
 非対称鎖状カーボネートとしては、メチル基を有するものが好ましく、具体的には、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート、メチルイソプロピルカーボネートが好ましく、メチルエチルカーボネート(MEC)がより好ましい。
 対称鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)が好ましく、鎖状カルボン酸エステルとしては、酢酸エチル(EA)、プロピオン酸エチルが好ましい。
 前記鎖状エステルの中でも、メチルエチルカーボネート(MEC)とジメチルカーボネート(DMC)の組み合わせ、メチルエチルカーボネート(MEC)と酢酸エチルの組み合わせ、メチルエチルカーボネート(MEC)とジメチルカーボネート(DMC)と酢酸エチルの組み合わせが更に好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲、特に高温でのサイクル特性、サイクル後の出力特性等の電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状エステルの中でも酢酸エチル(EA)が占める体積の割合は、1体積%以上が好ましく、2体積%以上がより好ましく、3体積%以上が更に好ましい。その上限としては、10体積%以下が好ましく、8体積%以下がより好ましく、6体積%以下が更に好ましい。
 上記配合組成の場合に、高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制することができるので好ましい。
 環状カーボネートと鎖状エステルの割合は、広い温度範囲、特に高温での電気化学特性向上の観点から、(環状カーボネート/鎖状エステル)の体積比は、10/90~45/55が好ましく、15/85~40/60がより好ましく、20/80~35/65が更に好ましい。
(添加剤)
 本発明の非水電解液においては、本発明のリチウム塩化合物と組み合わせて用いることができる添加剤として、SO基含有化合物、芳香族化合物、炭素-炭素三重結合含有化合物、リチウム含有イオン性化合物、環状アセタール化合物及びホスファゼン化合物から選ばれる1種以上が挙げられる。
 これらの中では、SO基含有化合物、炭素-炭素三重結合含有化合物、リチウム含有イオン性化合物、及び環状アセタール化合物から選ばれる1種以上がより好ましい。
 SO基含有化合物としては、分子内に「SO基」を有する化合物であれば特にその種類は限定されない。その具体的としては、1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、エチレンサルフェート、プロピレンサルフェート、ブタン-1,4-ジイル ジメタンスルホネート、及びメチレンメタンジスルホネート等から選ばれる1種以上が好適に挙げられる。これらの中では、1,3-プロパンスルトンがより好ましい。
 芳香族化合物としては、分子内に「ベンゼン環」を有する化合物であれば特にその種類は限定されない。その具体的としては、シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、ヘキサフルオロベンゼン、オクタフルオロトルエン、ペンタフルオロフェニルメタンスルホネート、リン酸2-フェニルフェニル ジメチル、リン酸2-フェニルフェニル ジエチル、メチルフェニルカーボネート、エチルフェニルカーボネート、メチル 2-フェニルフェニルカーボネート、及びフェニル 2-フェニルフェニルカーボネート等から選ばれる1種以上が好適に挙げられる。これらの中では、シクロヘキシルベンゼンがより好ましい。
 炭素-炭素三重結合含有化合物としては、分子内に「炭素-炭素三重結合」を有する化合物であれば特にその種類は限定されない。その具体的としては、メチル 2-プロピニル カーボネート、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、エチニル エチレンカーボネート、2-プロピニル 2-オキソ-1,3-ジオキソラン-4-カルボキシレート、及び2-ブチン-1,4-ジイル ジメタンスルホネート等から選ばれる1種以上が好適に挙げられる。これらの中では、2-ブチン-1,4-ジイル ジメタンスルホネート(1,4-ブチンジオールジメタンスルホネートと同じ)がより好ましい。
 リチウム含有イオン性化合物としては、カチオン種として「リチウム」を有する化合物であれば特にその種類は限定されない。その具体的としては、ジフルオロリン酸リチウム、フルオロスルホン酸リチウム、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)、テトラフルオロ[オキサレート-O,O’]リン酸リチウム、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)やジフルオロ[オキサレート-O,O’]ホウ酸リチウム、リチウム メチルサルフェート、リチウム エチルサルフェート、及びリチウム 2,2,2-トリフルオロエチルサルフェート等から選ばれる1種以上が好適に挙げられ、2種以上併用することもできる。これらの中では、LiBOB、及びリチウム メチルサルフェートから選ばれる1種以上がより好ましい。
 環状アセタール化合物としては、分子内に「アセタール基」を有する化合物であれば、その種類は特に限定されない。その具体的としては、1,3-ジオキソラン、1,3-ジオキサン、1,3,5-トリオキサン等から選ばれる1種以上が好適に挙げられ、2種以上併用することもできる。これらの中では、1,3-ジオキサンがより好ましい。
 ホスファゼン化合物としては、分子内に「N=P-N基」を有する化合物であれば、その種類は特に限定されない。その具体的としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、エトキシヘプタフルオロシクロテトラホスファゼン、ジメチルアミノペンタフルオロシクロトリホスファゼン、及びジエチルアミノペンタフルオロシクロトリホスファゼン等から選ばれる1種以上が好適に挙げられる。これらの中でエトキシペンタフルオロシクロトリホスファゼンがより好ましい。
 前記SO基含有化合物、芳香族化合物、炭素-炭素三重結合含有化合物、リチウム含有イオン性化合物、環状アセタール化合物、又はホスファゼン化合物の含有量は、それぞれ非水電解液中に0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、高温サイクル特性及び高温サイクル後の出力特性が高まる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、3.5質量%以下がより好ましく、2.5質量%以下が更に好ましい。
 また、本発明のリチウム塩化合物と組み合わせて用いる化合物は、2種以上を併用することが好ましい。その組み合わせの中でも、リチウム含有イオン性化合物と、SO基含有化合物、芳香族化合物、炭素-炭素三重結合含有化合物、環状アセタール化合物、及びホスファゼン化合物から選ばれる少なくとも1種を併用することがより好ましい。
 本発明の非水電解液に含まれるHF濃度の下限は、リチウムイオン二次電池及びリチウムイオンキャパシタの出力を向上させる観点から、好ましくは1ppm以上、より好ましくは2ppm以上であり、HF濃度の上限は、好ましくは50ppm以下、より好ましくは20ppm以下であり、更に好ましくは8ppm以下である。
 本発明の非水電解液に含まれるアルコール含有量の下限は、リチウムイオン二次電池及びリチウムイオンキャパシタの出力を向上させる観点から、好ましくは1ppm以上、より好ましくは2ppm以上であり、アルコール含有量の上限は、好ましくは50ppm以下、より好ましくは20ppm以下、更に好ましくは8ppm以下である。
〔電解質塩〕
 本発明に使用される電解質塩としては、リチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF、LiBF、LiN(SOF)、及びLiN(SOCFから選ばれる1種以上が好ましく、LiPFがより好ましい。
 リチウム塩の濃度は、前記の非水溶媒に対して、通常0.8M以上が好ましく、1.0M以上がより好ましく、1.2M以上が更に好ましい。またその上限は、1.6M以下が好ましく、1.5M以下がより好ましく、1.4M以下が更に好ましい。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して、前記リチウムカチオン(A)と、ジフルオロリン酸アニオンからなるリチウム塩化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1、第2の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第2の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることがより好ましく、リチウムイオン二次電池用として用いることが更に好ましい。
〔第1の蓄電デバイス(リチウムイオン二次電池)〕
 本発明のリチウムイオン二次電池(以下、「リチウム二次電池」ともいう)は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液を備える。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルからなる群より選ばれる1種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2Mn0.3、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2から選ばれる1種以上が好適に挙げられる。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
 これらの中では、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi1/2Mn3/2、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V(正極のLi基準の電位は4.5V)以上で使用可能なリチウム複合金属酸化物がより好ましく、Niの含有量が多いLiNi0.5Mn0.3Co0.2、LiNi1/2Mn3/2が特に好ましい。NiやMnを含む正極を用いた場合、正極からNiやMnが金属イオンとなって溶出する量が増加し、負極に析出したNiやMnの触媒効果により負極上での電解液の分解が促進され、高温サイクル特性等の電気化学特性が低下する。しかしながら、本発明の非水電解液を用いた蓄電デバイスでは、特に高温でのサイクル特性、サイクル後の出力特性等の電気化学特性の低下や正極からの金属溶出を抑制することができるので好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、及びカーボンナノチューブから選ばれる1種以上の炭素材料が挙げられる。また、グラファイトとカーボンブラックとカーボンナノチューブを適宜混合して用いてもよい。
 導電剤の正極合剤への添加量は、好ましくは1~10質量%、より好ましくは2~5質量%である。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、又はエチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量を更に高めるため、好ましくは2g/cm以上、より好ましくは3g/cm以上、更に好ましくは3.6g/cm以上である。なお、その上限としては、4g/cm以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属、リチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、LiTi12等のチタン酸リチウム化合物等から選ばれる1種又は2種以上を組み合わせて用いることができる。特に好ましい組合せは、黒鉛とケイ素、又は黒鉛とケイ素化合物である。
 負極活物質として、黒鉛とケイ素、又は黒鉛とケイ素化合物を組み合わせて用いる場合、全負極活物質中のケイ素及びケイ素化合物の含有量は、好ましくは1~45質量%、より好ましくは、2~15質量%である。該含有量が、前記範囲であると、本発明に係るリチウム二次電池の電気化学特性の低下や電極厚みの増加を抑制しつつ高容量化できるので好ましい。
 その他のリチウム二次電池用負極活物質としてはチタンを含む酸化物が好ましく、LiTi12等のスピネル構造を有するチタン酸リチウム化合物が好ましい。チタンを含む酸化物を負極活物質と本発明の非水電解液を用いると、リチウムイオン二次電池の高温でのサイクル特性、サイクル後の出力特性を一段と向上させることができるので好ましい。
 また、導電助剤として、カーボンナノチューブを用いると、上記効果が一段と発揮され易くなるので好ましい。
 チタンを含む酸化物の比表面積は、4m/g以上100m/g以下が好ましく、レーザー回折・散乱法により求めた体積基準の平均粒径は、0.1μm以上50μm以下が好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量を更に高めるため、好ましくは1.5g/cm以上である。なお、その上限としては、2g/cm以下が好ましい。
 電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、又は不織布等を使用できる。ポリオレフィンの積層としては、ポリエチレンとポリプロピレンの積層が好ましく、中でもポリプロピレン/ポリエチレン/ポリプロピレンの3層構造がより好ましい。
 セパレータの厚みは、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、また、その上限は、好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは15μm以下である。
 リチウム電池の構造には特に限定はなく、コイン型電池、円筒型電池、角型電池、又はラミネート電池等を適用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(リチウムイオンキャパシタ)〕
 本発明の第2の蓄電デバイスは、本発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスであり、リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF等のリチウム塩が含まれる。
 リチウムイオンキャパシタは、負極材料として活性炭の代わりに予めチタン酸リチウムやリチウムイオンが吸蔵又はドープされた炭素材料を用いることで、負極電位が通常の電気二重層キャパシタよりも低く保つことができる。そのため、セルの使用電圧範囲を広くとることができる。
 本発明の非水電解液を用いれば、高温サイクル特性及び高温サイクル後の出力特性に優れたリチウムイオンキャパシタを提供することができる。
合成例1
 ビス(ジフルオロホスホリル)(2,5,8,11-テトラオキサドデカン)ジリチウムの合成
 100mlフラスコに、2,5,8,11-テトラオキサドデカン20.0g(112mmol)とジフルオロリン酸リチウム12.0g(111mmol)を仕込んだ。室温で3時間撹拌した後、-20℃に冷却した。2日間静置した後、析出物をろ過し、ろ物をtert-ブチルメチルエーテルで洗浄した。得られた固体を室温で真空乾燥し、ビス(ジフルオロホスホリル)(2,5,8,11-テトラオキサドデカン)ジリチウム19.33gを白色固体として得た(収率88.4%)。
 得られたビス(ジフルオロホスホリル)(2,5,8,11-テトラオキサドデカン)ジリチウムについて、H-NMR、19F-NMR、元素分析の測定を行い、その構造を確認した。結果を以下に示す。
H-NMR測定結果>
 H-NMR(400MHz,CDCN):3.55-3.60(8H,m),3.49-3.55(4H,m),3.33(6H,s)
19F-NMR測定結果>
 19F-NMR(376.5MHz,CDCN):84.60(4F,d,J=928.2Hz)
<元素分析結果>
 Anal.Calcd For C18Li:C,24.39;H,4.60.Found:C,24.05;H,4.62.
合成例2
 ビス(ジフルオロホスホリル)(2,5,8,11,14-ペンタオキサペンタデカン)ジリチウムの合成
 100mlフラスコに、2,5,8,11,14-ペンタオキサペンタデカン11.11g(50mmol)、ジフルオロリン酸リチウム10.80g(100mmol)と炭酸ジメチル4.50gを仕込んだ。室温で3.5時間撹拌した後、50℃で3時間、炭酸ジメチルを減圧留去し、ビス(ジフルオロホスホリル)(2,5,8,11,14-ペンタオキサペンタデカン)ジリチウム22.14gを無色粘ちょう液体として得た(収率100.0%)。
 得られたビス(ジフルオロホスホリル)(2,5,8,11,14-ペンタオキサペンタデカン)ジリチウムについて、H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
H-NMR測定結果>
 H-NMR(400MHz,CDCN):3.61-3.57(12H、m)、3.52-3.48(4H、m)、3.32(6H、s)
実施例1~19、比較例1~4
〔リチウムイオン二次電池の作製〕
 LiNi0.34Mn0.33Co0.3394質量%、アセチレンブラック(導電剤) 3質量%を混合し、予めポリフッ化ビニリデン(結着剤) 3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。
 また、SiO(負極活物質)5質量%、人造黒鉛(d002=0.335nm、負極活物質)90質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の負極シートを作製した。負極の集電体を除く部分の密度は1.55g/cmであった。
 また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
 そして、上記で得られた正極シート、微多孔性ポリエチレンフィルム製セパレータ、上記で得られた負極シートの順に積層し、これを渦巻き状に巻回した。この巻回体を負極端子を兼ねるニッケルメッキを施した鉄製の円筒型電池缶に収納した。更に、表1及び表2に記載の組成の非水電解液を注入し、正極端子を有する電池蓋をガスケットを介してかしめて、18650型円筒電池を作製した。なお正極端子は正極シートとアルミニウムのリードタブを用いて、負極缶は負極シートとニッケルのリードタブを用いて予め電池内部で接続した。
〔高温サイクル特性の評価〕
 上記の方法で作製した円筒電池を用いて55℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.25V(正極のLi基準の電位は4.35V)まで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを300サイクルに達するまで繰り返した。そして、下記の式によりサイクル後の放電容量維持率を求め、高温サイクル特性を評価した。
 放電容量維持率(%)=(300サイクル目の放電容量/1サイクル目の放電容量)×100
〔高温サイクル後の出力特性の評価〕
 高温サイクル後の円筒電池を25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.25Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電した(1C容量)。その後、1Cの定電流及び定電圧で、終止電圧4.25Vまで3時間充電を行い、5Cの定電流下、放電電圧3.0Vまで放電した(5C容量)。その容量比(5C容量/1C容量)をサイクル後の出力特性とした。
 高温サイクル後の出力特性は、比較例1の出力特性を100%としたときを基準とし、相対的な出力特性を評価した。
〔高温サイクル後の金属溶出量の評価〕
 高温サイクル後の金属溶出量は負極上に電析した金属量を同定することで求めた。負極上に電析した金属量は高温サイクル後の円筒電池を解体し、洗浄した負極シートを酸で溶解させた後、ICP(高周波誘導結合プラズマ)発光分光分析法(株式会社日立ハイテクサイエンス製、「SPS3520UV」使用)により、Ni、Mn及びCo量の合計の金属溶出量を分析した。
 金属溶出量は、比較例1のNi、Mn及びCoの合計の金属溶出量を100%としたときを基準とし、相対的な金属溶出量を評価した。
 電池の作製条件及び電池特性を表1~5に示す。
 なお、表1~2中の、Li(TOD)(POは、ビス(ジフルオロホスホリル)(2,5,8,11-テトラオキサドデカン)ジリチウムの略称であり、Li(POP)(POは、ビス(ジフルオロホスホリル)(2,5,8,11、14-ペンタオキサペンタデカン)ジリチウムの略称であり、Li(G3)TFSIは、リチウムビス(トリフルオロメタンスルホニル)イミド-2,5,8,11-テトラオキサドデカンの略称である。
 表3~5においても同様である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例20及び比較例5
 実施例5及び比較例1で用いた正極活物質に変えて、LiNi1/2Mn3/2(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiNi1/2Mn3/294質量%、アセチレンブラック(導電剤)3質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。
 この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し正極シートを作製したこと、電池評価の際の充電終止電圧を4.9V、放電終止電圧を2.7Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例1、比較例1と同様にして円筒電池を作製し、電池評価を行った。
 金属溶出量は、比較例5の金属溶出量を100%としたときを基準として求めた。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
実施例21、比較例6
 実施例5及び比較例1で用いた負極活物質に変えて、チタン酸リチウム(LiTi12;負極活物質)を用いて、負極シートを作製した。
 チタン酸リチウム90質量%、アセチレンブラック(導電剤)4質量%、カーボンナノチューブ(導電剤)1質量%を混合し、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。
 この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例1、比較例1と同様に円筒電池を作製し、電池評価を行った。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
実施例22~24、比較例7
〔溶解性試験〕
 比較例1で用いた電解液50gに、合成例1と同様の製法で得たビス(ジフルオロホスホリル)(2,5,8,11-テトラオキサドデカン)ジリチウムを所定量添加し、25℃で10分攪拌した(実施例22~24)。
 また、比較例1で用いた非水電解液50gに、ジフルオロリン酸リチウムを0.75g添加し、25℃で10分攪拌した(比較例7)。
 攪拌後、溶け残りがない完全に均一な液体が得られた場合は溶解性○とし、溶け残っている場合は溶解性×とした。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 特定のエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンからなるリチウム塩化合物を含む非水電解液を用いた実施例1~19のリチウム二次電池は何れも、比較例1~4のリチウム二次電池に比べ、高温サイクル特性、高温サイクル後の出力特性、及び正極からの金属溶出抑制効果が向上している。
 また、実施例20と比較例5の対比、実施例21と比較例6の対比から、正極にLiNi1/2Mn3/2を用いた場合や、負極にチタン酸リチウムを用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 さらに、実施例22~24と比較例7の対比からエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンからなるリチウム塩化合物は、ジフルオロリン酸リチウムと比較して、溶解性が格段に向上していることが分かる。
 本発明の非水電解液は、リチウムイオンキャパシタ等の蓄電デバイス用非水電解液として、高温サイクル特性及び高温サイクル後の出力特性等を改善する効果も有する。
 本発明の非水電解液を使用すれば、高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できる蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車、タブレット端末やウルトラブック等の高温下で使用される可能性が高い機器に搭載されるリチウムイオン二次電池やリチウムイオンキャパシタ等の蓄電デバイス用非水電解液として使用すると、高温サイクル特性及び高温サイクル後の出力特性に優れ、正極等からの金属溶出を抑制できる蓄電デバイスを得ることができる。

Claims (13)

  1.  2,5,8,11-テトラオキサドデカン及び2,5,8,11,14-ペンタオキサペンタデカンから選ばれる1種以上のエーテル化合物を配位子としたリチウムカチオンと、ジフルオロリン酸アニオンとからなるリチウム塩化合物。
  2.  前記リチウムカチオンにおける、エーテル化合物のリチウムイオン(Li)に対するモル比が0.1~0.7である、請求項1に記載のリチウム塩化合物。
  3.  ビス(ジフルオロホスホリル)(2,5,8,11-テトラオキサドデカン)ジリチウム、又はビス(ジフルオロホスホリル)(2,5,8,11,14-ペンタオキサペンタデカン)ジリチウムである、請求項1又は2に記載のリチウム塩化合物。
  4.  非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に請求項1~3のいずれかに記載のリチウム塩化合物を含有することを特徴とする非水電解液。
  5.  非水電解液中のリチウム塩化合物の含有量が0.1~10質量%である、請求項4に記載の非水電解液。
  6.  添加剤として、更に、SO基含有化合物、芳香族化合物、炭素-炭素三重結合含有化合物、リチウム含有イオン性化合物、環状アセタール化合物及びホスファゼン化合物から選ばれる1種以上を含む、請求項4又は5に記載の非水電解液。
  7.  添加剤が、SO基含有化合物、炭素-炭素三重結合含有化合物、リチウム含有イオン性化合物、及び環状アセタール化合物から選ばれる1種以上である、請求項6に記載の非水電解液。
  8.  非水電解液中の添加剤の含有量が0.001~5質量%である、請求項6又は7に記載の非水電解液。
  9.  環状カーボネート及び鎖状カーボネートから選ばれる1種以上を含有する非水溶媒を含む、請求項4~8のいずれかに記載の非水電解液。
  10.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えたリチウムイオン二次電池であって、前記非水電解液が、請求項4~9のいずれかに記載の非水電解液であることを特徴とするリチウムイオン二次電池。
  11.  負極が負極活物質として、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物から選ばれる1種又は2種以上を含む、請求項10に記載のリチウムイオン二次電池。
  12.  請求項4~9のいずれかに記載の非水電解液を用いることを特徴とするリチウムイオンキャパシタ。
  13.  2,5,8,11-テトラオキサドデカン及び2,5,8,11,14-ペンタオキサペンタデカンから選ばれる1種以上のエーテル化合物とジフルオロリン酸リチウムとを接触させる請求項1~3のいずれかに記載のリチウム塩化合物の製造方法。
     
PCT/JP2015/085697 2015-05-27 2015-12-21 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ WO2016189769A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15893401.8A EP3305753B1 (en) 2015-05-27 2015-12-21 Lithium salt compound, nonaqueous electrolyte solution using same, lithium ion secondary battery and lithium ion capacitor
US15/572,969 US10446871B2 (en) 2015-05-27 2015-12-21 Lithium salt compound, nonaqueous electrolyte solution using same, lithium ion secondary battery and lithium ion capacitor
CN201580079742.0A CN107531600A (zh) 2015-05-27 2015-12-21 锂盐化合物、及使用了其的非水电解液、锂离子二次电池及锂离子电容器
JP2015562976A JP6265217B2 (ja) 2015-05-27 2015-12-21 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015107963A JP5835514B1 (ja) 2015-05-27 2015-05-27 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
JP2015-107963 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016189769A1 true WO2016189769A1 (ja) 2016-12-01

Family

ID=54933155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085697 WO2016189769A1 (ja) 2015-05-27 2015-12-21 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ

Country Status (5)

Country Link
US (1) US10446871B2 (ja)
EP (1) EP3305753B1 (ja)
JP (2) JP5835514B1 (ja)
CN (1) CN107531600A (ja)
WO (1) WO2016189769A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029215A (ja) * 2017-07-31 2019-02-21 トヨタ自動車株式会社 非水系二次電池
JP2019087454A (ja) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 リチウムイオン二次電池用の電解液
CN110088941A (zh) * 2016-12-16 2019-08-02 美敦力公司 锂离子电池和灭菌方法
WO2020246522A1 (ja) * 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液及び非水電解液電池
US11784342B2 (en) 2017-08-10 2023-10-10 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140889B (zh) * 2015-10-09 2020-12-25 宇部兴产株式会社 非水电解液及使用了非水电解液的蓄电设备
US20190131623A1 (en) * 2016-04-28 2019-05-02 Hitachi Chemical Company, Ltd. Method for charging lithium-ion secondary battery, lithium-ion secondary battery system, and power storage device
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20180038235A (ko) * 2016-10-06 2018-04-16 삼성에스디아이 주식회사 디설포네이트 첨가제를 포함하는 리튬이차전지
JP6996622B2 (ja) * 2018-05-31 2022-01-17 株式会社村田製作所 非水電解質二次電池
US20200388885A1 (en) * 2019-06-05 2020-12-10 Enevate Corporation Silicon-based energy storage devices with lipo2f2 salt-containing electrolyte formulations
CN112670581B (zh) * 2020-12-23 2023-11-17 远景动力技术(江苏)有限公司 适用于-20℃~60℃的非水电解液及基于其的锂离子电池
CN112736285A (zh) * 2021-01-05 2021-04-30 欣旺达电动汽车电池有限公司 电解液和锂离子电池
KR20230057798A (ko) * 2021-10-22 2023-05-02 주식회사 엘지에너지솔루션 전해액 첨가제, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지
CN114552010B (zh) * 2022-02-23 2022-12-09 珠海市赛纬电子材料股份有限公司 锂金属电池用添加剂、电解液及其锂金属电池
CN114725512A (zh) * 2022-03-25 2022-07-08 深圳新宙邦科技股份有限公司 一种非水电解液及二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291994A (ja) * 1997-04-21 1998-11-04 Central Glass Co Ltd 安定化されたフッ化リチウム錯塩組成物
JP2008222484A (ja) * 2007-03-12 2008-09-25 Central Glass Co Ltd ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329404A (en) * 1980-09-02 1982-05-11 Duracell International Inc. Rechargeable non-aqueous cells with complex electrolyte salts
US4753859A (en) * 1987-10-13 1988-06-28 American Telephone And Telegraph Company, At&T Laboratories Nonaqueous cell
JP3439085B2 (ja) * 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
FR2818972B1 (fr) * 2000-12-29 2003-03-21 Rhodia Chimie Sa Procede de fluoration d'un compose halogene
JP4233819B2 (ja) * 2002-06-25 2009-03-04 三菱化学株式会社 非水電解液二次電池
US10629947B2 (en) * 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
EP2647599B1 (en) * 2005-06-20 2018-05-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte comprising a hexafluorophosphate and a difluorophosphate
JP4972922B2 (ja) * 2005-12-14 2012-07-11 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
JP4651114B2 (ja) * 2006-09-13 2011-03-16 国立大学法人静岡大学 リチウム塩の製造方法
JP5268016B2 (ja) * 2007-04-26 2013-08-21 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
US8283074B2 (en) * 2008-08-15 2012-10-09 Uchicago Argonne, Llc Electrolyte salts for nonaqueous electrolytes
JP2010073489A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 熱安定性に優れた電解液およびそれを用いた二次電池
JPWO2011001985A1 (ja) 2009-06-30 2012-12-13 旭硝子株式会社 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池
JPWO2011136226A1 (ja) 2010-04-26 2013-07-22 旭硝子株式会社 二次電池用非水電解液および二次電池
JP5998645B2 (ja) * 2012-05-30 2016-09-28 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
US9059481B2 (en) * 2013-08-30 2015-06-16 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte and non-lithium alkali metal or alkali-ion secondary batteries containing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291994A (ja) * 1997-04-21 1998-11-04 Central Glass Co Ltd 安定化されたフッ化リチウム錯塩組成物
JP2008222484A (ja) * 2007-03-12 2008-09-25 Central Glass Co Ltd ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANG-DON HAN ET AL.: "Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 16, 27 March 2015 (2015-03-27), pages 8492 - 8500, XP055332028 *
See also references of EP3305753A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088941A (zh) * 2016-12-16 2019-08-02 美敦力公司 锂离子电池和灭菌方法
US11581586B2 (en) 2016-12-16 2023-02-14 Medtronic, Inc. Lithium ion batteries and methods of sterilization
JP2019029215A (ja) * 2017-07-31 2019-02-21 トヨタ自動車株式会社 非水系二次電池
US11784342B2 (en) 2017-08-10 2023-10-10 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
JP2019087454A (ja) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 リチウムイオン二次電池用の電解液
JP7004201B2 (ja) 2017-11-08 2022-01-21 トヨタ自動車株式会社 リチウムイオン二次電池用の電解液
WO2020246522A1 (ja) * 2019-06-05 2020-12-10 セントラル硝子株式会社 非水電解液及び非水電解液電池

Also Published As

Publication number Publication date
EP3305753A4 (en) 2019-01-09
JPWO2016189769A1 (ja) 2017-06-08
EP3305753B1 (en) 2020-08-19
JP6265217B2 (ja) 2018-01-24
US10446871B2 (en) 2019-10-15
US20180159173A1 (en) 2018-06-07
JP5835514B1 (ja) 2015-12-24
CN107531600A (zh) 2018-01-02
EP3305753A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6265217B2 (ja) リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
JP6614146B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
EP1890357B1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery and carbonate compound
US9583788B2 (en) Nonaqueous electrolytic solution and energy storage device using same
JP5610052B2 (ja) リチウム電池用非水電解液及びそれを用いたリチウム電池
EP2770572B1 (en) Non-aqueous electrolyte solution and electricity-storage device using same
JP6222106B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5392259B2 (ja) 非水電解液及びそれを用いたリチウム電池
EP2168199B1 (en) Non-aqueous electrolyte and electrochemical device comprising the same
WO2014021272A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
KR20140063672A (ko) 비수전해액 및 그것을 사용한 전기화학소자
JP5822044B1 (ja) 非水電解液、並びにそれを用いたリチウムイオン二次電池及びリチウムイオンキャパシタ
WO2010018814A1 (ja) 非水電解液及びそれを用いたリチウム電池
WO2014050877A1 (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
CN104205471A (zh) 非水电解液及使用了该非水电解液的蓄电设备
WO2010007889A1 (ja) リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるホルミルオキシ基含有化合物
WO2017047554A1 (ja) 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
WO2012133798A1 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP6766818B2 (ja) リチウム二次電池用又はリチウムイオンキャパシタ用非水電解液及びそれを用いたリチウム二次電池又はリチウムイオンキャパシタ
JP2013069512A (ja) 非水電解液、リチウムイオン二次電池、及び、モジュール
JP6957179B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2016222641A (ja) リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
EP3605699A1 (en) New components for electrolyte compositions
KR20200046943A (ko) 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
EP3605698A1 (en) New components for electrolyte compositions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562976

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572969

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE