WO2014050877A1 - 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール - Google Patents

非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール Download PDF

Info

Publication number
WO2014050877A1
WO2014050877A1 PCT/JP2013/075884 JP2013075884W WO2014050877A1 WO 2014050877 A1 WO2014050877 A1 WO 2014050877A1 JP 2013075884 W JP2013075884 W JP 2013075884W WO 2014050877 A1 WO2014050877 A1 WO 2014050877A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
compound
general formula
fluorine
ppm
Prior art date
Application number
PCT/JP2013/075884
Other languages
English (en)
French (fr)
Inventor
坂田 英郎
明天 高
穣輝 山崎
昭佳 山内
みちる 賀川
葵 中園
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP13841887.6A priority Critical patent/EP2903075A4/en
Priority to JP2014538524A priority patent/JPWO2014050877A1/ja
Priority to CN201380050258.6A priority patent/CN104685700A/zh
Priority to US14/429,285 priority patent/US20150235772A1/en
Priority to KR1020157009134A priority patent/KR20150054951A/ko
Publication of WO2014050877A1 publication Critical patent/WO2014050877A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt with a reduced content of a specific compound, an electrochemical device including the non-aqueous electrolyte, a lithium ion secondary battery, and a module.
  • Non-aqueous electrolytes for electrochemical devices such as lithium ion secondary batteries are generally prepared by dissolving electrolyte salts such as LiPF 6 and LiBF 4 in non-aqueous solvents such as ethylene carbonate, propylene carbonate, and dimethyl carbonate. in use.
  • electrolyte salts such as LiPF 6 and LiBF 4
  • non-aqueous solvents such as ethylene carbonate, propylene carbonate, and dimethyl carbonate.
  • Patent Document 1 discloses that a non-aqueous electrolytic secondary battery using a fluorinated chain carbonate suppresses the generation of gas due to electrolysis and has high safety. However, Patent Document 1 does not describe impurities of the compound. In addition, such a non-aqueous electrolyte secondary battery has a problem that the discharge capacity is lowered when it is left in a high temperature environment or repeatedly charged and discharged.
  • An object of this invention is to provide the non-aqueous electrolyte which can obtain the lithium ion secondary battery etc. which were excellent in the storage characteristic in high temperature, and a high voltage cycling characteristic.
  • the present invention is a nonaqueous electrolytic solution containing a nonaqueous solvent and an electrolyte salt
  • the non-aqueous solvent is represented by the general formula (1): RfOCOOR (1) (Wherein Rf is a fluorinated alkyl group having 1 to 4 carbon atoms, and R is an alkyl group having 1 to 4 carbon atoms), and Containing at least one cyclic carbonate (B) selected from the group consisting of ethylene carbonate, propylene carbonate and fluoroethylene carbonate, and (I) General formula (2): RfOH (2) (Wherein Rf is the same as defined above), (II) General formula (3): ROH (3) Wherein R is the same as defined above, and (III) General formula (4): ROCOCl (4) (Wherein R is as defined above), at least one compound ( ⁇ ) selected from the group consisting of compounds represented by: (IV) General formula (5): HO (CH 2 CH 2 ) n OH (5) Wherein n is an integer of
  • the fluorine-containing chain carbonate (A) is preferably CF 3 CH 2 OCOOCH 3 or CF 3 CH 2 OCOOCH 2 CH 3 .
  • the content of the fluorine-containing chain carbonate (A) is preferably 0.5 to 90% by weight in the non-aqueous solvent.
  • the cyclic carbonate (B) is ethylene carbonate and the compound ( ⁇ ) is a compound represented by the general formula (5). It is preferable that the cyclic carbonate (B) is propylene carbonate and the compound ( ⁇ ) is a compound represented by the general formula (6).
  • the cyclic carbonate (B) is fluoroethylene carbonate and the compound ( ⁇ ) is a compound represented by the general formula (7).
  • the present invention is also an electrochemical device comprising the non-aqueous electrolyte described above.
  • the present invention is also a lithium ion secondary battery comprising a positive electrode, a negative electrode, and the non-aqueous electrolyte described above.
  • the present invention is also a module comprising the above-described lithium ion secondary battery.
  • the present invention can provide a non-aqueous electrolyte solution capable of obtaining a lithium ion secondary battery and the like excellent in high temperature storage characteristics and high voltage cycle characteristics.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt
  • the non-aqueous solvent is represented by the general formula (1): RfOCOOR (1) (Wherein Rf is a fluorinated alkyl group having 1 to 4 carbon atoms, and R is an alkyl group having 1 to 4 carbon atoms), and Containing at least one cyclic carbonate (B) selected from the group consisting of ethylene carbonate, propylene carbonate and fluoroethylene carbonate, and (I) General formula (2): RfOH (2) (Wherein Rf is the same as defined above), (II) General formula (3): ROH (3) Wherein R is the same as defined above, and (III) General formula (4): ROCOCl (4) (Wherein R is as defined above), at least one compound ( ⁇ ) selected from the group consisting of compounds represented by: (IV) General formula (5): HO (CH 2 CH 2 )
  • the “fluorinated alkyl group” is a group in which at least one hydrogen atom of an alkyl group is substituted with a fluorine atom.
  • the compounds represented by the general formulas (2) to (7) are referred to as the compound (I), the compound (II), the compound (III), the compound (IV), the compound (V), and the compound (VI), respectively. There is also.
  • the non-aqueous solvent contains a fluorine-containing chain carbonate (A) represented by the general formula (1).
  • Rf is, for example, CF 3 —, CF 3 CF 2 —, (CF 3 ) 2 CH—, CF 3 CH 2 —, C 2 F 5 CH 2 —, HCF 2 CF 2 CH 2 —, CF 3 CFHCF 2 CH 2- and the like can be exemplified, and among these, CF 3 CH 2 -is particularly preferable because it has high flame retardancy and good rate characteristics and oxidation resistance.
  • R examples include —CH 3 , —CH 2 CH 3 , —CH (CH 3 ) 2 , —C 3 H 7 and the like.
  • —CH 3 , —CH 2 CH 3 has a viscosity of It is particularly preferred from the viewpoint of low and good rate characteristics.
  • fluorine-containing chain carbonate (A) examples include, for example, CF 3 CH 2 OCOOCH 3 , CF 3 CH 2 OCOOCH 2 CH 3 , CF 3 CF 2 CH 2 OCOOCH 3 , and CF 3 CF 2 CH 2 OCOOCH 2. CH 3 etc. can be mentioned. Among these, CF 3 CH 2 OCOOCH 3 and CF 3 CH 2 OCOOCH 2 CH 3 are preferable.
  • the content of the fluorine-containing chain carbonate (A) is preferably 0.5 to 90% by weight in the non-aqueous solvent.
  • the discharge capacity tends to decrease, and the allowable upper limit is 90% by weight.
  • the fluorine-containing chain carbonate (A) can exhibit its effect in a relatively small amount.
  • a more preferable upper limit value is 70% by weight, and an effective lower limit value is more preferably 10% by weight, still more preferably 20% by weight.
  • the non-aqueous solvent further contains at least one compound ( ⁇ ) selected from the group consisting of compound (I), compound (II) and compound (III).
  • the fluorine-containing chain carbonate (A) can be usually synthesized by reacting the compound (I) with the compound (III). Therefore, depending on the method of purification, compound (I) and compound (III), which are starting materials, may remain as impurities.
  • Compound (II) may also be generated as an impurity when the fluorine-containing chain carbonate represented by the general formula (1) is synthesized.
  • Rf in the general formula (1) and the general formula Rf in (2) is the same, and R in general formula (1) is the same as R in general formulas (3) and (4).
  • CF 3 CH 2 OCOOCH 3 can usually be synthesized by reacting CF 3 CH 2 OH with CH 3 OCOCl, CF 3 CH 2 OH (compound (I-1)) or CH 3 OCOCl ( Compound (III-1)) may remain as an impurity, and CH 3 OH (compound (II-1)) may also be generated as an impurity.
  • CF 3 CH 2 OCOOCH 2 CH 3 can usually be synthesized by reacting CF 3 CH 2 OH with CH 3 CH 2 OCOCl, CF 3 CH 2 OH (compound (I-1)) or CH 3 CH 2 OCOCl (compound (III-2)) may remain as an impurity, and CH 3 CH 2 OH (compound (II-2)) may also be generated as an impurity.
  • the content of the compound ( ⁇ ) is 5000 ppm or less, preferably 3500 ppm or less with respect to the fluorine-containing chain carbonate (A). More preferably, it is 2500 ppm or less. More preferably, it is 1000 ppm or less, Most preferably, it is 100 ppm or less, Most preferably, it is 10 ppm or less.
  • the compounds (I) to (III) are contained in a total amount of more than 5000 ppm, the discharge characteristics after storage at high temperature tend to be greatly deteriorated.
  • the HOMO energy of the compounds (I) to (III) obtained by molecular activation calculation is higher than that of the fluorine-containing chain carbonate (A), the oxidation resistance is weak. Therefore, it is considered that when the voltage is increased, it is decomposed and becomes a cause of deterioration. From this, it is considered that the lower the content of the compounds (I) to (III) in the non-aqueous solvent, the less the deterioration of the storage characteristics of the battery.
  • the compound ( ⁇ ) (that is, the compounds (I) to (III)) is an impurity contained in the fluorine-containing chain carbonate (A). Therefore, by purifying the fluorinated chain carbonate (A) in advance, the content of the compound ( ⁇ ) in the non-aqueous solvent (the total content of the compounds (I) to (III)) is within the above range (above the above 5000 ppm or less with respect to the fluorine-containing chain carbonate (A).
  • ppm is based on weight
  • 5000 ppm or less with respect to the fluorine-containing chain carbonate (A) is 0.5 parts by weight or less with respect to 100 parts by weight of the fluorine-containing chain carbonate (A).
  • Examples of the purification method of the fluorine-containing chain carbonate (A) include a rectification method using a distillation column having 10 or more theoretical plates.
  • a by-product is generated.
  • the fluorine-containing chain carbonate (A) is CF 3 CH 2 OCO 2 CH 3
  • the following reaction occurs and a by-product is generated.
  • the distillation temperature is preferably 90 ° C. or lower, and more preferably 70 ° C. or lower.
  • the non-aqueous solvent contains at least one cyclic carbonate (B) selected from the group consisting of ethylene carbonate, propylene carbonate, and fluoroethylene carbonate.
  • B cyclic carbonate
  • the content of the cyclic carbonate (B) is preferably 5 to 80% by weight in the non-aqueous solvent.
  • the lower limit is more preferably 10% by weight.
  • 50 weight% is more preferable, 40 weight% is still more preferable, and 30 weight% is especially preferable.
  • the non-aqueous solvent further contains at least one compound ( ⁇ ) selected from the group consisting of compound (IV), compound (V), and compound (VI).
  • the compound ( ⁇ ) is a byproduct generated when the cyclic carbonate (B) is synthesized. More specifically, compound (IV) is a by-product during the synthesis of ethylene carbonate, compound (V) is a by-product during the synthesis of propylene carbonate, and compound (VI) is a fluoro-ethylene carbonate synthesis. By-product of time.
  • the cyclic carbonate (B) is ethylene carbonate and the compound ( ⁇ ) is a compound represented by (IV) general formula (5). Moreover, it is preferable that the said cyclic carbonate (B) is a propylene carbonate, and the said compound ((beta)) is a compound shown by (V) general formula (6). Moreover, it is preferable that the said cyclic carbonate (B) is a fluoroethylene carbonate, and the said compound ((beta)) is a compound shown by (VI) general formula (7).
  • the non-aqueous solvent contains two or more kinds of cyclic carbonates (B), it may contain two or more kinds of compounds ( ⁇ ).
  • the compound ( ⁇ ) is an impurity of the cyclic carbonate (B).
  • the cyclic carbonate (B) is purified in advance.
  • the amount of the compound ( ⁇ ) that is an impurity that is, the compound (IV), the compound (V), the compound (VI)
  • the content of the compound ( ⁇ ) is within the range described later. It can be. It does not specifically limit as a purification method of the said cyclic carbonate (B), What is necessary is just a well-known purification method, for example, it is good to perform rectification using the distillation column of 10 or more theoretical plates.
  • the content of the compound ( ⁇ ) (that is, the total content of the compound (IV), the compound (V), and the compound (VI)) is 50 ppm or less with respect to the cyclic carbonate (B). It is. For this reason, it is excellent in storage characteristics at high temperatures and high voltage cycle characteristics. When it contains more than 50 ppm, there exists a tendency for the fall of the discharge characteristic after high temperature storage to become large. In addition, 50 ppm or less means here that it is 0.005 mass part or less with respect to 100 mass parts of cyclic carbonate (B).
  • compounds (IV) to (VI) are as follows: compound (IV) is based on ethylene carbonate, compound (V) is based on propylene carbonate, and compound (VI) is based on fluoroethylene carbonate. It is preferable that
  • the non-aqueous solvent may contain other components.
  • any known components can be used as the solvent for the non-aqueous electrolyte secondary battery.
  • alkylene carbonates such as butylene carbonate and 4,5-difluoroethylene carbonate
  • dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, and ethyl methyl carbonate (alkyl groups having 1 to 4 carbon atoms are preferred
  • Cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran
  • chain ethers such as dimethoxyethane and dimethoxymethane
  • cyclic carboxylic acid ester compounds such as ⁇ -butyrolactone and ⁇ -valerolactone
  • chain carboxylic acid esters Two or more of these may be used in combination.
  • dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms examples include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. It is done. Among these, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable.
  • Still another example of a preferable non-aqueous solvent includes a phosphorus-containing organic solvent.
  • the phosphorus-containing organic solvent include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, and ethylene ethyl phosphate.
  • the phosphorus-containing organic solvent is contained in the nonaqueous solvent so as to be 10% by volume or more, the flammability of the electrolytic solution can be reduced.
  • the content of the phosphorus-containing organic solvent is 10 to 80% by volume, and the other components are mainly dissolved in a non-aqueous solvent selected from ⁇ -butyrolactone, ⁇ -valerolactone, alkylene carbonate, and dialkyl carbonate. Therefore, the balance between the cycle characteristics and the large current discharge characteristics is improved.
  • the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule is preferably contained in a non-aqueous solvent in an amount of 8% by weight or less, more preferably 0.01 to 8% by weight.
  • a non-aqueous solvent in an amount of 8% by weight or less, more preferably 0.01 to 8% by weight.
  • side reactions at the negative electrode of the fluorine-containing chain carbonate (A) can be suppressed, and the storage characteristics and the cycle characteristics of the battery can be further improved, which is preferable.
  • the amount of cyclic carbonate added exceeds 8% by weight, battery characteristics after storage may be deteriorated.
  • the lower limit is preferably 0.1% by weight and the upper limit is preferably 3% by weight.
  • Examples of the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoro Vinylene carbonate compounds such as methyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4 Vinyl ethylene carbonate compounds such as diethyl 5-methylene-ethylene carbonate.
  • vinylene carbonate 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate or 4,5-divinylethylene carbonate, particularly vinylene carbonate or 4-vinylethylene carbonate are preferred. Two or more of these may be used in combination.
  • the non-aqueous solvent used in the present invention includes the general formula (8): Rf 1 -O-Rf 2 (8) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms; provided that at least one is a fluorinated alkyl group) Ethers can be included.
  • Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms; provided that at least one is a fluorinated alkyl group
  • Ethers can be included.
  • the compounds represented by the following (I ′) and (II ′), which are impurities of the fluorine-containing ether, are preferably contained in a total amount of 5000 ppm or less with respect to the fluorine-containing ether.
  • II ′) General formula (9): Rf 1 OH (9) (Wherein Rf 1 is the same as above)
  • a hydroxyl group-containing compound represented by formula hereinafter also referred to as compound (II ′)).
  • fluorine-containing ether represented by the general formula (8) include, for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, and HCF 2 CF 2 CH 2.
  • oxidation resistance and, from the viewpoint of compatibility with an electrolyte salt such as LiPF 6, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, and consists of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
  • an electrolyte salt such as LiPF 6, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, and consists of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
  • One or more compounds selected from the group are preferable, and HCF 2 CF 2 CH 2 OCF 2 CF 2 H is more preferable.
  • the content of the fluorinated ether represented by the general formula (8) is preferably 40% by weight or less, more preferably 3 to 40% by weight in the non-aqueous solvent.
  • the fluorine-containing unsaturated compound (I ′) is derived from a by-product generated when the fluorine-containing ether represented by the general formula (8) is synthesized. Specifically, hydrogen fluoride (HF) is eliminated from the fluorine-containing ether represented by the general formula (8) and an unsaturated bond is generated.
  • HF hydrogen fluoride
  • Rf 1 OH 9
  • examples of Rf 1 include the same as those in the general formula (8), and specific examples include (II′-1) HCF 2 CF 2 CH 2 OH.
  • Compounds (I ′) and (II ′) are impurities contained in the fluorine-containing ether. Therefore, when the fluorine-containing ether represented by the general formula (8) is used, the content of the compounds (I ′) and (II ′) in the non-aqueous solvent can be reduced by purifying the fluorine-containing ether in advance. It can be in the above-mentioned range (a total of 5000 ppm or less with respect to the fluorine-containing ether).
  • ppm is based on weight
  • 5000 ppm or less with respect to the fluorinated ether indicates 0.5 parts by weight or less with respect to 100 parts by weight of the fluorinated ether.
  • compound (I ') and (II') As an upper limit of content of compound (I ') and (II'), it is preferable that it is 3500 ppm or less in total with respect to the said fluorine-containing ether, and it is more preferable that it is 2000 ppm or less.
  • the total amount of the compounds (I ′) and (II ′) is more than 5000 ppm, there is a tendency that the discharge characteristics after high-temperature storage are deteriorated and the cycle deterioration is increased when the voltage is increased.
  • the compounds (I ′) and (II ′) particularly when Rf 1 OH (compound (II ′)) remains, it easily reacts with Li, so that the capacity tends to decrease.
  • the fluorine-containing unsaturated compound (I ′) has a double bond, when many of these remain, there is a tendency that they easily react with moisture and the like in the electrolytic solution and decompose.
  • nonaqueous solvent may contain other useful compounds, for example, conventionally known additives, dehydrating agents, deoxidizing agents, and overcharge preventing agents as required.
  • Additives include carbonate compounds such as fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, and erythritan carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride Carboxylic anhydrides such as acid, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, and phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4 -Sulfur-containing compounds such as butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, and tetramethylthiuram monosulfide; 1-methyl-2-pyrrolidinone, 1-methyl-2
  • aromatic compounds such as cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran and dibenzofuran;
  • aromatic compounds such as cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran and dibenzofuran;
  • partially fluorinated products of the above aromatic compounds such as fluorobiphenyl; fluorine-containing anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, and 2,6-difluoroanisole.
  • any salt can be used, but a lithium salt is preferable.
  • the lithium salt include inorganic lithium salts such as LiClO 4 , LiPF 6 , and LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , and LiBF 2 (C 2 F 5 Fluorine-containing organic acid lithium salts such as SO 2 ) 2 and the like can be mentioned, and these can be used alone or in combination of two
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 are preferable, and LiPF 6 and LiBF 4 are more preferable.
  • inorganic lithium salts such as LiPF 6 and LiBF 4 and fluorine-containing organic lithium salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 are used in combination, This is preferable because deterioration after storage at high temperature is reduced.
  • the electrolyte salt concentration in the non-aqueous electrolyte of the present invention is preferably 0.5 to 3 mol / liter. Outside this range, the electrical conductivity of the electrolytic solution tends to be low, and the battery performance tends to deteriorate.
  • the non-aqueous electrolyte of the present invention has a specific compound content of a certain level or less. For this reason, the electrochemical device using the non-aqueous electrolyte of the present invention is excellent in storage characteristics at high temperatures and high voltage cycle characteristics.
  • the electrochemical device provided with such a non-aqueous electrolyte of the present invention is also one aspect of the present invention.
  • Examples of the electrochemical device using the nonaqueous electrolytic solution of the present invention include a lithium ion secondary battery and an electric double layer capacitor.
  • the configuration of the lithium ion secondary battery will be described.
  • the lithium ion secondary battery including the negative electrode, the positive electrode, and the above-described nonaqueous electrolytic solution of the present invention is also one aspect of the present invention.
  • a carbonaceous material capable of occluding and releasing lithium such as a pyrolyzate of organic matter under various pyrolysis conditions, artificial graphite, and natural graphite; tin oxide, silicon oxide, etc.
  • Metal oxide materials capable of inserting and extracting lithium; lithium metal; various lithium alloys and the like can be used. Two or more of these negative electrode materials may be mixed and used.
  • Carbonaceous materials that can occlude and release lithium include artificial graphite or purified natural graphite produced by high-temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment of these graphite with pitch or other organic substances. Those obtained by carbonization after application are preferred.
  • the negative electrode may be manufactured by a conventional method. For example, a method of adding a binder, a thickener, a conductive material, a solvent, and the like to the negative electrode material to form a slurry, applying the slurry to the current collector, drying, and pressing to increase the density can be given.
  • any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in manufacturing the electrode.
  • examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
  • thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • Examples of the material for the negative electrode current collector include copper, nickel, and stainless steel. Among these, copper is preferable from the viewpoint of easy processing into a thin film and cost.
  • the positive electrode material constituting the lithium ion secondary battery is particularly preferably a positive electrode active material of a lithium-containing transition metal composite oxide that produces a high voltage.
  • a positive electrode active material of a lithium-containing transition metal composite oxide that produces a high voltage.
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferable because it has a high energy density and can provide a high-power lithium ion secondary battery.
  • positive electrode actives such as LiFePO 4 , LiNi 0.8 Co 0.2 O 2 , Li 1.2 Fe 0.4 Mn 0.4 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiV 3 O 6, etc. It may be a substance.
  • the blending amount of the positive electrode active material is preferably 50 to 99% by mass, more preferably 80 to 99% by mass of the positive electrode mixture, from the viewpoint of high battery capacity.
  • the particles of the positive electrode active material mainly consist of secondary particles, and the secondary particles. It is preferable to contain 0.5 to 7.0% by volume of fine particles having an average particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less. By containing fine particles having an average primary particle diameter of 1 ⁇ m or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be accelerated, and the output performance can be improved. .
  • the positive electrode may be manufactured by a conventional method. For example, a method of adding a binder, a thickener, a conductive material, a solvent, and the like to the positive electrode material to form a slurry, applying the slurry to the current collector, drying, and pressing to increase the density can be given.
  • the binder for the positive electrode the same one as that for the negative electrode can be used, and any material can be used as long as it is a safe material for the solvent and the electrolytic solution used in manufacturing the electrode.
  • any material include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
  • the thing similar to a negative electrode can be used also about the thickener of a positive electrode, and carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, an oxidized starch, a phosphorylated starch, casein, etc. are mentioned.
  • Examples of the conductive material include carbon materials such as graphite and carbon black.
  • Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or an alloy thereof is preferable.
  • the material and shape of the separator used for the lithium ion secondary battery are arbitrary as long as they are stable in the non-aqueous electrolyte and excellent in liquid retention.
  • a porous sheet or non-woven fabric made of a polyolefin such as polyethylene or polypropylene is preferred. Specific examples include a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, a microporous polypropylene / polyethylene two-layer film, and a microporous polypropylene / polyethylene / polypropylene three-layer film. It is done.
  • the shape of the battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size.
  • the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery.
  • a module comprising a lithium ion secondary battery using the non-aqueous electrolyte of the present invention is also one aspect of the present invention.
  • Synthesis Example 1 Synthesis Method of CF 3 CH 2 OCO 2 CH 3
  • a reaction tube was prepared by installing a reflux tube and a dropping funnel in a 10 L four-necked flask. Thereafter, CF 3 CH 2 OH (750 g; 7.5 mol), methyl chloroformate (708.8 g; 7.5 mol) and diglyme (700 mL) as a solvent were added and stirred in an ice bath. Thereafter, using a dropping funnel, triethylamine (758.3 g; 7.5 mol) was added while paying attention to heat generation. Gradually, triethylamine hydrochloride precipitated and the reaction solution turned milky white. After completion of the reaction, the reaction solution was washed with 1N HCl aqueous solution.
  • Rectification A to C were gas chromatographed (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60 m, ID 0.32 mm, Film 1.8 ⁇ m); raised from 50 ° C. to 250 ° C. at 10 ° C./min. Temperature; both the injection and detector (FID) are 250 ° C.), and the purity of CF 3 CH 2 OCO 2 CH 3 and the CF of compounds (I-1), (II-1), (III-1) The content with respect to 3 CH 2 OCO 2 CH 3 was determined. The results are shown in Table 1.
  • Synthesis Example 2 Synthesis Method of CF 3 CH 2 OCO 2 C 2 H 5
  • a 10 L 4-neck flask was equipped with a reflux tube and a dropping funnel to prepare a reaction apparatus. Thereafter, CF 3 CH 2 OH (750 g; 7.5 mol), ethyl chloroformate (813.3 g; 7.5 mol) and diglyme (1250 mL) as a solvent were added and stirred in an ice bath. Thereafter, using a dropping funnel, triethylamine (758.3 g; 7.5 mol) was added while paying attention to heat generation. Gradually, triethylamine hydrochloride precipitated and the reaction solution turned milky white. After completion of the reaction, the reaction solution was washed with 1N HCl aqueous solution.
  • Rectification DF was gas chromatographed (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60 m, ID 0.32 mm, Film 1.8 ⁇ m); increased from 50 ° C. to 250 ° C. at 10 ° C./min.
  • the temperature of the CF 3 CH 2 OCO 2 C 2 H 5 and the compounds (I-1), (II-2), (III-2) Of CF 3 CH 2 OCO 2 C 2 H 5 was determined. The results are shown in Table 2.
  • Synthesis Example 3 Synthesis Method of CF 3 CH 2 OCO 2 CH 3
  • a 10 L 4-necked flask was equipped with a reflux tube and a dropping funnel to prepare a reaction apparatus. Thereafter, CF 3 CH 2 OH (750 g; 7.5 mol), methyl chloroformate (708.8 g; 7.5 mol) and diglyme (700 mL) as a solvent were added and stirred in an ice bath. Thereafter, using a dropping funnel, triethylamine (758.3 g; 7.5 mol) was added while paying attention to heat generation. Gradually, triethylamine hydrochloride precipitated and the reaction solution turned milky white. After completion of the reaction, the reaction solution was washed with 1N HCl aqueous solution.
  • the organic layer separated after washing was rectified using a 10-stage distillation purification tower.
  • the rectification was performed at an external temperature of 110 ° C. under reduced pressure (0.03 MPa) using a vacuum pump.
  • CF 3 CH 2 OH compound (I-1)
  • CH 3 OH compound (II-1)
  • CH 3 Rectification G H, I, J, K, L, and M having different contents of OCOCl (compound (III-1)
  • Rectification G to M were gas chromatographed (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60 m, ID 0.32 mm, Film 1.8 ⁇ m); raised from 50 ° C. to 250 ° C. at 10 ° C./min. Temperature; both the injection and detector (FID) are 250 ° C.), and the purity of CF 3 CH 2 OCO 2 CH 3 and the CF of compounds (I-1), (II-1), (III-1) The content with respect to 3 CH 2 OCO 2 CH 3 was determined. The results are shown in Table 3.
  • Example 1 Under a dry argon atmosphere, 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate containing 20 ppm of HOCH 2 CH 2 OH (volume ratio 3: 7), 3 parts by weight of CF 3 CH 2 OCO 2 CH 3 of rectified C Then, fully dried LiPF 6 was dissolved at a rate of 1 mol / liter to obtain an electrolytic solution.
  • Positive electrode active in which LiNi 1/3 Mn 1/3 Co 1/3 O 2 , carbon black, and polyvinylidene fluoride (trade name KF-7200, manufactured by Kureha Co., Ltd.) were mixed at 92/3/5 (mass% ratio).
  • a positive electrode mixture slurry was prepared by dispersing the substance in N-methyl-2-pyrrolidone to form a slurry.
  • the obtained positive electrode mixture slurry is uniformly applied on an aluminum current collector, dried to form a positive electrode mixture layer (thickness 50 ⁇ m), and then compression molded by a roller press machine to form a positive electrode laminate.
  • Manufactured The positive electrode laminate was punched into a diameter of 1.6 mm with a punching machine to produce a circular positive electrode.
  • a negative electrode current collector (thickness 10 ⁇ m) was prepared by adding styrene-butadiene rubber dispersed in distilled water to artificial graphite powder to a solid content of 6% by mass and mixing with a disperser to form a slurry. On the copper foil) and dried to form a negative electrode mixture layer, followed by compression molding with a roller press machine, and punched into a diameter of 1.6 mm with a punching machine to produce a circular negative electrode did.
  • the above-mentioned circular positive electrode is opposed to the positive electrode and the negative electrode through a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, the electrolytic solution is injected, and the electrolytic solution sufficiently permeates the separator and the like and then sealed. Precharging and aging were performed to produce a coin-type lithium ion secondary battery.
  • the coin-type lithium ion secondary battery was examined for high voltage cycle characteristics and high temperature storage characteristics as follows.
  • Example 2 A battery was fabricated and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectification B was used instead of CF 3 CH 2 OCO 2 CH 3 of rectification C in Example 1. went. The results are shown in Table 4.
  • Example 3 A battery was prepared in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 C 2 H 5 of rectification F was used instead of CF 3 CH 2 OCO 2 CH 3 of rectification C in Example 1. A test was conducted. The results are shown in Table 4.
  • Example 4 A battery was prepared in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 C 2 H 5 of rectification E was used instead of CF 3 CH 2 OCO 2 CH 3 of rectification C in Example 1. A test was conducted. The results are shown in Table 4.
  • Example 5 A battery was prepared and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectification I was used instead of CF 3 CH 2 OCO 2 CH 3 of rectification C in Example 1. went. The results are shown in Table 4.
  • Example 6 A battery was prepared and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectification J was used instead of CF 3 CH 2 OCO 2 CH 3 of rectification C in Example 1. went. The results are shown in Table 4.
  • Example 7 A battery was fabricated and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectified K was used instead of CF 3 CH 2 OCO 2 CH 3 of rectified C in Example 1. went. The results are shown in Table 4.
  • Example 8 A battery was fabricated and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectified L was used instead of CF 3 CH 2 OCO 2 CH 3 of rectified C in Example 1. went. The results are shown in Table 4.
  • Example 9 A battery was prepared and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectified M was used instead of CF 3 CH 2 OCO 2 CH 3 of rectified C in Example 1. went. The results are shown in Table 4.
  • Comparative Example 1 A battery was prepared and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 CH 3 of rectification A was used instead of CF 3 CH 2 OCO 2 CH 3 of rectification C in Example 1. went. The results are shown in Table 4.
  • Example 2 In Example 1, instead of CF 3 CH 2 OCO 2 CH 3 of rectified C, CF 3 CH 2 OCO 2 CH 3 of rectified C added with compound (I-1) at a ratio of 10,000 ppm was used. A battery was prepared and tested in the same manner as in Example 1 except for the above. The results are shown in Table 4.
  • Comparative Example 5 Instead of CF 3 CH 2 OCO 2 CH 3 fractionator C in Example 1, except that the CF 3 CH 2 OCO 2 C 2 H 5 rectification D is A battery was produced in the same manner as in Example 1 Test Went. The results are shown in Table 4.
  • Comparative Example 6 A battery was prepared and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 C 2 H 5 of rectified G was used instead of CF 3 CH 2 OCO 2 CH 3 of rectified C in Example 1. Went. The results are shown in Table 4.
  • Comparative Example 7 A battery was prepared and tested in the same manner as in Example 1 except that CF 3 CH 2 OCO 2 C 2 H 5 of rectified H was used instead of CF 3 CH 2 OCO 2 CH 3 of rectified C in Example 1. Went. The results are shown in Table 4.
  • Example 8 In Example 1, instead of CF 3 CH 2 OCO 2 CH 3 of rectified C, CF 3 CH 2 OCO 2 C 2 H 5 of rectified F was added with Compound (I-1) at a ratio of 10,000 ppm. A battery was prepared and tested in the same manner as in Example 1 except that it was used. The results are shown in Table 4.
  • Example 9 In Example 1, instead of CF 3 CH 2 OCO 2 CH 3 of rectified C, CF 3 CH 2 OCO 2 C 2 H 5 of rectified F was added with Compound (II-2) at a ratio of 10,000 ppm. A battery was prepared and tested in the same manner as in Example 1 except that it was used. The results are shown in Table 4.
  • Example 10 In Example 1, instead of CF 3 CH 2 OCO 2 CH 3 of rectified C, CF 3 CH 2 OCO 2 C 2 H 5 of rectified F was added with Compound (III-2) at a ratio of 10,000 ppm. A battery was prepared and tested in the same manner as in Example 1 except that it was used. The results are shown in Table 4.
  • Example 10 Under a dry argon atmosphere, a mixture of propylene carbonate containing 20 ppm HOCHCH 3 CH 2 OH, ethylene carbonate containing 10 ppm HOCH 2 CH 2 OH and ethyl methyl carbonate (volume ratio 1: 2: 7) in 97 parts by weight of HCF 2 parts by weight of 2 CF 2 CH 2 OCF 2 CF 2 H rectified liquid C was added, and then sufficiently dried LiPF 6 was dissolved at a ratio of 1 mol / liter to obtain an electrolyte solution. A battery was prepared and tested in the same manner as described above. The results are shown in Table 5.
  • Example 11 Under a dry argon atmosphere, 97 parts by weight of a mixture of fluoroethylene carbonate containing 10 ppm HOCHFCH 2 OH, ethylene carbonate containing 10 ppm HOCH 2 CH 2 OH and ethyl methyl carbonate (volume ratio 1: 2: 7) was added to HCF 2 3 parts by weight of rectified liquid C of CF 2 CH 2 OCF 2 CF 2 H was added, and then sufficiently dried LiPF 6 was dissolved at a ratio of 1 mol / liter to obtain an electrolyte solution. Similarly, a battery was prepared and tested. The results are shown in Table 5.
  • Comparative Example 11 In a dry argon atmosphere, 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7) containing 70 ppm of HOCH 2 CH 2 OH was added to a rectified liquid C 3 weight of CF 3 CH 2 OCO 2 CH 3 Next, LiPF 6 that was sufficiently dried was dissolved to a ratio of 1 mol / liter to obtain an electrolytic solution, and a battery was prepared and tested in the same manner as in Example 1. The results are shown in Table 5.
  • Comparative Example 12 An electrolyte solution was prepared in the same manner as in Example 10 except that propylene carbonate containing 50 ppm HOCHCH 3 CH 2 OH was used instead of propylene carbonate containing 20 ppm HOCHCH 3 CH 2 OH of Example 10. Fabricated and tested. The results are shown in Table 5.
  • Comparative Example 13 A battery was produced and tested in the same manner as in Example 11 except that fluoroethylene carbonate containing 50 ppm of HOCHFCH 2 OH was used instead of fluoroethylene carbonate containing 10 ppm of HOCHFCH 2 OH of Example 11. The results are shown in Table 5.
  • the nonaqueous electrolytic solution of the present invention can be suitably used for an electric device such as a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、高温での保存特性及び高電圧サイクル特性に優れたリチウムイオン二次電池等を得ることができる非水電解液を提供することを目的とする。本発明は、非水溶媒及び電解質塩を含む非水電解液であって、上記非水溶媒が、一般式(1)RfOCOOR(式中、Rfは炭素数1~4のフッ素化アルキル基であり、Rは炭素数1~4のアルキル基である)で示される含フッ素鎖状カーボネート(A)、並びに、EC、PC及びFECからなる群より選択される少なくとも1種の環状カーボネート(B)を含有し、かつ、前記含フッ素鎖状カーボネート(A)及び前記環状カーボネート(B)が、それぞれ、不純物である化合物(α)及び化合物(β)を5000ppm以下及び50ppm以下含有することを特徴とする非水電解液である。

Description

非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
本発明は、特定の化合物の含有量を低下させた非水溶媒及び電解質塩を含む非水電解液、該非水電解液を備える電気化学デバイス、リチウムイオン二次電池、並びに、モジュールに関する。
リチウムイオン二次電池などの電気化学デバイス用の非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に、LiPF、LiBF等の電解質塩を溶解させたものが一般に使用されている。しかしながら、上記のような炭化水素系の溶媒は酸化電位が低いため、今後、高電圧にした場合に電解液が分解してしまうことが考えられる。
特許文献1には、フッ素化された鎖状カーボネートを用いた非水電解二次電池が、電気分解によるガスの発生を抑制し、高い安全性があることが開示されている。しかしながら、特許文献1には、その化合物の不純物については記載されていない。また、このような非水系電解液二次電池は、高温の環境に放置したり、充放電を繰り返したりすると、放電容量が低下する問題があった。
特開平11-195429号公報
本発明は、高温での保存特性及び高電圧サイクル特性に優れたリチウムイオン二次電池等を得ることができる非水電解液を提供することを目的とする。
本発明者らは、上記課題を解決するために種々の検討を重ねた結果、特定の不純物含有量を低下させた非水溶媒を用いることにより、上記課題を解決できることを見いだし、本発明を完成させるに至った。
すなわち、本発明は、非水溶媒及び電解質塩を含む非水電解液であって、
上記非水溶媒が、一般式(1):
RfOCOOR     (1)
(式中、Rfは炭素数1~4のフッ素化アルキル基であり、Rは炭素数1~4のアルキル基である)で示される含フッ素鎖状カーボネート(A)、並びに、
エチレンカーボネート、プロピレンカーボネート及びフルオロエチレンカーボネートからなる群より選択される少なくとも1種の環状カーボネート(B)を含有し、かつ、
(I)一般式(2):
  RfOH    (2)
(式中、Rfは前記同様である)で示される化合物、
(II)一般式(3):
  ROH     (3)
(式中、Rは前記同様である)で示される化合物、及び、
(III)一般式(4):
  ROCOCl  (4)
(式中、Rは前記同様である)で示される化合物からなる群より選択される少なくとも1種の化合物(α);並びに、
(IV)一般式(5):
HO(CHCHOH      (5)
(式中、nは1~5の整数である)で示される化合物、
(V)一般式(6):
HO(CHCHCHOH   (6)
(式中、nは1~5の整数である)で示される化合物、及び、
(VI)一般式(7):
HO(CHFCHOH     (7)
(式中、nは1~5の整数である)で示される化合物からなる群より選択される少なくとも1種の化合物(β)を含有し、
上記化合物(α)の含有量が含フッ素鎖状カーボネート(A)に対して5000ppm以下であり、上記化合物(β)の含有量が環状カーボネート(B)に対して50ppm以下であることを特徴とする非水電解液である。
上記含フッ素鎖状カーボネート(A)が、CFCHOCOOCH、又は、CFCHOCOOCHCHであることが好ましい。
上記含フッ素鎖状カーボネート(A)の含有量が、非水溶媒中0.5~90重量%であることが好ましい。
上記環状カーボネート(B)が、エチレンカーボネートであり、化合物(β)が、一般式(5)で示される化合物であることが好ましい。
上記環状カーボネート(B)が、プロピレンカーボネートであり、化合物(β)が、一般式(6)で示される化合物であることが好ましい。
上記環状カーボネート(B)が、フルオロエチレンカーボネートであり、化合物(β)が、一般式(7)で示される化合物であることが好ましい。
本発明はまた、上述の非水電解液を備えることを特徴とする電気化学デバイスでもある。
本発明はまた、正極、負極、及び、上述の非水電解液を備えることを特徴とするリチウムイオン二次電池でもある。
本発明はまた、上述のリチウムイオン二次電池を備えることを特徴とするモジュールでもある。
本発明は、高温での保存特性及び高電圧サイクル特性に優れたリチウムイオン二次電池等を得ることができる非水電解液を提供することができる。
本発明の非水電解液は、非水溶媒及び電解質塩を含む非水電解液であって、
上記非水溶媒が、一般式(1):
RfOCOOR     (1)
(式中、Rfは炭素数1~4のフッ素化アルキル基であり、Rは炭素数1~4のアルキル基である)で示される含フッ素鎖状カーボネート(A)、並びに、
エチレンカーボネート、プロピレンカーボネート及びフルオロエチレンカーボネートからなる群より選択される少なくとも1種の環状カーボネート(B)を含有し、かつ、
(I)一般式(2):
  RfOH    (2)
(式中、Rfは前記同様である)で示される化合物、
(II)一般式(3):
  ROH     (3)
(式中、Rは前記同様である)で示される化合物、及び、
(III)一般式(4):
  ROCOCl  (4)
(式中、Rは前記同様である)で示される化合物からなる群より選択される少なくとも1種の化合物(α);並びに、
(IV)一般式(5):
HO(CHCHOH      (5)
(式中、nは1~5の整数である)で示される化合物、
(V)一般式(6):
HO(CHCHCHOH   (6)
(式中、nは1~5の整数である)で示される化合物、及び、
(VI)一般式(7):
HO(CHFCHOH     (7)
(式中、nは1~5の整数である)で示される化合物からなる群より選択される少なくとも1種の化合物(β)を含有し、
上記化合物(α)の含有量が含フッ素鎖状カーボネート(A)に対して5000ppm以下であり、上記化合物(β)の含有量が環状カーボネート(B)に対して50ppm以下であることを特徴とする。
このため、本発明の電解液を用いて、高容量で、保存特性、負荷特性およびサイクル特性に優れる電気化学デバイスが得られる。
なお、本発明において「フッ素化アルキル基」は、アルキル基の少なくとも1つの水素原子がフッ素原子に置換された基である。
以下、一般式(2)~(7)で示される化合物を、それぞれ、化合物(I)、化合物(II)、化合物(III)、化合物(IV)、化合物(V)、化合物(VI)ということもある。
上記非水溶媒は、一般式(1)で示される含フッ素鎖状カーボネート(A)を含む。
Rfは、例えば、CF-、CFCF-、(CFCH-、CFCH-、CCH-、HCFCFCH-、CFCFHCFCH-等が例示でき、これらの中でも、CFCH-が、難燃性が高く、レート特性や耐酸化性が良好な点から特に好ましい。
Rは、例えば、-CH、-CHCH、-CH(CH、-C等が例示でき、これらの中でも、-CH、-CHCHが、粘度が低く、レート特性が良好な点から特に好ましい。
上記含フッ素鎖状カーボネート(A)の具体例としては、例えば、CFCHOCOOCH、CFCHOCOOCHCH、CFCFCHOCOOCH、CFCFCHOCOOCHCH等を挙げることができる。これらの中でも、CFCHOCOOCH、CFCHOCOOCHCHが好ましい。
上記含フッ素鎖状カーボネート(A)の含有量は、非水溶媒中0.5~90重量%であることが好ましい。上記含フッ素鎖状カーボネート(A)の含有量が多くなると放電容量が低下する傾向にあり、その許容できる上限が90重量%である。上記含フッ素鎖状カーボネート(A)は比較的少ない量でその効果を発揮できる。より好ましい上限値は70重量%であり、有効な下限値はより好ましくは10重量%であり、更に好ましくは20重量%である。
上記非水溶媒は、更に、化合物(I)、化合物(II)及び化合物(III)からなる群より選択される少なくとも1種の化合物(α)を含む。
上記含フッ素鎖状カーボネート(A)は、通常、化合物(I)と化合物(III)とを反応させることにより合成することができる。そのため、精製の仕方によっては原料物質である、化合物(I)や化合物(III)が不純物として残ることがある。また、化合物(II)も一般式(1)で示される含フッ素鎖状カーボネートを合成する際に不純物として発生することがある。このように、化合物(I)~(III)は、一般式(1)で示される含フッ素鎖状カーボネートの合成の際に生じる不純物であるため、一般式(1)中のRfと、一般式(2)のRfとは同じものになり、かつ、一般式(1)中のRと、一般式(3)、(4)のRとは同じものになる。
具体的に、上記含フッ素鎖状カーボネート(A)の好ましい具体例である、CFCHOCOOCH、及び、CFCHOCOOCHCHについて説明する。
CFCHOCOOCHは、通常、CFCHOHとCHOCOClとを反応させることにより合成することができるため、CFCHOH(化合物(I-1))やCHOCOCl(化合物(III-1))が不純物として残ることがあり、CHOH(化合物(II-1))も不純物として発生することがある。
CFCHOCOOCHCHは、通常、CFCHOHとCHCHOCOClとを反応させることにより合成することができるため、CFCHOH(化合物(I-1))やCHCHOCOCl(化合物(III-2))が不純物として残ることがあり、CHCHOH(化合物(II-2))も不純物として発生することがある。
本発明の非水電解液では、上記化合物(α)(すなわち、化合物(I)~(III))の含有量を、上記含フッ素鎖状カーボネート(A)に対して5000ppm以下、好ましくは3500ppm以下、より好ましくは2500ppm以下とする。更に好ましくは1000ppm以下、特に好ましくは100ppm以下、最も好ましくは10ppm以下である。化合物(I)~(III)を合計で5000ppmより多く含有すると、高温保存後の放電特性の低下が大きくなる傾向がある。特に、化合物(I)や化合物(II)のアルコールが残っている場合は、Liと容易に反応をしてしまうため、容量が低下してしまう傾向がある。また、化合物(III)は、電池内で容易に水分と反応しHClを発生させるため、外装缶等を錆びさせる原因にもなる。
また、分子起動計算により求めた化合物(I)~(III)のHOMOエネルギーは、上記含フッ素鎖状カーボネート(A)よりも高いため、耐酸化性が弱い。そのため、高電圧化した場合に分解してしまい、劣化の要因になると考えられる。このことから非水溶媒中の化合物(I)~(III)の含有量が少ないほど、電池の保存特性の低下は少なくなると考えられる。
前述のように、上記化合物(α)(すなわち、化合物(I)~(III))は、上記含フッ素鎖状カーボネート(A)に含まれる不純物である。従って、上記含フッ素鎖状カーボネート(A)を予め精製することにより、非水溶媒中の化合物(α)の含有量(化合物(I)~(III)の合計含有量)を上記範囲内(上記含フッ素鎖状カーボネート(A)に対して5000ppm以下)とすることができる。ここで、ppmは、重量基準であり、上記含フッ素鎖状カーボネート(A)に対して5000ppm以下とは、上記含フッ素鎖状カーボネート(A)100重量部に対して、0.5重量部以下であることを示す。
上記含フッ素鎖状カーボネート(A)の精製方法としては、例えば、理論段数10段以上の蒸留塔を用いて精留する方法が挙げられる。
また、上記含フッ素鎖状カーボネート(A)の精製方法において、減圧下で蒸留を行ってもよい。
上記含フッ素鎖状カーボネート(A)の精製において、高温で蒸留を行うと、副生成物が発生する。例えば、上記含フッ素鎖状カーボネート(A)が、CFCHOCOCHの場合、以下の反応が起こり、副生成物が発生する。
CFCHOCOCH → CFCHOCOCHCF
                       +
                   CHOCOCH
上記含フッ素鎖状カーボネート(A)の蒸留を減圧下で行うことにより、低温で蒸留を行うことができ、このような副生成物の発生をより抑制することができる。
この場合、蒸留の温度は、90℃以下が好ましく、70℃以下がより好ましい。
上記非水溶媒は、エチレンカーボネート、プロピレンカーボネート及びフルオロエチレンカーボネートからなる群より選択される少なくとも1種の環状カーボネート(B)を含有する。
上記環状カーボネート(B)の含有量は、非水溶媒中5~80重量%であることが好ましい。環状カーボネート(B)の含有量が、5重量%未満では安全性及び高電圧化の向上がほとんど見られない傾向があり、80重量%を超えると電解液が二層分離したり、粘度が高くなりすぎて低温での負荷特性が悪くなる傾向がある。下限値としては10重量%がより好ましい。上限値としては50重量%がより好ましく、40重量%が更に好ましく、30重量%が特に好ましい。
上記非水溶媒は、更に、化合物(IV)、化合物(V)、及び、化合物(VI)からなる群より選択される少なくとも1種の化合物(β)を含む。
上記化合物(β)は、環状カーボネート(B)を合成する際に発生する副生成物である。
より具体的には、化合物(IV)は、エチレンカーボネート合成時の副生成物であり、化合物(V)は、プロピレンカーボネート合成時の副生成物であり、化合物(VI)は、フルオロエチレンカーボネート合成時の副生成物である。
本発明の電解液においては、上記環状カーボネート(B)が、エチレンカーボネートであり、上記化合物(β)が、(IV)一般式(5)で示される化合物であることが好ましい。
また、上記環状カーボネート(B)が、プロピレンカーボネートであり、上記化合物(β)が、(V)一般式(6)で示される化合物であることが好ましい。
また、上記環状カーボネート(B)が、フルオロエチレンカーボネートであり、上記化合物(β)が、(VI)一般式(7)で示される化合物であることが好ましい。
上記非水溶媒が、2種以上の環状カーボネート(B)を含む場合、2種以上の化合物(β)を含んでいてもよい。
このように上記化合物(β)は、上記環状カーボネート(B)の不純物である。このため、環状カーボネート(B)は、予め精製されることが好ましい。予め精製することにより、不純物である化合物(β)(すなわち、化合物(IV)、化合物(V)、化合物(VI))の量を調整し、上記化合物(β)の含有量を後述する範囲内とすることができる。
上記環状カーボネート(B)の精製方法としては、特に限定されず、公知の精製方法であればよく、例えば、理論段数10段以上の蒸留塔を用いて精留するとよい。
本発明の非水電解液は、上記化合物(β)の含有量(すなわち、化合物(IV)、化合物(V)、化合物(VI)の合計含有量)が環状カーボネート(B)に対して50ppm以下である。このため、高温での保存特性及び高電圧サイクル特性に優れる。
50ppmより多く含有すると、高温保存後の放電特性の低下が大きくなる傾向がある。なお、ここで、50ppm以下とは、環状カーボネート(B)100質量部に対して、0.005質量部以下であることを示す。
上記化合物(β)の含有量は、環状カーボネート(B)に対して30ppm以下が好ましく、20ppm以下がより好ましい。
また、化合物(IV)~(VI)の含有量は、それぞれ、化合物(IV)はエチレンカーボネートに対して、化合物(V)はプロピレンカーボネートに対して、化合物(VI)はフルオロエチレンカーボネートに対してであることが好ましい。
上記非水溶媒は、その他の成分を含んでいてもよい。
非水溶媒のその他の成分としては、非水系電解液二次電池の溶媒として公知の任意のものを用いることができる。例えば、ブチレンカーボネート、4,5-ジフルオロエチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート等のジアルキルカーボネート(炭素数1~4のアルキル基が好ましい);テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル;γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル化合物;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステル等が挙げられる。これらは2種類以上を併用してもよい。なかでも、上記非水溶媒は、ジアルキルカーボネートを含むことが好ましい。
炭素数1~4のアルキル基を有するジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、及び、エチル-n-プロピルカーボネート等が挙げられる。これらの中でも、ジメチルカーボネート、ジエチルカーボネートまたはエチルメチルカーボネートが好ましい。
非水溶媒として好ましいもののさらに他の例は、含燐有機溶媒を含むものである。含燐有機溶媒としては、リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル、及び、リン酸エチレンエチル等が挙げられる。含燐有機溶媒を非水溶媒中に10容量%以上となるように含有させると、電解液の燃焼性を低下させることができる。特に含燐有機溶媒の含有率が10~80容量%で、他の成分が主として、γ-ブチロラクトン、γ-バレロラクトン、アルキレンカーボネート、及び、ジアルキルカーボネートから選ばれる非水溶媒にリチウム塩を溶解して電解液とすると、サイクル特性と大電流放電特性とのバランスがよくなる。
さらに、分子内に炭素-炭素不飽和結合を有する環状炭酸エステルを、非水溶媒中に8重量%以下含有させることが好ましく、0.01~8重量%がより好ましい。上述の範囲で含有させると、上記含フッ素鎖状カーボネート(A)の負極での副反応を抑制し、保存特性及び電池のサイクル特性をさらに向上させることができるため、好ましい。環状炭酸エステルの添加量が8重量%を超えると、保存後の電池特性が低下する場合がある。下限値としては0.1重量%、上限値としては3重量%が好ましい。
分子内に炭素-炭素不飽和結合を有する環状炭酸エステルとしては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。このうち、ビニレンカーボネート、4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネートまたは4,5-ジビニルエチレンカーボネート、特にビニレンカーボネートまたは4-ビニルエチレンカーボネートが好ましい。これらの2種類以上を併用してもよい。
さらに、本発明で用いる非水溶媒には、一般式(8):
Rf-O-Rf     (8)
(式中、Rf及びRfは同じかまたは異なり、炭素数1~10のアルキル基または炭素数1~10のフッ素化アルキル基;ただし、少なくとも一方はフッ素化アルキル基)で示される含フッ素エーテルを含有することができる。
上記含フッ素エーテルを含有することにより、さらに耐酸化性が高く安全性の高い電池を作製することができる。
但し、上記含フッ素エーテルの不純物である、下記(I’)、(II’)で示される化合物を、上記含フッ素エーテルに対して合計で5000ppm以下含有することが好ましい。
(I’)含フッ素不飽和化合物(以下、化合物(I’)ということもある)
(II’)一般式(9):
RfOH         (9)
(式中、Rfは前記同様)
で示される水酸基含有化合物(以下、化合物(II’)ということもある)。
上記一般式(8)で示される含フッ素エーテルの具体例としては、例えば、HCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CH等が挙げられる。これらの中でも、耐酸化性、及び、LiPF等の電解質塩との相溶性の点から、HCFCFCHOCFCFH、及び、HCFCFCHOCFCFHCFからなる群から選ばれる1種以上の化合物であることが好ましく、HCFCFCHOCFCFHがより好ましい。
上記一般式(8)で示される含フッ素エーテルの含有量は、非水溶媒中40重量%以下であることが好ましく、3~40重量%であることがより好ましい。
含フッ素不飽和化合物(I’)は、一般式(8)で示される含フッ素エーテルを合成する際に発生する副生成物に由来するものである。具体的には、一般式(8)で示される含フッ素エーテルからフッ化水素(HF)が脱離して不飽和結合が生じたものである。さらに具体的には、例えば、(I’-1)CF=CFCHOCFCFH、(I’-2)HCFCF=CHOCFCFH、(I’-3)CF=CFCHOCFCFHCF、(I’-4)HCFCFCHOCF=CFCF、(I’-5)HCFCFCHOCFCF=CF、(I’-6)HCFCF=CHOCFCFHCFを挙げることができる。
また、水酸基含有化合物(II’)としては、一般式(8)で示される含フッ素エーテルを合成する際の原料に由来するものであり、一般式(9):
RfOH         (9)
で示されるものである。ここで、Rfとしては、一般式(8)と同様のものを挙げることができ、具体的には、(II’-1)HCFCFCHOHを挙げることができる。
具体的には、一般式(8)で示される含フッ素エーテルが、HCFCFCHOCFCFHであり、
含フッ素不飽和化合物(I’)が、
(I’-1)CF=CFCHOCFCFH、及び、
(I’-2)HCFCF=CHOCFCF
であり、
水酸基含有化合物(II’)が、
(II’-1)HCFCFCHOH
である組み合わせ、又は、
一般式(8)で示される含フッ素エーテルが、HCFCFCHOCFCFHCFであり、
含フッ素不飽和化合物(I’)が、
(I’-3)CF=CFCHOCFCFHCF
(I’-4)HCFCFCHOCF=CFCF
(I’-5)HCFCFCHOCFCF=CF、及び、
(I’-6)HCFCF=CHOCFCFHCF
であり、
水酸基含有化合物(II’)が、
(II’-1)HCFCFCHOH
である組み合わせが好ましい。
化合物(I’)、(II’)は、上記含フッ素エーテルに含まれる不純物である。従って、一般式(8)で示される含フッ素エーテルを用いる場合は、当該含フッ素エーテルを予め精製して用いることにより、非水溶媒中の化合物(I’)、(II’)の含有量を上述の範囲内(含フッ素エーテルに対して合計で5000ppm以下)とすることができる。ここで、ppmは、重量基準であり、含フッ素エーテルに対して5000ppm以下とは、含フッ素エーテル100重量部に対して、0.5重量部以下であることを示す。
化合物(I’)、(II’)の含有量の上限値としては、上記含フッ素エーテルに対して合計で3500ppm以下であることが好ましく、2000ppm以下であることがより好ましい。化合物(I’)、(II’)の合計量が5000ppmより多いと、高温保存後の放電特性の低下や、高電圧化した場合のサイクル劣化が大きくなる傾向がある。化合物(I’)、(II’)の中でも、特にRfOH(化合物(II’))が残っている場合はLiと容易に反応をしてしまうため、容量が落ちてしまう傾向がある。また、含フッ素不飽和化合物(I’)は二重結合を有するため、これらが多く残っている場合、容易に電解液中の水分等と反応し分解してしまう傾向がある。
さらに、非水溶媒中には、必要に応じて他の有用な化合物、例えば、従来公知の添加剤、脱水剤、脱酸剤、過充電防止剤を含有させてもよい。
添加剤としては、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、及び、エリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、及び、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、及び、テトラメチルチウラムモノスルフィド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、及び、N-メチルスクシイミド等の含窒素化合物;へプタン、オクタン、シクロヘプタン、及び、フルオロベンゼン等の炭化水素化合物等が挙げられる。これらを非水溶媒中に0.1~5重量%含有させると、高温保存後の容量維持特性やサイクル特性が良好となる。
過充電防止剤としては、シクロヘキシルベンゼン、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ベンゾフラン、及び、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、及び、2,6-ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。これらを非水溶媒中に0.1~5重量%含有させると、過充電等のときに電池の破裂・発火を抑制することができる。
本発明で用いる電解質塩としては、任意のものを用いることができるが、リチウム塩が好ましい。リチウム塩としては、例えば、LiClO、LiPF、及び、LiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、及び、LiBF(CSO等の含フッ素有機酸リチウム塩等が挙げられ、これらを単独または2種以上を組み合わせて用いることができる。これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO及びLiN(CSOが好ましく、LiPF及びLiBFがより好ましい。また、LiPF及びLiBF等の無機リチウム塩と、LiCFSO、LiN(CFSO及びLiN(CSO等の含フッ素有機リチウム塩とを併用すると、高温保存した後の劣化が少なくなるため、好ましい。
本発明の非水電解液中の電解質塩濃度は、0.5~3モル/リットルが好ましい。この範囲以外では、電解液の電気伝導率が低くなり、電池性能が低下してしまう傾向がある。
このように本発明の非水電解液は、特定の化合物の含有量を一定以下としたものである。
このため、本発明の非水電解液を用いた電気化学デバイスは、高温での保存特性及び高電圧サイクル特性に優れる。そのような本発明の非水電解液を備えることを特徴とする電気化学デバイスもまた本発明の一つである。
本発明の非水電解液を用いた電気化学デバイスとしては、リチウムイオン二次電池や電気二重層キャパシタを挙げることができる。以下、リチウムイオン二次電池の構成について説明する。
負極、正極、及び、上述した本発明の非水電解液を備えたリチウムイオン二次電池もまた、本発明の一つである。
リチウムイオン二次電池を構成する負極材料としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金等を用いることができる。これらの負極材料の2種類以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、またはこれらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましい。
負極の製造は、常法によればよい。例えば、負極材料に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、及び、エチレン-メタクリル酸共重合体等が挙げられる。
増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、及び、カゼイン等が挙げられる。
導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。これらのうち、薄膜に加工しやすい点、及び、コストの点から銅が好ましい。
リチウムイオン二次電池を構成する正極材料としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物の正極活物質が好ましく、例えば、式(a):LiMn2-b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、及び、Geよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、式(b):LiNi1-c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、及び、Geよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、またはLiCo1-d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si、及び、Geよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が好ましい。
なかでも具体的には、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、又は、LiNi1/3Co1/3Mn1/3が、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から好ましい。
そのほか、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiV等の正極活物質でもよい。
正極活物質の配合量は、電池容量が高い点から、正極合剤の50~99質量%であることが好ましく、80~99質量%であることがより好ましい。
本発明において、特にハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池に使用される場合は、高出力が要求されるため、正極活物質の粒子は二次粒子が主体となり、その二次粒子の平均粒子径が40μm以下で平均一次粒子径1μm以下の微粒子を0.5~7.0体積%含有することが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより電解液との接触面積が大きくなり電極と電解液の間でのリチウムイオンの拡散をより早くすることができ出力性能を向上させることができる。
正極の製造は、常法によればよい。例えば、正極材料に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
正極の結着剤としては負極と同様のものを用いることが出来、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、及び、エチレン-メタクリル酸共重合体等が挙げられる。
また、正極の増粘剤についても負極と同様の物が用いることが出来、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、及び、カゼイン等が挙げられる。
導電材としては、グラファイト、カーボンブラック等の炭素材料等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタンもしくはタンタル等の金属またはその合金が挙げられる。これらのうち、アルミニウムまたはその合金が好ましい。
リチウムイオン二次電池に使用するセパレーターの材質や形状は、上記非水電解液に安定であり、かつ保液性に優れていれば任意である。ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シ-トまたは不織布等が好ましい。具体的には、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン-プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等が挙げられる。
また、電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレーターの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
以上のとおり、本発明の非水電解液を用いれば、高温での保存特性及び高電圧サイクル特性に優れたリチウムイオン二次電池等が得られる。
本発明の非水電解液を用いたリチウムイオン二次電池を備えることを特徴とするモジュールもまた本発明の一つである。
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
合成例1 CFCHOCOCHの合成方法
10Lの四つ口フラスコに還流管と滴下ロートを設置して反応装置を準備した。その後、氷浴下でCFCHOH(750g;7.5モル)とクロロギ酸メチル(708.8g;7.5モル)と溶媒としてジグライム(700mL)を加え攪拌した。その後滴下ロートを用いて、発熱に注意しながらトリエチルアミン(758.3g;7.5モル)を加えた。次第にトリエチルアミン塩酸塩が析出し反応溶液が乳白色へと変化した。
反応終了後、反応溶液を1N HCl水溶液で洗浄した。
洗浄後分液した有機層を10段の蒸留精製塔を用いて精留した。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、CFCHOH(化合物(I-1))、CHOH(化合物(II-1))、CHOCOCl(化合物(III-1))の含有量の異なる精留A、B、Cを得た。
精留A~Cをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60m、I.D0.32mm、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、CFCHOCOCHの純度、および化合物(I-1)、(II-1)、(III-1)のCFCHOCOCHに対する含有量を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
合成例2 CFCHOCOの合成方法
10Lの四つ口フラスコに還流管と滴下ロートを設置して反応装置を準備した。その後、氷浴下でCFCHOH(750g;7.5モル)とクロロギ酸エチル(813.3g;7.5モル)と溶媒としてジグライム(1250mL)を加え攪拌した。その後滴下ロートを用いて、発熱に注意しながらトリエチルアミン(758.3g;7.5モル)を加えた。次第にトリエチルアミン塩酸塩が析出し反応溶液が乳白色へと変化した。反応終了後、反応溶液を1N HCl水溶液で洗浄した。
洗浄後分液した有機層を10段の蒸留精製塔を用いて精留した。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、CFCHOH(化合物(I-1))、COH(化合物(II-2))、COCOCl(化合物(III-2))の含有量の異なる精留D、E、Fを得た。
精留D~Fをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60m、I.D0.32mm、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、CFCHOCOの純度、および化合物(I-1)、(II-2)、(III-2)のCFCHOCOに対する含有量を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
合成例3 CFCHOCOCHの合成方法
10Lの四つ口フラスコに還流管と滴下ロートを設置して反応装置を準備した。その後、氷浴下でCFCHOH(750g;7.5モル)とクロロギ酸メチル(708.8g;7.5モル)と溶媒としてジグライム(700mL)を加え攪拌した。その後滴下ロートを用いて、発熱に注意しながらトリエチルアミン(758.3g;7.5モル)を加えた。次第にトリエチルアミン塩酸塩が析出し反応溶液が乳白色へと変化した。
反応終了後、反応溶液を1N HCl水溶液で洗浄した。
洗浄後分液した有機層を10段の蒸留精製塔を用いて精留した。精留は、真空ポンプを用いて減圧下(0.03MPa)で、外温110℃で行った。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、CFCHOH(化合物(I-1))、CHOH(化合物(II-1))、CHOCOCl(化合物(III-1))の含有量の異なる精留G、H、I、J、K、L、Mを得た。
精留G~Mをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60m、I.D0.32mm、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、CFCHOCOCHの純度、および化合物(I-1)、(II-1)、(III-1)のCFCHOCOCHに対する含有量を求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
実施例1
乾燥アルゴン雰囲気下、20ppmのHOCHCHOHを含むエチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)97重量部に、精留CのCFCHOCOCH 3重量部を添加し、次いで十分に乾燥したLiPFを1モル/リットルの割合となるように溶解して電解液とした。
(コイン型電池の作製)
LiNi1/3Mn1/3Co1/3とカーボンブラックとポリフッ化ビニリデン((株)クレハ製、商品名KF-7200)を92/3/5(質量%比)で混合した正極活物質をN-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極合剤層(厚さ50μm)を形成し、その後、ローラプレス機により圧縮成形して、正極積層体を製造した。正極積層体を打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の正極を作製した。
別途、人造黒鉛粉末に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、打ち抜き機で直径1.6mmの大きさに打ち抜き円状の負極を作製した。
上記の円状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレーター)を介して正極と負極を対向させ、電解液を注入し、電解液がセパレーター等に充分に浸透した後、封止し予備充電、エージングを行い、コイン型のリチウムイオン二次電池を作製した。
(電池特性の測定)
コイン型リチウムイオン二次電池について、つぎの要領で高電圧でのサイクル特性と高温保存特性を調べた。
充放電条件
充電:0.5C、4.3Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:0.5C、3.0Vcut(CC放電)
(サイクル特性)
サイクル特性については、上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、5サイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値を容量維持率の値とする。その結果を表4に示す。
Figure JPOXMLDOC01-appb-M000004
(高温保存特性)
高温保存特性については上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)により充放電を行い、放電容量を調べた。その後、再度上記の充電条件で充電をし、85℃の恒温槽の中に1日保存した。保存後の電池を25℃において、上記の放電条件で放電終止電圧3Vまで放電させて残存容量を測定し、さらに上記の充電条件で充電した後、上記の放電条件での定電流で、放電終止電圧3Vまで放電を行って回復容量を測定した。保存前の放電容量を100とした場合の回復容量を表4に示す。
実施例2
実施例1において精留CのCFCHOCOCHの代わりに、精留BのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例3
実施例1において精留CのCFCHOCOCHの代わりに、精留FのCFCHOCOを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例4
実施例1において精留CのCFCHOCOCHの代わりに、精留EのCFCHOCOを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例5
実施例1において精留CのCFCHOCOCHの代わりに、精留IのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例6
実施例1において精留CのCFCHOCOCHの代わりに、精留JのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例7
実施例1において精留CのCFCHOCOCHの代わりに、精留KのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例8
実施例1において精留CのCFCHOCOCHの代わりに、精留LのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
実施例9
実施例1において精留CのCFCHOCOCHの代わりに、精留MのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例1
実施例1において精留CのCFCHOCOCHの代わりに、精留AのCFCHOCOCHを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例2
実施例1において精留CのCFCHOCOCHの代わりに、精留CのCFCHOCOCHに化合物(I-1)を10000ppmの割合で添加したものを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例3
実施例1において精留CのCFCHOCOCHの代わりに、精留CのCFCHOCOCHに化合物(II-1)を10000ppmの割合で添加したものを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例4
実施例1において精留CのCFCHOCOCHの代わりに、精留CのCFCHOCOCHに化合物(III-1)を10000ppmの割合で添加したものを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例5
実施例1において精留CのCFCHOCOCHの代わりに、精留DのCFCHOCOにした以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例6
実施例1において精留CのCFCHOCOCHの代わりに、精留GのCFCHOCOにした以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例7
実施例1において精留CのCFCHOCOCHの代わりに、精留HのCFCHOCOにした以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例8
実施例1において精留CのCFCHOCOCHの代わりに、精留FのCFCHOCOに化合物(I-1)を10000ppmの割合で添加したものを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例9
実施例1において精留CのCFCHOCOCHの代わりに、精留FのCFCHOCOに化合物(II-2)を10000ppmの割合で添加したものを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
比較例10
実施例1において精留CのCFCHOCOCHの代わりに、精留FのCFCHOCOに化合物(III-2)を10000ppmの割合で添加したものを使用した以外は実施例1と同様にして電池を作製し試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
実施例10
乾燥アルゴン雰囲気下、20ppmのHOCHCHCHOHを含むプロピレンカーボネートと10ppmのHOCHCHOHを含むエチレンカーボネートとエチルメチルカーボネートとの混合物(容量比1:2:7)97重量部に、HCFCFCHOCFCFHの精留液C 3重量部を添加し、次いで十分に乾燥したLiPFを1モル/リットルの割合となるように溶解して電解液とし、実施例1と同様にして電池を作成し試験を行った。結果を表5に示す。
実施例11
乾燥アルゴン雰囲気下、10ppmのHOCHFCHOHを含むフルオロエチレンカーボネートと10ppmのHOCHCHOHを含むエチレンカーボネートとエチルメチルカーボネートとの混合物(容量比1:2:7)97重量部に、HCFCFCHOCFCFHの精留液C 3重量部を添加し、次いで十分に乾燥したLiPFを1モル/リットルの割合となるように溶解して電解液とし、実施例1と同様にして電池を作成し試験を行った。結果を表5に示す。
比較例11
乾燥アルゴン雰囲気下、70ppmのHOCHCHOHを含むエチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)97重量部に、CFCHOCOCHの精留液C 3重量部を添加し、次いで十分に乾燥したLiPFを1モル/リットルの割合となるように溶解して電解液とし、実施例1と同様にして電池を作成し試験を行った。結果を表5に示す。
比較例12
実施例10の20ppmのHOCHCHCHOHを含むプロピレンカーボネートの代わりに、50ppmのHOCHCHCHOHを含むプロピレンカーボネートを使用した以外は実施例10と同様にして電解液を調製し、電池を作製し試験を行った。結果を表5に示す。
比較例13
実施例11の10ppmのHOCHFCHOHを含むフルオロエチレンカーボネートの代わりに、50ppmのHOCHFCHOHを含むフルオロエチレンカーボネートを使用した以外は実施例11と同様にして電池を作製し試験を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
本発明の非水電解液は、リチウムイオン二次電池等の電気デバイスに好適に利用できる。

Claims (9)

  1. 非水溶媒及び電解質塩を含む非水電解液であって、
    前記非水溶媒が、一般式(1):
    RfOCOOR     (1)
    (式中、Rfは炭素数1~4のフッ素化アルキル基であり、Rは炭素数1~4のアルキル基である)で示される含フッ素鎖状カーボネート(A)、並びに、
    エチレンカーボネート、プロピレンカーボネート及びフルオロエチレンカーボネートからなる群より選択される少なくとも1種の環状カーボネート(B)を含有し、かつ、
    (I)一般式(2):
      RfOH    (2)
    (式中、Rfは前記同様である)で示される化合物、
    (II)一般式(3):
      ROH     (3)
    (式中、Rは前記同様である)で示される化合物、及び、
    (III)一般式(4):
      ROCOCl  (4)
    (式中、Rは前記同様である)で示される化合物からなる群より選択される少なくとも1種の化合物(α);並びに、
    (IV)一般式(5):
    HO(CHCHOH      (5)
    (式中、nは1~5の整数である)で示される化合物、
    (V)一般式(6):
    HO(CHCHCHOH   (6)
    (式中、nは1~5の整数である)で示される化合物、及び、
    (VI)一般式(7):
    HO(CHFCHOH     (7)
    (式中、nは1~5の整数である)で示される化合物からなる群より選択される少なくとも1種の化合物(β)を含有し、
    前記化合物(α)の含有量が含フッ素鎖状カーボネート(A)に対して5000ppm以下であり、前記化合物(β)の含有量が環状カーボネート(B)に対して50ppm以下であることを特徴とする非水電解液。
  2. 含フッ素鎖状カーボネート(A)が、CFCHOCOOCH、又は、CFCHOCOOCHCHである請求項1記載の非水電解液。
  3. 含フッ素鎖状カーボネート(A)の含有量が、非水溶媒中0.5~90重量%である請求項1又は2記載の非水電解液。
  4. 環状カーボネート(B)が、エチレンカーボネートであり、化合物(β)が、一般式(5)で示される化合物である請求項1、2又は3記載の非水電解液。
  5. 環状カーボネート(B)が、プロピレンカーボネートであり、化合物(β)が、一般式(6)で示される化合物である請求項1、2、3又は4記載の非水電解液。
  6. 環状カーボネート(B)が、フルオロエチレンカーボネートであり、化合物(β)が、一般式(7)で示される化合物である請求項1、2、3、4又は5記載の非水電解液。
  7. 請求項1、2、3、4、5又は6記載の非水電解液を備えることを特徴とする電気化学デバイス。
  8. 正極、負極、及び、請求項1、2、3、4、5又は6記載の非水電解液を備えることを特徴とするリチウムイオン二次電池。
  9. 請求項8記載のリチウムイオン二次電池を備えることを特徴とするモジュール。
PCT/JP2013/075884 2012-09-28 2013-09-25 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール WO2014050877A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13841887.6A EP2903075A4 (en) 2012-09-28 2013-09-25 NONAQUEOUS ELECTROLYTE SOLUTION, ELECTROCHEMICAL DEVICE, LITHIUM ION SECONDARY CELL, AND MODULE
JP2014538524A JPWO2014050877A1 (ja) 2012-09-28 2013-09-25 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
CN201380050258.6A CN104685700A (zh) 2012-09-28 2013-09-25 非水电解液、电化学器件、锂离子二次电池以及组件
US14/429,285 US20150235772A1 (en) 2012-09-28 2013-09-25 Nonaqueous electrolyte solution, electrochemical device, lithium ion secondary cell, and module
KR1020157009134A KR20150054951A (ko) 2012-09-28 2013-09-25 비수 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지 및 모듈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-218675 2012-09-28
JP2012218675 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050877A1 true WO2014050877A1 (ja) 2014-04-03

Family

ID=50388272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075884 WO2014050877A1 (ja) 2012-09-28 2013-09-25 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール

Country Status (6)

Country Link
US (1) US20150235772A1 (ja)
EP (1) EP2903075A4 (ja)
JP (1) JPWO2014050877A1 (ja)
KR (1) KR20150054951A (ja)
CN (1) CN104685700A (ja)
WO (1) WO2014050877A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136648A1 (ja) * 2013-03-04 2014-09-12 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2020518110A (ja) * 2017-05-27 2020-06-18 シェンズェン カプチェム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池非水電解液およびリチウムイオン電池
US10889537B2 (en) 2016-11-28 2021-01-12 Samhwa Paints Industries Co., Ltd. Method for producing fluorine-containing dialkyl carbonate compounds
WO2022138705A1 (ja) * 2020-12-24 2022-06-30 積水化学工業株式会社 電解液、及び非水電解液二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929461B2 (en) * 2016-04-12 2024-03-12 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell and module
US10099994B2 (en) 2016-09-12 2018-10-16 Uchicago Argonne, Llc Process for the production of high voltage electrolyte solvents for Li-ion batteries
US10294189B2 (en) * 2016-09-20 2019-05-21 Uchicago Argonne, Llc Process for producing fluorinated electrolyte solvent
CN111656595B (zh) * 2018-01-30 2024-01-05 大金工业株式会社 电解液、电化学器件、锂离子二次电池及组件
JP7086880B2 (ja) * 2019-03-18 2022-06-20 株式会社東芝 二次電池、電池パック及び車両
CN112898158A (zh) * 2019-11-18 2021-06-04 石家庄圣泰化工有限公司 碳酸酯类化合物的合成方法
CN111018709A (zh) * 2019-12-21 2020-04-17 泰兴华盛精细化工有限公司 一种甲基三氟乙基碳酸酯的制备方法
CN115215747A (zh) * 2021-04-21 2022-10-21 常州市天华制药有限公司 一种甲基2,2,2-三氟乙基碳酸酯的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075440A (ja) * 2001-07-13 2002-03-15 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2006210816A (ja) * 2005-01-31 2006-08-10 Tokuyama Corp 非水電解液
WO2006132372A1 (ja) * 2005-06-10 2006-12-14 Mitsubishi Chemical Corporation 非水系電解液及び非水系電解液二次電池並びにカーボネート化合物
JP2007294433A (ja) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd 非水電解液二次電池
WO2012133798A1 (ja) * 2011-03-31 2012-10-04 ダイキン工業株式会社 電気化学デバイス及び電気化学デバイス用非水電解液

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148830C (zh) * 2001-09-25 2004-05-05 天津化工研究设计院 锂二次电池用有机碳酸酯类溶剂的制备方法
JP5243035B2 (ja) * 2005-10-12 2013-07-24 三井化学株式会社 リチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075440A (ja) * 2001-07-13 2002-03-15 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2006210816A (ja) * 2005-01-31 2006-08-10 Tokuyama Corp 非水電解液
WO2006132372A1 (ja) * 2005-06-10 2006-12-14 Mitsubishi Chemical Corporation 非水系電解液及び非水系電解液二次電池並びにカーボネート化合物
JP2007294433A (ja) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd 非水電解液二次電池
WO2012133798A1 (ja) * 2011-03-31 2012-10-04 ダイキン工業株式会社 電気化学デバイス及び電気化学デバイス用非水電解液

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136648A1 (ja) * 2013-03-04 2014-09-12 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
US10889537B2 (en) 2016-11-28 2021-01-12 Samhwa Paints Industries Co., Ltd. Method for producing fluorine-containing dialkyl carbonate compounds
JP2020518110A (ja) * 2017-05-27 2020-06-18 シェンズェン カプチェム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池非水電解液およびリチウムイオン電池
WO2022138705A1 (ja) * 2020-12-24 2022-06-30 積水化学工業株式会社 電解液、及び非水電解液二次電池

Also Published As

Publication number Publication date
KR20150054951A (ko) 2015-05-20
JPWO2014050877A1 (ja) 2016-08-22
EP2903075A4 (en) 2016-04-27
EP2903075A1 (en) 2015-08-05
US20150235772A1 (en) 2015-08-20
CN104685700A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5120513B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
JP5436512B2 (ja) 非水電解液
WO2014050877A1 (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
CN112074986A (zh) 非水性液体电解质组合物
JP5590192B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2014072102A (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2004111359A (ja) 非水系電解液二次電池および非水系電解液
JP2006049112A (ja) 非水系電解液及び非水系電解液電池
JP6143410B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2013069512A (ja) 非水電解液、リチウムイオン二次電池、及び、モジュール
JP2012216391A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216390A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216387A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2009026766A (ja) シクロへキシルベンゼン
JP2004071459A (ja) 非水系電解液二次電池および非水系電解液
JP2012216389A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2013045645A (ja) 非水電解液、リチウムイオン二次電池、及び、モジュール
JP2013045646A (ja) 非水電解液、リチウムイオン二次電池、及び、モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538524

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14429285

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013841887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013841887

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009134

Country of ref document: KR

Kind code of ref document: A