WO2014136648A1 - 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール - Google Patents

電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール Download PDF

Info

Publication number
WO2014136648A1
WO2014136648A1 PCT/JP2014/054883 JP2014054883W WO2014136648A1 WO 2014136648 A1 WO2014136648 A1 WO 2014136648A1 JP 2014054883 W JP2014054883 W JP 2014054883W WO 2014136648 A1 WO2014136648 A1 WO 2014136648A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
lithium
mass
fluorinated
electrolytic solution
Prior art date
Application number
PCT/JP2014/054883
Other languages
English (en)
French (fr)
Inventor
真由子 田枝
明天 高
葵 中園
みちる 賀川
佳子 桑嶋
倫明 岡田
朋生 島田
木下 信一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2015504264A priority Critical patent/JP6011713B2/ja
Priority to US14/769,863 priority patent/US9666905B2/en
Publication of WO2014136648A1 publication Critical patent/WO2014136648A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolytic solution, an electrochemical device, a lithium ion secondary battery, and a module.
  • an electrochemical device that is a non-aqueous electrolyte battery such as a lithium ion secondary battery having a higher energy density than a hydrogen battery has attracted attention.
  • an electrolyte for a lithium ion secondary battery an electrolyte such as LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 is used, and a high dielectric constant such as ethylene carbonate or propylene carbonate is used.
  • a typical example is a non-aqueous electrolyte solution dissolved in a mixed solvent of a solvent and a low-viscosity solvent such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate.
  • a negative electrode active material of a lithium ion secondary battery a carbonaceous material capable of occluding and releasing lithium ions is mainly used, and natural graphite, artificial graphite, amorphous carbon, etc. are listed as representative examples. It is done. Furthermore, metal or alloy negative electrodes using silicon, tin or the like for increasing the capacity are also known.
  • the positive electrode active material a transition metal composite oxide capable of mainly inserting and extracting lithium ions is used, and representative examples of the transition metal include cobalt, nickel, manganese, iron and the like.
  • the charge / discharge capacity decreases due to a side reaction between the electrode and the electrolytic solution.
  • Patent Document 1 In order to improve such battery characteristics, various studies have been made on non-aqueous solvents and electrolytes.
  • Patent Document 1 by using an electrolytic solution to which an organic compound having two or more nitrile groups is added, a large dipole moment due to the polarization of the nitrile group causes an oxidative decomposition of the electrolytic solution on the positive electrode during charging at a high voltage. It has been proposed that battery characteristics are improved thereby.
  • Patent Document 2 discloses an electrode surface film forming agent that improves the thermal stability of a battery by using a specific nitrile compound.
  • Patent Document 3 discloses a non-aqueous electrolyte secondary battery that is excellent in charge and discharge efficiency and storage characteristics by containing a fluorinated nitrile compound in the electrolyte.
  • Patent Document 4 discloses that by adding a compound having an isocyanate group to a non-aqueous electrolyte, the decomposition reaction of the solvent on the negative electrode is suppressed, and the cycle characteristics of the battery are improved.
  • Patent Document 5 if an aliphatic nitrile compound forms a complex with the surface of the positive electrode active material to form a protective film on the positive electrode, the battery is overcharged and / or physically impacted from the outside of the battery. It has been proposed to increase the safety of
  • Patent Document 6 discloses a non-aqueous electrolyte battery having improved high-temperature characteristics by using an electrolytic solution containing an aliphatic cyano compound having three or more cyano groups and having a linear or cyclic structure.
  • Patent Document 7 contains a lithium transition gold compound powder having a function of allowing positive electrode insertion / extraction of lithium ions having a pH ⁇ 10.8, and the non-aqueous electrolyte has a carbon-nitrogen unsaturated bond.
  • a non-aqueous electrolyte battery that suppresses gas generation during high-temperature storage by including a compound has been disclosed.
  • the demand for higher performance of batteries in recent years is increasing, and it is required to achieve various battery characteristics such as high capacity, high temperature storage characteristics, and cycle characteristics at a high level.
  • a method for increasing the capacity for example, a method of expanding the use range of the positive electrode to a high potential, or pressurizing and densifying the active material layer of the electrode to reduce the volume occupied by the active material other than the active material inside the battery as much as possible. A method is being considered.
  • the use range of the positive electrode is expanded to be used at a high potential, the activity of the positive electrode is further increased, and the problem that the deterioration is accelerated by the reaction between the positive electrode and the electrolytic solution tends to occur.
  • the present invention has been made to solve the above problems, and in an electrochemical device of a non-aqueous electrolyte battery, an electrolyte that suppresses capacity deterioration and gas generation during high-temperature storage, and this electrolyte It is an object of the present invention to provide a used secondary battery.
  • the present inventors have found that the above problem can be solved by containing a specific amount of the specific compound represented by the general formula (1) in the electrolytic solution.
  • the headline and the present invention have been completed.
  • the present invention is an electrolytic solution containing a non-aqueous solvent (I) and an electrolyte salt (II), and the compound represented by the general formula (1) or the general formula (A) is 0.001 to 20% by mass. It is electrolyte solution characterized by containing.
  • R 1 is CH 3 —Rf—, CH 2 F—Rf—, or CHF 2 —Rf—, and Rf in R 1 is an alkylene group that may contain a fluorine atom
  • Rf 1 , Rf 2 and Rf 3 may be the same or different and each is a fluorinated alkylene group having 1 to 3 carbon atoms
  • l and m may be the same or different and are each an integer of 0 to 5.
  • R A1 is a group containing an unsaturated bond having 2 to 9 carbon atoms
  • Rf A1 , Rf A2 and Rf A3 may be the same or different and each is an alkylene group which may contain a fluorine atom having 1 to 3 carbon atoms
  • l and m may be the same or different and are each an integer of 0 to 5.
  • the compounds represented by the general formula (1) and the general formula (A) preferably have a molecular weight of 650 or less.
  • Rf preferably contains at least one fluorine atom.
  • the non-aqueous solvent (I) preferably contains a cyclic carbonate.
  • the non-aqueous solvent (I) preferably contains a chain carbonate.
  • the electrolyte salt (II) is preferably a lithium salt.
  • the present invention also provides an electrochemical device comprising the above-described electrolytic solution.
  • the present invention also provides a lithium ion secondary battery comprising the above-described electrolytic solution.
  • the present invention is also a module comprising the above-described lithium ion secondary battery.
  • an electrolytic solution it is possible to provide an electrolytic solution, an electrochemical device, a lithium ion secondary battery, and a module that suppress gas generation and have excellent battery characteristics.
  • the electrolytic solution of the present invention contains a non-aqueous solvent (I), an electrolyte salt (II), and a compound represented by general formula (1) or general formula (A).
  • R 1 is CH 3 —Rf—, CH 2 F—Rf—, or CHF 2 —Rf—, and Rf in R 1 is an alkylene group that may contain a fluorine atom
  • Rf 1 , Rf 2 and Rf 3 may be the same or different and each is a fluorinated alkylene group having 1 to 3 carbon atoms
  • l and m may be the same or different and are each an integer of 0 to 5.
  • Rf A1 , Rf A2 and Rf A3 may be the same or different and each is an alkylene group which may contain a fluorine atom having 1 to 3 carbon atoms
  • l and m may be the same or different and are each an integer of 0 to 5.
  • an electrochemical device such as a lithium ion secondary battery having suppressed gas generation, high safety, and excellent battery characteristics can be provided.
  • R 1 is CH 3 —Rf—, CH 2 F—Rf—, or CHF 2 —Rf—.
  • Rf in the formula of R 1 is an alkylene group that may contain a fluorine atom. Of these, CH 3 —Rf— is preferred because of its good compatibility with the solvent.
  • the alkylene group which may contain a fluorine atom preferably has 1 to 4 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • the alkylene group which may contain a fluorine atom is preferably a straight chain in terms of good compatibility with a solvent.
  • R 1 examples include CH 3 CF 2 CF 2 —, CH 2 FCF 2 CF 2 —, CF 2 HCF 2 CF 2 —, CH 3 CF 2 CF 2 —, and CH 3 CH 2 CF. 2 CF 2 -is preferred.
  • Rf 1 , Rf 2 and Rf 3 may be the same or different, and each is a fluorinated alkylene group having 1 to 3 carbon atoms.
  • fluorinated alkylene group having 1 to 3 carbon atoms the following is preferable.
  • l and m may be the same or different and are each an integer of 0 to 5.
  • Each of l and m is preferably an integer of 0 to 3, and more preferably 0 or 1.
  • the molecular weight of the compound represented by the general formula (1) is preferably 100 or more, more preferably 120 or more, and still more preferably 150 or more.
  • the molecular weight is preferably 650 or less, and more preferably 450 or less.
  • the content of the compound represented by the general formula (1) is 0.001 to 20% by mass in the electrolytic solution. Gas content can be suppressed as content is in the said range, and it can be set as the electrolyte solution which has the outstanding battery characteristic.
  • the content of the compound represented by the general formula (1) is 0.001 to 20% by mass in the electrolytic solution, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 8% by mass or less. Is preferable, and 6 mass% or less is more preferable.
  • the production method of the compound represented by the general formula (1) is not particularly limited, and can be produced by arbitrarily selecting a known method.
  • R A1 is a group containing an unsaturated bond having 2 to 9 carbon atoms.
  • the group containing an unsaturated bond preferably has 2 to 8 carbon atoms, and more preferably 2 to 7 carbon atoms.
  • the group containing an unsaturated bond is a group having at least one double bond or triple bond.
  • Examples of the group containing an unsaturated bond include —N ⁇ C ⁇ S, —N ⁇ C ⁇ O, —C ⁇ N, and an aryl group, alkenyl group, and alkynyl group that may be substituted with a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom is preferable because it is difficult to cause elimination.
  • aryl group examples include a phenyl group and a benzyl group.
  • aryl group which may be substituted with the halogen atom a phenyl group, a benzyl group and a fluorinated phenyl group are preferable.
  • alkenyl group examples include a vinyl group (CH 2 ⁇ CH—) and an allyl group (CH 2 ⁇ CHCH 2 —).
  • alkenyl group which may be substituted with the halogen atom an allyl group, a vinyl fluoride group and an allyl fluoride group are preferable.
  • the allyl fluoride group examples include CF 2 ⁇ CF—CF 2 — and CH 2 ⁇ CF—CF 2 —.
  • alkynyl group examples include ethynyl group (CH ⁇ C—), propargyl group (CH ⁇ CCH 2 —), and the like.
  • the alkynyl group which may be substituted with the halogen atom is preferably an ethynyl fluoride group.
  • R A1 —N ⁇ C ⁇ S, —N ⁇ C ⁇ O, CH 2 ⁇ CF—CF 2 — is used in order to obtain an electrolytic solution that suppresses gas generation and has excellent battery characteristics.
  • Rf A1 , Rf A2 and Rf A3 may be the same or different and each is an alkylene group which may contain a fluorine atom having 1 to 3 carbon atoms.
  • alkylene group which may contain a fluorine atom having 1 to 3 carbon atoms
  • examples of the alkylene group which may contain a fluorine atom having 1 to 3 carbon atoms include an alkylene group having 1 to 3 carbon atoms and a fluorinated alkylene group having 1 to 3 carbon atoms.
  • the fluorinated alkylene group refers to an alkylene group in which at least one hydrogen atom is substituted with a fluorine atom.
  • Rf A1 , Rf A2 and Rf A3 are preferably fluorinated alkylene groups having 1 to 3 carbon atoms.
  • alkylene group having the carbon number of 1 ⁇ 3, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 - is preferred.
  • fluorinated alkylene group having 1 to 3 carbon atoms the following is preferable.
  • l and m may be the same or different and each is an integer of 0 to 5.
  • L and m may be the same or different, and are each preferably an integer of 0 to 3, more preferably 0 or 1.
  • the compound represented by the general formula (A) preferably has a fluorine content of 20 to 70% by mass.
  • the fluorine content is more preferably 25% by mass or more, and more preferably 65% by mass or less.
  • the fluorine content is based on the structural formula of the general formula (A), ⁇ (Number of fluorine atoms ⁇ 19) / molecular weight of general formula (A) ⁇ ⁇ 100 (%) The value calculated by
  • the content of the compound represented by the general formula (A) is 0.001 to 20% by mass in the electrolytic solution. Gas content can be suppressed as content is in the said range, and it can be set as the electrolyte solution which has the outstanding battery characteristic.
  • the content of the compound represented by the general formula (A) is 0.001 to 20% by mass in the electrolytic solution, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 8% by mass or less. Is preferable, and 6 mass% or less is more preferable.
  • the production method of the compound represented by the general formula (A) is not particularly limited, and can be produced by arbitrarily selecting a known method.
  • the electrolytic solution of the present invention contains a non-aqueous solvent (I) and an electrolyte salt (II).
  • the non-aqueous solvent (I) preferably contains a cyclic carbonate.
  • the cyclic carbonate include a fluorinated cyclic carbonate, a cyclic carbonate having no fluorine atom, and a cyclic carbonate having an unsaturated bond.
  • X 1 to X 4 are the same or different and each represents —H, —F, a fluorinated alkyl group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond. In which at least one of X 1 to X 4 is —F.).
  • the non-aqueous solvent (I) contains a fluorinated cyclic carbonate (B)
  • a stable film is formed on the negative electrode when an electrolyte containing the solvent (I) is applied to a lithium ion secondary battery or the like.
  • the side reaction of the electrolyte solution at the negative electrode can be sufficiently suppressed.
  • extremely stable and excellent charge / discharge characteristics can be obtained.
  • the “ether bond” is a bond represented by —O—.
  • X 1 to X 4 are —H, —F, fluorinated alkyl, because it is expected to lower the viscosity at low temperature, increase the flash point, and further improve the solubility of the electrolyte salt.
  • the group (a), a fluorinated alkyl group (b) having an ether bond, or a fluorinated alkoxy group (c) is preferred.
  • At least one of X 1 to X 4 is -F, but from the viewpoint of good dielectric constant and oxidation resistance, at least one or two of X 1 to X 4 are- F is preferred.
  • the fluorinated alkyl group (a) is obtained by substituting at least one hydrogen atom of the alkyl group with a fluorine atom.
  • the number of carbon atoms in the fluorinated alkyl group (a) is preferably 1-20, more preferably 2-17, still more preferably 2-7, and particularly preferably 2-5. If the carbon number is too large, the low-temperature characteristics may be lowered or the solubility of the electrolyte salt may be lowered. If the carbon number is too small, the solubility of the electrolyte salt is lowered, the discharge efficiency is lowered, and further, An increase in viscosity may be observed.
  • fluorinated alkyl groups (a) those having 1 carbon atom include CFH 2 —, CF 2 H—, and CF 3 —.
  • fluorinated alkyl groups those having 2 or more carbon atoms are represented by the following general formula (a-1): R 1 -R 2- (a-1) (Wherein R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; provided that R 1 and A fluorinated alkyl group represented by (at least one of R 2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms other than the carbon atom, the hydrogen atom, and the fluorine atom.
  • R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R 1 is preferably a linear or branched alkyl group having 1 to 16 carbon atoms.
  • the number of carbon atoms of R 1 is more preferably 1 to 6, and further preferably 1 to 3.
  • R 1 specifically, as a linear or branched non-fluorinated alkyl group, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 -,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferable. However, since the viscosity tends to be high if there is a branch of —CH 3 or —CF 3 , the number is preferably small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 2 is linear, it is composed of only the above-mentioned linear minimum structural unit, and —CH 2 —, —CH 2 CH 2 — or CF 2 — is particularly preferable. From the viewpoint of further improving the solubility of the electrolyte salt, —CH 2 — or —CH 2 CH 2 — is more preferable.
  • R 2 When R 2 is branched, it comprises at least one of the aforementioned branched minimum structural units, and R 2 is represented by the general formula — (CX a X b ) — (X a is H, F CH 3 or CF 3 ; X b is preferably CH 3 or CF 3, provided that when X b is CF 3 , X a is H or CH 3 .
  • the solubility of the electrolyte salt can be further improved.
  • Preferred fluorinated alkyl groups (a) include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CF 2 CF 2 —, HCF 2 CF 2 CF 2 -, H 2 CFCF 2 CF 2- , CH 3 CF 2 CF 2- , CF 3 CH 2- , HCF 2 CH 2- , CF 3 CF 2 CH 2- , HCF 2 CF 2 CH 2- , H 2 CFCF 2 CH 2- , H 2 CFCF 2 CH 2 —, CH 3 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, HCF 2 CF 2 CH 2 —, H 2 CFCF 2 CH 2 —, H 2 CFCF 2 CH 2 -, CH 3 CF 2 CF 2 CH 2 -, CF 3 CH 2 CH 2 -, HCF 2 CH 2 CH 2
  • Specific examples of the preferred fluorinated alkyl group (a) in which R 2 is linear include CF 3 CH 2 —, HCF 2 CH 2 —, CF 3 CF 2 CH 2 —, HCF 2 CF 2 CH 2 —, for example.
  • preferred fluorinated alkyl group (a) in which R 2 is branched include, for example:
  • the fluorinated alkyl group (b) having an ether bond is obtained by substituting at least one hydrogen atom of the alkyl group having an ether bond with a fluorine atom.
  • the fluorinated alkyl group (b) having an ether bond preferably has 2 to 17 carbon atoms. If the number of carbon atoms is too large, the viscosity of the fluorinated cyclic carbonate (B) increases, and the fluorine-containing group increases. Therefore, the solubility of the electrolyte salt decreases due to the decrease in the dielectric constant, and the phase with other solvents increases. A decrease in solubility may be observed. From this viewpoint, the fluorinated alkyl group (b) having an ether bond preferably has 2 to 10 carbon atoms, and more preferably 2 to 7 carbon atoms.
  • the alkylene group constituting the ether portion of the fluorinated alkyl group (b) having an ether bond may be a linear or branched alkylene group.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • the alkylene group may be composed of these minimum structural units alone, and may be linear (i), branched (ii), or linear (i) and branched (ii). You may comprise by the combination. Preferred specific examples will be described later.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • fluorinated alkyl group (b) having an ether bond include a compound represented by the general formula (b-1): R 3- (OR 4 ) n1- (b-1) (Wherein R 3 may have a fluorine atom, preferably an alkyl group having 1 to 6 carbon atoms; R 4 may have a fluorine atom, preferably an alkylene having 1 to 4 carbon atoms) N1 is an integer of 1 to 3; provided that at least one of R 3 and R 4 has a fluorine atom).
  • R 3 and R 4 include the following, and these can be combined as appropriate to form a fluorinated alkyl group (b) having an ether bond represented by the general formula (b-1). However, it is not limited to these.
  • R 3 the general formula: X c 3 C— (R 5 ) n2 — (the three X c are the same or different and each is H or F; R 5 represents a fluorine atom having 1 to 5 carbon atoms)
  • R 3 includes CH 3 —, CF 3 —, HCF 2 —, and H 2 CF—.
  • R 3 is linear, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CF 2 CF 2 —, CF 3 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2- , CF 3 CF 2 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2
  • n2 is 1, and as R 3 is branched, the
  • R 3 is more preferably linear.
  • n1 is an integer of 1 to 3, preferably 1 or 2.
  • R 4 may be the same or different.
  • R 4 include the following linear or branched ones.
  • the fluorinated alkoxy group (c) is obtained by substituting at least one hydrogen atom of the alkoxy group with a fluorine atom.
  • the fluorinated alkoxy group (c) preferably has 1 to 17 carbon atoms. More preferably, it has 1 to 6 carbon atoms.
  • the fluorinated alkoxy group (c) is represented by the general formula: X d 3 C— (R 6 ) n3 —O— (the three X d are the same or different, and all are H or F; R 6 is preferably carbon number)
  • fluorinated alkoxy group (c) examples include a fluorinated alkoxy group in which an oxygen atom is bonded to the terminal of the alkyl group exemplified as R 1 in the general formula (a-1).
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is preferably 10% by mass or more. If the fluorine content is too low, the effect of lowering the viscosity at low temperatures and the effect of increasing the flash point may not be sufficiently obtained. From this viewpoint, the fluorine content is preferably 10% by mass or more, more preferably 12% by mass or more, and further preferably 15% by mass or more. The upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is determined based on the structural formula of each group ⁇ (fluorine atom Number ⁇ 19) / formula amount of each group ⁇ ⁇ 100 (%).
  • fluorinated cyclic carbonate (B) As a specific example of the fluorinated cyclic carbonate (B), as a fluorinated cyclic carbonate having high withstand voltage and good electrolyte salt solubility, for example,
  • Etc. can be used.
  • fluorinated cyclic carbonate (B) in the electrolytic solution of the present invention is not limited to the specific examples described above.
  • X 1 to X 4 are the same or different and each represents —H, a fluorinated alkyl group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond.
  • the fluorinated cyclic carbonate (C) represented by these is mentioned. By including the fluorinated cyclic carbonate (C), more stable and excellent charge / discharge characteristics can be obtained.
  • the “ether bond” is a bond represented by —O—.
  • At least one of X 1 to X 4 is —H, a fluorinated alkyl group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond.
  • one or two of X 1 to X 4 have —H, a fluorinated alkyl group which may have an ether bond, or an ether bond. It is preferably a fluorinated alkoxy group.
  • At least one of X 1 to X 4 has a fluorinated alkyl group (a) and an ether bond, since a decrease in viscosity at low temperature, an increase in flash point, and an improvement in electrolyte salt solubility can be expected. It is preferably a fluorinated alkyl group (b) or a fluorinated alkoxy group (c).
  • Examples of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) include those represented by X 1 to X 4 in the general formula (B). The same thing as a fluorinated alkyl group (a), the fluorinated alkyl group (b) which has an ether bond, and a fluorinated alkoxy group (c) can be mentioned.
  • fluorinated cyclic carbonate (C) examples include the following.
  • Specific examples of the fluorinated cyclic carbonate (C) in which at least one of X 1 to X 4 in the general formula (C) is a fluorinated alkyl group (a) and the rest are all —H are as follows:
  • At least one of X 1 to X 4 is a fluorinated alkyl group (b) or a fluorinated alkoxy group (c) having an ether bond, and the rest are all —H.
  • fluorinated cyclic carbonate (C) As a specific example of the fluorinated cyclic carbonate (C),
  • the content of the fluorinated cyclic carbonate (B) and (C) is preferably 1% by volume or more, more preferably 5% by volume or more, and still more preferably 10% by volume or more in 100% by volume of the non-aqueous solvent (I). Moreover, 50 volume% or less is preferable, 35 volume% or less is more preferable, and 25 volume% or less is still more preferable.
  • cyclic carbonate without fluorine atoms examples include cyclic carbonates having an alkylene group having 2 to 4 carbon atoms.
  • Specific examples of the cyclic carbonate having an alkylene group having 2 to 4 carbon atoms and having no fluorine atom include ethylene carbonate, propylene carbonate, and butylene carbonate. Of these, ethylene carbonate and propylene carbonate are particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
  • the cyclic carbonate which does not have a fluorine atom may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the content of the cyclic carbonate not having a fluorine atom is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the content in the case of using one kind alone is a non-aqueous solvent (I ) 5 volume% or more is preferable in 100 volume%, and more preferably 10 volume% or more.
  • 95 volume% or less is preferable, as for the said content, More preferably, it is 90 volume% or less, More preferably, it is 85 volume% or less.
  • the viscosity of the electrolytic solution is set to an appropriate range, a decrease in ionic conductivity is suppressed, and as a result, the load characteristics of an electrochemical device using the electrolytic solution are easily set to a favorable range.
  • the cyclic carbonate having an unsaturated bond (hereinafter also referred to as “unsaturated cyclic carbonate”) is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond. Unsaturated carbonates can be used.
  • the cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
  • unsaturated cyclic carbonates examples include vinylene carbonates, aromatic carbonates, ethylene carbonates substituted with a substituent having a carbon-carbon double bond or carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, allyl carbonates, Catechol carbonates etc. are mentioned.
  • the vinylene carbonates include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-divinyl vinylene carbonate, allyl vinylene carbonate, 4 , 5-diallyl vinylene carbonate, 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-fluoro-5-vinyl vinylene carbonate, 4-allyl-5-fluoro Examples include vinylene carbonate.
  • ethylene carbonates substituted with an aromatic ring or a substituent having a carbon-carbon double bond or carbon-carbon triple bond include vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5- Vinyl ethylene carbonate, 4-allyl-5-vinyl ethylene carbonate, ethynyl ethylene carbonate, 4,5-diethynyl ethylene carbonate, 4-methyl-5-ethynyl ethylene carbonate, 4-vinyl-5-ethynyl ethylene carbonate, 4-allyl -5-ethynylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate 4,5 diallyl carbonate, 4-methyl-5-allyl carbonate and the like.
  • preferred unsaturated cyclic carbonates for use in combination with the compound represented by the formula (1) are vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene.
  • the molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight is preferably 80 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will fully be expressed easily.
  • the molecular weight of the unsaturated cyclic carbonate is more preferably 85 or more, and more preferably 150 or less.
  • the production method of the unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method.
  • An unsaturated cyclic carbonate may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • the content of the unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the content of the unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass or more in 100% by mass of the non-aqueous solvent (I). .
  • the content is preferably 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less. If it is within the above range, the electrochemical device using the electrolytic solution is likely to exhibit a sufficient cycle characteristic improving effect, the high-temperature storage characteristic is lowered, the amount of gas generation is increased, and the discharge capacity maintenance ratio is lowered. It is easy to avoid such a situation.
  • the non-aqueous solvent (I) preferably contains a chain carbonate.
  • chain carbonate include non-fluorinated chain carbonates and fluorinated chain carbonates.
  • the non-fluorinated chain carbonate is preferably a chain carbonate having 3 to 7 carbon atoms and not containing a fluorine atom, and more preferably a dialkyl carbonate having 3 to 7 carbon atoms.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, methyl n-propyl carbonate, n-butyl methyl carbonate, and isobutyl methyl carbonate.
  • T-butyl methyl carbonate ethyl-n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate and the like.
  • dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, and methyl n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are particularly preferable. It is.
  • a non-fluorinated chain carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the fluorinated chain carbonate is a chain carbonate having a fluorine atom.
  • the number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or may be bonded to different carbons.
  • Examples of the fluorinated chain carbonate include fluorinated dimethyl carbonate and derivatives thereof, fluorinated ethyl methyl carbonate and derivatives thereof, and fluorinated diethyl carbonate and derivatives thereof.
  • Fluorinated dimethyl carbonate and derivatives thereof include fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, trifluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, bis (trifluoromethyl) carbonate, and the like. It is done.
  • Fluorinated ethyl methyl carbonate and its derivatives include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, 2,2,2 -Trifluoroethyl methyl carbonate, 2,2-difluoroethyl fluoromethyl carbonate, 2-fluoroethyl difluoromethyl carbonate, ethyl trifluoromethyl carbonate and the like.
  • Fluorinated diethyl carbonate and its derivatives include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, ethyl- (2,2,2- Trifluoroethyl) carbonate, 2,2-difluoroethyl-2′-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2′-fluoroethyl carbonate, 2, Examples include 2,2-trifluoroethyl-2 ′, 2′-difluoroethyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, and the like.
  • a fluorinated chain carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content of the chain carbonate is preferably 5% by volume or more, more preferably 10% by volume or more, and further preferably 15% by volume or more in 100% by volume of the non-aqueous solvent (I).
  • the chain carbonate is preferably 90% by volume or less, more preferably 85% by volume or less, in 100% by volume of the non-aqueous solvent (I).
  • the non-aqueous solvent (I) may also contain a cyclic carboxylic acid ester, a chain carboxylic acid ester, an ether compound, and the like.
  • a cyclic carboxylic acid ester those having 3 to 12 carbon atoms are preferable.
  • Specific examples include gamma butyrolactone, gamma valerolactone, gamma caprolactone, epsilon caprolactone, and the like.
  • gamma butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
  • a cyclic carboxylic acid ester may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content of the cyclic carboxylic acid ester is usually 5% by volume or more, more preferably 10% by volume or more, in 100% by volume of the non-aqueous solvent. If it is this range, it will become easy to improve the electrical conductivity of a non-aqueous electrolyte solution, and to improve the large current discharge characteristic of the electrochemical device using electrolyte solution.
  • the content of the cyclic carboxylic acid ester is preferably 50% by volume or less, more preferably 40% by volume or less.
  • the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, a decrease in electrical conductivity is avoided, an increase in negative electrode resistance is suppressed, and a large current discharge of the non-aqueous electrolyte secondary battery is performed. It becomes easy to make a characteristic into a favorable range.
  • the chain carboxylic acid ester is preferably one having 3 to 7 carbon atoms. Specifically, methyl acetate, ethyl acetate, acetate n-propyl, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyric acid-n- Examples include propyl and isopropyl isobutyrate.
  • a chain carboxylic acid ester may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content of the chain carboxylic acid ester is usually 10% by volume or more, more preferably 15% by volume or more, in 100% by volume of the non-aqueous solvent.
  • the content of the chain carboxylic acid ester is preferably 60% by volume or less, more preferably 50% by volume or less, in 100% by volume of the non-aqueous solvent.
  • ether compound a chain ether having 3 to 10 carbon atoms in which part of hydrogen may be substituted with fluorine and a cyclic ether having 3 to 6 carbon atoms are preferable.
  • chain ether having 3 to 10 carbon atoms Diethyl ether, di (2-fluoroethyl) ether, di (2,2-difluoroethyl) ether, di (2,2,2-trifluoroethyl) ether, ethyl (2-fluoroethyl) ether, ethyl (2, 2,2-trifluoroethyl) ether, ethyl (1,1,2,2-tetrafluoroethyl) ether, (2-fluoroethyl) (2,2,2-trifluoroethyl) ether, (2-fluoroethyl) ) (1,1,2,2-tetrafluoroethyl) ether, (2,2,2-trifluoroethyl) ) (1,
  • Examples of the cyclic ether having 3 to 6 carbon atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1 , 4-dioxane and the like, and fluorinated compounds thereof.
  • dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and improve ion dissociation.
  • dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are preferable because they have low viscosity and give high ionic conductivity.
  • An ether compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the compounding amount of the ether compound is usually 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and preferably 70% by volume or less, in 100% by volume of the non-aqueous solvent. More preferably, it is 60 volume% or less, More preferably, it is 50 volume% or less.
  • the electrolytic solution of the present invention may further contain an auxiliary agent depending on the purpose.
  • an auxiliary agent As said adjuvant, the unsaturated cyclic carbonate which has a fluorine atom shown below, an overcharge inhibitor, another adjuvant, etc. are mentioned.
  • a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter sometimes abbreviated as “fluorinated unsaturated cyclic carbonate”) is also preferably used.
  • the number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 fluorine atoms.
  • fluorinated unsaturated cyclic carbonate examples include a fluorinated vinylene carbonate derivative, a fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond.
  • Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- And vinyl vinylene carbonate.
  • fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon double bond examples include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5 -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate , 4,5-diflu B-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenyl
  • fluorinated unsaturated cyclic carbonates for use in combination with the compound of the general formula (1) include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-vinyl vinylene.
  • the molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight is preferably 50 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the fluorinated cyclic carbonate with respect to electrolyte solution, and the effect of this invention will be easy to be expressed.
  • the production method of the fluorinated unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method.
  • the molecular weight is more preferably 100 or more, and more preferably 200 or less.
  • a fluorinated unsaturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios. Further, the content of the fluorinated unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the content of the fluorinated unsaturated cyclic carbonate is usually 100% by mass of the electrolytic solution, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more. Moreover, it is preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less. Within this range, the electrochemical device using the electrolytic solution is likely to exhibit a sufficient cycle characteristic improvement effect, and the high-temperature storage characteristic is reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced. It is easy to avoid such a situation.
  • an overcharge inhibitor can be used in order to effectively suppress rupture / ignition of a battery when an electrochemical device using the electrolytic solution is in an overcharged state.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partially fluorinated products of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like And a fluorine-containing anisole compound.
  • a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene,
  • aromatic compounds not containing oxygen such as t-amylbenzene
  • oxygen-containing aromatic compounds such as diphenyl ether, dibenzofuran, and the like
  • auxiliaries Other known auxiliaries can be used in the electrolytic solution of the present invention.
  • Other auxiliary agents include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, anhydrous Carboxylic anhydrides such as itaconic acid, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; 2,4,8,10-tetraoxaspiro [5.5 ] Spiro compounds such as undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite, 1,3-propane sultone, 1-fluoro
  • the blending amount of other auxiliary agents is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the other auxiliary agent is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the electrolytic solution. Within this range, the effects of other auxiliaries can be sufficiently exhibited, and it is easy to avoid a situation in which battery characteristics such as high-load discharge characteristics deteriorate.
  • the blending amount of other auxiliaries is more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, more preferably 3% by mass or less, and further preferably 1% by mass or less. .
  • lithium salts may be used alone or in combination of two or more.
  • a preferable example in the case of using two or more types in combination is a combination of LiPF 6 and LiBF 4 or LiPF 6 and FSO 3 Li, which has an effect of improving load characteristics and cycle characteristics.
  • the concentration of LiBF 4 or FSO 3 Li with respect to 100% by mass of the entire electrolytic solution is not limited in the blending amount, and is arbitrary as long as the effects of the present invention are not significantly impaired. 0.01% by mass or more, preferably 0.1% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less.
  • CF 3 SO 3 Li LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , lithium bisoxalatoborate, lithium difluorooxalatoborate, lithium tetrafluorooxalate phosphate, lithium difluorobisoxalatophosphate, LiBF 3 CF 3 , LiBF 3
  • the concentration of these lithium salts in the electrolytic solution is not particularly limited as long as the effects of the present invention are not impaired, but the electric conductivity of the electrolytic solution is in a good range, and good battery performance is ensured. Therefore, the total molar concentration of lithium in the electrolytic solution is preferably 0.3 mol / L or more, more preferably 0.4 mol / L or more, still more preferably 0.5 mol / L or more, and preferably 3 mol / L or more. L or less, more preferably 2.5 mol / L or less, still more preferably 2.0 mol / L or less. If the total molar concentration of lithium is too low, the electrical conductivity of the electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, resulting in decreased battery performance. There is a case.
  • the electrolytic solution of the present invention is prepared by a known method such as dissolving the compound represented by the general formula (1) and the electrolyte salt (II) in the non-aqueous solvent (I).
  • the electrolytic solution of the present invention suppresses gas generation and has stable battery characteristics, it is suitable as an electrolytic solution for an electrochemical device that is a non-aqueous electrolytic battery.
  • An electrochemical device provided with the electrolytic solution of the present invention is also one aspect of the present invention.
  • Examples of the electrochemical device include lithium ion secondary batteries, capacitors (electrolytic double layer capacitors), radical batteries, solar cells (especially dye-sensitized solar cells), fuel cells, various electrochemical sensors, electrochromic elements, electrochemical A switching element, an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, etc. are mentioned. Of these, lithium ion secondary batteries and electrolytic double layer capacitors are preferred, and lithium ion secondary batteries are particularly preferred.
  • a lithium ion secondary battery provided with the electrolytic solution of the present invention is also one aspect of the present invention.
  • the electrochemical device can have a known structure, and typically includes a negative electrode and a positive electrode capable of occluding and releasing ions (for example, lithium ions), and the above-described electrolytic solution of the present invention.
  • the negative electrode active material used for the negative electrode is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
  • the negative electrode active material examples include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like.
  • a carbonaceous material used as a negative electrode active material (1) natural graphite, (2) a carbonaceous material obtained by heat-treating an artificial carbonaceous material and an artificial graphite material at least once in the range of 400 to 3200 ° C; (3) a carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different crystallinities and / or has an interface in contact with the different crystalline carbonaceous materials, (4) A carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different orientations and / or has an interface in contact with the carbonaceous materials having different orientations, Is preferably a good balance between initial irreversible capacity and high current density charge / discharge characteristics.
  • the carbonaceous materials (1) to (4) may be used alone or in combination of two or more in any combination and ratio.
  • the artificial carbonaceous material and artificial graphite material of (2) above include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, and those obtained by oxidizing these pitches, needle coke, pitch coke and Carbon materials that are partially graphitized, furnace black, acetylene black, organic pyrolysis products such as pitch-based carbon fibers, carbonizable organic materials and their carbides, or carbonizable organic materials are benzene, toluene, xylene, quinoline And a solution dissolved in a low-molecular organic solvent such as n-hexane, and carbides thereof.
  • the single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements (that is, excluding carbon), more preferably aluminum, silicon and tin (hereinafter referred to as “ Simple metals) and alloys or compounds containing these atoms (sometimes abbreviated as “specific metal elements”). These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • a negative electrode active material having at least one kind of atom selected from a specific metal element, a metal simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, one type or two or more specific types Alloys comprising metal elements and one or more other metal elements, as well as compounds containing one or more specific metal elements, and oxides, carbides, nitrides and silicides of the compounds And composite compounds such as sulfides or phosphides.
  • these simple metals, alloys or metal compounds as the negative electrode active material, the capacity of the battery can be increased.
  • a compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a nonmetallic element is also included.
  • a simple metal, an alloy, or a nonmetallic element such as silicon and tin
  • an alloy of these elements and a metal that does not operate as a negative electrode can be used.
  • a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than tin and silicon, a metal that does not operate as a negative electrode, and a nonmetallic element may be used. it can.
  • any one simple metal of a specific metal element, an alloy of two or more specific metal elements, oxidation of a specific metal element In particular, silicon and / or tin metal simple substance, alloy, oxide, carbide, nitride and the like are preferable from the viewpoint of capacity per unit mass and environmental load.
  • the lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable from the viewpoint of high current density charge / discharge characteristics, A lithium-containing composite metal oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium (hereinafter sometimes abbreviated as “lithium titanium composite oxide”) is more preferable. That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure in an anode active material for electrochemical devices because the output resistance is greatly reduced.
  • lithium or titanium of the lithium titanium composite oxide is at least selected from the group consisting of other metal elements such as Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. Those substituted with one element are also preferred.
  • the metal oxide is a lithium titanium composite oxide represented by the general formula (D). In the general formula (D), 0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, It is preferable that 0 ⁇ z ⁇ 1.6 because the structure upon doping and dedoping of lithium ions is stable.
  • M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.
  • This structure is particularly preferable because of a good balance of battery performance.
  • Particularly preferred representative compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (a), Li 1 Ti 2 O 4 in (b), and Li 4/5 Ti 11/5 O in (c). 4 .
  • a binder (binder), a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. are added to the negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can be formed.
  • a method of forming a thin film layer (negative electrode active material layer) containing the above-described negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.
  • the binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the electrolyte and the solvent used in manufacturing the electrode.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, polyimide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, Rubber polymers such as NBR (acrylonitrile / butadiene rubber) and ethylene / propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / styrene copolymers, s
  • the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15% by mass. The following is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is particularly preferable.
  • the ratio of the binder with respect to a negative electrode active material exceeds the said range, the binder ratio from which the amount of binders does not contribute to battery capacity may increase, and the fall of battery capacity may be caused.
  • the strength of the negative electrode may be reduced.
  • the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0 .6% by mass or more is more preferable, and is usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the main component contains a fluorine-based polymer typified by polyvinylidene fluoride
  • the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
  • the solvent for forming the slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as necessary.
  • aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water and alcohol.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Examples include dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • methyl ethyl ketone cyclohexanone
  • methyl acetate methyl acrylate
  • diethyltriamine N
  • N- Examples include dimethylaminopropylamine, tetrahydr
  • aqueous solvent when used, it is preferable to add a dispersant or the like in accordance with the thickener and make a slurry using a latex such as SBR.
  • these solvent may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • the current collector for holding the negative electrode active material As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. Copper is particularly preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, or the like when the current collector is a metal material.
  • a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector.
  • the thickness of the current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and is usually 100 ⁇ m or less, preferably 50 ⁇ m or less. This is because if the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low, and conversely if it is too thin, handling may be difficult.
  • the thickness ratio of the current collector and the negative electrode active material layer is not particularly limited, but the value of “(negative electrode active material layer thickness on one side just before electrolyte injection) / (current collector thickness)” 150 or less is preferable, 20 or less is more preferable, 10 or less is particularly preferable, 0.1 or more is preferable, 0.4 or more is more preferable, and 1 or more is particularly preferable.
  • the ratio of the thickness of the current collector to the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge / discharge.
  • the volume ratio of the current collector to the negative electrode active material increases, and the battery capacity may decrease.
  • the positive electrode active material used for a positive electrode is preferably a lithium transition gold compound powder having a function capable of inserting / extracting lithium ions that satisfies any of the following three conditions.
  • the lithium transition metal compound is a compound having a structure capable of desorbing and inserting Li ions, and examples thereof include sulfides, phosphate compounds, and lithium transition metal composite oxides.
  • sulfide a compound having a two-dimensional layered structure such as TiS 2 or MoS 2 or a strong formula represented by a general formula Me x Mo 6 S 8 (Me is various transition metals including Pb, Ag, Cu). Examples thereof include a sugar compound having a three-dimensional skeleton structure.
  • Examples of the phosphate compound include those belonging to the olivine structure, and are generally represented by LiMePO 4 (Me is at least one or more transition metals), specifically LiFePO 4 , LiCoPO 4 , LiNiPO 4 , Examples include LiMnPO 4 .
  • Examples of the lithium transition metal composite oxide include spinel structures capable of three-dimensional diffusion and those belonging to a layered structure capable of two-dimensional diffusion of lithium ions. Those having a spinel structure are generally expressed as LiMe 2 O 4 (Me is at least one transition metal), specifically, LiMn 2 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 1.5 O. 4 , LiCoVO 4 and the like.
  • LiMeO 2 Those having a layered structure are generally expressed as LiMeO 2 (Me is at least one or more transition metals). Specifically, LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 , LiNi 1-x -Y Co x Mn y O 2 , LiNi 0.5 Mn 0.5 O 2 , Li 1.2 Cr 0.4 Mn 0.4 O 2 , Li 1.2 Cr 0.4 Ti 0.4 O 2 , Examples include LiMnO 2 . Of these, lithium nickel manganese cobalt based composite oxide or LiCoO 2 is preferable.
  • the lithium transition metal compound powder preferably has an olivine structure, a spinel structure, or a layered structure from the viewpoint of lithium ion diffusion. Of these, those having a layered structure are particularly preferred.
  • a foreign element may be introduced into the lithium transition metal compound powder.
  • Different elements include B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te. Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi , N, F, S, Cl, Br, or I.
  • These foreign elements may be incorporated into the crystal structure of the lithium nickel manganese cobalt composite oxide, or may not be incorporated into the crystal structure of the lithium nickel manganese cobalt composite oxide. It may be unevenly distributed as a single substance or a compound in the boundary.
  • additive element 1 a compound having at least one element selected from Mo, W, Nb, Ta and Re (hereinafter also referred to as “additive element 1”) and A compound (hereinafter also referred to as “additive 2”) having at least one element selected from B and Bi (hereinafter also referred to as “additive element 2”) may be used.
  • the additive element 1 is preferably Mo or W, and most preferably W, from the viewpoint of great effect.
  • the additive element 2 is preferably B from the viewpoint of being inexpensive and available as an industrial raw material and being a light element.
  • the type of the compound having additive element 1 (additive 1) is not particularly limited as long as the effect of the present invention is exhibited, but an oxide is usually used.
  • MoO 3 , Li 2 MoO 4 , WO 3 , Li 2 WO 4 are preferable, and WO 3 is particularly preferable.
  • These additional additives 1 may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the type of the compound containing additive element 2 is not particularly limited as long as it exhibits the effects of the present invention, but usually boric acid, oxo acid salts, oxides , Hydroxides and the like are used.
  • boric acid and oxides are preferable, and boric acid is particularly preferable because it can be obtained at low cost as an industrial raw material.
  • additive 2 examples include BO, B 2 O 2 , B 2 O 3 , B 4 O 5 , B 6 O, B 7 O, B 13 O 2 , LiBO 2 , LiB 5 O 8 , and Li 2 B. 4 O 7 , HBO 2 , H 3 BO 3 , B (OH) 3 , B (OH) 4 , BiBO 3 , Bi 2 O 3 , Bi 2 O 5 , Bi (OH) 3 and the like are listed as industrial raw materials. From the viewpoint of being relatively inexpensive and easily available, B 2 O 3 , H 3 BO 3 , and Bi 2 O 3 are preferable, and H 3 BO 3 is particularly preferable. These additives 2 may be used alone or in a combination of two or more.
  • the range of the total amount of additive 1 and additive 2 is usually 0.1 mol% or more, preferably 0, as the lower limit with respect to the total molar amount of transition metal elements constituting the main component. 0.3 mol% or more, more preferably 0.5 mol% or more, particularly preferably 1.0 mol% or more, and the upper limit is usually less than 8 mol%, preferably 5 mol% or less, more preferably 4 mol% or less. Especially preferably, it is 3 mol% or less. If the lower limit is not reached, the above effect may not be obtained. If the upper limit is exceeded, battery performance may be reduced.
  • Method for producing positive electrode active material As a manufacturing method of the positive electrode active material, a general method is used as a manufacturing method of the inorganic compound. In particular, various methods are conceivable for preparing a spherical or elliptical active material. For example, a transition metal source material is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring. And a spherical precursor is prepared and recovered, and dried as necessary. Then, a Li source such as LiOH, Li 2 CO 3 , LiNO 3 is added, and the active material is obtained by baking at a high temperature. .
  • the positive electrode active material may be used alone, or one or more of the different compositions may be used in any combination or ratio.
  • a preferable combination in this case is a combination of LiCoO 2 and LiMn 2 O 4 such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 or a part of this Mn substituted with another transition metal or the like. Or a combination with LiCoO 2 or a part of this Co substituted with another transition metal or the like.
  • the method for producing the lithium transition metal compound powder is not limited to a specific production method, but the lithium compound, at least one transition metal compound selected from Mn, Co and Ni, and the above-mentioned addition
  • a slurry preparation step of pulverizing the agent in a liquid medium and obtaining a slurry in which these are uniformly dispersed, a spray drying step of spray drying the obtained slurry, and a firing step of firing the obtained spray dried body Is preferably produced by a production method comprising
  • a lithium nickel manganese cobalt based composite oxide powder will be described as an example.
  • a lithium compound, a nickel compound, a manganese compound, a cobalt compound, and a slurry in which the above additives are dispersed in a liquid medium are spray-dried.
  • the spray-dried body thus obtained can be produced by firing in an oxygen-containing gas atmosphere.
  • the method for producing a lithium transition metal-based compound powder used in the present invention will be described in detail, taking as an example the method for producing a lithium nickel manganese cobalt-based composite oxide powder which is a preferred embodiment of the present invention.
  • the lithium compounds include Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH ⁇ H 2.
  • Examples include O, LiH, LiF, LiCl, LiBr, LiI, CH 3 OOLi, Li 2 O, Li 2 SO 4 , dicarboxylic acid Li, citric acid Li, fatty acid Li, and alkyl lithium.
  • lithium compounds that do not contain nitrogen, sulfur, or halogen atoms are preferred because they do not generate harmful substances such as SO x and NO x during the firing treatment.
  • Li 2 CO 3 LiOH, LiOH.H 2 O is preferable, and Li 2 CO 3 is particularly preferable. These lithium compounds may be used individually by 1 type, and may use 2 or more types together.
  • Ni (OH) 2 , NiO, NiOOH, NiCO 3 , 2NiCO 3 .3Ni (OH) 2 .4H 2 O, NiC are not used because no harmful substances such as SO X and NO X are generated during the firing process.
  • Nickel compounds such as 2 O 4 .2H 2 O are preferred.
  • Ni (OH) 2 , NiO, NiOOH, NiCO 3 from the viewpoint that it can be obtained as an industrial raw material at a low cost and from the viewpoint of high reactivity, Ni (OH) 2 , NiO, NiOOH, NiCO 3 , and further, a decomposition gas is generated at the time of firing.
  • Ni (OH) 2 , NiOOH, and NiCO 3 are particularly preferable from the viewpoint of easily forming voids in the secondary particles.
  • These nickel compounds may be used individually by 1 type, and may use 2 or more types together.
  • manganese oxides such as Mn 2 O 3 , MnO 2 , Mn 3 O 4 , MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylate, manganese citrate, fatty acid manganese And manganese salts such as oxyhydroxide, manganese chloride and the like.
  • MnO 2 , Mn 2 O 3 , Mn 3 O 4 , and MnCO 3 do not generate gases such as SO X and NO X during firing, and can be obtained at low cost as industrial raw materials. Therefore, it is preferable.
  • These manganese compounds may be used individually by 1 type, and may use 2 or more types together.
  • Co (OH) 2 , CoOOH, CoO, Co 2 O 3 , Co 3 O 4 , and CoCO 3 are preferable, and more preferably, from the viewpoint that no harmful substances such as SO X and NO X are generated during the firing process.
  • Co (OH) 2 and CoOOH are industrially inexpensively available and highly reactive.
  • Co (OH) 2 , CoOOH, and CoCO 3 are particularly preferable from the viewpoint of easily forming voids in the secondary particles of the spray-dried powder due to generation of decomposition gas during firing.
  • These cobalt compounds may be used individually by 1 type, and may use 2 or more types together.
  • the method for mixing the raw materials is not particularly limited, and may be wet or dry.
  • a method using an apparatus such as a ball mill, a vibration mill, or a bead mill can be used.
  • Wet mixing in which the raw material compound is mixed in a liquid medium such as water or alcohol is preferable because more uniform mixing is possible and the reactivity of the mixture can be increased in the firing step.
  • the mixing time varies depending on the mixing method, but it is sufficient that the raw materials are uniformly mixed at the particle level.
  • a ball mill (wet or dry type) usually takes about 1 to 2 days, and a bead mill (wet continuous method) residence time. Is usually about 0.1 to 6 hours.
  • the raw material is pulverized in parallel.
  • the particle diameter of the raw material particles after pulverization is an index, but the average particle diameter (median diameter) is usually 0.6 ⁇ m or less, preferably 0.55 ⁇ m or less, more preferably 0.52 ⁇ m or less, most preferably Preferably, it is 0.5 ⁇ m or less. If the average particle size of the pulverized raw material particles is too large, the reactivity in the firing process is lowered, and the composition is difficult to homogenize.
  • the average particle size is usually 0.01 ⁇ m or more, preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more. That's fine.
  • a means for realizing such a degree of pulverization is not particularly limited, but a wet pulverization method is preferable. Specific examples include dyno mill. *
  • the median diameter of the pulverized particles in the slurry was measured by using a known laser diffraction / scattering particle size distribution measuring apparatus with a refractive index of 1.24 and a particle diameter reference set to a volume reference. .
  • a dispersion medium used in the measurement a 0.1 wt% sodium hexametaphosphate aqueous solution was used, and measurement was performed after ultrasonic dispersion (output 30 W, frequency 22.5 kHz) for 5 minutes.
  • Spray drying process After the wet mixing, it is then subjected to a normal drying process.
  • the drying method is not particularly limited, but spray drying is preferable from the viewpoints of uniformity of the generated particulate matter, powder flowability, powder handling performance, and efficient production of dry particles.
  • spray drying is preferable from the viewpoints of uniformity of the generated particulate matter, powder flowability, powder handling performance, and efficient production of dry particles.
  • the slurry obtained by wet-grinding the raw material compound and the above-mentioned additive is spray-dried, A powder obtained by agglomerating primary particles to form secondary particles is obtained. Examples of the method for confirming the shape characteristics of the spray-dried powder obtained by agglomerating primary particles to form secondary particles include SEM observation and cross-sectional SEM observation.
  • the spray-dried powder obtained in the above-described spray drying step is then calcined as a calcining precursor.
  • This firing condition depends on the composition and the lithium compound raw material used, but as a tendency, if the firing temperature is too high, primary particles grow excessively, sintering between the particles proceeds too much, and the specific surface area becomes small. Pass. On the other hand, if it is too low, heterogeneous phases are mixed, and the lattice distortion increases without developing the crystal structure. Moreover, the specific surface area becomes too large.
  • the firing temperature is usually 1000 ° C. or higher, preferably 1010 ° C. or higher, more preferably 1025 ° C. or higher, still more preferably 1050 ° C. or higher, preferably 1250 ° C. or lower, more preferably 1200 ° C. or lower, still more preferably 1175 ° C. It is as follows.
  • a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like can be used.
  • the firing process is usually divided into three parts: temperature increase, maximum temperature retention, and temperature decrease.
  • the second maximum temperature holding portion is not necessarily limited to one time, and may include two or more stages depending on the purpose, which means that aggregation is eliminated to the extent that secondary particles are not destroyed.
  • the temperature raising, maximum temperature holding, and temperature lowering steps may be repeated twice or more with a crushing step or a crushing step meaning crushing to primary particles or even fine powder.
  • the first stage is preferably maintained at a temperature not lower than the temperature at which the Li raw material begins to decompose and below the melting temperature.
  • the first stage is preferably maintained at 400 ° C. or higher. More preferably, it is 450 ° C or higher, more preferably 500 ° C or higher, most preferably 550 ° C or higher, usually 950 ° C or lower, more preferably 900 ° C or lower, more preferably 880 ° C or lower, most preferably 850 ° C or lower. is there.
  • the temperature in the furnace is usually raised at a temperature raising rate of 1 ° C./min to 15 ° C./min. Even if this rate of temperature rise is too slow, it takes time and is industrially disadvantageous. However, if it is too fast, the furnace temperature does not follow the set temperature depending on the furnace.
  • the rate of temperature rise is preferably 2 ° C./min or more, more preferably 3 ° C./min or more, preferably 20 ° C./min or less, more preferably 18 ° C./min or less.
  • the holding time in the maximum temperature holding step varies depending on the temperature, it is usually 15 minutes or longer, preferably 30 minutes or longer, more preferably 45 minutes or longer, most preferably 1 hour or longer within the above-mentioned temperature range. Time or less, preferably 12 hours or less, more preferably 9 hours or less, and most preferably 6 hours or less. If the firing time is too short, it becomes difficult to obtain a lithium-transition metal compound powder with good crystallinity, and it is not practical to be too long. If the firing time is too long, it will be disadvantageous because it will be necessary to crush afterwards or it will be difficult to crush.
  • the temperature in the furnace is usually decreased at a temperature decreasing rate of 0.1 ° C./min to 15 ° C./min. If the temperature lowering rate is too slow, it takes time and is industrially disadvantageous, but if it is too fast, the uniformity of the target product tends to be lost or the deterioration of the container tends to be accelerated.
  • the temperature lowering rate is preferably 1 ° C./min or more, more preferably 3 ° C./min or more, preferably 20 ° C./min or less, more preferably 15 ° C./min or less.
  • the firing atmosphere has an appropriate oxygen partial pressure region depending on the composition of the lithium transition metal-based compound powder to be obtained, appropriate various gas atmospheres for satisfying the oxygen partial pressure region are used.
  • the gas atmosphere include oxygen, air, nitrogen, argon, hydrogen, carbon dioxide, and a mixed gas thereof.
  • An oxygen-containing gas atmosphere such as air can be used for the lithium nickel manganese cobalt based composite oxide powder specifically implemented in the present invention.
  • the atmosphere has an oxygen concentration of 1% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and 100% by volume or less, preferably 50% by volume or less, more preferably 25% by volume or less.
  • a lithium transition metal-based compound powder for example, a lithium nickel manganese cobalt-based composite oxide powder having the specific composition, the lithium compound , A nickel compound, a manganese compound, a cobalt compound, and a slurry in which the additive of the present invention is dispersed in a liquid medium, the target Li / Ni / The molar ratio of Mn / Co can be controlled.
  • the lithium transition metal-based compound powder such as lithium nickel manganese cobalt-based composite oxide powder obtained in this way, the lithium secondary battery having a high capacity, excellent low-temperature output characteristics and storage characteristics, and good performance balance.
  • a positive electrode material for a secondary battery is provided.
  • the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method.
  • a positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, an upper limit becomes like this. Preferably it is 99 mass% or less, More preferably, it is 98 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
  • the binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of the coating method, any material that can be dissolved or dispersed in the liquid medium used during electrode production may be used.
  • the same binder as that used in the production of the negative electrode described above can be used.
  • these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 1.5% by mass or more, and the upper limit is usually 80% by mass or less, preferably Is 60% by mass or less, more preferably 40% by mass or less, and most preferably 10% by mass or less.
  • the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.
  • the solvent for forming the slurry As the solvent for forming the slurry, the positive electrode active material, the conductive material, the binder, and a solvent capable of dissolving or dispersing the thickener used as necessary may be used. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like.
  • organic medium examples include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone.
  • Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • amines such as diethylenetriamine and N, N-dimethylaminopropylamine
  • ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF)
  • NMP N-methylpyrrolidone
  • Amides such as dimethylformamide and dimethylacetamide
  • aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • the material of the positive electrode current collector is not particularly limited, and a known material can be arbitrarily used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material.
  • a thin film, a carbon cylinder, etc. are mentioned.
  • a conductive additive is applied to the surface of the current collector.
  • the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of the current collector) is 20
  • the lower limit is preferably 15 or less, most preferably 10 or less, and the lower limit is preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the positive electrode active material increases and the battery capacity may decrease.
  • a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit.
  • the electrolytic solution of the present invention is usually used by impregnating this separator.
  • the material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired.
  • a resin, glass fiber, inorganic material, etc. which is formed of a material that is stable with respect to the electrolytic solution of the present invention, is used, and it is preferable to use a porous sheet or a nonwoven fabric-like material excellent in liquid retention. .
  • polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. Of these, glass filters and polyolefins are preferred, and polyolefins are more preferred. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the thickness of the separator is arbitrary, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if the thickness is too thick, the battery performance such as rate characteristics may be lowered, and the energy density of the electrochemical device as a whole may be lowered.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 ⁇ m on both surfaces of the positive electrode and using a fluororesin as a binder.
  • the electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
  • the current collecting structure is not particularly limited, but in order to more effectively realize the high current density charge / discharge characteristics by the electrolytic solution of the present invention, it is necessary to make the structure that reduces the resistance of the wiring part and the joint part. preferable. Thus, when internal resistance is reduced, the effect using the electrolyte solution of this invention is exhibited especially favorable.
  • the material of the outer case is not particularly limited as long as it is a material that is stable with respect to the electrolytic solution used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
  • the metal is welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things.
  • Examples of the exterior case using a laminate film include a sealed and sealed structure formed by thermally fusing resin layers together.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used.
  • Resins are preferably used.
  • Protection elements such as PTC (Positive Temperature Coefficient), thermal fuse, thermistor, which increases resistance when abnormal heat is generated or excessive current flows, shuts off current flowing through the circuit due to sudden increase in battery internal pressure or internal temperature during abnormal heat generation
  • a valve current cutoff valve or the like can be used. It is preferable to select a protective element that does not operate under normal use at a high current, and it is more preferable that the protective element is designed so as not to cause abnormal heat generation or thermal runaway even without the protective element.
  • the electrochemical device of the present invention is usually configured by housing the above electrolyte, negative electrode, positive electrode, separator, and the like in an outer package.
  • This exterior body is not particularly limited, and any known one can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired.
  • the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.
  • the shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • the module provided with the lithium ion secondary battery of this invention is also one of this invention.
  • the electrolytic solution of the present invention is excellent in battery characteristics with suppressed gas generation. Therefore, it is particularly useful as an electrolyte for electrochemical devices such as large lithium ion secondary batteries for hybrid vehicles and distributed power supplies, and as an electrolyte for electrochemical devices such as small lithium ion secondary batteries. Is also useful.
  • Examples 17 to 21, Comparative Examples 11 to 13 Under a dry argon atmosphere, ethyl methyl carbonate (EMC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC) were mixed at a volume ratio of 70:20:10, and dried LiPF 6 was added to this solution at 1 mol / L. After dissolving so as to have a ratio, 2% by mass of vinylene carbonate (VC) was mixed to obtain a basic electrolyte.
  • the basic electrolyte solution was mixed with the compounds shown in Table 3 in the proportions shown in Table 3 to obtain electrolyte solutions used in Examples 17 to 21 and Comparative Examples 11 to 13.
  • a positive electrode material prepared by mixing LiCoO 2 as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder at 95/3/2 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone.
  • a positive electrode mixture slurry was prepared in the form of a slurry.
  • the obtained positive electrode mixture slurry was uniformly applied onto an aluminum foil current collector having a thickness of 21 ⁇ m, dried to form a positive electrode mixture layer, and then compression molded by a press to obtain a positive electrode.
  • the negative electrode, the positive electrode, and the polyethylene separator manufactured as described above were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element.
  • This battery element was inserted into a bag made of a laminate film in which both surfaces of an aluminum sheet (thickness 40 ⁇ m) were covered with a resin layer while projecting positive and negative terminals, and then Examples 1 to 21 and Comparative Examples Each of the electrolyte solutions 1 to 13 was poured into a bag and vacuum sealed to produce a sheet-like lithium ion secondary battery.
  • Examples 40 to 45, Comparative Examples 24 to 26 Under a dry argon atmosphere, ethyl methyl carbonate (EMC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC) were mixed at a volume ratio of 70:20:10, and dried LiPF 6 was added to this solution at 1 mol / L. After dissolving so as to have a ratio, 2% by mass of vinylene carbonate (VC) was mixed to obtain a basic electrolyte.
  • the basic electrolyte solution was mixed with the compounds shown in Table 6 at the ratios shown in Table 6 to obtain electrolyte solutions used in Examples 40 to 45 and Comparative Examples 24 to 26.
  • Positive electrode in which LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are mixed in 92/3/5 (mass% ratio).
  • a positive electrode mixture slurry was prepared by dispersing the material in N-methyl-2-pyrrolidone to form a slurry.
  • the obtained positive electrode mixture slurry was uniformly applied onto an aluminum foil current collector having a thickness of 21 ⁇ m, dried to form a positive electrode mixture layer, and then compression molded by a press to obtain a positive electrode.
  • the negative electrode, the positive electrode, and the polyethylene separator manufactured as described above were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element.
  • This battery element was inserted into a bag made of a laminate film in which both surfaces of an aluminum sheet (thickness 40 ⁇ m) were covered with a resin layer while projecting positive and negative terminals, and then Examples 22 to 45 and Comparative Example 14
  • Each of the electrolyte solutions of ⁇ 26 was poured into a bag and vacuum sealed to produce a sheet-like lithium ion secondary battery.
  • Examples 22 to 30 and Comparative Examples 14 to 18 were performed under conditions of 85 ° C. for 3 days.
  • Examples 31 to 45 and Comparative Examples 19 to No. 26 was stored at 85 ° C. for 1 day at a high temperature.
  • the volume was measured by the Archimedes method, and the amount of gas generated from the volume change before and after storage was determined.
  • it was discharged to 3 V at 0.2 C at 25 ° C., the remaining capacity after high-temperature storage was measured, the ratio of the remaining capacity to the initial discharge capacity was determined, and this was defined as the storage capacity retention rate (%).
  • (Remaining capacity) ⁇ (Initial discharge capacity) x 100 Storage capacity retention rate (%)
  • component (Ia) A part of 50% by mass of component (Ia) was phase-separated from the basic electrolyte, and the battery characteristics could not be evaluated.
  • component (Ia) A part of 50% by mass of component (Ia) was phase-separated from the basic electrolyte, and the battery characteristics could not be evaluated.
  • component (Ib) A part of 50% by mass of component (Ib) was phase-separated from the basic electrolyte, and the battery characteristics could not be evaluated.
  • component (Ib) A part of 50% by mass of component (Ib) was phase-separated from the basic electrolyte, and the battery characteristics could not be evaluated.
  • the electrolytic solution of the present invention can be suitably used for electrochemical devices such as lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、ガス発生を抑制し、優れた電池特性を備えた電解液を提供することを目的とする。 本発明は、非水系溶媒(I)及び電解質塩(II)を含有する電解液であって、一般式(1)又は一般式(A)で示される化合物を0.001~20質量%含有することを特徴とする電解液である。 R-ORf-(ORf-(ORf-CN (1) (式中、Rは、CH-Rf-、CHF-Rf-、又は、CHF-Rf-であり、R中のRfは、フッ素原子を含んでもよいアルキレン基であり、 Rf、Rf及びRfは、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素化アルキレン基であり、 l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。) RA1-ORfA1-(ORfA2-(ORfA3-CN (A) (式中、RA1は、炭素数2~9の不飽和結合を含む基であり、 RfA1、RfA2及びRfA3は、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素原子を含んでいてもよいアルキレン基であり、 l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)

Description

電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
本発明は、電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュールに関する。
携帯電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の急速な進歩に伴い、その主電源やバックアップ電源に用いられる電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウムイオン二次電池等の非水系電解液電池である電気化学デバイスが注目されている。
リチウムイオン二次電池の電解液としては、LiPF、LiBF、LiN(CFSO、LiCF(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が代表例として挙げられる。
また、リチウムイオン二次電池の負極活物質としては主にリチウムイオンを吸蔵・放出することができる炭素質材料が用いられており、天然黒鉛、人造黒鉛、非晶質炭素等が代表例として挙げられる。更に高容量化を目指してシリコンやスズ等を用いた金属又は合金系の負極も知られている。正極活物質としては主にリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物が用いられており、遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等が挙げられる。
しかしながら、このようなリチウムイオン二次電池は、活性の高い正極と負極を使用しているため、電極と電解液との副反応により、充放電容量が低下することが知られている。
そのような電池特性を改良するために、非水系溶媒や電解質について種々の検討がなされている。
特許文献1には、ニトリル基を2個以上有する有機化合物を添加した電解液を用いることにより、ニトリル基の分極による大きな双極子モーメントが高電圧での充電時における正極上での電解液酸化分解を抑制し、これにより電池特性が向上することが提案されている。
特許文献2には、特定のニトリル化合物を用いることにより、電池の熱安定性を向上させた電極表面被膜形成剤が開示されている。
特許文献3には、電解液中にフッ素化されたニトリル化合物を含有することにより、充放電効率及び保存特性に優れた非水系電解液二次電池が開示されている。
特許文献4には、イソシアネート基を有する化合物を非水系電解液に添加することで、負極上での溶媒の分解反応が抑制され、電池のサイクル特性が向上することが開示されている。
特許文献5には、脂肪族ニトリル化合物が正極活物質の表面と錯物を形成して正極上に保護膜を形成すれば、過充電時に及び/又は電池の外部からの物理的な衝撃時に電池の安全性が高まることが提案されている。
特許文献6には、シアノ基を3つ以上有し、直鎖または環状構造を有する脂肪族シアノ化合物を含む電解液を用いることにより、高温特性が改善された非水電解質電池が開示されている。
特許文献7には、正極がpH≧10.8であるリチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金化合物粉体を含有し、非水系電解液が炭素-窒素不飽和結合を有する化合物を含むことにより、高温保存時におけるガス発生を抑制した非水系電解液電池が開示されている。
特開平7-176322号公報 特開2002-302649号公報 特開2003-7336号公報 特開2005-259641号公報 国際公開第2005/069423号 特開2010-73367号公報 特開2012-134137号公報
しかしながら、近年の電池に対する高性能化への要求は、ますます高くなっており、高容量、高温保存特性、サイクル特性等の種々の電池特性を高い次元で達成することが求められている。
高容量化する方法として、例えば、正極の利用範囲を広げて高電位まで使用する方法や、電極の活物質層を加圧して高密度化し、電池内部の活物質以外の占める体積を極力少なくする方法が検討されている。しかし、正極の利用範囲を広げて高電位まで使用すると、正極の活性は更に高くなり、正極と電解液との反応により劣化が促進される問題が発生しやすくなる。特に充電状態において高温条件下で保存した場合、電極と電解液との副反応により、電池容量が低下することが知られており、保存特性を改良するために、非水系溶媒や電解質について種々の検討がなされている。また、電極の活物質層を加圧して高密度化すると、活物質を均一に使用することができにくくなり、不均一な反応により一部リチウムが析出したり、活物質の劣化が促進されたりして、十分な特性が得られないという問題が発生しやすくなる。
しかし、特許文献1、4および5に記載されている添加剤を非水電解質に含有させても、電解液の正負極での劣化反応は完全には抑制できない。その結果、高温保存特性としては満足しうるものではなかった。特に高温保存特性については、ガス発生を抑制することが求められるが、従来技術によっては電池特性の劣化の抑制、及びガス発生の抑制の双方を同時に満たすことはできなかった。
本発明は、上記の問題を解決すべくされたものであり、非水系電解液電池の電気化学デバイスにおいて、高温保存時における容量劣化の抑制とガス発生を抑制する電解液と、この電解液を用いた二次電池を提供することを課題とする。
本発明者らは、上記目的を達成するために種々の検討を重ねた結果、電解液に、一般式(1)で示される特定の化合物を特定量含有させることによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
すなわち、本発明は、非水系溶媒(I)及び電解質塩(II)を含有する電解液であって、一般式(1)又は一般式(A)で示される化合物を0.001~20質量%含有することを特徴とする電解液である。
-ORf-(ORf-(ORf-CN    (1)
(式中、Rは、CH-Rf-、CHF-Rf-、又は、CHF-Rf-であり、R中のRfは、フッ素原子を含んでもよいアルキレン基であり、
Rf、Rf及びRfは、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素化アルキレン基であり、
l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)
A1-ORfA1-(ORfA2-(ORfA3-CN    (A)
(式中、RA1は、炭素数2~9の不飽和結合を含む基であり、
RfA1、RfA2及びRfA3は、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素原子を含んでいてもよいアルキレン基であり、
l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)
上記一般式(1)及び一般式(A)で示される化合物は、分子量が650以下であることが好ましい。また、Rfは少なくとも1つのフッ素原子を含有することが好ましい。
上記非水系溶媒(I)は、環状カーボネートを含有することが好ましい。
上記非水系溶媒(I)は、鎖状カーボネートを含有することが好ましい。
上記電解質塩(II)は、リチウム塩であることが好ましい。
本発明はまた、上述の電解液を備えることを特徴とする電気化学デバイスである。
本発明はまた、上述の電解液を備えることを特徴とするリチウムイオン二次電池である。
本発明はまた、上述のリチウムイオン二次電池を備えることを特徴とするモジュールである。
本発明によれば、ガス発生を抑制し、優れた電池特性を有する電解液、電気化学デバイス、リチウムイオン二次電池、モジュールを提供することができる。
本発明の電解液は、非水系溶媒(I)、電解質塩(II)及び一般式(1)又は一般式(A)で示される化合物を含有する。
-ORf-(ORf-(ORf-CN    (1)
(式中、Rは、CH-Rf-、CHF-Rf-、又は、CHF-Rf-であり、R中のRfは、フッ素原子を含んでもよいアルキレン基であり、
Rf、Rf及びRfは、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素化アルキレン基であり、
l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)
A1-ORfA1-(ORfA2-(ORfA3-CN    (A)
(式中、RA1は、炭素数2~9の不飽和結合を含む基であり、
RfA1、RfA2及びRfA3は、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素原子を含んでいてもよいアルキレン基であり、
l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)
このため、本発明の電解液を用いれば、ガス発生が抑制され、安全性が高く、優れた電池特性を有するリチウムイオン二次電池等の電気化学デバイスを提供することができる。
まず、一般式(1)で示される化合物について説明する。一般式(1)において、Rは、CH-Rf-、CHF-Rf-、又は、CHF-Rf-である。Rの式中のRfは、フッ素原子を含んでもよいアルキレン基である。
なかでも、溶媒との相溶性が良い点で、CH-Rf-が好ましい。
上記フッ素原子を含んでもよいアルキレン基は、炭素数が1~4であることが好ましく、2~4であることがより好ましい。
上記フッ素原子を含んでもよいアルキレン基は、溶媒との相溶性が良い点である点で、直鎖状であることが好ましい。
上記Rとしては、具体的には、CHCFCF-、CHFCFCF-、CFHCFCF-、CHCFCFCF-、CHCHCFCF-が好ましい。
一般式(1)において、Rf、Rf及びRfは、同じか又は異なっていてもよく、いずれも炭素数1~3のフッ素化アルキレン基である。
上記炭素数1~3のフッ素化アルキレン基としては、以下が好ましい。
Figure JPOXMLDOC01-appb-C000001
また、上記l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。上記l及びmは、それぞれ0~3の整数が好ましく、0又は1であることがより好ましい。
一般式(1)で示される化合物の分子量は、100以上が好ましく、120以上がより好ましく、150以上が更に好ましい。また、上記分子量は650以下が好ましく、450以下がより好ましい。
一般式(1)で示される化合物としては、具体的には、以下が好ましい。
Figure JPOXMLDOC01-appb-C000002
本発明の電解液において、一般式(1)で示される化合物の含有量は、電解液中0.001~20質量%である。含有量が上記範囲内であると、ガス発生を抑制し、優れた電池特性を有する電解液とすることができる。
一般式(1)で示される化合物の含有量は、電解液中0.001~20質量%であり、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、8質量%以下が好ましく、6質量%以下がより好ましい。
一般式(1)で示される化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
次に、一般式(A)で示される化合物について説明する。一般式(A)において、RA1は、炭素数2~9の不飽和結合を含む基である。
上記不飽和結合を含む基は、炭素数が2~8であることが好ましく、2~7であることがより好ましい。
上記不飽和結合を含む基は、少なくとも1つの二重結合又は三重結合を有する基である。上記不飽和結合を含む基としては、-N=C=S、-N=C=O、-C≡N、並びに、ハロゲン原子で置換されていてもよいアリール基、アルケニル基及びアルキニル基等が挙げられる。
上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、なかでも、脱離を起こしにくい点で、フッ素原子が好ましい。
上記アリール基としては、例えば、フェニル基、ベンジル基等が挙げられる。 
上記ハロゲン原子で置換されていてもよいアリール基としては、フェニル基、ベンジル基、フッ素化フェニル基が好ましい。
上記アルケニル基としては、例えば、ビニル基(CH=CH-)、アリル基(CH=CHCH-)等が挙げられる。
上記ハロゲン原子で置換されていてもよいアルケニル基としては、アリル基、フッ化ビニル基、フッ化アリル基が好ましい。
上記フッ化アリル基としては、CF=CF-CF-、CH=CF-CF-が挙げられる。
上記アルキニル基としては、例えば、エチニル基(CH≡C-)、プロパルギル基(CH≡CCH-)等が挙げられる。
上記ハロゲン原子で置換されていてもよいアルキニル基としては、フッ化エチニル基が好ましい。
なかでも、ガス発生を抑制し、優れた電池特性を有する電解液が得られる点で、RA1としては、-N=C=S、-N=C=O、CH=CF-CF-が好ましく、-N=C=O、CH=CF-CF-がより好ましい。
一般式(A)において、RfA1、RfA2及びRfA3は、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素原子を含んでいてもよいアルキレン基である。
上記炭素数1~3のフッ素原子を含んでいてもよいアルキレン基としては、炭素数1~3のアルキレン基、及び、炭素数1~3のフッ素化アルキレン基が挙げられる。
なお、フッ素化アルキレン基とは、少なくとも1つの水素原子がフッ素原子に置換されたアルキレン基をいう。
RfA1、RfA2及びRfA3は、炭素数1~3のフッ素化アルキレン基であることが好ましい。
上記炭素数1~3のアルキレン基としては、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-が好ましい。
上記炭素数1~3のフッ素化アルキレン基としては、以下が好ましい。
Figure JPOXMLDOC01-appb-C000003
一般式(A)において、l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。上記l及びmは、同じか又は異なっていてもよく、それぞれ0~3の整数が好ましく、0又は1であることがより好ましい。
一般式(A)で示される化合物は、フッ素含有率が20~70質量%であることが好ましい。フッ素含有率が上述の範囲であると、上記化合物を含むことにより、ガス発生をより抑制し、電池特性に優れた電解液とすることができる。上記フッ素含有率は、25質量%以上がより好ましく、65質量%以下がより好ましい。
なお、本発明においてフッ素含有率は、一般式(A)の構造式に基づいて、
{(フッ素原子の個数×19)/一般式(A)の分子量}×100(%)
により算出した値である。
上記一般式(A)で示される化合物としては、以下が好ましい。
Figure JPOXMLDOC01-appb-C000004
一般式(A)で示される化合物は、分子量が好ましくは100以上であり、より好ましくは120以上であり、更に好ましくは150以上である。また、上記分子量は650以下が好ましく、450以下がより好ましい。
一般式(A)で示される化合物の含有量は、電解液中0.001~20質量%である。含有量が上記範囲内であると、ガス発生を抑制し、優れた電池特性を有する電解液とすることができる。
一般式(A)で示される化合物の含有量は、電解液中0.001~20質量%であり、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、8質量%以下が好ましく、6質量%以下がより好ましい。
一般式(A)で示される化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
本発明の電解液は、一般式(1)で示される化合物及び一般式(A)で示される化合物の両方を含むものであってもよく、この場合は、両者の合計含有量が0.001~20質量%であることが好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、8質量%以下がより好ましく、6質量%以下が更に好ましい。
本発明の電解液は、非水系溶媒(I)及び電解質塩(II)を含有する。
上記非水系溶媒(I)は、環状カーボネートを含むことが好ましい。
上記環状カーボネートとしては、フッ素化環状カーボネート、フッ素原子を有していない環状カーボネート、及び、不飽和結合を有する環状カーボネートが挙げられる。
(フッ素化環状カーボネート)
上記フッ素化環状カーボネートとしては、下記一般式(B):
Figure JPOXMLDOC01-appb-C000005
(式中、X~Xは同じか又は異なり、夫々-H、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X~Xの少なくとも1つは-Fである。)で表されるフッ素化環状カーボネート(B)が挙げられる。
上記非水系溶媒(I)がフッ素化環状カーボネート(B)を含むものであると、該溶媒(I)を含む電解液をリチウムイオン二次電池等に適用した場合に、負極に安定な被膜を形成することができ、負極での電解液の副反応を充分に抑制することができる。その結果、極めて安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
上記一般式(B)において、低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X~Xは、-H、-F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記一般式(B)において、X~Xの少なくとも1つは-Fであるが、誘電率、耐酸化性が良好な点から、X~Xの少なくとも1つ又は2つが、-Fであることが好ましい。
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1~20が好ましく、2~17がより好ましく、2~7が更に好ましく、2~5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH-、CFH-及びCF-が挙げられる。
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a-1):
-R- (a-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~16の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~6がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状の非フッ素化アルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000006
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
等が好ましく挙げられる。ただし、-CHや-CFという分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000009
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又はCF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCFが好ましい。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基(a)としては、例えばCFCF-、HCFCF-、HCFCF-、CHCF-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、CFCH-、HCFCH-、CFCFCH-、HCFCFCH-、HCFCFCH-、CHCFCH-、CFCFCFCH-、CFCFCFCFCH-、HCFCFCFCH-、HCFCFCFCH-、CHCFCFCH-、CFCHCH-、HCFCHCH-、CFCFCHCH-、HCFCFCHCH-、HCFCFCHCH-、CHCFCHCH-、CFCFCFCHCH-、HCFCFCFCHCH-、HCFCFCFCHCH-、CHCFCFCHCH-、
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
等が挙げられる。
が直鎖状の、好ましいフッ素化アルキル基(a)の具体例としては、例えばCFCH-、HCFCH-、CFCFCH-、HCFCFCH-、HCFCFCH-、CHCFCH-、CFCFCFCH-、HCFCFCFCH-、HCFCFCFCH-、CHCFCFCH-、CFCHCH-、HCFCHCH-、CFCFCHCH-、HCFCFCHCH-、HCFCFCHCH-、CHCFCHCH-、CFCFCFCHCH-、HCFCFCFCHCH-、HCFCFCFCHCH-、CHCFCFCHCH-、
Figure JPOXMLDOC01-appb-C000013
等が挙げられる。
が分岐鎖状の好ましいフッ素化アルキル基(a)の具体例としては、例えば
Figure JPOXMLDOC01-appb-C000014
等が挙げられる。
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2~17であることが好ましい。炭素数が多過ぎると、フッ素化環状カーボネート(B)の粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2~10が好ましく、2~7がより好ましい。
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000015
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b-1):
-(ORn1-       (b-1)
(式中、Rはフッ素原子を有していてもよい、好ましくは炭素数1~6のアルキル基;Rはフッ素原子を有していてもよい、好ましくは炭素数1~4のアルキレン基;n1は1~3の整数;ただし、R及びRの少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
及びRとしては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b-1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
(1)Rとしては、一般式:X C-(Rn2-(3つのXは同じか又は異なりいずれもH又はF;Rは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
n2が0の場合、Rとしては、CH-、CF-、HCF-及びHCF-が挙げられる。
n2が1の場合の具体例としては、Rが直鎖状のものとして、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCH-、CHCF-、CHCH-、CHCFCH-、CHCFCF-、CHCHCH-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCHCHCH-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCH-、CHCFCHCFCHCH-、CHCHCFCFCHCH-、CHCFCHCFCHCH-等が例示できる。
n2が1であり、かつRが分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000016
等が挙げられる。
ただし、-CHや-CFという分岐を有していると粘性が高くなりやすいため、Rが直鎖状のものがより好ましい。
(2)上記一般式(b-1)の-(ORn1-において、n1は1~3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、Rは同じでも異なっていてもよい。
の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
直鎖状のものとしては、-CH-、-CHF-、-CF-、-CHCH-、-CFCH-、-CFCF-、-CHCF-、-CHCHCH-、-CHCHCF-、-CHCFCH-、-CHCFCF-、-CFCHCH-、-CFCFCH-、-CFCHCF-、-CFCFCF-等が例示できる。
分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000017
等が挙げられる。
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1~17であることが好ましい。より好ましくは、炭素数1~6である。
上記フッ素化アルコキシ基(c)としては、一般式:X C-(Rn3-O-(3つのXは同じか又は異なりいずれもH又はF;Rは好ましくは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a-1)におけるRとして例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は10質量%以上が好ましく、12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
なお、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
また、誘電率、耐酸化性が良好な点からは、フッ素化環状カーボネート(B)全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、フッ素化環状カーボネート(B)全体のフッ素含有率は、フッ素化環状カーボネート(B)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化環状カーボネート(B)の分子量}×100(%)により算出した値である。
上記フッ素化環状カーボネート(B)の具体例としては、耐電圧が高く、電解質塩の溶解性も良好なフッ素化環状カーボネートとして、例えば、
Figure JPOXMLDOC01-appb-C000018
等が挙げられる。
他に、
Figure JPOXMLDOC01-appb-C000019
等が使用できる。
なお、本発明の電解液におけるフッ素化環状カーボネート(B)は、上述した具体例のみに限定されるものではない。
また、フッ素化環状カーボネートとして、一般式(C):
Figure JPOXMLDOC01-appb-C000020
(式中、X~Xは同じか又は異なり、夫々-H、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。)で表されるフッ素化環状カーボネート(C)が挙げられる。
上記フッ素化環状カーボネート(C)を含むことにより、より安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
上記一般式(C)において、X~Xの少なくとも1つは、-H、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であるが、誘電率、耐酸化性が良好な点から、X~Xの1つ又は2つが、-H、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
また、低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X~Xの少なくとも1つが、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記フッ素化アルキル基(a)、上記エーテル結合を有するフッ素化アルキル基(b)、及び、上記フッ素化アルコキシ基(c)としては、上述した一般式(B)中のX~Xのフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)と同様のものを挙げることができる。
上記フッ素化環状カーボネート(C)としては、具体的には、例えば、以下が挙げられる。
上記一般式(C)において、X~Xの少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て-Hであるフッ素化環状カーボネート(C)の具体例としては、
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
等が挙げられる。
上記一般式(C)において、X~Xの少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て-Hであるフッ素化環状カーボネート(C)の具体例としては、
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
等が挙げられる。
なお、上記フッ素化環状カーボネート(C)は、上述した具体例のみに限定されるものではない。
上記フッ素化環状カーボネート(B)及び(C)の含有量は、非水系溶媒(I)100体積%中、1体積%以上が好ましく、5体積%以上がより好ましく、10体積%以上が更に好ましく、また、50体積%以下が好ましく、35体積%以下がより好ましく、25体積%以下が更に好ましい。
(フッ素原子を有していない環状カーボネート)
フッ素原子を有していない環状カーボネートとしては、炭素数2~4のアルキレン基を有する環状カーボネートが挙げられる。
炭素数2~4のアルキレン基を有する、フッ素原子を有していない環状カーボネートの具体的な例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。なかでも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
フッ素原子を有していない環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素原子を有していない環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の含有量は、非水系溶媒(I)100体積%中5体積%以上が好ましく、より好ましくは10体積%以上である。この範囲とすることで、電解液の誘電率の低下に由来する電気伝導率の低下を回避し、電解液を用いた電気化学デバイスの大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。
また、上記含有量は、95体積%以下が好ましく、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては電解液を用いた電気化学デバイスの負荷特性を良好な範囲としやすくなる。
(不飽和結合を有する環状カーボネート)
不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」ともいう。)としては、炭素-炭素二重結合または炭素-炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環または炭素-炭素二重結合または炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート等が挙げられる。
なかでも、特に式(1)で示される化合物と併用するのに好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネートが挙げられる。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートはさらに安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。上記不飽和環状カーボネートの含有量は、非水系溶媒(I)100質量%中0.001質量%以上が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。また、上記含有量は、5質量%以下が好ましく、より好ましくは4質量%以下、更に好ましくは3質量%以下である。上記範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
また、上記非水系溶媒(I)は、鎖状カーボネートを含有することが好ましい。
上記鎖状カーボネートとしては、非フッ素化鎖状カーボネート、及び、フッ素化鎖状カーボネートが挙げられる。
(非フッ素化鎖状カーボネート)
上記非フッ素化鎖状カーボネートとしては、フッ素原子を含まない、炭素数3~7の鎖状カーボネートが好ましく、炭素数3~7のジアルキルカーボネートがより好ましい。
鎖状カーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、n-ブチルメチルカーボネート、イソブチルメチルカーボネート、t-ブチルメチルカーボネート、エチル-n-プロピルカーボネート、n-ブチルエチルカーボネート、イソブチルエチルカーボネート、t-ブチルエチルカーボネート等が挙げられる。
なかでも、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
非フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(フッ素化鎖状カーボネート)
フッ素化鎖状カーボネートは、フッ素原子を有する鎖状カーボネート類である。
フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。
フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート及びその誘導体、フッ素化エチルメチルカーボネート及びその誘導体、フッ素化ジエチルカーボネート及びその誘導体等が挙げられる。
フッ素化ジメチルカーボネート及びその誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート及びその誘導体としては、2-フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2-ジフルオロエチルメチルカーボネート、2-フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2-ジフルオロエチルフルオロメチルカーボネート、2-フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート及びその誘導体としては、エチル-(2-フルオロエチル)カーボネート、エチル-(2,2-ジフルオロエチル)カーボネート、ビス(2-フルオロエチル)カーボネート、エチル-(2,2,2-トリフルオロエチル)カーボネート、2,2-ジフルオロエチル-2’-フルオロエチルカーボネート、ビス(2,2-ジフルオロエチル)カーボネート、2,2,2-トリフルオロエチル-2’-フルオロエチルカーボネート、2,2,2-トリフルオロエチル-2’,2’-ジフルオロエチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート等が挙げられる。
フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記鎖状カーボネートの含有量は、非水系溶媒(I)100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、更に好ましくは15体積%以上である。このように下限を設定することにより、電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては電解液を用いた電気化学デバイスの大電流放電特性を良好な範囲としやすくなる。また、上記鎖状カーボネートは、非水系溶媒(I)100体積%中、90体積%以下、より好ましくは85体積%以下であることが好ましい。このように上限を設定することにより、電解液の誘電率の低下に由来する電気伝導率の低下を回避し、電解液を用いた電気化学デバイスの大電流放電特性を良好な範囲としやすくなる。
上記非水系溶媒(I)はまた、環状カルボン酸エステル、鎖状カルボン酸エステル、エーテル系化合物等を含んでいてもよい。
(環状カルボン酸エステル)
環状カルボン酸エステルとしては、炭素原子数が3~12のものが好ましい。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
環状カルボン酸エステルの含有量は、通常、非水系溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、電解液を用いた電気化学デバイスの大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの含有量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
(鎖状カルボン酸エステル)
鎖状カルボン酸エステルとしては、炭素数が3~7のものが好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、プロピオン酸-n-ブチル、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カルボン酸エステルの含有量は、通常、非水系溶媒100体積%中、好ましくは10体積%以上、より好ましくは15体積%以上である。このように下限を設定することで、電解液の電気伝導率を改善し、電解液を用いた電気化学デバイスの大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの含有量は、非水系溶媒100体積%中、好ましくは60体積%以下、より好ましくは50体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、電解液を用いた電気化学デバイスの大電流放電特性、サイクル特性を良好な範囲としやすくなる。
(エーテル系化合物)
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
炭素数3~10の鎖状エーテルとしては、
ジエチルエーテル、ジ(2-フルオロエチル)エーテル、ジ(2,2-ジフルオロエチル)エーテル、ジ(2,2,2-トリフルオロエチル)エーテル、エチル(2-フルオロエチル)エーテル、エチル(2,2,2-トリフルオロエチル)エーテル、エチル(1,1,2,2-テトラフルオロエチル)エーテル、(2-フルオロエチル)(2,2,2-トリフルオロエチル)エーテル、(2-フルオロエチル)(1,1,2,2-テトラフルオロエチル)エーテル、(2,2,2-トリフルオロエチル)(1,1,2,2-テトラフルオロエチル)エーテル、エチル-n-プロピルエーテル、エチル(3-フルオロ-n-プロピル)エーテル、エチル(3,3,3-トリフルオロ-n-プロピル)エーテル、エチル(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、エチル(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、2-フルオロエチル-n-プロピルエーテル、(2-フルオロエチル)(3-フルオロ-n-プロピル)エーテル、(2-フルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(2-フルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2-フルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、2,2,2-トリフルオロエチル-n-プロピルエーテル、(2,2,2-トリフルオロエチル)(3-フルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2,2,2-トリフルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、1,1,2,2-テトラフルオロエチル-n-プロピルエーテル、(1,1,2,2-テトラフルオロエチル)(3-フルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(1,1,2,2-テトラフルオロエチル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ-n-プロピルエーテル、(n-プロピル)(3-フルオロ-n-プロピル)エーテル、(n-プロピル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(3-フルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(3,3,3-トリフルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(3-フルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(3,3,3-トリフルオロ-n-プロピル)エーテル、(3,3,3-トリフルオロ-n-プロピル)(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(3,3,3-トリフルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(2,2,3,3-テトラフルオロ-n-プロピル)エーテル、(2,2,3,3-テトラフルオロ-n-プロピル)(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ(2,2,3,3,3-ペンタフルオロ-n-プロピル)エーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2-フルオロエトキシ)メタン、メトキシ(2,2,2-トリフルオロエトキシ)メタンメトキシ(1,1,2,2-テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2-フルオロエトキシ)メタン、エトキシ(2,2,2-トリフルオロエトキシ)メタン、エトキシ(1,1,2,2-テトラフルオロエトキシ)メタン、ジ(2-フルオロエトキシ)メタン、(2-フルオロエトキシ)(2,2,2-トリフルオロエトキシ)メタン、(2-フルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)メタンジ(2,2,2-トリフルオロエトキシ)メタン、(2,2,2-トリフルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)メタン、ジ(1,1,2,2-テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2-フルオロエトキシ)エタン、メトキシ(2,2,2-トリフルオロエトキシ)エタン、メトキシ(1,1,2,2-テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2-フルオロエトキシ)エタン、エトキシ(2,2,2-トリフルオロエトキシ)エタン、エトキシ(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(2-フルオロエトキシ)エタン、(2-フルオロエトキシ)(2,2,2-トリフルオロエトキシ)エタン、(2-フルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(2,2,2-トリフルオロエトキシ)エタン、(2,2,2-トリフルオロエトキシ)(1,1,2,2-テトラフルオロエトキシ)エタン、ジ(1,1,2,2-テトラフルオロエトキシ)エタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
炭素数3~6の環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
エーテル系化合物の配合量は、通常、非水系溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。
この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
本発明の電解液は、更に、目的に応じて適宜助剤を含有していてもよい。
上記助剤としては、以下に示されるフッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
(フッ素原子を有する不飽和環状カーボネート)
フッ素原子を有する不飽和環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
なかでも、特に一般式(1)の化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの含有量は、通常、電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
(過充電防止剤)
本発明の電解液において、電解液を用いた電気化学デバイスが過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt-ブチルベンゼン又はt-アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
(その他の助剤)
本発明の電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1,4-ブタンスルトン、1-ブテン-1,4-スルトン、3-ブテン-1,4-スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2-ビス(ビニルスルホニロキシ)エタン等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等の含窒素化合物;亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
本発明の電解液は、電解質塩(II)を含む。
上記電解質塩(II)としては、任意のものを用いることができるが、リチウム塩が好ましい。
リチウム塩としては、電池用電解液に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN
(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
この場合、電解液全体100質量%に対するLiBF或いはFSOLiの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。この場合には、電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
本発明の電解液は、上述した、一般式(1)で示される化合物、及び、電解質塩(II)を非水系溶媒(I)に溶解させる等の公知の方法で調製される。
本発明の電解液は、ガス発生を抑制し、安定した電池特性を有するので、非水系電解液電池である電気化学デバイスの電解液として好適である。
本発明の電解液を備えた電気化学デバイスもまた、本発明の一つである。
上記電気化学デバイスとしては、リチウムイオン二次電池、キャパシタ(電解二重層キャパシタ)、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ等が挙げられる。なかでもリチウムイオン二次電池、電解二重層キャパシタが好適であり、特にリチウムイオン二次電池が好適である。
本発明の電解液を備えたリチウムイオン二次電池もまた、本発明の一つである。
以下に、本発明の電解液を用いた電気化学デバイスについて説明する。
上記電気化学デバイスは、公知の構造をとることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵及び放出可能な負極及び正極と、上述した本発明の電解液とを備える。
<負極>
まず、負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
(負極活物質)
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)~(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記する場合がある)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物、炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらに好ましくはリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)である。即ちスピネル構造を有するリチウムチタン複合酸化物を、電気化学デバイス用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(D)で表されるリチウムチタン複合酸化物であり、一般式(D)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
LiTi (D)
[一般式(B)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(D)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。
また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー(結着剤)、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
(結着剤)
負極活物質を結着するバインダーとしては、電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に合わせて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いでも、2種以上を任意の組み合わせ及び比率で併用してもよい。
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
<正極>
(正極活物質)
以下に、正極に使用される正極活物質について述べる。本願発明に用いられる正極活物質は、以下の3つの条件のいずれかを満たすリチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金化合物粉体であることが好ましい。
1.pH10.8以上であるリチウム遷移金属化合物粉体。
2.Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素を有する化合物とB元素および/またはBi元素を有する化合物を含有するリチウム遷移金属化合物粉体。
3.細孔半径80nm以上800nm未満にピークを有するリチウム遷移金属化合物粉体。
(リチウム遷移金属化合物)
リチウム遷移金属化合物とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb、Ag、Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiCoO、LiNiO、LiNi1-xCo、LiNi1-x-yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。
なかでも、リチウムニッケルマンガンコバルト系複合酸化物又はLiCoOが好ましい。
上記リチウム遷移金属化合物粉体は、リチウムイオン拡散の点からオリビン構造、スピネル構造、層状構造を有するものが好ましい。中でも層状構造を有するものが特に好ましい。
また、上記リチウム遷移金属化合物粉体は、異元素が導入されてもよい。異元素としては、B、Na、Mg、Al、K、Ca、Ti、V、Cr、Fe、Cu、Zn、Sr、Y、Zr、Nb、Ru、Rh、Pd、Ag、In、Sb、Te、Ba、Ta、Mo、W、Re、Os、Ir、Pt、Au、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、N、F、S、Cl、Br、Iの何れか1種以上の中から選択される。これらの異元素は、リチウムニッケルマンガンコバルト系複合酸化物の結晶構造内に取り込まれていてもよく、あるいは、リチウムニッケルマンガンコバルト系複合酸化物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
(添加剤)
本発明では、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素(以下、「添加元素1」ともいう。)を有する化合物(以下、「添加剤1」ともいう。)およびB及びBiから選ばれる少なくとも1種の元素(以下、「添加元素2」ともいう。)を有する化合物(以下、「添加剤2」ともいう。)を用いてもよい。
これらの添加元素1の中でも、効果が大きい点から、添加元素1がMoまたはWであることが好ましく、Wであることが最も好ましい。また、これらの添加元素2の中でも、工業原料として安価に入手でき、かつ軽元素である点から、添加元素2がBであることが好ましい。
添加元素1を有する化合物(添加剤1)の種類としては、本発明の効果を発現するものであればその種類に格別の制限はないが、通常は酸化物が用いられる。
添加剤1の例示化合物としては、MoO、MoO、MoO、MoO、Mo、Mo、LiMoO、WO、WO、WO、WO、W、W、W1849、W2058、W2470、W2573、W40118、LiWO、NbO、NbO、Nb、Nb、Nb・nHO、LiNbO、TaO、Ta、LiTaO、ReO、ReO、Re、Reなどが挙げられ、工業原料として比較的入手し易い、又はリチウムを包含するといった点から、好ましくはMoO、LiMoO、WO、LiWOが挙げられ、特に好ましくはWOが挙げられる。これらの更なる添加剤1は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
添加元素2を含有する化合物(添加剤2)の種類としては、本発明の効果を発現するものであればその種類に格別の制限はないが、通常はホウ酸、オキソ酸の塩類、酸化物、水酸化物などが用いられる。これらの添加剤2の中でも、工業原料として安価に入手できる点から、ホウ酸、酸化物であることが好ましく、ホウ酸であることが特に好ましい。
添加剤2の例示化合物としては、BO、B、B、B、BO、BO、B13、LiBO、LiB、Li、HBO、HBO、B(OH)、B(OH)、BiBO、Bi、Bi、Bi(OH)などが挙げられ、工業原料として比較的安価かつ容易に入手できる点から、好ましくはB、HBO、Biが挙げられ、特に好ましくは、HBOが挙げられる。これらの添加剤2は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、添加剤1及び添加剤2の合計の添加量の範囲としては、主成分を構成する遷移金属元素の合計モル量に対して、下限としては、通常0.1モル%以上、好ましくは0.3モル%以上、より好ましくは0.5モル%以上、特に好ましくは1.0モル%以上、上限としては、通常8モル%未満、好ましくは5モル%以下、より好ましくは4モル%以下、特に好ましくは3モル%以下である。下限を下回ると、上記効果が得られなくなる可能性があり、上限を超えると電池性能の低下を招く可能性がある。
(正極活物質の製造法)
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO 、LiNO 等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の1種以上とを、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoO2 とLiNi0.33Co0.33Mn0.332 などのLiMn O 若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO 若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
(リチウム遷移金属系化合物粉体の製法)
上記リチウム遷移金属系化合物粉体を製造する方法は、特定の製法に限定されるものではないが、リチウム化合物と、Mn、Co及びNiから選ばれる少なくとも1種の遷移金属化合物と、上述の添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥体を焼成する焼成工程を含む製造方法により、好適に製造される。
例えば、リチウムニッケルマンガンコバルト系複合酸化物粉体を例にあげて説明すると、リチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物、並びに、上述の添加剤を液体媒体中に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体を、酸素含有ガス雰囲気中で焼成して製造することができる。 
以下に、本発明の好適態様であるリチウムニッケルマンガンコバルト系複合酸化物粉体の製造方法を例にあげて、本発明で用いるリチウム遷移金属系化合物粉体の製造方法について詳細に説明する。
i)スラリー調製工程
上記リチウム遷移金属系化合物粉体を製造するに当たり、スラリーの調製に用いる原料化合物のうち、リチウム化合物としては、LiCO、LiNO、LiNO、LiOH、LiOH・HO、LiH、LiF、LiCl、LiBr、LiI、CHOOLi、LiO、LiSO、ジカルボン酸Li、クエン酸Li、脂肪酸Li、アルキルリチウム等が挙げられる。これらリチウム化合物の中で好ましいのは、焼成処理の際にSO、NO等の有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリチウム化合物であり、また、焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に分解ガスを発生するなどして空隙を形成しやすい化合物であり、これらの点を勘案すると、LiCO、LiOH、LiOH・HOが好ましく、特にLiCOが好ましい。これらのリチウム化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、ニッケル化合物としては、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際にSO、NO等の有害物質を発生させない点で、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HOのようなニッケル化合物が好ましい。また、更に工業原料として安価に入手できる観点、及び反応性が高い、という観点からNi(OH)、NiO、NiOOH、NiCO、さらに焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはNi(OH)、NiOOH、NiCOである。これらのニッケル化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、マンガン化合物としてはMn、MnO、Mn等のマンガン酸化物、MnCO、Mn(NO、MnSO、酢酸マンガン、ジカルボン酸マンガン、クエン酸マンガン、脂肪酸マンガン等のマンガン塩、オキシ水酸化物、塩化マンガン等のハロゲン化物等が挙げられる。これらのマンガン化合物の中でも、MnO、Mn、Mn、MnCOは、焼成処理の際にSO、NO等のガスを発生せず、更に工業原料として安価に入手できるため好ましい。これらのマンガン化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、コバルト化合物としては、Co(OH)、CoOOH、CoO、Co、Co、Co(OCOCH・4HO、CoCl、Co(NO・6HO、Co(SO4)・7HO、CoCO等が挙げられる。中でも、焼成工程の際にSO、NO等の有害物質を発生させない点で、Co(OH)、CoOOH、CoO、Co、Co、CoCOが好ましく、更に好ましくは、工業的に安価に入手できる点及び反応性が高い点でCo(OH)、CoOOHである。加えて焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはCo(OH)、CoOOH、CoCOである。これらのコバルト化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、上記のLi、Ni、Mn、Co原料化合物以外にも他元素置換を行って前述の異元素を導入したり、後述する噴霧乾燥にて形成される二次粒子内の空隙を効率よく形成させたりすることを目的とした化合物群を使用することが可能である。なお、ここで使用する、二次粒子の空隙を効率よく形成させることを目的として使用する化合物の添加段階は、その性質に応じて、原料混合前又は混合後の何れかを選択することが可能である。特に、混合工程によって機械的剪断応力が加わるなどして分解しやすい化合物は混合工程後に添加することが好ましい。本発明の添加剤としては、前述の通りである。
原料の混合方法は特に限定されるものではなく、湿式でも乾式でもよい。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。原料化合物を水、アルコール等の液体媒体中で混合する湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。
混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていればよく、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から6時間程度である。
なお、原料の混合段階においてはそれと並行して原料の粉砕が為されていることが好ましい。粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒子径(メジアン径)として通常0.6μm以下、好ましくは0.55μm以下、さらに好ましくは0.52μm以下、最も好ましくは0.5μm以下とする。粉砕後の原料粒子の平均粒子径が大きすぎると、焼成工程における反応性が低下するのに加え、組成が均一化し難くなる。ただし、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、平均粒子径が通常0.01μm以上、好ましくは0.02μm以上、さらに好ましくは0.05μm以上となるように粉砕すればよい。このような粉砕程度を実現するための手段としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノーミル等を挙げることができる。 
なお、スラリー中の粉砕粒子のメジアン径は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.24を設定し、粒子径基準を体積基準に設定して測定されたものである。測定の際に用いる分散媒としては、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
ii)噴霧乾燥工程
湿式混合後は、次いで通常乾燥工程に供される。乾燥方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、乾燥粒子を効率よく製造できる等の観点から噴霧乾燥が好ましい。 
(噴霧乾燥粉体)
上記リチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の製造方法においては、原料化合物と上述の添加剤とを湿式粉砕して得られたスラリーを噴霧乾燥することにより、一次粒子が凝集して二次粒子を形成してなる粉体を得る。一次粒子が凝集して二次粒子を形成してなる噴霧乾燥粉体の形状的特徴の確認方法としては、例えば、SEM観察、断面SEM観察が挙げられる。
iii)焼成工程
上述の噴霧乾燥工程で得られた噴霧乾燥粉体は、焼成前駆体として、次いで焼成処理される。
この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、傾向として、焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。逆に低すぎると異相が混在し、また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎる。焼成温度としては、通常1000℃以上、好ましくは1010℃以上、より好ましくは1025℃以上、更に好ましくは1050℃以上であり、好ましくは1250℃以下、より好ましくは1200℃以下、更に好ましくは1175℃以下である。
焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成工程は、通常、昇温・最高温度保持・降温の三部分に分けられる。二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程又は、一次粒子或いはさらに微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回又はそれ以上繰り返してもよい。
焼成を二段階で行う場合、一段目はLi原料が分解し始める温度以上、融解する温度以下で保持することが好ましく、たとえば炭酸リチウムを用いる場合には一段目の保持温度は400℃以上が好ましく、より好ましくは450℃以上、さらに好ましくは500℃以上、最も好ましくは550℃以上が好ましく、通常950℃以下、より好ましくは900℃以下、さらに好ましくは880℃以下、最も好ましくは850℃以下である。
最高温度保持工程に至る昇温工程は通常1℃/分以上15℃/分以下の昇温速度で炉内を昇温させる。この昇温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。昇温速度は、好ましくは2℃/分以上、より好ましくは3℃/分以上で、好ましくは20℃/分以下、より好ましくは18℃/分以下である。
最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範囲であれば15分以上、好ましくは30分以上、更に好ましくは45分以上、最も好ましくは1時間以上で、24時間以下、好ましくは12時間以下、更に好ましくは9時間以下、最も好ましくは6時間以下である。焼成時間が短すぎると結晶性のよいリチウム遷移金属系化合物粉体が得られ難くなり、長すぎるのは実用的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難になったりするので、不利である。
降温工程では、通常0.1℃/分以上15℃/分以下の降温速度で炉内を降温させる。降温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても目的物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。降温速度は、好ましくは1℃/分以上、より好ましくは3℃/分以上で、好ましくは20℃/分以下、より好ましくは15℃/分以下である。
焼成時の雰囲気は、得ようとするリチウム遷移金属系化合物粉体の組成によって適切な酸素分圧領域があるため、それを満足するための適切な種々ガス雰囲気が用いられる。ガス雰囲気としては、例えば、酸素、空気、窒素、アルゴン、水素、二酸化炭素、及びそれらの混合ガス等を挙げることができる。本発明において具体的に実施しているリチウムニッケルマンガンコバルト系複合酸化物粉体については、空気等の酸素含有ガス雰囲気を用いることができる。通常は酸素濃度が1体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上で、100体積%以下、好ましくは50体積%以下、より好ましくは25体積%以下の雰囲気とする。
このような製造方法において、リチウム遷移金属系化合物粉体、例えば前記特定の組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するには、製造条件を一定とした場合には、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合物と、本発明の添加剤とを液体媒体中に分散させたスラリーを調製する際、各化合物の混合比を調整することで、目的とするLi/Ni/Mn/Coのモル比を制御することができる。
このようにして得られたリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体によれば、容量が高く、低温出力特性、保存特性に優れた、性能バランスのよいリチウム二次電池用正極材料が提供される。
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
(結着剤)
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、上述した負極の製造に用いる結着剤と同様のものが挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
<セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電気化学デバイス全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
以下、電池設計について、説明する。
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<集電構造>
集電構造は、特に制限されないが、本発明の電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の電解液を使用した効果は特に良好に発揮される。
電極群が積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
<外装ケース>
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<外装体>
本発明の電気化学デバイスは、通常、上記の電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
また、本発明のリチウムイオン二次電池を備えたモジュールも本発明の一つである。
以上のように、本発明の電解液はガス発生が抑制され、電池特性に優れたものである。このため、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池等の電気化学デバイス用の電解液として特に有用であり、そのほか小型のリチウムイオン二次電池等の電気化学デバイス用の電解液としても有用である。
次に本発明を実施例及び比較例に基づいて説明するが、本発明はかかる例のみに限定されるものではない。
(電解液の作製)
(実施例1~8、比較例1~5)
乾燥アルゴン雰囲気下で、エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)を体積比70:30で混合し、この溶液に、乾燥したLiPFを1mol/Lの割合になるように溶解し、基本電解液とした。この基本電解液に、表1に記載の化合物を表1に記載の割合で混合し、実施例1~8および比較例1~5に用いる電解液とした。
(実施例9~16、比較例6~10)
乾燥アルゴン雰囲気下で、エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)とフルオロエチレンカーボネート(FEC)を体積比70:20:10で混合し、この溶液に、乾燥したLiPFを1mol/Lの割合になるように溶解し、基本電解液とした。この基本電解液に、表2に記載の化合物を表2に記載の割合で混合し、実施例9~16および比較例6~10に用いる電解液とした。
(実施例17~21、比較例11~13)
乾燥アルゴン雰囲気下で、エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)とフルオロエチレンカーボネート(FEC)を体積比70:20:10で混合し、この溶液に、乾燥したLiPFを1mol/Lの割合になるように溶解した後、ビニレンカーボネート(VC)を2質量%混合し、基本電解液とした。この基本電解液に、表3に記載の化合物を表3に記載の割合で混合し、実施例17~21および比較例11~13に用いる電解液とした。
なお、表1~3に記載の成分(I-a)、成分(I‐d)の化合物を以下に示す。
成分(I-a):
Figure JPOXMLDOC01-appb-C000032
成分(I―d):
Figure JPOXMLDOC01-appb-C000033
得られた電解液を用いて、下記のように二次電池を作製して、二次電池の高温保存特性について評価した。評価結果を表1~3に示す。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(正極の作製)
正極活物質としてLiCoO、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)を95/3/2(質量%比)で混合した正極材料をN-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。厚さ21μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極合剤層を形成し、その後、プレス機により圧縮成形して、正極とした。
(二次電池の製造)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に、正極と負極の端子を突設させながら挿入した後、実施例1~21及び比較例1~13の電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
<高温保存特性評価試験>
上記で製造した二次電池を、板で挟み加圧した状態で、25℃において、0.2Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、(CC/CV充電)と表記する。)(0.1Cカット)した後、0.2Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.2Cとはその1/5の電流値を表わす。再度4.2VまでCC/CV充電(0.1Cカット)をおこなった後、実施例1~8および比較例1~5は85℃3日間の条件で、実施例9~21および比較例6~13は85℃1日間の高温保存を行った。電池を十分に冷却させた後、アルキメデス法により体積を測定し、保存前後の体積変化から発生したガス量を求めた。次に、25℃において0.2Cで3Vまで放電させ、高温保存後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを保存容量維持率(%)とした。
(残存容量)÷(初期放電容量)×100=保存容量維持率(%)
(電解液の作製)
(実施例22~30、比較例14~18)
乾燥アルゴン雰囲気下で、エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)を体積比70:30で混合し、この溶液に、乾燥したLiPFを1mol/Lの割合になるように溶解し、基本電解液とした。この基本電解液に、表4に記載の化合物を表4に記載の割合で混合し、実施例22~30および比較例14~18に用いる電解液とした。
(実施例31~39、比較例19~23)
乾燥アルゴン雰囲気下で、エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)とフルオロエチレンカーボネート(FEC)を体積比70:20:10で混合し、この溶液に、乾燥したLiPFを1mol/Lの割合になるように溶解し、基本電解液とした。この基本電解液に、表5に記載の化合物を表5に記載の割合で混合し、実施例31~39および比較例19~23に用いる電解液とした。
(実施例40~45、比較例24~26)
乾燥アルゴン雰囲気下で、エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)とフルオロエチレンカーボネート(FEC)を体積比70:20:10で混合し、この溶液に、乾燥したLiPFを1mol/Lの割合になるように溶解した後、ビニレンカーボネート(VC)を2質量%混合し、基本電解液とした。この基本電解液に、表6に記載の化合物を表6に記載の割合で混合し、実施例40~45および比較例24~26に用いる電解液とした。
なお、表4~6に記載の成分(I-b)、成分(I-c)、成分(I-e)の化合物を以下に示す。
成分(I-b):
Figure JPOXMLDOC01-appb-C000034
成分(I-c):
Figure JPOXMLDOC01-appb-C000035
成分(I-e):
Figure JPOXMLDOC01-appb-C000036
得られた電解液を用いて、下記のように二次電池を作製して、二次電池の高温保存特性について評価した。評価結果を表4~6に示す。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(正極の作製)
正極活物質としてLiNi1/3Mn1/3Co1/3、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)を92/3/5(質量%比)で混合した正極材料をN-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。厚さ21μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極合剤層を形成し、その後、プレス機により圧縮成形して、正極とした。
(二次電池の製造)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、実施例22~45及び比較例14~26の電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
<高温保存特性評価試験>
上記で製造した二次電池を、板で挟み加圧した状態で、25℃において、0.2Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、(CC/CV充電)と表記する。)(0.1Cカット)した後、0.2Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.2Cとはその1/5の電流値を表わす。再度4.2VまでCC/CV充電(0.1Cカット)をおこなった後、実施例22~30および比較例14~18は85℃3日間の条件で、実施例31~45および比較例19~26は85℃1日間の高温保存を行った。電池を十分に冷却させた後、アルキメデス法により体積を測定し、保存前後の体積変化から発生したガス量を求めた。次に、25℃において0.2Cで3Vまで放電させ、高温保存後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを保存容量維持率(%)とした。
(残存容量)÷(初期放電容量)×100=保存容量維持率(%)
Figure JPOXMLDOC01-appb-T000037
(※)成分(I-a)50質量%の一部が基本電解液と相分離し、電池特性を評価することができなかった。
Figure JPOXMLDOC01-appb-T000038
(※)成分(I-a)50質量%の一部が基本電解液と相分離し、電池特性を評価することができなかった。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
(※)成分(I-b)50質量%の一部が基本電解液と相分離し、電池特性を評価することができなかった。
Figure JPOXMLDOC01-appb-T000041
(※)成分(I-b)50質量%の一部が基本電解液と相分離し、電池特性を評価することができなかった。
Figure JPOXMLDOC01-appb-T000042
本発明の電解液は、リチウムイオン二次電池等の電気化学デバイスに好適に利用できる。

Claims (8)

  1. 非水系溶媒(I)及び電解質塩(II)を含有する電解液であって、
    一般式(1)又は一般式(A)で示される化合物を0.001~20質量%含有することを特徴とする電解液。
    -ORf-(ORf-(ORf-CN    (1)
    (式中、Rは、CH-Rf-、CHF-Rf-、又は、CHF-Rf-であり、R中のRfは、フッ素原子を含んでもよいアルキレン基であり、
    Rf、Rf及びRfは、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素化アルキレン基であり、
    l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)
    A1-ORfA1-(ORfA2-(ORfA3-CN  (A)
    (式中、RA1は、炭素数2~9の不飽和結合を含む基であり、
    RfA1、RfA2及びRfA3は、同じか又は異なっていてもよく、それぞれ炭素数1~3のフッ素原子を含んでいてもよいアルキレン基であり、
    l及びmは、同じか又は異なっていてもよく、それぞれ0~5の整数である。)
  2. 一般式(1)及び一般式(A)で示される化合物は、分子量が650以下である請求項1記載の電解液。
  3. 非水系溶媒(I)は、環状カーボネートを含有する請求項1又は2記載の電解液。
  4. 非水系溶媒(I)は、鎖状カーボネートを含有する請求項1、2又は3記載の電解液。
  5. 電解質塩(II)は、リチウム塩である請求項1、2、3又は4記載の電解液。
  6. 請求項1、2、3、4又は5記載の電解液を備えることを特徴とする電気化学デバイス。
  7. 請求項1、2、3、4又は5記載の電解液を備えることを特徴とするリチウムイオン二次電池。
  8. 請求項7記載のリチウムイオン二次電池を備えることを特徴とするモジュール。
PCT/JP2014/054883 2013-03-04 2014-02-27 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール WO2014136648A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015504264A JP6011713B2 (ja) 2013-03-04 2014-02-27 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
US14/769,863 US9666905B2 (en) 2013-03-04 2014-02-27 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-042315 2013-03-04
JP2013042312 2013-03-04
JP2013-042312 2013-03-04
JP2013042315 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014136648A1 true WO2014136648A1 (ja) 2014-09-12

Family

ID=51491167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054883 WO2014136648A1 (ja) 2013-03-04 2014-02-27 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール

Country Status (3)

Country Link
US (1) US9666905B2 (ja)
JP (1) JP6011713B2 (ja)
WO (1) WO2014136648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515469A (ja) * 2016-05-10 2019-06-06 シーオ インコーポレーテッドSeeo, Inc. ニトリル基を有するフッ素化電解質

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547088B2 (en) * 2014-09-10 2020-01-28 Battelle Memorial Institute High Coulombic efficiency cycling of metal batteries
JPWO2019039345A1 (ja) * 2017-08-24 2020-03-26 三井化学株式会社 リチウム二次電池及び非水電解液
EP3855531A4 (en) * 2018-11-30 2022-07-06 Murata Manufacturing Co., Ltd. SECONDARY BATTERY
GB2606011A (en) * 2021-04-22 2022-10-26 Mexichem Fluor Sa De Cv Composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007336A (ja) * 2001-06-22 2003-01-10 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
WO2008084846A1 (ja) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. 電気二重層キャパシタ
JP2012191162A (ja) * 2010-11-10 2012-10-04 Daikin Ind Ltd 電気二重層キャパシタ用電解液
JP2012216539A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
WO2014050877A1 (ja) * 2012-09-28 2014-04-03 ダイキン工業株式会社 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (ja) 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Li二次電池用電解液
JP4918740B2 (ja) 2001-02-02 2012-04-18 ダイキン工業株式会社 電極表面被膜形成剤
TWI302760B (en) 2004-01-15 2008-11-01 Lg Chemical Ltd Electrochemical device comprising aliphatic nitrile compound
JP2005259641A (ja) 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd リチウム二次電池用の電解液、電極、リチウム二次電池およびそれらの製造方法
JP2010073367A (ja) 2008-09-16 2010-04-02 Sony Corp 非水電解質および非水電解質電池
JP6167470B2 (ja) 2010-11-30 2017-07-26 三菱ケミカル株式会社 非水系電解液電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007336A (ja) * 2001-06-22 2003-01-10 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
WO2008084846A1 (ja) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. 電気二重層キャパシタ
JP2012191162A (ja) * 2010-11-10 2012-10-04 Daikin Ind Ltd 電気二重層キャパシタ用電解液
JP2012216539A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
WO2014050877A1 (ja) * 2012-09-28 2014-04-03 ダイキン工業株式会社 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515469A (ja) * 2016-05-10 2019-06-06 シーオ インコーポレーテッドSeeo, Inc. ニトリル基を有するフッ素化電解質

Also Published As

Publication number Publication date
US20160006078A1 (en) 2016-01-07
JPWO2014136648A1 (ja) 2017-02-09
US9666905B2 (en) 2017-05-30
JP6011713B2 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6028785B2 (ja) 非水系電解液電池
JP6167470B2 (ja) 非水系電解液電池
JP6433486B2 (ja) 電解液及び電気化学デバイス
JP6094590B2 (ja) 電解液、電気化学デバイス、リチウム電池、及び、モジュール
JP6315083B2 (ja) 電解液及び電気化学デバイス
WO2015147005A1 (ja) 電解液及び電気化学デバイス
KR102027181B1 (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
JP6123913B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2015191738A (ja) 電解液及び電気化学デバイス
KR20150054953A (ko) 전해액, 전기 화학 디바이스, 리튬 전지, 및 모듈
JP2017004692A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2015146684A1 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6103134B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6011713B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6372128B2 (ja) 電解液及び電気化学デバイス
JP2013093242A (ja) 非水系電解液、それを用いた電池
JP2013206843A (ja) 非水系電解液電池
JP6308292B2 (ja) 電解液及び電気化学デバイス
JP6236907B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504264

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769863

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759977

Country of ref document: EP

Kind code of ref document: A1