JP2013206843A - 非水系電解液電池 - Google Patents

非水系電解液電池 Download PDF

Info

Publication number
JP2013206843A
JP2013206843A JP2012077464A JP2012077464A JP2013206843A JP 2013206843 A JP2013206843 A JP 2013206843A JP 2012077464 A JP2012077464 A JP 2012077464A JP 2012077464 A JP2012077464 A JP 2012077464A JP 2013206843 A JP2013206843 A JP 2013206843A
Authority
JP
Japan
Prior art keywords
carbonate
less
active material
aqueous electrolyte
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012077464A
Other languages
English (en)
Inventor
Masato Kijima
正人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012077464A priority Critical patent/JP2013206843A/ja
Publication of JP2013206843A publication Critical patent/JP2013206843A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高温保存時における容量維持率を向上させ、ガス発生量を抑制した非水系電解液電池を提供する。
【解決手段】正極活物質を含有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極と、リチウム塩とこれを溶解する非水溶媒を含有してなる非水系電解液とを備えた非水系電解液電池であって、前記正極活物質が、pH≧10.9であるリチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金化合物粉体を少なくとも1種含有し、前記非水系電解液が炭素−窒素不飽和結合を有する化合物を少なくとも1種含有することを特徴とする非水系電解液電池。
【選択図】なし

Description

本発明は、非水系電解液電池に関するものである。
携帯電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の急速な進歩に伴い、その主電源やバックアップ電源に用いられる電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウムイオン二次電池等の非水系電解液電池が注目されている。
リチウムイオン二次電池の電解液としては、LiPF6、LiBF4、LiN(CF3
22、LiCF3(CF23SO3等の電解質を 、エチレンカーボネート、プロピレン
カーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が代表例として挙げられる。
また、リチウムイオン二次電池の負極活物質としては主にリチウムイオンを吸蔵・放出することができる炭素質材料が用いられており、天然黒鉛、人造黒鉛、非晶質炭素等が代表例として挙げられる。更に高容量化を目指してシリコンやスズ等を用いた金属又は合金系の負極も知られている。正極活物質としては主にリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物が用いられており、遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等が挙げられる。
このようなリチウムイオン二次電池は、活性の高い正極と負極を使用しているため、電極と電解液との副反応により、充放電容量が低下することや、電池内でガスが発生することが知られており、電池特性を改良するために、非水溶媒や電解質の改良および正極や負極と電解液の組合せについて種々の検討がなされている。
特許文献1には、ニトリル基を2個以上有する有機化合物を添加した電解液を用いることにより、ニトリル基の分極による大きな双極子モーメントが高電圧での充電時における正極上での電解液酸化分解を抑制し、これにより電池特性が向上することが提案されている。
特許文献2には、イソシアネート基を有する化合物を非水系電解液に添加することで、負極上での溶媒の分解反応が抑制され、電池のサイクル特性が向上することが開示されている。
特許文献3には、脂肪族ニトリル化合物が正極活物質の表面と錯物を形成して正極上に保護膜を形成すれば、過充電時に及び/ 又は電池の外部からの物理的な衝撃時に電池の
安全性が高まることが提案されている。
特開平7−176322号公報 特開2005−259641号公報 WO2005−069423号公報
しかしながら、近年の電池に対する高性能化への要求は、ますます高くなっており、高容量、高温保存特性、サイクル特性等の種々の電池特性を高い次元で達成することが求め
られている。
高容量化する方法として、例えば、正極の利用範囲を広げて高電位まで使用する方法や、電極の活物質層を加圧して高密度化し、電池内部の活物質以外の占める体積を極力少なくする方法が検討されている。しかし、正極の利用範囲を広げて高電位まで使用すると、正極の活性は更に高くなり、正極と電解液との反応により劣化が促進される問題が発生しやすくなる。特に充電状態において高温条件下で保存した場合、電極と電解液との副反応により、電池容量が低下することが知られており、保存特性を改良するために、非水系溶媒や電解質について種々の検討がなされている。また、電極の活物質層を加圧して高密度化すると、活物質を均一に使用することができにくくなり、不均一な反応により一部リチウムが析出したり、活物質の劣化が促進されたりして、十分な特性が得られないという問題が発生しやすくなる。
しかし、特許文献1、2および3に記載されている添加剤を非水電解質に含有させても、電解液の正負極での劣化反応は完全には抑制できない。その結果、高温保存特性としては満足しうるものではなかった。特に高温保存特性については、ガス発生を抑制することが求められるが、従来技術によっては電池特性の劣化の抑制、及びガス発生の抑制の双方を同時に満たすことはできなかった。
本発明は、上記の問題を解決すべくされたものであり、非水系電解液電池において、高温保存時における容量劣化の抑制とガス発生を抑制する非水系電解液と、この非水系電解液を用いた非水系電解液電池を提供することを課題とする。
本発明者らは、上記目的を達成するために種々の検討を重ねた結果、特定の正極活物質と特定の化合物を電解液中に含有させることによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
すなわち、本発明の要旨は、下記に示すとおりである。
(1)正極活物質を含有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極と、リチウム塩とこれを溶解する非水溶媒を含有してなる非水系電解液とを備えた非水系電解液電池であって、前記正極活物質が、pH≧10.9であり、リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金化合物粉体を少なくとも1種含有し、前記非水系電解液が分子内に下記一般式(1)で示される部分構造及び/またはイソシアネート基を有する化合物を含むことを特徴とする、非水系電解液電池。
Figure 2013206843
ここで、Rは任意の元素若しくは基を表す。
(2)正極活物質を含有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極と、リチウム塩とこれを溶解する非水溶媒を含有してなる非水系電解液とを備えた非水系電解液電池であって、前記正極活物質が、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素(以下、「本発明の添加元素1」と称す)を有する化合物(以下、「本発明の添加剤1」と称す)を含有するリチウムイオンの挿入・脱離が可能な機能を有する、リチウム遷移金化合物粉体を少なくとも一種含有し、前記非水系電解液が分子内に下記一般式(1)で示される部分構造及び/またはイソシアネート基を有する化合物を含むことを特徴とする、非水系電解液電池。
Figure 2013206843
ここで、Rは任意の元素若しくは基を表す。
(3)前記化合物の構造がウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有することを特徴とする、(1)または(2)に記載の非水系電解液電池。
(4)前記化合物の数平均分子量が300以上5000以下であることを特徴とする、(1)〜(3)のいずれか1項に記載の非水系電解液電池。
(5)該非水系電解液が、さらに不飽和環状カーボネート、フッ素化環状カーボネート及び含窒素化合物からなる群より選ばれる少なくとも1種以上を含有することを特徴とする(1)〜(4)のいずれか1項に記載の非水系電解液電池。
(6)正極活物質の組成が、下記組成式(2)で示されることを特徴とする(1)〜(5)のいずれか1項に記載の非水系電解液電池。
Li1+xMO ・・・(2)
(ただし、上記組成式(2)中、xは0以上、0.5以下、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は0.1以上、5以下、Co/Mモル比は0以上、0.35以下、M中のLiモル比は0.001以上、0.2以下である。)
本発明は、特定の正極活物質と特定の化合物を含有する非水系電解液を電池に使用することを特徴の一つとしている。通常、電池特性に優れる電池を作製するためには、活性の高い活物質を用いる事となるが、その場合、活物質を含有する電極と電解液との接点において副反応が促進され、電解液を構成する溶媒や塩、含有される添加物または負極から遊離したSEI成分などが分解されてガスが多く発生するという問題があった。本発明者等はこの点に着目し、以下の2つのいずれかの正極活物質を含有させた正極と、特定の非水系電解液電池を組み合わせることにより、電極と電解液の接点における副反応を抑制し、ガス発生量が顕著に抑制されることを見出し、本発明を完成させるに至った。
1.正極活物質に、pH10.9以上であるリチウム遷移金化合物粉体を少なくとも1種含有させる。
2.正極活物質に、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素を有する化合物を含有するリチウム遷移金化合物粉体を少なくとも1種含有させる。
すなわち、本発明を用いることで、特に高電圧化や高容量化されたリチウム二次電池設計において保存特性などを初めとする種々の電池特性に優れながらも、ガス発生量が抑制された非水系電解液電池が提供される。
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
1.非水系電解液
1−1.本願発明の電解液に含有される本発明の特定化合物
本発明は、分子内に下記一般式(1)で示される部分構造及び/またはイソシアネート基を有する化合物(以下、この化合物を「本発明の特定化合物」という場合がある。)を
含有する電解液を用いることを特徴としている。
Figure 2013206843
ここで、Rは任意の元素若しくは基を表す。
さらには、有機物としての安定性から、一般式(1)の構造の両端のうち、一方は炭素原子と結合していることが好ましく、もう一方は窒素原子若しくは酸素原子と結合していることが好ましい。また、Rは水素若しくはイソシアネート基を有する基であることが好ましい。製造上の容易性から、本発明の化合物はウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有することがさらに好ましい。各々の骨格は分子内に2つ以上含まれていても良い。
本発明の特定化合物は、イソシアネート基を分子内に2つ以上有していることが好ましく、好ましくは3つ以上、また、通常15以下、好ましくは10以下、より好ましくは8
以下である。分子内中のイソシアネート基の数が上記範囲にあることにより、皮膜の安定性を高めることができ、また、官能基の増加による正極の電荷移動抵抗の増加を防ぐことができる。
製造上、原料を反応させてこうした多官能化を進めていくと必然的に高分子量化するが、従来の単純な分子構造で、分子量の低い従来のイソシアネート化合物よりも高い効果が現れるのは数平均分子量が通常200以上、好ましくは300以上、また、通常10000以下、好ましくは5000以下、より好ましくは3000以下、更に好ましくは2000以下である。数平均分子量が上記範囲にあることにより、電解液への溶解が確保できる傾向にある。また、上記と同じ理由により、平均官能基数は2以上、好ましくは3以上、また、通常12以下、好ましくは10以下、より好ましくは8以下である。
本発明の特定化合物のイソシアネート基の末端は、製造時の原料のコスト面や製造の容易性、生成して結着した皮膜の耐久性から、アルキレン基と結合していることが好ましく、その炭素数は好ましくは4以上、また、好ましくは12以下、より好ましくは8以下である。
本発明で用いるイソシアネート化合物は、ブロック剤でブロックして保存安定性を高めた、所謂ブロックイソシアネートも含まれる。ブロック剤には、アルコール類、フェノール類、有機アミン類、オキシム類、ラクタム類を挙げることができ、具体的には、n−ブタノール、フェノール、トリブチルアミン、ジエチルエタノールアミン、メチルエチルケトキシム、ε−カプロラクタム等を挙げることができる。
イソシアネート化合物に基づく反応を促進し、より高い効果を得る目的で、ジブチルスズジラウレート等のような金属触媒や、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のようなアミン系触媒等を併用することも好ましい。
本発明の化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、未反応の原料である脂肪族ジイソシアネートなどが含まれていても良い。こうしたモノマー成分には作業者の安全衛生上好ましくないものがあり、適宜人体に悪影響を及ぼさない範囲に除去して用いることが好ましい。さらに、本発明の化合物には、モノイソシアネート化合物が含まれていても良い。特にアルキルモノイソシアネート類の添加は、低温放電特性を改善させる効果がある。
具体的な本発明の特定化合物としては、以下の化合物やヘキサメチレンジイソシアネートが好ましい。
Figure 2013206843
本発明の非水系電解液の組成中における本発明の特定化合物の濃度は、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、3質量%未満、好ましくは2.5質量%以下、より好ましくは1.5質量%以下、更に好ましくは0.8質量%以下の範囲である。上記範囲であれば、電池内の化学的及び物理的安定性を十分に高めることができるとともに、皮膜形成による過度な抵抗増加を抑制することができる。
1−2.不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、モノフルオロリン酸塩およびジフルオロリン酸塩
本発明に係る非水系電解液は、更に、不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、モノフルオロリン酸塩およびジフルオロリン酸塩からなる群から選ばれる少なくとも一種の化合物を含有するものが好ましい。これらを併用することで、それぞれの添加剤が引き起こす副反応を効率よく抑制できるためである。
<不飽和結合を有する環状カーボネート>
不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素−炭素二重結合または炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、
ビニレンカーボネート類、芳香環または炭素−炭素二重結合または炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類
等が挙げられる。
ビニレンカーボネート類としては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート
等が挙げられる。
芳香環または炭素−炭素二重結合または炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、
ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチ
ニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート
等が挙げられる。
中でも、特に式(1)乃至(6)で示される化合物と併用するのに好ましい不飽和環状カーボネートとしては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート
が挙げられる。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートはさらに安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<フッ素原子を有する環状カーボネート>
フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と記載する場合がある)としては、フッ素原子を有する環状カーボネートであれば、特に制限はされない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1〜8個有するエチレンカーボネート、及びその誘導体が好ましい。
具体的には、
モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート
等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素化環状カーボネートの含有量は、非水系電解液に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。また、フッ素化環状カーボネートを非水溶媒として用いる場合の配合量は、非水溶媒100体積%中、好ましくは1体積%以上、より好ましくは5体積%以上、さらに好ましくは10体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは25体積%以下である。
上記範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、高温保存特性の低下や、ガス発生量の増加により、放電容量維持率が低下することを回避しやすい。
本発明の非水系電解液において、上記式(1)乃至(6)で示される化合物とフッ素原子を有する環状カーボネートは、負極上に複合的な被膜を形成する。このような被膜を良好に形成する観点から、上記式(1)乃至(6)で示される化合物とフッ素化環状カーボネートの配合質量比は、0.4:100〜100:100であることが好ましく、1:100〜50:100であることがより好ましく、1.4:100〜35:100であることがさらに好ましい。この範囲で配合した場合、各添加剤の正負極での副反応を効率よく抑制でき、電池特性が向上する。
<モノフルオロリン酸塩およびジフルオロリン酸塩>
モノフルオロリン酸塩およびジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、及び、NR11121314(式中、R11〜R14は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表されるアンモニウム等が例示として挙げられる。
上記アンモニウムのR11〜R14で表わされる炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR11〜R14として、それぞれ独立に、水素原子、アルキル基、
シクロアルキル基、又は窒素原子含有複素環基等が好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩の具体例としては、
モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、モノフルオロリン酸塩およびジフルオロリン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
モノフルオロリン酸塩およびジフルオロリン酸塩の配合量は、非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
1−3.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩; LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類; FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類; LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
この場合、非水系電解液全体100質量%に対するLiBF或いはFSOLiの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。この場合には、非水系電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
非水系電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
1−4.非水溶媒
本発明における非水溶媒について特に制限はなく、公知の有機溶媒を用いることが可能である。これらを例示すると、フッ素原子を有していない環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等が挙げられる。
<フッ素原子を有していない環状カーボネート>
フッ素原子を有していない環状カーボネートとしては、炭素数2〜4のアルキレン基を有する環状カーボネートが挙げられる。
炭素数2〜4のアルキレン基を有する、フッ素原子を有していない環状カーボネートの具体的な例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
フッ素原子を有していない環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素原子を有していない環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量は、非水溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7の鎖状カーボネートが好ましく、炭素数3〜7のジアルキルカーボネートがより好ましい。
鎖状カーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と記載する場合がある)も好適に用いることができる。
フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。
フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート及びその誘導体、フッ素化エチルメチルカーボネート及びその誘導体、フッ素化ジエチルカーボネート及びその誘導体等が挙げられる。
フッ素化ジメチルカーボネート及びその誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート及びその誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチル
カーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート及びその誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの配合量は、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水溶媒100体積%中、90体積%以下、より好ましくは85体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、炭素原子数が3〜12のものが好ましい。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
環状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、炭素数が3〜7のものが好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオ
ン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは10体積%以上、より好ましくは15体積%以上である。このように下限を設定することで、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、非水溶媒100体積%中、好ましくは60体積%以下、より好ましくは50体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、
ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3
,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル
等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
エーテル系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。
この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状ス
ルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
炭素数3〜6の環状スルホンとしては、
モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;
ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。
中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と記載する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く、入出力特性が高い点で好ましい。
また、炭素数2〜6の鎖状スルホンとしては、
ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピル
メチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く、入出力特性が高い点で好ましい。
スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スルホン系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは1体積%以上、さらに好ましくは5体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。
この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
<フッ素原子を有する環状カーボネートを非水溶媒として用いる場合>
本発明において、フッ素原子を有する環状カーボネートを非水溶媒として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒の1種をフッ素原子を有する環状カーボネートと組み合わせて用いてもよく、2種以上をフッ素原子を有する環状カーボネートと組み合わせて併用してもよい。
例えば、非水溶媒の好ましい組合せの一つとして、フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。中でも、非水溶媒に占めるフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計が、好ましくは60体積%以上、より好ましくは80体積%以上、更に好ましくは90体積%以上であり、かつフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が3体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また好ましくは60体積%以下、より好ましくは50体積%以下、さらに好ましくは40体積%以下、特に好ましくは35体積%以下である。
これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスがよくなることがある。
例えば、フッ素原子を有する環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして対称鎖状アルキルカーボネート類を含有するものが更に好ましく、特に、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスがよいので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであることが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
これらのフッ素原子を有する環状カーボネートと鎖状カーボネート類との組み合わせに、更にフッ素原子を有していない環状カーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。中でも、非水溶媒に占めるフッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートとの合計が、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは20体積%以上であり、かつフッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは25体積%以上であり、また、好ましくは95体積%以下、より好ましくは85体積%以下、さらに好ましくは75体積%以下、特に好ましくは60体積%以下のものである。
この濃度範囲でフッ素原子を有していない環状カーボネートを含有すると、負極に安定な保護被膜を形成しつつ、電解液の電気伝導度を維持できる。
フッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカー
ボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートモノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートモノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスがよいので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
非水溶媒中にジメチルカーボネートを含有する場合は、全非水溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは70体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
中でも、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することから、好ましい。
全非水溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。
上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上の点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
上記フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、上記フッ素原子を有していない環状カーボネート以外にも、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒
、含燐有機溶媒、含フッ素芳香族溶媒等、他の溶媒を混合してもよい。
<フッ素原子を有する環状カーボネートを助剤として用いる場合>
本発明において、フッ素原子を有する環状カーボネートを助剤として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
例えば、非水溶媒の好ましい組合せの一つとして、フッ素原子を有していない環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。
中でも、非水溶媒に占めるフッ素原子を有していない環状カーボネートと鎖状カーボネートとの合計が、好ましくは70体積%以上、より好ましくは80体積%以上、さらに好ましくは90体積%以上であり、かつ環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有していない環状カーボネートの割合が好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下、特に好ましくは25体積%以下である。
これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスがよくなることがある。
例えば、フッ素原子を有していない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有していない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして非対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスがよいので好ましい。
中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。
プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの割合は、好ましくは0.1容量%以上、より好ましくは1体積%以上、さらに好ましくは2体積%以上、また、好ましくは20体積%以下、より好ましくは8体積%以下、さらに好ましくは5体積%以下である。
この濃度範囲でプロピレンカーボネートを含有すると、エチレンカーボネートと鎖状カーボネートとの組み合わせの特性を維持したまま、更に低温特性が優れることがあるので
好ましい。
非水溶媒中にジメチルカーボネートを含有する場合は、全非水溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは、70体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
中でも、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することがあり好ましい。
全非水溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上の点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
上記フッ素原子を有していない環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、芳香族含フッ素溶媒等、他の溶媒を混合してもよい。
なお、本明細書において、非水溶媒の体積は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
1−5.助剤
本発明の非水系電解液電池において、一般式(1)乃至(6)の化合物以外に、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示されるフッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
<フッ素原子を有する不飽和環状カーボネート>
フッ素原子を有する不飽和環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフ
ルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
中でも、特に一般式(1)乃至(6)の化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<過充電防止剤>
本発明の非水系電解液において、非水系電解液電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これ
らは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2−ビス(ビニルスルホニロキシ)エタン等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意
である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
2.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
2−1.負極
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<負極活物質>
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリ
ン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記する場合がある)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物、炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)である。即ちスピネル構造を有するリチウムチタン複合酸化物を、非水系電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(A)で表されるリチウムチタン複合酸化物であり、一般式(A)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
LiTi (A)
[一般式(A)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(A)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3 Ti5/3 、(b)ではLi Ti、(c)ではLi4/5 Ti11/5 である。また、Z≠0の構造については、例えば、Li4/3Ti4/3 Al1/3 が好まし
いものとして挙げられる。
<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
(ラマンR値、ラマン半値幅)
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。特に、ラマンR値が0.1以上であると、負極表面に好適な被膜を形成し、これにより保存特性やサイクル特性、負荷特性を向上させることができる。
一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下がさらに好ましく、40cm−1以下が特に好ましい。
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPの半値幅を測定し、これを本発明の炭素質材料のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント (BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m ・g−1以上であり、0.7m・g−1以上が好ましく、1.0m ・g−1以上がさらに好ましく、1.5m ・g−1以上が特に好ましく、また、通常10
0m・g−1以下であり、25m・g−1以下が好ましく、15m ・g−1
下がさらに好ましく、10m ・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明の炭素質材料のBET比表面積と定義する。
(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/
(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40・高フ範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明の炭素質材料の円形度と定義する。
円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の炭素質材料のタップ密度として定義する。
(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の炭素質材料の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(K瘰・jグラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明の炭素質材料のアスペクト比と定義する。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(結着剤)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・瘁|オ
レフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(増粘剤)
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
2−2.正極
<正極活物質>
以下に、本願発明の非水系電解液二次電池の正極に使用される正極活物質について述べる。本願発明に用いられる正極活物質は、以下の2つの条件いずれかを満たすリチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金化合物粉体であることを特徴としている。
1.正極活物質に、pH10.9以上であるリチウム遷移金化合物粉体。
2.正極活物質に、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素を有する化合物を含有するリチウム遷移金化合物粉体。
〈リチウム含有遷移金属化合物〉
本発明のリチウム遷移金属系化合物とは、Liイオンを脱離、挿入することが可能な構
造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiCoO、LiNiO、LiNi1−xCo、LiNi1−x−yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。
本発明のリチウム遷移金属系化合物粉体は、リチウムイオン拡散の点からオリビン構造、スピネル構造、層状構造を有するものが好ましい。中でも層状構造を有するものが特に好ましい。
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,Iの何れか1種以上の中から選択される。これらの異元素は、リチウムニッケルマンガンコバルト系複合酸化物の結晶構造内に取り込まれていてもよく、あるいは、リチウムニッケルマンガンコバルト系複合酸化物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
(pH)
本願発明の正極活物質において規定されるpHについては、以下のとおり測定される。つまり、脱塩水100gをビーカーに秤量し、攪拌させながら40℃に熱した後に正極活物質5gを投入。温度を40℃に保ちながら液温とpH値をモニタリングしつつ攪拌を続け、投入後10分経過した時点でのpHを本願発明に用いる正極活物質のpHとした。また、本願発明において、pHの下限は、10.9以上であることを特徴としており、本発明の効果が顕著に現れる観点から、11.0以上が好ましく、11.1以上がさらに好ましく、11.2以上が特に好ましい。上限としては、特に制限はないが、粉体の取り扱いの観点から12.0以下である。
〈本発明の添加剤〉
本発明では、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素(以下「本発明の添加元素1」と称す。)を有する化合物(以下「本発明の添加剤1」と称す。)を用いることを一つの特徴としている。
これらの本発明の添加元素1の中でも、効果が大きい点から、本発明の添加元素1がMoまたはWであることが好ましく、Wであることが最も好ましい。
本発明の添加元素1を有する化合物(本発明の添加剤1)の種類としては、本発明の効果を発現するものであればその種類に格別の制限はないが、通常は酸化物が用いられる。
本発明の添加剤1の例示化合物としては、MoO、MoO、MoO、MoO、M
、Mo、LiMoO、WO、WO、WO、WO、W、W、W1849、W2058、W2470,W2573、W40118、LiWO、NbO、NbO、Nb、Nb、Nb・nHO、LiNbO、TaO、Ta、LiTaO、ReO、ReO、Re、Reなどが挙げられ、工業原料として比較的入手し易い、又はリチウムを包含するといった点から、好ましくはMoO、LiMoO、WO、LiWOが挙げられ、特に好ましくはWOが挙げられる。これらの更なる添加剤1は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明の添加元素2を含有する化合物(本発明の添加剤2)を含有することも嵩密度の向上や電池容量の向上のため好ましい。本発明の添加剤2の種類としては、本発明の効果を発現するものであればその種類に格別の制限はないが、通常はホウ酸、オキソ酸の塩類、酸化物、水酸化物などが用いられる。これらの本発明の添加剤2の中でも、工業原料として安価に入手できる点から、ホウ酸、酸化物であることが好ましく、ホウ酸であることが特に好ましい。
本発明の添加剤2の例示化合物としては、BO、B、B、B、BO、BO、B13、LiBO、LiB、Li、HBO、HBO、B(OH)、B(OH)、BiBO、Bi、Bi、Bi(OH)などが挙げられ、工業原料として比較的安価かつ容易に入手できる点から、好ましくはB、HBO、Biが挙げられ、特に好ましくは、HBOが挙げられる。これらの本発明の添加剤2は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、本発明の添加剤1の添加量の範囲としては、主成分を構成する遷移金属元素の合計モル量に対して、下限としては、通常0.1モル%以上、好ましくは0.3モル%以上、より好ましくは0.5モル%以上、特に好ましくは1.0モル%以上、上限としては、通常8モル%未満、好ましくは5モル%以下、より好ましくは4モル%以下、特に好ましくは3モル%以下である。下限を下回ると、電池性能の低下を招く可能性があり、上限を超えると前記効果が得られなくなる可能性がある。
本発明では、リチウム遷移金属系化合物を主成分とし、該主成分原料となるリチウム源及び遷移金属源と構造式中に第3周期以降の第16族元素から選ばれる少なくとも一種の元素(以下「本発明の添加元素3」と称す。)を含有することが好ましい。
ここで、本発明の添加元素3としては、第3周期以降の第16族元素から選ばれる少なくとも一種の元素であれば、特に限定されないが、S、Se、TeおよびPoからなる群より選ばれる少なくとも一種の元素であることが好ましく、軽元素である点から、S、Seであることがさらに好ましく、Sであることが最も好ましい。
本発明において、上記の元素を有する化合物は、高温焼成時における正極活物質の一次粒子間又は二次粒子間の焼結を促進するなどして、活物質粒子の成長を促進し、高結晶化を図りつつ、高比表面積な粉体性状を得る効果がある。
例えば、本発明に好適な後述の組成式(I)で規定する組成領域のリチウムニッケルマンガンコバルト系複合酸化物粉体を、主成分原料を同時に液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して焼成することを含む製造方法によって製造する場合、高温で焼成結果、高密度化および比表面積の減縮をもたらし、高電流密度での放電容量が低下する。つまり、双方を両立して改善することが極めて困難な状況となるが、例えば、「構造式中に本発明の添加元素3」を含有する化合物(「本発明の添加剤3」)」を添加して焼成することにより、このトレードオフの関係を克服することが可能となる。
上記のような本発明の添加剤3の融点が、焼成温度以下であり、焼成時に、溶融するが固溶しない特徴を持つ。また、添加元素3は、イオン半径が遷移金属よりも小さいため、遷移金属層に置換するものは、ほとんどないと考えられる。従って、焼成時に焼結助剤として作用するが、二次粒子内でリチウム遷移金属複合酸化物と固溶しないで、一次粒子を形成する。従って、上記のような本願発明の効果を持つと推察されるが、これらの中でも、工業原料として安価に入手でき、かつ軽元素である点から、好ましい。
本発明において、本発明の添加剤3として添加する特定の化合物が、焼成時の粒成長や焼結を促進する効果を発現する機構は明らかではないが、例えば、実施例として、添加元素3を含有する添加剤3が効果を発現することから、これが、リチウム遷移金属系化合物を構成するカチオン元素のいずれとも異なるものであり、また、固相反応によって殆ど固溶しない結果、リチウム遷移金属系化合物粒子の表面又は粒界に偏在することになる。そのため、正極材活物質粒子の表面エネルギーを低くする方向に作用し、粒子の成長や焼結が促進されたものと推察している。また、粉体体積抵抗を下げることにより、電池の負荷特性の向上が予測されるため好ましい。
本発明の添加元素3を含有する添加剤3の種類としては、無機塩ではMe(NH)x(SO)y・nHO(Meは陽イオン元素である。) 。具体的には、NaSO、LiSO、ZnSO、Al(SO、Sb(SO、Y(SO、CaSO、SnSO、SrSO、Ce(SO、TiO(SO)、FeSO、Fe(SO、CuSO、BaSO、Bi(SO、MgSO、EuSO、La(SO、有機塩では、硫酸水素テトラブチルアンモニウム、トリフルオロメタンスルホン酸、1−ナフチルアミン−2−スルホン酸、1−ナフチルアミン−5−スルホン酸、1−ナフトール− 3,6−ジスルホン酸、p−ブロモベ
ンゼンスルホン酸、p−アニリンスルホン酸、o−キシレン−4−スルホン酸、ジメチルスルホン、o−スルホ安息香酸、5−スルホサリチル酸等が挙げられ、これらの中でも、NaSO、LiSO、ZnSO、Al(SO、Bi(SO、TiO(SO)等の無機塩は焼成中のCO発生量が少ないため好ましく、NaSO、LiSOが、工業的に安価且つ水溶性であるため特に好ましい。
Se元素を有する化合物としては、HSeO、SeOなどの酸化物、SeF、SeClなどのハロゲン化合物、オキシ塩化セレンなどが挙げられ、これらの中でも、酸化物であることがCO,Fなどのガス発生量が少ないため好ましく、SeOが特に好ましい。Te元素を有する化合物としては、TeO、TeO、HTeOなどの酸化物、TeF、TeCl、TeBrなどのハロゲン化物などが挙げられ、これらの中でも、酸化物であることがCO,Fなどのガス発生量が少ないため好ましく、TeOが特に好ましい。
なお、これらの添加剤3は1種を単独で使用しても良く、2種以上を併用しても良い。
本発明の添加剤3の添加量の範囲としては、主成分を構成する原料の合計重量に対して、通常0.001モル%以上、好ましくは、0.01モル%、さらに好ましくは0.1モル%以上、より好ましくは0.3モル%以上、特に好ましくは0.5モル%以上、また、通常10モル%以下、好ましくは5モル%以下、より好ましくは3モル%以下、特に好ましくは2モル%以下である。この下限を下回ると、前記効果が得られなくなる可能性があり、上限を超えると電池性能の低下を招く可能性がある。
〈水銀圧入法による細孔特性〉
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、好ましくは水銀圧入法による測定において、特定の条件を満たすものである。
本発明のリチウム遷移金属系化合物粉体の評価で採用する水銀圧入法について以下に説
明する。
水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布などの情報を得る手法である。
具体的には、まず、試料の入った容器内を真空排気した上で、容器内に水銀を満たす。水銀は表面張力が高く、そのままでは試料表面の細孔には水銀は浸入しないが、水銀に圧力をかけ、徐々に昇圧していくと、径の大きい細孔から順に径の小さい孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら水銀液面の変化(つまり細孔への水銀圧入量)を検出していけば、水銀に加えた圧力と水銀圧入量との関係を表す水銀圧入曲線が得られる。
ここで、細孔の形状を円筒状と仮定し、その半径をr、水銀の表面張力をδ、接触角をθとすると、細孔から水銀を押し出す方向への大きさは−2πrδ(cosθ)で表される(θ>90°なら、この値は正となる)。また、圧力P下で細孔へ水銀を押し込む方向への力の大きさはπr2Pで表されることから、これらの力の釣り合いから以下の数式(
1)、数式(2)が導かれることになる。
−2πrδ(cosθ)=πr2P …(1)
Pr=−2δ(cosθ) …(2)
水銀の場合、表面張力δ=480dyn/cm程度、接触角θ=140°程度の値が一般的によく用いられる。これらの値を用いた場合、圧力P下で水銀が圧入される細孔の半径は以下の数式(3)で表される。
Figure 2013206843
すなわち、水銀に加えた圧力Pと水銀が浸入する細孔の半径rとの間には相関があることから、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積との関係を表す細孔分布曲線を得ることができる。例えば、圧力Pを0.1MPaから100MPaまで変化させると、7500nm程度から7.5nm程度までの範囲の細孔について測定が行えることになる。
なお、水銀圧入法による細孔半径のおおよその測定限界は、下限が約2nm以上、上限が約200μm以下であり、後述する窒素吸着法に比べて、細孔半径が比較的大きな範囲における細孔分布の解析に向いていると言える。
水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水銀ポロシメータの具体例としては、Micromeritics社製オートポア、Quantachrome社製ポアマスター等が挙げられる。
本発明のリチウム遷移金属系化合物粉体は、水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が、0.3cm/g以上、1.0cm/g以下であることが好ましい。水銀圧入量はより好ましくは下限としては、通常0.1cm/g以上、より好ましくは0.15cm/g以上、最も好ましくは0.2cm/g以上であり、より好ましくは0.9cm/g以下、更に好ましくは0.8cm/g以下、最も好ましくは0.7cm/g以下である。この範囲の上限を超えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料
として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう。一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、粒子間のリチウム拡散が阻害され、負荷特性が低下する。
本発明のリチウム遷移金属系化合物粉体は、上述の水銀圧入法によって細孔分布曲線を測定した場合に、通常、以下に説明する特定のメインピークが現れる。
なお、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以上の半径を有する細孔の単位重量(通常は1g)当たりの細孔体積の合計を、細孔半径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結んだグラフとして表す。特に本発明のリチウム遷移金属系化合物粉体を水銀圧入法により測定して得られた細孔分布曲線を、以下の記載では適宜「本発明にかかる細孔分布曲線」という。
また、本明細書において「ピーク1」とは、細孔分布曲線において、80nm以上800nm未満(細孔半径)に現れるピークをいい、「ピーク2」とは、細孔分布曲線において、800nm以上(細孔半径)に現れるピークを表す。
また、本明細書において「ピークトップ」とは、細孔分布曲線が有する各ピークにおいて縦軸の座標値が最も大きい値をとる点をいう。
〈ピーク1〉
本発明に係る細孔分布曲線が有するピーク1は、そのピークトップが、細孔半径が通常80nm以上、より好ましくは90nm以上、最も好ましくは100nm以上、また、通常800nm以下、好ましくは750nm以下、より好ましくは700nm以下、更に好ましくは650nm以下、最も好ましくは600nm以下の範囲に存在する。この範囲の上限を超えると、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作成した場合に、粒子内部の空隙が多すぎる状態を表しており、電極を作成した際に電極密度が低下してしまい放電容量などの特性が低下する可能性がある。一方、この範囲の下限を下回ると、本発明のリチウム遷移金属系化合物粉体を用いて正極を作製した場合に、粒子内部の空隙がない状態を表しており、出力特性が低下する可能性がある。
また、本発明に係る細孔分布曲線が有するピーク1は、その細孔容量は、好適には、通常0.01cm/g以上、好ましくは0.02cm/g以上、より好ましくは0.03cm/g以上、最も好ましくは0.04cm/g以上、また、通常0.2cm/g以下、好ましくは0.15cm/g以下、より好ましくは0.1cm/g以下、最も好ましくは0.08cm/g以下である。この範囲の上限を超えると二次粒子間の空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう可能性がある。一方、この範囲の下限を下回ると、二次粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下する可能性がある。
なお、本発明においては、水銀圧入法による細孔分布曲線が、細孔半径800nm以上、4000nm以下にピークトップが存在するピーク2を少なくとも1つ以上有し、かつ細孔半径80nm以上、800nm未満にピークトップが存在するピーク1を有するリチウム二次電池正極材料用リチウム遷移金属系化合物粉体が好ましいものとして挙げられる。
〈ピーク2〉
本発明に係る細孔分布曲線は、上述のピーク1に加えて、複数のピークを有していてもよく、特には800nm以上、4000nm以下の細孔半径の範囲内にピークトップが存
在するピーク2を有することが好ましい。
本発明に係る細孔分布曲線が有するピーク2は、そのピークトップが、細孔半径が通常800nm以上、より好ましくは900nm以上、最も好ましくは1000nm以上、また、通常4000nm以下、好ましくは3600nm以下、より好ましくは3400nm以下、更に好ましくは3200nm以下、最も好ましくは3000nm以下の範囲に存在する。この範囲の上限を超えると、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作成した場合に、正極材内でのリチウム拡散が阻害され、又は導電パスが不足して、負荷特性が低下する可能性がある。一方、この範囲の下限を下回ると、本発明のリチウム遷移金属系化合物粉体を用いて正極を作製した場合に、導電材や結着剤の必要量が増加し、正極板(正極の集電体)への活物質の充填率が制約され、電池容量が制約される可能性がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性質が硬く、又は脆くなり、電池組立て時の捲回工程で塗膜の剥離が生じ易くなる可能性がある。
また、本発明に係る細孔分布曲線が有する、細孔半径800nm以上、4000nm以下にピークトップが存在するピークの細孔容量は、好適には、通常0.1cm/g以上、好ましくは0.15cm/g以上、より好ましくは0.20cm/g以上、最も好ましくは0.25cm/g以上、また、通常0.5cm/g以下、好ましくは0.45cm/g以下、より好ましくは0.4cm/g以下、最も好ましくは0.35cm/g以下である。この範囲の上限を超えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう可能性がある。一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下する可能性がある。
〈結晶構造〉
本発明のリチウム遷移金属系化合物粉体は、少なくとも層状構造を有するリチウムニッケルマンガンコバルト系複合酸化物を主成分としたものが好ましい。
ここで、層状構造に関してさらに詳しく述べる。層状構造を有するものの代表的な結晶系としては、LiCoO、LiNiOのような瘁|NaFeO型に属するものがあ
り、これらは六方晶系であり、その対称性から空間群
Figure 2013206843
(以下「層状R(−3)m構造」と表記することがある。)に帰属される。
ただし、層状LiMeOとは、層状R(−3)m構造に限るものではない。これ以外にもいわゆる層状Mnと呼ばれるLiMnOは斜方晶系で空間群Pm2mの層状化合物であり、また、いわゆる213相と呼ばれるLiMnOは、Li[Li1/3Mn2/3]Oとも表記でき、単斜晶系の空間群C2/m構造であるが、やはりLi層と[Li1/3Mn2/3]層及び酸素層が積層した層状化合物である。
〈組成〉
また、本発明のリチウム含有遷移金属化合物粉体は、下記組成式(I)で示されるリチウム遷移金属系複合酸化物粉体であることが好ましい。
Li1+xMO …(I)
ただし、xは通常0以上、好ましくは0.01以上、さらに好ましくは0.02以上
、最も好ましくは0.03以上、通常0.5以下、好ましくは0.4以下、さらに好まし
くは0.3以下、最も好ましくは0.2以下である。Mは、Ni及びMn、或いは、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、好ましくは0.3以上、より好ましくは0.5以上、更に好ましくは0.6以上、より一層好ましくは0.7以上、更に好ましくは0.8以上、最も好ましくは0.9以上、通常5以下、好ましくは4以下、より好ましくは3以下、更に好ましくは2.5以下、最も好ましくは1.5以下である。Ni/Mモル比は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.05以上、通常0.50以下、好ましくは0.49以下、より好ましくは0.48以下、更に好ましくは047以下、最も好ましくは0.45以下である。Co/Mモル比は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.05以上、通常0.50以下、好ましくは0.40以下、より好ましくは0.30以下、更に好ましくは0.20以下、最も好ましくは0.15以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
なお、上記組成式(I)においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。不定比性がある場合、酸素の原子比は通常2±0.2の範囲、好ましくは2±0.15の範囲、より好ましくは2±0.12の範囲、さらに好ましくは2±0.10の範囲、特に好ましくは2±0.05の範囲である。
(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
(タップ密度)
正極活物質のタップ密度は、好ましくは0.5g/cm 以上、より好ましくは0.
8g/cm 以上、さらに好ましくは1.0g/cm以上である。該正極活物質のタ
ップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm 以下、より好ましくは3.7g/cm以下、さらに好ま
しくは3.5g/cm 以下である。
なお、本発明では、タップ密度は、正極活物質粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
〈メジアン径及び90%積算径(D90)〉
本発明のリチウム遷移金属系化合物粉体のメジアン径は通常2μm以上、好ましくは2.5μm以上、より好ましくは3μm以上、更に好ましくは3.5μm以上、最も好ましくは4μm以上で、通常20μm以下、好ましくは19μm以下、より好ましくは18μm以下、更に好ましくは17μm以下、最も好ましくは15μm以下である。メジアン径がこの下限を下回ると、正極活物質層形成時の塗布性に問題を生ずる可能性があり、上限を超えると電池性能の低下を来たす可能性がある。
また、本発明のリチウムリチウム遷移金属系化合物粉体の二次粒子の90%積算径(D90)は通常30μm以下、好ましくは25μm以下、より好ましくは22μm以下、最も好ましくは20μm以下で、通常3μm以上、好ましくは4μm以上、より好ましくは5μm以上、最も好ましくは6μm以上である。90%積算径(D90)が上記上限を超
えると電池性能の低下を来たす可能性があり、下限を下回ると正極活物質層形成時の塗布性に問題を生ずる可能性がある。
なお、本発明において、平均粒子径としてのメジアン径及び90%積算径(D90)は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.60を設定し、粒子径基準を体積基準として測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用いて測定を行った。
(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(BET比表面積)
正極活物質のBET比表面積は、好ましくは0.1m /g以上、より好ましくは0
.2m /g以上、さらに好ましくは0.3m /g以上であり、上限は30m/g以下、好ましくは20m /g以下、さらに好ましくは10m/g以下である。BE
T比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本発明では、BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
(正極活物質の製造法)
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO 、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の1種以上とを、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33などのLiMn 若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO 若しくはこのCoの一部を他の遷移金属等で置換したものとの組
み合わせが挙げられる。
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必
要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm 以上、より好ましくは2g/cm、さら
に好ましくは2.2g/cm 以上であり、上限としては、好ましくは5g/cm
下、より好ましくは4.5g/cm 以下、さらに好ましくは4g/cm以下の範囲
である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラックやファーネスブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(結着剤)
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・瘁|オレフィン共重合
体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、
さらに好ましくは1.5質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴
金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(電極面積)
本発明の非水系電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
2−3.セパレーター
正極と負極との間には、短絡を防止するために、通常はセパレーターを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレーターに含浸させて用いる。
セパレーターの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレーターの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレーターの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく
、30μm以下がさらに好ましい。セパレーターが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレーターとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレーターの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレーターの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレーターの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレーターを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
2−4.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレーターを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレーターを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<集電構造>
集電構造は、特に制限されないが、本発明の非水系電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電
極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(PositiveTemperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<外装体>
本発明の非水系電解液電池は、通常、上記の非水系電解液、負極、正極、セパレーター等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
本発明で用いるリチウム遷移金属系化合物粉体を製造する方法は、特定の製法に限定されるものではないが、リチウム化合物と、Mn、Co及びNiから選ばれる少なくとも1種の遷移金属化合物と、本発明の添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥体を焼成する焼成工程を含む製造方法により、好適に製造される。
例えば、リチウムニッケルマンガンコバルト系複合酸化物粉体を例にあげて説明すると、リチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物、並びに本発明の添加剤を液体媒体中に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体を、酸素含有ガス雰囲気中で焼成して製造することができる。
以下に、本発明の好適態様であるリチウムニッケルマンガンコバルト系複合酸化物粉体
の製造方法を例にあげて、本発明で用いるリチウム遷移金属系化合物粉体の製造方法について詳細に説明する。
〈スラリー調製工程〉
本発明で用いる、リチウム遷移金属系化合物粉体を製造するに当たり、スラリーの
調製に用いる原料化合物のうち、リチウム化合物としては、LiCO、LiNO、LiNO、LiOH、LiOH・HO、LiH、LiF、LiCl、LiBr、LiI、CHOOLi、LiO、LiSO、ジカルボン酸Li、クエン酸Li、脂肪酸Li、アルキルリチウム等が挙げられる。これらリチウム化合物の中で好ましいのは、焼成処理の際にSO、NO等の有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリチウム化合物であり、また、焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に分解ガスを発生するなどして空隙を形成しやすい化合物であり、これらの点を勘案すると、LiCO、LiOH、LiOH・HOが好ましく、特にLiCOが好ましい。これらのリチウム化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、ニッケル化合物としては、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際にSO、NO等の有害物質を発生させない点で、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HOのようなニッケル化合物が好ましい。また、更に工業原料として安価に入手できる観点、及び反応性が高い、という観点からNi(OH)、NiO、NiOOH、NiCO、さらに焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはNi(OH)、NiOOH、NiCOである。これらのニッケル化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、マンガン化合物としてはMn2O、MnO、Mn等のマンガン酸化物、MnCO、Mn(NO、MnSO、酢酸マンガン、ジカルボン酸マンガン、クエン酸マンガン、脂肪酸マンガン等のマンガン塩、オキシ水酸化物、塩化マンガン等のハロゲン化物等が挙げられる。これらのマンガン化合物の中でも、MnO、Mn、Mn、MnCOは、焼成処理の際にSO、NO等のガスを発生せず、更に工業原料として安価に入手できるため好ましい。これらのマンガン化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、コバルト化合物としては、Co(OH)、CoOOH、CoO、Co、Co、Co(OCOCH・4HO、CoCl、Co(NO・6HO、Co(SO4)・7HO、CoCO等が挙げられる。中でも、焼成工程の際にSO、NO等の有害物質を発生させない点で、Co(OH)、CoOOH、CoO、Co、Co、CoCOが好ましく、更に好ましくは、工業的に安価に入手できる点及び反応性が高い点でCo(OH)、CoOOHである。加えて焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはCo(OH)、CoOOH、CoCOである。これらのコバルト化合物は1種を単独で使用してもよく、2種以上を併用してもよい。
また、上記のLi、Ni、Mn、Co原料化合物以外にも他元素置換を行って前述の異元素を導入したり、後述する噴霧乾燥にて形成される二次粒子内の空隙を効率よく形成させたりすることを目的とした化合物群を使用することが可能である。なお、ここで使用する、二次粒子の空隙を効率よく形成させることを目的として使用する化合物の添加段階は
、その性質に応じて、原料混合前又は混合後の何れかを選択することが可能である。特に、混合工程によって機械的剪断応力が加わるなどして分解しやすい化合物は混合工程後に添加することが好ましい。本発明の添加剤としては、前述の通りである。
原料の混合方法は特に限定されるものではなく、湿式でも乾式でもよい。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。原料化合物を水、アルコール等の液体媒体中で混合する湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。
混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていればよく、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から6時間程度である。
なお、原料の混合段階においてはそれと並行して原料の粉砕が為されていることが好ましい。粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒子径(メジアン径)として通常0.6μm以下、好ましくは0.55μm以下、さらに好ましくは0.52μm以下、最も好ましくは0.5μm以下とする。粉砕後の原料粒子の平均粒子径が大きすぎると、焼成工程における反応性が低下するのに加え、組成が均一化し難くなる。ただし、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、平均粒子径が通常0.01μm以上、好ましくは0.02μm以上、さらに好ましくは0.05μm以上となるように粉砕すればよい。このような粉砕程度を実現するための手段としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノーミル等を挙げることができる。
なお、スラリー中の粉砕粒子のメジアン径は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.24を設定し、粒子径基準を体積基準に設定して測定されたものである。測定の際に用いる分散媒としては、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
〈噴霧乾燥工程〉
湿式混合後は、次いで通常乾燥工程に供される。乾燥方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、乾燥粒子を効率よく製造できる等の観点から噴霧乾燥が好ましい。
(噴霧乾燥粉体)
本発明で用いるリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の製造方法においては、原料化合物と本発明の添加剤とを湿式粉砕して得られたスラリーを噴霧乾燥することにより、一次粒子が凝集して二次粒子を形成してなる粉体を得る。一次粒子が凝集して二次粒子を形成してなる噴霧乾燥粉体の形状的特徴の確認方法としては、例えば、SEM観察、断面SEM観察が挙げられる。
本発明で用いるリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の焼成前駆体でもある噴霧乾燥により得られる粉体のメジアン径(ここでは超音波分散をかけずに測定した値)は通常25μm以下、より好ましくは20μm以下、更に好ましくは18μm以下、最も好ましくは16μm以下となるようにする。ただし、あまりに小さな粒径は得にくい傾向にあるので、通常は3μm以上、好ましくは4μm以上、より好ましくは5μm以上である。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。
即ち、例えば、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合
物と本発明の添加剤とを液体媒体中に分散させたスラリーを噴霧乾燥後、得られた粉体を焼成してリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するに当たり、噴霧乾燥時のスラリー粘度をV(cP)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、スラリー粘度Vが、50cP≦V≦7000cPであって、かつ、気液比G/Sが、500≦G/S≦10000となる条件で噴霧乾燥を行う。
スラリー粘度V(cP)が低すぎると一次粒子が凝集して二次粒子を形成してなる粉体を得にくくなる虞があり、高過ぎると供給ポンプが故障したり、ノズルが閉塞する虞がある。従って、スラリー粘度V(cP)は、下限値として通常50cP以上、好ましくは100cP以上、更に好ましくは300cP以上、最も好ましくは500cPであり、上限値としては通常7000cp以下、好ましくは6500cp以下、更に好ましくは5500cp以下、最も好ましくは5000cp以下である。
また、気液比G/Sが上記下限を下回ると二次粒子サイズが粗大化したり、乾燥性が低下しやすくなるなどして、上限を超えると生産性が低下する虞がある。従って、気液比G/Sは、下限値として通常500以上、好ましくは800以上、更に好ましくは1000以上、最も好ましくは1500以上であり、上限値としては通常10000以下、好ましくは9000以下、更に好ましくは8000以下、最も好ましくは7500以下である。
スラリー供給量Sやガス供給量Gは、噴霧乾燥に供するスラリーの粘度や用いる噴霧乾燥装置の仕様等によって適宜設定される。
ここで、前述のスラリー粘度V(cP)を満たし、かつ用いる噴霧乾燥装置の仕様に適したスラリー供給量とガス供給量を制御して、前述の気液比G/Sを満たす範囲で噴霧乾燥を行えばよく、その他の条件については、用いる装置の種類等に応じて適宜設定されるが、更に次のような条件を選択することが好ましい。
即ち、スラリーの噴霧乾燥は、通常、50℃以上、好ましくは70℃以上、更に好ましくは120℃以上、最も好ましくは140℃以上で、通常300℃以下、好ましくは250℃以下、更に好ましくは200℃以下、最も好ましくは180℃以下の温度で行うことが好ましい。この温度が高すぎると得られた造粒粒子が中空構造の多いものとなる可能性があり、粉体の充填密度が低下する虞がある。一方、低すぎると粉体出口部分での水分結露による粉体固着・閉塞等の問題が生じる可能性がある。
<焼成工程>
このようにして得られた焼成前駆体は、次いで焼成処理される。
ここで、「焼成前駆体」とは、噴霧乾燥粉体を処理して得られる焼成前のリチウムニッケルマンガンコバルト系複合酸化物等のリチウム遷移金属系化合物の前駆体を意味する。例えば、前述の焼成時に分解ガスを発生又は昇華して、二次粒子内に空隙を形成させる化合物を、上述の噴霧乾燥粉体に含有させて焼成前駆体としてもよい。
この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、傾向として、焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。逆に低すぎると異相が混在し、また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎる。焼成温度としては、通常1000℃以上、好ましくは1010℃以上、より好ましくは1025℃以上、最も好ましくは1050℃以上であり、通常1250℃以下、好ましくは1250℃以下、更に好ましくは1200℃以下、最も好ましくは1175℃以下である。
焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成工程は、通常、昇温・最高温度保持・降温の三部分に分けられる。二番目
の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程又は、一次粒子或いはさらに微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回又はそれ以上繰り返してもよい。
焼成を二段階で行う場合、一段目はLi原料が分解し始める温度以上、融解する温度以下で保持することが好ましく、たとえば炭酸リチウムを用いる場合には一段目の保持温度は400℃以上が好ましく、より好ましくは450℃以上、さらに好ましくは500℃以上、最も好ましくは550℃以上が好ましく、通常950℃以下、より好ましくは900℃以下、さらに好ましくは880℃以下、最も好ましくは850℃以下である。
最高温度保持工程に至る昇温工程は通常1℃/分以上15℃/分以下の昇温速度で炉内を昇温させる。この昇温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。昇温速度は、好ましくは2℃/分以上、より好ましくは3℃/分以上で、好ましくは20℃/分以下、より好ましくは18℃/分以下である。
最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範囲であれば15分以上、好ましくは30分以上、更に好ましくは45分以上、最も好ましくは1時間以上で、24時間以下、好ましくは12時間以下、更に好ましくは9時間以下、最も好ましくは6時間以下である。焼成時間が短すぎると結晶性のよいリチウム遷移金属系化合物粉体が得られ難くなり、長すぎるのは実用的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難になったりするので、不利である。
降温工程では、通常0.1℃/分以上15℃/分以下の降温速度で炉内を降温させる。降温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても目的物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。降温速度は、好ましくは1℃/分以上、より好ましくは3℃/分以上で、好ましくは20℃/分以下、より好ましくは15℃/分以下である。
焼成時の雰囲気は、得ようとするリチウム遷移金属系化合物粉体の組成によって適切な酸素分圧領域があるため、それを満足するための適切な種々ガス雰囲気が用いられる。ガス雰囲気としては、例えば、酸素、空気、窒素、アルゴン、水素、二酸化炭素、及びそれらの混合ガス等を挙げることができる。本発明において具体的に実施しているリチウムニッケルマンガンコバルト系複合酸化物粉体については、空気等の酸素含有ガス雰囲気を用いることができる。通常は酸素濃度が1体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上で、100体積%以下、好ましくは50体積%以下、より好ましくは25体積%以下の雰囲気とする。
このような製造方法において、本発明で用いるリチウム遷移金属系化合物粉体、例えば前記特定の組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するには、製造条件を一定とした場合には、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合物と、本発明の添加剤とを液体媒体中に分散させたスラリーを調製する際、各化合物の混合比を調整することで、目的とするLi/Ni/Mn/Coのモル比を制御することができる。
このようにして得られたリチウムニッケルマンガンコバルト系複合酸化物粉体等の本発明のリチウム遷移金属系化合物粉体によれば、容量が高く、低温出力特性、保存特性に優れた、性能バランスのよいリチウム二次電池用正極材料が提供される。
[リチウム遷移金属系化合物粉体の製造(実施例1〜3及び比較例1)]
(実施例の正極)
LiCO、NiCO、Mn、CoOOH、HBO、WO、LiSOを、Li:Ni:Mn:Co:B:W:S=1.12:0.45:0.45:0.10:0.0025:0.010:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.50μmに粉砕した。
次に、このスラリー(固形分含有量46重量%、粘度約6000cP)を、四流体ノズル型スプレードライヤー(藤崎電機大川原化工機(株)製:MPD−050)を用いて噴霧乾燥した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末を空気雰囲気下、1150℃で焼成した後、解砕して、組成がLi1.15(Ni0.45Mn0.45Co0.10)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物を得た。メジアン径d50は13.9μm、タップ密度は2.0g/cc、BET比表面積は0.5m/gであった。本検討に用いた正極活物質のpHは11.2であった(以下適宜「実施例正極」という)。
(比較例の正極)
なお、上記で作製した正極活物質に対する比較例として、共沈法によって作製されたNi:Mn:Co=1/3:1/3:1/3である正極活物質を用いた。この正極については、メジアン径d50は13.5μm、嵩密度は2.28g/cc、BET比表面積は0.4m/g、pHは10.8であった(以下適宜、「比較例正極」という)。
[初期容量評価]
非水系電解液電池を、ガラス板で挟んで加圧した状態で、25℃において、0.05Cに相当する電流で6時間定電流(以下適宜、「CC」という)充電した後、0.2Cに相当する電流で3VまでCC放電を行った。次に、0.2Cに相当する電流で4.1Vまで
CC充電し、さらにカット電流値を0.7mAに設定した定電圧(以下適宜、「CV」という)充電をした後、0.2CのCC放電で3Vまで放電した。最後に、0.2Cに相当する電流で4.35VまでCC充電−CV充電(0.7mAカット)した後、0.2Cで3VまでCC放電する充放電サイクルを2回繰り返し、電池を安定させた。以上の操作のうち、最後の放電において電池が示した容量をもって電池の初期容量とした。
ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。
[高温保存評価試験]
初期容量評価を行った後の非水系電解液電池を、4.35VまでCC充電−CV充電を行った後、85℃、3日間の条件で高温保存を行った。電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、保存前後の体積変化から発生したガス量を求めた。また、高温保存を経た後の電池を0.2Cに相当する電流で3.0VまでCC放電し、電池の残存容量とした。最後に、0.2Cに相当する電流で4.35VまでCC充電−CV充電(0.7mAカット)した後、0.2Cで3VまでCC放電する充放電サイクルを2回繰り返し、最後の放電において電池が示した容量をもって電池の回復容量とした。上記で得られた残存容量および回復容量の、初期容量に対する割合いをそれぞれ残存容量率および回復容量率とした。
<非水系電解液の調製>
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネートと(EMC)の混合物(体積比1:1:1)に乾燥したLiPFを1.1mol/Lの割合となるように溶解して基本電解液を調製した。この
基本電解液に、表1に記載の割合で化合物を添加剤として混合し、実施例と比較例に用いる電解液とした。
<正極の作製>
正極活物質としての合成した正極活物質を95質量%と、導電材としてアセチレンブラック3質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)2質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ14μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極とした。
<負極の作製>
負極活物質としてグラファイト粉末100質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。
<二次電池の作製>
上記の正極、負極、及びポリエチレン製のセパレーターを、セパレーター、負極、セパレーター、正極、セパレーターの順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、非水系電解液を袋内に注入し、真空封止を行ない、シート状の非水系電解液電池を作製した。
この非水系電解液電池を用いて、高温保存評価試験を実施した。評価結果を表1に示す。なお、ガス発生量のデータは、同一の正極で、電解液の添加剤の有無によるガス発生量の違いを100分率で示した。
Figure 2013206843
Figure 2013206843
表1より、実施例1および2では、特定の電解液と実施例正極を組み合わせることにより、比較例に対して高温保存後の電池容量の優位性を保ちながらも、ガス発生量を特異的に低減することが可能であることが分かる。
本発明の非水系電解液によれば、非水系電解液電池の高温保存時における容量劣化とガス発生を改善できる。そのため、本発明の非水系電解液及びこれを用いた非水系電解液電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。

Claims (6)

  1. 正極活物質を含有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極と、リチウム塩とこれを溶解する非水溶媒を含有してなる非水系電解液とを備え
    た非水系電解液電池であって、前記正極活物質が、pH≧10.9であり、リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金化合物粉体を少なくとも1種含有し、前記非水系電解液が分子内に下記一般式(1)で示される部分構造及び/またはイソシアネート基を有する化合物を含むことを特徴とする、非水系電解液電池。
    Figure 2013206843
    ここで、Rは任意の元素若しくは基を表す。
  2. 正極活物質を含有する正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極と、リチウム塩とこれを溶解する非水溶媒を含有してなる非水系電解液とを備えた非水系電解液電池であって、前記正極活物質が、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素(以下、「本発明の添加元素1」と称す)を有する化合物(以下、「本発明の添加剤1」と称す)を含有するリチウムイオンの挿入・脱離が可能な機能を有する、リチウム遷移金化合物粉体を少なくとも一種含有し、前記非水系電解液が分子内に下記一般式(1)で示される部分構造及び/またはイソシアネート基を有する化合物を含むことを特徴とする、非水系電解液電池。
    Figure 2013206843
    ここで、Rは任意の元素若しくは基を表す。
  3. 前記化合物の構造がウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有することを特徴とする、請求項1または請求項2に記載の非水系電解液電池。
  4. 前記化合物の数平均分子量が300以上5000以下であることを特徴とする、請求項1〜3のいずれか1項に記載の非水系電解液電池。
  5. 該非水系電解液が、さらに不飽和環状カーボネート、フッ素化環状カーボネート及び含窒素化合物からなる群より選ばれる少なくとも1種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の非水系電解液電池。
  6. 正極活物質の組成が、下記組成式(2)で示されることを特徴とする請求項1〜5のいずれか1項に記載の非水系電解液電池。
    Li1+xMO ・・・(2)
    (ただし、上記組成式(2)中、xは0以上、0.5以下、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は0.
    1以上、5以下、Co/Mモル比は0以上、0.35以下、M中のLiモル比は0.001以上、0.2以下である。)
JP2012077464A 2012-03-29 2012-03-29 非水系電解液電池 Pending JP2013206843A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012077464A JP2013206843A (ja) 2012-03-29 2012-03-29 非水系電解液電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077464A JP2013206843A (ja) 2012-03-29 2012-03-29 非水系電解液電池

Publications (1)

Publication Number Publication Date
JP2013206843A true JP2013206843A (ja) 2013-10-07

Family

ID=49525696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077464A Pending JP2013206843A (ja) 2012-03-29 2012-03-29 非水系電解液電池

Country Status (1)

Country Link
JP (1) JP2013206843A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027891A1 (ja) * 2014-08-22 2016-02-25 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
WO2017098679A1 (ja) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2019021425A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
CN112510172A (zh) * 2019-09-13 2021-03-16 株式会社东芝 电极、二次电池、电池包及车辆
CN113113668A (zh) * 2021-04-09 2021-07-13 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027891A1 (ja) * 2014-08-22 2016-02-25 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
US10615455B2 (en) 2014-08-22 2020-04-07 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using the same
US11296357B2 (en) 2014-08-22 2022-04-05 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using the same
WO2017098679A1 (ja) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JPWO2017098679A1 (ja) * 2015-12-11 2018-09-27 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US10553862B2 (en) 2015-12-11 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for secondary battery and secondary battery
JP2019021425A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
CN112510172A (zh) * 2019-09-13 2021-03-16 株式会社东芝 电极、二次电池、电池包及车辆
CN113113668A (zh) * 2021-04-09 2021-07-13 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Similar Documents

Publication Publication Date Title
JP6167470B2 (ja) 非水系電解液電池
JP6028785B2 (ja) 非水系電解液電池
JP2018142556A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5962028B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP6079272B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5655653B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
WO2012053485A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6035776B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP6123913B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6031868B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2015056312A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6103134B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP5903931B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2013206843A (ja) 非水系電解液電池
WO2014136648A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6131757B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6693200B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6236907B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6064717B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6500541B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6191395B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6167729B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5760665B2 (ja) 非水系電解液及び非水系電解液電池
JP6311465B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6221632B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池