WO2006057125A1 - 透明板状体の欠陥検査方法および装置 - Google Patents

透明板状体の欠陥検査方法および装置 Download PDF

Info

Publication number
WO2006057125A1
WO2006057125A1 PCT/JP2005/019408 JP2005019408W WO2006057125A1 WO 2006057125 A1 WO2006057125 A1 WO 2006057125A1 JP 2005019408 W JP2005019408 W JP 2005019408W WO 2006057125 A1 WO2006057125 A1 WO 2006057125A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent plate
defect
image
images
main surface
Prior art date
Application number
PCT/JP2005/019408
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Sonda
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2006547681A priority Critical patent/JP4793266B2/ja
Priority to EP05805124A priority patent/EP1816466B1/en
Publication of WO2006057125A1 publication Critical patent/WO2006057125A1/ja
Priority to US11/752,577 priority patent/US7420671B2/en
Priority to US12/174,190 priority patent/US7796248B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8908Strip illuminator, e.g. light tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8967Discriminating defects on opposite sides or at different depths of sheet or rod

Definitions

  • the present invention relates to a transparent plate-like defect inspection method and apparatus, and in particular, various displays (LCD (Liquid Crystal Display), PDP (Plasma Display Panel), EL (Electrolumine scence), FED (Field Emission Display) or
  • LCD Liquid Crystal Display
  • PDP Plasma Display Panel
  • EL Electrode scence
  • FED Field Emission Display
  • the present invention relates to a defect inspection method and apparatus for glass substrates for liquid crystal projection televisions, etc., glass substrates for automobiles and other vehicles, and glass sheets for construction.
  • the defect inspection method does not deteriorate the inspection performance depending on the size of the transparent plate, can be applied to transparent plates having various thicknesses, There is also an industrial application requirement that it can be applied to the continuous molding process (online) of transparent plates represented by the glass float method.
  • the camera is placed on the main surface and the back side of the transparent plate. If it is arranged, only defects can be detected. Further, by collating the detection signals of the cameras arranged on the main surface side and the back surface side of the transparent plate-like body, the position of the defect in the thickness direction of the transparent plate-like body can be determined to some extent.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-201313
  • Patent Document 2 Japanese Patent Laid-Open No. 10-339705
  • Patent Document 3 Japanese Patent Laid-Open No. 11-264803
  • the conventional edge light system has several problems.
  • the light incident on the transparent plate from the end face is absorbed by the transparent plate itself, and therefore is supplied to the defect at the center (the center in the plane) and the end of the transparent plate.
  • the amount of light is different.
  • the size of the transparent plate, or the difference in the amount of light is not a big problem, but as the size of the transparent plate increases, the difference in the amount of supplied light becomes more prominent and the in-plane distribution of the detection performance increases. wear. Since this situation becomes worse as the thickness of the transparent plate increases, it can be said that the edge light method has a narrower applicable range of thickness than other methods.
  • one object of the present invention is to inspect as the transparent plate becomes larger.
  • the object is to eliminate the problem of the prior art that the performance decreases.
  • Another object of the present invention is to specify the position of the defect in the thickness direction of the transparent plate more accurately than in the prior art.
  • the present invention provides a defect inspection method for bubbles, scratches, foreign matter, etc. present in a transparent plate-like body, the wire disposed on the main surface side of the transparent plate-like body
  • An image of the main surface of the transparent plate-like body (hereinafter referred to as the first image) using a first reflective bright-field optical system having a cylindrical light source and a camera; Imaging a back surface image of the transparent plate (hereinafter referred to as a second image) using a linear light source and a second reflective bright field optical system having a camera disposed on the back surface side; Searching for defect candidates for each of the first and second images, and whether or not there is a defect candidate at a position corresponding to each other in the first and second images based on the result of the search.
  • a body defect inspection method is provided.
  • the present invention also relates to a defect inspection method for bubbles, scratches, foreign matters, etc. present in a transparent plate-like body, comprising a linear light source and a camera arranged on the main surface side of the transparent plate-like body.
  • a step of taking an image of a main surface of the transparent plate-like body (hereinafter referred to as a first image) using a first reflective bright-field optical system, and a back surface side of the transparent plate-like body A step of taking an image of the back surface of the transparent plate-like body (hereinafter referred to as a second image) using a second reflective bright field optical system having a linear light source and a camera; Searching for defect candidates for each of the two images, determining whether the image is a real image or a virtual image based on the contrast of the defect candidate image obtained by the search, and Based on the appearance pattern of the virtual image, the defect candidate is the transparent plate Major surfaces, provides a defect inspection method of the transparent plate-shaped object that, comprising the steps of: identifying whether
  • the present invention is a defect inspection method for bubbles, scratches, foreign matters, etc. present in a transparent plate, An image of the main surface of the transparent plate (hereinafter referred to as the first image) using a first reflective bright field optical system having a linear light source and camera disposed on the main surface of the transparent plate. ) And a second reflective bright-field optical system having a linear light source and a camera disposed on the back surface side of the transparent plate-like body.
  • a defect inspection method for a transparent plate-like body is provided.
  • the thickness of the transparent plate-like body is used as known information, and the distance between two images appearing on the same camera with respect to the same defect is determined.
  • the method further includes a step of obtaining the depth of the defect in the thickness direction of the transparent plate-like body.
  • the present invention is a defect inspection apparatus for bubbles, scratches, foreign matter, etc. present in a transparent plate-like body, comprising a linear light source and a camera arranged on the main surface side of the transparent plate-like body.
  • a first reflective bright-field optical system for capturing an image of the main surface of the transparent plate-like body hereinafter referred to as a first image
  • a back side of the transparent plate-like body hereinafter referred to as a first image
  • a second reflective bright field optical system for taking an image of the back surface of the transparent plate (hereinafter referred to as a second image), and the first and second A defect candidate is searched for each of the images, and based on the result of the search, it is confirmed whether there is a defect candidate at a position corresponding to each of the first and second images, and the first and second images are checked.
  • One Chikaratsu only person provides a defect inspection apparatus for a transparent plate-shaped object, characterized by chromatic and computer to regard the defect candidate as a pseudo defect.
  • the present invention is a defect inspection apparatus for bubbles, scratches, foreign matter, etc. present in a transparent plate-like body, comprising a linear light source and a camera arranged on the main surface side of the transparent plate-like body.
  • a first reflective bright-field optical system for capturing an image of the main surface of the transparent plate-like body hereinafter referred to as a first image
  • a back side of the transparent plate-like body hereinafter referred to as a first image
  • a linear light source and a camera A second reflective bright field optical system for capturing an image of the back surface of the transparent plate (hereinafter referred to as a second image), and a defect candidate for each of the first and second images; Based on the contrast of the defect candidate image obtained by this search, it is determined whether the image is a real image or a virtual image. Based on the appearance pattern of the real image or the virtual image, the defect candidate is the main image of the transparent plate-like body.
  • a defect inspection apparatus for a transparent plate-like body characterized in that it comprises a computer for identifying whether it is on the front surface, inside or back surface.
  • the present invention is also a defect inspection apparatus for bubbles, scratches, foreign matters, etc. present in a transparent plate-like body, comprising a linear light source and a camera arranged on the main surface side of the transparent plate-like body.
  • a first reflective bright-field optical system for capturing an image of the main surface of the transparent plate-like body hereinafter referred to as a first image
  • a back side of the transparent plate-like body hereinafter referred to as a first image
  • a second reflective bright field optical system for taking an image of the back surface of the transparent plate (hereinafter referred to as a second image), and the first and second A defect candidate is searched for each of the images, and a distance between two images appearing in the same camera with respect to the same defect candidate is obtained, and the defect candidate is determined based on the distance between the two images.
  • a computer comprising a step for identifying whether the main surface is inside, inside or back.
  • the computer uses the thickness of the transparent plate-like body as known information, and the thickness of the transparent plate-like body based on the distance between two images appearing on the same camera with respect to the same defect. It is preferable to further have a function of obtaining the depth of the defect in the direction.
  • the present invention uses the defect candidate images appearing on the main surface side and the back surface side of the transparent plate-like body, thereby allowing defects (bubbles, scratches, foreign objects, etc.) and pseudo defects (dust). And on-line defect inspection.
  • the present invention can accurately identify the position of the defect in the thickness direction of the transparent plate, the inspection performance does not deteriorate depending on the size of the transparent plate, and the edge light method.
  • effects such as a wide range of thickness of the transparent plate that can be applied are obtained.
  • the present invention can also be applied to plate glass continuous forming processes such as the float method.
  • FIG. 1 is a diagram illustrating a basic configuration of the present invention.
  • FIG. 2 is a diagram for explaining how the upper and lower line sensor cameras obtain a bright field.
  • FIG. 3 is a diagram for explaining how the upper line sensor camera obtains an image of a defect on the main surface of a transparent plate.
  • FIG. 4 is a diagram for explaining how the lower line sensor camera obtains an image of a defect on the main surface of the transparent plate.
  • FIG. 5 is a diagram for explaining how the upper line sensor camera obtains an image of a defect inside a transparent plate.
  • FIG. 6 is a diagram for explaining how the lower line sensor camera obtains an image of a defect inside the transparent plate.
  • FIG. 7 is a diagram illustrating how the upper line sensor camera obtains an image of a defect on the back surface of a transparent plate.
  • FIG. 8 is a diagram illustrating how the lower line sensor camera obtains an image of a defect on the back surface of a transparent plate.
  • FIG. 9 is a diagram for explaining how an upper line sensor camera obtains an image of a pseudo defect on the main surface of a transparent plate-like body.
  • FIG. 10 is a diagram for explaining how the lower line sensor camera obtains an image of a pseudo defect on the main surface of a transparent plate-like body.
  • FIG. 11 is a diagram for explaining how an upper line sensor camera obtains an image of a pseudo defect on the back surface of a transparent plate.
  • FIG. 12 is a diagram for explaining how the lower line sensor camera obtains an image of a pseudo defect on the back surface of the transparent plate.
  • FIG. 13 is a diagram illustrating the relationship between the type of defect and the like and the image captured by each camera.
  • FIG. 14 is a diagram for explaining how the lower line sensor camera obtains an image of internal defects near the back surface of the transparent plate.
  • FIG. 15 is a diagram showing a result of an attempt to distinguish a defect from a pseudo defect according to the present invention (Example).
  • FIG. 16 Results of an attempt to distinguish between defects on the main surface and internal defects near the main surface according to the present invention. (Example).
  • FIG. 17 is a view showing the results of measuring the depth of defects according to the present invention (Example).
  • FIG. 1 is an explanatory diagram showing the basic configuration of the present invention.
  • the linear light source 2 and the line sensor camera 3 are installed above the transparent plate 1 on the transport roller 6, and the linear light source 4 and the line sensor are located below the transparent plate 1.
  • Camera 5 is provided.
  • the transparent plate 1 is conveyed at a constant speed in the direction of the arrow by the conveyance port roller 6, and at the same time, the transparent plate is continuously imaged by the line sensor camera 3 and the line sensor camera 5.
  • the computer 7 performs arithmetic processing on the images of both line sensor cameras at the same time, and performs defect inspection.
  • Both the linear light source 2 and the line sensor force Mela 3 light receiving element are connected in a direction perpendicular to the paper surface (the width direction of the transparent plate 1).
  • a fluorescent lamp is installed in a light source box having a slit, a halogen lamp or a metal halide lamp with a single optical fiber in a light guide having a linear light emitting portion.
  • Various light sources such as those that supply the light can be employed.
  • the linear light source 2 is positioned in the regular reflection direction of the line sensor camera 3 with respect to the transparent plate 1, and similarly the linear light source 4 is line sensor camera with respect to the transparent plate 1. Located in the 5 regular reflection direction. With this arrangement, a reflection image of the linear light source 2 is reflected on the line sensor camera 3, and a reflection image of the linear light source 4 is reflected on the line sensor camera 5, each having a bright field.
  • Figure 2 (a) shows how the bright field is obtained in the line sensor camera 3.
  • the light emitted from the linear light source 2 reaches the line sensor camera 3 mainly through two light beam paths.
  • One is the light path 8 through the reflection by the main surface of the transparent plate 1 (the upper surface of the transparent plate 1), and the other is the back of the transparent plate 1 (under the transparent plate 1).
  • This is the ray path 9 through the reflection by the side surface 8.
  • Line sensor camera 3 has a bright field where the images of these two beam paths 8, 9 overlap.
  • FIG. 2 (b) shows a state where a bright field is obtained in the line sensor camera 5.
  • the light emitted from the linear light source 4 reaches the line sensor camera 5 mainly through two light beam paths.
  • One of the ray paths is a ray path 10 through reflection by the back surface of the transparent plate 1, and the other is a ray path 11 through reflection by the main surface of the transparent plate 1.
  • the line sensor camera 5 has a bright field where the images of these two beam paths 10 and 11 overlap.
  • FIGS. 3 (a) and 3 (b) and FIG. 4 show how the line sensor cameras 3 and 5 obtain an image of the defect 12 on the main surface of the transparent plate 1.
  • Fig. 3 (a) and 3 (b) and FIG. 4 show how the line sensor cameras 3 and 5 obtain an image of the defect 12 on the main surface of the transparent plate 1.
  • the line sensor camera 3 obtains a real image of the defect 12 by overlapping the images of these two light paths 8 and 9.
  • FIG. 3 (b) shows a situation in which the transport of the transparent plate 1 further proceeds and the defect 12 intersects only with the light beam path 9.
  • the defect 12 causes the optical behavior only to the light traveling in the light path 9.
  • the line sensor camera 3 obtains a virtual image of the defect 12 by overlapping the images of the two light beam paths 8 and 9.
  • Figure 4 shows the situation where defect 12 intersects only ray path 11.
  • the defect 12 causes an optical behavior only to the light traveling in the light path 11.
  • the line sensor camera 5 obtains a virtual image of the defect 12 by superimposing the images of these two beam paths 10 and 11.
  • FIGS. 5A and 5B and FIGS. 6A and 6B show how the line sensor cameras 3 and 5 obtain an image of the defect 13 inside the transparent plate 1.
  • Figure 5 (a) shows the situation where defect 13 intersects only ray path 9. At this time, the defect 13 causes an optical behavior only to the light traveling in the light path 9.
  • the line sensor camera 3 obtains a virtual image of the defect 13 by superimposing the images of these two beam paths 8 and 9.
  • FIG. 5 (b) shows a situation where the transparent plate 1 is further conveyed and the defect 13 intersects only the ray path 9. At this time, the defect 13 causes an optical behavior only to the light traveling in the light path 9.
  • the line sensor camera 3 obtains a virtual image of the defect 13 by overlapping the images of the two light paths 8 and 9.
  • Figure 6 (a) shows the situation where the defect 13 intersects only the ray path 11. At this time, the defect 13 causes an optical behavior only to the light traveling in the light path 11.
  • the line sensor camera 5 obtains a virtual image of the defect 13 by overlapping the images of the two light beam paths 10 and 11.
  • Fig. 6 (b) shows the situation where the transparent plate 1 is further conveyed and the defect 13 intersects only the light path 11. At this time, the defect 13 causes an optical behavior only to the light traveling in the light path 11.
  • the line sensor camera 5 obtains a virtual image of the defect 13 by overlapping the images of the two light beam paths 10 and 11.
  • FIG. 7 and FIGS. 8A and 8B show how the line sensor cameras 3 and 5 obtain an image of the defect 14 on the back surface of the transparent plate 1.
  • Figure 7 shows that defect 14 intersects only ray path 9. Shows the situation.
  • the defect 14 causes an optical behavior only to the light traveling in the light path 9.
  • the line sensor camera 3 obtains a virtual image of the defect 14 by overlapping the images of these two light beam paths 8 and 9.
  • Figure 8 (a) shows the situation where the defect 14 intersects only the ray path 11.
  • the defect 14 causes an optical behavior only to the light traveling in the light path 11.
  • the line sensor camera 3 obtains a virtual image of the defect 14 by overlapping the images of the two light beam paths 10 and 11.
  • FIG. 8B shows a situation in which the transport of the transparent plate 1 further proceeds and the defect 14 intersects the light path 10 and the light path 11 at the same time.
  • the defect 14 causes an optical behavior in the light traveling in the light path 10 and the light path 11.
  • the line sensor camera 5 obtains a real image of the defect 14 by superimposing the images of the two optical beam paths 10 and 11.
  • FIGS. 9A and 9B and FIG. 10 show how the line sensor cameras 3 and 5 obtain an image of the pseudo defect 15 on the main surface of the transparent plate 1.
  • Fig. 9 (a) shows a situation in which the pseudo defect 15 intersects the ray path 8 and the ray path 9 simultaneously.
  • the pseudo defect 15 causes an optical behavior in the light traveling in the light path 8 and the light path 9.
  • the line sensor camera 3 obtains a real image of the pseudo defect 15 by superimposing the images of the two light beam paths 8 and 9.
  • FIG. 9 (b) shows a situation where the transparent plate 1 is further conveyed and the pseudo defect 15 intersects only the ray path 9.
  • the pseudo defect 15 causes an optical behavior only to the light traveling in the light path 9.
  • the line sensor camera 3 obtains a virtual image of the pseudo defect 15 by overlapping the images of these two light beam paths 8 and 9.
  • FIG. 10 shows a situation where the pseudo defect 15 is located at the reflection point of the light path 11. However, since the pseudo defect 15 is outside the transparent plate-like body 1, it does not cause an optical behavior to the light traveling in the light path 11. As a result, the line sensor camera 5 does not acquire an image of the pseudo defect 15.
  • FIG. 11 and FIGS. 12A and 12B show how the line sensor cameras 3 and 5 obtain an image of the pseudo defect 16 on the back surface of the transparent plate 1.
  • Fig. 11 shows the situation where the pseudo defect 16 is located at the reflection point of the ray path 9.
  • the pseudo defect 16 since the pseudo defect 16 is outside the transparent plate-like body 1, it does not cause an optical behavior to the light traveling in the light path 9. As a result, the line sensor camera 3 does not acquire an image of the pseudo defect 16.
  • FIG. 12 (a) shows a situation in which the pseudo defect 16 intersects only the ray path 11.
  • the pseudo defect 16 causes an optical behavior only to the light traveling in the light path 11.
  • the line sensor camera 3 obtains a virtual image of the pseudo defect 16 by superimposing the images of the two light beam paths 10 and 11.
  • FIG. 12 (b) shows a situation where the transparent plate 1 is further conveyed and the pseudo defect 16 intersects the light path 10 and the light path 11 at the same time.
  • the pseudo defect 16 causes an optical behavior in the light traveling in the light path 10 and the light path 11.
  • the line sensor camera 5 obtains a real image of the pseudo defect 16 by superimposing the images of the two light beam paths 10 and 11.
  • FIGS. 13A to 13E are diagrams for explaining the relationship between the type of defect or the like and the image captured by each camera.
  • the pattern of defect candidate images obtained by each line sensor camera differs depending on the type and position of the defect or the like.
  • Table 1 lists the appearance patterns of images obtained by the line sensor camera for defects and pseudo defects. When two images are observed with the same line sensor camera for the same defect, these images are regarded as one set and are hereinafter referred to as “double images”.
  • the upper and lower line sensor cameras each obtain two virtual images, but when the defect is close to the main surface or the back surface, two virtual images May overlap and you may see only one image.
  • the virtual images captured by the upper line sensor camera overlap and appear to be one image. Sometimes I can't see it.
  • the virtual image captured by the lower line sensor camera may overlap, and only one image may appear.
  • the thickness of the transparent plate-like body is obtained using the image of the line sensor camera on which the virtual images do not overlap as a clue. It is possible to correctly specify the position of the defect in the vertical direction. At this time, in the present invention, the contrast of the double image and the distance between the two images constituting the double image are used.
  • the double image captured by the line sensor camera is a combination of a real image and a virtual image when the defect is on the main surface or the back surface.
  • the double image is a combination of virtual images.
  • the contrast of the double image is different, and when it is inside, the contrast is not different. Therefore, by comparing the contrast of the double images, it can be seen whether the defect is inside the transparent plate or on the main surface (or the back surface).
  • FIG. 14 shows a situation where the line sensor camera 5 obtains an image of the internal defect 17 near the back surface.
  • the distance 18 between point 1 7a and 17b is proportional to the depth of the main surface force of transparent plate 1 of defect 17.
  • the transparent plate 1 is conveyed at a constant speed and the scanning speed of the line sensor camera is constant, the distance 18 is observed as the distance between the two images constituting the double image in the image.
  • the step of specifying whether the defect candidate is on the main surface, the inside or the back surface of the transparent plate-like body explain.
  • the distance 18 is the longest when the defect 17 is on the back side. If the maximum distance between the two images forming the double image is known in advance, the relationship between the distance between the two images forming the actual double image and the distance between the two images will cause the defect 17 It can be distinguished whether there is.
  • the double image obtained by the line sensor camera 3 above the transparent plate-like body 1 can be used to distinguish whether the defect is inside or on the main surface.
  • the step of obtaining the depth of the defect in the thickness direction of the transparent plate will be described.
  • the distance 18 is By utilizing the fact that it is proportional to the depth of the defect, the distance between the two images constituting the double image can be converted into the depth of the defect.
  • substrate glass for liquid crystal panels
  • a substrate glass for liquid crystal panels hereinafter referred to as substrate glass
  • substrate glass having a thickness of 0.7 mm as the transparent plate-like body.
  • Fig. 1 we prepared two line sensor cameras and a reflected bright-field optical system with two linear light sources using fluorescent lamps, which were placed above and below the substrate glass.
  • the angle between the optical axis of the line sensor camera and the normal of the substrate glass was 30 degrees.
  • the conveyance speed of the substrate glass by the conveyance roller 6 was 1 OO mmZ second.
  • the upper and lower line sensor cameras were continuously scanned, and images near the defect and the pseudo defect were cut out. Then, the upper and lower line sensor camera images (i.e., defect candidate images) for the same defect or pseudo defect are paired to distinguish the defect from the pseudo defect, to specify the position of the defect thickness direction, and to the defect thickness direction. I tried to measure the depth.
  • FIG. 15 shows the result of examining the detection signals of the upper and lower line sensor cameras after dust, which is a pseudo defect, was previously scattered on the main surface of the substrate glass.
  • A is the upper The detection signal of the in-sensor camera
  • B shows the detection signal of the lower line sensor camera
  • the horizontal axis shows the individual pseudo defects
  • the vertical axis shows the strength of the detection signals of the upper and lower line sensor cameras.
  • the strength of the detection signal is expressed as the signal-to-noise ratio obtained by dividing the detection signal by the noise level.
  • the upper line sensor camera detects individual dust significantly, while the lower line sensor camera does not. Therefore, it was confirmed that the defect can be distinguished from the pseudo defect by this verification.
  • Figure 16 shows the results of an attempt to distinguish the location of internal defects within 10 m (measured in advance) from the main surface and defects on the main surface.
  • A is the surface defect
  • B is the defect within 10 m from the surface
  • the horizontal axis is the intensity of the detection signal of the image that first entered the field of view of the line sensor camera in the double image of the defect.
  • the vertical axis shows the strength of the detection signal of the second image in the field of view of the line sensor camera in the double image of the defect.
  • the strength of the detection signal is represented by the signal-to-noise ratio as in Fig. 15. As is clear from Fig.
  • the intensity of the detection signals of the two images is almost the same even within 10 m from the main surface. Therefore, it was confirmed that the position of the defect in the thickness direction of the transparent plate could be specified by this verification.
  • the broken lines in the figure are ideally straight lines that pass through the origin of the coordinate axes.
  • FIG. 17 shows the results of determining the depth of the principal surface force of the distance force defect of the two images constituting the double image.
  • Figure 17 (a) shows the results with the upper line sensor camera
  • Fig. 17 (b) shows the results with the lower line sensor camera.
  • the horizontal axis is the true value of the depth of the defect measured separately
  • the vertical axis shows the distance between the two images forming the double image captured by the line sensor camera.
  • the depth of the defect is in a relation that can be described by a linear expression that is proportional to the distance between the two images constituting the double image, and is highly correlated.
  • the defect depth can be accurately measured from the distance between the two images forming the double image.
  • the cameras are placed above and below the transparent plate. Because of the arrangement, even if there is a situation where double images overlap in one line sensor camera, the double image is separated in the other line sensor camera. As a result, the sharing of the upper and lower line sensor cameras can be changed according to the depth of the defect, and the depth of the defect can be measured over the entire thickness as shown in FIGS. 17 (a) and 17 (b). This verification confirmed that the depth of defects can be measured with high accuracy.
  • the present invention can distinguish between a defect and a pseudo-defect, and can increase the accuracy of specifying the position of the defect in the thickness direction of the transparent plate-like body. it can. Further, since the present invention does not require the smoothness of the end face of the transparent plate-like body, it can be applied to a continuous forming process such as a plate glass float method, and defect information can be quickly grasped in an upstream process of the process. Therefore, the present invention greatly contributes to the construction of a defect inspection system superior to the conventional one. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2004-339215 filed on November 24, 2004 are hereby disclosed, and the specification of the present invention is disclosed. As it is incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 透明板状体が大きくになるに連れて検査性能が劣化するという従来技術の問題点を解消する。  透明板状体1の主表面側に配設された線状光源2およびカメラ3を有する第1の反射型明視野光学系を用いて透明板状体1の主表面の画像を撮像(以下、第1の画像という)するステップと、同様にして透明板状体1の裏面の画像(以下、第2の画像という)を撮像するステップと、第1および第2の画像のそれぞれについて欠陥候補を探索するステップと、この探索の結果に基づき第1および第2の画像の互いに対応する位置に欠陥候補があるかどうかを確認し、第1および第2の画像の両方から欠陥候補が見つかった場合は、この欠陥候補を欠陥とみなし、第1および第2の画像の片方のみから欠陥候補が見つかった場合は、この欠陥候補を擬似欠陥とみなすステップとを有する。

Description

明 細 書
透明板状体の欠陥検査方法および装置
技術分野
[0001] 本発明は、透明板状体の欠陥検査方法および装置に関し、特に各種ディスプレイ ( LCD (Liquid Crystal Display)、 PDP (Plasma Display Panel)、 EL (Electrolumine scence)、 FED (Field Emission Display)または液晶プロジェクシヨンテレビ等)用の ガラス基板、自動車およびその他の車両等用ガラスの素板、建築用板ガラスの欠陥 検査方法および装置に関する。
背景技術
[0002] 従来より、透明板状体の欠陥検査においては、泡、異物または傷等の欠陥と、透明 板状体の品質に影響しない埃や汚れ等の擬似欠陥とを区別することが求められる。 また、欠陥のある透明板状体の部位 (主表面、内部または裏面の何れか)、および内 部にある場合における欠陥の深さに応じて、要求される品質レベルが異なることがあ る。このため、欠陥を検出するだけではなぐ透明板状体の厚さ方向における欠陥の 位置を特定することも求められる。
[0003] これら検査性能の要求に加えて、欠陥検査方法には、透明板状体のサイズに依存 して検査性能が劣化しないこと、多様な厚さの透明板状体にも適用できること、板ガ ラスのフロート法に代表される透明板状体の連続成形過程 (オンライン)にも適用でき ること、といった産業応用上の要求も課せられる。
[0004] 欠陥と擬似欠陥とを区別する方法としては、特開平 8— 201313号公報に開示され て ヽるように、棒状光源と遮光マスクを組み合わせた透過暗視野光学系を用いる方 法がある。この方法では、欠陥と擬似欠陥の光散乱指向性の違いを利用し、欠陥と 擬似欠陥を区別する。しかし、欠陥の種類によって光散乱指向性が異なり、また擬似 欠陥も多様な光散乱指向性を示すことから、光散乱指向性だけで欠陥と擬似欠陥と を区別することは難しい。また、透過光学系を用いているため、特開平 8— 201313 号公報に開示の方法では透明板状体の厚さ方向における欠陥の位置を特定するこ とが難しい。 [0005] 一方、欠陥と擬似欠陥とを区別する他の方法としては、特開平 10— 339705号公 報および特開平 11 - 264803号公報に開示されて 、るように、透明板状体の端面 力 内部に向けて光を照射することで欠陥による散乱光を検出するという方法 (以下 、エッジライト方式という)がある。端面力も透明板状体内部に入射した光は、全反射 を繰り返しながら板状体の内部を進行するが、欠陥のある部位で散乱し、透明板状 体の主表面側または裏面側に出射する。その際、透明板状体内部を進行する光は、 透明板状体の主表面または裏面に付着している擬似欠陥によって散乱することはな いため、透明板状体の主表面側および裏側にカメラを配置すれば、欠陥のみを検出 することができる。さらに、透明板状体の主表面側と裏面側に配置されたカメラの検 出信号を照合することにより、透明板状体の厚さ方向における欠陥の位置をある程 度判別することができる。
[0006] 特許文献 1 :特開平 8— 201313号公報
特許文献 2:特開平 10— 339705号公報
特許文献 3:特開平 11― 264803号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、従来のエッジライト方式には、いくつかの問題点がある。端面から透 明板状体に入射した光は、透明板状体自身に吸収されてしまうため、透明板状体の 中央部(平面内における中央部)と端部とでは、欠陥に供給される光量が異なる。透 明板状体のサイズ力 、さければ光量の違いは大きな問題にならないが、透明板状体 のサイズが大きくなるに連れて供給光量の差が顕著になり検出性能に面内分布がで きる。この状況は透明板状体の厚さが増すとさらに悪ィ匕するため、エッジライト方式は 、他方式に比べて厚さに関する適用可能範囲が狭 、と 、える。
[0008] 特に昨今の液晶パネルにおいては、従来の第 5世代(1100mm X 1250mm)から 第 6世代(1500mm X 1850mm)または第 7世代(1870mm X 2200mm)へと格段 に大きなサイズに切り替わりつつある。そのため、基板検査の自動化を実現する新規 技術の登場が切望されて 、ると 、う事情があった。
[0009] 以上を踏まえ、本発明の一つの目的は、透明板状体が大きくになるに連れて検査 性能が低下するという従来技術の問題点を解消することにある。また、本発明の他の 目的は、透明板状体の厚さ方向における欠陥の位置の特定を従来技術よりも正確に 行うことにある。
課題を解決するための手段
[0010] 以上の目的を達成するために本発明は、透明板状体に存在する泡、傷、異物等の 欠陥検査方法であって、透明板状体の主表面側に配設された線状光源およびカメラ を有する第 1の反射型明視野光学系を用いて前記透明板状体の主表面の画像 (以 下、第 1の画像という)を撮像するステップと、前記透明板状体の裏面側に配設され た線状光源およびカメラを有する第 2の反射型明視野光学系とを用いて前記透明板 状体の裏面の画像 (以下、第 2の画像という)を撮像するステップと、前記第 1および 第 2の画像のそれぞれにつ 、て欠陥候補を探索するステップと、この探索の結果に 基づき前記第 1および第 2の画像の互いに対応する位置に欠陥候補があるかどうか を確認し、前記第 1および第 2の画像の両方力も欠陥候補が見つ力つた場合は、この 欠陥候補を欠陥とみなし、前記第 1および第 2の画像の片方のみ力 欠陥候補が見 つかった場合は、この欠陥候補を擬似欠陥とみなすステップとを有することを特徴と する透明板状体の欠陥検査方法を提供する。
[0011] また、本発明は、透明板状体に存在する泡、傷、異物等の欠陥検査方法であって、 透明板状体の主表面側に配設された線状光源およびカメラを有する第 1の反射型明 視野光学系を用いて前記透明板状体の主表面の画像 (以下、第 1の画像という)を 撮像するステップと、前記透明板状体の裏面側に配設された線状光源およびカメラ を有する第 2の反射型明視野光学系とを用いて前記透明板状体の裏面の画像 (以 下、第 2の画像という)を撮像するステップと、前記第 1および第 2の画像のそれぞれ について欠陥候補を探索するステップと、この探索により得られた欠陥候補の像のコ ントラストに基づ 、て実像または虚像の何れであるかを判別するステップと、前記実 像または虚像の出現パタンに基づいて、前記欠陥候補が前記透明板状体の主表面 、内部または裏面の何れにあるかを特定するステップとを有することを特徴する透明 板状体の欠陥検査方法を提供する。
[0012] また、本発明は、透明板状体に存在する泡、傷、異物等の欠陥検査方法であって、 透明板状体の主表面側に配設された線状光源およびカメラを有する第 1の反射型明 視野光学系を用いて前記透明板状体の主表面の画像 (以下、第 1の画像という)を 撮像するステップと、前記透明板状体の裏面側に配設された線状光源およびカメラ を有する第 2の反射型明視野光学系とを用いて前記透明板状体の裏面の画像 (以 下、第 2の画像という)を撮像するステップと、前記第 1および第 2の画像のそれぞれ について欠陥候補を探索するステップと、同一の欠陥候補に関し同一のカメラに現 れる二つの像の距離を求めるステップと、これら二つの像の距離に基づ 、て前記欠 陥候補が前記透明板状体の主表面、内部または裏面の何れにあるかを特定するス テツプとを有することを特徴する透明板状体の欠陥検査方法を提供する。
[0013] また、前記透明板状体の欠陥検査方法にお!、て、前記透明板状体の厚さを既知 情報とするとともに、同一の欠陥に関し同一のカメラに現れる二つの像の距離に基づ いて、前記透明板状体の厚さ方向における欠陥の深さを求めるステップをさらに有す ることが好ましい。
[0014] また、本発明は、透明板状体に存在する泡、傷、異物等の欠陥検査装置であって、 透明板状体の主表面側に配設された線状光源およびカメラを有し、前記透明板状体 の主表面の画像 (以下、第 1の画像という)を撮像するための第 1の反射型明視野光 学系と、前記透明板状体の裏面側に配設された線状光源およびカメラを有し、前記 透明板状体の裏面の画像 (以下、第 2の画像という)を撮像するための第 2の反射型 明視野光学系と、前記第 1および第 2の画像のそれぞれについて欠陥候補を探索し 、この探索の結果に基づき前記第 1および第 2の画像の互 、に対応する位置に欠陥 候補があるかどうかを確認し、前記第 1および第 2の画像の両方力 欠陥候補が見つ 力つた場合は、この欠陥候補を欠陥とみなし、前記第 1および第 2の画像の片方のみ 力も欠陥候補が見つ力つた場合は、この欠陥候補を擬似欠陥とみなす計算機とを有 することを特徴とする透明板状体の欠陥検査装置を提供する。
[0015] また、本発明は、透明板状体に存在する泡、傷、異物等の欠陥検査装置であって、 透明板状体の主表面側に配設された線状光源およびカメラを有し、前記透明板状体 の主表面の画像 (以下、第 1の画像という)を撮像するための第 1の反射型明視野光 学系と、前記透明板状体の裏面側に配設された線状光源およびカメラを有し、前記 透明板状体の裏面の画像 (以下、第 2の画像という)を撮像するための第 2の反射型 明視野光学系と、前記第 1および第 2の画像のそれぞれについて欠陥候補を探索し 、この探索により得られた欠陥候補の像のコントラストに基づいて実像または虚像の 何れであるかを判別し、前記実像または虚像の出現パタンに基づいて、前記欠陥候 補が前記透明板状体の主表面、内部または裏面の何れにあるかを特定する計算機 とを備えたことを特徴する透明板状体の欠陥検査装置を提供する。
[0016] また、本発明は、透明板状体に存在する泡、傷、異物等の欠陥検査装置であって、 透明板状体の主表面側に配設された線状光源およびカメラを有し、前記透明板状体 の主表面の画像 (以下、第 1の画像という)を撮像するための第 1の反射型明視野光 学系と、前記透明板状体の裏面側に配設された線状光源およびカメラを有し、前記 透明板状体の裏面の画像 (以下、第 2の画像という)を撮像するための第 2の反射型 明視野光学系と、前記第 1および第 2の画像のそれぞれについて欠陥候補を探索し 、同一の欠陥候補に関し同一のカメラに現れる二つの像の距離を求め、これら二つ の像の距離に基づ 、て前記欠陥候補が前記透明板状体の主表面、内部または裏 面の何れにあるかを特定するステップと計算機とを備えたことを特徴する透明板状体 の欠陥検査装置を提供する。
[0017] さらに、前記計算機は、前記透明板状体の厚さを既知情報とするとともに、同一の 欠陥に関し同一のカメラに現れる二つの像の距離に基づいて、前記透明板状体の 厚さ方向における欠陥の深さを求める機能をさらに有することが好ましい。
発明の効果
[0018] 以上説明したとおり、本発明は、透明板状体の主表面側および裏面側に現れる欠 陥候補の像を利用することにより、欠陥 (泡、傷、異物等)と擬似欠陥 (埃や汚れ等)と を区別でき、オンラインでの欠陥検査を実現するものである。また、本発明は、透明 板状体の厚さ方向における欠陥の位置を正確に特定できること、透明板状体のサイ ズに依存して検査性能が低下しな 、こと、およびエッジライト方式に比べて適用可能 な透明板状体の厚さの範囲が広いことなどの効果が得られる。さらに、本発明は、透 明板状体の端面が平滑であることが要求されな 、ので、フロート法のような板ガラス の連続成形過程にも適用できる。 図面の簡単な説明
[図 1]本発明の基本的構成を説明する図である。
[図 2]上下のラインセンサカメラが明視野を得る様子を説明する図である。
[図 3]上部のラインセンサカメラが透明板状体の主表面にある欠陥の像を得る様子を 説明する図である。
[図 4]下部のラインセンサカメラが透明板状体の主表面にある欠陥の像を得る様子を 説明する図である。
[図 5]上部のラインセンサカメラが透明板状体の内部にある欠陥の像を得る様子を説 明する図である。
[図 6]下部のラインセンサカメラが透明板状体の内部にある欠陥の像を得る様子を説 明する図である。
[図 7]上部のラインセンサカメラが透明板状体の裏面にある欠陥の像を得る様子を説 明する図である。
[図 8]下部のラインセンサカメラが透明板状体の裏面にある欠陥の像を得る様子を説 明する図である。
[図 9]上部のラインセンサカメラが透明板状体の主表面にある擬似欠陥の像を得る様 子を説明する図である。
[図 10]下部のラインセンサカメラが透明板状体の主表面にある擬似欠陥の像を得る 様子を説明する図である。
[図 11]上部のラインセンサカメラが透明板状体の裏面にある擬似欠陥の像を得る様 子を説明する図である。
[図 12]下部のラインセンサカメラが透明板状体の裏面にある擬似欠陥の像を得る様 子を説明する図である。
[図 13]欠陥等の種類と各カメラで撮像される画像との関係を説明する図である。
[図 14]下部のラインセンサカメラが透明板状体の裏面近くにある内部欠陥の像を得る 様子を説明する図である。
[図 15]本発明により欠陥と擬似欠陥の区別を試みた結果を示す図である(実施例)。
[図 16]本発明により主表面にある欠陥と主表面近くの内部欠陥の区別を試みた結果 を示す図である(実施例)。
[図 17]本発明により欠陥の深さを測定した結果を示す図である(実施例)。
符号の説明
[0020] 1 :透明板状体
2、 4 :線状光源
3、 5 :ラインセンサカメラ
6 :搬送ローラ
7 :計算機
8、 9 :光線経路 (上部光学系)
10、 11 :光線経路(下部光学系)
12 :透明板状体の主表面にある欠陥
13 :透明板状体の内部にある欠陥
14:透明板状体の裏面にある欠陥
15 :透明板状体の主表面にある擬似欠陥
16 :透明板状体の裏面にある擬似欠陥
17:透明板状体の裏面近くにある内部欠陥
18 :内部欠陥が最初に光線経路と交わる位置と、 2番目に交わる位置の距離 発明を実施するための最良の形態
[0021] 次に、本発明の一実施形態について説明する。
図 1は、本発明の基本的構成を示す説明図である。図 1に示すように、搬送ローラ 6 上の透明板状体 1の上方に、線状光源 2およびラインセンサカメラ 3が設置され、透 明板状体 1の下方に線状光源 4およびラインセンサカメラ 5が配設されている。搬送口 ーラ 6により透明板状体 1を矢印の方向に等速で搬送すると同時に、ラインセンサカメ ラ 3およびラインセンサカメラ 5により透明板状体を連続撮像する。計算機 7は、両ライ ンセンサカメラの画像を同時に演算処理し、欠陥検査を行う。
[0022] まず、透明板状体 1の主表面の画像を撮像するステップと、前記透明板状体の裏 面の画像を撮像するステップについて説明する。線状光源 2、およびラインセンサ力 メラ 3の受光素子は共に、紙面に垂直な方向(透明板状体 1の幅方向)に連なってい る。線状光源 2の具体的な構成としては、スリットの開いた光源ボックスに蛍光灯を設 置したもの、線状の発光部分を有するライトガイドに光ファイバ一でハロゲンランプま たはメタルノヽライドランプの光を供給するもの等の各種光源を採用することができる。
[0023] また、線状光源 2は、透明板状体 1に対してラインセンサカメラ 3の正反射方向に位 置し、同様に線状光源 4は透明板状体 1に対してラインセンサカメラ 5の正反射方向 に位置する。この配置により、ラインセンサカメラ 3には線状光源 2の反射像が映り、ラ インセンサカメラ 5には線状光源 4の反射像が映り、それぞれ明視野となる。ラインセ ンサカメラ 3、 5の光軸と透明板状体 1の法線とのなす角度に特に制限は無いが、 20 〜70度の範囲が望ましい。
[0024] 次に欠陥候補を探索するステップについて説明する。図 2 (a)は、ラインセンサカメ ラ 3に明視野が得られる様子を示す。図 2 (a)において、線状光源 2から発した光は、 主として二つの光線経路を経てラインセンサカメラ 3に達する。一つは透明板状体 1 の主表面 (透明板状体 1の上側の面)による反射を介する光線経路 8、もう一つは透 明板状体 1の裏面 (透明板状体 1の下側の面) 8による反射を介する光線経路 9であ る。ラインセンサカメラ 3はこの二つの光線経路 8, 9による像が重なって明視野となる
[0025] 同様に図 2 (b)は、ラインセンサカメラ 5に明視野が得られる様子を示す。図 2 (b)に おいて、線状光源 4から発した光は、主として二つの光線経路を経てラインセンサカメ ラ 5に達する。光線経路の一つは透明板状体 1の裏面による反射を介する光線経路 10、もう一つは透明板状体 1の主表面による反射を介する光線経路 11である。ライン センサカメラ 5はこの二つの光線経路 10, 11による像が重なって明視野となる。
[0026] 次に、この探索により得られた欠陥候補の像のコントラストに基づいて実像または虚 像の何れであるかを判別するステップにつ 、て説明する。欠陥が光線経路と交差す ると、欠陥がもたらす光学的挙動 (屈折、散乱、反射、吸収または遮光等)により、線 状光源力 ラインセンサカメラへ到達する光が弱められたり、場合によっては強めら れたりする。その結果としてラインセンサカメラは欠陥を周囲の明視野に比べて暗い、 場合によっては明るい像として捉える。以下図 3から図 12を使って、本発明における 欠陥および擬似欠陥の像の生成パタンを説明する。 [0027] 図 3 (a)および (b)並びに図 4は、ラインセンサカメラ 3、 5が透明板状体 1の主表面 にある欠陥 12の像を得る様子を示す。特に図 3 (a)は、欠陥 12が光線経路 8と光線 経路 9を同時に交差する状況を示す。このとき欠陥 12は光線経路 8と光線経路 9を進 む光に光学的挙動を生じさせる。結果としてラインセンサカメラ 3はこの二つの光線経 路 8, 9による像が重なって欠陥 12の実像を得る。
[0028] 一方、図 3 (b)は透明板状体 1の搬送がさらに進み、欠陥 12が光線経路 9のみと交 差する状況を示す。このとき欠陥 12は、光線経路 9を進む光のみに光学的挙動を生 じさせる。結果としてラインセンサカメラ 3はこの二つの光線経路 8, 9による像が重な つて欠陥 12の虚像を得る。図 4は欠陥 12が光線経路 11のみと交差する状況である 。このとき欠陥 12は光線経路 11を進む光のみに光学的挙動を生じさせる。結果とし てラインセンサカメラ 5はこの二つの光線経路 10, 11による像が重なって欠陥 12の 虚像を得る。
[0029] 図 5 (a)および (b)並びに図 6 (a)および (b)は、ラインセンサカメラ 3、 5が透明板状 体 1の内部にある欠陥 13の像を得る様子を示す。図 5 (a)は欠陥 13が光線経路 9の みと交差する状況である。このとき欠陥 13は光線経路 9を進む光のみに光学的挙動 を生じさせる。結果としてラインセンサカメラ 3はこの二つの光線経路 8, 9による像が 重なって欠陥 13の虚像を得る。図 5 (b)は透明板状体 1の搬送がさらに進み、欠陥 1 3が光線経路 9のみと交差する状況を示す。このとき欠陥 13は光線経路 9を進む光 のみに光学的挙動を生じさせる。結果としてラインセンサカメラ 3はこの二つの光線経 路 8, 9による像が重なって欠陥 13の虚像を得る。図 6 (a)は欠陥 13が光線経路 11 のみと交差する状況である。このとき欠陥 13は光線経路 11を進む光のみに光学的 挙動を生じさせる。結果としてラインセンサカメラ 5はこの二つの光線経路 10, 11によ る像が重なって欠陥 13の虚像を得る。図 6 (b)は透明板状体 1の搬送がさらに進み、 欠陥 13が光線経路 11のみと交差する状況を示す。このとき欠陥 13は光線経路 11を 進む光のみに光学的挙動を生じさせる。結果としてラインセンサカメラ 5はこの二つの 光線経路 10, 11による像が重なって欠陥 13の虚像を得る。
[0030] 図 7並びに図 8 (a)および (b)は、ラインセンサカメラ 3、 5が透明板状体 1の裏面に ある欠陥 14の像を得る様子を示す。特に図 7は、欠陥 14が光線経路 9のみと交差す る状況を示す。このとき欠陥 14は光線経路 9を進む光のみに光学的挙動を生じさせ る。結果としてラインセンサカメラ 3はこの二つの光線経路 8, 9による像が重なって欠 陥 14の虚像を得る。図 8 (a)は欠陥 14が光線経路 11のみと交差する状況を示す。こ のとき欠陥 14は光線経路 11を進む光のみに光学的挙動を生じさせる。結果としてラ インセンサカメラ 3はこの二つの光線経路 10, 11による像が重なって欠陥 14の虚像 を得る。
[0031] 一方、図 8 (b)は透明板状体 1の搬送がさらに進み、欠陥 14が光線経路 10と光線 経路 11と同時に交差する状況を示す。このとき欠陥 14は光線経路 10と光線経路 11 を進む光に光学的挙動を生じさせる。結果としてラインセンサカメラ 5はこの二つの光 線経路 10, 11による像が重なって欠陥 14の実像を得る。
[0032] 図 9 (a)および (b)並びに図 10は、ラインセンサカメラ 3、 5が透明板状体 1の主表面 にある擬似欠陥 15の像を得る様子を示す。特に図 9 (a)は擬似欠陥 15が光線経路 8 と光線経路 9と同時に交差する状況を示す。このとき擬似欠陥 15は光線経路 8と光 線経路 9を進む光に光学的挙動を生じさせる。結果としてラインセンサカメラ 3はこの 二つの光線経路 8, 9による像が重なって擬似欠陥 15の実像を得る。図 9 (b)は透明 板状体 1の搬送がさらに進み、擬似欠陥 15が光線経路 9のみと交差する状況である 。このとき擬似欠陥 15は光線経路 9を進む光のみに光学的挙動を生じさせる。結果 としてラインセンサカメラ 3はこの二つの光線経路 8, 9による像が重なって擬似欠陥 1 5の虚像を得る。
[0033] 図 10は擬似欠陥 15が光線経路 11の反射点に位置する状況を示す。但し、擬似欠 陥 15は透明板状体 1の外部にあるため、光線経路 11を進む光に光学的挙動を生じ させない。結果としてラインセンサカメラ 5は、擬似欠陥 15の像を取得しない。
[0034] 図 11並びに図 12 (a)および (b)は、ラインセンサカメラ 3、 5が透明板状体 1の裏面 にある擬似欠陥 16の像を得る様子を示す。特に図 11は擬似欠陥 16が光線経路 9の 反射点に位置する状況を示す。但し、擬似欠陥 16は透明板状体 1の外部にあるた め、光線経路 9を進む光に光学的挙動を生じさせない。結果としてラインセンサカメラ 3は擬似欠陥 16の像を取得しな 、。
[0035] 一方、図 12 (a)は、擬似欠陥 16が光線経路 11のみと交差する状況を示す。このと き擬似欠陥 16は光線経路 11を進む光のみに光学的挙動を生じさせる。結果として ラインセンサカメラ 3はこの二つの光線経路 10, 11による像が重なって擬似欠陥 16 の虚像を得る。図 12 (b)は透明板状体 1の搬送がさらに進み、擬似欠陥 16が光線経 路 10と光線経路 11と同時に交差する状況を示す。このとき擬似欠陥 16は光線経路 10と光線経路 11を進む光に光学的挙動を生じさせる。結果としてラインセンサカメラ 5はこの二つの光線経路 10, 11による像が重なって擬似欠陥 16の実像を得る。
[0036] 次に、欠陥候補を擬似欠陥とみなすステップについて説明する。埃や汚れ等の擬 似欠陥は透明板状体の内部にはなぐ主表面力裏面の何れかに付着しているので( 内部にある場合は欠陥として扱う)、欠陥および擬似欠陥の像の出現パタンは図 9か ら図 12の何れかの説明により網羅される。
[0037] また、欠陥候補を擬似欠陥とみなすステップと、前記欠陥候補が前記透明板状体 の主表面、内部または裏面の何れにあるかを特定するステップにつ 、て説明する。 図 13 (a)〜 (e)は、欠陥等の種類と各カメラで撮像される画像との関係を説明する図 である。これらの図に示すように、欠陥等の種類および位置に応じて、各ラインセンサ カメラで取得される欠陥候補の像のパタンは異なったものとなる。また、表 1は、欠陥 および擬似欠陥について、ラインセンサカメラが得る像の出現パタンをリストにしたも のである。なお、同一の欠陥に関し同一のラインセンサカメラにより二つの像が観測さ れた場合、これらの像を 1つの組として捉え、以下「二重像」と呼ぶ。
[0038] [表 1]
Figure imgf000013_0001
[0039] 欠陥が透明板状体の内部にある場合には、上下のラインセンサカメラがそれぞれ 虚像を 2個ずつ得ることを記したが、欠陥が主表面または裏面に近い場合には 2つの 虚像が重なり、見かけ上一つの像しか見えないことがある。例えば、裏面に近い内部 欠陥の場合、上側のラインセンサカメラが捉える虚像が重なり、見かけ上一つの像し か見えないことがある。同様に、主表面に近い内部欠陥の場合、下側のラインセンサ カメラが捉える虚像が重なり、見かけ上一つの像しか見えな 、ことがある。
[0040] このような場合であっても、本発明においてはラインセンサカメラを 2台用いているの で、虚像が重ならない方のラインセンサカメラの画像を手力かりに、透明板状体の厚 さ方向における欠陥の位置を正しく特定することができる。その際、本発明において は二重像のコントラスト、二重像を構成する二つの像の距離を利用する。
[0041] まず、二重像のコントラストを利用する方法について説明する。同じ欠陥または擬似 欠陥に対して、実像と虚像の両方が得られる場合には、相対的に実像の方がコントラ ストは強くなる。これは、実像の形成過程においては二つの光線経路が欠陥と交差 することに対して、虚像の形成過程においては一つの光線経路のみが欠陥と交差す るためである。表 1からもわ力るように、ラインセンサカメラが捉える二重像が実像と虚 像の組み合わせになるのは、欠陥が主表面または裏面にある場合である。これに対 して欠陥が透明板状体の内部にある場合には、二重像は虚像同士の組み合わせに なる。一般に欠陥が透明板状体の主表面または裏面にある場合には二重像のコント ラストに差がつき、内部にある場合にはコントラストに差がつかない。したがって二重 像のコントラストを比較すると欠陥が透明板状体の内部にあるのか、主表面 (または 裏面)にあるのかがわかる。
[0042] 次に、二重像を構成する二つの像の距離を利用する方法について説明する。
図 14は、ラインセンサカメラ 5が裏面近くにある内部欠陥 17の像を得る状況を示す 。ラインセンサカメラ 5が欠陥 17の像を捉える機会は 2度ある。一つは内部欠陥 17が ポイント 17aに位置するとき、もう一つはポイント 17bに位置するときである。ポイント 1 7aと 17bの間の距離 18は、欠陥 17の透明板状体 1の主表面力もの深さに比例する
[0043] ここで、同一の欠陥候補に関し同一のカメラに現れる二つの像の距離を求めるステ ップについて説明する。透明板状体 1が等速で搬送され、かつラインセンサカメラの 走査速度が一定であれば、距離 18は画像における二重像を構成する二つの像の距 離として観測される。次に、これら二つの像の距離に基づいて前記欠陥候補が前記 透明板状体の主表面、内部または裏面の何れにあるかを特定するステップにつ 、て 説明する。距離 18は欠陥 17が裏面にあるときに最も長くなる。二重像を構成する二 つの像の距離の最大値をあらかじめ知っておけば、実際の二重像を構成する二つの 像の距離との大小関係により、欠陥 17が内部にあるの力裏面にあるのかを区別する ことができる。
[0044] なお、図 14では裏面近くにある内部欠陥を例に説明した力 主表面近くにある内 部欠陥についても同様の区別が可能である。この場合には透明板状体 1の上方にあ るラインセンサカメラ 3で得られる二重像を使って欠陥が内部にあるの力、主表面にあ るのかを区別することができる。
[0045] さらに、前記透明板状体の厚さ方向における欠陥の深さを求めるステップについて 説明する。以上のとおり本発明によれば、欠陥の存在する透明板状体の部位 (主表 面、内部または裏面の何れか)だけでなぐ透明板状体の厚さが既知であれば、距離 18が欠陥の深さに比例することを利用することにより、二重像を構成する二つの像の 距離を欠陥の深さに換算することができる。
実施例
[0046] 次に、本発明の実施例について説明するが、これらが本発明を限定するものでは ないことは明らかである。
[0047] まず、透明板状体として厚さ 0. 7mmの液晶パネル用基板ガラス (以下、基板ガラス とする)を用い、本発明の有効性を調べたので以下詳説する。図 1に示した基本構成 に従って、ラインセンサカメラ 2台、蛍光灯を用いた線状光源 2灯による反射明視野 光学系を用意し、基板ガラスの上下それぞれに配置した。ラインセンサカメラの光軸 と基板ガラスの法線のなす角度は 30度とした。搬送ローラ 6による基板ガラスの搬送 速度は 1 OOmmZ秒とした。
[0048] 上下のラインセンサカメラを連続走査し、欠陥および擬似欠陥近傍の画像を切り出 した。そして、同一の欠陥または擬似欠陥に対する上下のラインセンサカメラによる画 像 (すなわち欠陥候補の画像)を一対化し、欠陥と擬似欠陥の区別、欠陥の板厚方 向の位置特定、欠陥の板厚方向の深さ測定を試みた。
[0049] 図 15は、基板ガラスの主表面に擬似欠陥であるダストを事前に散布しておき、上下 のラインセンサカメラの検出信号を調べた結果を示す。図 15において、 Aは上部のラ インセンサカメラの検出信号、 Bは下部のラインセンサカメラの検出信号をそれぞれ 示し、横軸は個々の擬似欠陥を、縦軸は上下のラインセンサカメラの検出信号の強さ を示す。検出信号の強さは検出信号をノイズレベルで除した SN比で表している。図 15から明らかなように、上部のラインセンサカメラが個々のダストを顕著に検出してい るのに対し、下部のラインセンサカメラは検出していない。よって、本検証により、欠陥 と擬似欠陥を区別できることを確認した。
[0050] 図 16は、主表面から 10 m以内(事前に測定済み)にある内部欠陥と主表面にあ る欠陥の位置の区別を試みた結果を示す。図 16において、 Aは表面の欠陥、 Bは表 面から 10 m以内の欠陥をそれぞれ示し、横軸は欠陥の二重像のうち最初にライン センサカメラの視野に入った像の検出信号の強さ、縦軸は欠陥の二重像のうち 2番 目にラインセンサカメラの視野に入った像の検出信号の強さを示す。検出信号の強さ は図 15と同様に SN比で表している。図 16から明らかなように、欠陥が主表面にある 場合と内部にある場合では、二重像の検出信号の強さ(コントラスト)に違いが見られ る。欠陥が主表面にある場合には、二重像のうち最初にラインセンサカメラの視野に 入った像の検出信号が、 2番目にラインセンサカメラの視野に入った像の検出信号よ り、相対的に強い。
[0051] 一方、欠陥が内部にある場合には、主表面から 10 m以内であっても、 2つの像の 検出信号の強さは同程度である。よって、本検証により、透明板状体の厚さ方向にお ける欠陥の位置を特定できることを確認した。なお、図中の破線は、理想的には座標 軸の原点を通る直線である。
[0052] 図 17は、二重像を構成する二つの像の距離力 欠陥の主表面力 の深さを求めた 結果を示す。図 17 (a)は上部ラインセンサカメラによる結果、図 17 (b)は下部ライン センサカメラによる結果を示す。これらの図の横軸は別途測定しておいた欠陥の深さ の真値であり、縦軸はラインセンサカメラで捉えた二重像を構成する二つの像の距離 を示している。これらの図から明らかなように欠陥の深さは二重像を構成する二つの 像の距離に比例する 1次式で記述できる関係にあり、かつ高い相関関係にあることが 理解される。この関係を利用することにより、二重像を構成する二つの像の距離から 精度良く欠陥深さを測定することができる。本発明では透明板状体の上下にカメラを 配置しているので、一つのラインセンサカメラにおいて二重像が重なる状況があって も、もう一つのラインセンサカメラにおいては二重像が分離する。これにより欠陥の深 さに応じて、上下ラインセンサカメラの分担を変えることができ、図 17 (a)、(b)に示す ように厚さ全域にわたって欠陥の深さを測定することができる。本検証により、欠陥の 深さを精度良く測定できることを確認した。
産業上の利用可能性
以上説明したとおり、本発明は、欠陥と擬似欠陥との区別が可能であり、かつ透明 板状体の厚さ方向における欠陥の位置の特定精度を上げられるので、欠陥検査の 判定精度向上を期待できる。また、本発明は透明板状体の端面の平滑性を要求しな いので、例えば板ガラスのフロート法のような連続成形過程にも適用でき、プロセスの 上流工程において迅速に欠陥情報を把握できる。よって、本発明は従来よりも優れ た欠陥検査システムの構築に大きく貢献するものである。 なお、 2004年 11月 24曰に出願された曰本特許出願 2004— 339215号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 透明板状体に存在する泡、傷、異物等の欠陥検査方法であって、
透明板状体の主表面側に配設された、線状光源およびカメラを有する第 1の反射 型明視野光学系を用いて前記透明板状体の主表面の画像 (以下、第 1の画像という
)を撮像するステップと、
前記透明板状体の裏面側に配設された、線状光源およびカメラを有する第 2の反 射型明視野光学系とを用いて前記透明板状体の裏面の画像 (以下、第 2の画像と 、 う)を撮像するステップと、
前記第 1および第 2の画像のそれぞれについて欠陥候補を探索するステップと、 この探索の結果に基づき前記第 1および第 2の画像の互 、に対応する位置に欠陥 候補があるかどうかを確認し、前記第 1および第 2の画像の両方力 欠陥候補が見つ 力つた場合は、この欠陥候補を欠陥とみなし、前記第 1および第 2の画像の片方のみ 力も欠陥候補が見つ力つた場合は、この欠陥候補を擬似欠陥とみなすステップと を有することを特徴とする透明板状体の欠陥検査方法。
[2] 透明板状体に存在する泡、傷、異物等の欠陥検査方法であって、
透明板状体の主表面側に配設された、線状光源およびカメラを有する第 1の反射 型明視野光学系を用いて前記透明板状体の主表面の画像 (以下、第 1の画像という )を撮像するステップと、
前記透明板状体の裏面側に配設された、線状光源およびカメラを有する第 2の反 射型明視野光学系とを用いて前記透明板状体の裏面の画像 (以下、第 2の画像と 、 う)を撮像するステップと、
前記第 1および第 2の画像のそれぞれについて欠陥候補を探索するステップと、 この探索により得られた欠陥候補の像のコントラストに基づいて実像または虚像の 何れであるかを判別するステップと、
前記実像または虚像の出現パタンに基づいて、前記欠陥候補が前記透明板状体 の主表面、内部または裏面の何れにあるかを特定するステップと
を有することを特徴する透明板状体の欠陥検査方法。
[3] 透明板状体に存在する泡、傷、異物等の欠陥検査方法であって、 透明板状体の主表面側に配設された、線状光源およびカメラを有する第 1の反射 型明視野光学系を用いて前記透明板状体の主表面の画像 (以下、第 1の画像という
)を撮像するステップと、
前記透明板状体の裏面側に配設された、線状光源およびカメラを有する第 2の反 射型明視野光学系とを用いて前記透明板状体の裏面の画像 (以下、第 2の画像と 、 う)を撮像するステップと、
前記第 1および第 2の画像のそれぞれについて欠陥候補を探索するステップと、 同一の欠陥候補に関し同一のカメラに現れる二つの像の距離を求めるステップと、 これら二つの像の距離に基づ 、て前記欠陥候補が前記透明板状体の主表面、内 部または裏面の何れにあるかを特定するステップと
を有することを特徴する透明板状体の欠陥検査方法。
[4] 前記透明板状体の厚さを既知情報とするとともに、同一の欠陥に関し同一のカメラ に現れる二つの像の距離に基づいて、前記透明板状体の厚さ方向における欠陥の 深さを求めるステップをさらに有する請求項 3に記載の透明板状体の欠陥検査方法
[5] 透明板状体に存在する泡、傷、異物等の欠陥検査装置であって、
透明板状体の主表面側に配設された、線状光源およびカメラを有し、前記透明板 状体の主表面の画像 (以下、第 1の画像という)を撮像するための第 1の反射型明視 野光学系と、
前記透明板状体の裏面側に配設された、線状光源およびカメラを有し、前記透明 板状体の裏面の画像 (以下、第 2の画像という)を撮像するための第 2の反射型明視 野光学系と、
前記第 1および第 2の画像のそれぞれについて欠陥候補を探索し、この探索の結 果に基づき前記第 1および第 2の画像の互いに対応する位置に欠陥候補があるかど うかを確認し、前記第 1および第 2の画像の両方力も欠陥候補が見つ力つた場合は、 この欠陥候補を欠陥とみなし、前記第 1および第 2の画像の片方のみ力 欠陥候補 が見つ力つた場合は、この欠陥候補を擬似欠陥とみなす計算機と
を有することを特徴とする透明板状体の欠陥検査装置。
[6] 透明板状体に存在する泡、傷、異物等の欠陥検査装置であって、 透明板状体の主表面側に配設された、線状光源およびカメラを有し、前記透明板 状体の主表面の画像 (以下、第 1の画像という)を撮像するための第 1の反射型明視 野光学系と、
前記透明板状体の裏面側に配設された、線状光源およびカメラを有し、前記透明 板状体の裏面の画像 (以下、第 2の画像という)を撮像するための第 2の反射型明視 野光学系と、
前記第 1および第 2の画像のそれぞれについて欠陥候補を探索し、この探索により 得られた欠陥候補の像のコントラストに基づいて実像または虚像の何れであるかを判 別し、前記実像または虚像の出現パタンに基づいて、前記欠陥候補が前記透明板 状体の主表面、内部または裏面の何れにある力を特定する計算機と
を備えたことを特徴する透明板状体の欠陥検査装置。
[7] 透明板状体に存在する泡、傷、異物等の欠陥検査装置であって、
透明板状体の主表面側に配設された、線状光源およびカメラを有し、前記透明板 状体の主表面の画像 (以下、第 1の画像という)を撮像するための第 1の反射型明視 野光学系と、
前記透明板状体の裏面側に配設された、線状光源およびカメラを有し、前記透明 板状体の裏面の画像 (以下、第 2の画像という)を撮像するための第 2の反射型明視 野光学系と、
前記第 1および第 2の画像のそれぞれについて欠陥候補を探索し、同一の欠陥候 補に関し同一のカメラに現れる二つの像の距離を求め、これら二つの像の距離に基 づ 、て前記欠陥候補が前記透明板状体の主表面、内部または裏面の何れにあるか を特定するステップと計算機と
を備えたことを特徴する透明板状体の欠陥検査装置。
[8] 前記計算機は、前記透明板状体の厚さを既知情報とするとともに、同一の欠陥に 関し同一のカメラに現れる二つの像の距離に基づいて、前記透明板状体の厚さ方向 における欠陥の深さを求める機能をさらに有する請求項 7に記載の透明板状体の欠 陥検査装置。
PCT/JP2005/019408 2004-11-24 2005-10-21 透明板状体の欠陥検査方法および装置 WO2006057125A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006547681A JP4793266B2 (ja) 2004-11-24 2005-10-21 透明板状体の欠陥検査方法および装置
EP05805124A EP1816466B1 (en) 2004-11-24 2005-10-21 Method and device for inspecting defect of transparent plate body
US11/752,577 US7420671B2 (en) 2004-11-24 2007-05-23 Defect inspection method and apparatus for transparent plate-like members
US12/174,190 US7796248B2 (en) 2004-11-24 2008-07-16 Defect inspection method and apparatus for transparent plate-like members

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-339215 2004-11-24
JP2004339215 2004-11-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/752,577 Continuation US7420671B2 (en) 2004-11-24 2007-05-23 Defect inspection method and apparatus for transparent plate-like members

Publications (1)

Publication Number Publication Date
WO2006057125A1 true WO2006057125A1 (ja) 2006-06-01

Family

ID=36497868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019408 WO2006057125A1 (ja) 2004-11-24 2005-10-21 透明板状体の欠陥検査方法および装置

Country Status (6)

Country Link
US (2) US7420671B2 (ja)
EP (3) EP2166344A1 (ja)
JP (1) JP4793266B2 (ja)
KR (1) KR100897223B1 (ja)
TW (1) TW200622186A (ja)
WO (1) WO2006057125A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522213A (ja) * 2005-03-02 2008-06-26 セミシスコ・カンパニー・リミテッド ガラス基板のエッジ欠陥及びディスカラー検査装置及び方法
JP2008191020A (ja) * 2007-02-06 2008-08-21 Hitachi High-Technologies Corp 基板検査装置及び基板検査方法
WO2012077542A1 (ja) * 2010-12-09 2012-06-14 旭硝子株式会社 ガラス基板
WO2012077683A1 (ja) * 2010-12-09 2012-06-14 旭硝子株式会社 ガラスリボン内欠陥測定方法およびガラスリボン内欠陥測定システム
WO2017104575A1 (ja) * 2015-12-16 2017-06-22 株式会社リコー 検査システム及び検査方法
WO2017170402A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 検査方法、検査システム、製造方法
CN107255641A (zh) * 2017-06-06 2017-10-17 西安理工大学 一种针对自聚焦透镜表面缺陷进行机器视觉检测的方法
US20220163458A1 (en) * 2019-04-10 2022-05-26 Deltamax Automazione S.R.L. Method for the identification of defects in transparent slabs and related system

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626982B2 (ja) * 2005-02-10 2011-02-09 セントラル硝子株式会社 ガラス板の端面の欠陥検出装置および検出方法
DE102005050882B4 (de) * 2005-10-21 2008-04-30 Isra Vision Systems Ag System und Verfahren zur optischen Inspektion von Glasscheiben
KR101166828B1 (ko) * 2005-12-29 2012-07-19 엘지디스플레이 주식회사 평판표시장치용 검사장비 및 검사 방법
JP2010048745A (ja) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd 欠陥検査システムおよび欠陥検査方法
DE102009009272B4 (de) * 2009-02-17 2013-02-28 Siemens Aktiengesellschaft Qualitätsprüfung für Rotorblätter einer Windenergieanlage
KR101209857B1 (ko) * 2009-02-20 2012-12-10 삼성코닝정밀소재 주식회사 유리 표면 이물 검사 장치 및 방법
CN101819165B (zh) * 2009-02-27 2013-08-07 圣戈本玻璃法国公司 用于检测图案化基板的缺陷的方法及系统
CN101988908A (zh) * 2009-07-31 2011-03-23 法国圣-戈班玻璃公司 用于对基板的缺陷进行区分的方法和系统
KR20120040257A (ko) * 2009-07-31 2012-04-26 쌩-고벵 글래스 프랑스 기판의 결함을 검출하고 분류하기 위한 방법 및 시스템
CN102081047B (zh) * 2009-11-27 2015-04-08 法国圣-戈班玻璃公司 用于对基板的缺陷进行区分的方法和系统
KR101177299B1 (ko) * 2010-01-29 2012-08-30 삼성코닝정밀소재 주식회사 평판 유리 표면 이물질 검사 장치
FR2963093B1 (fr) * 2010-07-26 2012-08-03 Vit Installation d'inspection optique 3d de circuits electroniques
FR2963144B1 (fr) * 2010-07-26 2012-12-07 Vit Installation d'inspection optique de circuits electroniques
IT1402103B1 (it) 2010-10-08 2013-08-28 Università Di Pisa Metodo e dispositivo per rilevare la posizione geometrica di un difetto in un oggetto
US8351051B2 (en) * 2010-11-25 2013-01-08 Semisysco Co., Ltd. System and method of measuring irregularity of a glass substrate
JP5796430B2 (ja) * 2011-09-15 2015-10-21 日本電気硝子株式会社 板ガラス検査装置、板ガラス検査方法、板ガラス製造装置、及び板ガラス製造方法
EP2833819B1 (en) * 2012-06-14 2015-10-14 Koninklijke Philips N.V. Liob based skin treatment system
KR101435621B1 (ko) * 2012-11-09 2014-08-29 와이즈플래닛(주) 복수의 촬상 장치를 이용한 검사대상 위치 판단장치
TWI470210B (zh) * 2012-12-17 2015-01-21 Taiwan Power Testing Technology Co Ltd 顯示裝置之光學層件之缺陷檢測方法
US9790465B2 (en) 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
KR102200303B1 (ko) * 2014-08-19 2021-01-07 동우 화인켐 주식회사 광학 필름 검사 장치
SG11201703493SA (en) 2014-10-29 2017-05-30 Corning Inc Cell culture insert
CN104297264A (zh) * 2014-11-03 2015-01-21 苏州精创光学仪器有限公司 玻璃表面缺陷在线检测系统
CN105783709B (zh) * 2014-12-22 2018-09-07 昆山国显光电有限公司 二维影像检测方法及其装置
JP6499476B2 (ja) * 2015-02-27 2019-04-10 東レエンジニアリング株式会社 検査装置
US10887500B2 (en) * 2017-01-24 2021-01-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Optical inspection system
US10144356B2 (en) 2017-03-24 2018-12-04 Ford Global Technologies, Llc Condensation detection for vehicle surfaces via light transmitters and receivers
TW201842327A (zh) * 2017-04-14 2018-12-01 韓商康寧精密素材股份有限公司 蓋玻璃檢查裝置
US20190096057A1 (en) 2017-05-11 2019-03-28 Jacob Nathaniel Allen Object inspection system and method for inspecting an object
KR102452065B1 (ko) * 2017-07-07 2022-10-11 삼성전자 주식회사 카메라의 외부 이물질 흡착 정보를 제공하기 위한 전자 장치 및 방법
JP2019015706A (ja) * 2017-07-11 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 撮像装置及びモニタリング装置
WO2019014610A1 (en) 2017-07-14 2019-01-17 Corning Incorporated CELL CULTURE CONTAINER FOR 3D CULTURE AND METHODS OF CULTURING 3D CELLS
EP3652290B1 (en) 2017-07-14 2022-05-04 Corning Incorporated 3d cell culture vessels for manual or automatic media exchange
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
CN107462585B (zh) * 2017-08-10 2021-01-29 武汉华星光电技术有限公司 自动光学检查机及玻璃基板的缺陷检查方法
US10053059B1 (en) 2017-10-04 2018-08-21 Ford Global Technologies, Llc Detection and identification of opaqueness of vehicle windows
CN107764834B (zh) * 2017-12-07 2024-06-11 南京波长光电科技股份有限公司 一种自动检测透明零件表面缺陷的装置及其检测方法
JP6981352B2 (ja) * 2018-04-20 2021-12-15 オムロン株式会社 検査管理システム、検査管理装置及び検査管理方法
CN108362713A (zh) * 2018-05-11 2018-08-03 中科慧远视觉技术(洛阳)有限公司 一种光学检测成像系统
KR102181637B1 (ko) * 2018-05-24 2020-11-23 (주)쎄미시스코 검사 대상물 에지 결함 검사 시스템 및 그 방법
KR102251936B1 (ko) * 2018-05-24 2021-05-14 (주)쎄미시스코 챔버에서의 결함 검사 시스템 및 그 방법
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
EP3649226B1 (en) 2018-07-13 2022-04-06 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
PL3649229T3 (pl) 2018-07-13 2021-12-06 Corning Incorporated Naczynia do hodowli komórkowych ze stabilizującymi urządzeniami
KR102632169B1 (ko) * 2018-11-12 2024-02-02 삼성디스플레이 주식회사 유리기판 검사 장치 및 방법
US11878928B2 (en) 2019-02-06 2024-01-23 Corning Incorporated Methods of processing a viscous ribbon
US10767977B1 (en) * 2019-02-28 2020-09-08 Lumina Instruments Inc. Scattered radiation defect depth detection
JP7358937B2 (ja) * 2019-11-25 2023-10-11 株式会社Ihi 異物検出装置および異物検出方法
CN111307824B (zh) * 2020-04-08 2023-03-21 山东交通学院 木质板材表面凹坑缺陷检测装置
JP2023537498A (ja) * 2020-08-04 2023-09-01 コーニング インコーポレイテッド 材料を検査する方法及び装置
CN112986258B (zh) * 2021-02-09 2023-12-22 厦门威芯泰科技有限公司 一种表面缺陷检测装置和判断表面缺陷所在表面的方法
CN113484333B (zh) * 2021-09-08 2021-12-14 苏州高视半导体技术有限公司 多层结构屏幕的异物缺陷区分方法、电子设备及存储介质
CN114113135A (zh) * 2021-10-29 2022-03-01 北京兆维科技开发有限公司 一种区分玻璃盖板上下表面异物缺陷的方法
CN114088740B (zh) * 2022-01-24 2022-04-29 武汉精立电子技术有限公司 一种确定透明体表面缺陷所在层面的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154229A (ja) * 1982-03-10 1983-09-13 Toshiba Corp マスク基板両面検査装置
JPH08201313A (ja) 1995-01-31 1996-08-09 Asahi Glass Co Ltd 透明板状体の欠点検査方法及び装置
JPH09258197A (ja) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd ガラス基板の表裏欠陥識別方法
JPH10339705A (ja) 1997-06-09 1998-12-22 Asahi Glass Co Ltd 板状透明体の欠陥検査方法及びその装置
JPH11264803A (ja) 1998-03-18 1999-09-28 Central Glass Co Ltd 透明板状体の欠陥検出方法および装置
JP2004233338A (ja) * 2003-01-08 2004-08-19 Tdk Corp 円盤状基板の欠陥検出方法、その装置及び光ディスク用基板の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944578B2 (ja) * 1975-07-24 1984-10-30 コニカ株式会社 透明な被検査物の欠陥検出方法
JPS58154220A (ja) 1982-03-10 1983-09-13 日立コンデンサ株式会社 固体電解コンデンサの製造方法
DE3418283A1 (de) 1984-05-17 1985-12-12 Schott Glaswerke, 6500 Mainz Verfahren zum nachweis von fehlstellen in transparenten materialien
DE3800053A1 (de) 1988-01-04 1989-07-13 Sick Optik Elektronik Erwin Optische fehlerinspektionsvorrichtung
DE3926349A1 (de) * 1989-08-09 1991-02-14 Sick Optik Elektronik Erwin Optische fehlerinspektionsvorrichtung
JPH08193955A (ja) * 1995-01-18 1996-07-30 Nippon Electric Glass Co Ltd 板ガラスの欠点検査方法
JPH10267858A (ja) * 1997-03-25 1998-10-09 Hitachi Electron Eng Co Ltd ガラス基板の欠陥の良否判定方法
US6618136B1 (en) * 1998-09-07 2003-09-09 Minolta Co., Ltd. Method and apparatus for visually inspecting transparent body and translucent body
JP2002139454A (ja) 2000-11-01 2002-05-17 Zenic Inc 欠点検査装置および欠点検査方法
JP2003042967A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd パターン欠陥検査装置
JP2003075367A (ja) * 2001-09-07 2003-03-12 Central Glass Co Ltd 透明板状体の欠点検出装置
KR20030060243A (ko) * 2002-01-07 2003-07-16 엘지전자 주식회사 평판 디스플레이 자동 검사장치
KR20030096780A (ko) * 2002-06-17 2003-12-31 한국전기초자 주식회사 유리의 결함 검사장치 및 그 방법
JP2005156516A (ja) * 2003-11-05 2005-06-16 Hitachi Ltd パターン欠陥検査方法及びその装置
US7199386B2 (en) * 2004-07-29 2007-04-03 General Electric Company System and method for detecting defects in a light-management film
JP2006071284A (ja) * 2004-08-31 2006-03-16 Central Glass Co Ltd ガラス基板欠陥の表裏識別方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154229A (ja) * 1982-03-10 1983-09-13 Toshiba Corp マスク基板両面検査装置
JPH08201313A (ja) 1995-01-31 1996-08-09 Asahi Glass Co Ltd 透明板状体の欠点検査方法及び装置
JPH09258197A (ja) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd ガラス基板の表裏欠陥識別方法
JPH10339705A (ja) 1997-06-09 1998-12-22 Asahi Glass Co Ltd 板状透明体の欠陥検査方法及びその装置
JPH11264803A (ja) 1998-03-18 1999-09-28 Central Glass Co Ltd 透明板状体の欠陥検出方法および装置
JP2004233338A (ja) * 2003-01-08 2004-08-19 Tdk Corp 円盤状基板の欠陥検出方法、その装置及び光ディスク用基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1816466A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522213A (ja) * 2005-03-02 2008-06-26 セミシスコ・カンパニー・リミテッド ガラス基板のエッジ欠陥及びディスカラー検査装置及び方法
JP2008191020A (ja) * 2007-02-06 2008-08-21 Hitachi High-Technologies Corp 基板検査装置及び基板検査方法
WO2012077542A1 (ja) * 2010-12-09 2012-06-14 旭硝子株式会社 ガラス基板
WO2012077683A1 (ja) * 2010-12-09 2012-06-14 旭硝子株式会社 ガラスリボン内欠陥測定方法およびガラスリボン内欠陥測定システム
WO2017104575A1 (ja) * 2015-12-16 2017-06-22 株式会社リコー 検査システム及び検査方法
CN108369194A (zh) * 2015-12-16 2018-08-03 株式会社理光 检查系统及检查方法
JPWO2017104575A1 (ja) * 2015-12-16 2018-08-30 株式会社リコー 検査システム及び検査方法
WO2017170402A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 検査方法、検査システム、製造方法
JPWO2017170402A1 (ja) * 2016-03-31 2019-01-24 パナソニックIpマネジメント株式会社 検査方法、検査システム、製造方法
US11060985B2 (en) 2016-03-31 2021-07-13 Panasonic Intellectual Property Management Co., Ltd. Inspecting method, inspection system, and manufacturing method
CN107255641A (zh) * 2017-06-06 2017-10-17 西安理工大学 一种针对自聚焦透镜表面缺陷进行机器视觉检测的方法
US20220163458A1 (en) * 2019-04-10 2022-05-26 Deltamax Automazione S.R.L. Method for the identification of defects in transparent slabs and related system

Also Published As

Publication number Publication date
EP1816466A1 (en) 2007-08-08
KR20070084169A (ko) 2007-08-24
US20080278718A1 (en) 2008-11-13
TW200622186A (en) 2006-07-01
EP1816466B1 (en) 2010-06-23
JP4793266B2 (ja) 2011-10-12
KR100897223B1 (ko) 2009-05-14
JPWO2006057125A1 (ja) 2008-06-05
US20070216897A1 (en) 2007-09-20
US7420671B2 (en) 2008-09-02
EP2161567A1 (en) 2010-03-10
EP2166344A1 (en) 2010-03-24
EP1816466A4 (en) 2009-11-11
US7796248B2 (en) 2010-09-14
TWI357490B (ja) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2006057125A1 (ja) 透明板状体の欠陥検査方法および装置
JP4954217B2 (ja) 板ガラスを検査するための傾斜型透過照明検査システム及び方法
US8284396B2 (en) System and device for the optical inspection of glass panels
CN102435618A (zh) 透明板状体的缺陷检查方法及装置
JP2015040835A (ja) 透明板状体の欠点検査装置及び欠点検査方法
JP4747602B2 (ja) ガラス基板検査装置および検査方法
JP4615532B2 (ja) 欠陥検査装置、照明装置
JP2005181070A (ja) 透明板状体の欠点検出方法及び欠点検出装置
JP2008026060A (ja) 絶縁皮膜被覆帯状体の疵検査装置
JP2006071284A (ja) ガラス基板欠陥の表裏識別方法
JPH10148619A (ja) 検査基体の面欠陥検査方法及び装置
JP2004309287A (ja) 欠陥検出装置、および欠陥検出方法
EP3413037B1 (en) Inspection device for sheet-like objects, and inspection method for sheet-like objects
TWI817991B (zh) 光學系統,照明模組及自動光學檢測系統
JPH11316195A (ja) 透明板の表面欠陥検出装置
JP7173319B2 (ja) 表面検査装置、表面検査方法、鋼材の製造方法、鋼材の品質管理方法、及び鋼材の製造設備
JP2002214150A (ja) 絶縁皮膜被覆鋼板の疵検査方法およびその装置
CN116997927A (zh) 曲面基板气泡检测方法及检测系统
JP2011203201A (ja) 金属の欠陥検出方法
JP2005351825A (ja) 欠陥検査装置
JP5521283B2 (ja) 基板検査装置
JP2009042076A (ja) 分離膜の表面検査装置および表面検査方法
JP6409606B2 (ja) キズ欠点検査装置およびキズ欠点検査方法
CN116879306A (zh) 载板玻璃的缺陷检测方法和装置
JP7493163B2 (ja) 疵検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547681

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077010670

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11752577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005805124

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005805124

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11752577

Country of ref document: US