WO2012077542A1 - ガラス基板 - Google Patents

ガラス基板 Download PDF

Info

Publication number
WO2012077542A1
WO2012077542A1 PCT/JP2011/077589 JP2011077589W WO2012077542A1 WO 2012077542 A1 WO2012077542 A1 WO 2012077542A1 JP 2011077589 W JP2011077589 W JP 2011077589W WO 2012077542 A1 WO2012077542 A1 WO 2012077542A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
bubble
diameter
image
equivalent diameter
Prior art date
Application number
PCT/JP2011/077589
Other languages
English (en)
French (fr)
Inventor
誠彦 ▲樋▼口
信 楜澤
信治 藤井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201180059400.4A priority Critical patent/CN103250046B/zh
Priority to JP2012547796A priority patent/JP5686139B2/ja
Priority to KR1020137014660A priority patent/KR20130124954A/ko
Publication of WO2012077542A1 publication Critical patent/WO2012077542A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8967Discriminating defects on opposite sides or at different depths of sheet or rod

Definitions

  • the present invention relates to a glass substrate.
  • FIG. 13A is an explanatory view schematically showing the first measurement method.
  • the glass substrate 82 is transported in a state where light is passed through the glass substrate 82.
  • the inside of the glass substrate 82 conveyed with the line camera 81 is image
  • FIG. 13B shows an example of a captured defect image.
  • the defect 83 is schematically represented by a rectangle
  • the defect image 86 that appears in the image of the glass substrate is represented by a rectangle.
  • the shape of the defect is not necessarily rectangular.
  • the arrow shown to FIG. 13B is the conveyance direction of the glass substrate 82.
  • FIG. When the inside of the glass substrate 82 is photographed by the line camera 81, the focal point of the camera is adjusted so that the position of the defect coincides with the focal point of the camera, and the absolute distance from the line camera 81 to the defect is measured. The height direction position of the defect is calculated based on the distance.
  • DFF Depth from Focus
  • Patent Documents 1 to 3 A method and apparatus for measuring the position in the height direction of a defect by adjusting the focus of the camera are described in, for example, Patent Documents 1 to 3.
  • FIG. 14A is an explanatory view schematically showing a second measurement method.
  • the second measurement method for example, as shown in FIG. 14A, light is incident on the same side of the glass substrate 82 as the line camera 81, and the reflected light reaches the line camera 81. Then, the glass substrate 82 is conveyed, and the inside of the glass substrate 82 is photographed by the line camera 81.
  • FIG. 14B is an example of an image captured by the second measurement method. As shown in FIG. 14B, two images 84 and 85 appear for the same defect. In the second measurement method, the height direction position of the defect 83 is calculated from the positional relationship between the two images in the image illustrated in FIG. 14B. Regarding the defect size, image processing is performed on the photographed image to measure the defect size. In addition, the arrow shown to FIG. 14B is the conveyance direction of the glass substrate 82.
  • Patent Document 4 discloses a method and apparatus for photographing the same defect at two positions using reflected light of light incident on a transparent substrate or the like and measuring the height position of the defect from the positional relationship between the two images. To 6, 8 etc.
  • FIG. 15A is an explanatory view schematically showing a third measurement method.
  • the glass substrate 82 light is incident on the same side as the first line camera 81 a, so that the reflected light reaches the first line camera 81 a To.
  • the second line camera 81 b light is incident on the same side as the second line camera 81 b, the reflected light to reach the second line camera 81 b.
  • FIG. 15B is an example of an image captured by the third measurement method.
  • the third measurement method as shown in FIG. 15B, an image taken by one line camera from the upper side of the glass substrate and an image taken by the other line camera from the lower side of the glass substrate are obtained. Two images are captured in each image.
  • the height direction position of the defect 83 is calculated from the positional relationship of the images in each image taken from the upper side and the lower side of the glass substrate.
  • FIG. 15B illustrates a case where images are overlapped in an image taken from above.
  • image processing is performed on the photographed image to measure the defect size.
  • the arrow shown to FIG. 15B is the conveyance direction of the glass substrate 82.
  • Patent Document 7 describes a method of obtaining a height position of a defect by taking images from both sides of a transparent substrate or the like.
  • the position in the height direction of the defect is calculated on condition that images of the same defect do not overlap in the image.
  • the height direction position of the defect may be calculated using the other image.
  • FIG. 16 is an explanatory diagram showing positions when defects in the glass substrate being conveyed are photographed by the line camera.
  • the figure shown in the upper part of FIG. 16 is a side view of the glass substrate, and the figure shown on the left side of the lower part of FIG. 16 is a top view corresponding to the side view shown in the upper part of FIG.
  • the diagram shown on the right side of the lower stage of FIG. 16 shows an image obtained when one defect 83 in the glass substrate 82 being conveyed is photographed.
  • the rectangle shown in the side view and the top view shown in FIG. 16 represents the defect 83 in the glass substrate 82.
  • One defect 83 moves with the glass substrate 82 being conveyed.
  • the defect 83 when moved to the position 91 and the defect 83 when moved to the position 92 are respectively illustrated.
  • the light reaching the line camera 81 enters the glass substrate 82 being conveyed from the surface of the glass substrate 82 on the line camera side. Then, when the incident light reaches the interface on the opposite side to the incident side of the glass substrate 82, it is reflected at the interface, passes through the interface on the incident side, and reaches the line camera 81.
  • the incident angle ⁇ of light reaching the line camera 81 depends on the installation position of the line camera 81. By fixing the installation position of the line camera 81, the incident angle ⁇ is determined as a fixed value.
  • the light refraction angle ⁇ is determined depending on the light incident angle ⁇ and the refractive index n of the glass substrate 82.
  • the incident angle ⁇ and the refractive index n are known, and the refraction angle ⁇ is fixed as a fixed value.
  • the relationship of the formula (1) is established between the refractive index n, the incident angle ⁇ , and the refractive angle ⁇ .
  • the refraction angle ⁇ can be obtained by solving the equation (1) with respect to ⁇ .
  • the position d in the height direction from the surface opposite to the line camera 81 on the glass substrate 82 to the defect 83 is the measurement object.
  • the line camera 81 continues to photograph the inside of the glass substrate 82.
  • the defect 83 moves together with the glass substrate 82 in the transport direction. Then, when the defect 83 moves to the first intersection position 91 with the light path that reaches the line camera 81 after being incident on the glass substrate 82 and reflected at the interface, the line camera 81 displays the first image as the defect 83. An image (hereinafter referred to as a first image) is taken. Further, when the defect 83 moves to the second intersection position 92 with the light path, the line camera 81 captures a second image (hereinafter referred to as a second image) as an image of the defect 83. As a result, the first image 98 and the second image 99 appear in the captured image, as shown on the right side of the lower part of FIG.
  • the defect 83 When the defect 83 is light transmissive, the light transmitted through the defect 83 reaches the line camera 81 and is captured as an image. When the defect 83 is a light shielding defect, the defect 83 appears on the image as a black image. The defect 83 is captured as an image when it moves to the positions 91 and 92 regardless of whether or not it is light-shielding.
  • the moving distance of the defect 83 from the first image photographing position 91 to the second image photographing position 92 is assumed to be yd .
  • a series of shooting positions in the front direction of the line camera 81 is referred to as a center line 95. More specifically, a straight line obtained by orthogonally projecting a series of shooting positions in the front direction of the line camera 81 onto the interface of the glass substrate 82 is the center line 95.
  • y d is the photographed image (see the lower right side of FIG. 16), the image when the first image 98 and second image 99, orthogonally projected to the line 96 in the image corresponding to the center line 95 Measurements can be made based on a distance of 98,99.
  • an angle formed by a straight line obtained by orthogonally projecting a straight line from the line camera 81 toward the photographing position 91 of the first image onto the interface of the glass substrate and the center line 95 is defined as ⁇ .
  • the angle formed by the line 96 and the straight line passing through the centers of the first image 98 and the second image 99 is ⁇ .
  • tan ⁇ can be calculated as follows. Hereinafter, calculation of tan ⁇ will be described after describing y c shown in the top view on the left side of the lower stage of FIG.
  • FIG. 16 shows a case where the defect 83 is displaced from the front of the line camera 81.
  • FIG. 17 when it is assumed that the defect 83 exists in front of the line camera 81, a position obtained by orthogonally projecting the position 92 where the second image is photographed on the interface of the glass substrate 82, and the line camera 81 the lens portion will be the distance between the position orthogonal projection on the interface of the glass substrate 82 is referred to as the imaging distance y c.
  • the imaging distance y c varies depending on the height direction position d of the defect 83.
  • the imaging distance is the minimum value y 1 becomes, when d is the minimum, the imaging distance y c is the maximum value y 2 (see a side view of the upper part of FIG. 17). That is, y 1 ⁇ y c ⁇ y 2 .
  • y c depends strictly on d, but y c may be determined in advance in the range of y 1 ⁇ y c ⁇ y 2 , for example. not be a y c accurate value, if a value in a range of y 1 ⁇ y c ⁇ y 2 , contains only error negligible in tan .theta.
  • x cc can be specified based on the distance from the line 96 corresponding to the center line 95 to the second image 99 in the photographed image (see the lower right side in FIG. 16). That is, the number of pixels corresponding to the distance from the line 96 to the second image 99 in the image is counted. Since the position of the line camera 81 is fixed, the distance in real space per pixel is also determined as a fixed value. The length of x cc can be calculated by multiplying the number of pixels corresponding to the distance from the line 96 to the second image 99 by the distance in real space per pixel.
  • tan ⁇ can be expressed by an approximate expression using y c and x cc as shown in the following expression (3). That is, tan ⁇ can be obtained by the calculation of Equation (3) using y c and x cc .
  • Patent Document 8 describes a method in which light is incident on a glass plate while moving the glass plate, a defect is detected by the incident light and reflected light, and the height direction position of the defect is calculated. .
  • a defect pattern when a defect pattern is detected, when there is no pattern of almost the same size in the moving direction of the glass plate, that is, when there is a defect near the back surface of the glass plate or there is a defect. If it is larger, the defect height position is determined to be zero. For this reason, the method described in Patent Document 8 cannot accurately determine the position of the defect in the height direction in the above case.
  • the surface of the glass substrate has no bulge due to defects.
  • a bubble is mentioned as an example of the defect in a glass substrate. If the bubbles are in the vicinity of the surface of the glass substrate, there arises a problem that the surface of the glass substrate is swollen.
  • the cell gap is not uniform due to the bulge.
  • a liquid crystal display panel that displays a three-dimensional image (three-dimensional image)
  • two types of images a left-eye image and a right-eye image
  • the amount of video information handled is doubled.
  • the surface bulge exceeds a certain limit, when the glass substrates are stacked, the load concentrates on the bulge and causes cracking.
  • an object of the present invention is to provide a glass substrate in which at least one surface is not expanded.
  • the thickness of the glass substrate is T ( ⁇ m)
  • the distance from the surface of the glass substrate to the bubbles present in the glass substrate is D ( ⁇ m)
  • the spherical equivalent diameter of the bubbles is e. ( ⁇ m)
  • the spherical equivalent diameter e of bubbles existing in a layer within T / 2 ( ⁇ m) from at least one surface satisfies e ⁇ 0.01 ⁇ D 1.6 +15.
  • the thickness T ( ⁇ m) of the glass substrate according to the present invention is not particularly limited, but when bubbles are present in the glass substrate, the thinner the thickness T ( ⁇ m) of the glass substrate, the smaller the glass substrate surface from the glass substrate surface.
  • the distance to the bubble present in D becomes smaller ( ⁇ m) and the glass substrate surface is more likely to swell, it is preferably 10 ⁇ m or more and 700 ⁇ m or less, more preferably 10 ⁇ m or more and 400 ⁇ m or less, further preferably 10 ⁇ m or more and 100 ⁇ m or less 10 micrometers or more and 50 micrometers or less are especially preferable.
  • the glass substrate according to the present invention irradiates light from a light source (for example, the light source 2) onto the glass substrate conveyed along the grid direction, and imaging means (positioned at a position where the light reflected by the glass substrate reaches). For example, based on the photographing step of photographing the glass substrate by the line camera 3) and the positional relationship between two overlapping elliptical images caused by the same bubbles in the glass substrate in the image photographed by the photographing means.
  • a light source for example, the light source 2
  • imaging means positioned at a position where the light reflected by the glass substrate reaches.
  • the calculation step for calculating the height direction position of the bubble in the glass substrate the sphere conversion diameter calculation step for calculating the sphere conversion diameter e of the bubble, and from the surface of the glass substrate determined by the height direction position of the bubble to the bubble And a determination step of determining whether or not e ⁇ 0.01 ⁇ D 1.6 +15 is satisfied between the distance D of the bubble and the spherical equivalent diameter e of the bubble, In both cases, it is determined that the sphere equivalent diameter e of bubbles present in the layer within T / 2 ( ⁇ m) from the surface satisfies e ⁇ 0.01 ⁇ D 1.6 +15.
  • the glass substrate according to the present invention is parallel to a direction corresponding to the conveyance direction of the glass substrate in a circumscribed rectangle of two overlapping images (for example, images 21 and 22) caused by the same bubble in the calculation step.
  • the height direction position of the bubble in the glass substrate is calculated from the refraction angle of the light in the glass substrate, and the length of the bubble diameter in the direction perpendicular to the transport direction is calculated by the image taken by the photographing means.
  • the spherical equivalent diameter e of bubbles present in a layer within T / 2 ( ⁇ m) at least from the surface is e ⁇ 0.01 ⁇ D. It is determined that 1.6 + 15 is satisfied.
  • the glass substrate according to the present invention can change the position of the image in the width direction of the glass substrate perpendicular to the transport direction from the positional relationship between two overlapping images caused by the same bubble in the calculation step (for example, the variable u), a feature value (for example, s or r) of a bubble is calculated using a predetermined calculation formula (for example, formula (6) or formula (7)) included as u), and using the feature value,
  • the length of the bubble diameter parallel to the transport direction is subtracted from the length in real space corresponding to the number of pixels on the side parallel to the direction corresponding to the transport direction of the glass substrate.
  • the glass substrate according to the present invention uses a predetermined calculation formula (for example, formula (6)) from the positional relationship between two overlapping images caused by the same bubble in the calculation step.
  • a predetermined calculation formula for example, formula (6)
  • calculate the length of the bubble diameter parallel to the transport direction for example, s
  • a value obtained by subtracting the length of the diameter from the calculated value is calculated
  • the height direction position of the bubble in the glass substrate is calculated based on the calculated value and the refraction angle of the light in the glass substrate.
  • calculating a bubble diameter length in a direction orthogonal to the transport direction based on the image taken in step (b).
  • the length of the bubble diameter parallel to the transport direction is s ( ⁇ m).
  • the length of the bubble diameter in the direction perpendicular to the conveying direction is t ( ⁇ m)
  • the sphere equivalent diameter e of the bubble is calculated by calculating (s ⁇ t 2 ) 1/3 , and the bubble is removed from the surface of the glass substrate determined by the height direction position of the bubble in the determination step.
  • the glass substrate according to the present invention uses a predetermined calculation formula (for example, formula (7)) in a calculation step to calculate a feature amount from a positional relationship between two overlapping images caused by the same bubble.
  • the ratio of the two diameters of bubbles (for example, r) is calculated, and the angle between the line in the image corresponding to the photographing position in the front direction of the photographing means and the line passing through the centers of the two images From the length in real space according to the number of pixels on the side parallel to the direction corresponding to the glass substrate transport direction in the circumscribed rectangle of the two overlapping images, the ratio of bubbles parallel to the transport direction
  • the value obtained by subtracting the length of the diameter is calculated, and the position in the height direction of the bubble in the glass substrate is calculated based on the calculated value and the refraction angle of the light in the glass substrate.
  • the bubble diameter in the direction perpendicular to the transport direction A step of calculating a sphere equivalent diameter calculation step, wherein the bubble diameter length parallel to the transport direction is s ( ⁇ m), and the bubble diameter length in the direction perpendicular to the transport direction is t ( ⁇ m).
  • To calculate the sphere equivalent diameter e of the bubble by calculating (s ⁇ t 2 ) 1/3, and in the determination step, from the surface of the glass substrate determined by the position in the height direction of the bubble to the bubble
  • the glass substrate inspection method for determining whether or not e ⁇ 0.01 ⁇ D 1.6 +15 is satisfied between the distance D of the bubble and the sphere equivalent diameter e of the bubble is at least T / 2 (from the surface). It is determined that the sphere equivalent diameter e of bubbles existing in the layer within ⁇ m) satisfies e ⁇ 0.01 ⁇ D 1.6 +15.
  • the glass substrate according to the present invention is a glass substrate obtained from a glass ribbon manufactured by a float process, and a layer within T / 2 ( ⁇ m) from the surface corresponding to the bottom surface of the glass ribbon.
  • the glass substrate according to the present invention is a glass substrate of a liquid crystal display panel, and the spherical equivalent diameter e of bubbles existing in a layer within T / 2 ( ⁇ m) from the surface directed toward the liquid crystal is e ⁇ e. It may be a glass substrate satisfying 0.01 ⁇ D 1.6 +15.
  • the glass substrate of the present invention it is possible to prevent swelling on the surface on at least one side.
  • Explanatory drawing which shows the example of the side view of the glass substrate of this invention.
  • Explanatory drawing which shows the shape of foam.
  • Explanatory drawing which shows the state which observed the bubble from upper direction.
  • the schematic diagram which shows the structural example of the test
  • Explanatory drawing which shows a center line.
  • Explanatory drawing which shows the relationship between the direction of the long diameter of the bubble in a glass substrate, and the conveyance direction by the conveyance roller 1.
  • inspection method Explanatory drawing which shows the area
  • the flowchart which shows the example of the 2nd glass substrate inspection method.
  • Explanatory drawing which shows the example of the glass substrate imaged in an image.
  • the flowchart which shows the example of the 3rd glass substrate test
  • Explanatory drawing which shows the example of the glass substrate imaged in an image.
  • Explanatory drawing which shows a 1st measuring method typically.
  • Explanatory drawing which shows a 2nd measuring method typically.
  • Explanatory drawing which shows a 3rd measuring method typically.
  • Explanatory drawing which shows the example of the image of the defect image
  • Explanatory drawing which shows a position when the defect in the glass substrate conveyed is image
  • FIG. 1 is an explanatory view showing an example of a side view of a glass substrate of the present invention.
  • the glass substrate 51 of the present invention is a glass substrate that satisfies the following conditions. That is, in the glass substrate 51 of the present invention, the thickness of the glass substrate is T ( ⁇ m), the distance from the surface of the glass substrate to the bubbles present in the glass substrate is D ( ⁇ m), and the bubble sphere
  • T the thickness of the glass substrate
  • D ⁇ m
  • the bubble sphere When the converted diameter is e ( ⁇ m), the sphere converted diameter e of bubbles existing in a layer within T / 2 ( ⁇ m) from at least one of the two surfaces of the glass substrate is expressed by the following formula: (4) Satisfy the condition of satisfying.
  • the distance from the surface of the glass substrate to the bubble is determined based on the surface closer to the bubble.
  • the distance D from the surface of the glass to the bubble 57 is based on the surface 52 closer to the bubble 57 out of the two surfaces 52 and 53 that are the main surfaces of the glass substrate. , The distance from the surface 52 to the bubble 57.
  • bubbles are a kind of defects in glass substrates and glass ribbons.
  • the bubble 57 is illustrated in a spherical shape for the sake of convenience in order to show the spherical equivalent diameter e, but the actual bubble has a shape close to a spheroid obtained by rotating the ellipse around the major axis of the ellipse. It has become. Therefore, the bubbles in the glass can be regarded as a spheroid obtained by rotating the ellipse around the major axis of the ellipse. Further, the length of the minor axis of the ellipse is t ( ⁇ m), and the length of the major axis is s ( ⁇ m). FIG.
  • FIG. 2 is an explanatory view showing the shape of such a bubble.
  • FIG. 3 is explanatory drawing which shows the state which observed such a bubble from upper direction.
  • the height of the bubble and the width of the bubble can be regarded as a common value, both of which are t.
  • the bubble length is equal to the major axis of the ellipse and is s.
  • the sphere equivalent diameter of this bubble is e ( ⁇ m)
  • the sphere equivalent diameter e is obtained by the calculation of the following equation (5).
  • the spherical equivalent diameter e is the cube root of (s ⁇ t 2 ).
  • the glass substrate 51 is a glass substrate used as a transparent substrate of a liquid crystal display panel.
  • the distance from the surface to the bubble is defined as D ( ⁇ m) with reference to at least the surface directed to the liquid crystal side among the two surfaces serving as the main surface of the glass substrate 51
  • the bubble It is only necessary that the equation (4) holds between the sphere equivalent diameter e and the distance D.
  • this bubble is a bubble which exists in a layer within T / 2 ( ⁇ m) from the surface directed to the liquid crystal side, and D ⁇ T / 2.
  • the other surface of the glass substrate is used as a reference, a similar relationship may be established between the spherical equivalent diameter e and the distance D.
  • the surface directed toward the liquid crystal side can be said to be a surface on which a transparent electrode is disposed, for example.
  • the glass substrate 51 shown in FIG. 1 is a glass substrate used for a liquid crystal display panel and the surface 52 is a surface directed to the liquid crystal side, the distance D from the surface to the bubble is measured on the basis of the surface 52. do it.
  • the surface corresponding to the bottom surface of the glass ribbon is polished and the surface is polished.
  • a liquid crystal display panel is manufactured as a configuration facing the liquid crystal side. Therefore, when a glass substrate is sampled from a glass ribbon manufactured by the float process and a glass substrate used for a liquid crystal display panel is manufactured, at least the glass ribbon of the two surfaces serving as the main surfaces of the glass substrate 51 is used.
  • this bubble is a bubble which exists in a layer within T / 2 ( ⁇ m) from the surface corresponding to the bottom surface, and D ⁇ T / 2.
  • the surface corresponding to the top surface of the glass ribbon is used as a reference, a similar relationship may be established between the spherical equivalent diameter e and the distance D.
  • the lower surface of the glass ribbon manufactured by the float process is called a bottom surface, and the upper surface is called a top surface.
  • the glass substrate 51 shown in FIG. 1 is a glass substrate obtained from a glass ribbon manufactured by the float process, and the surface 52 is a surface corresponding to the bottom surface, the surface is based on the surface 52. What is necessary is just to measure the distance D from a bubble to a bubble.
  • the distance D from the surface to the bubble and the sphere equivalent diameter e of the bubble means that the bubble equivalent to the surface 52 has a smaller spherical equivalent diameter. In other words, there is no bubble having a large sphere equivalent diameter near the surface 52. Therefore, swelling of the surface 52 due to the influence of bubbles can be prevented, and the quality of the glass substrate can be improved. Moreover, since the glass substrate 51 of the present invention can prevent the bulge of the surface 52 in this way, the cell gap can be made uniform when used as a transparent substrate in a liquid crystal display panel.
  • the glass substrate 51 of the present invention is A glass substrate in which formula (4) is established between the distance D from the surface 52 to the bubble (where D ⁇ T / 2) and the sphere equivalent diameter e of the bubble, with reference to the surface 52 before polishing. There may be.
  • the glass ribbon manufactured by the float method or the like, and the glass substrate sampled from the glass ribbon have streaks along the main drawing direction of the glass ribbon.
  • the main drawing direction of the glass ribbon means not the drawing of the glass ribbon in the width direction by the guide member, but the direction of drawing along the traveling direction of the glass ribbon.
  • the main drawing direction of the glass ribbon is simply referred to as the drawing direction of the glass ribbon.
  • a streak is a line generated in the drawing direction of the glass ribbon due to fluctuations in plate thickness and waviness in a direction perpendicular to the drawing direction of the glass ribbon. Streaks have also occurred in glass substrates sampled from glass ribbons.
  • the stretch direction of a glass ribbon is the same as the advancing direction sent out from a glass ribbon manufacturing apparatus (not shown), the stretch direction of a glass ribbon, the extending
  • the traveling directions are the same.
  • the distance D from the surface of the glass substrate to the bubble is calculated for bubbles among various defects of the glass substrate.
  • the bubbles in the glass ribbon and the glass substrate are ellipsoids. Therefore, in the image obtained by photographing bubbles in the glass substrate, the bubble image is an ellipse. In the bubble image (elliptical image) photographed as an image, the central portion is white. Therefore, the central portion of the bubble image shown in the image can be used as a characteristic point (hereinafter referred to as a characteristic point).
  • FIG. 4 is a schematic diagram showing a configuration example of an inspection system that inspects whether or not the formula (4) is established between the distance D from the surface of the glass substrate to the bubble and the spherical equivalent diameter e of the bubble.
  • This inspection system includes a conveyance roller 1, a light source 2, a line camera 3, and a calculation device 4.
  • the conveyance roller 1 supports the glass substrate 5 to be inspected and conveys the glass substrate 5 in a constant direction at a constant speed.
  • the glass substrate 5 is conveyed in a direction along the direction of the lines of the glass substrate 5 itself. Therefore, the conveyance direction of the glass substrate 5 by the conveyance roller 1 is the same direction as the straight direction of the glass substrate 5.
  • the surface referred to as the surface 52 in FIG. 1 that determines the distance to the bubble among the two surfaces of the glass substrate is directed to the side opposite to the light source 2 and the line camera 3.
  • the case where the glass substrate 5 is supported by the transport roller 1 is taken as an example.
  • the glass substrate 5 is a glass substrate sampled from a glass ribbon manufactured by the float process
  • the surface corresponding to the bottom surface of the glass ribbon is directed to the side opposite to the light source 2 and the line camera 3,
  • the glass substrate 5 may be supported by the transport roller 1.
  • the glass substrate 5 is supported by the transport roller 1 with the surface directed toward the liquid crystal side facing away from the light source 2 and the line camera 3. Just do it.
  • inspection method the height direction position (distance) from the surface 52 by the side of the conveyance roller 1 in the glass substrate 5 to a bubble is measured.
  • the height direction position is a distance from the surface on the side of the conveying roller 1 to the foam. Therefore, when the reference surface is directed toward the conveying roller 1, the measured value in the height direction position means the distance D from the reference surface to the bubble.
  • the glass substrate 5 may be supported by the transport roller 1 with the surface 52 serving as a reference for determining the distance to the foam facing away from the transport roller 1.
  • the distance D from the reference surface to the bubble is a value obtained by subtracting the measured value in the height direction position from the thickness T of the glass substrate 5.
  • the plate thickness T is known, and the distance D from the reference surface to the foam is the position in the height direction of the foam, regardless of which side the reference surface 52 that determines the distance to the foam is directed to which side. It is determined according to the measured value.
  • the glass substrate 5 is conveyed to the conveying roller 1 with the surface 52 serving as a reference for determining the distance to the foam facing the light source 2 and the line camera 3 on the opposite side (that is, the conveying roller 1 side).
  • the surface 52 serving as a reference for determining the distance to the foam facing the light source 2 and the line camera 3 on the opposite side (that is, the conveying roller 1 side).
  • the light source 2 is disposed on one side of the two surfaces of the glass substrate 5 and irradiates light toward the glass substrate 5. This light enters the glass substrate 5 from the interface 8, passes through the glass substrate, and is reflected by the surface 52 opposite to the incident side. The reflected light passes through the incident-side interface 8 and reaches the line camera 3.
  • the light path is shown in a simplified manner. However, as shown in the side view in the upper part of FIG. 16, the light path is obtained when light enters the interface 8 and at the interface 52. Refraction occurs when passing through the interface 8 after reflection.
  • the line camera 3 is arranged at a position where the light irradiated from the light source 2 and reflected by the glass substrate 5 reaches. Specifically, it is arranged on the same side as the light source 2 with respect to the glass substrate 5. For example, the line camera 3 is arranged in the transport direction of the glass substrate 5 with the light source 2 as a reference. And the line camera 3 image
  • the incident angle ⁇ (see the upper part of FIG. 16) is also determined as a fixed value in the light path. Further, the refractive index n of the glass substrate 5 is also known, and the value of the refraction angle ⁇ in the light path from the light source 2 to the line camera 3 is determined as a fixed value by solving the equation (1). To do.
  • FIG. 5A is an explanatory diagram showing a center line
  • FIG. 5B is an explanatory diagram showing a line corresponding to the center line in the image.
  • FIG. 5A is a top view of the glass substrate 5. The photographing position in front of the line camera 3 is changed with the conveyance of the glass substrate 5, and an orthogonal projection on the continuous interface is shown as a center line 95.
  • FIG. 5B shows an image captured by the line camera 3.
  • a line 96 corresponding to the center line 95 is indicated by a one-dot chain line.
  • This line 96 can be said to be a series of pixels corresponding to the photographing position in the front direction of the line camera 3.
  • the center line 95 is parallel to the transport direction of the glass substrate 5, and the line 96 in the image corresponding to the center line 95 represents the direction corresponding to the transport direction of the glass substrate 5 in the image. be able to.
  • the line 96 in the image represents a direction corresponding to the line direction.
  • a line 96 in the image corresponding to the center line 95 is referred to as a conveyance direction line.
  • the conveyance direction line 96 is shown for explanation, but the conveyance direction line 96 is not shown in the image in the actual captured image.
  • the computing device 4 refers to the image taken by the line camera 3 and measures the height direction position of the bubble.
  • the height direction position of the bubble is the length indicated as “d” in the upper side view of FIG. That is, in the glass substrate 5, the distance from the surface 52 opposite to the light source 2 to the bubble.
  • the arithmetic device 4 calculates the height of the bubbles in the glass substrate 5 based on the positional relationship of the pair of ellipses.
  • the vertical position is calculated. Specifically, the arithmetic device 4 calculates the distance from the real space according to the number of pixels on the side parallel to the direction corresponding to the glass substrate transport direction in the circumscribed rectangle of two oval images that overlap in the image.
  • the value obtained by subtracting the length of the diameter parallel to the conveying direction from the diameter of the bubbles is calculated.
  • being parallel to the direction corresponding to the conveyance direction of the glass substrate is parallel to the conveyance direction line 96 (see FIG. 5B).
  • the arithmetic device 4 calculates the height direction position of the bubble based on the value obtained by the above subtraction and the refraction angle ⁇ at the glass substrate 5. This calculation will be described later with reference to FIG.
  • the long diameter of the bubble in a glass substrate becomes substantially parallel with the conveyance direction by the conveyance roller 1 (in other words, the grid direction of the glass substrate 5).
  • the deviation between the direction of the major diameter 72 of the bubble and the conveyance direction 71 of the glass substrate 5 by the conveyance roller 1 is 10 ° at the maximum.
  • the major axis of the bubble image that appears as an ellipse and the conveyance direction line 96 (See FIG. 5B) is also substantially parallel.
  • the major axis of the bubble image and the conveyance direction line 96 are parallel in the photographed image will be described as an example.
  • the arithmetic unit 4 should just calculate the height direction position of a bubble by a well-known method.
  • the arrangement position of the line camera 3 is fixed. Accordingly, the distance in the real space corresponding to one pixel in the image captured by the line camera 3 is also determined as a fixed value. The distance in the real space according to one pixel in the image is assumed to be known.
  • FIG. 7 is a flowchart showing an example of a first glass substrate inspection method among the glass substrate inspection methods for inspecting whether or not the condition of the formula (4) is satisfied with respect to bubbles present on the glass substrate.
  • the light source 2 starts irradiating light to the glass substrate 5 to be inspected (step S1).
  • the conveyance roller 1 conveys the glass substrate 5 arrange
  • the glass substrate 5 is disposed on the transport roller 1 so that the grid direction of the glass substrate 5 itself is the same as the transport direction, and is transported along the grid direction.
  • the line camera 3 generates an image as a photographing result (step S2).
  • the line camera 3 transmits an image obtained by photographing to the arithmetic device 4.
  • the image obtained in step S2 includes a bubble image. Specifically, an oval image is copied as a bubble image in the image. Also, as described in FIG. 16, when the bubble moves to a position where it overlaps the light path before reflection (position 91 shown in the side view of the upper stage of FIG. 16), the bubble overlaps the light path after reflection. When moved to a position (position 92 shown in the upper side view of FIG. 16), each image is taken as an image. Therefore, when one bubble exists, two images appear in the image 2. When the bubbles are large or when bubbles are present near the surface 52 of the glass substrate 5 (see FIG. 4), the two images overlap.
  • the arithmetic device 4 When the arithmetic device 4 receives the image generated in step S2, the arithmetic device 4 detects a circumscribed rectangular region of two overlapping images from the image. Then, among the sides of the circumscribed rectangle, the number of pixels on the side parallel to the direction corresponding to the transport direction of the glass substrate 5 in the image (that is, the side parallel to the transport direction line 96 in the image) is counted. Then, the arithmetic unit 4 multiplies the number of pixels on the side by the distance in the real space per pixel, thereby calculating the length in the real space according to the number of pixels on the side (step S3). .
  • FIG. 8 is an explanatory diagram showing a circumscribed rectangular region of two overlapping images.
  • a circumscribed rectangle 23 shown in FIG. 8 is determined as a circumscribed rectangle of the two overlapping images 21 and 22. Images 21 and 22 are elliptical and can be considered congruent.
  • the long side of the circumscribed rectangle 23 is parallel to the transport direction line 96 (see FIG. 5B).
  • the arithmetic unit 4 counts the number of pixels of the long side 24 of the circumscribed rectangle 23 of the images 21 and 22 and multiplies the number of pixels by the distance in real space per pixel.
  • the length in the real space corresponding to the long side 24 is represented by “h”.
  • the unit of h is assumed to be ⁇ m.
  • the central portion 21a of the image 21 is white on the image.
  • This central portion 21 a is a feature point of the image 21.
  • the arithmetic unit 4 counts the number of pixels from the central portion 21 a of one image 21 to the shorter short side of the circumscribed rectangle 23. That is, the number of pixels in the portion indicated by the symbol A in FIG. 8 is counted.
  • the arithmetic device 4 multiplies the number of pixels by the distance in real space per pixel. This multiplication result is the length in the real space corresponding to the portion corresponding to A shown in FIG. 8, and specifically, the bubble diameter parallel to the transport direction (of the foam diameter, parallel to the transport direction). The diameter is half the diameter. In the example shown in FIG.
  • this diameter is the long diameter of the foam.
  • the arithmetic device 4 calculates the length of the bubble diameter parallel to the transport direction by doubling the multiplication result (step S4).
  • the length of the bubble diameter corresponds to s shown in FIG.
  • the unit of s is assumed to be ⁇ m.
  • a portion in the image corresponding to the length of s / 2 in the real space is a portion indicated by reference numeral A in FIG.
  • A A ′.
  • FIG. 8 illustrates an example in which the long diameter of the bubble image and the conveyance direction line are parallel to each other, but the long diameter of the bubble image and the conveyance direction line are completely parallel to each other. It may not be.
  • the deviation between the long diameter of the bubbles in the glass substrate and the conveying direction of the glass substrate is only 10 ° at the maximum (see FIG. 6). Therefore, even if the major axis of the bubble image and the conveyance direction line are not completely parallel, they are regarded as being parallel, and h and s are calculated in the same manner as in steps S3 and S4. It's okay.
  • the number of pixels on the long side of the circumscribed rectangle of two overlapping images may be counted, and the number of pixels may be multiplied by the distance in real space per pixel.
  • the number of pixels from the center of one image to the short side of the circumscribed rectangle is counted, and the distance in real space per pixel is counted as the number of pixels. And multiplying the multiplication result by two. Even if the major axis of the bubble image and the conveyance direction line are not completely parallel, h and s are calculated as described above, and the height direction position of the bubble is calculated using the h and s. However, only errors that can be ignored are included. Also in this case, s may be regarded as the long diameter of the bubble.
  • step S5 the arithmetic unit 4 subtracts s calculated in step S4 from h calculated in step S3 (step S5).
  • this subtraction result be yd.
  • y d from the position of first image is captured, the second image is a moving distance of the bubble to the position taken. That, y d calculated in step S5 is the distance between two points where the image of the bubbles are captured. Note that portions in the image corresponding to the length of y d in the real space, a portion indicated by reference sign B in FIG. 8.
  • Calculation device 4 uses a y d calculated in step S5, and a refraction angle ⁇ to a predetermined performs calculation of equation (2) to calculate the height direction position d of the foam. That is, y d / (2 ⁇ tan ⁇ ) is calculated, and the calculation result is set to d (step S6).
  • the height direction position d of the foam is a distance from the surface 52 (see FIG. 4) on the side of the conveyance roller 1 in the glass substrate 5 to the foam.
  • the computing device 4 determines a distance D from the surface 52 as a reference to the bubble according to the height direction position d of the bubble (step S7).
  • the distance D from the surface to the foam is the height of the foam calculated in step S6. It is equal to the direction position d. Therefore, what is necessary is just to let the value of the height direction position d of a bubble be the distance D from the surface 52 used as a reference
  • standard to a bubble. That is, the arithmetic unit 4 may determine the value of the distance D with D d.
  • the thickness T of the glass substrate is assumed to be known.
  • the arithmetic device 4 calculates the length of the bubble diameter in the direction orthogonal to the transport direction based on the image photographed in step S2 (step S8).
  • step S8 a circumscribed rectangular area (see FIG. 8) of the two overlapping images detected in step S3 is used.
  • the arithmetic unit counts the number of pixels from the center of one of the two overlapping images to the longer long side of the circumscribed rectangle, and calculates the number of pixels per pixel. Is multiplied by the distance in the real space and the multiplication result is doubled. This value is the width of the bubble and corresponds to t shown in FIG.
  • the unit of t is ⁇ m.
  • the height of the bubbles is t ( ⁇ m) as well as the width of the bubbles.
  • the computing device 4 uses the bubble diameter length s parallel to the transport direction calculated in step S4 and the bubble diameter length t in the direction orthogonal to the transport direction calculated in step S8.
  • the sphere equivalent diameter e of the bubble is calculated (step S9).
  • the arithmetic device 4 may calculate the sphere equivalent diameter e by calculating the equation (5). That is, the arithmetic device 4 calculates the spherical equivalent diameter e by calculating the cube root of (s ⁇ t 2 ).
  • the unit of e is assumed to be ⁇ m.
  • steps S3 to S9 are performed for each pair of elliptical images to be paired.
  • the arithmetic device 4 detects bubbles whose distance D from the surface 52 of the glass substrate 5 is T / 2 or less. T is the thickness of the glass substrate 5. And the arithmetic unit 4 selects the bubble in order, and determines whether Formula (4) is materialized between the distance D calculated about the selected bubble, and the spherical conversion diameter e (step S10). The arithmetic unit calculates the distance D from the surface 52 and the spherical equivalent diameter e for each pair of elliptical images that form a pair.
  • step S10 the arithmetic unit 4 determines that there is one bubble for each elliptical group whose distance D is T / 2 or less, whereby the distance D from the surface 52 is T / 2 or less. What is necessary is just to detect the bubbles. Then, the detected bubbles are sequentially selected individually, and the relationship “e ⁇ 0.01 ⁇ D 1.6 +15” is established between the distance D calculated for the selected bubbles and the sphere equivalent diameter e. It is determined whether or not.
  • the glass substrate in which the relationship “e ⁇ 0.01 ⁇ D 1.6 +15” is established for each of the bubbles whose distance D from the surface 52 is T / 2 or less corresponds to the glass substrate of the present invention. To do.
  • the glass The substrate does not correspond to the glass substrate of the present invention.
  • the distance D from the surface 52 is T / 2 or less. It is determined that the relationship of “e ⁇ 0.01 ⁇ D 1.6 +15” is established for each of the formed bubbles.
  • the height position of the defect cannot be measured.
  • the height direction position of the bubbles can be calculated even if the images due to the same bubbles overlap. Therefore, the distance D from the surface 52 can be determined, and for the foam whose distance D from the surface 52 is T / 2 or less, the formula (4) between the distance D and the spherical equivalent diameter e of the foam. Whether or not is established can be determined.
  • the measurement result of the height direction position of the defect is easily influenced by the vertical vibration of the glass substrate to be conveyed, but the above steps S1 to S10 are performed.
  • the glass substrate inspection method shown in Fig. 5 is less susceptible to such influence, and the height direction position of the bubbles can be calculated with high accuracy.
  • the equation (4) is established between the distance D and the sphere equivalent diameter e of the bubbles. it can.
  • the glass substrate inspection method to be inspected is not limited to the method shown in FIG. 7 (steps S1 to S10).
  • the 2nd glass substrate inspection method and the 3rd glass substrate inspection method which perform the same inspection are explained. In either case, for example, the inspection can be performed using the inspection system illustrated in FIG.
  • the positional relationship between the light source 2 and the line camera 3 with respect to the glass substrate 5 to be inspected is the same as in the first glass substrate inspection method, and a description thereof will be omitted.
  • the method of measuring the height direction position d of the bubbles by the arithmetic device 4 is different from the first glass substrate inspection method.
  • the glass substrate is disposed and transported on the transport roller 1 so as to be transported in a direction along the straight direction of the glass substrate itself.
  • the arithmetic unit 4 calculates the feature amount of bubbles in the glass substrate 5 to be inspected. Then, the arithmetic device 4 uses the feature amount to calculate the length in real space according to the number of pixels on the side parallel to the direction corresponding to the glass substrate transport direction in the circumscribed rectangle of the two overlapping images. A value obtained by subtracting the length of the bubble diameter parallel to the conveyance direction of the glass substrate (of the bubble diameters, the diameter parallel to the conveyance direction) is calculated. In addition, when calculating the above-described feature amount, the arithmetic device 4 calculates the feature amount using a predetermined calculation formula based on the positional relationship between two overlapping images.
  • the length of the bubble diameter parallel to the glass substrate transport direction is calculated as the feature amount.
  • the above formula for calculating the feature amount is expressed by the coordinates of the position corresponding to the feature point of the image with reference to the edge of the glass substrate, h described in the first glass substrate inspection method, and two overlapping images. Is determined in advance as a function with the area as a variable.
  • the calculation formula for determining this feature amount can be expressed by, for example, the following formula (6).
  • Equation (6) “u” is the coordinates of the position corresponding to the feature point of the image with the edge of the glass substrate as a reference. Specifically, the bubble is formed from the side surface of the glass substrate parallel to the transport direction. The distance to the center.
  • the unit of u is assumed to be mm.
  • “H” is a value obtained by the same calculation as in step S3 in the first glass substrate inspection method based on an image obtained by photographing bubbles.
  • the unit of h is assumed to be ⁇ m.
  • p is the area of the area occupied by the two images (the union of the areas of the two images) in the image obtained by photographing the bubble, and is specifically represented by the number of pixels in the image.
  • a 1 to a 10 are coefficients.
  • s in Formula (6) is the diameter of the bubble parallel to the conveyance direction of a glass substrate.
  • the diameter s which is a feature value, is easily affected by the position of the bubble in the width direction in the glass ribbon.
  • the position where the glass substrate is sampled from the belt-like glass ribbon is generally constant in the width direction of the glass ribbon. For example, if the distance from the side of the glass ribbon to the glass substrate sampling position is X, it is common to sample the glass substrate group sequentially with X being constant. From this, the diameter s, which is the feature amount, is also easily affected by the position of the bubble in the direction perpendicular to the conveyance direction in the glass substrate (in other words, the position of the bubble in the direction perpendicular to the streak direction in the glass substrate). I can say that. Therefore, a calculation formula including the variable u (for example, the above formula (6)) is used for the calculation of s.
  • the above s corresponds to the major axis of the bubble.
  • the above feature quantity s is regarded as the major axis of the bubble. be able to.
  • the coefficients a 1 to a 10 in equation (6) are obtained in advance by the least square method. Specifically, s and u are measured by using a sample foam. Further, h is obtained by performing the same processing as steps S1 to S3 described in the first glass substrate inspection method on the glass substrate containing bubbles as a sample. At that time, the number of pixels p in the region that is the union of the two images is counted from the image obtained in step S2. A plurality of sample bubbles are prepared, and s, u, h, and p are obtained for each of these bubbles.
  • the coefficients a 1 to a 10 in Equation (6) may be obtained from the set of s, u, h, and p by the least square method. .
  • FIG. 9 is a flowchart showing an example of the second glass substrate inspection method.
  • symbol same as FIG. 7 is attached
  • subjected and description is abbreviate
  • step S3 The operation until h is calculated in step S3 is the same as that in the first glass substrate inspection method.
  • FIG. 10 is an explanatory diagram illustrating an example of a glass substrate that is captured in an image. If bubbles are present, bubble images 21 and 22 are also captured in the image. In the example shown in FIG. 10, the central portions 21 a and 22 a of the images 21 and 22 also appear as white areas in the image as image feature points. Although the circumscribed rectangle 23 of the images 21 and 22 is illustrated, the circumscribed rectangle 23 is not reflected in the image.
  • step S3 the arithmetic unit 4 counts the number of pixels from the end 31 of the glass substrate in the image to the feature point of the image. That is, the number of pixels in the portion indicated by the symbol C in FIG. 10 is counted. Then, the arithmetic device 4 multiplies the number of pixels by the distance in the real space per pixel (step S11). This multiplication result corresponds to the distance u from the end (side surface) of the glass substrate to the bubble in the real space. That is, in step S11, u is calculated.
  • the distance u may be calculated as follows. Since the installation position of the line camera 3 is fixed, the distance (referred to as u 0 ) in real space from the end of the glass substrate to the end on the side of the glass substrate in the image photographed by the line camera 3. Can be obtained in advance. Then, the arithmetic device 4 calculates the distance from the end portion of the photographed image to the feature point of the image.
  • the number of pixels from the edge of the image to the feature point may be counted, and the number of pixels may be multiplied by the distance in real space per pixel.
  • the arithmetic device 4 may calculate the distance u from the end (side surface) of the glass substrate to the defect in the real space by adding u 0 determined by the line camera installation position to this distance.
  • the central portion 21 a of the image 21 as feature points, and as an example the case of obtaining the distance from the end 31 of the glass substrate in the image to the center portion 21 a.
  • a feature point it may be used a central portion 22 a of the other image 22. Whichever central portion is used as the feature point, the distance u from the end (side surface) of the glass substrate to the bubble in the real space can be obtained.
  • the count result of the number of pixels differs depending on which of the central portions 21 a and 22 a is used as the feature point, the difference is slight, and the distance u includes only a negligible error.
  • a characteristic point in the circumscribed rectangle 23 (for example, any vertex of the circumscribed rectangle 23) may be used as the feature point. Even in this case, the distance u includes only a negligible error.
  • step S11 the arithmetic unit 4 counts the number of pixels p in the area as the area of the area (the union of the areas of the two images) occupied by the two overlapping images 21 and 22 (step S12).
  • the arithmetic unit 4 calculates the diameter s parallel to a conveyance direction among the diameters of a bubble by substituting h, u, p calculated
  • the diameter s is the major axis of the bubble.
  • the diameter s calculated in step S13 is the major axis of the bubble. Can be considered.
  • the subsequent processing is the same as steps S5 to S10 in the first glass substrate inspection method.
  • the arithmetic unit 4 from h calculated in step S3, by subtracting the s calculated in step S13, obtains the y d (step S5). And the arithmetic unit 4 calculates Formula (2) using yd and the refraction angle (beta), and calculates the height direction position d of a bubble (step S6).
  • the computing device 4 determines a distance D from the surface 52 as a reference to the bubble according to the height direction position d of the bubble (step S7).
  • the computing device 4 calculates the bubble length t in the direction orthogonal to the transport direction based on the image photographed in step S2 (step S8).
  • the calculation method of t may be the same as step S8 in the first glass substrate inspection method.
  • the computing device 4 calculates the sphere equivalent diameter e of the bubble by calculating the cube root of (s ⁇ t 2 ) (step S9).
  • steps S3 to S9 are performed for each pair of elliptical images that form a pair.
  • the distance D from the surface 52 is T / 2 or less. For each of the bubbles, it is determined that the relationship “e ⁇ 0.01 ⁇ D 1.6 +15” is established.
  • the height direction position of the bubbles can be calculated.
  • an equation between the distance D and the spherical equivalent diameter e of the bubbles is given. It can be accurately determined whether (4) is established.
  • the third glass substrate inspection method will be described. Also in the third glass substrate inspection method, the positional relationship between the light source 2 and the line camera 3 (see FIG. 4) with respect to the glass substrate 5 to be inspected is the same as that in the first glass substrate inspection method, and the description thereof is omitted. .
  • the arithmetic unit 4 calculates the characteristic amount of foam in the glass substrate 5, by using the feature amount, calculates the y d.
  • the bubble diameter s is calculated as the feature amount
  • the ratio of the two diameters of the bubbles is calculated.
  • r 2 / r 1 is calculated as a feature amount.
  • r 2 / r 1 is denoted as r.
  • r 1 above corresponds to the minor diameter of the bubbles
  • r 2 corresponds to the major axis of the foam. That is, “major axis / minor axis” is calculated as the feature amount r.
  • the above r 1 is regarded as the minor axis of the bubble
  • the above r 2 can be regarded as the major axis of the foam.
  • r calculated as the feature amount can be regarded as the “major axis / minor axis” of the bubble. . Even if considered in this way, r includes only a negligible error and does not affect the calculation of the height direction position d of the bubble.
  • the arithmetic device 4 calculates r as the feature amount of the bubble, and then uses the r to calculate y d (the bubble from the position where the first image was taken to the position where the second image was taken) The travel distance).
  • the arithmetic unit 4 calculates the feature amount using a predetermined calculation formula based on the positional relationship between the two overlapping images.
  • the formula for calculating the feature amount r is the coordinates of the position corresponding to the feature point of the image with the end of the glass substrate as a reference, h described in the first glass substrate inspection method, and two overlapping images. Is determined in advance as a function with the area as a variable.
  • the calculation formula for obtaining the feature amount r can be expressed by the following formula (7), for example.
  • the variables u, h, and p in this function are the same as the variables u, h, and p in Expression (6) shown in the second glass substrate inspection method. That is, “u” is the distance from the side surface of the glass substrate parallel to the transport direction to the center of the bubble. “H” is a value obtained by the same calculation as in step S3 in the first glass substrate inspection method based on an image obtained by photographing bubbles. p is the area of the area occupied by the two images (the union of the areas of the two images) in the image obtained by photographing the bubble, and is specifically represented by the number of pixels in the image. In Equation (7), b 1 to b 10 are coefficients.
  • the feature amount r is easily affected by the position of the bubble in the width direction in the glass ribbon. And as already demonstrated, it is common that the position which samples a glass substrate from a strip-shaped glass ribbon is constant in the width direction of a glass ribbon. Therefore, the feature amount r is easily affected by the position of bubbles in the direction perpendicular to the conveyance direction on the glass substrate (in other words, the position of bubbles in the direction perpendicular to the streak direction on the glass substrate). I can say that. Therefore, a calculation formula including the above variable u (for example, the above formula (7)) is used for the calculation of r.
  • the coefficients b 1 to b 10 in Equation (7) are obtained in advance by the least square method. Specifically, r and u are actually measured using bubbles as samples. Further, h is obtained by performing the same processing as steps S1 to S3 described in the first glass substrate inspection method on the glass substrate containing bubbles as a sample. At that time, the number of pixels p in the region that is the union of the two images is counted from the image obtained in step S2. A plurality of sample bubbles are prepared, and r, u, h, and p are obtained for each of these bubbles.
  • the coefficients b 1 to b 10 in Equation (7) may be obtained from the set of r, u, h, and p by the least square method. .
  • R has a correlation with u, h, and p, and each coefficient in Equation (7) can be obtained by the least square method.
  • the arithmetic unit 4 calculates u by obtaining u, h, and p from an image obtained by photographing the glass substrate that is the measurement target of the height direction position of the bubble, and substituting it into equation (7). .
  • the arithmetic device 4 obtains the value of tan ⁇ when the angle formed by the conveyance direction line 96 and the line passing through the center of the two images is ⁇ in the photographed image. Then, the arithmetic unit 4 uses h, u, r, the tan .theta, calculates the y d. The calculation device 4 calculates the height direction position d of the bubble using the yd and the refraction angle ⁇ .
  • FIG. 11 is a flowchart showing an example of a third glass substrate inspection method.
  • step S12 The operation (steps S1, S2, S3, S11, S12) until p is obtained in step S12 is the same as that in the second glass substrate inspection method.
  • step S12 the arithmetic unit 4 substitutes h, u, and p obtained in steps S3, S11, and S12 into the equation (7) to obtain r (that is, out of the bubble diameter, orthogonal to the transport direction).
  • r that is, out of the bubble diameter, orthogonal to the transport direction.
  • the ratio of the length of the diameter in the conveyance direction to the length of the diameter in the direction to be performed is calculated (step S21).
  • FIG. 12 is an explanatory diagram showing an example of a glass substrate that is imaged in an image.
  • the same elements as those in FIG. 10 are denoted by the same reference numerals as those in FIG.
  • step S ⁇ b> 21 the arithmetic unit 4 out of the sides of the circumscribed rectangle 23 of the two overlapping images 21 and 22, the side orthogonal to the direction corresponding to the glass substrate transport direction (in other words, the transport direction line in the image) Count the number of pixels on the orthogonal sides. That is, the number of pixels in the portion indicated by the symbol D in FIG. 12 is counted. Then, the arithmetic unit 4 multiplies the number of pixels by the distance in real space per pixel (step S22). The resulting length is denoted as w. That is, w is the length in the real space corresponding to the portion indicated by the symbol D in FIG.
  • the arithmetic unit 4 forms a side parallel to the direction corresponding to the conveyance direction of the glass substrate among the sides of the circumscribed rectangle and a line passing through the central portions 21 a and 22 a of the two images 21 and 22. Tan ⁇ which is the tangent of the angle ⁇ is obtained (step S23).
  • is an angle formed by a line passing through the central portions 21 a and 22 a of the two images 21 and 22 and a conveyance direction line. Therefore, for example, the arithmetic device 4 determines a value of y c (see FIG. 17) in advance, calculates x cc by the method already described, and calculates tan ⁇ by calculating equation (3). Also good. Alternatively, tan ⁇ may be calculated by another method.
  • the arithmetic unit 4 uses h, r, w, a tan ⁇ already been calculated in the process up to step S23, calculates the y d (step S24). Specifically, the arithmetic unit 4, by performing the calculation of equation (8) shown below, may be calculated to y d.
  • the arithmetic unit 4 calculates the formula (2) using the above yd and the predetermined refraction angle ⁇ , and calculates the height direction position d of the bubble (step S25). This calculation is the same as step S6 in the first glass substrate inspection method.
  • the arithmetic unit 4 determines a distance D from the reference surface 52 to the bubble according to the height direction position d of the bubble (step S7).
  • the arithmetic device 4 calculates a bubble diameter length s parallel to the transport direction (step S4).
  • the calculation of the bubble diameter length s parallel to the transport direction may be performed by the same method as step S4 in the first glass substrate inspection method (see FIG. 7). Or you may calculate the length s of the diameter of the bubble parallel to a conveyance direction by performing the process similar to the process of step S13 in a 2nd glass inspection method (refer FIG. 9).
  • the subsequent processing is the same as steps S8 to S10 in the first glass substrate inspection method and the second glass substrate inspection method.
  • the arithmetic device 4 calculates the bubble length t in the direction orthogonal to the transport direction based on the image photographed in step S2 (step S8). Subsequently, the computing device 4 calculates the sphere equivalent diameter e of the bubble by calculating the cube root of (s ⁇ t 2 ) (step S9).
  • steps S3 to S9 are performed for each pair of elliptical images that form a pair.
  • the distance D from the surface 52 is T / 2 or less. For each of the bubbles, it is determined that the relationship “e ⁇ 0.01 ⁇ D 1.6 +15” is established.
  • the arithmetic unit 4 is realized by a computer that operates according to a program, for example.
  • a computer may operate as the arithmetic device 4 according to a program.
  • the glass substrate 51 of the present invention shown in FIG. 1 is, for example, a first glass substrate inspection method (see FIG. 7) and a second glass substrate inspection method (see FIG. 7) for a glass ribbon manufactured by a float process. 9) and the third glass substrate inspection method (see FIG. 11), and the distance D from the bottom surface is about T / 2 or less when the distance D from the bottom surface is applied.
  • the glass ribbon in which the formula (4) is established is selected between the sphere and the bubble equivalent diameter e, and the glass substrate is cut out from the glass ribbon.
  • the glass ribbon is used instead of the glass substrate. Good.
  • the distance D of the bubble is calculated, and the bubble equivalent diameter e of the bubble is calculated.
  • the equation (4) is calculated between the distance D and the bubble equivalent diameter e of the bubble. What is necessary is just to sort the established glass ribbon.
  • the surface corresponding to the bottom surface can be prevented from bulging.
  • the surface corresponding to the bottom surface of the glass ribbon is polished and the liquid crystal display panel is placed so that the surface faces the liquid crystal side. What is necessary is just to manufacture. As a result, a liquid crystal display panel having a uniform cell gap can be manufactured.
  • the glass substrate according to the present invention can be suitably used for a liquid crystal display panel displaying a stereoscopic image.
  • the swelling of the surface can be prevented, it is possible to prevent the load from being concentrated on a part of the glass substrate when the glass substrates are stacked. Therefore, even when the glass substrates are stacked, the glass substrate can be prevented from cracking.
  • a fusion method as a method for producing a glass ribbon.
  • either surface may be used as a reference surface for determining the distance D.
  • the sphere conversion diameter e of a bubble is calculated, and the distance D and the sphere conversion diameter of a bubble are calculated about the bubble whose distance D is T / 2 or less. If the glass ribbon in which the formula (4) is established with e is selected and the glass substrate is sampled in the same manner as described above, the glass substrate 51 (see FIG. 1) of the present invention is obtained.
  • the liquid crystal display panel should be oriented so that the surface serving as a reference plane for determining the distance D faces the liquid crystal side. What is necessary is just to manufacture. Also in this case, a liquid crystal display panel having a uniform cell gap can be manufactured. In addition, when using the glass substrate sampled from the glass ribbon manufactured by the fusion method as a transparent substrate of a liquid crystal display panel, it is not necessary to grind
  • polish when using the glass substrate sampled from the glass ribbon manufactured by the fusion method as a transparent substrate of a liquid crystal display panel, it is not necessary to grind
  • Table 1 shows Examples 1 to 10 as examples of the present invention and Examples 11 to 20 as comparative examples, respectively.
  • a glass substrate non-alkali glass “AN100” manufactured by Asahi Glass Co., Ltd.
  • the bubble equivalent diameter e of the bubbles of the samples of Examples 1 to 20 calculated using the above-described method is described.
  • the amount of bulge of the sample surface in the direction perpendicular to the surface of the samples of Examples 1 to 20 is shown as a 3D laser microscope (model name: EXT OLS 3100 MODEL) manufactured by Olympus Corporation. The result of measurement using OLS31-SU) is described. N. in the table. The sample denoted as D indicates that the amount of bulging is below the measurement limit (0.1 ⁇ m or less).
  • the column of evaluation in Table 1 shows the result of determining whether e ⁇ f (D) is satisfied between the distance D from the surface of the glass substrate to the bubble and the spherical equivalent diameter e of the bubble. It is written.
  • the present invention is suitably applied to, for example, a glass substrate used as a transparent substrate of a liquid crystal display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 少なくとも一方の表面が膨らんでいないガラス基板を提供する。 ガラス基板51の板厚をT(μm)とする。また、そのガラス基板51の表面52からガラス基板51内に存在する泡57までの距離をD(μm)とする。その泡の球換算径をe(μm)としたときに、少なくとも一方の表面52からT/2(μm)以内の層に存在する泡の球換算径eは、e≦0.01×D1.6+15を満足する。ガラス基板51が、フロート法で製造されたガラスリボンから採板されたガラス基板である場合、ガラス基板におけるボトム面に該当する面を基準として泡57までの距離Dを定める。

Description

ガラス基板
 本発明は、ガラス基板に関する。
 ガラス基板内の欠陥の高さ方向位置等を測定する方法が種々提案されている。
 ガラス基板内の欠陥の高さ方向位置を測定する一般的な方法として、欠陥を撮影するときにカメラの焦点を調節して欠陥の高さ方向位置を測定する方法がある。この方法を便宜的に第1の測定方法と呼ぶことにする。図13Aは、第1の測定方法を模式的に示す説明図である。第1の測定方法では、図13Aに示すように、ガラス基板82に光を通過させた状態で、ガラス基板82を搬送する。そして、ラインカメラ81で、搬送されるガラス基板82の内部を撮影する。ガラス基板82の内部に欠陥83があれば、欠陥83が撮影される。図13Bは、撮影された欠陥の画像の例を示す。図13Aでは、欠陥83を模式的に長方形で表し、図13Bにおいてもガラス基板の画像内に表れる欠陥の像86を長方形で表しているが、欠陥の形状は長方形であるとは限らない。ただし、以下に示す図14A、図14B、図15A、図15B、図16、図17においても欠陥を模式的に長方形で表す。なお、図13Bに示す矢印は、ガラス基板82の搬送方向である。ラインカメラ81でガラス基板82の内部を撮影するときには、カメラの焦点を調節して、欠陥の存在位置とカメラの焦点とを一致させて、ラインカメラ81から欠陥までの絶対的な距離を測定し、その距離に基づいて欠陥の高さ方向位置を計算する。カメラの焦点を調節して、欠陥の存在位置とカメラの焦点とを一致させる方法として、DFF(Depth from Focus)法等がある。また、欠陥のサイズに関しては、撮影した画像に対して画像処理を行って欠陥のサイズを測定する。
 カメラの焦点を調節して欠陥の高さ方向位置を測定する方法や装置は、例えば、特許文献1~3等に記載されている。
 また、ガラス基板内の欠陥の高さ方向位置を測定する他の一般的な方法として、ガラス基板に入射した光の反射光を利用して同一欠陥を2つの位置で撮影し、その結果得られる2つの像の位置関係から欠陥の高さ方向位置を測定する方法がある。この方法を便宜的に第2の測定方法と記す。図14Aは、第2の測定方法を模式的に示す説明図である。第2の測定方法では、例えば、図14Aに示すように、ガラス基板82において、ラインカメラ81と同じ側に光を入射させ、その反射光がラインカメラ81に到達するようにする。そして、ガラス基板82を搬送し、ラインカメラ81でガラス基板82の内部を撮影する。ガラス基板内における光の経路については、図16の上段に示す側面図を参照して後述する。欠陥83は、ガラス基板82の搬送とともに移動し、反射前の光の経路と重なったときと、反射後の光の経路と重なったときにそれぞれ、ラインカメラ81において像として捉えられる。この結果、欠陥83が一つであっても、撮影した画像には2つの像が写る。図14Bは、第2の測定方法で撮影した画像の例である。図14Bに示すように、同一の欠陥に対して2つの像84,85が写る。第2の測定方法では、図14Bに例示する画像における2つの像の位置関係から、欠陥83の高さ方向位置を計算する。また、欠陥のサイズに関しては、撮影した画像に対して画像処理を行って欠陥のサイズを測定する。なお、図14Bに示す矢印は、ガラス基板82の搬送方向である。
 透明基板等に入射した光の反射光を利用して同一欠陥を2つの位置で撮影し、2つの像の位置関係から欠陥の高さ方向位置を測定する方法や装置は、例えば、特許文献4~6、8等に記載されている。
 また、ガラス基板の両面において、第2の測定方法と同様に画像を撮影し、ガラス基板のそれぞれの面で撮影した画像内における像の位置関係から欠陥の高さ方向位置を測定する方法がある。この方法を便宜的に第3の測定方法と記す。図15Aは、第3の測定方法を模式的に示す説明図である。第3の測定方法では、例えば、図15Aに示すように、ガラス基板82において、第1ラインカメラ81と同じ側に光を入射させ、その反射光が第1ラインカメラ81に到達するようにする。同様に、第2ラインカメラ81と同じ側に光を入射させ、その反射光が第2ラインカメラ81に到達するようにする。そして、ガラス基板82を搬送し、第1ラインカメラ81および第2ラインカメラ81でそれぞれガラス基板82の内部を撮影する。すると、第1ラインカメラ81において、第2の測定方法の場合と同様に2つの像が捉えられる。また、第2ラインカメラ81においても、2つの像が捉えられる。図15Bは、第3の測定方法で撮影した画像の例である。第3の測定方法では、図15Bに示すように、一方のラインカメラがガラス基板の上側から撮影した画像と、もう一方のラインカメラがガラス基板の下側から撮影した画像とが得られる。各画像において、それぞれ2つの像が写る。第3の測定方法では、ガラス基板の上側および下側から撮影した各画像における像の位置関係から、欠陥83の高さ方向位置を計算する。なお、図15Bでは、上側から撮影した画像において像が重なっている場合を例示している。また、欠陥のサイズに関しては、撮影した画像に対して画像処理を行って欠陥のサイズを測定する。なお、図15Bに示す矢印は、ガラス基板82の搬送方向である。
 透明基板等の両側から画像を撮影して欠陥の高さ方向位置を求める方法が、例えば、特許文献7に記載されている。
 第2の測定方法や、第3の測定方法では、同一欠陥の像が画像内で重なっていないことを条件に、欠陥の高さ方向位置を計算する。なお、第3の測定方法において、図15Bに例示するように一方の画像で像が重なっている場合、もう一方の画像を用いて欠陥の高さ方向位置を計算すればよい。
 以下、第2の測定方法において撮影された画像内の2つの像の位置関係から、欠陥の高さ方向位置を測定する具体例を示す。図16は、搬送されるガラス基板内の欠陥がラインカメラに撮影されるときの位置を示す説明図である。図16の上段に示す図は、ガラス基板の側面図であり、図16の下段の左側に示す図は、図16の上段に示す側面図に対応する上面図である。また、図16の下段の右側に示す図は、搬送されるガラス基板82内の一つの欠陥83を撮影したときに得られる画像を示している。
 図16に示す側面図および上面図内に示した長方形は、ガラス基板82内の欠陥83を表している。本例では、欠陥は1つである。1つの欠陥83は、搬送されるガラス基板82とともに移動する。図16に示す側面図および上面図では、位置91に移動したときの欠陥83と、位置92に移動したときの欠陥83とをそれぞれ図示している。図16に示す側面図および上面図において、欠陥そのものが2つ存在するわけではない。
 図16の上段の側面図に示すように、ラインカメラ81に到達する光は、ガラス基板82におけるラインカメラ側の面から、搬送されるガラス基板82へ入射する。そして、入射した光は、ガラス基板82における入射側とは反対側の界面に到達すると、その界面で反射し、入射側の界面を通過してラインカメラ81に到達する。ラインカメラ81に到達する光の入射角αは、ラインカメラ81の設置位置に依存する。ラインカメラ81の設置位置を固定することにより、入射角αは、固定値として定まる。また、光の屈折角βは、光の入射角αおよびガラス基板82の屈折率nに依存して定まる。ここでは、入射角αおよび屈折率nは既知であり、屈折角βも固定値として定まっているものとする。屈折率n、入射角αおよび屈折角βには、式(1)の関係が成立する。
 n=sinα/sinβ     式(1)
 従って、入射角αおよび屈折率nが既知であれば、式(1)をβに関して解くことにより屈折角βが求まる。
 また、図16に示す例において、ガラス基板82におけるラインカメラ81とは反対側の面から欠陥83までの高さ方向位置dが、測定対象である。
 ラインカメラ81は、ガラス基板82の内部を撮影し続ける。欠陥83は、ガラス基板82とともに搬送方向に移動する。そして、ガラス基板82に入射して界面で反射した後にラインカメラ81に到達する光の経路との最初の交差位置91に欠陥83が移動すると、ラインカメラ81は欠陥83の像として1つ目の像(以下、第1の像と記す。)を撮影する。さらに、欠陥83が光の経路との2回目の交差位置92まで移動すると、ラインカメラ81は欠陥83の像として2つ目の像(以下、第2の像と記す。)を撮影する。この結果、図16の下段の右側に示すように、撮影した画像には、第1の像98および第2の像99が現れる。
 なお、欠陥83が光透過性の場合、欠陥83を透過した光がラインカメラ81に到達し、像として捉えられる。欠陥83が遮光性の欠陥の場合、欠陥83は黒色の像として画像に写る。欠陥83は、遮光性であるか否かによらず、位置91,92に移動したときに像として捉えられる。
 また、図16に示すように、第1の像の撮影位置91から第2の像の撮影位置92までの欠陥83の移動距離をyとする。また、ラインカメラ81の正面方向の撮影位置の連なりをセンターライン95と呼ぶことにする。より具体的には、ラインカメラ81の正面方向の撮影位置の連なりを、ガラス基板82の界面に正射影して得られる直線がセンターライン95である。yは、撮影した画像(図16の下段の右側を参照)において、第1の像98および第2の像99を、センターライン95に相当する画像内のライン96に正射影したときの像98,99の距離に基づいて、測定することができる。
 画像に基づいて、yの値を測定したならば、屈折角βを用いて、以下に示す式(2)を計算することにより、欠陥83の高さ方向位置dを求めることができる。
 d=y/(2・tanβ)     式(2)
 また、ラインカメラ81から第1の像の撮影位置91へ向かう直線をガラス基板の界面に正射影した直線と、センターライン95とのなす角をθとする。このとき、撮影した画像(図16の下段の右側を参照)において、第1の像98および第2の像99の各中心を通る直線と、ライン96とのなす角もθである。なお、このとき、tanθは、以下のように算出することができる。以下、図16の下段の左側の上面図に示すyについて説明した上で、tanθの計算について説明する。
 図16では、欠陥83がラインカメラ81の正面からずれている場合を示した。図17に示すように、欠陥83がラインカメラ81の正面に存在すると仮定した場合に、第2の像が撮影される位置92をガラス基板82の界面に正射影した位置と、ラインカメラ81のレンズ部分をガラス基板82の界面に正射影した位置との距離を撮像距離yと呼ぶことにする。ただし、撮像距離yは、欠陥83の高さ方向位置dにより変化する。dが最大になるとき、撮像距離は最小値yとなり、dが最小となるときに、撮像距離yは最大値yとなる(図17の上段に示す側面図を参照)。すなわち、y≦y≦yである。このように、yは、厳密にはdに依存するが、yは、例えば、y≦y≦yの範囲で、予め定めておいてよい。yが正確な値でなくても、y≦y≦yの範囲の値であれば、tanθには無視し得る誤差しか含まれない。
 また、ラインカメラの正面方向からの欠陥83のずれをxccと記す(図16の下段の左側を参照)。xccは、撮影した画像(図16の下段の右側を参照)において、センターライン95に相当するライン96から第2の像99までの距離に基づいて特定することができる。すなわち、画像内において、ライン96から第2の像99までの距離に相当するピクセル数をカウントする。ラインカメラ81の位置が固定であることから、1ピクセル当たりの実空間での距離も固定値として定められる。ライン96から第2の像99までの距離に相当するピクセル数に、1ピクセル当たりの実空間での距離を乗じることにより、xccの長さを算出することができる。
 ここで、tanθは、yおよびxccを用いて、以下の式(3)に示すように、近似式で表すことができる。すなわち、tanθは、yおよびxccを用いて式(3)の計算によって求めることができる。
Figure JPOXMLDOC01-appb-M000001
 また、特許文献8には、ガラス板を移動させながら、ガラス板に光を入射させ、その入射光および反射光で欠陥を検出し、欠陥の高さ方向位置を演算する方法が記載されている。特許文献8に記載の方法では、欠陥のパターンを検出した場合、ガラス板の移動方向にほぼ同一の大きさのパターンがない場合、すなわち、ガラス板の裏面近くに欠陥が存在する場合や欠陥が大きい場合、その欠陥の高さ方向位置を0と判定する。このため、特許文献8に記載の方法では、上記の場合、欠陥の高さ方向の位置を正確に求めることが出来ない。
日本国特開2001-305072号公報 日本国特開2004-361384号公報 日本国特開2008-76071号公報 日本国特許第2920056号公報 日本国特開平9-61139号公報 日本国特表2003-508786号公報 国際公開第2006/057125号 日本国特開2010-8177号公報
 ガラス基板の表面には、欠陥に起因する膨らみがないことが好ましい。例えば、ガラス基板内の欠陥の例として泡が挙げられる。泡が、ガラス基板の表面の近傍にあると、ガラス基板の表面に膨らみが生じてしまうという問題が生じる。
 例えば、このように表面に膨らみのあるガラス基板を液晶表示パネルにおける透明基板として用いると、その膨らみによってセルギャップが均一にならなくなってしまう。特に立体画像(3次元画像)を表示する液晶表示パネルの場合には、左眼用画像と右眼用画像の2種類の画像を扱うので、2次元画像を表示する液晶表示パネルと比較して、扱う映像情報量が2倍になる。そして、左眼用画像と右眼用画像を高速に切り替える必要があり、セルギャップを狭ギャップにする必要がある。このため、立体画像(3次元画像)を表示する液晶表示パネルの場合は、セルギャップの均一性がより厳しく求められ、従来、許容されていたガラス基板の表面の近傍に存在する泡に起因するガラス基板の微小な表面の膨らみも許容されなくなった。
 また、表面の膨らみがある限界以上になると、ガラス基板を重ねたときに、その膨らみ部分に荷重が集中して割れの原因となる。
 従って、液晶表示パネルで使用されるガラス基板では、少なくとも一方の側の表面(液晶側の表面)に膨らみがないことが好ましい。
 そこで、本発明は、少なくとも一方の表面が膨らんでいないガラス基板を提供することを目的とする。
 本発明によるガラス基板は、ガラス基板の板厚をT(μm)とし、当該ガラス基板の表面から当該ガラス基板内に存在する泡までの距離をD(μm)とし、泡の球換算径をe(μm)としたときに、少なくとも一方の表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足することを特徴とする。本発明によるガラス基板の板厚T(μm)は特に限定されないが、ガラス基板内に泡が存在する場合、ガラス基板の板厚T(μm)が薄くなる程、ガラス基板の表面からガラス基板内に存在する泡までの距離をD(μm)が小さくなりガラス基板表面が膨らむ可能性が高くなるので、10μm以上700μm以下が好ましく、10μm以上400μm以下がより好ましく、10μm以上100μm以下がさらに好ましく、10μm以上50μm以下がとくに好ましい。
 例えば、本発明によるガラス基板は、筋目方向に沿って搬送されるガラス基板に光源(例えば、光源2)から光を照射し、ガラス基板で反射した光が到達する位置に配置された撮影手段(例えば、ラインカメラ3)によって、ガラス基板を撮影する撮影ステップと、撮影手段で撮影された画像内における、ガラス基板内の同一の泡に起因する2つの重なり合う楕円形の像の位置関係に基づいて、ガラス基板内での泡の高さ方向位置を算出する演算ステップと、泡の球換算径eを算出する球換算径算出ステップと、泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定する判定ステップとを含むガラス基板検査方法によって、少なくとも表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足すると判定される。
 また、例えば、本発明によるガラス基板は、演算ステップで、同一の泡に起因する2つの重なり合う像(例えば、像21,22)の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さ(例えば、h)から、搬送方向に平行な泡の径の長さ(例えば、s)を減算した値を計算し、計算したその値と、ガラス基板内での光の屈折角とにより、ガラス基板内での泡の高さ方向位置を算出し、撮影手段で撮影された画像によって、搬送方向に直交する方向の泡の径の長さを算出するステップを含み、球換算径算出ステップで、搬送方向に平行な泡の径の長さをs(μm)とし、搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、判定ステップで、泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、少なくとも表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足すると判定される。
 また、例えば、本発明によるガラス基板は、演算ステップで、同一の泡に起因する2つの重なり合う像の位置関係から、搬送方向に直交するガラス基板の幅方向における像の位置を変数(例えば、変数u)として含む、予め定められた算出式(例えば、式(6)や式(7))を用いて、泡の特徴量(例えば、sやr)を算出し、当該特徴量を用いて、2つの重なり合う像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから、搬送方向に平行な泡の径の長さを減算した値を計算し、計算したその値と、ガラス基板内での光の屈折角とにより、ガラス基板内での泡の高さ方向位置を算出し、撮影手段で撮影された画像によって、搬送方向に直交する方向の泡の径の長さを算出するステップを含み、球換算径算出ステップで、搬送方向に平行な泡の径の長さをs(μm)とし、搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、判定ステップで、泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、少なくとも表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足すると判定される。
 また、例えば、本発明によるガラス基板は、演算ステップで、同一の泡に起因する2つの重なり合う像の位置関係から、予め定められた算出式(例えば、式(6))を用いて、特徴量として搬送方向に平行な泡の径の長さ(例えば、s)を計算し、2つの重なり合う像の外接矩形における搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さからその径の長さを減算した値を計算し、計算したその値と、ガラス基板内での光の屈折角とにより、ガラス基板内での泡の高さ方向位置を算出し、撮影手段で撮影された画像によって、搬送方向に直交する方向の泡の径の長さを算出するステップを含み、球換算径算出ステップで、搬送方向に平行な泡の径の長さをs(μm)とし、搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、判定ステップで、泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、少なくとも表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足すると判定される。
 また、例えば、本発明によるガラス基板は、演算ステップで、予め定められた算出式(例えば、式(7))を用いて、同一の泡に起因する2つの重なり合う像の位置関係から、特徴量として、泡の2つの径の比(例えば、r)を算出し、撮影手段の正面方向の撮影位置に相当する画像内のラインと、2つの像の各中心を通過するラインとのなす角と、上記の比とにより、2つの重なり合う像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから、搬送方向に平行な泡の径の長さを減算した値を計算し、計算したその値と、ガラス基板内での光の屈折角とにより、ガラス基板内での泡の高さ方向位置を算出し、撮影手段で撮影された画像によって、搬送方向に直交する方向の泡の径の長さを算出するステップを含み、球換算径算出ステップで、搬送方向に平行な泡の径の長さをs(μm)とし、搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、判定ステップで、泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、少なくとも表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足すると判定される。
 また、例えば、本発明によるガラス基板は、フロート法で製造されたガラスリボンから採板されたガラス基板であり、ガラスリボンのボトム面に該当する方の表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足するガラス基板であってもよい。
 また、例えば、本発明によるガラス基板は、液晶表示パネルのガラス基板であり、液晶側に向けられる方の表面からT/2(μm)以内の層に存在する泡の球換算径eがe≦0.01×D1.6+15を満足するガラス基板であってもよい。
 本発明のガラス基板によれば、少なくとも一方の側の表面における膨らみを防止することができる。
本発明のガラス基板の側面図の例を示す説明図。 泡の形状を示す説明図。 泡を上方から観察した状態を示す説明図。 ガラス基板における表面から泡までの距離Dと泡の球換算径eとの間に式(4)が成立しているか否かを検査する検査システムの構成例を示す模式図。 センターラインを示す説明図。 画像内におけるセンターラインに相当するラインを示す説明図。 ガラス基板内の泡の長径の方向と搬送ローラ1による搬送方向との関係を示す説明図。 第1のガラス基板検査方法の例を示すフローチャート。 2つの重なり合う像の外接矩形の領域を示す説明図。 第2のガラス基板検査方法の例を示すフローチャート。 画像内に写されるガラス基板の例を示す説明図。 第3のガラス基板検査方法の例を示すフローチャート。 画像内に写されるガラス基板の例を示す説明図。 第1の測定方法を模式的に示す説明図。 第1の測定方法で撮影した欠陥の画像の例を示す説明図。 第2の測定方法を模式的に示す説明図。 第2の測定方法で撮影した欠陥の画像の例を示す説明図。 第3の測定方法を模式的に示す説明図。 第3の測定方法で撮影した欠陥の画像の例を示す説明図。 搬送されるガラス基板内の欠陥がラインカメラに撮影されるときの位置を示す説明図。 撮像距離yの説明図。
 以下、本発明の実施の形態を図面を参照して説明する。
 図1は、本発明のガラス基板の側面図の例を示す説明図である。本発明のガラス基板51は、以下の条件を満足するガラス基板である。すなわち、本発明のガラス基板51は、ガラス基板の板厚をT(μm)として、そのガラス基板の表面からそのガラス基板内に存在する泡までの距離をD(μm)とし、その泡の球換算径をe(μm)としたときに、ガラス基板の2つの表面のうち、少なくとも一方の表面からT/2(μm)以内の層に存在する泡の球換算径eが、以下に示す式(4)満たすという条件を満足する。
 e≦0.01×D1.6+15      式(4)
 ここで、D≦T/2である。具体的には、ガラス基板の表面から泡までの距離は、その泡に近い方の表面を基準に定めるものとする。図1に示す例では、ガラスの表面から泡57までの距離Dとは、ガラス基板の主面となる2つの表面52,53のうち、泡57に近い方の表面52を基準とした場合における、表面52から泡57までの距離である。
 また、泡は、ガラス基板やガラスリボン内の欠陥の一種である。図1では、球換算径eを示すために便宜的に泡57を球形で図示しているが、実際の泡は、楕円の長軸を中心にして楕円を回転させた回転楕円体に近い形状となっている。よって、ガラス内の泡は、楕円の長軸を中心にして楕円を回転させた回転楕円体であるとみなすことができる。また、この楕円の短軸の長さをt(μm)とし、長軸の長さをs(μm)とする。図2は、このような泡の形状を示す説明図である。また、図3は、このような泡を上方から観察した状態を示す説明図である。図2に示すように、泡の高さと泡の幅は、共通の値であるとみなすことができ、いずれもtである。また、泡の長さは、楕円の長軸と等しい値であり、sである。
 この泡の球換算径をe(μm)とすると、球換算径eは、以下に示す式(5)の計算によって求められる。
 e=(s×t1/3      式(5)
 すなわち、球換算径eは、(s×t)の3乗根である。
 例えば、ガラス基板51が液晶表示パネルの透明基板として用いられるガラス基板であるとする。この場合、ガラス基板51の主面となる2つの表面のうち、少なくとも、液晶側に向けられる方の表面を基準として、その表面から泡までの距離をD(μm)としたときに、その泡の球換算径eと距離Dとの間に、式(4)が成立していればよい。ただし、この泡は、液晶側に向けられる方の表面からT/2(μm)以内の層に存在する泡であり、D≦T/2である。なお、ガラス基板の他方の表面を基準とした場合にも、球換算径eと距離Dとの間に同様の関係が成立していてもよい。なお、ガラス基板の主面となる2つの表面のうち、液晶側に向けられる方の表面とは、例えば、透明電極が配置される面であると言うこともできる。
 従って、図1に示すガラス基板51が液晶表示パネルに用いられるガラス基板であり、表面52が液晶側に向けられる面であるならば、表面52を基準にして表面から泡までの距離Dを測定すればよい。
 また、フロート法で製造されたガラスリボンからガラス基板を採板して、液晶表示パネルに用いられるガラス基板を製造する場合、ガラスリボンのボトム面に該当する方の面を研磨し、その面を液晶側に向ける構成として液晶表示パネルを製造する。従って、フロート法で製造されたガラスリボンからガラス基板を採板して、液晶表示パネルに用いられるガラス基板を製造した場合、ガラス基板51の主面となる2つの表面のうち、少なくとも、ガラスリボンのボトム面に該当する方の表面を基準として、そのボトム面から泡までの距離をD(μm)としたときに、その泡の球換算径eと距離Dとの間に、式(4)が成立していればよい。ただし、この泡は、ボトム面に該当する側の表面からT/2(μm)以内の層に存在する泡であり、D≦T/2である。なお、ガラスリボンのトップ面に該当する方の面を基準とした場合にも、球換算径eと距離Dとの間に同様の関係が成立していてもよい。なお、フロート法で製造されたガラスリボンの下側の面をボトム面と呼び、上側の面をトップ面と呼ぶ。
 従って、図1に示すガラス基板51が、フロート法で製造されたガラスリボンから採板されたガラス基板であり、表面52がボトム面に該当する面であるならば、表面52を基準にして表面から泡までの距離Dを測定すればよい。
 ガラス基板の表面(ここでは、図1に示す表面52とする。)からT/2(μm)以内の層に存在する泡に関して、表面から泡までの距離Dと泡の球換算径eとの間で式(4)が成立しているということは、表面52に近い泡ほど球換算径が小さいということである。換言すれば、表面52の近くに、球換算径の大きな泡は存在していないということである。従って、泡の影響による表面52の膨らみを防止することができ、ガラス基板の品質を向上させることができる。また、本発明のガラス基板51では、このように表面52の膨らみを防止することができるので、液晶表示パネルにおける透明基板として用いた場合、セルギャップを均一にすることができる。
 なお、フロート法で製造されたガラスリボンから採板したガラス基板を液晶表示パネルに用いる場合には、ガラスリボンのボトム面に該当する方の面を研磨するが、本発明のガラス基板51は、研磨する前における表面52を基準として、表面52から泡までの距離D(ただし、D≦T/2)と泡の球換算径eとの間で式(4)が成立しているガラス基板であってもよい。
 また、フロート法等によって製造されたガラスリボンや、そのガラスリボンから採板されたガラス基板には、ガラスリボンの主要な延伸方向に沿った筋目が生じている。ガラスリボンの主要な延伸方向とは、ガイド部材によるガラスリボンの幅方向への延伸ではなく、ガラスリボンの進行方向に沿った延伸の方向を意味する。以下、ガラスリボンの主要な延伸方向を、単に、ガラスリボンの延伸方向と記す。筋目とは、ガラスリボンの延伸方向に垂直な方向における板厚の変動およびうねりに起因して、ガラスリボンの延伸方向に生じる筋である。ガラスリボンから採板したガラス基板にも筋目は生じている。また、ガラスリボンの延伸方向は、ガラスリボンがガラスリボン製造装置(図示せず。)から送り出される進行方向と同じであるので、筋目方向と、ガラスリボンの延伸方向と、製造時に送り出されるガラスリボンの進行方向はいずれも同じ方向である。
 以下、ガラス基板における表面から泡までの距離Dを測定したり、泡の球換算径eを算出したりして、式(4)が成立しているかを検査するガラス基板検査方法に用いられる検査システムの例や、ガラス基板検査方法について説明する。このガラス基板検査方法によって、式(4)が成立していると判定されるガラス基板であれば、本発明のガラス基板51に該当する。
 このガラス基板検査方法では、ガラス基板の各種欠陥のうち泡を対象として、ガラス基板の表面から泡までの距離Dを算出する。ガラスリボンやガラス基板内の泡は楕円体となっている。そのため、ガラス基板内の泡を撮影して得られる画像では、泡の像は楕円となる。また、画像として撮影された泡の像(楕円形の像)において、中心部分は白色となる。よって、画像に写された泡の像の中心部分は、特徴的な点(以下、特徴点と記す。)として利用することができる。
 まず、ガラス基板に関して式(4)が成立しているか否かを検査するガラス基板検査方法のうち、第1のガラス基板検査方法について説明する。図4は、ガラス基板における表面から泡までの距離Dと泡の球換算径eとの間に式(4)が成立しているか否かを検査する検査システムの構成例を示す模式図である。この検査システムは、搬送ローラ1と、光源2と、ラインカメラ3と、演算装置4とを備える。
 搬送ローラ1は、検査対象となるガラス基板5を支持し、ガラス基板5を一定方向に一定速度で搬送する。ガラス基板5は、ガラス基板5自身の筋目方向に沿った方向に搬送される。従って、搬送ローラ1によるガラス基板5の搬送方向は、ガラス基板5の筋目方向と同じ方向である。また、本例では、ガラス基板の2つの表面のうち、泡までの距離を定める基準となる表面(図1における表面52とする。)を、光源2およびラインカメラ3とは反対側に向けて、ガラス基板5を搬送ローラ1に支持させる場合を例にする。例えば、ガラス基板5が、フロート法で製造されたガラスリボンから採板されたガラス基板である場合、ガラスリボンのボトム面に相当する面を光源2およびラインカメラ3とは反対側に向けて、ガラス基板5を搬送ローラ1に支持させればよい。また、ガラス基板5が液晶表示パネルにおける透明基板として用いられるのであれば、液晶側に向けられる面を光源2およびラインカメラ3とは反対側に向けて、ガラス基板5を搬送ローラ1に支持させればよい。そして、このガラス基板検査方法では、ガラス基板5における搬送ローラ1側の表面52から泡までの高さ方向位置(距離)を測定する。ここで、高さ方向位置は、搬送ローラ1側の表面から泡までの距離である。従って、基準となる表面を搬送ローラ1側に向けた場合、高さ方向位置の測定値は、基準となる表面から泡までの距離Dを意味する。
 なお、泡までの距離を定める基準となる表面52を搬送ローラ1とは反対側に向けてガラス基板5を搬送ローラ1に支持させてもよい。この場合、基準となる表面から泡までの距離Dは、ガラス基板5の板厚Tから、高さ方向位置の測定値を減算した値である。板厚Tは既知であり、泡までの距離を定める基準となる表面52をどちら側に向けた場合であっても、基準となる表面から泡までの距離Dは、泡の高さ方向位置の測定値に応じて定められる。
 既に説明したように、ここでは、泡までの距離を定める基準となる表面52を、光源2およびラインカメラ3とは反対側(すなわち、搬送ローラ1側)に向けてガラス基板5を搬送ローラ1に支持させる場合を例にする。
 光源2は、ガラス基板5の2つの面のうち、一方の面の側に配置され、ガラス基板5に向けて光を照射する。この光は、界面8からガラス基板5に入射し、ガラス基板内を通過して入射側とは反対側の面52で反射する。反射した光は、入射側の界面8を通過してラインカメラ3に到達する。なお、図4では光の経路を簡略化して示しているが、図16の上段の側面図に示したように、光の経路は、光が界面8に入射するとき、および、界面52での反射後に界面8を通過するときに、それぞれ屈折する。
 ラインカメラ3は、光源2から照射されてガラス基板5で反射した光が到達する位置に配置される。具体的には、ガラス基板5を基準として、光源2と同じ側に配置される。また、例えば、ラインカメラ3は、光源2を基準として、ガラス基板5の搬送方向に配置される。そして、ラインカメラ3は、ガラス基板5の内部を撮影し、撮影結果として画像を生成する。
 光源2およびラインカメラ3の配置位置が定まっていることにより、光の経路において入射角α(図16の上段を参照)も固定値として決まっている。さらに、ガラス基板5の屈折率nも既知であり、式(1)を解くことにより、光源2からラインカメラ3までの光の経路における屈折角βの値も固定値として決定されているものとする。
 ガラス基板5は搬送され、ラインカメラ3は固定位置でガラス基板5の撮影を行い続ける。従って、時間経過とともに、ガラス基板5において、撮影される箇所が変化する。よって、ラインカメラ3の正面方向の撮影位置の連なりを、ガラス基板5の界面8に正射影すると直線として表される。この直線をセンターラインと呼ぶこととする。図5Aは、センターラインを示す説明図であり、図5Bは、画像内におけるセンターラインに相当するラインを示す説明図である。図5Aは、ガラス基板5の上面図である。ガラス基板5の搬送に伴いラインカメラ3の正面の撮影位置が変化し、その連なりの界面への正射影をセンターライン95として図示している。また、図5Bは、ラインカメラ3によって撮影した画像を表す。画像内において、センターライン95に相当するライン96を、一点鎖線で示している。このライン96は、ラインカメラ3の正面方向の撮影位置に対応する画素の連なりということができる。また、センターライン95は、ガラス基板5の搬送方向と平行であり、センターライン95に相当する画像内のライン96は、画像内における、ガラス基板5の搬送方向に相当する方向を表しているということができる。なお、ガラス基板5はその筋目方向に沿って搬送されるので、画像内のライン96は筋目方向に相当する方向を表しているということもできる。センターライン95に相当する画像内のライン96を、搬送方向ラインと記す。なお、図5Bでは、説明のために搬送方向ライン96を図示したが、実際の撮影画像において搬送方向ライン96が画像内に写っているわけではない。
 ガラス基板5内に泡が存在する場合、1つの泡に起因して、ラインカメラ3が撮影する画像内では、その泡の像が2つ現れる。また、泡を撮影した画像内に現れる泡の像は楕円形であり、その中心部は白色となっている。
 演算装置4は、ラインカメラ3によって撮影された画像を参照して、泡の高さ方向位置を測定する。この泡の高さ方向位置は、図16の上段の側面図において“d”として示した長さである。すなわち、ガラス基板5において、光源2とは反対側の表面52から泡までの距離である。演算装置4は、共通の泡を撮影して得られた対になる楕円形の像が重なり合っている場合に、その対になる楕円形の位置関係に基づいて、ガラス基板5内における泡の高さ方向位置を算出する。具体的には、演算装置4は、画像内において重なり合う2つの楕円形の像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での距離から、泡の径のうち、搬送方向に平行な径の長さを減算した値を計算する。なお、画像内において、ガラス基板の搬送方向に相当する方向に平行であるということは、搬送方向ライン96(図5B参照)に平行であるということである。演算装置4は、上記の減算によって求めた値と、ガラス基板5での屈折角βとにより、泡の高さ方向位置を算出する。この計算については、図8を参照して、後述する。
 また、ガラス基板の筋目方向に沿ってガラス基板を搬送した場合、ガラス基板内の泡の長径は、搬送ローラ1による搬送方向(換言すれば、ガラス基板5の筋目方向)と略平行となっている。図6に示すように、泡の長径72の方向と搬送ローラ1によるガラス基板5の搬送方向71とのずれは、最大で10°である。このように、泡の長径72と搬送ローラ1による搬送方向71とは略平行であるので、ラインカメラ3が撮影した画像においても、楕円形として表れる泡の像の長径と、搬送方向ライン96(図5B参照)も略平行となる。以下、撮影した画像において、泡の像の長径と搬送方向ライン96とが平行になっている場合を例にして説明する。
 なお、対になる像が重なり合っていない場合には、演算装置4は、公知の方法によって、泡の高さ方向位置を算出すればよい。
 また、ラインカメラ3の配置位置は固定される。従って、ラインカメラ3が撮影した画像における1ピクセル分に応じた実空間における距離も固定値として定められる。画像における1ピクセル分に応じた実空間における距離は、既知であるものとする。
 図7は、ガラス基板に存在する泡に関して式(4)の条件が満たされているか否かを検査するガラス基板検査方法のうち、第1のガラス基板検査方法の例を示すフローチャートである。
 まず、光源2が検査対象のガラス基板5に対して光の照射を開始する(ステップS1)。
 そして、搬送ローラ1は、搬送ローラ1上に配置されたガラス基板5を一定方向に搬送し、ラインカメラ3は、搬送されるガラス基板5の内部の撮影を継続し続ける。このとき、ガラス基板5は、ガラス基板5自身の筋目方向が、搬送方向と同じになるように搬送ローラ1上に配置され、筋目方向に沿って搬送される。そして、ラインカメラ3は、撮影結果として、画像を生成する(ステップS2)。ラインカメラ3は、撮影により得た画像を演算装置4に送信する。
 ガラス基板5の内部に泡が存在する場合、ステップS2で得られた画像には、泡の像が含まれる。具体的には、画像内には泡の像として楕円形の像が写される。また、図16で説明したように、泡が反射前の光の経路と重なる位置(図16の上段の側面図に示す位置91)に移動したときと、泡が反射後の光の経路と重なる位置(図16の上段の側面図に示す位置92)に移動したときに、それぞれ像として画像に写される。従って、1つの泡が存在する場合、画像2には2つの像が写る。また、泡が大きい場合や、泡がガラス基板5の表面52(図4参照)の付近に存在する場合には、その2つの像は重なり合う。
 演算装置4は、ステップS2で生成された画像を受信すると、画像中から、2つの重なり合う像の外接矩形の領域を検出する。そして、その外接矩形の辺のうち、画像内において、ガラス基板5の搬送方向に相当する方向と平行な辺(すなわち、画像内の搬送方向ライン96と平行な辺)のピクセル数をカウントする。そして、演算装置4は、その辺のピクセル数に、1ピクセル当たりの実空間での距離を乗算することによって、その辺のピクセル数に応じた実空間での長さを算出する(ステップS3)。
 図8は、2つの重なり合う像の外接矩形の領域を示す説明図である。図8に示すように、重なり合う2つの像21,22の外接矩形として、図8に示す外接矩形23が定まる。像21,22は、楕円であり、合同であるとみなすことができる。図8に示す例では、外接矩形23の長辺が、搬送方向ライン96(図5B参照)と平行であるとものとする。この場合、演算装置4は、像21,22の外接矩形23の長辺24のピクセル数をカウントし、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算する。この長辺24に応じた実空間での長さを“h”で表す。ここでは、hの単位はμmであるとする。
 また、欠陥が泡である場合、像21の中心部21は、画像上において白色となっている。この中心部21は、像21の特徴点である。演算装置4は、一方の像21の中心部21から、外接矩形23の短辺のうち近い方の短辺までのピクセル数をカウントする。すなわち、図8おいて符号Aで示す部分のピクセル数をカウントする。演算装置4は、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算する。この乗算結果は、図8に示すAに相当する部分に応じた実空間での長さであり、具体的には、搬送方向に平行な泡の径(泡の径のうち、搬送方向に平行な径)の1/2の長さである。図8に示す例では、この径は、泡の長径である。演算装置4は、上記の乗算結果を2倍することによって、搬送方向に平行な泡の径の長さを算出する(ステップS4)。この泡の径の長さは、図3に示すsに相当する。ここでは、sの単位はμmであるとする。実空間におけるs/2の長さに対応する画像内での箇所が、図8おいて符号Aで示す部分である。また、2つの像21,22は合同であるとみなすことができるので、図8において、A=A’とみなすことができる。
 なお、ここでは、像21の中心部21を用いてsを計算する場合を例にして説明したが、像22の中心部を用いてsを計算してもよい。
 また、図8では、泡の像の長径と搬送方向ラインとが平行になっている場合を例にして説明しているが、泡の像の長径と搬送方向ラインとが完全には平行となっていない場合もある。しかし、ガラス基板内の泡の長径とガラス基板の搬送方向とのずれは最大でも10°しかない(図6参照)。よって、泡の像の長径と搬送方向ラインとが完全には平行になっていなくても、両者が平行になっているとみなして、上記のステップS3,S4と同様にh,sを計算してよい。すなわち、hを求める際には、重なり合う2つの像の外接矩形の長辺のピクセル数をカウントし、そのピクセル数に1ピクセル当たりの実空間での距離を乗算すればよい。また、sを求める際には、一方の像の中心部から外接矩形の短辺のうち近い方の短辺までのピクセル数をカウントし、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算し、その乗算結果を2倍すればよい。泡の像の長径と搬送方向ラインとが完全には平行になっていなくても、上記のようにh,sを計算し、そのh,sを用いて泡の高さ方向位置を計算しても、無視し得る程度の誤差しか含まれない。また、この場合にも、sを泡の長径とみなしてよい。
 次に、演算装置4は、ステップS3で算出したhから、ステップS4で算出したsを減算する(ステップS5)。この減算結果をyとする。yは、1つ目の像が撮影された位置から、2つ目の像が撮影された位置までの泡の移動距離である。すなわち、ステップS5で算出されるyは、泡の像が撮影される2点間の距離である。なお、実空間におけるyの長さに対応する画像内での箇所が、図8において符号Bで示す部分である。
 演算装置4は、ステップS5で算出されたyと、予め定められた屈折角βとを用いて、式(2)の計算を行い、泡の高さ方向位置dを計算する。すなわち、y/(2・tanβ)を計算し、その計算結果をdとする(ステップS6)。泡の高さ方向位置dは、ガラス基板5における搬送ローラ1側の表面52(図4参照)から泡までの距離である。
 次に、演算装置4は、泡の高さ方向位置dに応じて、基準とする表面52から泡までの距離Dを定める(ステップS7)。本例のように、泡までの距離を定める基準となる表面を搬送ローラ1側に向けてガラス基板を配置した場合、その表面から泡までの距離Dは、ステップS6で算出した泡の高さ方向位置dに等しい。従って、泡の高さ方向位置dの値を、基準とする表面52から泡までの距離Dとすればよい。すなわち、演算装置4は、D=dとして、距離Dの値を定めればよい。
 なお、泡までの距離を定める基準となる表面を搬送ローラ1とは反対側に向けてガラス基板を配置した場合、その表面から泡までの距離Dは、ガラス基板の板厚T(μm)から、泡の高さ方向位置dの値を減算することによって得られる。すなわち、この場合には、演算装置4は、D=T-dとして、距離Dの値を定めればよい。ただし、ガラス基板の板厚Tは、既知であるものとする。
 ステップS7の後、演算装置4は、ステップS2で撮影された画像に基づいて、搬送方向に直交する方向の泡の径の長さを算出する(ステップS8)。ステップS8では、ステップS3で検出された2つの重なり合う像の外接矩形の領域(図8参照)を利用する。具体的には、演算装置は、重なり合う2つの像の一方の像の中心部から、外接矩形の長辺のうち近い方の長辺までのピクセル数をカウントし、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算し、その乗算結果を2倍すればよい。この値は、泡の幅であり、図2に示すtに相当する。ここでは、tの単位はμmとする。また、泡は回転楕円体であるので、泡の高さも、泡の幅と同じくt(μm)である。
 次に、演算装置4は、ステップS4で算出した搬送方向に平行な泡の径の長さsと、ステップS8で算出した搬送方向に直交する方向の泡の径の長さtとを用いて、その泡の球換算径eを算出する(ステップS9)。演算装置4は、式(5)の計算を行うことによって、球換算径eを算出すればよい。すなわち、演算装置4は、(s×t)の3乗根を計算することによって、球換算径eを算出する。ここでは、eの単位はμmであるものとする。
 なお、ステップS3~S9は、対になる楕円形の像の組毎にそれぞれ行う。
 次に、演算装置4は、ガラス基板5の表面52からの距離Dが、T/2以下になっている泡を検出する。Tはガラス基板5の板厚である。そして、演算装置4は、その泡を順に選択し、選択した泡について算出した距離Dおよび球換算径eとの間で式(4)が成立しているか否かを判定する(ステップS10)。演算装置は、対になる楕円形の像の組毎に、表面52からの距離Dおよび球換算径eを計算している。ステップS10において、演算装置4は、距離DがT/2以下となった楕円形の組毎に、1つの泡が存在すると判定することによって、表面52からの距離DがT/2以下となっている泡を検出すればよい。そして、検出した泡を個々に順次、選択し、選択した泡について算出した距離Dおよび球換算径eとの間で、“e≦0.01×D1.6+15”という関係が成立しているか否かを判定する。表面52からの距離DがT/2以下となっている泡それぞれについて、“e≦0.01×D1.6+15”という関係が成立しているガラス基板は、本発明のガラス基板に該当する。一方、表面52からの距離DがT/2以下となっている泡の中に、“e≦0.01×D1.6+15”という関係が成立していない泡が存在する場合、そのガラス基板は、本発明のガラス基板に該当しない。
 従って、本発明のガラス基板51(図1参照)に対して、上記のガラス基板検査方法(図7に示すステップS1~S10)を行った場合、表面52からの距離DがT/2以下となっている泡それぞれについて、“e≦0.01×D1.6+15”という関係が成立していると判定される。
 搬送ローラ1(図4参照)側の表面52の近傍に存在する泡を撮影した画像では、その泡に起因する2つの像が重なり合って現れる。また、泡が大きい場合にも、その泡を撮影した画像では、2つの像が重なり合って現れる。図14Aを参照して説明した第2の測定方法では、同一の欠陥に起因する2つの像が重なる場合、その像の高さ方向位置を測定できない。また、図15Aを参照して説明した第3の測定方法では、図15Bに示すように上側からの画像と下側からの画像を撮影するので、いずれか一方の画像において像が重なっていなければ、欠陥の高さ方向位置を測定することができる。しかし、欠陥が大きい場合には、2つのラインカメラで撮影した各画像において、像が重なってしまうこともあり、その場合には、欠陥の高さ方向位置を測定できない。これに対して、上記のガラス基板検査方法(図7に示すステップS1~S10)では、同一の泡に起因する像が重なっていても泡の高さ方向位置を計算することができる。よって、表面52からの距離Dを定めることができ、表面52からの距離DがT/2以下となっている泡に関して、その距離Dと泡の球換算径eとの間で式(4)が成立しているか否かを判定することができる。
 また、図14Aを参照して説明した第1の測定方法では、欠陥の高さ方向位置の測定結果が、搬送されるガラス基板の上下の振動の影響を受けやすいが、上記のステップS1~S10で示したガラス基板検査方法ではそのような影響を受けにくく、泡の高さ方向位置を精度よく計算することができる。その結果、表面52からの距離DがT/2以下となっている泡に関して、その距離Dと泡の球換算径eとの間で式(4)が成立しているか否かを精度よく判定できる。
 ガラス基板における基準とする表面52からの距離DがT/2以下となっている泡に関して、その距離Dと泡の球換算径eとの間で式(4)が成立しているか否かを検査するガラス基板検査方法は、図7に示す方法(ステップS1~S10)に限定されない。以下、同様の検査を行う第2のガラス基板検査方法、および、第3のガラス基板検査方法について説明する。いずれの場合も、例えば、図4に例示する検査システムを用いて検査することができる。検査対象となるガラス基板5に対する光源2およびラインカメラ3の位置関係は、第1のガラス基板検査方法と同様であり、説明を省略する。ただし、演算装置4による泡の高さ方向位置dの測定方法が、第1のガラス基板検査方法と異なる。
 なお、第2のガラス基板検査方法および第3のガラス基板検査方法においても、ガラス基板は、ガラス基板自身の筋目方向に沿った方向に搬送されるように搬送ローラ1に配置され、搬送される。
 第2のガラス基板検査方法では、演算装置4は、検査対象のガラス基板5内の泡の特徴量を算出する。そして、演算装置4は、その特徴量を用いて、重なり合う2つの像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから、ガラス基板の搬送方向に平行な泡の径(泡の径のうち、搬送方向に平行な径)の長さを減算した値を計算する。また、演算装置4は、上記の特徴量を計算するときには、重なり合う2つの像の位置関係に基づき、予め定められた計算式を用いて特徴量を計算する。
 また、第2のガラス基板検査方法では、特徴量として、ガラス基板の搬送方向に平行な泡の径の長さを計算する。
 上記の特徴量を算出するための式は、ガラス基板の端部を基準とする像の特徴点に対応する位置の座標と、第1のガラス基板検査方法で説明したhと、2つの重なり合う像の面積とを変数とする関数として予め定めておく。この特徴量(泡の径のうち、搬送方向に平行な径)を定めるための計算式は、例えば、以下の式(6)で表すことができる。
 s=a+a+a+auh+ahp+aup+au+ah+ap+a10                     式(6)
 式(6)において、“u”は、ガラス基板の端部を基準とする像の特徴点に対応する位置の座標であり、具体的には、搬送方向に平行なガラス基板の側面から泡の中心までの距離である。ここでは、uの単位はmmであるものとする。“h”は、泡を撮影した画像に基づいて、第1のガラス基板検査方法におけるステップS3と同じ計算によって得られる値である。ここでは、hの単位はμmであるものとする。pは、泡を撮影した画像において、2つの像が占める領域(2つの像の領域の和集合)の面積であり、具体的には、画像内でのピクセル数で表される。式(6)におけるa~a10は、係数である。また、式(6)におけるsは、ガラス基板の搬送方向に平行な泡の径である。
 特徴量となる径sは、ガラスリボンにおける幅方向の泡の位置によって影響を受けやすい。そして、帯状のガラスリボンからガラス基板を採板する位置は、ガラスリボンの幅方向において一定であることが一般的である。例えば、ガラスリボンの側部からガラス基板の採板位置までの距離をXとすると、Xを一定にして、ガラス基板群を順次、採板していくことが一般的である。このことから、特徴量となる径sは、ガラス基板における搬送方向に垂直な方向における泡の位置(換言すれば、ガラス基板における筋目方向に垂直な方向における泡の位置)によっても影響を受けやすいということが言える。そこで、上記の変数uを含む算出式(例えば、上記の式(6))をsの計算に用いる。
 また、撮影した画像において、泡の像の長径と搬送方向ラインとが平行になっている場合、上記のsは、泡の長径に該当する。ただし、画像において、泡の像の長径と搬送方向ラインとが完全には平行になっていない場合であっても、両者はほぼ平行であるので、上記の特徴量sは、泡の長径とみなすことができる。このようにsを泡の長径とみなしても、無視し得る程度の誤差しか含まれておらず、泡の高さ方向位置の算出に影響しない。
 式(6)における係数a~a10は、最小二乗法によって予め求めておく。具体的には、サンプルとなる泡を用いて、s,uを実測する。また、サンプルとなる泡を含むガラス基板に対して、第1のガラス基板検査方法で説明したステップS1~S3と同じ処理を行いhを得る。また、そのときステップS2で得た画像から、2つの像の和集合となる領域のピクセル数pをカウントする。サンプルとなる泡を複数個用意して、それらの各泡について、このようにs,u,h,pを得る。s,u,h,pの組を複数組得たならば、それらのs,u,h,pの組から、最小二乗法により、式(6)における係数a~a10を求めればよい。
 sは、u,h,pとの間に相関を有しており、最小二乗法により、式(6)における各係数を求めることができる。
 演算装置4は、泡の高さ方向位置の測定対象となるガラス基板を撮影することによって得られた画像から、u,h,pを求め、式(6)に代入することによって、sを算出する。そして、演算装置4は、h-s(=y)を計算し、その計算結果と屈折角βとを用いて、泡の高さ方向位置を算出する。
 図9は、第2のガラス基板検査方法の例を示すフローチャートである。第1のガラス基板検査方法と同様の処理に関しては、図7と同一の符号を付し、説明を省略する。
 ステップS3でhを算出するまでの動作は、第1のガラス基板検査方法と同様である。
 図10は、画像内に写されるガラス基板の例を示す説明図である。泡が存在する場合、画像内に泡の像21,22も写される。また、図10に示す例では、像の特徴点として、各像21,22の中心部分21,22も白色の領域として画像内に現れる。なお、像21,22の外接矩形23を図示しているが、外接矩形23は、画像内に写っているわけではない。
 ステップS3の後、演算装置4は、画像内におけるガラス基板の端部31から、像の特徴点までのピクセル数をカウントする。すなわち、図10において符号Cで示す部分のピクセル数をカウントする。そして、演算装置4は、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算する(ステップS11)。この乗算結果は、実空間におけるガラス基板の端部(側面)から泡までの距離uに該当する。すなわち、ステップS11では、uを算出する。
 ただし、上記のステップS11の説明では、説明を簡単にするために、ガラス基板の端部31が画像内に映っている場合を例にして説明した。ガラス基板の端部31が画像内に映っていない場合には、以下のようにして、距離uを計算すればよい。ラインカメラ3の設置位置は固定であるので、ガラス基板の端部から、ラインカメラ3によって撮影された画像内におけるガラス基板端部側の端までの実空間における距離(uとする。)は、予め求めておくことができる。そして、演算装置4は、撮影された画像におけるその端の部分から、像の特徴点までの距離を計算する。この計算では、例えば、画像におけるその端の部分から特徴点までのピクセル数をカウントし、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算すればよい。演算装置4は、この距離に、ラインカメラ設置位置により定まるuを加算することにより、実空間におけるガラス基板の端部(側面)から欠陥までの距離uを算出すればよい。
 なお、図10に示す例では、特徴点として像21の中心部分21を用い、画像内におけるガラス基板の端部31から中心部分21までの距離を求める場合を例にしている。特徴点として、もう一方の像22の中心部分22を用いてもよい。どちらの中心部分を特徴点として用いても、実空間におけるガラス基板の端部(側面)から泡までの距離uを求めることができる。特徴点として中心部分21,22のどちらを用いるかによりピクセル数のカウント結果が異なるが、その差は僅かであり、距離uには無視し得る誤差しか含まれない。また、特徴点として、外接矩形23内の特徴的な点(例えば、外接矩形23のいずれかの頂点)を用いてもよい。この場合でも、距離uには無視し得る誤差しか含まれない。
 ステップS11の後、演算装置4は、重なり合う2つの像21,22が占める領域(2つの像の領域の和集合)の面積として、その領域内のピクセル数pをカウントする(ステップS12)。
 そして、演算装置4は、ステップS3,S11,S12で求めたh,u,pを、式(6)に代入することにより、泡の径のうち、搬送方向に平行な径sを計算する(ステップS13)。図10に示すように像の長径が搬送方向ラインと平行になっている場合、この径sは、泡の長径である。既に説明したように、撮影画像において、像の長径が搬送方向ラインと完全には平行になっていなくても、両者はほぼ平行であるので、ステップS13で計算した径sは、泡の長径とみなすことができる。
 以降の処理は、第1のガラス基板検査方法におけるステップS5~S10と同様である。
 すなわち、演算装置4は、ステップS3で算出したhから、ステップS13で算出したsを減算することにより、yを求める(ステップS5)。そして、演算装置4は、yと、屈折角βとを用いて、式(2)の計算を行い、泡の高さ方向位置dを計算する(ステップS6)。
 さらに、演算装置4は、泡の高さ方向位置dに応じて、基準とする表面52から泡までの距離Dを定める(ステップS7)。泡までの距離を定める基準となる表面を搬送ローラ1側に向けてガラス基板を配置した場合、D=dとすればよい。また、泡までの距離を定める基準となる表面を搬送ローラ1とは反対側に向けてガラス基板を配置した場合、演算装置4は、D=T-dとして、距離Dの値を定めればよい。
 そして、演算装置4は、ステップS2で撮影された画像に基づいて、搬送方向に直交する方向の泡の径の長さtを算出する(ステップS8)。このtの算出方法は、第1のガラス基板検査方法におけるステップS8と同様でよい。続いて、演算装置4は、(s×t)の3乗根を計算することによって、泡の球換算径eを算出する(ステップS9)。
 なお、ステップS3~S9の処理は、対になる楕円形の像の組毎にそれぞれ行う。
 さらに、演算装置4は、ガラス基板5の表面52からの距離Dが、T/2以下になっている泡を検出する。そして、演算装置4は、その泡を順に選択し、選択した泡について算出した距離Dおよび球換算径eとの間で式(4)の関係(すなわち、e≦0.01×D1.6+15)が成立しているか否かを判定する(ステップS10)。
 本発明のガラス基板51(図1参照)に対して、第2のガラス基板検査方法(図9に示すステップS1~S10)を行った場合にも、表面52からの距離DがT/2以下となっている泡それぞれについて、“e≦0.01×D1.6+15”という関係が成立していると判定される。
 また、図9に示す第2のガラス基板検査方法においても、第1のガラス基板検査方法(図7参照)と同様に、同一の泡に起因する像が重なっていても泡の高さ方向位置を計算できる。また、搬送されるガラス基板の上下の振動の影響を受けにくく、表面52からの距離DがT/2以下となっている泡に関して、その距離Dと泡の球換算径eとの間で式(4)が成立しているか否かを精度よく判定できる。
 次に、第3のガラス基板検査方法について説明する。第3のガラス基板検査方法においても、検査対象となるガラス基板5に対する光源2およびラインカメラ3(図4参照)の位置関係は、第1のガラス基板検査方法と同様であり、説明を省略する。
 第3のガラス基板検査方法においても、演算装置4は、ガラス基板5内の泡の特徴量を算出し、その特徴量を用いて、yを計算する。ただし、第2のガラス基板検査方法では、特徴量として泡の径sを算出したが、第3のガラス基板検査方法では、泡の2つの径の比を計算する。具体的には、演算装置4は、泡の径のうち、搬送方向に直交する方向の径に対する、搬送方向の径の割合を泡の特徴量として求める。すなわち、泡の径のうち、搬送方向に直交する方向の径をrとし、搬送方向の径をrとすると、r/rを特徴量として計算する。以下、r/rをrと記す。
 なお、撮影した画像において、泡の像の長径と搬送方向ラインとが平行になっている場合、上記のrは泡の短径に該当し、rは泡の長径に該当する。すなわち、特徴量rとして、「長径/短径」を計算することになる。ただし、画像において、泡の像の長径と搬送方向ラインとが完全には平行になっていない場合であっても、両者はほぼ平行であるので、上記のrを泡の短径とみなし、上記のrを泡の長径とみなすことができる。すなわち、画像において、泡の像の長径と搬送方向ラインとが完全には平行になっていない場合であっても、特徴量として計算したrを泡の「長径/短径」とみなすことができる。このようにみなしても、rには無視し得る程度の誤差しか含まれず、泡の高さ方向位置dの算出に影響しない。
 演算装置4は、泡の特徴量としてrを算出した後、そのrを用いて、y(1つ目の像が撮影された位置から、2つ目の像が撮影された位置までの泡の移動距離)を求める。
 また、演算装置4は、上記の特徴量rを計算するときには、重なり合う2つの像の位置関係に基づき、予め定められた計算式を用いて特徴量を計算する。
 この特徴量rを算出するための式は、ガラス基板の端部を基準とする像の特徴点に対応する位置の座標と、第1のガラス基板検査方法で説明したhと、2つの重なり合う像の面積とを変数とする関数として予め定めておく。特徴量rを求めるための計算式は、例えば、以下の式(7)で表すことができる。
 r=b+b+b+buh+bhp+bup+bu+bh+bp+b10                     式(7)
 この関数における変数u,h,pは、第2のガラス基板検査方法で示した式(6)における変数u,h,pと同様である。すなわち、“u”は、搬送方向に平行なガラス基板の側面から泡の中心までの距離である。“h”は、泡を撮影した画像に基づいて、第1のガラス基板検査方法におけるステップS3と同じ計算によって得られる値である。pは、泡を撮影した画像において、2つの像が占める領域(2つの像の領域の和集合)の面積であり、具体的には、画像内でのピクセル数で表される。式(7)におけるb~b10は、係数である。
 特徴量rは、ガラスリボンにおける幅方向の泡の位置によって影響を受けやすい。そして、既に説明したように、帯状のガラスリボンからガラス基板を採板する位置は、ガラスリボンの幅方向において一定であることが一般的である。このことから、特徴量rは、ガラス基板における搬送方向に垂直な方向における泡の位置(換言すれば、ガラス基板における筋目方向に垂直な方向における泡の位置)によっても影響を受けやすいということが言える。そこで、上記の変数uを含む算出式(例えば、上記の式(7))をrの計算に用いる。
 式(7)における係数b~b10は、最小二乗法によって予め求めておく。具体的には、サンプルとなる泡を用いて、r,uを実測する。また、サンプルとなる泡を含むガラス基板に対して、第1のガラス基板検査方法で説明したステップS1~S3と同じ処理を行いhを得る。また、そのときステップS2で得た画像から、2つの像の和集合となる領域のピクセル数pをカウントする。サンプルとなる泡を複数個用意して、それらの各泡について、このようにr,u,h,pを得る。r,u,h,pの組を複数組得たならば、それらのr,u,h,pの組から、最小二乗法により、式(7)における係数b~b10を求めればよい。
 rは、u,h,pとの間に相関を有しており、最小二乗法により、式(7)における各係数を求めることができる。
 演算装置4は、泡の高さ方向位置の測定対象となるガラス基板を撮影することによって得られた画像から、u,h,pを求め、式(7)に代入することによってrを算出する。
 また、演算装置4は、撮影された画像において、搬送方向ライン96と、2つの像の中心を通過するラインとのなす角をθとしたときに、tanθの値を求める。そして、演算装置4は、h,u,r,tanθを用いて、yを計算する。演算装置4は、そのyと屈折角βとを用いて、泡の高さ方向位置dを算出する。
 図11は、第3のガラス基板検査方法の例を示すフローチャートである。第1のガラス基板検査方法や第2のガラス基板検査方法と同様の処理に関しては、図7や図9と同一の符号を付し、説明を省略する。
 ステップS12でpを求めるまでの動作(ステップS1,S2,S3,S11,S12)は、第2のガラス基板検査方法と同様である。
 ステップS12の後、演算装置4は、ステップS3,S11,S12で求めたh,u,pを、式(7)に代入することにより、r(すなわち、泡の径のうち、搬送方向に直交する方向の径の長さに対する、搬送方向の径の長さの割合)を計算する(ステップS21)。
 図12は、画像内に写されるガラス基板の例を示す説明図である。図10と同様の要素については、図10と同一の符号を付し、説明を省略する。
 ステップS21の後、演算装置4は、2つの重なり合う像21,22の外接矩形23の辺のうち、ガラス基板の搬送方向に相当する方向と直交する辺(換言すれば、画像における搬送方向ラインと直交する辺)のピクセル数をカウントする。すなわち、図12において符号Dで示す部分のピクセル数をカウントする。そして、演算装置4は、そのピクセル数に、1ピクセル当たりの実空間での距離を乗算する(ステップS22)。この結果得られる長さをwと記す。すなわち、wは、図12において符号Dで示す部分に対応する実空間での長さである。
 また、演算装置4は、外接矩形の辺のうち、ガラス基板の搬送方向に相当する方向と平行な辺と、2つの像21,22の中心部分21,22を通過するラインとのなす角θの正接であるtanθを求める(ステップS23)。
 θは、2つの像21,22の中心部分21,22を通過するラインと、搬送方向ラインとのなす角であるということもできる。従って、演算装置4は、例えば、予めy(図17参照)の値を定めておき、xccを既に説明した方法で計算し、式(3)の計算を行うことによってtanθを計算してもよい。あるいは、他の方法でtanθを計算してもよい。
 次に、演算装置4は、ステップS23までの処理で算出済みであるh,r,w,tanθを用いて、yを算出する(ステップS24)。具体的には、演算装置4は、以下に示す式(8)の計算を行うことによって、yを計算すればよい。
 y=(h-r・w)/(1-r・tanθ)      式(8)
 演算装置4は、上記のyと、予め定められた屈折角βとを用いて、式(2)の計算を行い、泡の高さ方向位置dを計算する(ステップS25)。この計算は、第1のガラス基板検査方法におけるステップS6と同様である。
 ステップS25の後、演算装置4は、泡の高さ方向位置dに応じて、基準とする表面52から泡までの距離Dを定める(ステップS7)。泡までの距離を定める基準となる表面を搬送ローラ1側に向けてガラス基板を配置した場合、D=dとすればよい。また、泡までの距離を定める基準となる表面を搬送ローラ1とは反対側に向けてガラス基板を配置した場合、演算装置4は、D=T-dとして、距離Dの値を定めればよい。この処理は、第1のガラス基板検査方法(図7参照)や第2のガラス検査方法(図9参照)におけるステップS7(図9参照)と同様である。
 続いて、演算装置4は、搬送方向に平行な泡の径の長さsを算出する(ステップS4)。搬送方向に平行な泡の径の長さsの算出は、第1のガラス基板検査方法(図7参照)におけるステップS4と同様の方法で行ってもよい。あるいは、第2のガラス検査方法(図9参照)におけるステップS13の処理と同様の処理を行うことによって、搬送方向に平行な泡の径の長さsを算出してもよい。
 以降の処理は、第1のガラス基板検査方法や第2のガラス基板検査方法におけるステップS8~S10と同様である。
 すなわち、演算装置4は、ステップS2で撮影された画像に基づいて、搬送方向に直交する方向の泡の径の長さtを算出する(ステップS8)。続いて、演算装置4は、(s×t)の3乗根を計算することによって、泡の球換算径eを算出する(ステップS9)。
 なお、ステップS3~S9の処理は、対になる楕円形の像の組毎にそれぞれ行う。
 さらに、演算装置4は、ガラス基板5の表面52からの距離Dが、T/2以下になっている泡を検出する。そして、演算装置4は、その泡を順に選択し、選択した泡について算出した距離Dおよび球換算径eとの間で式(4)の関係(すなわち、e≦0.01×D1.6+15)が成立しているか否かを判定する(ステップS10)。
 本発明のガラス基板51(図1参照)に対して、第3のガラス基板検査方法(図11に示すステップS1~S10)を行った場合にも、表面52からの距離DがT/2以下となっている泡それぞれについて、“e≦0.01×D1.6+15”という関係が成立していると判定される。
 図11に示す第3のガラス基板検査方法においても、第1のガラス基板検査方法(図7参照)や第2のガラス基板検査方法(図9参照)と同様に、同一の泡に起因する像が重なっていても泡の高さ方向位置を計算できる。また、搬送されるガラス基板の上下の振動の影響を受けにくく、表面52からの距離DがT/2以下となっている泡に関して、その距離Dと泡の球換算径eとの間で式(4)が成立しているか否かを精度よく判定できる。
 上記の各ガラス基板検査方法において、演算装置4は、例えば、プログラムに従って動作するコンピュータによって実現される。例えば、コンピュータが、プログラムに従って、演算装置4として動作してもよい。
 次に、本発明のガラス基板51(図1参照)の製造方法について説明する。図1に示す本発明のガラス基板51は、例えば、フロート法で製造されたガラスリボンに対して、上記の第1のガラス基板検査方法(図7参照)、第2のガラス基板検査方法(図9参照)、および第3のガラス基板検査方法(図11参照)のうちのいずれか一つの方法を適用し、ボトム面からの距離DがT/2以下となっている泡に関して、その距離Dと泡の球換算径eとの間で式(4)が成立しているガラスリボンを選別し、そのガラスリボンからガラス基板を切り出せばよい。ガラスリボンに対して第1のガラス基板検査方法、第2のガラス基板検査方法および第3のガラス基板検査方法のいずれかの方法を適用する場合、上記のガラス基板の代わりにガラスリボンを用いればよい。このとき、上記の第1のガラス基板検査方法、第2のガラス基板検査方法および第3のガラス基板検査方法のいずれを採用する場合であっても、ボトム面を基準として、ボトム面から泡までの距離Dを算出するとともに、泡の球換算径eを算出し、距離DがT/2以下となっている泡に関して、距離Dと泡の球換算径eとの間で式(4)が成立しているガラスリボンを選別すればよい。
 このように選別したガラスリボンから採板したガラス基板では、ボトム面に該当する面の膨らみを防止することができる。
 また、このようにして採板したガラス基板を液晶表示パネルの透明基板として用いる場合は、ガラスリボンにおけるボトム面に相当する面を研磨し、その面が液晶側を向くようにして液晶表示パネルを製造すればよい。この結果、セルギャップが均一となっている液晶表示パネルを製造することができる。
 また、泡による表面の膨らみを防止することができるので、本発明によるガラス基板は、立体画像を表示する液晶表示パネルにも好適に利用可能である。
 表面の膨らみを防止することができるので、ガラス基板を重ねた場合に、ガラス基板の一部に荷重が集中することを防止できる。従って、ガラス基板を重ねた場合であっても、ガラス基板の割れを防止することができる。
 なお、ガラスリボンの製造方法としてフュージョン法がある。フュージョン法で製造されたガラスリボンに関しては、どちらの表面を、距離Dを定めるための基準面としてもよい。そして、基準面とした表面から泡までの距離Dを算出するとともに、泡の球換算径eを算出し、距離DがT/2以下となっている泡に関して、距離Dと泡の球換算径eとの間で式(4)が成立しているガラスリボンを選別し、上記と同様にガラス基板を採板すれば、本発明のガラス基板51(図1参照)が得られる。フュージョン法で製造されたガラスリボンから採板したガラス基板を液晶表示パネルの透明基板として用いる場合にも、距離Dを定めるための基準面とした面が液晶側を向くようにして液晶表示パネルを製造すればよい。この場合にも、セルギャップが均一となっている液晶表示パネルを製造することができる。なお、フュージョン法で製造されたガラスリボンから採板したガラス基板を液晶表示パネルの透明基板として用いる場合には、研磨を行わなくてよい。
 表1に、本発明の実施例として例1~例10及び比較例として例11~例20をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 例1~20の試料は、フロート法によって成形した後、切断したガラス基板(旭硝子社製無アルカリガラス「AN100」)を使用した。
 表1のf(D)の欄は、例1~20の試料の表面から泡までの距離Dの値に対するf(D)=0.01×D1.6+15の値をそれぞれ記載している。
 表1の泡の球換算径eの欄は、上述の方法を用いて算出した例1~20の試料の泡の球換算径eを記載している。
 表1の表面の膨らみ量の欄は、例1~20の試料の表面に垂直な方向の試料表面の膨らみ量をオリンパス株式会社(Olympus Corporation)製 3Dレーザー顕微鏡(機種名:LEXT OLS 3100 MODEL:OLS31-SU)を用いて測定した結果を記載している。表中N.Dと表記した試料は、膨らみ量が測定限界以下( 0.1μm以下)であることを示している。
 表1の評価の欄は、ガラス基板の表面から泡までの距離Dと泡の球換算径eとの間で、e≦f(D)が満たされているか否かの判定を行った結果を記している。e≦f(D)が満たされている場合は○を、e≦f(D)が満たされていない場合は×を記載している。
 表1から明らかなように、e≦0.01×D1.6+15を満たしている実施例の例11~10の試料は、試料の表面に垂直な方向の試料表面の膨らみ量は測定限界以下であった。これに対し、e≦0.01×D1.6+15が満たしていない実施例の例11~例20の試料は、試料の表面に垂直な方向の試料表面の膨らみ量が1.5~6.2μmであった。
 したがって、ガラス基板の表面から泡までの距離Dと泡の球換算径eとが、e≦0.01×D1.6+15を満たすようにすることによって、ガラス基板の表面の膨らみ量を測定限界以下とすることができることがわかる。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年12月9日出願の日本特許出願(特願2010-275049)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、例えば、液晶表示パネルの透明基板として利用されるガラス基板に好適に適用される。
 1 搬送ローラ
 2 光源
 3,81,81,81 ラインカメラ
 4 演算装置
 5,51,82 ガラス基板
 57 泡

Claims (8)

  1.  ガラス基板の板厚をT(μm)とし、当該ガラス基板の表面から当該ガラス基板内に存在する泡までの距離をD(μm)とし、前記泡の球換算径をe(μm)としたときに、少なくとも一方の表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足することを特徴とするガラス基板。
  2.  筋目方向に沿って搬送されるガラス基板に光源から光を照射し、前記ガラス基板で反射した光が到達する位置に配置された撮影手段によって、前記ガラス基板を撮影する撮影ステップと、
     前記撮影手段で撮影された画像内における、前記ガラス基板内の同一の泡に起因する2つの重なり合う楕円形の像の位置関係に基づいて、前記ガラス基板内での前記泡の高さ方向位置を算出する演算ステップと、
     前記泡の球換算径eを算出する球換算径算出ステップと、
     前記泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、前記泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定する判定ステップとを含むガラス基板検査方法によって、
     少なくとも前記表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足すると判定される
     請求項1に記載のガラス基板。
  3.  演算ステップで、同一の泡に起因する2つの重なり合う像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから、前記搬送方向に平行な泡の径の長さを減算した値を計算し、計算した前記値と、前記ガラス基板内での光の屈折角とにより、前記ガラス基板内での前記泡の高さ方向位置を算出し、
     撮影手段で撮影された画像によって、前記搬送方向に直交する方向の泡の径の長さを算出するステップを含み、
     球換算径算出ステップで、前記搬送方向に平行な泡の径の長さをs(μm)とし、前記搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、
     判定ステップで、前記泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、前記泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、
     少なくとも前記表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足すると判定される
     請求項2に記載のガラス基板。
  4.  演算ステップで、同一の泡に起因する2つの重なり合う像の位置関係から、搬送方向に直交するガラス基板の幅方向における像の位置を変数として含む、予め定められた算出式を用いて、前記泡の特徴量を算出し、当該特徴量を用いて、前記2つの重なり合う像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから、前記搬送方向に平行な泡の径の長さを減算した値を計算し、計算した前記値と、前記ガラス基板内での光の屈折角とにより、前記ガラス基板内での前記泡の高さ方向位置を算出し、
     撮影手段で撮影された画像によって、前記搬送方向に直交する方向の泡の径の長さを算出するステップを含み、
     球換算径算出ステップで、前記搬送方向に平行な泡の径の長さをs(μm)とし、前記搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、
     判定ステップで、前記泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、前記泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、
     少なくとも前記表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足すると判定される
     請求項2に記載のガラス基板。
  5.  演算ステップで、同一の泡に起因する2つの重なり合う像の位置関係から、予め定められた算出式を用いて、特徴量として搬送方向に平行な泡の径の長さを計算し、前記2つの重なり合う像の外接矩形における前記搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから前記径の長さを減算した値を計算し、計算した前記値と、前記ガラス基板内での光の屈折角とにより、前記ガラス基板内での前記泡の高さ方向位置を算出し、
     撮影手段で撮影された画像によって、前記搬送方向に直交する方向の泡の径の長さを算出するステップを含み、
     球換算径算出ステップで、前記搬送方向に平行な泡の径の長さをs(μm)とし、前記搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、
     判定ステップで、前記泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、前記泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、
     少なくとも前記表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足すると判定される
     請求項4に記載のガラス基板。
  6.  演算ステップで、予め定められた算出式を用いて、同一の泡に起因する2つの重なり合う像の位置関係から、特徴量として、泡の2つの径の比を算出し、撮影手段の正面方向の撮影位置に相当する画像内のラインと、前記2つの像の各中心を通過するラインとのなす角と、前記比とにより、前記2つの重なり合う像の外接矩形における、ガラス基板の搬送方向に相当する方向に平行な辺のピクセル数に応じた実空間での長さから、前記搬送方向に平行な泡の径の長さを減算した値を計算し、計算した前記値と、前記ガラス基板内での光の屈折角とにより、前記ガラス基板内での前記泡の高さ方向位置を算出し、
     撮影手段で撮影された画像によって、前記搬送方向に直交する方向の泡の径の長さを算出するステップを含み、
     球換算径算出ステップで、前記搬送方向に平行な泡の径の長さをs(μm)とし、前記搬送方向に直交する方向の泡の径の長さをt(μm)としたときに(s×t1/3を計算することによって、当該泡の球換算径eを算出し、
     判定ステップで、前記泡の高さ方向位置によって定まるガラス基板の表面から泡までの距離Dと、前記泡の球換算径eとの間で、e≦0.01×D1.6+15が満たされているか否かを判定するガラス基板検査方法によって、
     少なくとも前記表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足すると判定される
     請求項4に記載のガラス基板。
  7.  フロート法で製造されたガラスリボンから採板されたガラス基板であり、前記ガラスリボンのボトム面に該当する方の表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足する
     請求項1から請求項6のうちのいずれか1項に記載のガラス基板。
  8.  液晶表示パネルのガラス基板であり、液晶側に向けられる方の表面からT/2(μm)以内の層に存在する泡の球換算径eが
     e≦0.01×D1.6+15
    を満足する
     請求項1から請求項6のうちのいずれか1項に記載のガラス基板。
PCT/JP2011/077589 2010-12-09 2011-11-29 ガラス基板 WO2012077542A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180059400.4A CN103250046B (zh) 2010-12-09 2011-11-29 玻璃基板
JP2012547796A JP5686139B2 (ja) 2010-12-09 2011-11-29 液晶表示パネル用ガラス基板の製造方法
KR1020137014660A KR20130124954A (ko) 2010-12-09 2011-11-29 유리 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275049 2010-12-09
JP2010-275049 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077542A1 true WO2012077542A1 (ja) 2012-06-14

Family

ID=46207033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077589 WO2012077542A1 (ja) 2010-12-09 2011-11-29 ガラス基板

Country Status (5)

Country Link
JP (1) JP5686139B2 (ja)
KR (1) KR20130124954A (ja)
CN (1) CN103250046B (ja)
TW (1) TW201226888A (ja)
WO (1) WO2012077542A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159419A1 (ja) * 2014-04-18 2015-10-22 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
JP2015205811A (ja) * 2015-04-27 2015-11-19 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
CN117491391A (zh) * 2023-12-29 2024-02-02 登景(天津)科技有限公司 基于芯片计算的玻璃基板光三维健康检测方法及设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204207B (zh) * 2014-04-18 2019-07-09 安瀚视特控股株式会社 平板显示器用玻璃基板及其制造方法、以及液晶显示器
CN105842885B (zh) * 2016-03-21 2018-11-27 凌云光技术集团有限责任公司 一种液晶屏缺陷分层定位方法及装置
CN107884318B (zh) * 2016-09-30 2020-04-10 上海微电子装备(集团)股份有限公司 一种平板颗粒度检测方法
CN106872483A (zh) * 2017-02-04 2017-06-20 大连益盛达智能科技有限公司 解决光学检测设备因透明材质中的气泡影响检测的方法
CN106996937B (zh) * 2017-06-15 2019-09-06 福州东旭光电科技有限公司 一种玻璃基板内缺陷检测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106289A (en) * 1978-02-07 1979-08-21 Nippon Sheet Glass Co Ltd Defect detector for glass sheet
JPH0961139A (ja) * 1995-08-22 1997-03-07 Asahi Glass Co Ltd 透明体の欠点検出方法及び装置
JP2004233338A (ja) * 2003-01-08 2004-08-19 Tdk Corp 円盤状基板の欠陥検出方法、その装置及び光ディスク用基板の製造方法
WO2006057125A1 (ja) * 2004-11-24 2006-06-01 Asahi Glass Company, Limited 透明板状体の欠陥検査方法および装置
WO2009031420A1 (ja) * 2007-09-04 2009-03-12 Asahi Glass Company, Limited 透明板体内部の微小異物を検出する方法及びその装置
JP2010008177A (ja) * 2008-06-26 2010-01-14 Adtec Engineeng Co Ltd 欠陥検出装置及び方法
JP2010249552A (ja) * 2009-04-13 2010-11-04 Central Glass Co Ltd ガラス板の欠陥識別方法および装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131190B2 (ja) * 2006-05-10 2013-01-30 旭硝子株式会社 ディスプレイ基板用フロートガラス及びその製造方法
EP2178343B2 (en) * 2007-07-27 2020-04-08 AGC Inc. Translucent substrate, method for manufacturing the translucent substrate and organic led element
CN101855182B (zh) * 2007-11-08 2012-12-05 旭硝子株式会社 玻璃板制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106289A (en) * 1978-02-07 1979-08-21 Nippon Sheet Glass Co Ltd Defect detector for glass sheet
JPH0961139A (ja) * 1995-08-22 1997-03-07 Asahi Glass Co Ltd 透明体の欠点検出方法及び装置
JP2004233338A (ja) * 2003-01-08 2004-08-19 Tdk Corp 円盤状基板の欠陥検出方法、その装置及び光ディスク用基板の製造方法
WO2006057125A1 (ja) * 2004-11-24 2006-06-01 Asahi Glass Company, Limited 透明板状体の欠陥検査方法および装置
WO2009031420A1 (ja) * 2007-09-04 2009-03-12 Asahi Glass Company, Limited 透明板体内部の微小異物を検出する方法及びその装置
JP2010008177A (ja) * 2008-06-26 2010-01-14 Adtec Engineeng Co Ltd 欠陥検出装置及び方法
JP2010249552A (ja) * 2009-04-13 2010-11-04 Central Glass Co Ltd ガラス板の欠陥識別方法および装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159419A1 (ja) * 2014-04-18 2015-10-22 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
JP2015205811A (ja) * 2015-04-27 2015-11-19 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
CN117491391A (zh) * 2023-12-29 2024-02-02 登景(天津)科技有限公司 基于芯片计算的玻璃基板光三维健康检测方法及设备
CN117491391B (zh) * 2023-12-29 2024-03-15 登景(天津)科技有限公司 基于芯片计算的玻璃基板光三维健康检测方法及设备

Also Published As

Publication number Publication date
TW201226888A (en) 2012-07-01
CN103250046B (zh) 2016-02-24
JPWO2012077542A1 (ja) 2014-05-19
KR20130124954A (ko) 2013-11-15
JP5686139B2 (ja) 2015-03-18
CN103250046A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5686139B2 (ja) 液晶表示パネル用ガラス基板の製造方法
WO2012077683A1 (ja) ガラスリボン内欠陥測定方法およびガラスリボン内欠陥測定システム
JP6027673B2 (ja) 鏡面反射面の形状測定
JP4793266B2 (ja) 透明板状体の欠陥検査方法および装置
KR20110088706A (ko) 평판 유리 표면 이물질 검사 장치
CN207894591U (zh) 一种hud前挡玻璃检测设备
WO2014129358A1 (ja) 透明板状体表面検査用撮像システム
CN210720179U (zh) 复检相机对焦测距装置和玻璃复检设备
TW201738551A (zh) 透明板表面檢查裝置、透明板表面檢查方法、及玻璃板之製造方法
JP2012122753A (ja) レンズシートの欠陥検査装置、欠陥検査方法及び製造装置
CN103438803B (zh) 计算机视觉技术跨视场精确测量矩形零件尺寸的方法
TWI470210B (zh) 顯示裝置之光學層件之缺陷檢測方法
CN104913723A (zh) 一种大构件在线精密检测系统与方法
CN110702505B (zh) 一种基于远心镜头和立方棱镜的双视场视频引伸计
JP7186640B2 (ja) 測定方法及び測定装置
JP6530747B2 (ja) Euvリソグラフィ用チタンドープシリカガラスのミラー基板ブランクの製造方法及びブランク中の欠陥の位置を決定するためのシステム
KR20140012250A (ko) 라인 빔을 이용한 유리기판 결함 측정 장치 및 측정 방법
TW201727219A (zh) 薄膜檢查裝置及薄膜檢查方法
KR102037395B1 (ko) 투과 광학계 검사 장치 및 이를 이용한 필름 결함 검사 방법
KR100942236B1 (ko) 판유리 두께의 측정오차 보정방법
RU2583852C2 (ru) Графо-проекционный муаровый способ измерения
JP6389977B1 (ja) 欠陥検査装置
CN204740003U (zh) 一种大构件在线精密检测系统
JP2020060480A (ja) 偏心量測定方法
KR102180648B1 (ko) 3차원 단층촬영 검사 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180059400.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547796

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014660

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846629

Country of ref document: EP

Kind code of ref document: A1