WO2006011421A1 - プリプレグ、その製造方法、積層板及びプリント配線板 - Google Patents

プリプレグ、その製造方法、積層板及びプリント配線板 Download PDF

Info

Publication number
WO2006011421A1
WO2006011421A1 PCT/JP2005/013476 JP2005013476W WO2006011421A1 WO 2006011421 A1 WO2006011421 A1 WO 2006011421A1 JP 2005013476 W JP2005013476 W JP 2005013476W WO 2006011421 A1 WO2006011421 A1 WO 2006011421A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
parts
volume
inorganic filler
thermal conductivity
Prior art date
Application number
PCT/JP2005/013476
Other languages
English (en)
French (fr)
Inventor
Makoto Ito
Original Assignee
Shin-Kobe Electric Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Kobe Electric Machinery Co., Ltd. filed Critical Shin-Kobe Electric Machinery Co., Ltd.
Publication of WO2006011421A1 publication Critical patent/WO2006011421A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • Pre-preda manufacturing method thereof, laminated board and printed wiring board
  • the present invention relates to a pre-preda made by impregnating an epoxy resin composition containing an epoxy resin and a curing agent into a sheet-like fiber base material and holding it in a semi-cured state, a method for producing this pre-preda, or this
  • the present invention relates to a laminated board or printed wiring board using a pre-predder, and particularly relates to a pre-predder capable of improving thermal conductivity, a manufacturing method thereof, or a laminated board or printed wiring board using the pre-predder.
  • An epoxy resin composition using an epoxy resin having a mesogenic structure is excellent in mechanical and thermal properties.
  • Patent Document 1 discloses an epoxy resin composition containing biphenol type epoxy resin and polyhydric phenol resin as essential components, and this epoxy resin composition has a high temperature. Since a cured product having excellent stability and strength can be provided, it can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination.
  • Patent Document 2 discloses an epoxy resin monomer having two mesogen structures linked by a bent chain in the molecule, and the epoxy resin produced with this monomer force has a smectic structure. It is known to have.
  • Patent Document 3 discloses a resin composition containing an epoxy resin monomer having a mesogenic group, and since this epoxy resin composition is excellent in thermal conductivity, heat dissipation properties are disclosed. Is preferred as a resin for laminates.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-090052
  • Patent Document 2 Japanese Patent Laid-Open No. 09-118673
  • Patent Document 3 Japanese Patent Laid-Open No. 11-323162
  • One object of the present invention is to provide a pre-preda capable of maintaining the thermal conductivity while improving the amount of the epoxy resin composition adhering to the sheet-like fiber substrate, and a method for producing the same. I will.
  • Another object of the present invention is to provide a laminate or printed wiring using a pre-preda that can maintain the thermal conductivity while improving the amount of the epoxy resin composition adhering to the sheet fiber substrate.
  • a first feature of the present invention is a pre-predder in which an epoxy resin composition containing an epoxy resin and a curing agent is impregnated and held in a sheet-like fiber base material to be in a semi-cured state.
  • Epoxy resin is an epoxy compound having a molecular structure represented by (Equation 1), and an inorganic filler having a thermal conductivity of 20 WZm'K or more is added to the epoxy resin. It is also possible to provide a pre-preda characterized by containing 10 to 900 parts by volume with respect to 100 parts by volume.
  • the solid content of the resin means a combination of the epoxy resin component and its curing agent component.
  • R -H, alkyl group (aliphatic hydrocarbon having 4 or less carbon atoms),
  • the epoxy resin has a molecular structure represented by (formula 2) (in formula 1, R:
  • the shape of the inorganic filler is preferably not spherical.
  • a second feature of the present invention is a method for producing a pre-preda according to the first feature, wherein the inorganic filler contained in the epoxy resin is added in an amount of 100 volume to 100 volume parts of the resin solid content.
  • the epoxy resin composition is kneaded by any kneading means selected from a ball mill, a bead mill, and a roll mill composed of a plurality of rolls, or a means equivalent to this kneading means.
  • An object of the present invention is to provide a method for producing a pre-preda, which is characterized by impregnating and holding a base material.
  • the third feature of the present invention is that the whole or a part of the laminated sheet to be molded by heating and pressing.
  • the purpose of this invention is to provide a laminated board characterized by having a pre-predator force according to the first feature.
  • a fourth feature of the present invention is a printed wiring board comprising an insulating layer to be molded by heating and pressing, wherein the insulating layer has a pre-predator force according to the first feature. To provide a board.
  • an inorganic filler having a thermal conductivity of 20 WZm'K or more is contained in the epoxy resin so as to be 10 to 900 parts by volume with respect to 100 parts by volume of the resin solids. It is possible to provide a varnish with a uniform dispersion of an inorganic filler that does not allow the inorganic filler to settle in the greave composition, and therefore, when impregnating the varnish with a sheet-like fiber base material. Handling becomes easy, and a pre-preda that maintains high thermal conductivity can be obtained.
  • the amount of the inorganic filler added to the epoxy resin is 10 to 900 parts by volume with respect to 100 parts by volume of the solid content of the epoxy resin. If the added amount of the inorganic filler is less than 10 parts by volume, the inorganic filler settles and the content of the inorganic filler in the resin composition cannot be made constant, so a pre-preda having a uniform appearance is produced. It is not possible. On the other hand, if the amount of the inorganic filler added exceeds 900 parts by volume, the viscosity of the resin composition base will increase too much, so that it cannot be used for the production of a pre-preda.
  • the rosin composition varnish can be uniformly stirred by a normal stirring means using stirring blades.
  • a large shear force is applied by a kneading means selected from a ball mill, a bead mill, a roll mill composed of a plurality of rolls, or an equivalent means.
  • the resin composition varnish can be uniformly stirred. If the thermal conductivity of the inorganic filler is less than 20 WZm'K, the thermal conductivity of the laminate is not improved. Therefore, the thermal conductivity of the inorganic filler is required to be 20 WZm'K or more. .
  • the epoxy resin composition used in the present invention has a varnish compared to an epoxy resin composition in which a curing agent is added to an epoxy resin having a normal mesogenic structure by adding an inorganic filler. Since the viscosity of the varnish is improved and the varnish is uniformly dispersed, it is easy to handle when impregnating the sheet-like fiber base material. It is suitable as a material. In addition, since the inorganic filler has no reactivity with the resin component, it does not disturb the self-alignment of the resin effective for heat conduction and does not cause a decrease in the thermal conductivity of the cured resin.
  • the cured product obtained by heat-press molding the pre-preda of the present invention contributes to providing a laminated board or printed wiring board having high thermal conductivity and thus good thermal conductivity.
  • an epoxy resin composition containing an epoxy resin and a curing agent is impregnated and held in a sheet-like fiber base material.
  • the target is a pre-predder that is in a semi-cured state
  • this pre-predder is used as a laminated board or a printed wiring board as described later.
  • the epoxy resin used in this pre-predder is an epoxy compound having a molecular structure represented by (Formula 1), and an inorganic filler having a thermal conductivity of 20 WZm'K or more is included in this epoxy resin. It is contained so as to be 10 to 900 parts by volume with respect to 100 parts by volume.
  • the resin solid content is a combination of an epoxy resin component and a curing agent component thereof.
  • R — H 2, alkyl group (aliphatic hydrocarbon having 4 or less carbon atoms),
  • the average value is a number from 0 to 5
  • the epoxy compound used in the present invention is an epoxy compound having a biphenyl skeleton or a biphenyl derivative skeleton and having two or more epoxy groups in one molecule as shown in (Formula 1). Power that is general This epoxy compound, part or all, It is preferable to select the structural formula represented by (Formula 2) where R in Formula (1) is -H. When such an epoxy compound is used, the thermal conductivity can be further increased because the bif: nyl group is more easily arranged. In addition, two or more bone skeletons or bifur derivatives may be present in the same molecule.
  • the inorganic filler used in the present invention has a thermal conductivity of 20 WZm'K or more, and the inorganic filler is added (mixed) in an amount of 10 to 900 parts by volume with respect to 100 parts by volume of the fat solid content. Is done.
  • the thermal conductivity is 20 WZm′K or more
  • the inorganic filler can be a metal oxide, hydroxide, inorganic ceramic, or other appropriate material.
  • inorganic powder fillers such as fluorine nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tandastene carbide, alumina, magnesium oxide, and fibrous fillers such as synthetic fibers and ceramic fibers Colorants and the like can be used as inorganic fillers, and the thermal conductivity of the laminate can be improved by using these inorganic fillers together with epoxy compounds. It is preferable that the thermal conductivity of the inorganic filler is 30 WZm'K or more because the thermal conductivity of the laminate is further improved.
  • the shape of the inorganic filler may be powder (lump, spherical), single fiber, long fiber! /, Or shift, but in particular, when the inorganic filler is flat, the inorganic filler Since the thermal conductivity of the hardened material is further enhanced by its own laminating effect, it is preferable because its heat dissipation is further improved when applied to a laminate.
  • the inorganic fillers exemplified above may be used in combination of two or more.
  • a ball mill, a bead mill, Roll mill composed of rolls Kneading is carried out by selected kneading means or equivalent means.
  • a ball mill, a bead mill, Roll mill composed of rolls Kneading is carried out by selected kneading means or equivalent means.
  • the dispersibility of the varnish rosin composition is improved and the viscosity is also lowered.
  • shearing stirring up to 900 parts by volume of the inorganic filler can be blended in the varnish resin composition.
  • such a shear dispersion method can be applied to a resin composition having 100 parts by volume or less of an inorganic filler.
  • a ball mill is a device that kneads and mixes raw materials by putting hard balls and raw materials made of ceramic or metal, etc. into a container and rotating the container.
  • a bead mill is a device for kneading and mixing raw materials using fine beads with a diameter of 0.1 to lmm instead of balls of a ball mill.
  • the roll mill is an apparatus that includes, for example, three tools, introduces the raw material between the rolls, and kneads and mixes the raw material with the shearing force between the rolls.
  • the curing agent blended in the epoxy resin has a function of advancing the curing reaction of the epoxy resin monomer, and a conventionally used material can be used as the curing agent.
  • a conventionally used material can be used as the curing agent. Examples thereof include phenols or compounds thereof, ammine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, and the like.
  • a curing accelerator can be added to the epoxy resin to advance the polycondensation reaction of the epoxy resin monomer with phenols or compounds thereof, amines or compounds thereof.
  • the materials used for the purpose can be used. Examples thereof include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof.
  • An epoxy resin composition containing an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator If necessary, additives such as flame retardants, diluents, plasticizers, and coupling agents can be blended. Moreover, a solvent can be used as needed when impregnating this epoxy resin composition in a sheet-like fiber base material, and drying and manufacturing a pre-preda. The use of these additives and solvents does not affect the thermal conductivity of the cured product.
  • a pre-preda which is one of the objects of the present invention, impregnates the above-mentioned epoxy resin composition into a sheet-like fiber base material (woven fabric or non-woven fabric) made of inorganic fibers such as glass fibers or organic fibers. Heat drying to make the epoxy resin in a semi-cured state.
  • the laminated plate which is another object of the present invention, is formed by heating and press-molding the entire layer including the pre-predder, all or a part of which is made of the pre-predder.
  • a metal foil such as a copper foil may be integrally bonded to one side or both sides of the laminated plate at the time of heating and pressing.
  • the printed wiring board which is still another object of the present invention, is formed by heating and pressurizing the pre-predder insulating layer in which the insulating layer on which the printed wiring board is to be formed has the aforementioned pre-predator force.
  • This printed wiring board may be in any form of a single-sided printed wiring board, a double-sided printed wiring board, or a multilayer printed wiring board having printed wiring on the inner layer and the surface layer.
  • the printed wiring board having such a configuration has good heat conductivity of the insulating layer and excellent heat dissipation, it is suitable for printed wiring boards for automobile equipment and high-density mounting printed wiring boards such as personal computers. It is.
  • 1,5-Diaminonaphthalene (“1, 5-DANJ” manufactured by Wako Pure Chemical Industries, Ltd.) 22 parts were prepared and dissolved in 100 parts of methylisoptyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) at 100 ° C. and returned to room temperature.
  • the epoxy resin composition varnish was impregnated into a glass fiber woven fabric having a thickness of 0.2 mm and dried by heating to obtain a pre-preda.
  • Four sheets of this pre-preda were laminated, and copper foil was laminated on both sides, and they were integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa to obtain a laminated plate having a thickness of 0.8 mm.
  • thermal conductivity is the result of cutting a 50 mm ⁇ 120 mm plate-like sample from the laminate obtained in Example 1 and measuring it at room temperature according to the probe method.
  • a 50 mm ⁇ 120 mm plate sample was cut out from the laminated plate obtained in each example, and the thermal conductivity was measured.
  • the volume part of boron nitride relative to the resin solids was 10 to 900 volume. Part of the range (Examples 1 to 6) The rate has also increased.
  • a pre-preda and a laminated plate could be produced in the range of more than 100 parts by volume to 900 parts by volume, and high thermal conductivity was obtained.
  • a spherical inorganic filler (“R15S” manufactured by Toyo Aluminum Co., Ltd., average particle size 15 ⁇ m, thermal conductivity 100 WZm'K, particle shape: spherical) 154
  • R15S spherical inorganic filler manufactured by Toyo Aluminum Co., Ltd., average particle size 15 ⁇ m, thermal conductivity 100 WZm'K, particle shape: spherical
  • the varnish of the epoxy resin composition was homomixed in the same manner as in Example 1 except that the blending ratio of the inorganic filler with respect to 100 parts by volume of the resin solid content combining the epoxy resin monomer and the curing agent was 120 parts by volume. (See Table 2).
  • the blending ratio of the inorganic filler is less than 900 parts by volume with respect to 100 parts by volume of the resin solids, but the viscosity of the varnish is too high to obtain uniformity by stirring with a homomixer. I could't.
  • Comparative Example 1 is the same as Example 1 except that bisphenol A type epoxy resin (“EP828” manufactured by Japan Epoxy Resin, epoxy equivalent 185) is used in place of “YL6121H” as an epoxy resin component. Thus, a pre-preda and a laminate were obtained. The thermal conductivity of this laminate was 0.5 WZm′K, which was significantly smaller than that of Example 1.
  • Comparative Example 4 when the volume part of the inorganic filler relative to 100 parts by volume of the resin solid content is 910 parts by volume, the viscosity of the varnish becomes too high and kneading by the ball mill becomes difficult, and the sheet becomes difficult. Since the fiber base material could not be uniformly impregnated with the varnish, the pre-preda and the laminate could not be produced.
  • Epoxy resin composition Reference example Epoxy resin YL6121H 100 Monomer
  • Epoxy tree YL6121H One 100 100 100
  • Resin solid content 100 parts by volume
  • the epoxy resin composition has an epoxy resin composition having a molecular structure of (Formula 2) and a molecule of (Formula 1) other than the molecular structure of (Formula 2).
  • the epoxy resin component having the molecular structure of (Formula 2) can also be used, and also has the molecular structure of (Formula 2).
  • the epoxy resin monomer may not be included.
  • Other components and blending ratios can be variously modified without departing from the scope of the claims which are not limited to the above examples.
  • the present invention adds an inorganic filler having high thermal conductivity to the epoxy resin composition to improve the amount of the epoxy resin composition varnish adhering to the sheet-like fiber substrate while improving the thermal conductivity.
  • a pre-preda that can be maintained can be obtained.
  • it can be suitably used for a laminated board or a printed wiring board, and industrial applicability is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

プリプレダ、その製造方法、積層板及びプリント配線板
技術分野
[0001] 本発明は、エポキシ榭脂と硬化剤とを含むエポキシ榭脂組成物をシート状の繊維 基材に含浸して保持し半硬化状態としたプリプレダ、このプリプレダの製造方法、また はこのプリプレダを用いた積層板又はプリント配線板に関し、特に熱伝導性を向上す ることができるプリプレダ、その製造方法、またはこのプリプレダを用いた積層板又は プリント配線板に関するものである。
背景技術
[0002] メソゲン構造を有するエポキシ榭脂を用いたエポキシ榭脂組成物は、機械的 ·熱的 性質に優れている。
[0003] 例えば、特許文献 1には、ビフエノール型エポキシ榭脂と多価フエノール榭脂硬化 剤とを必須成分としたエポキシ榭脂組成物が開示されており、このエポキシ榭脂組成 物は、高温下での安定性と強度に優れた硬化物を提供することができるので、接着、 注型、封止、成型、積層等の広い分野で使用することができる。
[0004] また、特許文献 2には、屈曲鎖で連結された二つのメソゲン構造を分子内に有する エポキシ榭脂モノマが開示されており、このモノマ力も製造したエポキシ榭脂は、スメ クチック構造を持つことが知られて 、る。
[0005] 更に、特許文献 3には、メソゲン基を有するエポキシ榭脂モノマを含む榭脂組成物 が開示されており、このエポキシ榭脂組成物は、熱伝導性に優れているので、放熱 性が求められる積層板用の榭脂として好ましい。
[0006] しかし、これらのメソゲン構造を有するエポキシ榭脂は、融点が高ぐ有機溶剤に非 常に溶けにくいという特徴を有する。このため、このようなエポキシ榭脂を使用したヮ ニスを調製するときには、多量の有機溶剤を使用しなければならないので、ワニスの 粘度が低下し、従って、プリプレダを製造するに当って、このワニスをシート状の繊維 基材に含浸し保持させようとすると、付着榭脂量を多くすることができないという欠点 があった。この欠点を補うために、増粘性を有する第 3成分をワニスに添加すると、榭 脂の自己配列が乱されるため、その硬化物の熱伝導率が低下するという問題が生じ た。
[0007] 特許文献 1 :特開平 07— 090052号公報
特許文献 2:特開平 09 - 118673号公報
特許文献 3:特開平 11― 323162号公報
[0008] 本発明の 1つの目的は、エポキシ榭脂組成物がシート状繊維基材に付着する量を 向上しつつ熱伝導性を維持することができるプリプレダ及びその製造方法を提供す ることにめる。
[0009] 本発明の他の目的は、エポキシ榭脂組成物がシート状繊維基材に付着する量を向 上しつつ熱伝導性を維持することができるプリプレダを用いた積層板又はプリント配 線板を提供することにある。
発明の開示
[0010] 本発明の第 1の特徴は、エポキシ榭脂と硬化剤とを含むエポキシ榭脂組成物がシ ート状の繊維基材に含浸して保持され半硬化状態としてなるプリプレダにぉ ヽて、ェ ポキシ榭脂は、(式 1)で示す分子構造を有するエポキシ化合物であり、且つこのェポ キシ榭脂には、熱伝導率が 20WZm'K以上の無機充填材が榭脂固形分 100体積 部に対し 10〜900体積部となるように含有されていることを特徴とするプリプレダを提 供すること〖こある。なお、榭脂固形分とは、エポキシ榭脂成分とその硬化剤成分とを 合わせたものをいう。
[0011] [化 1]
Figure imgf000005_0001
R : - H ,アルキル基(炭素数が 4以下の脂肪族炭化水素),
ァセチル基,ハロゲンから選ばれる。 平均値で 0〜5の数
[0012] 本発明の第 1の特徴において、エポキシ榭脂が、(式 2)で示す分子構造 (式 1で R:
—Ηに相応)を有するエポキシィ匕合物であるのが好ましい。また、無機充填材の形状 は、球形でないことが望ましい。
[0013] [化 2]
Figure imgf000005_0002
[0014] 本発明の第 2の特徴は、第 1の特徴によるプリプレダを製造する方法であって、ェポ キシ榭脂に含有される無機充填材を榭脂固形分 100体積部に対し 100体積部より 多く配合し、ボールミルとビーズミルと複数本のロールで構成されるロールミルとから 選択されたいずれかの混練手段又はこの混練手段と同等の手段によりエポキシ榭脂 組成物を混練してシート状繊維基材に含浸して保持することを特徴とするプリプレダ の製造方法を提供することにある。
[0015] 本発明の第 3の特徴は、加熱加圧して成形されるべき積層板の全層又は一部の層 が第 1の特徴によるプリプレダ力 成っていることを特徴とする積層板を提供すること にある。
[0016] 本発明の第 4の特徴は、加熱加圧して成形されるべき絶縁層から成るプリント配線 板において、絶縁層が第 1の特徴によるプリプレダ力 成っていることを特徴とするプ リント配線板を提供することにある。
[0017] 本発明は、上記のように、熱伝導率が 20WZm'K以上の無機充填材を榭脂固形 分 100体積部に対し 10〜900体積部となるようにエポキシ榭脂に含有させるので、 榭脂組成物内で無機充填材が沈降することがなぐ無機充填材が均一に分散された 榭脂ワニスを提供することができ、従ってシート状繊維基材に榭脂ワニスを含浸する 際の取扱 、が容易となり、高 、熱伝導性を維持したプリプレダを得ることができる。
[0018] 本発明にお ヽては、エポキシ榭脂に対する無機充填材の添加量は、エポキシ榭脂 固形分 100体積部に対し、 10〜900体積部であることが必須である。無機充填材の 添加量が 10体積部未満であると、無機充填材は沈降し、榭脂組成物中の無機充填 材含有量を一定にすることができないため、外観の均一なプリプレダを製造すること はできない。逆に、無機充填材の添加量が 900体積部を越えると、榭脂組成物ヮ- スの粘性が増大しすぎるため、プリプレダの製造に供することができなくなる。
[0019] この場合、無機充填材の添加量が 100体積部までであれば、攪拌羽を使用する通 常の撹拌手段で榭脂組成物ワニスを均一に撹拌することができるが、無機充填材の 添カ卩量が 100体積部より多い場合には、ボールミル、ビーズミル、複数本のロールで 構成されるロールミルカ 選ばれる混練手段又はこの混練手段と同等手段により大き なせん断力を働カゝせて榭脂組成物を混練することにより、榭脂組成物ワニスを均一 に撹拌することができる。なお、無機充填材の熱伝導率が 20WZm'K未満であると 、積層板の熱伝導率が向上しないので、無機充填材の熱伝導率は、 20WZm'K以 上であることが要求される。
[0020] 本発明に用いられるエポキシ榭脂組成物は、無機充填材を添加することにより、通 常のメソゲン構造を有するエポキシ榭脂に硬化剤を配合したエポキシ榭脂組成物に 比べると、ワニスの粘度が向上し、ワニスが均一に分散されるので、シート状繊維基 材に含浸する際の取り扱いが容易になり、このため、本発明のプリプレダは、積層用 の材料として好適である。また、無機充填材は、榭脂成分との反応性がないから、熱 伝導に有効な榭脂の自己配列を乱すことはなぐ榭脂硬化物の熱伝導率を小さくす る原因にはならない。
[0021] 本発明のプリプレダを加熱加圧成形した硬化物は、熱伝導率が高ぐ従って熱伝 導性のよい積層板又はプリント配線板を提供することに寄与する。
発明を実施するための最良の形態
[0022] 本発明の実施の形態を詳細に述べると、本発明の実施の形態では、エポキシ榭脂 と硬化剤とを含むエポキシ榭脂組成物がシート状の繊維基材に含浸して保持され半 硬化状態としてなるプリプレダを対象とするが、このプリプレダは、後に述べるように、 積層板又はプリント配線板として利用される。このプリプレダに用いられるエポキシ榭 脂は、(式 1)で示す分子構造を有するエポキシ化合物であり、且つこのエポキシ榭 脂には、熱伝導率が 20WZm'K以上の無機充填材が榭脂固形分 100体積部に対 し 10〜900体積部となるように含有されている。なお、榭脂固形分とは、エポキシ榭 脂成分とその硬化剤成分とを合わせたものを 、う。
[0023] [化 1]
Figure imgf000007_0001
R:— H ,アルキル基(炭素数が 4以下の脂肪族炭化水素),
ァセチル基,ハロゲンから選ばれる。 π:平均値で 0〜5の数
本発明において、後に述べるように、熱伝導性が高い無機充填材を用いることが重 要である。また、本発明に用いられるエポキシィ匕合物は、(式 1)に示すように、ビフエ -ル骨格あるいはビフエニル誘導体の骨格をもち、 1分子中に 2個以上のエポキシ基 をもつエポキシィ匕合物全般である力 このエポキシ化合物は、その一部又は全部に、 (式 1)の Rがー Hである(式 2)で示される分 ^構造式のものを選択するのが好まし 、。 このようなエポキシィ匕合物を用いると、ビフ: .ニル基がより配列しやすいため、熱伝導 率をより高くすることができる。また、ビフエ:ル骨格あるいはビフ 二ル誘導体の骨 格は同一分子内に 2つ以上あってもよい。
[0025] [化 2]
Figure imgf000008_0001
[0026] 本発明に用いられる無機充填材は、 20WZm'K以上の熱伝導率を有し、またこの 無機充填材は、榭脂固形分 100体積部に対し 10乃至 900体積部添加 (配合)される 。無機充填材は、熱伝導率が 20WZm'K以上であれば、金属酸化物又は水酸ィ匕 物あるいは無機セラミックス、その他適宜の材料とすることができる。例えば、窒化ホ ゥ素、窒化アルミニウム、窒化ケィ素、炭化ケィ素、窒化チタン、酸化亜鉛、炭化タン ダステン、アルミナ、酸化マグネシウム等の無機粉末充填材、合成繊維、セラミックス 繊維等の繊維質充填材、着色剤等を無機充填材として用いることができ、これらの無 機充填材をエポキシィ匕合物と共に用いることによって積層板の熱伝導率を向上する ことができる。無機充填材の熱伝導率が 30WZm'K以上であると、積層板の熱伝導 率が一層向上するので好まし ヽ。
[0027] 無機充填材の形状は、粉末 (塊状、球状)、単繊維、長繊維の!/、ずれであってもよ いが、特に、無機充填材が平板状であると、無機充填材自身の積層効果によって硬 化物の熱伝導性は更に高くなるので、積層板に適用した場合にその放熱性が一層 向上するので好ましい。上記に例示した無機充填材は、 2種類以上を併用してもよい [0028] エポキシ榭脂組成物中の無機充填材の配合量を増やしていくと、そのチクソ性およ び凝集性のために、エポキシ榭脂組成物ワニスの粘度が増大する。このため、このェ ポキシ榭脂組成物ワニスを攪拌羽タイプの攪拌機で撹拌する場合、ワニスの榭脂固 形分 100体積部に対して無機充填材の配合量が 100体積部を越えると、ワニスを攪 拌し難くなり、榭脂組成物の成分を均一に分散することが難くなる。
[0029] 従って、本発明では、無機充填材の配合量が榭脂固形成分 100体積部に対して 1 00体積部を越える場合には、強力なせん断力を発生するボールミル、ビーズミル、 複数本のロールで構成されるロールミルカ 選ばれる混練手段又はこの混練手段と 同等手段により混練する。このように、配合物に強力なせん断力を付与しつつ撹拌 すると、ワニス榭脂組成物の分散性がよくなり粘度も低下する。このようなせん断撹拌 を利用することによってワニス榭脂組成物内に無機充填材を 900体積部まで配合す ることができる。もちろん、このようなせん断分散方式を、無機充填材 100体積部以下 の榭脂組成物に適用することは何ら差し支えない。
[0030] ボールミルは、セラミックや金属等力 成る硬質のボールと原材料とを容器に投入し 、この容器を回転させることによって、原材料を混練、混合する装置である。ビーズミ ルは、ボールミルのボールに代えて直径が 0. 1乃至 lmmの大きさの細かいビーズを 使用して原材料を混練、混合する装置である。また、ロールミルは、例えば三本の口 ールから成り、ロールとロールとの間に原材料を導入して、ロール間のせん断力で原 材料を混練、混合する装置である。
[0031] エポキシ榭脂に配合する硬化剤は、エポキシ榭脂モノマの硬化反応を進行させる 機能を有し、この硬化剤としては、従来力 用いられている材料を使用することができ る。例えば、フ ノール類又はその化合物、ァミン化合物やその誘導体、酸無水物、 イミダゾールやその誘導体などが挙げられる。また、エポキシ榭脂モノマとフエノール 類又はその化合物、アミン類又はその化合物との重縮合反応を進行させるためェポ キシ榭脂に硬化促進剤を配合することができ、この硬化促進剤も、従来用から用いら れている材料を使用することができる。例えば、トリフエニルホスフィン、イミダゾール やその誘導体、三級アミン化合物やその誘導体などが挙げられる。
[0032] エポキシ榭脂、硬化剤、無機充填材、硬化促進剤を配合したエポキシ榭脂組成物 には、必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等の添加剤を配合す ることができる。また、このエポキシ榭脂組成物をシート状繊維基材に含浸し乾燥して プリプレダを製造する際、必要に応じて溶剤を使用することができる。これらの添加剤 、溶剤の使用は、硬化物の熱伝導性に影響を与えることはない。
[0033] 本発明の対象物の 1つであるプリプレダは、上記のエポキシ榭脂組成物をガラス繊 維の如き無機繊維や有機繊維から成るシート状繊維基材 (織布ゃ不織布)に含浸し 加熱乾燥して、エポキシ榭脂を半硬化状態としたものである。
[0034] 本発明の他の対象物である積層板は、その全層又は一部の層が前記プリプレダか ら成っており、このプリプレダを含む層全体を加熱加圧成形して形成される。この場 合、必要に応じて加熱加圧成形時に積層板の片面ある 、は両面に銅箔等の金属箔 を一体に貼り合せてもよい。本発明の更に他の対象物であるプリント配線板は、この プリント配線板を形成すべき絶縁層が前記プリプレダ力 成っており、このプリプレダ 絶縁層を加熱加圧して成形される。このプリント配線板は、片面プリント配線板、両面 プリント配線板、内層と表面層にプリント配線を有する多層プリント配線板のいずれの 形態であってもよい。
[0035] このような構成のプリント配線板は、絶縁層の熱伝導性が良好で優れた放熱性を有 するので、自動車機器用のプリント配線板、パソコン等の高密度実装プリント配線板 に好適である。
実施例
[0036] 以下、本発明の幾つかの実施例を参考例及び比較例と共に詳細に説明する。以 下の実施例、参考例及び比較例において、「部」とは「質量部」を意味する。表 1、表 2及び表 3には、それぞれ実施例、参考例及び比較例の成分、配合割合、混連装置 、プリプレダの作製可否、外観及び熱伝導率が示されている。
[0037] (実施例 1)
エポキシ榭脂モノマ成分としてビフエ-ル骨格をもつエポキシ榭脂モノマ(ジャパン エポキシレジン製「YL6121H」,エポキシ当量 175) 100部を用意し、これをメチルイ ソブチルケトン (和光純薬製) 100部に 100°Cで溶解し、室温に戻した。
硬化剤として 1, 5—ジァミノナフタレン(和光純薬製「1, 5-DANJ ,ァミン当量 40 ) 22部を用意し、これをメチルイソプチルケトン (和光純薬製) 100部に 100°Cで溶解 し、室温に戻した。
尚、実施例 1に用いられるエポキシ榭脂モノマ「YL6121H」は、既述の分子構造 式 (式 1)において、 R=—CH、n=0. 1であるエポキシ榭脂モノマと分子構造式(
3
式 2)において、 n=0. 1であるエポキシ榭脂モノマを等モルで含有するエポキシ榭 脂モノマである。
上記のエポキシ榭脂モノマ溶液と硬化剤溶液を撹拌羽タイプのホモミキサで混合、 撹拌して成分を均一に分散し、更に、無機充填材として窒化ホウ素 (電気化学工業 製「GP」、平均粒子径: 8 m、熱伝導率 60WZm'K、粒子形状:平板状) 107部( 榭脂固形分 100体積部に対し 50体積部)添加し、またメチルイソプチルケトン (和光 純薬製)を 67部添加して混合、撹拌し、エポキシ榭脂組成物ワニスを調製した。
[0038] このエポキシ榭脂組成物ワニスを、厚さ 0. 2mmのガラス繊維織布に含浸し加熱乾 燥してプリプレダを得た。このプリプレダ 4枚を積層し、その両側に銅箔を重ね、温度 175°C、圧力 4MPaの条件で 90分間加熱加圧形成して一体化し、厚さ 0. 8mmの 積層板を得た。
[0039] 実施例 1で得られた積層板の熱伝導率を測定した結果がエポキシ榭脂組成物の配 合組成と共に表 1にまとめて示されている。表 1において、熱伝導率は、実施例 1で得 られた積層板から 50mm X 120mmの板状試料を切り出し、プローブ法に準拠して 室温で測定した結果である。
[0040] (実施例 2乃至実施例 6)
エポキシ榭脂モノマと硬化剤を合せた榭脂固形分 100体積部に対する窒化ホウ素 の配合体積部を表 1に示すように変えたエポキシ榭脂組成物のワニスを用いたことを 除 ヽて、実施例 1と同様にしてプリプレダ及び積層板を得た。ワニスを調製するに当り 、窒化ホウ素の体積部が 100体積部まではホモミキサでワニスを撹拌し、それを越え る配合ではボールミルを用いてワニスを攪拌して混練した。
各実施例で得られた積層板から 50mm X 120mmの板状試料を切り出し、熱伝導 率を測定したところ、表 1から解るように、榭脂固形分に対する窒化ホウ素の体積部 が 10〜900体積部の範囲(実施例 1〜6)では、添加量が増加するにつれて熱伝導 率も増加した。また、ボールミルで材料を混練すると、 100体積部を越え 900体積部 の範囲まで、プリプレダと積層板を作製することができる上に、高い熱伝導率が得ら れた。
[0041] (実施例 7)
窒化ホウ素「GP」の代わりに、球形の無機充填材である窒化アルミニウム (東洋ァ ルミ-ゥム製「R15S」、平均粒径 15 μ m、熱伝導率 100WZm'K、粒子形状:球形) 154部 (榭脂固形分 100体積部に対し 50体積部)を用 、ることを除 、て、実施例 1と 同様にしてプリプレダ及び積層板を得た。この積層板の熱伝導率は 1. 6WZm'Kで あり、実施例 1よりは多少低いものの、熱伝導率の高い積層板が得られた。
[0042] (実施例 8)
窒化ホウ素「GP」の代わりに、球形の無機充填材である酸ィ匕マグネシウム (協和化 学製「5301」、平均粒径 5 μ m、熱伝導率 30WZm'K、粒子形状:球形) 166部 (榭 脂固形分 100体積部に対し 50体積部)を用いることを除いて、実施例 1と同様にして プリプレダ及び積層板を得た。この積層板の熱伝導率は 1. 3WZm'Kであり、実施 例 1より多少低 、ものの、熱伝導率の高!、積層板が得られた。
[0043] (参考例)
エポキシ榭脂モノマと硬化剤とを合せた榭脂固形分 100体積部に対する無機充填 材の配合割合を 120体積部とした以外は実施例 1と同様にして、エポキシ榭脂組成 物のワニスをホモミキサで撹拌して調製した (表 2参照)。無機充填材の配合割合は、 榭脂固形分 100体積部に対して 900体積部より少ないが、ホモミキサによる撹拌では ワニスの粘度が高くなりすぎて均一性が得られないため、プリプレダを製造することが できなかった。
[0044] (比較例 1)
比較例 1では、エポキシ榭脂モノマ成分として「YL6121H」の代わりに、ビスフエノ ール A型エポキシ榭脂(ジャパンエポキシレジン製「EP828」、エポキシ当量 185)を 用いることを除いて実施例 1と同様にしてプリプレダ及び積層板を得た。この積層板 の熱伝導率は、 0. 5WZm'Kであり、実施例 1より著しく小さくなつた。
[0045] (比較例 2) 実施例 1の窒化ホウ素の代わりに、熱伝導率が低ぐ粒子が球形の水酸化アルミ二 ゥム(住友化学製「C 302A」、平均粒径 2. O ^ m,熱伝導率 3. OW/m-K,粒子 形状:球形) 115部 (榭脂固形分 100体積部に対し 50体積部)を用 、ることを除 、て 、実施例 1と同様にしてプリプレダ及び積層板を得た。この積層板の熱伝導率は、 0. 7WZm'Kであり、実施例 1より大きく減少した。
[0046] (比較例 3、 4)
エポキシ榭脂モノマと硬化剤とを合せた榭脂固形分 100体積部に対する無機充填 材の配合体積部を表 1に示すように変えたエポキシ榭脂組成物のワニスを用いたこと を除いて、実施例 1と同様にしてプリプレダ及び積層板を得た。比較例 3に示すように 、榭脂固形分 100体積部に対する無機充填材の体積部が 5体積部であると、比較例 1と同様にプリプレダに含浸ムラが確認され熱伝導率が低下した。また、比較例 4に 示すように、榭脂固形分 100体積部に対する無機充填材の体積部が 910体積部で あると、ワニスの粘性が高くなりすぎて、ボールミルによる混練が困難になり、シート状 繊維基材にワニスを均一に含浸することができな ヽため、プリプレダ及び積層板を作 成することができなかった。
[0047] [表 1]
Figure imgf000014_0001
2]
エポキシ樹脂組成 参考例 エポキシ樹脂 YL6121H 100 モノ マ
(部) Ep828 ― 硬 化 剤
(部) 1, 5 - DAN 22 無機充填材
窒化ホウ素 256 (部) 樹脂固形分 100体積部に対
120 する無機充填材の体積部 メチルイソ
溶剤 (部) プチルケト 267 ン ホモミキサ 〇 混練装置
ポールミル プリプレダ作製可否 不可 外 観 ― 熱伝導率 (W/m■ K) 一 比 較例
エポキシ樹脂組成
1 2 3 4
エポキシ樹 YL6121H 一 100 100 100
脂モノマ
(部) Ep828 100 ― 一 ―
1, 5 -画 23 22 22 22 無 機 窒化ホウ素 108 ― 10. 7 2509 充填材
水酸化アル
(部) ― 115 ― 一
ミニゥム
樹脂固形分 100体積部
に対する無機充填材 50 50 5 910
の体積部
メチルイソ
溶剤 (部) ブチルケト 267 267 267 267
ホモミキサ 〇 〇 〇 一
混練装置
ポールミル ― ― ― 〇
プリプレダ作製可否 可 可 可 不可
外 観 亜 ―
熱伝導率 (W/m - K) 0. 5 0. 7 0. 6 一
[0050] なお、上記の実施例では、エポキシ榭脂組成物は、(式 2)の分子構造を有するェ ポキシ榭脂モノマーと (式 2)の分子構造以外であって (式 1)の分子構造を有するェ ポキシ榭脂モノマーとを含んで 、たが、(式 2)の分子構造を有するエポキシ榭脂モノ マーのみ力も成って 、てよ 、し、また (式 2)の分子構造を有するエポキシ榭脂モノマ 一を含んでいなくてもよいことはもちろんである。その他の成分及び配合割合等も、 上記の実施例に限定されるものではなぐ特許請求の範囲を逸脱しない限り、種々の 変形が可能である。
産業上の利用可能性
[0051] 本発明は、エポキシ榭脂組成物に熱伝導性が高い無機充填材を添加してェポキ シ榭脂組成物ワニスのシート状繊維基材に付着する量を向上しつつ熱伝導性を維 持することができるプリプレダを得ることができ、特に、積層板又はプリント配線板に好 適に使用することができ、産業上の利用性が向上する。

Claims

請求の範囲 エポキシ榭脂と硬化剤とを含むエポキシ榭脂組成物がシート状の繊維基材に含浸 して保持され半硬化状態としてなるプリプレダにおいて、前記エポキシ榭脂は、(式 1)で示す分子構造を有するエポキシ化合物であり、且つ前記エポキシ榭脂には、熱 伝導率が 20WZm'K以上の無機充填材が榭脂固形分 100体積部に対し 10〜900 体積部となるように含有されていることを特徴とするプリプレダ。
[化 1]
Figure imgf000017_0001
R : - H ,アルキル基(炭素数が 4以下の脂肪族炭化水素),
ァセチル基,ハロゲンから選ばれる。 平均値で 0〜5の数
請求項 1に記載のプリプレダであって、前記エポキシ榭脂が、(式 2)で示す分子構 造 (式 1で R:— H)を有するエポキシィ匕合物であることを特徴とする請求項 1又は 2記 載のプリプレダ。
[化 2]
Figure imgf000017_0002
m :平均値で 0 ~ 5の数
[3] 請求項 1又は 2に記載のプリプレダであって、前記無機充填材の形状が球形でない ことを特徴とするプリプレダ。
[4] 請求項 1乃至 3のいずれかに記載のプリプレダを製造する方法であって、前記ェポ キシ榭脂に含有される無機充填材を榭脂固形分 100体積部に対し 100体積部より 多く配合し、ボールミルとビーズミルと複数本のロールで構成されるロールミルとから 選択されたいずれかの混練手段又は前記混練手段と同等の手段により前記ェポキ シ榭脂組成物を混練して前記シート状の繊維基材に含浸して保持することを特徴と するプリプレダの製造法。
[5] 加熱加圧して成形されるべき積層板の全層又は一部の層が請求項 1乃至 3のいず れかに記載のプリプレダ力も成っていることを特徴とする積層板。
[6] 加熱加圧して成形されるべき絶縁層から成るプリント配線板において、前記絶縁層 が請求項 1乃至 3のいずれかに記載のプリプレダ力も成っていることを特徴とするプリ ント配線板。
PCT/JP2005/013476 2004-07-26 2005-07-22 プリプレグ、その製造方法、積層板及びプリント配線板 WO2006011421A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-216750 2004-07-26
JP2004216750 2004-07-26
JP2005167622A JP5010112B2 (ja) 2004-07-26 2005-06-08 プリプレグの製造法、積層板およびプリント配線板の製造法
JP2005-167622 2005-06-08

Publications (1)

Publication Number Publication Date
WO2006011421A1 true WO2006011421A1 (ja) 2006-02-02

Family

ID=35786170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013476 WO2006011421A1 (ja) 2004-07-26 2005-07-22 プリプレグ、その製造方法、積層板及びプリント配線板

Country Status (3)

Country Link
JP (1) JP5010112B2 (ja)
TW (1) TW200611927A (ja)
WO (1) WO2006011421A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195835A (ja) * 2007-02-14 2008-08-28 Shin Kobe Electric Mach Co Ltd エポキシ樹脂ワニスの製造法、プリプレグの製造法、積層板および配線板の製造法
WO2012098735A1 (ja) * 2011-01-19 2012-07-26 日立化成工業株式会社 液晶性樹脂組成物、放熱材料前駆体及び放熱材料

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0703172D0 (en) 2007-02-19 2007-03-28 Pa Knowledge Ltd Printed circuit boards
JP2009021468A (ja) * 2007-07-13 2009-01-29 Panasonic Corp 伝熱プリント配線板と、これに用いる伝熱プリプレグ及びその製造方法と、伝熱プリント配線板の製造方法
CN105744751B (zh) 2008-08-18 2019-06-18 赛姆布兰特有限公司 卤代烃聚合物涂层
JP2010229368A (ja) * 2009-03-30 2010-10-14 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物並びにプリプレグ、積層板及び配線板
JP2011153265A (ja) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp 樹脂組成物及び樹脂硬化物
DE112011100378T5 (de) 2010-01-29 2012-12-06 Nippon Kayaku Kabushiki Kaisha Phenolische Verbindung, Epoxyharz, Epoxyharz-Zusammensetzung, Prepreg, und gehärtetes Produkt daraus
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
JP5447355B2 (ja) * 2010-12-02 2014-03-19 新神戸電機株式会社 熱硬化性樹脂組成物の製造法、プリプレグおよび積層板の製造法
JP2012131899A (ja) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd 樹脂組成物、樹脂シート、金属ベース回路基板、インバータ装置、及びパワー半導体装置
JP5885330B2 (ja) 2011-07-26 2016-03-15 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物、プリプレグおよびそれらの硬化物
KR102081876B1 (ko) * 2011-08-31 2020-02-26 히타치가세이가부시끼가이샤 수지 조성물, 수지 시트, 금속박 구비 수지 시트, 수지 경화물 시트, 구조체, 및 동력용 또는 광원용 반도체 디바이스
JP6086182B2 (ja) * 2012-03-12 2017-03-01 Tdk株式会社 樹脂組成物、並びにこれを用いた樹脂シート、積層板
JP2013185145A (ja) * 2012-03-12 2013-09-19 Tdk Corp エポキシ樹脂硬化物、並びにこれを用いた積層板
JP2013185144A (ja) * 2012-03-12 2013-09-19 Tdk Corp 樹脂硬化物、並びにこれを用いた樹脂シート、積層板
JP5942641B2 (ja) * 2012-07-02 2016-06-29 日立化成株式会社 樹脂シート及びその製造方法、樹脂シート硬化物、並びに放熱用部材
JP6081751B2 (ja) * 2012-09-13 2017-02-15 三菱化学株式会社 高熱伝導性樹脂組成物
JP6411010B2 (ja) * 2013-04-01 2018-10-24 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂組成物の製造方法、熱伝導材料前駆体、bステージシート、プリプレグ、熱伝導材料、積層板、金属基板及びプリント配線板
JP6671958B2 (ja) 2013-10-09 2020-03-25 日本化薬株式会社 フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、プリプレグおよびそれらの硬化物
WO2017155110A1 (ja) 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
GB201621177D0 (en) 2016-12-13 2017-01-25 Semblant Ltd Protective coating
JP2018021180A (ja) * 2017-06-26 2018-02-08 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、熱伝導材料、積層板、金属基板及びプリント配線板
WO2019111978A1 (ja) 2017-12-05 2019-06-13 デンカ株式会社 窒化物系セラミックス樹脂複合体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136298A (ja) * 1983-12-23 1985-07-19 松下電工株式会社 多層配線板
JPS6330520A (ja) * 1986-07-25 1988-02-09 Yuka Shell Epoxy Kk 積層板用エポキシ樹脂組成物
JPH0388394A (ja) * 1989-08-31 1991-04-12 Shin Kobe Electric Mach Co Ltd 多層印刷配線板
JPH0621593A (ja) * 1992-04-14 1994-01-28 Hitachi Chem Co Ltd 印刷配線用基板の製造方法
WO2002034832A1 (fr) * 2000-10-24 2002-05-02 Mitsui Chemicals, Inc. Composition de resine epoxy et son utilisation
JP2002249641A (ja) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd エポキシ樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ及び積層板
JP2004285126A (ja) * 2003-03-19 2004-10-14 Shin Kobe Electric Mach Co Ltd エポキシ樹脂ワニスの製造法とプリプレグの製造法、積層板およびプリント配線板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136298A (ja) * 1983-12-23 1985-07-19 松下電工株式会社 多層配線板
JPS6330520A (ja) * 1986-07-25 1988-02-09 Yuka Shell Epoxy Kk 積層板用エポキシ樹脂組成物
JPH0388394A (ja) * 1989-08-31 1991-04-12 Shin Kobe Electric Mach Co Ltd 多層印刷配線板
JPH0621593A (ja) * 1992-04-14 1994-01-28 Hitachi Chem Co Ltd 印刷配線用基板の製造方法
WO2002034832A1 (fr) * 2000-10-24 2002-05-02 Mitsui Chemicals, Inc. Composition de resine epoxy et son utilisation
JP2002249641A (ja) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd エポキシ樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ及び積層板
JP2004285126A (ja) * 2003-03-19 2004-10-14 Shin Kobe Electric Mach Co Ltd エポキシ樹脂ワニスの製造法とプリプレグの製造法、積層板およびプリント配線板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195835A (ja) * 2007-02-14 2008-08-28 Shin Kobe Electric Mach Co Ltd エポキシ樹脂ワニスの製造法、プリプレグの製造法、積層板および配線板の製造法
WO2012098735A1 (ja) * 2011-01-19 2012-07-26 日立化成工業株式会社 液晶性樹脂組成物、放熱材料前駆体及び放熱材料
TWI462945B (zh) * 2011-01-19 2014-12-01 Hitachi Chemical Co Ltd 液晶性樹脂組成物、散熱材料前驅體及散熱材料
JP5962514B2 (ja) * 2011-01-19 2016-08-03 日立化成株式会社 液晶性樹脂組成物、放熱材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、プリント配線板、液晶性樹脂組成物の製造方法、放熱材料前駆体の製造方法及び放熱材料の製造方法

Also Published As

Publication number Publication date
TW200611927A (en) 2006-04-16
JP5010112B2 (ja) 2012-08-29
JP2006063315A (ja) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2006011421A1 (ja) プリプレグ、その製造方法、積層板及びプリント配線板
JP4735492B2 (ja) 加熱加圧成形用プリプレグおよび積層板
CN109776864B (zh) 一种改性六方氮化硼、半固化片、环氧树脂导热复合材料、覆铜板及其制备方法和应用
JP6221634B2 (ja) 樹脂組成物、樹脂シート、樹脂硬化物および基板
WO2007125926A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP5652307B2 (ja) 加熱加圧成形用プリプレグおよび積層板
JP5549183B2 (ja) エポキシ樹脂組成物の製造法、並びにプリプレグの製造法、積層板及び配線板の製造法
JP5370129B2 (ja) 熱硬化性樹脂組成物並びにプリプレグ及び積層板
JP3885664B2 (ja) プリプレグ、積層板およびプリント配線板
JP4793277B2 (ja) エポキシ樹脂ワニスの製造法、プリプレグの製造法、積層板および配線板の製造法
JP5217865B2 (ja) 難燃性エポキシ樹脂組成物並びにプリプレグ、積層板及び配線板
JP5712488B2 (ja) 絶縁性樹脂フィルム及びそれを用いた積層板、配線板
JP3912302B2 (ja) エポキシ樹脂ワニスの製造法とプリプレグの製造法、積層板およびプリント配線板の製造法
JP2006036868A (ja) プリプレグ、積層板およびプリント配線板
JP4301044B2 (ja) プリプレグ及び積層板の製造方法
JP4258364B2 (ja) プリプレグの製造方法
JP2000273222A (ja) 難燃性プリプレグ及び積層板
JP4724931B2 (ja) プリプレグ及び積層板の製造方法
JP4301009B2 (ja) プリプレグおよび積層板の製造方法
JP2000344916A (ja) 難燃性プリプレグ及び積層板
JP2013129788A (ja) 熱硬化性樹脂組成物、加熱加圧成形用プリプレグ及び積層板
JP5494010B2 (ja) 樹脂組成物及びそれを用いたプリプレグ、積層板、配線板
JPH11302411A (ja) プリプレグ及び積層板の製造方法
JP4301008B2 (ja) プリプレグおよび積層板の製造方法
JP2011157441A (ja) 接着剤樹脂組成物、硬化物、接着剤フィルム及びカバーレイフィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase